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Chapter 1

Introduction

1.1 Overview of breast cancer

Cancer is a collection of diseases that are caused by the uncontrollable divi-
sion and spread of abnormal cells in the body. In all types of cancers, breast
cancer becomes a great risk that endangers female’s lives. Referred to the
database in National Cancer Center Japan, breast ranks the first of the inci-
dent rate of the female’s organs that suffers from cancer (NCC_incident_ranking).
In Unit States, breast cancer takes the second place of age-adjust cancer death
rate since 1990 (AmericanCancerSociety2017). Typically, forty-year-old post-
menopausal women with high breast tissue density and high levels of en-
dogenous hormones are vulnerable to develop breast cancer in general. Ad-
ditionally, the modern lifestyle significantly increases the possibility of breast
cancer risk factors. A report statistically points out that women who have ex-
perience on postmenopausal hormone use, obesity caused by the junk food
and lack of physical exercise, unhealthy diet, drinking, smoking, and oral
contraceptive use may take a higher risk of breast cancer than those having
no experience, although there is no direct evidence on the relation of the un-
healthy lifestyle and breast cancer.

Historically, the ancients originated “cancer” from the illustration of the
limbs of a crab and believed that crab or crawfish has the therapeutic utility
for cancer, which was an embryonic form of the conservative treatment. In
the period of Alexandria, Leonides developed a test of operating the surgery
for breast cancer (DeMouLin1989). And in the twenty-first century, breast
cancer surgery, such as breast-conserving surgery or mastectomy, is now a
regular way for treatment. Breast cancer with early stage is possible to con-
duct breast-conserving surgery to remove the tumors plus the surrounding
tissue. Otherwise, there is no choice but to do the mastectomy or even ra-
diation, chemo, and hormone therapy for the advanced case where invasive
cancers occur. Anyway, the patients who receive the surgery will eventually
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suffer from the severe pain. Instead of the conventional surgery, a next gen-
eration medical solution using the high intensity focused ultrasound (HIFU)
for soft-tissue tumors aims at developing a new noninvasive1 treatment ra-
diated from the outer human body (Huber2001).

For the sake of alleviating the painful burden during cancer treatment,
tumor cells at the early stage are able to be removed with a small cut. Patho-
logically, breast cancer ranking from Stage 0 to Stage IV are mainly deter-
mined by the size of tumors. Stages I, and II, which is known as the early
stage, namely, classify by means of the tumor size of less than 20 mm and
50 mm, respectively. Moreover, some noninvasive breast cancer occurring in
the fibroglandular parenchymal tissue are called Stage 0 or furthermore Stage
tissue (Tis). It is also known as ductal carcinoma in situ (DCIS) recognized at
the fibrous connective tissue like ducts or lobular carcinoma in situ (LCIS) at
the glandular tissue like lobules. And the statistic data from National Cancer
Center Hospital indicates the survival rate in Stages Tis, I, and II of breast
cancer is 94.72%, 89.10%, and 78.60%, respectively citenational...!!!!!!!! . With
the development of Japan’s health care policies for the year 2035, the non-
invasive diagnostic system for the early stage breast cancer will become one
of the potential addressed issues on the consideration of efficiency as well as
precision of diagnosis, treatment, and nursing (mhlw_health_care_2035).

1.2 Breast imaging modalities

The transition from “cure” to “care” in the global revolution of the future
health care motivates us to reconsider assessing whether the classical breast
imaging modalities meet the needs of public health care promotion. Medical
images obtained from the breast cancer scanning systems, such as mammog-
raphy, magnetic resonance imaging (MRI), and sonography, are able to pro-
vide the prescribed resolution and contrast for the soft tissue. Using the med-
ical images enables doctors to have a objective standard for judging the stage
of the breast cancer and target the location of tumors prior to surgery. Only
clinical breast examination can provide the service of the breast cancer scan-
ning and doing examination usually requires the patient’s self-awareness.
Fortunately in most cases, breast cancer symptoms allow women to aware

1“Noninvasive” here indicates that the ablation targets at the tumors and causes little de-
struction on the normal tissues.
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abnormalties happening in her bodies. However, the future health care re-
quires earlier clinical diagnosis when the tumors are still as small as approx-
imate 1-2 millimeter. Besides, in order to make the breast cancer screening as
a program of the regular physical examination accepted annually, the ideal
scanning system at least possesses the following criterion: non-destruction
and irradiation, low expanse, short scanning time, and reliable examination
result. At the same time a small-scale scanning systems may help save the
room and extend the application in other scenarios, such as the examination
in ambulance or spaceship.

1.2.1 Mammography

1.2.2 Magnetic resonance imaging

1.2.3 Sonography

1.2.4 Photoacoustic tomography

1.3 Ultrasound waveform tomography

The restricted concept of ultrasound waveform tomography is mathemat-
ically an inverse problem of the wave propagation equation which recon-
structs the anatomic medical image of breast indicating the category and
structure for each kind of tissue inside, given the received ultrasound signals
only measured at the transducer. But in this study, it is regarded as develop-
ing the complete breast imaging system including the ultrasound scanning
device, the waveform simulation for the ultrasound propagating in the breast
tissue, and the clinical application more than the mathematical consideration
of image reconstruction. In other works, the complete breast imaging system
is also named ultrasound computed tomography (USCT).

Ultrasound Computed Tomography (USCT) is a novel modality of med-
ical imaging technology for breast cancer detection. The scanning system
of USCT is conducted on a two-dimensional ring-array transducer; see Fig-
ure 1.1. By vertically moving the transducer, it is able to scan the breast slice
by slice and acquire the three-dimensional ultrasound measurements. The
measurements record the acoustic properties, i.e. transmission, reflection, re-
fraction, diffraction, etc, inside the transducer in all directions. USCT allows
us to detect the 2-mm scale tumor from the reconstructed image. Nowadays,
USCT has a wide prospect for the future research and application of health
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care because of its absence of the radiation dose compared with X-ray CT and
mammography, costing extremely lower expenses with an equal-level recon-
structed image of MRI, and acting as a nondestructive imaging test compared
with PET/SPECT.

FIGURE 1.1: Ring-array Transducers (Nakamura2014)

Previously, USCT was difficult to advance the progress of physical ap-
plications because of its dramatic computation cost and its low resolution.
However, a novel USCT device studied in our lab, based on ring-array trans-
ducers and Verasonics for data acquisition, sheds new light on the early de-
tection of the small-scaled tumor by a high-resolution breast image; see Fig-
ure 1.1. With it, USCT reconstructs sound speed and attenuation images in
the domain of ring-array transducers instead of acoustical impedance image
from the popular echo imaging in the domain of linear-array transducers,
as we utilize the full waveform model well discussed before from other re-
search fields (seismic imaging, inverse scattering, etc.). And compared with
the limit modes of the linear-array transducers, like the transmission or re-
flection mode, the ring-array ones are designed to study the full waveform
mode, which is a more accurate model than others, with arbitrary emitted
and received directions, resulting in an acceptable resolution of image. Ad-
ditionally, some recent works accelerates USCT algorithms by applying GPU
(Graphic Processing Unit) computing, expected to save the computing time
for one USCT job; see [Roy2010].
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We present a classical literature review of models and algorithms related
to USCT below. Previously, with the limitation of computing performance,
the full waveform USCT was approximated by: diffraction tomography with
Born or Rytov approximation [Devaney1982, 1986], the Eikonal Equation
with straight-line approximation [Greenleaf1983], seismic methods in the Fourier
domain [Brukhout et al.1982], initial value inverse scattering transformed
from boundary value one [Natterer, Wubbeling1995], etc; Afterwards, as the
development of the high performance hardware, the researchers began to re-
turn to original full waveform model, such as the ultrasound tomography
by exploiting seismic wave propagation [Natterer2008b], inverse acoustic
mammography in the time domain [Natterer 2008a], reflection mode of in-
verse acoustic scattering by CARI and analytical continuation [Natter 2011a,
2011b]. In terms of the classical USCT algorithms, we refer to a propagation-
backpropagation method in 2D and 3D, see [Natterer and Wubbeling1995]
and [Natterer1997] which is well-known as Landweber-Kaczmarz’s method
[Kaltenbacher, Neubauer, Scherzer2008], contrast source inversion and its ex-
tensions, see [van den Berg and Kleinman1997], [van den Berg, van Broekhoven
and Abubakar1999], [Abubakar et al.2008] and the recent work [van Dongen
et al.2013], the 3D inverse medium scattering solver [Hohage2001], marching
schemes for USCT [Natterer and Wubbeling2005], etc.

The recent USCT prototype "SoftVue", built by Delphinus Medical Tech-
nologies, is of ability to simultaneously reconstruct the parametric cross-
sectional images, such as the distribution of speed of sound, attenuation, and
acoustical impedance (or the echo image); found in the homepage of Delphi-
nus Medical Technologies. The related searches they published hold on the
following topics: practical computation of experimental data, the compari-
son between the numerical full waveform algorithm, and the previous ray-
tracing methods, and its GPU implementation; see [Duric et al. 2013, 2014],
[Roy, et al. 2013], [Sak, et al. 2014], [Sandhu, et al. 2014], etc. However, dif-
ferent with their research direction, the work focuses on the fast and robust
improvement for the current algorithms suitable to GPU computing and our
own USCT device. Our team get started with the robustness consideration
on the bent-tracing reconstruction of USCT [Qu2015].

1.4 Introduction to inverse problems theory

1.5 Outline of the dissertation
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Chapter 2

Forward problem of wave
propagation

The forward problem of wave propagation is developed to numerically com-
puting the ultrasound wavefield in the imaging domain as well as on the ring
transducer, given the acoustic coefficients and the source term. In this study,
speed of sound and attenuation in a viscous fluid are considered in terms of
the acoustic property, leading to the derivation of the attenuated wave equa-
tion. The forward problem is regarded as a computer simulator performing
the wave phenomena that occur in the ring transducer, i.e. transmission, re-
flection, refraction, diffraction, and scattering. More significantly, ultrasound
waveform inversion allows us to reconstruction the acoustic coefficients by
means of iteratively computing the solver of the forward problem. It requires
the numerical solver possessing an efficient way to better match the key fea-
tures, says amplitude and phase, of the measured data on the ring transducer.
In this chapter, the numerical solvers built in the frequency domain intends
to generate the simulated data at principal frequencies if the relatively nar-
row bandwidth of the measured data is acquired from the pulse excitation.
One anticipates that the frequency-domain solver with the use of the partial
frequency components of the measured data enables us to reconstruct the
breast image, provided a sufficient accuracy.

The study of the forward problem of wave propagation is organized as
follows: In Section 2.1, the attenuated wave equation is derived with the
knowledge of the fluid mechanics. The forward problem is developed and
discussed in Section 2.2 by extending the attenuated wave equation into the
frequency-domain formula – Helmholtz equation and its integral equation
– the Lippmann-Schwinger equation. Section 2.3 introduces two numeri-
cal solvers built with ulitizing the Cartesian and trigonometric bases. The
complexity and computational burden for the two solvers are discussed. In
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Section 2.3, the verification study of accuracy is conducted on the numeri-
cal solvers when the configuration is similar to that in the real experiments.
Finally, the discussion and conclusion are included in Section 2.5.

2.1 Derivation of the attenuated wave equation

In this section, the derivation of the attenuated wave equation is reviewed by
a way of starting with the view of viscous fluid mechanics. First the spatial
coordinate of the variables, vector-valued functions, and tensors are set in the
N -dimensional Cartesian system, especially with N = 1, 2, 3 for the nature of
physics. Particularly, the spatial coordinate with a capital letter denotes the
position of the particle with the reference time while that with a small letter
denotes ordinary position in a space. In the following, the Euler’s equation
of motion is introduced by means of expressing the velocity as the function
of the reference time in the Lagrangian description. In this case, the laws of
conservation is constructed through tracking the motion at an fixed individ-
ual particle. The particle is deformed from the initial position X to the point
x(X, t) at the present time t. Additionally, the constitutive relation between
stress and strain is considered in the fluid. The Eulerian description is used
to observe the motion of the particle at a fixed spatial position x for period of
time.

The propagation of the acoustic wave arising from the small oscillatory
of the fluid particle results in the attenuated wave equation, performing the
behaviors of vibration (compression/rarefaction) as well as dissipation. A
general fluid motion is addressed by the governing law of the momentum
diffusion. Then the motion is restricted to the acoustic wave with the situa-
tion of the adiabatic compression. Several assumptions and approximations
are considered as prerequisites in the place prior to the specific theories being
presented.

2.1.1 The Euler’s equation of motion

Consider that with the Lagrangian description, the displacement u(X, t), the
velocity v(X, t), and the density field ρ(X, t) are defined on the infinitesimal
volume V of the fluid particle which satisfies

u(X, t) = x(X, t)−X, v(X, t) =
Du

Dt
(X, t). (2.1.1)
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The derivative in the Lagrangian description or the material derivative D/Dt
is given as

D
Dt

=
∂

∂t
+ v · ∇X, (2.1.2)

where the dot · denotes the inner product and∇ the gradient with respect to
X. Then the Reynolds’ transport theorem follows with the definition of the
material derivative for an arbitrary differentiable function A(X, t):

D
Dt

∫
V

A(X, t)dV =

∫
V

[
DA
Dt

+ A∇X · v
]

dV. (2.1.3)

We introduce the equation of continuity and motion for a fluid particle in
the Lagrangian description. Applying the conservation of mass, Eq. (2.1.3),
and selectingA = ρ yields the continuity equation in the Lagrangian descrip-
tion:

D
Dt

∫
V

ρdV =

∫
V

Dρ
Dt

+ ρ∇X · v = 0, (2.1.4)

Applying the conservation of momentum, Eq. (2.1.3), and A = ρv the force
acting on the volume is given by

D
Dt

∫
V

ρvdV =

∫
V

[
D(ρv)

Dt
+ ρv∇X · v

]
dV =

∫
V

fdV +

∫
S

T · nSdS, (2.1.5)

where f(X, t) denotes the body force on V , the stress tensor T (X, t) repre-
sents the surface force acting on the surface S of V , and the vector nS is
defined as the outer normal vector on S. Combining Eqs. (2.1.1, 2.1.4, 2.1.5)
and applying the Gauss’ divergence theorem yield the Euler’s equation of
motion

ρ
Dv

Dt
= ∇X · T + f . (2.1.6)

2.1.2 Constitutive relation in a viscous fluid

Naturally, particles in compressible viscous fluid are allowed to measure the
stress force from the extent of distortion which is called strain rate. Com-
monly, we start with the differential of the velocity v(x, t) in the Eulerian
description given as the spatial distorted rate, i.e.

dvj =
∂vj
∂xk

dxk. (2.1.7)

In this subsection, we claim that all indices, such as j, k etc., in this subsection
satisfy Einstein summation. To further see the motion modes of the fluid
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particle, Eq. (2.1.7) can be decomposed into

dvj =
1

2

(
∂vj
∂xk

+
∂vk
∂xj

)
dxk +

1

2
(∇x × v × dx)j, (2.1.8)

where the rotation motion is obtained from the term
(
∂vj
∂xk
− ∂vk

∂xj

)
dxk = (∇x×

v × dx)j where × denotes the cross product with the property:

(a× b)j = εjklakbl.

Since ∇ × u × dx · dx = 0, the rotation has no effect on the extention of the
particle at the direction of dx. Thus, the strain rate ejk is attributed to the
remaining term of Eq. (2.1.8):

ejk =
1

2

(
∂vj
∂xk

+
∂vk
∂xj

)
. (2.1.9)

In this study, the constitutive relation of stress and strain is required to
characterize the viscous effect of the medium. The fluid particle is said to be
linear isotropic if stress is represented as a linear combination of the strain
rate. In specific, it can be referred to ben2012seismic; kundu20125th that
the constitutive relation is given by the Navier-Poisson law (or the linear
isotropic relation) as follows:

Tjk = −µδjk +

(
ηbulk −

2

3
ηshear

)
δjkell + 2ηshearejk, (2.1.10)

where the coefficient µ(x, t), ηbulk(x), and ηshear(x) denotes the magnitude of
the normal stress, the bulk viscosity and the shear viscosity.

Note that µ is identical with the hydrostatic pressure satisfying the fact
that it is proportional to the displacement gradient for a given mass of the
particle. In specific, there is an assumption that the compression in the fluid
is adiabatic when the entropy S is kept as a constant. Following the state
equation µ = µ(ρ, S) and the continuity equation (2.1.4), the hydrostatic pres-
sure satisfies the relation

Dµ
Dt

=

(
∂µ

∂ρ

)
S

Dρ
Dt

= −κS∇ · v, (2.1.11)
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where the adiabatic bulk modulus κS is defined as a measure of resistance to
compressibility of a fluid which has the expression

κS = ρ
∂µ

∂ρ
. (2.1.12)

The bulk viscosity is also called as the second viscosity (LANDAU1987). It
describes the energy loss produced by the hydrodynamic compression and
rarefaction. The shear viscosity is related to the resistance of the shear stress
in the fluid.

2.1.3 Acoustic wave

Next, in terms of the consideration of the attenuated wave equation for acous-
tic wave, the additional approximations are required to simplify the afore-
mentioned equations. One adds the several assumptions for the acoustic
wave propagation in the viscous fluid as follows:

1. With the low-velocity approximation, the particle is oscillated around
the same position for any time. In this situation, there is no difference
between the Eulerian and Lagrangian descriptions and the derivatives
have the relation

D
Dt

=
∂

∂t
, ∇ = ∇x = ∇X; (2.1.13)

2. Sound wave propagating in the linear isotropic viscous fluid satisfies
the constitutive equation (2.1.10);

3. The density ρ is independent of the time and space;

4. There is no shear stress acting on the particle, i.e. ηshear = 0.

5. The displacement and velocity of particle are assumed to be irrotational
and the body force is conservative such that

v = ∇P, ∂f

∂t
= −ρ∇Q. (2.1.14)

With the point 1, Eq. (2.1.11) again yields the relation of µ and v

∂µ

∂t
+ κS∇ · v = 0. (2.1.15)
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Combining Eq. (2.1.9) and the points 1,2, and 4, the momentum equation (2.1.6)
reduces to

ρ
∂v

∂t
= −∇µ+∇ (ηbulk∇ · v) + f . (2.1.16)

Incorporated with Eq. (2.1.15) and the point 5, we have

ρ
∂

∂t
∇P = ∇ (κS∇ · v) +∇

(
ηbulk∇ ·

∂v

∂t

)
+
∂f

∂t

= ∇ (κS∇ · ∇P ) +∇
(
ηbulk∇ ·

∂

∂t
∇P

)
− ρ∇Q. (2.1.17)

Thus, with the use of the point 3, Eq. (2.1.16) finally yields the attenuated
wave equation

−∂
2P (x, t)

∂t2
+ c2(x)∇2P (x, t) +

ηbulk(x)

ρ
∇2∂P (x, t)

∂t
= Q(x, t). (2.1.18)

Here, c(x) denotes speed of sound with the definition

c =

√
κS
ρ
.

There is a remark that the wave equation (2.1.18) free of attenuation can be
also derived from the fluid mechanics theory in inviscid flow; see kundu20125th;
ben2012seismic; colton2013inverse and the references therein. In that case,
for the consideration of the physical meaning, it has the same equation as
Eq.(2.1.18) and in this situation P represents acoustic pressure.

2.2 Helmholtz equation and the integral form

2.2.1 Helmholtz equation

Similar to the seismic application in fokkema2013seismic, the study of the
wave equation (2.1.18) is conducted in the temporal frequency domain. The
Fourier transform denoted by ∧ for the displacement potential P (x, t) is de-
fined as

p(x, ω) := P̂ (x, t) =

∫ +∞

−∞
P (x, t)eiωtdt, (2.2.1)

so is the volume force potential Q(x, t). Here ω denotes the angular fre-
quency. The capital-letter symbol denotes the Fourier-transformed function
of the small-letter one. Substituting Eq. (2.2.1) into Eq. (2.1.18) yields the



2.2. Helmholtz equation and the integral form 13

Helmholtz equations in the region of heterogeneity immersed in the homo-
geneous medium with the speed of sound of c0

∇2p(x, ω) +K2(x, ω)p(x, ω) = q0(x, ω), (2.2.2)

in which the complex-valued (attenuated) wavenumber is denoted byK(x, ω)

satisfying

K2(x, ω) =
ω2

c2(x) + iωηbulk(x)/ρ
, (2.2.3)

where the source term located in the reference homogeneous medium is given
by q0(x, ω) = q(x, ω)/c2

0 in which q is transformed from Q via the Fourier
transform.

To study the mathematical properties of the Helmholtz equation, the scat-
tering theory is introduced to explain the scattered wavefield induced by
the excitation from the scatterers or the so-called contrast source, by means
of the linearization in the homogeneous medium. The scatterers are pro-
duced by the acoustic deviation between the homogeneous and heteroge-
neous medium with the use of the identical incident wavefield. In specific,
the total wavefield propagating in the heterogeneous medium is composed
by the incident wavefield denoted by pinc(x, ω) in the homogeneous medium
and the scattered wavefield psct(x, ω), i.e.

p = pinc + psct (2.2.4)

The incident wavefield satisfies the Helmholtz equation (2.2.2) with speed of
sound being the constant c0

∇2pinc(x, ω) +
ω2

c2
0

pinc(x, ω) = q0(x, ω), (2.2.5)

or
∇2pinc(x, ω) +K2

0(ω)pinc(x, ω) = q0(x, ω), (2.2.6)

whereK0(ω) = ω/c0 denotes the wavenumber in the homoegeneous medium.
The choose of the point source term q0(x, ω) = −δ(x − s) formulates the
Green’s function G(x, s, ω) of Eq. (2.2.5):

∇2G(x, s, ω) +K2
0(ω)G(x, s, ω) = −δ(x− s). (2.2.7)
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To uniquely determine the solution of Eq. (2.2.7), the Sommerfeld radiation
condition

lim
|x|→∞

|x|
n−1
2

(
∂G(x, s, ω)

∂νx
− iK0(ω)G(x, s, ω)

)
= 0 (2.2.8)

where νx is the unit normal vector of x, stipulates completion with an out-
going spherically symmetric solution. This is called the free-space Green’s
function, which typically can be written in the dimensions n = 1, 2, 3:

G1D(x, s, ω) =
i

2K0(ω)
eiK0(ω)|x−s|, (2.2.9)

G2D(x, s, ω) =
i

4
H

(1)
0 (K0(ω)|x− s|), (2.2.10)

G3D(x, s, ω) =
1

4π|x− s|
eiK0(ω)|x−s|. (2.2.11)

Indeed, the term “out-going” is associated with the time-domain expres-
sion (2.2.1). Combining the phase factor eiK0(ω)|x−s| identically in Eqs. (2.2.9-
2.2.11) with that of e−iωt in the integrand of Eq. (2.2.1) yields the out-going
wave with the phase factor ei(K0(ω)|x−s|−ωt) when the time t and distance |x|
increases.

Particular solutions

Consider the particular solution of Eq. (2.2.6). The “out-going” of the wave-
field is assumed as above. With the vanishing of the source term, i.e. q0 = 0,
the plain wave propagating in the direction of the unit vector r is given by

pinc, plain(x;ω, r) = eiK0(ω)r·x. (2.2.12)

On the other hand, the spherical wave is a wave which is emanated from a
point source and propagates along omni-directions. Note that in this situa-
tion, the expressions of the sperical wave are identical to those of the Green’s
functions, i.e. Eqs. (2.2.9-2.2.11), with choosing q0(x, ω) = −δ(x − s) where
the point source is located at s.

Now consider the solution of the Helmholtz equation for the homoge-
neous medium in a finite domain. The use of the Green’s representation the-
orem provides an integral expression in an open bounded domain Σ. Sup-
posing that the domain Σ and the source term q0(x, ω) have sufficient regu-
larity, we have the Green’s representation theorem for Eq. (2.2.6), referred to
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theorem 2.1 in colton2013inverse:

pinc(x, ω) =

∫
∂Σ

{
∂pinc(y, ω)

∂νy
G(x,y, ω)− ∂G(x,y, ω)

∂νy
pinc(y, ω)

}
dσ(y)

−
∫

Σ

G(x,y, ω)q0(y, ω)dy, (2.2.13)

where x ∈ Σ, ∂Σ denotes the boundary of Σ, and νy denotes the unit normal
vector starting on y ∈ ∂Σ directed into the exterior of Σ.

Attenuation coefficient

According to the derivation of the attenuated wave equation (2.1.18), the bulk
viscosity principally determines the attenuation effect and is included in the
imaginary part of the complex-valued wavenumber K of Eq. (2.2.3). With
keeping the branch point of the square root ofK2 which makes the imaginary
part of K positive, one can explicitly write the expression of K:

K := <K + i=K =
ω

(c4 + ω2η2/ρ2)1/4
e
i
2

arctan
(
ωη

ρc2

)
. (2.2.14)

Then similar to Eq. (2.2.12) for the plain wave in the homogeneous medium,
one can have the ansatz1 for the expression of the plain wave with the complex-
valued wavenumber K in the direction of the unit vector r:

P plain(x, t) = ei(Kx·r−ωt). (2.2.15)

The intensity I is defined as I = |P plain|2. Attenuation can be measured by
the intensity decay in a wavelength λ. Since the ratio of the intensity decay
can be calculated from

I(x, t)

I(x + λr, t)
= e2Kimagλ ' e4π=K/<K = e

4πωη

ρc2 ,

1An ansatz is an assumed form for a mathematical establishment that is not based on any
underlying physics theory or principle.–Wolfram MathWorld
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with the assumption that |<K| � |=K|, the attenuation coefficient α(x) can
be written as

α(x) [dB/(cm ·MHz)] =
10 log(I(x, t)/I(x + λr, t)) [dB]

λ[cm]f [MHz]

=
40π=K/<K [dB]

λ[cm]f [MHz]

=
40πωηbulk/(ρc

2) [dB]

λ[cm]f [MHz]
. (2.2.16)

The analogue derivation refers to Dukhin2009.

2.2.2 Lippmann-Schwinger equation

We first define the geometrical configuration suited to breast ultrasound to-
mography. An imaging domain D set in the n-dimensional real space is sur-
rounded by the transducer array S; see Figure 2.1. The transducer array in
our study is assumed to be full transparent, that is to say, the wave contin-
ues propagating on its path without the loss of energy. The contrast function
denoted by χ(x) is defined as a function of speed of sound having a compact
support in D:

χ(x, ω) =

{
K2(x,ω)

K2
0 (ω)

− 1, x ∈ D,
0, x ∈ Rn\D.

Combined with Eq. (2.2.14), the speed of sound and the bulk viscosity are
given by

c = c0

√
1 + <χ

(1 + <χ)2 + (=χ)2
, (2.2.17)

ηbulk = −ρc
2
0

ω

=χ
(1 + <χ)2 + (=χ)2

. (2.2.18)

Subtracting Eq. (2.2.6) from Eq. (2.2.2) yields

∇2psct(x, ω) +K2
0(ω)psct(x, ω) = −K2

0(ω)χ(x)p(x, ω). (2.2.19)

Note that the scattered wave can be considered as the wavefield emanating
from the tissue with the cancellation of the external source term. Moveover,
the intensity of the scattered wave is related to the value of the contrast func-
tion.

Now we start to formulate the so-called Lippmann-Schwinger equation.
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FIGURE 2.1: Schematic diagram of wave propagating in the
ring-transducer.

In scattering theory, the Green’s representation theorem plays a role in deriv-
ing the integral-form expression of the scattered wave psct(x, ω), which can
be given as

psct(x, ω) =

∫
∂Σ

G(x,y, ω)

{
∂psct(y, ω)

∂νy
− iκpsct(y, ω)

}
dσ(y)

−
∫
∂Σ

psct(y, ω)

{
∂G(x,y, ω)

∂νy
− iκG(x,y, ω)

}
dσ(y)

+K2
0(ω)

∫
Σ

G(x,y, ω)χ(y)p(y, ω)dy, (2.2.20)

In order to simplify Eq. (2.2.21), we assume that the transducer array is de-
ployed in the far-field and the scattered wave psct(x, ω) also satisfies the Som-
merfeld radiation condition (2.2.8). With the assumption, we note that the
first and second surface integral terms converge to zero by the Cauchy-Schwartz
inequality. The consideration is similar to the proof of Theorem 2.5 in colton2013inverse.
And incorporated with the compact support in the domainD, finally we con-
clude our key formula–the Lippmann-Schwinger equation

p(x, ω) = pinc(x, ω) +K2
0(ω)

∫
D

G(x,y, ω)χ(y)p(y, ω)dy. (2.2.21)
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2.3 Numerical scheme

Without loss of generality, we fix κ = 1 and then omit the notation ω in the
equation. Indeed, it is done by scaling the spatial variable x, i.e.

x̃ = κx, p̃(x̃) = p(x), χ̃(x̃) = χ(x).

So for simplicity of notations, we omit the ‘tilde’ symbol henceforth. The
imaging domain D is specified as a square centered at the origin in the het-
erogeneous medium. And we denote by JN = {j = (j1, j2) ∈ Z2 | −N

2
<

j1, j2 ≤ N
2
} the index set of grid points xj = hj in D with the grid size h and

the number of points of N in each dimension.

2.3.1 Quadrature method

In the appendix of ito2013two, they present a discretised method for Eq. (2.2.21)
in the Cartesian coordinate. Multipling χ on both sides of Eq. (2.2.21) and
defining v = χp yields

v(x) = χ(x)pinc(x) + χ(x)

∫
D

G(x,y)v(y)dy (2.3.1)

Then we use the mid-point quadrature rule (the Nystrom methods) that

vk = χkp
inc
k + χk

∑
j∈JN

Gkjvjh
2 (2.3.2)

where vk = v(xk) and χk = χ(xk), and Gkj is given by

Gkj =

{
G(xk,xj) k 6= j
1
h2

∫
(−h/2,h/2)2

G(x,0)dx k = j
(2.3.3)

The discrete spatial convolution can be alleviated with the help of the Fourier
transform. Followed with the form of the continuous Fourier transform sim-
ilar to Eq. (2.3.11), the discrete Fourier transform and inverse discrete Fourier
transform denoted by FN and F−1

N having expressions

FN :=

(
exp(−2πi

N
k · j)

)
j,k∈JN

, (2.3.4)

F−1
N :=

(
exp(

2πi

N
k · j)

)
j,k∈JN

. (2.3.5)
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With them, we have the convolution operation for Eq. (2.3.2)

vk = χkp
inc
k + h2χkF−1

2N−1{F2N−1(Gk0)F2N−1(vk)}. (2.3.6)

First, note that the computational domain is extended to one corresponding
to the index set J2N−1 since the Fourier transform of the Green’s function Gkj.
Then vk should be zero-padding (press1982numerical). In this sense, the
arithmetic operations and storage of the Fourier transform are the required
to be approximate 4 times of that with JN . Second, the mismatch between
the original computational domain and the extended one after doing the in-
verse Fourier transform F−1

2N−1. The index set is required to return to JN by
restricting the extended domain to DR.

The linear system (2.3.2) can be solved by any standard numerical solver
like GMRES saad2003iterative.

2.3.2 Vainikko’s solver

In vainikko2000fast, Vainikko proposes a numerical solver for solving the
Lippmann-Schwinger equation using the collocation method with the trigono-
metric basis in a periodic spatial domain. It is demonstrated that the Vainikko’s
solver improves the numerical computing on the accuracy of its optimal con-
vergence order as well as less load of the memory. In terms of complexity, the
Vainikko’s solver costs O(MN2 logN) arithmetical operations through the
consideration of explicitly computing the eigenvalues of the integral oper-
ator in (2.3.1) using fast Fourier transform of the complexity O(N2 logN) and
additionally conducting the iteration method with approximate M steps.

In this section, I go on using the notation in Section 2.3. The aim is to
review the entail details of numerical scheme of the Vainikko’s solver. First,
the periodization form is given for Eq. (2.3.1). Define DR = {x = (x1, x2) ∈
R2 | |xk| ≤ R, k = 1, 2}whereR = Nh/2. We denote byK(x) a new kernel for
the integral operator in (2.3.1) which cuts off the Green function G(x,y) :=

G(|x− y|)

K(x) =

{
G(|x|) |x| ≤ R,

0 |x| > R and x ∈ DR

(2.3.7)

Then we can extend functions f(x), K(x), v(x) and u(x) from DR to R2 as
2R-periodic functions in each dimensions. Therefore Eq. (2.3.1) is rewritten
as

v(x) = vinc(x) + χ(x)

∫
DR

K(x− y)v(y)dy,x ∈ DR (2.3.8)
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where vinc(x) = χ(x)pinc(x).
Next we intend to discretize the solution v(x) in the periodic space L2(D).

The trigonometric orthonormal basis of L2(D) is shown as follows

ϕj(x) = (2R)−1eiπj·
x
R (2.3.9)

where j = (j1, j2) ∈ Z2. Then we project v(x) onto the finite space τN =

span{ϕj ∈ L2(D) | j ∈ JN} by the orthogonal projection PN

vN := PNv =
∑
j∈JN

v̂(j)ϕj. (2.3.10)

Here the Fourier coefficients of v are given by

v̂(j) =

∫
D

v(x)ϕj(x)dx. (2.3.11)

We also define an interpolation operator QN : L2(D)→ τN which satisfies

(QNv)(hj) = v(hj).

With the collocation method, Eq. (2.3.8) discretized by

PNQNv = PNQNv
inc + PNQN(χKv) (2.3.12)

or briefly
vN = vinc

N + χ
N
KvN (2.3.13)

where the underline of symbol represents the nodal values on JN .
From the Fourier transforms in Eq. (2.3.4) and (2.3.5), we have v̂N =

2R
N2FNvN and vN = 1

2R
F−1
N v̂N . By using the above two formulas and the

convolution theorem of Fourier transform, we finally obtain the computing
linear systems

vN = vinc
N + χ

N
F−1
N K̂NFNvN . (2.3.14)

The diagonal matrix K̂N can be explicitly computed by

K̂N(j) =
R
(

1 + iπ
2

(
π|j|J1(π|j|)H(1)

0 (R)−RJ0(π|j|)H(1)
1 (R)

))
2(π2|j|2 −R2)

(2.3.15)

when j 6= 0,

K̂N(0) = −(2R)−1 +
πi

4
H

(1)
1 (R) (2.3.16)
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for π|j| 6= R and

K̂N(j) =
πRi

8

(
J0(R)H

(1)
0 (R) + J1(R)H

(1)
1 (R)

)
(2.3.17)

for π|j| = R.

2.4 Verification of the numerical schemes

In terms of the application of the Lippmann-Schwinger equation in USCT, its
solver should have common characteristics of rapidness as well as accuracy
since the inverse problem of USCT is usually solved by means of recurrently
calculating the numerical forward problem. However, it is hard to achieve
in the case of large wavenumbers (or a high frequency). First, in ultrasound
breast imaging, the computational cost is burdensome for the requirement
of much more number of grid points due to the fact that the imaging do-
main contains the order of 100 wavelength in each dimension. Besides, in the
literature (Chen2013) , the Helmholtz equation or the Lippmann-Schwinger
equation suffers from the severe oscillation for large wavenumbers. And
consequently the so-called “pollution effect” occurs, i.e. the accuracy of the
numerical solution deteriorates rapidly as the wavenumber increases. Unfor-
tunately, ref (p e) indicate that in two dimensions, the pollution effect hap-
pening in the Helmholtz solver can be minimized but not eliminated. There-
fore, a compromise is made to find an acceptable solver for the scenario of
USCT for breast imaging instead of developing an optimal one.

The post section shows that one can benefit from the easy implementa-
tion of the quadrature method while the Vainikko’s solver have merits of less
number of grid points as well as the optimal convergence rate. But in this sec-
tion, a verification test are conducted to display the behaviors of the quadra-
ture method and the Vainikko’s solver with different choices of the number of
grid points and the wavenumbers. In addition, the wave field traversing in a
breast phantom is simulated with both of the solvers in large wavenumbers.
The selection of the numerical forward solver of the Lippmann-Schwinger
equation is based on the performed numerical results.

2.4.1 Configuration

Two numerical tests are shown to display the behavior of the quadrature
method and the Vainikko’s solver. In the first example, the wave propagates
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through the circular scatterer B and the measurements of the scattered wave
are only recorded on a ring transducer S surrounding B. One can set that B
is homogeneous with the speed of sound of 1470 m/s and the radius of 0.01

m. The ring has a radius of 0.05 m and consists of 256 equi-spaced sensor
elements. The background speed of sound is 1540 m/s. The imaging domain
D is a square region centered at the origin with an area of 0.06 × 0.06 m2. In
Appendix A, one has shown that the wavefield of the circular scatterer has
an exact solution for Eq. (2.2.21). Hence, one can assess the accuracy of the
aforementioned numerical methods through the comparison with the exact
wavefield.

2.4.2 Example one: a circular scatterer

In this section, three groups of the numerical tests are shown to display the
accuracy of the quadrature method and the Vainikko’s solver. In Table 2.1,
the first test shows the relationship between the relative error and the fre-
quency. Tables 2.4, 2.5 show the total and scattered wavefield with respect
to distinct frequencies. It indicates the result that the increasing of the fre-
quency amplifies the relative error in spite of a fixed point per wavelength
(PPW) of 20. Moreover, the growth of the relative error for the Vainikko’s
solver is much faster than that for the quadrature method. The second test is
carried out on varying PPW with two frequencies, one is 0.04 MHz and the
other is 0.64 MHz in Tables 2.2, 2.3, 2.6, 2.7, 2.8, 2.9. Especially in the case of
the frequency of 0.64 MHz, the increasing of PPW by applying the quadra-
ture method can enhance the accuracy of the numerical solution whilst that
by applying the Vainikko’s solver doesn’t have significant effect.

TABLE 2.1: Relative error of the numerical solution applying
the quadrature and Vainikko’s solver for the circular scatterer

with varying frequencies and a fixed 20 PPW.

Frequency grid numbers p in D psct on S
(MHz) Quadrature Vainikko Quadrature Vainikko

0.01 8× 8 0.0159 0.1534 0.2757 0.0883
0.02 16× 16 0.0096 0.1532 0.0568 0.0646
0.04 31× 31 0.0136 0.0122 0.0440 0.1141
0.08 62× 62 0.0132 0.1603 0.0368 0.1593
0.16 125× 125 0.0227 0.0567 0.0461 0.2946
0.32 249× 249 0.0437 0.2108 0.0784 0.5802
0.64 499× 499 0.0913 0.7461 0.1513 1.2060
1.28 997× 997 0.1837 1.9467 0.3507 3.1341
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TABLE 2.2: Relative error of the numerical solution applying
the quadrature and Vainikko’s solver for the circular scatterer

with varying PPW and a fixed frequency of 0.04 MHz.

PPW grid numbers p in D psct on S
Quadrature Vainikko Quadrature Vainikko

2 3× 3 0.6041 0.5781 1.5536 1.3891
5 8× 8 0.0743 0.6071 0.2672 0.1388
10 16× 16 0.0224 0.3079 0.0653 0.1141
20 31× 31 0.0132 0.0118 0.0443 0.1138
40 62× 62 0.0040 0.0808 0.0141 0.0981
80 125× 125 0.0020 0.0053 0.0043 0.0983
160 249× 249 0.0009 0.0054 0.0011 0.1009

TABLE 2.3: Relative error of the numerical solution applying
the quadrature and Vainikko’s solver for the circular scatterer

with varying PPW and a fixed frequency of 0.64 MHz.

PPW grid numbers p in D psct on S
Quadrature Vainikko Quadrature Vainikko

2 50× 50 0.4962 1.7404 0.9619 1.5666
5 125× 125 0.2288 0.7329 0.4173 1.2069
10 249× 249 0.1477 0.7351 0.2610 1.2070
20 499× 499 0.0898 0.7345 0.1513 1.2051
40 997× 997 0.0501 0.7346 0.0813 1.2052
80 1995× 1995 0.0265 0.7346 0.0420 1.2052

Fq (MHz) Exact Quadrature Vainikko

0.01

0.02
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0.04

0.08

0.16

0.32

0.64

1.28
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TABLE 2.4: Numerical solution of the total wavefield applying
the exact solution, the quadrature method, and the Vainikko’s
solver for the circular scatterer with varying frequencies and a

fixed 20 PPW.

Fq (MHz) Exact Quadrature Vainikko

0.01

0.02

0.04

0.08

0.16
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0.32

0.64

1.28

TABLE 2.5: Numerical solution of the scattered wavefield ap-
plying the exact solution, the quadrature method, and the
Vainikko’s solver for the circular scatterer with varying fre-

quencies and a fixed 20 PPW.

PPW Exact Quadrature Vainikko

5

10
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20

40

80

160

TABLE 2.6: Numerical solution of the total wavefield applying
the exact solution, the quadrature method, and the Vainikko’s
solver for the circular scatterer with varying PPW and a fixed

frequency of 0.04 MHz.

PPW Exact Quadrature Vainikko

5
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10

20

40

80

160

TABLE 2.7: Numerical solution of the scattered wavefield ap-
plying the exact solution, the quadrature method, and the
Vainikko’s solver for the circular scatterer with varying PPW

and a fixed frequency of 0.04 MHz.

PPW Exact Quadrature Vainikko
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5

10

20

40

80

TABLE 2.8: Numerical solution of the total wavefield applying
the exact solution, the quadrature method, and the Vainikko’s
solver for the circular scatterer with varying PPW and a fixed

frequency of 0.64 MHz.

PPW Exact Quadrature Vainikko
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5

10

20

40

80

TABLE 2.9: Numerical solution of the scattered wavefield ap-
plying the exact solution, the quadrature method, and the
Vainikko’s solver for the circular scatterer with varying PPW

and a fixed frequency of 0.64 MHz.
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2.5 Discussion and conclusion

According to the theoretical and numerical study, the better choice of the nu-
merical method for solving the attenuated wave equation is the quadrature
method. Despite the need of four times of the grid points for the quadrature
method than that for the Vainikko’s solver, the acceptable accuracy of the nu-
merical solution is attained with the scenario of the similar frequency with
respect to the ultrasound device.

From Section 2.5, the previous numerical solvers will be invalid when
given a higher value of the wave number, which is the larger number of
wavelength in our physical domain. This can be base on the theory in Babuska1997
that shows the two-dimensional Helmholtz equation will encounter with a
so-called pollution effect and can reduce it but not avoid it. Pollution effect
indicates the numerical solver of the two-dimensional Helmholtz equation is
invalid when k2h is not small enough, where k is the wave number and h the
grid size. Actually, kh represents points per wavelength and some references
recommend kh be 10 − 60; see babuska2000pollution; alles2011perfectly.
For higher-order numerical scheme , see aguilar2004high; aguilar2002high;
kapur1997high.
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Chapter 3

Inverse problems: contrast source
inversion

3.1 Introduction

Ultrasound computed tomography (USCT) for breast cancer diagnosis has
recently become popular because of the development of a diagnostic proto-
type equipped with ring-array transducers (Qu2015a; Qu2015b; qu2016phase;
tamano2015compensation) and the rapid improvement of computing hard-
ware. In terms of USCT imaging methods, several works (greenleaf1983computerized;
avinash2001principles; natterer1986themathematics; li2009improved; Qu2015a;
Qu2015b) have focused on the ray-based reconstruction of sound-speed im-
ages of the breast tissue, yielding a low-resolution blurring result owing to
the diffraction effects being ignored. On the other hand, waveform inversion,
which is based on the wave equation retaining the integrated feature of ultra-
sound, generates higher-resolution images, but is very time-consuming be-
cause of a large number of iterations and a markedly high computing cost at
each iteration (roy2010sound; li2014toward; wang2015waveform; sandhu2015frequency).
To enhance the performance of USCT, frequency-domain full waveform in-
version, or the inverse medium problem (colton2013inverse), is introduced
to overcome these difficulties by exploiting the wave theory in the frequency
domain. It produces high-accuracy images of the breast tissue compared
with ray-based reconstruction and has a relatively low computing cost com-
pared with the waveform inversion in the time domain (alles2011perfectly).
Hence, using frequency-domain full waveform inversion will greatly help
the diagnosis of breast cancer at an early stage.

The contrast source inversion (CSI) method, first proposed in van1997contrast,
is used to linearize the original nonlinear full waveform inversion model
by adding a new variable, namely, a contrast source. The merit of the CSI
method lies in the direct solution of a two-objective optimization problem
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for sound speed without utilizing the forward solver of the wave equation.
Afterwards, several robust CSI methods were developed in order to dimin-
ish the error of data fidelity terms caused by noise data. The total-variation
(TV) CSI method together with additive and multiplicative TV penalty terms
is considered (van1999extended). Moreover, for application in breast cancer
diagnosis, the TV penalty term with an L1 norm is preferred because it pre-
serves more edge information in reconstructed images (rudin1992nonlinear;
li2009breast; li2009vivo). The CSI method with a finite-difference approach
(abubakar2008finite) is introduced to solve the iteration scheme of the CSI
method using the finite-difference solver instead of an integral operator. Re-
cently, ozmen2014ultrasound; ozmen2015comparing have compared the cur-
rently popular breast imaging algorithms and concluded that the CSI method
yields the highest-resolution medical images for the sound-speed reconstruc-
tion of the breast tissue.

As a reference of the modality of the robust CSI methods, one can re-
fer to general studies on inverse problems and regularization methods in
engl1996regularization and kaltenbacher2008iterative. Fundamentally, the
regularization methods have the following three aspects: the data fidelity
term derived from the original model, the penalty term depending on which
property you expect the solution to be endowed with, and the choice rule
of regularization parameters. We may face several difficulties while utiliz-
ing the regularization methods from the conventional points: (1) determina-
tion of the unknown noise level in practice; (2) determination of the regu-
larization parameter prior to the execution of the algorithm. Some papers
propose that regularization parameters can be chosen automatically with a
known noise level (ito1992choice; kunisch1998iterative; xie2002improved;
lu2010model), whereas the automatic choice rule can be developed when
there is a lack of information on the noise level (hansen1992analysis; hansen1993use;
clason2010duality; clason2010semismooth; Heng2010model).

In this work, we mainly study an integrated approach by which an au-
tomatic choice rule of regularization parameters is merged with the robust
CSI method together with an L1 TV-regularization term. The use of the au-
tomatic choice rule of regularization parameters is a heuristic way to (1) re-
construct high-resolution medical images and (2) enhance the robustness of
the CSI method without a priori information on the noise level. Additionally,
we observe that this integrated method provides an O(1/k) sublinear rate of
convergence. In prior research, van2001contrast showed that the numerical
solutions solved by the CSI method and its extensions probably converge to
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a global minimum with a large total number of sources. We replace the outer
iteration of the robust CSI method with the alternating minimization algo-
rithm, so that we can estimate the convergence rate by the convergence anal-
ysis described in beck2013ontheconvergence and beck2015convergence.

This paper is organized as follows. In Sect. 2, we start with a mathemat-
ical formulation of the USCT problem and the robust CSI method. In Sect.
3, we study the alternating minimization algorithms together with the auto-
matic choice rule of regularization parameters in detail. In Sect. 4, we show
a numerical result of reconstructing a real medical phantom by the above
methodology. The conclusions and future work are given in Sect. 5.

3.2 Notation and mathematical formulation

We list the notations to be used as follows. The square-bracket function rep-
resents a functional while the round-bracket function is normally a function.
The semicolon inside a “function” separates the variables into the unknowns
in the front and the knowns in the back. The bar over a variable represents
a complex conjugate and the asterisk with an operator denotes its adjoint
operator.

To formulate the USCT problem for the ring-array transducers (tamano2015compensation)
shown in Fig. 3.1, we consider a case in which a breast tissue placed in a
rectangular domain D ⊂ R2 is immersed in a homogeneous background
medium filling the entire two-dimensional space. The domain D is sur-
rounded by the ring-array transducers with the function of sources and re-
ceivers on the curve S ⊂ R2. The Lippmann-Schwinger equation (colton2013inverse)
governing the acoustic-wave propagation of the USCT problem gives the
scattered field of a pressure wave through the integral equation with the spa-
tial variable ξ ∈ R2:

pm(ξ)− pinc
m (ξ) = κ2

∫
R2

G(ξ,y)χ(y)pm(y)dy, (3.2.1)

wherem = 1, 2, · · · , N represents the source number,N the number of sources,
and pm(ξ) the total wave field of the mth source. The function Φ(ξ,y) is the
free-space Green’s function of the homogeneous Helmholtz equation of the
wavenumber k, which is given by a zero-order Hankel function of the 1st
kind:

G(ξ, y) =
i

4
H

(1)
0 (κ|ξ − y|).
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The spherical incident wave field is denoted by pinc
m (ξ) = Φ(ξ, sm), where

sm ∈ S is the location of the source for m = 1, 2, · · · , N . The contrast f(ξ) has
a compact support in D expressed as

χ(ξ) =

{
c20
c2(ξ)
− 1, ξ ∈ D,

0, ξ ∈ R2\D,

where c(ξ) and c0 are the sound speed in the breast tissue and the homoge-
neous background, respectively. Hence, the USCT problem is to recover χ(ξ)

in D from the Lippmann-Schwinger equation (3.2.1) given the data pm(s) on
the boundary s ∈ S, in which all sources and receivers are located, corre-
sponding to the incident wave field pinc

m (ξ) in R2.
To solve this nonlinear inverse problem, one can linearize it with the sub-

stitution of an auxiliary function – contrast source vm(ξ) := pm(ξ)χ(ξ) in Eq.
(3.2.1) and restrict ξ in S denoted by s, which yields the data equation of the
linear form with respect to the contrast source vm(s) on S and scattered-field
boundary data gm(s):

gm(s) = pm(s)− pinc
m (s) = χ2

∫
D

G(s,y)vm(y)dy

:= GSvm(s), s ∈ S, (3.2.2)

where m = 1, 2, · · · , N . On the other hand, the state equation is obtained
by multiplying both sides of Eq. (3.2.1) by χ(x) and restricting the spatial
variable ξ in D denoted by x, which yields

vm(x)− χ(x)pinc
m (x) = κ2χ(x)

∫
D

G(x,y)vm(y)dy

:= χ(x)GDvm(x),x ∈ D, (3.2.3)

where m = 1, 2, · · · , N .
The robust CSI method here is introduced to solve Eqs. (3.2.2) and (3.2.3)

together for the unknown contrast χ(x) and the contrast sources {vm(x)}Nm=1

in D by minimizing the following cost functional:

J [χ, v1, · · · , vN , γ] =
N∑
m=1

‖χGDvm − vm + χpinc
m ‖2

L2(D)

+
µD[χ]

µS

N∑
m=1

‖GSvm − gm‖2
L2(S) + γ‖∇χ‖L1(D), (3.2.4)
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FIGURE 3.1: (Color online) USCT problem with the ring-array
transducers.

with the coefficients

µS =
N∑
m=1

‖gm‖2
L2(S), µD[χ] =

N∑
m=1

‖χpinc
m ‖2

L2(D), (3.2.5)

and the regularization parameter γ. In this paper, we assume that the mea-
sured data {gm}Nm=1 are noisy without any information on the noise level,
considering medical applications. Hereinafter, the spatial variable for each
function will be omitted if their definition domains are clear.

Note that we need several assumptions to ensure that the robust CSI
method is soluble. We assume that the number of sources N is large such
that

∑N
m=1 ‖pm‖2

L2(D) � ‖f‖2
L2(D). Under this assumption, we then conclude

that the contrast sources {vm}Nm=1 and the measured data {gm}Nm=1 have large
values in the L2 sense from their definitions and Eq. (3.2.2).

3.3 Algorithm

We will study the alternating minimization algorithms as the outer iteration
for solving the robust CSI method in Sect. 3.3.1. In Sect. 3.3.2, we show the
numerical implementation of the inner iteration in the alternating minimiza-
tion algorithms. In Sect. 3.3.3, we introduce the numerical scheme for the
automatic choice rule and discuss its convergence. In Sect. 3.3.4, we present
the compound convergence theorem for the alternating minimization algo-
rithms with the automatic choice rule.
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3.3.1 Outer iteration

In this section, we construct a concrete algorithm for the robust CSI method
described by Eq. (3.2.4). For the outer iteration, an alternative way of switch-
ing the iteration directions between f and {vm}Nm=1 is the well-known alter-
nating minimization method (beck2015convergence). Specifically, for a fixed
f , minimizing Eq. (3.2.4) with vm is identical to minimizing the following
cost functional Vm[v;χ], which is part of the fidelity term in the functional
J [χ, v1, · · · , vN , γ]:

Vm[v;χ] := ‖χGDv − v + χpinc
m ‖2

L2(D)

+
µD[χ]

µS
‖GSv − gm‖2

L2(S). (3.3.1)

Then, after updating the regularization parameter γ by the method described
in Sect. 3.3.3, for fixed {vm}Nm=1, we give the minimum χ by minimizing the
following cost functional F [χ; v1, · · · , vN , γ]:

F [χ; v1, · · · , vN , γ] := J [χ, v1, · · · , vN , γ]. (3.3.2)

We summarize the alternating minimization method for the robust CSI method
(see algorithm 1). The numerical implementation of steps 2 and 4 are shown
in Sect. 3.3.2. Later, we will discuss step 3 in detail in Sect. 3.3.3, with regard
to the automatic choice rule of regularization parameters.

Algorithm 1: Alternating minimization method with automatic choice
rule – outer iteration

Input: χ(0), {v(0)
m }Nm=1, and γ(0).

1 for k = 0, 1, · · · do
2 v

(k+1)
m = arg minv Vm[v;χ(k)] for m = 1, · · · , N ;

3 Update γ(k+1) automatically from γ(k) by using algorithm 4;
4 Compute

χ(k+1) = arg min
χ
F [χ; v

(k+1)
1 , · · · , v(k+1)

N , γ(k+1)].

5 end

Since the zero-valued initial guesses lead to the vanishing of the second
term in Eq. (3.3.1) owing to zeroing µD[χ] in Eq. (3.2.5), one should design
the initial guesses of χ(0) and {v(0)

m }Nm=1. On the basis of the idea presented in
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van1997contrast, the available initial guess can be chosen as the backpropa-
gation solution

v(0)
m =

‖GS∗gm‖2
L2(D)

‖GSGS∗gm‖2
L2(D)

GS∗gm, (3.3.3)

where m = 1, 2, · · · , N . Then, substituting vm with v
(0)
m and minimizing the

first term in Eq. (3.2.4) yields the expression of χ(0):

χ(0) =

∑N
m=1 p

(0)
m v

(0)
m∑N

m=1 |p
(0)
m |2

, (3.3.4)

with p(0)
m = pinc

m +GDv
(0)
m , for m = 1, · · · , N .

3.3.2 Inner iteration

The inner iterations in algorithm 1, i.e., steps 2 and 4, are directly given by
some general numerical methods. Specifically, v(k+1)

m can be updated by the
conjugate gradient method (saad2003iterative) and f (k+1) by the lagged dif-
fusivity method (vogel1996iterative) for TV regularization of image denois-
ing (see algorithms 2 and 3 in Appendix??). We restrict the maximal step
jmax for both algorithms considering the efficiency of all the algorithms in-
stead of complete convergence. Actually, in the original CSI method, jmax is
recommended to be chosen as 1 (van1997contrast).

In this appendix, we give the concrete forms of the conjugate gradient
method in algorithm 2 and the lagged diffusivity method in algorithm 3.
Note that for algorithm 2, the step size β(k,j+1)

m of the conjugate vectors can
be calculated by either the Fletcher-Reeves formula or the Polak-Ribiere for-
mula. Choosing the appropriate formula will speed up the inner iteration.
For algorithm 3, first and foremost, the second term of Eq. (3.2.4) will not be
included in the iteration scheme, because the coefficient is sufficiently small
to be neglected owing to the assumption in Sect. 2. Second, the lagged diffu-
sivity method also holds in the case of the diagonal operator.

3.3.3 Automatic choice rule of regularization parameters

In this section, we will review the automatic choice rule of regularization pa-
rameters, originally proposed in clason2010semismooth, for the alternating
minimization method above. We first briefly describe a fixed point algorithm
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Algorithm 2: Conjugate gradient method – v(k+1)
m = arg minv Vm[v;χ(k)].

Input: χ(k), jmax, v(k,0)
m := v

(k)
m , w(k,1)

m := w
(k)
m , and h

(k,1)
m := h

(k)
m .

Output: v(k+1)
m := v

(k,jmax)
m , w(k+1)

m := v
(k,jmax+1)
m , and h

(k+1)
m := v

(k,jmax+1)
m .

1 for j = 1, 2, · · · , jmax do
2 v

(k,j)
m := v

(k,j−1)
m + α

(k,j)
m w

(k,j)
m where

α
(k,j)
m = arg minα Vm[v

(k,j−1)
m + αw

(k,j)
m ;χ(k)];

3 p
(k,j)
m := pinc

m +GDv
(k,j)
m ;

4 Residual: ρ(k,j)
m = gm −GSv

(k,j)
m , r(k,j)

m = χ(k)p
(k,j)
m − v(k,j)

m ;

5 Gradient: h(k,j+1)
m := −µD[χ(k)]

µS
GS∗ρ

(k,j)
m − (r

(k,j)
m −GD∗(χ(k)r

(k,j)
m ))

where µS =
∑N

i=1 ‖gi‖2
L2(S), µD[χ(k)] =

∑N
i=1 ‖χ(k)pinc

i ‖2
L2(D) ;

6 w
(k,j+1)
m := h

(k,j+1)
m + β

(k,j+1)
m w

(k,j)
m where β(k,j+1)

m ={
‖h(k,j+1)

m ‖2
L2(D)/‖h

(k,j)
m ‖2

L2(D) Fletcher-Reeves
〈h(k,j+1)

m , h
(k,j+1)
m − h(k,j)

m 〉L2(D)/‖h(k,j)
m ‖2

L2(D) Polak-Ribiere
;

7 end

The initial values are w(0)
m and h

(0)
m . We choose w(0)

m = h
(0)
m first. Then h(0)m is determined by

the expression h
(0)
m := −µD[χ(0)]

µS
GS

∗
ρ
(0)
m − (r

(0)
m − GD

∗
(χ(0)r

(0)
m )) where ρ(0)m = gm − GSv(0)m

and r(0)m = χ(0)p
(0)
m − v(0)m with the initial guesses of Eqs. (3.3.3) and (3.3.4).

for resolving regularization parameters. This algorithm is based on the bal-
ancing principle and the model function approach. Throughout this section,
we only concentrate on the special case where {vm}Nm=1 is fixed.

Balancing principle and model function approach

The idea of the balancing principle is to balance the data fidelity term
∑N

m=1 Vm[vm, χ]

and the penalty term γ‖∇χ‖L1(D) of the cost functional denoted by F (γ) :=

minχ F [χ; v1, · · · , vN , γ]. From Eq. (3.4.8) in Appendix3.4, we note thatF ′(γ) =

‖∇χ‖L1(D), i.e., the penalty term. Hence, the optimal regularization parame-
ter γ† should satisfy

F (γ†) = σ(F (γ†)− γ†F ′(γ†)), (3.3.5)

where σ > 1 is a weight slightly larger than 1 for balancing the two sides of
the equation. It follows from the idea of fixed point iteration that the regu-
larization parameter γ(k+1) is updated by

F (γ(k+1)) = σ(F (γ(k))− γ(k)F ′(γ(k))). (3.3.6)
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Algorithm 3: Lagged diffusivity method

χ(k+1) = arg min
χ
F [χ; v

(k+1)
1 , · · · , v(k+1)

N , γ(k+1)]

Input: χ(k,0) := χ(k), χ(k,−1) := χ(k−1) (χ(0) if k = 0), {v(k+1)
m }Nm=1, γ

(k+1),
and jmax.

Output: χ(k+1) := χ(k,jmax) and χ(k) := χ(k,jmax−1).

1 p
(k+1)
m = GDv

(k+1)
m + pinc

m for all m = 1, · · · , N ;
2 Shrinking coefficient t = 1/

∑N
m=1 ‖p

(k+1)
m ‖2

L∞(D);
3 for j = 1, 2, · · · , jmax do
4 The factor δ(k,j−1) =

∑N
m=1 ‖χ(k,j−1)p

(k+1)
m − v(k+1)

m ‖2
L2(D);

5 χ(k,j+1) = χ(k,j) −

t

(∑N
m=1 p

(k+1)
m (χ(k,j)p

(k+1)
m − v(k+1)

m )− γ(k+1)∇ · ∇χ(k,j)√
|∇χ(k,j−1)|2+δ(k,j−1)

)
.

6 end

To rapidly compute it, we use the model function approach proposed in
kunisch1998iterative by approximating F (γ) with the rational polynomials
m(γ), i.e.,

m(γ) = a+
b

c+ γ
. (3.3.7)

Noting F (γ) →
∑N

m=1 ‖vm‖2
L2(D) as γ → ∞ [see Eq. (3.4.4) in the proof of

Lemma3.4.1], we choose a = σ
∑N

m=1 ‖vm‖2
L2(D) to ensure that m(γ) mimics

the asymptotic behavior of F (γ). One can determine the coefficients b and c

from the model functions m(γ) and m′(γ), i.e.,

a+
b

c+ γ
= m(γ) ≈ F (γ), (3.3.8)

− b

(c+ γ)2
= m′(γ) ≈ F ′(γ). (3.3.9)

After obtaining all the coefficients in m(γ), we write the expression of the
new regularization parameter γ(new) updated from γ by combining the inter-
polation relation F (γ(new)) ≈ m(γ(new)), and Eqs. (3.3.6) and (3.3.7):

γ(new) =
b

σ(F (γ)− γF ′(γ))− a
− c. (3.3.10)

Finally, with the recursion scheme (3.3.10), we give the complete algorithm
of the automatic choice rule of regularization parameters (see algorithm 4).
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Algorithm 4: Automatic choice rule of regularization parameters

Input: χ(k), {v(k+1)
m }Nm=1, and γ(k).

Output: γ(k+1).

1 Compute F (γ(k)) := F [χ(k); v
(k+1)
1 , · · · , v(k+1)

N , γ(k)] and
F ′(γ(k)) := F ′[χ(k); v

(k+1)
1 , · · · , v(k+1)

N , γ(k)];
2 Compute the coefficients of the model function m(γ) as follows

a(k) = σ

N∑
m=1

‖v(k+1)
m ‖2

L2(D);

b(k) = −(a(k) − F (γ(k)))2

F ′(γ(k))
;

c(k) =
a(k) − F (γ(k))

F ′(γ(k))
− γ(k).

3 Compute γ(k+1) = b(k)

σ(F (γ(k))−γ(k)F ′(γ(k)))−a(k) − c
(k).

Selection of initial guess γ(0)

Algorithm 4 provides a way to search for the optimal regularization param-
eter along the sequence {γ(k)}k∈N while iterating on the outer algorithm 1.
In this section, we will show how the initial guess of the regularization pa-
rameter γ(0) significantly affects the convergence of algorithm 4. The succinct
notation R(γ) = (1 − σ)F (γ) + σγF ′(γ) denotes the residual of the balanc-
ing equation (3.3.5). Lemma3.4.4 in Appendix3.4 shows that this sequence
{γ(k)}k∈N converges if we prudently select the initial guess γ(0) such that the
residual of the balancing equation (3.3.5) satisfies R(γ(0)) > 0.

We discuss the simplest case of the relationship between the regulariza-
tion parameter γ and the residual R(γ) of the balancing equation in Fig.
3.2. Assume the inequality (3.4.5) holds strictly, i.e., limγ→+∞R(γ) < 0, and
from Eqs. (3.4.6) and (3.4.7), the limit R(0+) is negative and there exists
γ0 ∈ (0,+∞) such that R(γ0) > 0. Then there must be two roots, γ†,1 and γ†,2,
of the balancing equation R(γ) = 0 located at intervals (0, γ0) and (γ0,+∞),
respectively. From Lemma3.4.4, the sequence {γ(k)}k∈N recursively generated
by algorithm 4 converges to the accumulation point γ†,1, with the initial guess
γ(0) chosen at the interval (0, γ†,2); otherwise, the sequence {γ(k)}k∈N diverges
to infinity. Moreover, it is better to select a larger γ(0), which lies in (γ†,1, γ†,2),
in order to make the penalty term γ‖∇χ‖L1(D) in Eq. (3.2.4) effective.
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FIGURE 3.2: (Color online) Simplest case of the residualR(γ) of
the balancing equation.

3.3.4 Global convergence

We first discuss the convexity of the cost functional J in Eq. (3.2.4) in order to
ensure the global convergence of algorithm 1. The cost functional J is a poly-
nomial of degree 4 with respect to the unknowns, which indicates that there
probably exists one or two local minima. van2001contrast and the references
therein suggest that the large number of sources N may prevent algorithm 1
from being trapped in the false local minimum. It implies that the functional
J is locally convex under a prescribed initialization.

As our main contribution, we write the compound convergence result of
the alternating minimization method with the automatic choice rule, which
has been studied in clason2010semismooth and beck2015convergence. For
simplicity, we give a complete notation of the residual of the balancing equa-
tionR[γ; z] = (1−σ)J [z, γ]−σγ‖∇χ‖L1(D) with z = (χ, v1, · · · , vN). We denote
by z(k+1/2) = (χ(k), v

(k+1)
1 , · · · , v(k+1)

N ) "a sequence in between" generated by
step 2 in algorithm 1 after the kth iteration z(k) = (χ(k), v

(k)
1 , · · · , v(k)

N ) in step
4. To keep the consistency of the notation, γ(k+1/2) denotes the regularization
parameter updated at step 3 of the kth iteration and transmits an identical
value to γ(k+1) at step 4.

Theorem 3.3.1. Assume the number of sourcesN is sufficiently large. Let {z(k/2)}k∈N
be the function sequence and {γ(k/2)}k∈N the regularization-parameter sequence,
both generated using algorithm 1 with an initial regularization parameter γ(0) sat-
isfying R[γ(0); z(0)] > 0. Then {z(k/2)}k∈N globally converges to the optimum z† of
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the problem (3.2.4), and {γ(k/2)}k∈N converges to γ†, one of the roots of the balancing
equation, which satisfies R(γ†; z†) = 0.

The proof of Theorem 3.3.1 is shown in next section. With the help of the
proximal-gradient theories, the sequence {J [z(k/2), γ(k/2)]}k∈N monotonically
decreases and converges at a sublinear convergence rateO(1/k) (beck2015convergence).

3.4 Proof of Theorem 3.3.1

Here, we list all the required results from which the convergence theorem of
algorithm 1 are derived. First, we write some notations. Let χ(γ) denote the
minimum of the functional F [χ; v1, · · · , vN , γ] in Eq. (3.3.2) with respect to
the positive constant γ. We assume {vm}Nm=1 is fixed in Lemma3.4.1-3.4.4.

The following lemma shows that the balancing equation is soluble with a
fixed {vm}Nm=1.

Lemma 3.4.1 (Similar to Theorem 4.1 in clason2010semismooth). For σ > 1

sufficiently close to 1 and a large
∑N

m=1 ‖vm‖2
L2(D), the balancing equationR(γ) = 0

has at least one positive solution.

Proof. Firstly, from the definition of f(γ), we have F [χ(γ); v1, · · · , vN , γ] ≤
F [χ; v1, · · · , vN , γ] for any χ ∈ L2(D). Take χ = 0 and then we have

Cγ‖χ(γ)‖L2(D) ≤ γ‖∇χ(γ)‖L1(D)

≤F [χ(γ); v1, · · · , vN , γ] ≤
N∑
m=1

‖vm‖2
L2(D), (3.4.1)

where the Gagliardo-Nirenberg-Sobolev inequality (adam2003sobolev) is em-
ployed in the first inequality since χ has the compact support in D and C is
a constant greater than zero. Dividing the inequalities (3.4.1) with γ on both
sides and letting it go to infinity, we obtain

lim
γ→∞
‖χ(γ)‖L2(D) = 0. (3.4.2)

Moreover, following the same deduction of Lemma 4.2 in clason2010semismooth,
it holds that

lim
γ→0+

γ‖∇χ(γ)‖L1(D) = lim
γ→∞

γ‖∇χ(γ)‖L1(D) = 0. (3.4.3)
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With Eqs. (3.4.2) and (3.4.3) and the triangle inequality, we have

lim
γ→∞

F (γ) =
N∑
m=1

‖vm‖2
L2(D). (3.4.4)

With Eqs. (3.4.3) and (3.4.4), the limits of the residual R(γ) defined in Sect.
3.3.3 have the properties

lim
γ→+∞

R(γ) = (1− σ)
N∑
m=1

lim
γ→+∞

‖χ(γ)GDvm

− vm + χ(γ)pinc
m ‖2

L2(D) ≤ 0, (3.4.5)

lim
γ→0+

R(γ) = (1− σ)
N∑
m=1

‖vm‖2
L2(D) < 0. (3.4.6)

Note that
‖χ(γ)GDvm − vm + χ(γ)pinc

m ‖2
L2(D) ≤ ‖vm‖2

L2(D),

and 0 < γ0 < +∞ such that γ0‖∇χ(γ0)‖L1(D) > 0. Therefore, one can find a
σ0 > 1 such that for any σ ∈ (1, σ0),

R(γ0) ≥ lim
γ→0+

R(γ) + γ0‖∇χ(γ0)‖L1(D) > 0. (3.4.7)

With the continuity of R(γ), this proves the lemma.

Then we show the significant properties of the functional F (γ) defined in
Sect. 3.3.3.

Lemma 3.4.2. The first-order derivative of F (γ) on γ is of the form

F ′(γ) = ‖∇χ(γ)‖L1(D). (3.4.8)

Proof. With the chain rule, the derivative of F (γ) is immediately given by

F ′(γ) =
∂F [χ; v1, · · · , vN , γ]

∂χ

∣∣∣∣
χ=χ(γ)

f ′(γ)

+ ‖∇χγ)‖L1(D). (3.4.9)

Note that ∂F [f ;v1,··· ,vN ,γ]
∂f

is the Frechet derivative of F [f ; v1, · · · , vN , γ] vanish-
ing on the optimal solution f(γ). Then the remaining part of Eq. (3.4.9) gives
Eq. (3.4.8).

Lemma 3.4.3. Let 0 < α < β. Then F (α) ≤ F (β) but F ′(α) ≥ F ′(β).
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Proof. From the definitions of χ(α) and χ(β), we have

F [χ(α); v1, · · · , vN , γ] ≤ F [χ(β); v1, · · · , vN , γ],

F [χ(β); v1, · · · , vN , β] ≤ F [χ(γ); v1, · · · , vN , β].

Adding the two inequalities, rearranging the terms, and applying Lemma3.4.2,
we obtain

(α− β)(F ′(α)− F ′(β)) ≤ 0.

Moreover, since F ′(α) ≥ 0 for any α > 0, another inequality is attained by
the monotonicity property, i.e., F (α) ≤ F (β).

So far it is enough to state that for any given χ, {vm}Nm=1, and an ini-
tial guess γ(0) satisfying R(γ(0)) > 0, the regularization-parameter sequence
{γ(k)}k∈N generated by algorithm 4 recursively is monotonically decreasing.

Lemma 3.4.4. Let γ(new) updated by algorithm 4 [or Eq. (3.3.10)] be the next reg-
ularization parameter of the positive γ. Then, if γ satisfies R(γ) > 0, it holds that
0 < γ(new) < γ andR(γ(new)) > 0; in contrast, ifR(γ) < 0, it holds that γ(new) > γ.

Proof. From Eqs. (3.3.8)-(3.3.10), we have

γ(new) − γ = − a− F (γ)

a− σ(F (γ)− γF ′(γ))

R(γ)

F ′(γ)

: = ω(γ)
R(γ)

F ′(γ)
. (3.4.10)

Having deduced the inequality (3.4.1) in Lemma3.4.1, i.e.,

F (γ) ≤
N∑
m=1

‖vm‖2
L2(D),

F (γ)− γF ′(γ) ≤
N∑
m=1

‖vm‖2
L2(D),

and with a=σ
∑N

m=1 ‖vm‖2
L2(D), we have ω(γ)<0. Hence, (γ(new) − γ) has the

opposite sign against R(γ). Moreover, in the case of R(γ) > 0, we note that
−1 < ω(γ) < 0 directly from the definition in Eq. (3.4.10). It follows from
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Lemma3.4.3, σ > 1, and Eq. (3.4.10) that

R(γ(new))

F ′(γ(new))
= (1− σ)

F (γ(new))− γ(new)F ′(γ(new))

F ′(γ(new))
+γ(new)

≥ (1− σ)
F (γ)− γF ′(γ)

F ′(γ)
+ γ(new)

= (1 + ω(γ))
R(γ)

F ′(γ)
,

which proves R(γ(new)) > 0. Finally, note that from Eq. (3.4.10),

γ(new) = ω(γ)(1− σ)
F (γ)− γF ′(γ)

F ′(γ)
+ (1 + ω(γ))γ.

This yields γ(new) > 0 since the data fidelity term F (γ) − γF ′(γ) is always
positive.

Note that Lemma3.4.4 indicates

J [z(k+1/2), γ(k)] ≥ J [z(k+1/2), γ(k+1/2)],

for k = 0, 1, · · · with an initial guess γ(0) satisfying R[γ(0); z(1/2)] > 0. This
implies the sequence {J [z(k/2), γ(k/2)]}k∈N is monotonically decreasing.

With the notations R[γ; z] shown in Sect. 3.3.4, we quote the convergence
of the regularization parameter from the recursive execution of the automatic
choice rule as follows (clason2010semismooth).

Lemma 3.4.5. Assume there exists γ(0) > 0 such that R[γ(0); z(0)] > 0. Then the
regularization-parameter sequence {γ(k/2)}k∈N generated by algorithm 1 is mono-
tonically decreasing and bounded below, i.e., converged.

Proof. First, that the sequence {J [z(k/2), γ(k/2)]}k∈N is monotonically decreas-
ing stipulatesR[γ(k); z(k+1/2)]>0 ifR[γ(k); z(k)] > 0. It follows from Lemma3.4.4
that R[γ(k+1); z(k+1)] > 0 if R[γ(k); z(k+1/2)] > 0. Therefore, with Lemma3.4.4,
the decreasing property of the sequence {γ(k/2)}k∈N with the lower bound of
0 is immediately valid.

Before the proof of Theorem 3.3.1, we first introduce the concept of par-
tial gradient mapping Hf [z; γ] and Hvm [z; γ] with respect to f and vm, for
m = 1, · · · , N , respectively (see beck2015convergence and the references
therein). Since the cost function (3.2.4) is locally convex, when the number
of sources N is sufficiently large, z† is an optimal solution of Eq. (3.2.4) if
and only if it satisfies Hf [z

†; γ] = 0 and Hvm [z†; γ] = 0 for a given γ and
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m = 1, · · · , N . Hence, this will result in the following consequence of the
convergence analysis.

Proof of Theorem 3.3.1. This proof is a combination of Lemma 3.3 in beck2015convergence
and Theorem 4.9 in clason2010semismooth, and proceeds in the following
three steps.

1. From Lemma3.4.5, the sequence {γ(k/2)}k∈N decreasingly converges to
a point γ†.

2. Since the integer-index sequence {z(k)}k∈N is bounded, there exists a
subsequence {z(kl)}l∈N that converges to an accumulation point z†. The
integer-index sequence implies the partial gradient mapping w.r.t. f

satisfies Hf [z
(kl); γ(kl)] = 0, which yields Hf [z

†; γ†] = 0. On the other
hand, noting that

0 ≤ J [z(k), γ(k)]− J [z(k+1/2), γ(k)]

≤ J [z(k), γ(k)]− J [z(k+1/2), γ(k+1/2)],

and that {J [z(k/2), γ(k/2)]}k∈N is nonincreasing and bounded below, we
have J [z(k), γ(k)]− J [z(k+1/2), γ(k)] converging to 0 as k →∞. Then from
Lemma 3.1 of beck2015convergence, it follows that Hvm [z(k); γ(k)] → 0

as k → ∞. Hence, Hvm [z†; γ†] = 0 by the continuity of Hvm for m =

1, · · · , N . Finally, we conclude that z† is the optimum of Eq. (3.2.4)
because Hf [z

†; γ†] = 0 and Hvm [z†; γ†] = 0 for m = 1, · · · , N .

3. Substituting γ(k) and γ(k+1) with γ and γ(new) in Eq. (3.4.10), respectively,
and taking the limits on both sides, we immediately have R[γ†; z†] = 0.

3.5 Numerical results and discussion

In this section, we will numerically investigate the sound-speed distribution
in order to illustrate the convergence and the robustness of our proposed
method. A real medical phantom is extracted from a breast magnetic res-
onance image, as shown in Fig. 3.3(a). This heterogeneous image is to be
regarded as the exact sound-speed distribution for the numerical simulation
of wave-field data. With it, we generate the synthetic scattered-field bound-
ary data {gm(s)} by applying the forward solver of the Lippmann-Schwinger
equation in chen2002fast, and then add the 5% standard Gaussian noise to
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them. Using noise data, we run the robust CSI method with a fixed regu-
larization parameter (RCSI), and with the automatic choice rule of regular-
ization parameters (RCSI-ACR), starting with the initial guess of the con-
trast seen in Fig. 3.3(b). For all numerical results, we set the wavenumber
k = 1.039× 103 rad/m, the wavelength 6.16 mm, and the sound speed of the
homogeneous background c0 = 1540 m/s. The rectangular domain D on a
256 × 256 grid is of a 100 × 100 mm2 area. The 256 receivers and 128 sources
are uniformly placed on the circle S with a 200 mm radius.

We start with the first example with a fixed regularization parameter
γ = 10−4 for RCSI, and with the automatic choice rule starting at γ(0) = 10−4

and choosing σ = 1.01 for RCSI-ACR. For both these methods, we choose
one-maximal-step inner iteration. Table 3.1 shows that RCSI-ACR always
has a smaller L2(D) relative error than RCSI at each outer iteration. Figures
3.3(a)-3.3(e) show the imaging quality under different methods when they
terminates at sufficiently large outer iterates. Figures 3.3(c) and 3.3(d) indi-
cate that RCSI-ACR reconstructs a sharper image than RCSI. This can also
be seen in the horizontal cross sections of the position at −0.025 m shown
in Figs. 3.4(a)-3.4(d) with different iterates. Moreover, the artifact, which is
attributed to the noisy boundary data we generated in the synthetic wave-
field data, degraded the image reconstructed by RCSI-ACR in Fig. 3.3(d), in
comparison with the exact one in Fig. 3.3(a).

Currently, the numerical algorithm is implemented on a single core of the
Intel Core i7-4790 central processing unit (CPU) of 3.60 GHz and 8 gigabytes
memory using Matlab. Under this configuration, RCSI-ACR takes approxi-
mately 0.327− 0.350 h per outer iteration whereas RCSI takes approximately
0.307 − 0.338 h per outer iteration (see Table 3.1). The additional computa-
tional cost of RCSI-ACR is caused by the automatic choice rule while iterat-
ing. However in fact, RCSI-ACR has been designed for parallel computing.
We note that each source index m can be synchronously run in algorithm 2.
Moreover, the computation of the operators GS and GD can be accelerated
by the standard libraries of Parallel FFTW (fastest Fourier transform in the
west (fftw)). As a result, the computational time will markedly decrease by
at least a factor of 128 for our numerical example when the algorithm is run
on a graphics processing unit (GPU).

In spite of the rather long wavelength of 6.16 mm we utilize, RCSI-ACR
still produces a relatively high-resolution image compared with the ray-based
reconstruction (qu2015novel) at a wavelength of 0.96 mm shown in Fig. 3.3(e).
This is because the ray-based image is reconstructed from the first-arrival
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TABLE 3.1: L2(D) relative error of the numerical solutions of
the robust CSI methods with/without the automatic choice rule
for some outer iterates, calculated using the synthetic data of
5% noise. RCSI: the robust CSI method with a fixed regulariza-
tion parameter γ = 10−4. RCSI-ACR: the robust CSI method

with the automatic choice rule starting at γ(0) = 10−4.

Outer iterate
L2(D) relative error Calculation time (h)
RCSI RCSI-ACR RCSI RCSI-ACR

50 0.0152 0.0149 15.35 16.36
100 0.0137 0.0127 30.71 33.68
200 0.0128 0.0104 65.32 70.06
400 0.0125 0.0085 135.02 140.71

picking arising from the partial waveform data, whereas RCSI-ACR employs
all single-frequency waveform data. Theoretically, the spatial resolution of
the ray-based reconstruction related to the size of the Fresnel zone is rather
lower than that of RCSI-ACR, one of the waveform inversion methods with
"half-wavelength resolution"(chen1997inverse; pratt2007soundspeed). Nu-
merically, the spatial resolution will be obtained from the signal-to-noise ra-
tio (SNR) of the relative spectrum between the exact contrast χ† and the nu-
merical one χ(k), according to the expression

SNR = 20 log10

∣∣∣∣∣ χ̂(k)

χ̂† − χ̂(k)

∣∣∣∣∣ ,
for each spatial frequency at the kth outer iteration, where the hat symbol
represents the discrete Fourier transform. In some sense, the CSI methods
work as a spatially low-pass filter for the exact image. In Fig. 3.5, the bright-
est disk of the radius 340.3 m−1 is equivalent to approximately 48% of the
wavelength of 6.16 mm. This indicates that the spatial resolution obtained by
the robust CSI method is approximately half the wavelength in Figs. 3.5(a)
and 3.5(b). Furthermore, with the automatic choice rule, the high-resolution
noise is nearly eliminated since the spectrum far away from the original is
almost dark [see Fig. 3.5(b)]. In terms of the diagnosis of breast cancer in
practice, instead of the ray-based reconstruction, the RCSI-ACR method may
be meaningful for detecting a Stage-I breast tumor with a size under 20 mm
(ajcc2002cancer), because it yields a sound-speed image with a resolution
of approximately 3 mm. The statistical data from National Cancer Center
Hospital show that the ability to diagnose breast cancer at Stage I will signif-
icantly increase the survival rate to 98% in the long term(nationalStatistic).
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Here, we note that, concerning a wavelength much shorter than 6.16 mm,
our algorithm may significantly show a slow convergence. We claim that
when one uses RCSI-ACR, there is a tradeoff between the computational
cost per iteration and the terminal step. Consequently, the numerical solu-
tion of RCSI-ACR may be inaccurate as a result of the insufficient choice of
point per wavelength (ppw) for the grids and the terminal step. In practice,
we may also potentially face the situation where the experimental waveform
data are largely attenuated after passing through the tissue, and correspond-
ingly, a large error emerges for each iteration step. Therefore, for a shorter-
wavelength case, the ray-based reconstruction may have the advantage of
rapid convergence over the RCSI-ACR method. Nevertheless, the selection
of such a long wavelength of 6.16 mm in our numerical computation is cur-
rently sufficient for validating the proposed RCSI-ACR algorithm. To en-
sure the accuracy firstly in our numerical example, we must deploy at least
16 ppw for the computational grids, with reference to the configuration in
ozmen2014ultrasound.

The next example numerically shows the effect of the jmax-maximal-step
inner iteration for algorithms 2 and 3. Figure 3.6 shows how the L2 relative
measure of the error and the cost functional J in Eq. (3.2.4) vary as total num-
ber of inner iterates, which is equal to (outer iterates−1)×jmax+ current inner
iterates, increases within different maximal steps jmax. We see that the one-
step inner iteration clearly has better performance in terms of convergence, as
is recommended in van1997contrast and van1999extended. In fact, in terms
of inner iteration, theoretically, the residual of the conjugate gradient method
(algorithm 2) converges with finite steps, and that of the lagged diffusivity
method (algorithm 3) converges with a linear rate. This causes the bottleneck
of the whole computing cost to be attributable to the outer iteration with the
sublinear rate of convergence. Hence, within a limited computing time, it is
better to perform more outer iteration.

Note that the one-step inner iteration or the gradient-based iteration con-
verges to a global minimizer in our example, even though the convergence
at each step in algorithm 1 is not satisfied. According to the analysis of the
gradient-based iteration in van2001contrast, this is because, in this example,
we are fortunate enough to select the appropriate initial guess of the contrast
source, which guarantees the local convexity of the cost functional J by tak-
ing the number of sources N = 128. Generally, more maximal inner iterates
jmax are required to ensure that the global minimizer is successfully com-
puted, which is in contrast to the above conclusion that the inner iteration



52 Chapter 3. Inverse problems: contrast source inversion

needs to be reduced.
It is a surprise that the more inner iterates one executes, the slower the

convergence becomes. This is because the O(1/k) sublinear rate of conver-
gence of outer iteration dominates the total convergence rate of algorithm 1.
In future work, any numerical method that can speed up the outer iteration
will be considered. In the near future, we will implement our algorithm on a
GPU to show its good performance in parallel computing.
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FIGURE 3.3: (Color online) Sound-speed distribution of the
medical phantom using (a) exact phantom, (b) initial guess, (c)
RCSI with 400 outer iterates, (d) RCSI-ACR with 400 outer iter-
ates, and (e) ray-based reconstruction. The wavelength is 6.16

mm for (a)-(d) and 0.96 mm for (e).
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FIGURE 3.4: (Color online) Horizontal cross sections of the po-
sition at −0.025 m using the exact phantom, the RCSI, and
RCSI-ACR with the different iterates: (a) 50 outer iterates, (b)
100 outer iterates, (c) 200 outer iterates, and (d) 400 outer iter-

ates. The wavenumber is k = 1.039× 103 rad/m.
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FIGURE 3.4: (Color online) Horizontal cross sections of the po-
sition at −0.025 m using the exact phantom, the RCSI, and
RCSI-ACR with the different iterates: (a) 50 outer iterates, (b)
100 outer iterates, (c) 200 outer iterates, and (d) 400 outer iter-

ates. The wavenumber is k = 1.039× 103 rad/m.
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FIGURE 3.5: (Color online) Spectrum of numerical sound-
speed distribution in Fig. 3.3(c) solved by (a) RCSI and in Fig.
3.3(d) solved by (b) RCSI-ACR, employing two-dimensional

fast Fourier transform. The wavelength is 6.16 mm.
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FIGURE 3.6: (Color online) L2 relative measure of (a) the er-
ror and (b) the cost functional J at total number of inner it-
erates using one-step inner iteration, four-step inner iteration,
and sixteen-step inner iteration. All methods start at the same

regularization parameter 10−4.
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Chapter 4

Multi-frequency accelerating
strategy

4.1 Introduction

Ultrasound computed tomography (USCT) is a prospective technology for
breast cancer diagnosis providing three kinds of 3D images: speed of sound,
attenuation, and reflection. In terms of the speed of sound image, the recon-
struction modalities of USCT can roughly be classified into two categories:
ray-based tomography and waveform tomography. For ray-based tomog-
raphy, Labyed2014 developed a two-parallel-transducer-array system and
employed the ray-based method to reconstruct speed of sound. Qu2015a;
Qu2015b reconstructs the speed-of-sound images on a ring transducer imag-
ing system using Fermat’s principle for ray tracing. On the other hand, wave-
form tomography, based on the wave equation retaining the integrated fea-
ture of acoustic wave, reconstructs high-resolution and accurate image (Roy2010;
Li2014; Wang2015; Sandhu2015). Duric2016 developed a commercial ultra-
sound tomography imaging system named SoftVue and demonstrated clinic
significance of reconstructing the speed-of-sound images by waveform to-
mography. Compared with ray-based tomography, the images of the breast
tissue reconstructed by waveform tomography have an advantage of higher
resolution and accuracy. However, it is always time-consuming because of a
large number of iterations as well as grid points. The contrast source inver-
sion (CSI) method is a kind of inversion methods for ultrasound waveform
tomography that does not require the forward solver through the reconstruc-
tion (vandenBerg1997). It is able to be calculated on a coarse grid because of
the explicit introduction of the Green’s function.(Alles2011; Ying2015) In the
literature, there have existed various extensions for the CSI method, such as
extended contrast source inversion(vandenBerg1999), robust contrast source
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inversion with automatic choice rule of regularization parameters (RCSI-
ACR(Lin2016)), etc. Ozmen-Eryilmaz published the pioneer work on the
inversion of speed of sound using the CSI method applied to low-frequency
data, in terms of breast cancer detection.

The objective of this work is to implement the CSI method on the real con-
figuration of breast cancer diagnostic device. We consider more practically
that the pulse wave data collected by the time-domain simulator are applied.
We attempt to make full use of the abundant frequency components from
dataset while running the CSI method. Henceforth, we show a way to pro-
cess the raw data for the CSI method and propose that the multi-frequency
accelerating strategy significantly alleviates the computational cost as well as
enhances the resolution of speed-of-sound reconstruction.

4.2 Method

The problem of ultrasound waveform tomography is formulated in a ring-
array transducer on S in Fig. 4.1. The region of interest (ROI) is denoted
by D. We start with the two-dimensional acoustical wave equation in the
lossless media of the speed of sound c(x), e.g. a breast phantom model in
Fig. 4.2,

∇2P (x, t)− 1

c2(x)

∂2P (x, t)

∂t2
= −Q(t)δ(x− s), (4.2.1)

Where P (x, t) is the pressure field at the location x and the time t, and Q(t)

denotes a pulse excitation from a point-like source located at s. Doing Fourier
transform for the both sides of Eq. (4.2.1) yields the Helmholtz equation in
heterogeneous media

∇2p(x;ω) +
ω2

c2(x)
p(x;ω) = −q(ω)δ(x− s), (4.2.2)

where the total wave field p(x;ω) and the source modulation q(ω) with the
angular frequency ω denote the Fourier transforms of the functions P (x, t)

and Q(t), respectively. Let the incident wave field pinc(x;ω) be the solution
of Eq. (4.2.2) with the uniform speed of sound c0. We assume that the func-
tions p(x;ω) and pinc(x;ω) have been normalized by the factor q(ω), or on the
other way, let q(ω) = 1. Then the Lippmann-Schwinger equation, which is
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an integral equation of Eq. (4.2.3), is derived as follows

p(x;ω)− pinc(x;ω) =

(
ω

c0

)2 ∫
R2

G(x,y;ω)χ(y)p(y;ω)dy := Gx∈R2

(χp),

(4.2.3)
where the contrast function is of the form f(y) = c2

0/c
2(y) − 1 and the zero-

order Hankel function of the first kind gives the free-space Green’s function
G(x,y;ω) = i

4
H

(1)
0 ( ω

c0
|x − y|) . For simplicity, we select a prescribed angular

frequency and omit the notation in the functions hereinafter if clear. The sub-
script m denotes the source emanated from the location s = sm. Let gm be the
difference field between pm and pinc

m acquired at the receivers for all source
numbers m = 1, · · · ,M . In vandenBerg1997; vandenBerg1999; Lin2016;
Ozmen-Eryilmaz, the contrast source denoted by vm = χpm is introduced
as an auxiliary function in Eq. (4.2.3). To recover the contrast function and
the contrast source numerically from the given dataset gm(m = 1, · · · ,M),
the robust CSI method is employed to solve Eq. (4.2.3) by minimizing the
following two-variable cost functional:

J [χ, v1, · · · , vM , γ] =
M∑
m=1

Vm[vm, χ] + λ‖∇χ‖L1(D), (4.2.4)

with

Vm[vm, χ] =
µD[χ]

µS
‖GSvm−gm‖2

L2(S)+‖χGDvm−vm+χpinc
m ‖2

L2(D),m = 1, · · · ,M,

(4.2.5)
where the weights µD[χ] =

∑M
m=1 ‖χpinc

m ‖2
L2(D) and µS =

∑M
m=1 ‖gm‖2

L2(S) and
γ represents the regularization parameter.

4.2.1 Data processing for pulse data

The time-domain wavefield measurements are simulated by the K-wave toolbox(Treeby2010).
Each source emanates a Gaussian pulse wave and the pulse excitation is of
the form:

Q(t) = Q0e
−8 ln 2(t/T−1/2)2 sin(ωct), t ∈ [0, T ], (4.2.6)

where T is the duration time of pulse, ωc the center angular frequency, andQ0

controls the amplitude on the center angular frequency. Now the frequency-
domain data are computed with the Fourier transform of the time-domain
measurements. The excitation shown in Eq. (4.2.6) helps us to determine the
bandwidth of the corresponding frequency-domain data.
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FIGURE 4.1:
Schematic diagram
of ultrasound
waveform to-
mography with a
ring-array trans-

ducer.

FIGURE 4.2: A
breast phantom
model that has
a heterogeneous
distribution of

speed of sound.

Moreover, to make sure that these measurements coincide with the syn-
thetic wave field computed by Eq. (4.2.3), for each frequency component,
they are required to modify the amplitude and phase. Therefore, we first
give the relation of the synthetic scattered wave field gm with the help of the
synthetic incident wave field ginc

m , and the measurements of the total wave
field pm and the incident wave field pinc

m as follows

gm =
|ginc
m |
|pinc
m |

(pm − pinc
m ). (4.2.7)

Additionally, the inherent phase difference, caused by the dispersion error in
the numerical simulator or the delay of the transducer response in the real
data, should be moved out according to a priori information.

4.2.2 Algorithm of RCSI-ACR

The algorithm of RCSI-ACR applied to the single-frequency measured data
was given in Lin2016. It mainly utilizes the alternating minimization method
to solve the minimization problem of the cost functional (4.2.4) for the con-
trast function χ and the contrast source function vm. The loop painted shadow
on the background of callouts in Fig. 4.3 illustrates the process of RCSI-ACR.
For the present iteration step k and the prescribed order n of the frequency-
domain dataset, we first solve the minimization problem of Vm[vm;χ(k,n)] for
vm, fixing χ := χ(k,n) for all m = 1, 2, · · · ,M . The calculation result is de-
noted by v

(k+1,n)
m . Next, solve that of J [χ; v

(k+1,n)
1 , · · · , v(k+1,n)

M , γ(k+1,n)] for χ,
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fixing vm := v
(k+1,n)
m for all m = 1, 2, · · · ,M . The result is denoted by χ(k+1,n).

Repeat the loop until k reaches the maximal iteration step Kmax, or the cost
function (4.2.4) is less than the threshold ε.

The automatic choice rule of regularization parameter is added to the
alternating minimization method in order to update the regularization pa-
rameter λ while iterating. Incorporating this rule alleviates the influence
to the numerical results of the CSI method, which is caused by the noisy
measurements. To mathematically introduce the rule, we write J(γ(k,n)) :=

J [χ(k,n); v
(k+1,n)
1 , · · · , v(k+1,n)

M , γ(k,n)] and J ′(γ(k,n)) := ‖∇χ(k,n)‖L1(D) as the ab-
breviations of the cost function and its derivative. Then the updating scheme
of the regularization parameter is given by

γ(k+1,n) =
b(k,n)

σ(J(γ(k,n))− γ(k,n)J ′(γ(k,n)))− a(k,n)
− c(k,n), (4.2.8)

where the coefficients a(k,n) = σ
∑M

m=1 ‖v
(k+1,n)
m ‖2

L2(D), b
(k,n) = − (a(k,n)−J(γ(k,n)))2

J ′(γ(k,n))
,

c(k,n) = a(k,n)−J(γ(k,n))

J ′(γ(k,n))
− γ(k,n), and the constant σ > 1. For the derivation

of Eq. (4.2.8), see sLin2016; Clason2010a; Clason2010b and the references
therein.

In terms of discretization for the cost functional (4.2.4), we use the Nys-
tröm method giving the straightforward approximation of the integrals by
the quadrature rule (Kress2014). The composite trapezoidal rule, one of the
quadrature rules, constructs the numerical integration by interpolating the
integrand at each quadrature point.

4.2.3 Multi-frequency accelerating strategy

The idea of multi-frequency accelerating strategy is that it tries to achieve the
rapid convergence result of the contrast function using the low-frequency
data on a coarse grid, and then restart the RCSI-ACR method through utiliz-
ing the last iteration result and the high-frequency data on a fine grid, leading
to the improvement of the resolution. This method is called frequency hop-
ping which has been presented in VandenBerg2001. We consider that the
value of points per wavelength is fixed for all frequency components, for in-
stance, less than twenty(Alles2011). As the frequency increases while we do
frequency hopping, the computational burden of RCSI-ACR enlarges gradu-
ally because of the increasing number of grids for each frequency component.
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Moreover, compared with RCSI-ACR using single-frequency data, this strat-
egy significantly prevents the reconstruction from being trapped into a local
minima (VandenBerg2001).

Figure 4.3 shows the flow chart of the multi-frequency accelerating strat-
egy. RCSI-ACR is conducted on a single-frequency component of dataset.
After the substep of RCSI-ACR terminates, the output contrast function will
switch to the initial guess in the next frequency component. In each loop,
the initial contrast source function v

(0,n)
m is reset by calculating the forward

solver of Eq. (4.2.3), for instance the algorithm proposed in Aguilar2004. The
regularization parameter is also restarted from the given initial guess. In nu-
merical implementation, the interpolation should be additionally applied to
the contrast function f when frequency hopping is done, since the computa-
tional grids become fine.

4.3 Numerical results

The numerical test is carried out on a breast phantom model from segmen-
tation of the magnetic resonance images shown in Fig. 4.2 (see also Qu2015a
and Lin2016). In it, speeds of sound are indicative of the different parts of the
tissue; see Tab. 4.1. The K-wave toolbox generates the Gaussian pulse data
with a center frequency of 0.25 MHz on a ring-array transducer with a radius
of 0.045 m and 256 source/receiver pairs equally spaced. Here is a remark
that frequency is expressed as ω/2π. The breast model is immersed in a wa-
ter tank. The background speed of sound is 1540 m/s. ROI is a square region
centered at the origin with an area of 0.06 × 0.06m2. Here is a remark that
although the numerical configuration is different from that of the diagnostic
system, this shrinking scale is used for the sake of calculating convenience.

TABLE 4.1: Speed of sound for different parts of the breast tis-
sue.

Tissue Speed of sound (m/s)

Water 1540

Adipose 1470

Glandula 1570

Skin 1600
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Input: k = 0, n = 1, χ(0,1), λini,
gm(m = 1, · · · ,M), Kmax, N , ε.

Calculate v(0,n)
m using the

forward solver of Eq. (4.2.3).

Initialize the regularization
parameter λ(0,n) = λini.

Calculate v(k+1,n)
m = arg minv Vm[v;χ(k,n)]

with the value of the last step v
(k,n)
m .

Use the automatic choice rule to cal-
culate the regularization parameter
γ(k+1,n) given γ(k,n), using Eq. (4.2.8).

Calculate χ(k+1,n) =
arg minχ J [χ; v

(k+1,n)
1 , · · · , v(k+1,n)

M , γ(k+1,n)]
based on the last solution χ(k,n).

Is k ≥ Kmax or
J (k+1,n) ≤ ε?

Is n ≥ N?

Output: χ(k+1,n)

Nok := k + 1.

Yes

Yes

No

n := n+ 1, k = 0

FIGURE 4.3: The flow chart for RCSI-ACR with multi-
frequency accelerating strategy. J (k+1,n) denotes the value of

J [χ(k+1,n); v
(k+1,n)
1 , · · · , v(k+1,n)

M , λ(k+1,n)].

By now, we have obtained the raw dataset from the K-wave simulator re-
ceived at the transducer. Then, we do Fourier transform to the dataset so as to
get its frequency-domain components. In this numerical test, we extract ten
samples of the equi-spaced frequencies from the dataset with respect to each
receiver. These ten equi-spaced frequencies (N = 10) sequentially range from
0.1 MHz to 0.3 MHz, covering the center frequency of 0.25 MHz. Meanwhile,
a test on a single frequency dataset of 0.3 MHz is employed as a reference
experiment for the conventional RCSI-ACR method. We configure twelve
points per wavelength for all the tests, which leads to different grids for each
frequency.

We numerically investigate the accuracy and performance of RCSI-ACR
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using multi-frequency accelerating strategy. We test on various cases ofKmax,
the maximum iteration steps of each frequency, for the multi-frequency dataset
as well as the single-frequency dataset. In this test, choosing the sufficiently
small threshold as ε = 10−3 ensure that the stop criterion of iteration is
only dependent on Kmax. The reconstructions of speed of sound are shown
in Fig. 4.4. We observe that compared with the numerical results for the
single-frequency (SF) dataset, the proposed method applied with the multi-
frequency (MF) dataset obtains the higher quality of image when they are
calculated in the same number of total iteration steps. The proposed method
is able to fast reach a blurred but convergent image when the low-frequency
components are merely applied. Next, Figure 4.5 shows the convergence
of the proposed method for MF and SF datasets assessed by the root mean
square error (RMSE)

RMSE = ‖cmodel − ccmp‖L2(D), (4.3.1)

where cmodel and ccmp are speed of sound for the phantom model and the nu-
merical result, respectively. The unit of RMSE is m/s. The relation between
speed of sound and the contrast function χ is c = c0/

√
1 + χ. We can see

that after the iteration is full developed for many steps, the smaller Kmax we
use, the more accurate the reconstructed image will be. Here is a remark that
the plot for the case of the MF dataset of Kmax = 10 is incomplete since it
terminates at the 100 steps.

We conduct the proposed method implemented on graphic-processing-
unit (GPU) to see its computational cost. The GPU computing platform is
built on a workstation of Dell precision tower 7910 with a graphic card of
NVIDIA GeForce GTX TITAN X and calculated with Parallel Computing
Toolbox of Matlab. The comparison of the computation cost on the differ-
ent datasets is illustrated in Fig. 4.5. We see that for the MF dataset with
Kmax = 20, the proposed method using multi-frequency accelerating strat-
egy costs approximate 2.68 s per iteration, whereas for the case of the SF data
with the frequency of 0.3 MHz the computational time per iteration rises to
approximate 4.04 s. Moreover, after calculating several iteration steps, calcu-
lating on the MF dataset with larger Kmax may have shorter computational
time.
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4.4 Discussion

In this work, we focus on implementing the CSI method using pulse wave
data that consist of many frequency components. There are two reasons trig-
gering this idea. The first one is that the high-center-frequency data mea-
sured by the diagnostic device does not match the low-frequency configura-
tion of many numerical methods of ultrasound waveform tomography. This
is because of the rapid increasing of computational cost and the slow conver-
gence in high frequency calculation. Following the same idea in Sandhu2015,
the iteration is started with the lower frequency in order to ensure the priority
of the computing efficiency. The second one is that we try to take full advan-
tage of the abundant frequency components from data instead of the single-
frequency reconstruction. As shown in Sec. 3, the merit of multi-frequency
accelerating strategy is that the computational burden at the first few itera-
tions is alleviated because of the coarse grids, with an assumption of a fixed
number of points per wavelength. The numerical results also show that it
does not lose more accuracy compared with the single-frequency reconstruc-
tion.

We specify some implementing details of the numerical test. First, in
terms of choosing the value of the maximum iteration steps Kmax, there is
a tradeoff between the computational cost and the accuracy of the outcomes.
The aforementioned analyses indicate that choosing a large Kmax accelerates
the calculation of iteration while a small one enhances the convergence rate
of the algorithm. Additionally, in Fig. 4.5(a), as long as hopping happens,
RMSE of the outcome for the first few steps gets unstable. It requires 5 − 10

steps so that the algorithm returns to convergence again. Under the config-
uration of the numerical test, we recommend setting Kmax = 20. Another
discussion is that our proposed method is able to be applied to the corrupted
measurements, though the measurements in the numerical test is noise-free.
In fact, the use of the total-variation penalty term ‖∇f‖L1(D) in the cost func-
tional (4.2.4) endows with robustness against ill-posedness. Finally, we ex-
clude the computational time of the forward solver for calculating the initial
contrast source function v

(0,n)
m . This is for the purpose of precisely verifying

that the multi-frequency accelerating strategy has better performance of both
accuracy and the computational cost.
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(a) MF (Kmax = 20 at 0.145 MHz), 50 iters (e) SF, 50 iters

(b) MF (Kmax = 20 at 0.19 MHz), 100 iters (f) SF, 100 iters

(c) MF (Kmax = 20 at 0.255 MHz), 150 iters (g) SF, 150 iters

(d) MF (Kmax = 20 at 0.3 MHz), 200 iters (h) SF, 200 iters

FIGURE 4.4: Reconstructed images of sound-speed map for
multi-frequency (MF) dataset with Kmax = 20 and single-
frequency (SF) dataset with the frequency of 0.3 MHz using
RCSI-ACR with multi-frequency accelerating strategy, respec-
tively. Figures (a)-(d) are the results of the MF dataset at
50, 100, 150, and 200 total iteration steps (iters), whereas Figs.

(e)-(h) are those of the SF dataset.
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(a) Line plot

(b) Bar plot

FIGURE 4.5: RMSE for the numerical solution of each iteration
step using RCSI-ACR with multi-frequency accelerating strat-
egy. The MF dataset with Kmax = 10, 20, 30 as well as the SF
dataset with the frequency of 0.3 MHz are applied to the algo-

rithm.
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(a) Line plot

(b) Bar plot

FIGURE 4.6: Computational time for the numerical solution of
each iteration step using RCSI-ACR with multi-frequency accel-
erating strategy. The MF dataset with Kmax = 10, 20, 30 as well
as the SF dataset with the frequency of 0.3 MHz are applied to

the algorithm.
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Chapter 5

Practical reconstruction from
experimental data

5.1 Experimental setup

5.1.1 Ultrasound tomography system

The schematic diagram of the experimental device is shown in Figure 5.1.
It is composed by the two parts: a ring-array ultrasound transducer and its
driving hardware – “Verasonics”. The experimental data of the ultrasound
propagating through the experimental object will be measured, processed,
and save in the Verasonics. The technical specifications of our ultrasound
tomography system will be stated in the following text. More details are
referred to tamano2015compensation.

Ring-array ultrasound transducer

Figure 5.2 shows the appearance of the ring-array ultrasound transducer. It
consists of four pieces of concave rings whose central angle and radius are
90 degree and 104 mm, respectively. Each piece contains 256 piezoelectric
elements, and totally 1024 elements are available on the ring. The technical
specification for one piece is illustrated in Figure 5.3. The grating arrange-
ment of the transducer has the 0.03 mm distance between the two adjacent
elements. Each element is designed as an elongated bar of the 0.27-mm width
and the 10-mm height. The center frequency of the pulse excitation from the
element is 1.75 MHz. Moreover, an acoustic lens covering the transducer fo-
cuses the three-dimensional ultrasound waveform on the finite-height ring.
This will help to acquire the two-dimensional waveform signal from the ul-
trasound propagating through the three-dimensional structure.
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FIGURE 5.1: Schematic diagram of the ultrasound tomography
system. (Nakamura2014)

Driving hardware

Our ultrasound tomography system is driven by the type V1-4board of Vera-
sonics. Via the switching circuit with 1024 to 256 multiplexer, the ring-array
ultrasound transducer is connected to Verasonics. Matlab programming en-
vironment is used to manipulate data acquisition and data analysis of the
signal. Since Verasonics has ability to simultaneously control 256 emitter ele-
ments at most, the acquired dataset contains 1024-receiver-times-256-emitter
time sequences for one scanning.

Time delay may occur during the data acquisition. First, switching the
element from transmitting mode to receiving mode will cost the order of sev-
eral microsecond for each element. The duration time of the analog-to-digital
(A/D) converting carried out on the receiver is approximate 4.0 nanosecond.
Therefore, the delay is assumed to be neglected for a full acquisition time of
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FIGURE 5.2: Appearance of the ring transducer.

the order of several millisecond.

5.1.2 Experimental object

In this study, the urethane phantom is chosen as the experimental object and
the reconstruction is based on the ultrasound phantom data. Urethane has a
slower speed of sound than water in the room temperature (1483 m/s in the
20◦C water). Usually, the transparency of urethane is related to the value of
the speed of sound while the stiffness has impact on the attenuation coeffi-
cient. The products of the urethane gel made by Exseal Corporation enable
us to mould the prescribed shape of phantom and control its transparency as
well as stiffness.

In order to assess the accuracy and resolution of the aforementioned re-
construction algorithms with regard to applying experimental data, this study
attempts to reconstruct two phantom models: the transparent soft urethane
phantom having a slow speed of sound but a weak attenuation coefficient,
and the opaque hard one having a similar speed of sound as water but a
strong attenuation coefficient.
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FIGURE 5.3: A piece of the quarter ring transducer.

5.2 Data processing

5.2.1 Acquired data analysis

In this subsection, the phenomenon emerging from the observation of the ul-
trasound waveform data is analyzed. The transducer elements for emitters
and receivers are numbered from the same starting point along the direction
of counter clockwise. The raw data are acquired by the aforementioned ul-
trasound tomography system. We present a common shot gather emanated
from the element number one on the transducer through a homogeneous me-
dia of water with the absence of the phantom model. Here the common shot
gather means a collection of the ultrasound signals recorded as the time se-
ries from one shot to many receivers. To clearly illustrate the intensity of the
waveform, we take the logarithm of the absolute value of the wave signals
for the common shot gather shown in Figure 5.4.

The band in the region 1 represents the control signals which instruct the
transducer elements switching from transmitting mode to receiving mode.
These exceptional signals are sufficiently strong to significantly impact the
main signal because of the large amplitude and bandwidth. The transmitted
wave is located in the region 2 where the waveform of the transmitted pulse
arrives at the receivers with a distribution as an arch on the figure of the
common shot gather. In specific, the first-arrival picking and the time dura-
tion of pulse determine the extraction of the transmitted wave. Moreover, the
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FIGURE 5.4: The common shot gather emanated from the
source number one.

transmitted wave has strong directivity since the intensity of the received sig-
nal whose direction is perpendicular to the emitter element dominates, com-
pared with the other directions. The region 3 contains the two rays caused
by the reflected wave signals from the ring transducer. Note that the overlap
of the transmitted pulse wave and the reflected boundary wave happening
in the region 4 increases difficulty of the transmitted signal extraction.

5.2.2 Scattered wavefield data processing

To prepare the scattered wavefield data processing, we carry out two data
acquisition process on the ultrasound tomography system with the presence
and absence of the experimental object, resulting in the water dataset and
the phantom dataset, respectively. Subtracting the phantom dataset with the
water dataset yields the scattered wavefield dataset which include the infor-
mation of contrast between water and phantom. The aim is to extract the
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particular group of the frequency components from the time-domain scat-
tered wavefield dataset for all emitters and receivers. However, the discrep-
ancy between the simulated forward problem and the real ultrasound prop-
agation in the device is indeed existed on the aspects of the directivity of
source, the boundary reflection, the uncertainty of the element’s coordinates,
etc. Hence, before the Fourier transform, the following steps of data process-
ing are necessary to remedy the difference of the simulated wavefield data
and the experimental wavefield data as much as possible.

Exceptional signal removing

The so-called exceptional signal is defined as the ultrasound phenomenon
which is not explained in the simulated forward problem. Typically, the ex-
ception signals in the common shot gather of Figure 5.4 are the control signal
lied in the region 1 as well as the boundary reflected signal in the region 3.
To cope with the issue in the region 1, one can first find the common end-
ing of the control signals and then reset the time series before the common
ending as zero for all emitters and receivers. Since the control signals as well
as the transmitted wave signals in the near offset are removed, together with
the consideration of the overlapped signals, the components of the wavefield
dataset whose receivers are lied in the near offset should be truncated. For
instance, the receiver channels with the central angle of 144◦ are moved out
including the overlapped region 4 shown in Figure 5.5.

Moving average filtering

Moving average filter is introduced to compensate the discrepancy of the sig-
nals for the adjacent receivers, which is caused by the independent sensitivity
for each receiver element. We also take the common shot gather in Figure 5.4
as an example. Each received signal are rectified by means of taking the av-
erage of signal in its adjacent five receivers with respect to all the time series;
see Figure 5.6 . As a result, the processed wavefield dataset on the dimension
of receiver number become smooth.

First-arrival picking and exponential damping

This step is to extract the transmitted pulse signal and remove the bound-
ary reflected signal. With the known duration time of the pulse signal, the
time-of-flight (TOF) map determines the separation of the transmitted and
reflected wave for each emitter-receiver pair. To calculate the TOF map, the
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FIGURE 5.5: Exceptional signal removing which applies to the
common shot gather.

automatic first-arrival picking method with the Akaike information criterion
(AIC) is used (qu2015novel). The TOF map for the water dataset using the
automatic first-arrival picking method with AIC is shown in Figure 5.7(a).

Instead of resetting the reflected signal, one dampens the tail of the trans-
mitted signal with the use of the exponential filter in order to rapidly at-
tenuate the non-transmitted signal. In specific, the exponential filter of the
expression max{1, exp[−(t − t0 − td)/τ ]} is applied to the time series of the
waveform dataset, as proposed in sandhu2015frequency. Here, t0 denotes
the time of flight, td is the duration time of the transmitted pulse for some
emitter-receiver pair, and the factor τ determines the damping speed start-
ing at the tail of the transmitted pulse. In our example, td is chosen as 6 µs
and τ is approximate to 1 µs. The result is shown in Figure 5.7(b).

Transducer calibration

Calibrating the coordinates of the transducer elements has been carried out
through the experimental test (NakamuraPersonal). This is one of the un-
published researches authored by H. Nakamura who is the staff from Lily
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FIGURE 5.6: Moving average filtering which applies to the com-
mon shot gather.

MedTech Co. Ltd. The calibrated transducer elements will help to compen-
sate the phase difference caused by the deviation of the element position.

Fourier transform

We apply the time-domain Fourier transform to the waveform dataset and
extract some of the particular frequency components for all emitter-receiver
pairs. Figure 5.8 shows the power spectrum of the received ultrasound signal
in the water dataset. With the consideration of the effectiveness and compu-
tational cost, the frequency components lied in from 3/4 to 1 of the center
frequency will be extracted.

Beamforming

Beamforming is only conducted in the water dataset. It is used to synthesize
the incident wavefield in the region of interest from many point sources on
the ring transducer. Minimum variance beamforming (MVB) is one of the
simple beamforming algorithm which solves the least square estimate of the
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(a) The TOF map (b) Exponential damping

FIGURE 5.7: (a) The TOF map for the water dataset using the
automatic first-arrival picking method with AIC. (b) Exponen-

tial damping which applies to the common shot gather.

weight w for the following formula (VanVeen1988):

Pincw = g, (5.2.1)

where Pinc
ij = pinc(ri, sj, ω) emanated from the source sj is the entry of the

spherical-incident-wavefield matrix which is done on the given angular fre-
quency ω, gi = g(ri, ω) the wavefield data acquired at the receiver ri, and
the receiver and source numbers are i = 1, 2, · · · , Nr and j = 1, 2, · · · , Ns,
respectively. One numerical example in Figure 5.9 shows that the synthetic
wavefield using MVB allows us to simulate the ultrasound wavefield propa-
gating in our ultrasound tomography system.

5.3 Reconstruction from the processed experimen-

tal data

The reconstruction is carried out on the cutaway hemisphere urethane phan-
tom; see Figure 5.10. The experimental data is processed in accordance with
Section 5.2. Table 5.1 shows the speed-of-sound and attenuation coefficient
reconstruction with the use of the processed experimental dataset.

Fq (MHz) Speed-of-sound Attenuation
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1.2

1.6

TABLE 5.1: Speed-of-sound and attenuation coefficient recon-
struction with the use of the experimental dataset. The recon-
struction results at the two targeted frequency components are

conducted.
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FIGURE 5.8: Power spectrum of the water dataset for the source
number 1 and the receiver number 512 applying the Fourier

transform.

FIGURE 5.9: Minimum variance beamforming.
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FIGURE 5.10: Cutaway hemisphere urethane phantom.
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Chapter 6

Conclusions

In this work, an alternating minimization method with the automatic choice
rule of regularization parameters is developed for numerical computation of
the robust CSI method. In order to stipulate that this algorithm is univer-
sally valid, the convergence results of the method is specifically discussed in
this paper. In particular, the automatic choice rule avoids the artificial and
empirical determination of the trials of regularization parameters prior to
executing the algorithm. This not only saves the number of implementation
times but also improves the spatial resolution of the reconstructed image.
Moreover, the numerical results show that the use of the automatic choice
rule sharpens the edge in the reconstructed image as well as filters out high-
frequency noise, in comparison with the fixed regularization parameter.

Chapter 4 demonstrates a multi-frequency accelerating strategy for the
CSI method using pulse data in the time domain. The CSI method of ultra-
sound waveform tomography in the frequency domain is introduced. The
idea of frequency hopping helps restart CSI in the current frequency using
the result obtained from the former frequency reconstruction. In the numer-
ical test, the data were generated by the K-wave simulator and have been
processed to meet the computation of the CSI method. One conducts a nu-
merical study to demonstrate the performance of the multi-frequency and
single-frequency reconstruction. It turns out that the multi-frequency accel-
erating strategy significantly reduces the computational cost as well as im-
proves the convergence rate.

In Chapter 5 (to be appeared) , the urethane phantom images are calcu-
lated by applying the experimental measurements acquired from the pro-
totype of the ring transducer. The result shows that the structure of this
defective hemisphere is successfully reconstructed by the attenuation image
rather than the speed of sound image. This is because the calibration of the
source/receiver locations is required to correct the phase information in the
measurement. Moreover, the gap between the governing equation and the
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real phenomenon probably depends on the boundary condition related to
the reflectivity of the ring transducer and the bad channels because of the
intrinsic defects in the structure of transducer.

In Appendix B, TR is first developed to recover the initial-pressure dis-
tribution rather than the inversion of the wave propagation. In the TR equa-
tions, the measurements are reversed and considered as a time-varying Dirich-
let boundary condition in IBVP of the wave equation. As a modification, IA
is derived from IVP of the wave equation with the pressure source provided
by the time-reversal measurements, which is free of the computation of the
Dirichlet Green’s function. Compared with the TR method, it turns out that
the IA method works out a higher-resolution image, with merely few num-
bers of receivers deployed.

Theoretically, the higher-order weights of the angular frequency ω in the
IA formula indicate that high frequency components in the measurements
take more effect on the aspect of the contrast at the high-resolution points, al-
though the TR and IA methods have the identical basis for each spatial point
in the imaging domain D. In the numerical tests, we even see that the high-
resolution image calculated by IA is preserved at the sub-Nyquist sampling
rate by the sensors along the ring, whereas the TR method is vulnerable to
the sampling criterion. Numerically, the low-pass filter stipulates the robust-
ness of the IA method when the received measurements are corrupted by the
noise.
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Appendix A

Exact wavefield of the circular
scatterer

In this section, one reviews the derivation of the exact wavefield on a circular
scatterer B of radius rB composed by the constant wave number k different
from that k0 of the background. First, one can write the expansion of funda-
mental solution:

i

4
H

(1)
0 (k|x− y|) =

i

4

∞∑
n=−∞

H(1)
n (k|x|)Jn(k|y|)ein(θ−ϕ) (A.0.1)

which is valid for |x| ≥ |y|. Here θ and ϕ denote the phases (angles) of x and
y respectively.

For x /∈ B̄, the total wave u is solved by the homogeneous Helmholtz
equations, and split into the incident wave ui and the scattered wave us. By
(A.0.1) and (??), we have the form of ui and us

ui(x) =
∞∑

n=−∞

γnJn(k0|x|)ein(θ−ψ), x /∈ B̄ (A.0.2)

and

us(x) =
∞∑

n=−∞

αnH
(1)
n (k0|x|)ein(θ−ψ), x /∈ B̄, (A.0.3)

where αn and γn are the coefficients with respect to inner boundary condi-
tions, and ψ is the propagated angle of the incident wave. If we assume the
plain incident wave ui(x) = eik0x·d, then the coefficient is definite

γn = in, d = (cos(ψ), sin(ψ)). (A.0.4)
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Similarly, for the spherical incident wave ui(x) = Φz(x), then

γn =
i

4
H(1)
n (k0|z|), z = |z|eiψ. (A.0.5)

For x ∈ B, we use the idea of Green’s Representation Theorem to express
the solution ur of interior Helmholtz equation (see p.p. 68 Colton Kress 82)

ur(x) =
∞∑

n=−∞

βnJn(k|x|)ein(θ−ψ). (A.0.6)

The connecting condition of u on ∂B can be determined from the same
pressure and pressure gradient (velocity) inside and outside the boundary;
see Thompson 76. That is,{

ui(x) + us(x) = ur(x) x ∈ ∂B,
∂ui

∂ν
(x) + ∂us

∂ν
(x) = ∂ur

∂ν
(x) x ∈ ∂B.

(A.0.7)

Since the orthogonality of the basis {einθ}, it follows from (A.0.7) that{
γnJn(k0rB) + αnH

(1)
n (k0rB) = βnJn(krB)

γnk0
∂Jn
∂ν

(k0rB) + αnk0
∂H

(1)
n

∂ν
(k0rB) = βnk

∂Jn
∂ν

(krB).
(A.0.8)

Here the calculation of the derivative of any Bessel functions can refer to the
following expression

j′n(r) =
n

r
jn(r)− jn+1(r), r > 0. (A.0.9)

Then using Cramer’s Rule and (A.0.9), we find the solutions of αn

αn = γn
kJn+1(krB)Jn(k0rB)− k0Jn+1(k0rB)Jn(krB)

k0H
(1)
n+1(k0rB)Jn(krB)− kJn+1(krB)H

(1)
n (k0rB)

. (A.0.10)
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Appendix B

Photacoustic imaging: resolution
and sensor-element sampling

B.1 Introduction

Photoacoustic imaging (PAI) is a three-dimensional imaging modality that
uses the photoacoustic effect. When light is absorbed by the tissue and con-
verted to heat, an acoustic wave is generated due to the thermoelastic ex-
pansion of the heated volume. Therefore, PAI is an elegant combination of
optical imaging and ultrasound imaging. It combines the rich optical con-
trast with high spatial resolution of ultrasound imaging. Moreover, PAI is a
multiscale imaging system in the sense that it provides, molecular, functional
and anatomical information in a single modality. More details of the photoa-
coustic imaging are referred to the reviews (Wang2008; Li2009; Beard2011).

In PAI the main goal is to recover the initial pressure distribution. There
exists one of the PAI methods which quantitatively illustrates the optical
properties of the soft tissue. For instance, based on the mathematical model-
ing and the numerical study, the inverse spherical Radon transform is used to
the study of the quantitive PAI; see the references Xu2006; Kunyansky2007.
Moreover, PAI has succeeded in dealing with the more realistic situation
on attenuation (Ammari2012; Cox2010; Huang2013), the variable speed of
sound (Modgil2010; Zhang2008a; Zhang2008b), and the dynamic photoa-
coustic tomography (Wang2014). The regularization methods are applied
to alleviate the ill-posedness appealing in the inverse problem of PAI, espe-
cially when the measurements are corrupted by the noise; see for example
Arridge2016b.

Compared with the quantitative PAI, a category of the approximate re-
constructions, such as the time-reversal methods (Kowar2014), interferomet-
ric imaging (Vasconcelos2010; Halliday2010), back-projection (Xu2005), syn-
thetic aperture (Berer2012), etc., considers the physical and medical essence



88
Appendix B. Photacoustic imaging: resolution and sensor-element

sampling

of PAI instead of the inversion for the forward process. These methods em-
ploy the imaging function to depict the structure, function, and interface of
the tissue in the morphology via assessing the spatial resolution and the con-
trast of images instead of the quantitative physical properties. The character-
istics of cancer and other pathology may be revealed if the high-quality im-
age achieves. The approximate reconstructions have the low computational
burden as well as the matched thinking way to the engineers.

In this manuscript, we focus on the study of the time-reversal methods
and the interferometric imaging with the assessment of the resolution. In
the literature, the theoretical research on the time-reversal methods was first
proposed in Fink1992, and got abundant applications (Xu2004; Yanik2004;
Moura2007). On the other hand, interferometry is developed to extract the
Green’s function in heterogeneous media in seismology (Snieder2004; Wapenaar2006).
Specifically, two impulsive sources are enclosed within the receiver arrays.
Cross-correlating wavefields emanated from these two sources yields the
Green’s function between them as if one of them can be regarded as a virtual
receiver (Curtis2009). Wavefield imaging based on interferometry has been
studied in Halliday2010 and Vasconcelos2010. Ammari2011 discusses the
connection between the time-reversal methods and the interferometric imag-
ing in PAI. In this study, we further propose qualitative and quantitative anal-
yses on the resolution study of both methods in the lossless homogeneous
media. The analyses and the numerical results both show that the interfero-
metric imaging produces a higher resolution and contrast image, even with
sub-sampling numbers of receivers located on the ring-shaped transducers.
Moreover, considering that the measurements are corrupted by the Gaussian
noise, the numerical scheme for the interferometric imaging is utilized with
the use of interferometry derived in the frequency domain and low-pass filter
as well. And the use of the low-pass filter enhances the robustness of it.

The manuscript is organized as follows: In Section B.2, the forward prob-
lem of PAI and its solution represented by the integral form are reviewed.
The time-reversal photoacoustic imaging method and the interferometry al-
ternative one consisting of image reconstruction for PAI are formulated both
in the continuous and semi-discrete expressions with the measurement recorded
on a ring array. The main contribution of this paper is proposed in Section
B.3. The analyses on the resolution and the sampling by the sensor elements
show an intrinsic distinction between the two imaging methods when the
finite number of sensor elements on the ring array is considered. In sec-
tion B.4, the numerical tests are presented to show the image quality of the
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two photoacoustic imaging methods quantitatively assessed by the resolu-
tion and contrast. This manuscript is discussed and concluded in Section B.5
and Section ??.

B.2 Methods

Consider that the photoacoustic wave excites and propagates in a two-dimensional
lossless homogeneous medium; see Figure B.1. It is governed by the acoustic
wave equation(

∇2 − 1

c2
0

∂2

∂t2

)
p(x, t) = − β

CP

∂H

∂t
(x, t), (x, t) ∈ R2 × (0, T ), (B.2.1)

where p(x, t) is the acoustic pressure at point x (unit: m) and time t (unit: Pa)
and H(x, t) the heat generation from optical absorption per unit volume and
time [unit: J/(m3 · s)]. The parameter c0 denotes the speed of sound (unit:
m/s), β denotes the thermal coefficient of volume expansion (unit: K−1), and
CP denotes the specific heat capacities at constant pressure [unit: J/(Kg ·K)].
The time T is a large terminal time such that

p(x, t) = 0 =
∂p

∂t
(x, t), x ∈ R2, t ∈ (−∞, 0] ∪ [T,+∞). (B.2.2)

With the assumption of a short optical illumination, the heat generationH(x, t)

is separated as H(x, t) = A(x)δ(t) where A(x) is the specific optical absorp-
tion and δ(t) is the Dirac delta function indicating there is an impulse re-
sponse emerging at t = 0. With the definition of the initial pressure p0(x) =
βc20
CP
A(x), the source term of equation (B.2.1) can be written as

β

CP

∂H

∂t
(x, t) =

p0(x)

c2
0

dδ(t)

dt
. (B.2.3)

The area of irradiation is a disk S that is centered at the origin and con-
tains the initial pressure. In the way of the mathematical description, the
function of the initial pressure has a compact support in a rectangle D. The
sensor array surrounding D is deployed on the ring-shape boundary of S
denoted by ∂S. The received waveform signals acquired by the sensors are
denoted by g(y, t) := p(y, t) where y ∈ ∂S and t ∈ [0, T ]. Its expression is
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FIGURE B.1: Configuration of photoacoustic forward process.

followed with the Green’s representation theorem:

g(y, t) =
1

c2
0

∫
D

∂G0

∂t
(y,x, t, 0)p0(x)dx, y ∈ ∂S, (B.2.4)

where G0 is the free-space Green’s function of equation B.2.1. The main
task of photoacoustic imaging is to determine the initial pressure p0(x) of
Eqs. (B.2.1)-(B.2.3) in D, given the received signal g(y, t) on ∂S × [0, T ].

B.2.1 Formulation of time-reversal photoacoustic imaging

The classical photoacoustic imaging is to solve the following acoustic wave
propagation:

(
∇2 − 1

c20

∂2

∂t2

)
v(x, t) = 0, (x, t) ∈ S × (0, T );

v(x, 0) = 0 = ∂v
∂t

(x, 0), x ∈ S;

v(y, t) = Φ(y)g(y, T − t), (y, t) ∈ ∂S × [0, T ].

(B.2.5)

The wavefield v(x, t) gives the process of the waveform propagation from
the ring array ∂S, provided the reversed time of the received signal g(y, t) in
t ∈ [0, T ] on y ∈ ∂S. Φ(y) is a window function which maps the wave signal
to the received measurement on the sensor elements. Correspondingly, the
Dirichlet Green’s function Gd of equation (B.2.5) at the imaging point x ∈ S
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is determined by
(
∇2

y − 1
c20

∂2

∂τ2

)
Gd(x,x

′, t, τ) = −δ(x− x′)δ(t− τ), (x′, τ) ∈ S × (0, T );

Gd(x,x
′, t, τ) = 0 = ∂Gd

∂t
(x,x′, t, τ), x′ ∈ S and t = τ ;

Gd(x,y, t, τ) = 0, (y, τ) ∈ ∂S × [0, T ].

(B.2.6)
Then the imaging function I1(x) of the continuous formulation is defined

as the image of the wavefield v(x, T ) at the terminal time T in the region of
interest D when we set Φ(y) is an indicator function gives a unit value on ∂S
and vanishes otherwise, i.e.

I1(x) = v(x, T ) =

∫ T

0

∫
∂S

∂Gd

∂νy
(x,y, T, t)g(y, T − t)dσ(y)dt, (B.2.7)

where νy is the unit normal vector on y ∈ ∂S. equation (B.2.7) is derived from
the Green’s function representation of wave equation. This can be referred
to equation (13) in Xu2004 and equation (A3) in Burgholzer2007 as well. As
image is reconstructed from reversing time of the signal g(y, t), this method
is the so-call time-reversal (TR) photoacoustic imaging.

In this work, we also focus on the semi-discrete form of the TR imag-
ing function (B.2.7). Consider a circular boundary ∂SN of the radius of R
is a pointwise subset of ∂S containing N sampling sensor points yn (n =

1, 2, · · · , N) with equally spaced arguments. By means of defining Φ(y) =
2πR
N

∑N
n=1 δ(y − yn), the semi-discrete TR imaging function is obtained as

I ′1(x) =
2πR

N

N∑
n=1

∫ T

0

∂Gd

∂νy
(x,y, T, t)

∣∣∣∣
y=yn

g(yn, T − t)dt, (B.2.8)

B.2.2 Interferometry alternative

In Xu2004, it is implied that instead of imposing a time-reversal boundary
condition, the image is able to be reconstructed from the interferometry of
the received wavefield by means of regarding each time-reversal received
signal as a source. With this methodology, Eq. (B.2.5) is rewritten as{ (
∇2 − 1

c20

∂2

∂t2

)
vτ (x, t) = − 1

c0

dδ(t−τ)
dt

g(x, T − τ)Φ∂SN (x), (x, t) ∈ R2 × (0, T );

vτ (x, 0) = 0 = ∂vτ
∂t

(x, 0), x ∈ R2 and t = τ ;

(B.2.9)
where Φ∂SN (x) is the indicator function defined as above. Accordingly, if we
assume ∂SN = ∂S, the interferometry alternative (IA) imaging function can
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be obtained from Duhamel’s principle as:

I2(x) :=

∫ T

0

vτ (x, T )dτ =
1

c0

∫ T

0

∫
∂S

∂G0

∂t
(x,y, τ, t = T )g(y, T − τ)dσ(y)dτ,

(B.2.10)
where G0 is the free-space Green’s function and vτ (x, t) is the interferometric
wavefield at the time t ∈ [0, T ]. The mathematical derivation also refers to
Ammari2011 and Arridge2016a; Arridge2016b. In their paper, this method
is named as modified time reversal (MTR) or backpropagation (BP). Similar
to the derivation of equation (B.2.8), the semi-discrete IA imaging function is
written as

I ′2(x) =
2πR

Nc0

N∑
n=1

∫ T

0

∂G0

∂t
(x,y, τ, t = T )

∣∣∣∣
y=yn

g(yn, T − τ)dτ. (B.2.11)

In Ammari2011, it turns out that the continuous TR imaging function I1

approximates the continuous IA one I2 in the situation where the boundary
∂S is continuous and in the far-field. Further discussion is presented in Sec-
tion B.5.2. However, the outcome can not extend to the semi-discrete form of
the imaging functions. The analyses in next section are proposed to show the
technical details of the reason why there exists a gap between the continuous
and semi-discrete imaging functions.

B.3 Analyses

In this section, we demonstrate that interferometry alternative has better
imaging resolution over the time-reversal method. To see this, the follow-
ing assumptions are required. First, the analyses are carried out in the case
where there is only an impulse response emanating from a point in the re-
gion D. Mathematically, the initial pressure is given by the Dirac delta func-
tion δ(y − a) emerging at the point a in D. With equation (B.2.4) and the
temporal Fourier transform, we can write the received signal as ĝ(y, ω) =

− iω
c20
Ĝ0(y, a, ω). The second assumption is that the ring-array boundary ∂S

lies in the far field relative to the bounded region D, mathematically ex-
pressed by dist(∂S) > 2dist(supp{p0}). The "dist" denotes the maximum
distance of the set and the "supp" the support of the function (or the nonzero-
value domain of the function).
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B.3.1 Analyses on the resolution

Since the continuous and semi-discrete imaging functions for each method
share the common integrands, we only look deeply into the explicit expres-
sion of the continuous forms of I1 and I2. Using Parseval’s Theorem, ĝ(y,−ω) =

ĝ(y, ω), Ĝd(x,y,−ω) = Ĝd(x,y, ω), Ĝ0(x,y,−ω) = Ĝ0(x,y, ω), and the low-
pass filter, we obtain the alternative forms of the imaging functions (B.2.7)
and (B.2.11):

I1(x) = <

{∫ +∞

−∞

∫
∂S

1

π

∂̂Gd

∂νy
(x,y, ω)ĝ(y, ω)dσ(y)dω

}
, (B.3.1)

I2(x) = <
{∫ +∞

−∞

∫
∂S

iω

πc0

Ĝ0(x,y, ω)ĝ(y, ω)dσ(y)dω

}
. (B.3.2)

where the symbol hat represents the Fourier transform in time domain, and
the points x and y are located in D and ∂S, respectively. Note that with the
assumption that dist(∂S) > 2dist(supp{p0}) as well as dist(∂S) is sufficiently
larger than the wavelength of impulse with respect to the angular frequency
ω, the normal derivative of Dirichlet Green’s function ∂Ĝd/∂νy is approx-
imated by 2∂Ĝ0/∂νy using geometrical optics approximation; see Xu2004.
Hence the comparison of the resolution between I1(x) and I2(x) is conducted
on the spatial and frequency characteristics of the integrands of Eqs. (B.3.1)
and (B.3.2) which are given by

K1(x,y, ω) =
∂̂G0

∂νy
(x,y, ω)ĝ(y, ω), (B.3.3)

K2(x,y, ω) =
iω

c0

Ĝ0(x,y, ω)ĝ(y, ω). (B.3.4)

To split the spatial points x and y in Ĝ0(x,y, ω), the additional theorem for
the Hankel function of the first kind is recalled (Colton2013):

i

4
H

(1)
0

(
ω

c0

|x− y|
)

=
i

4

+∞∑
l=−∞

Jl

(
ω

c0

|x|
)
H

(1)
l

(
ω

c0

|y|
)
eil(θx−θy), (B.3.5)

since |x| < |y|. Here, Jl and H
(1)
l denotes the Bessel and first-kind Hankel

functions of order l, and θx and θy the polar angles of x and y, respectively.
With the additive theorem (B.3.5), the recurrence relation dH(1)

l (ρ)/dρ = lρ−1H
(1)
l (ρ)−

H
(1)
l+1(ρ), and the asymptotic behavior H(1)

l (ρ) ∼
√

2
πρ
ei(ρ−(2l+1)π/4) as ρ→ +∞

with ρ > 0 (Abramowitz1966), we write out the expansion of the kernel
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(B.3.3):

K1(x,y, ω) =
+∞∑
l=−∞

(
l
|y| + iω

c0

)
Jl

(
ω
c0
|x|
)

16π2c0|y|1/2|y − a|1/2
e
i
[
ω
c0

(|y|−|y−a|)− l+1
2
π+l(θx−θy)

]
. (B.3.6)

Following the analogous deduction as equation (B.3.6), we have the expan-
sion of the kernel (B.3.4):

K2(x,y, ω) =
+∞∑
l=−∞

iω
c0
Jl

(
ω
c0
|x|
)

16π2c0|y|1/2|y − a|1/2
e
i
[
ω
c0

(|y|−|y−a|)− l+1
2
π+l(θx−θy)

]
. (B.3.7)

Since the two integrands have the common part of a Bessel function Jl (ω|x|/c0)

with respect to the index l, the imaging point x and the angular frequency ω,
regarding the component of the summation. Hence, the weights left by the
Bessel function determine the resolution of the imaging functions. Since they
are composed by the function of the angles θx and θy, l, and ω, without loss
of generality, we analyze how l and ω make an influence on the weights with
assuming the fixed angles θx and θy.

We first discuss that each Bessel function Jl (ω|x|/c0) is band-limited by
either the chosen ω|x|/c0 or the index l. In figure B.2, it shows that the line
l = ω|x|/c0 is a borderline between the oscillating region and the fast decayed
region. Thurs, for each fixed imaging point x, one of the parameters, l or ω,
determines the maximum value of the other one chosen at the borderline.
The analogous analysis is referred to Xu2002. Theqrefore, only the angular
frequency ω in the kernels (B.3.6) and (B.3.7) plays the principal role on the
resolution of the imaging functions.

Henceforth in this subsection, we see that the variable ω of the weights
dominates given fixed x in D and y on ∂S. Considering equation (B.3.6), the
weight is denoted by b1(l, ω) := l

|y| + iω
c0

. The maximum l that is chosen by

l = ω|x|/c0 is utilized to approximate b1 as b1 ≈ ω
c0

(
|x|
|y| + i

)
. It implies that the

weight whose l is evaluated at the maximum has the factor of the order-one
ω. On the other hand, the weight in equation (B.3.7) is denoted by b2(ω) := iω

c0

which is merely a function of the angular frequency ω. The modulus of the
weight is proportional to ω of order 1 for all l such that the high-frequency
component of the Bessel function Jl(ω|x|/c0) are assigned to the large weight.
This amplifies the intensity near point a for the high-frequency components
of data since those contains the signal of the impulse response in the situation
of the photoacoustic effect. Moreover, in terms of the discussions of both TR
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FIGURE B.2: Bessel function Jl (ω|x|/c0) versus l and ω|x|/c0.
The region is set in (0, 300)× (0, 300).

and IA, some terms in equations (B.3.6) and (B.3.7) may be eliminated due
to the arguments of the particular y found on the ring array. Note that the
main difference between TR and IA is that towards each l ≤ ω|x|/c0, the
corresponding weight in equation (B.3.6) has a distinct phase whereas that in
equation (B.3.7) keeps consistency of phase. Consequently, the TR imaging
function (B.2.7) may cause the problem where the sampling sensor element
y is chosen to maximize b1 for the particular l but eliminate it at another l. As
a result, we summarize the similarities and differences of the weights b1 and
b2 as follows:

• Similarities: they are both proportional to the order-one ω at the maxi-
mum possible value of l.

• Differences: for any fixed ω and x, the phase of b1(l, ω) varies with all
the feasible l ≤ ω|x|/c0 while b2(ω) keeps consistency of phase.

B.3.2 Analyses of sampling by the sensor elements

In the photoacoustic experiment, only a few of ultrasound sensors are de-
ployed on a ring array. Usually, the received signals have abundant time
samples but limited sensor elements. In Section B.4.2, the numerical results
indicate that the number of sensors on the ring array ∂S significantly is as-
sociated with the resolution of the reconstructed images. Theqrefore, in this
subsection, we analyze the principle of sampling by the sensor elements in
photoacoustic imaging. We employ the phase analysis to qualitatively show
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the relation of sampling and resolution. Additionally in this subsection, the
sampling analysis is conducted on the discrete ring array ∂SN . Hence, the
argument of the sensor point yn is the unique variable in the discussion.

In terms of the TR imaging function (B.2.7), followed by the statement in
Section B.3.1, the analysis of sampling is considered in the case where ω and l
both has large values. Define the phase factor a1(θx, θyn , l, ω) of the integrand
in equation (B.3.1) regardless of the factor b1(l, ω). With the relation

|yn − a| = |yn| − |a| cos(θyn − θa) +O(1/|yn|),

it follows that

a1(θx, θyn , l, ω) ' e
i
[
ω
c0
|a| cos(θyn−θa)− l+1

2
π+l(θx−θyn )

]
. (B.3.8)

Then the phase change for the term is expressed as

a1b1 = (<a1<b1 −=a1=b1) + i(<a1=b1 + =a1<b1). (B.3.9)

Note that the real part of equation (B.3.9) takes principal effect in the recon-
structed image because of the real value of equation (B.2.7). Following the
aforementioned deduction, to enlarge the weight of =b1(l, ω) = ω/c0 and ex-
clude <b1(l, ω), we attempt to let the phase of a1(θx, θyn , l, ω) approximate to
kπ + π/2 where k is an integer, by the way to find the argument θyn from
n = 1, 2, · · · , N . This is attained through enhancing the rate of sampling,
namely, an oscillation of the polar angle θyn since it may cause a significant
phase change of a1 when ω is large and l follows the inequality l ≤ ω|x|/c0

from the band-limited property of Bessel function in Figure B.2. As a result,
increasing the rate of spatial sampling succeeds in retaining the dominating
factor ω for equation (B.3.9) as well as restraining the influence of <b1(l, ω)

otherwise.
The analogous analysis applies to the IA imaging function (B.2.11). The

phase factor a2(θx, θyn , l, ω) is identical to a1(θx, θyn , l, ω) with equation (B.3.7).
Since <b2 = 0, the spatial sampling associated with θyn has no impact on ω of
order 1. Hence, in this situation, the relatively low sampling is acceptable for
resolution nevertheless it leads to a low accuracy in terms of the numerical
scheme of the imaging function.
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B.4 Numerical results

In these numerical examples, the measurement g is considered to be cor-
rupted by the wide-band noise. Naturally, the low-pass filter applying to
the temporal components will move out the high-frequency artifacts gener-
ated in the reconstructed images. Incorporated with a low-pass filter at the
prescribed frequency Ω > 0, equation (B.3.2) is written as the following inter-
ferometry alternative imaging function with low-pass filter (LPF-IA):

I3(x) = <
{∫
|ω|≤Ω

∫
∂S

iω

c0

Ĝ0(x,y, ω)ĝ(y, ω)dσ(y)dω

}
, (B.4.1)

and its semi-discrete form:

I ′3(x) = <

{
N∑
n=1

∫
|ω|≤Ω

2πRωi

Nc0

Ĝ0(x,yn, ω)ĝ(yn, ω)dω

}
, (B.4.2)

where the symbol bar represents complex conjugate while the hat represents
the Fourier transform in t. In practice, noting that the imaginary part of I3(x)

is sufficiently small to be neglected compared with its real part, only the real
part of the imaging function I3(x) will be plotted.

Regarding discretization of the TR imaging function (B.2.7), the IA one (B.2.11),
and the LPF-IA one (B.4.2), we use the Nyström method giving the straight-
forward approximation of the integrals by the quadrature rule (Kress2014).
The composite trapezoidal rule, one of the quadrature rules, constructs the
numerical integration by interpolating the integrand at each quadrature point;
see Appendix A for details. To compare the resolution and sampling effect
calculated by three imaging functions, each the reconstructed image is nor-
malized by its corresponding maximum absolute value.

B.4.1 Configuration

The numerical test is carried out on a vasculature model originated from one
of the testing examples in K-wave simulator, also as shown in figure B.3. This
image provides the illuminated location of the initial pressure. The K-wave
toolbox then simulates the propagation of pressure wavefield and detects the
signal on the ring-shape sensor. The ring has a radius of 0.045 m and consists
of some equi-spaced sensor elements. The background speed of sound is
1500 m/s. The imaging domain is a square region centered at the origin with
an area of 0.05× 0.05 m2.
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B.4.2 Resolution test for noise data

The reconstructed vasculature images with utilizing the various photoacous-
tic imaging functions, i.e. I1, I2, and I3, are shown in figure B.4, with respect
to the noisy measurements g of distinct signal-to-noise ratio (SNR). Since
the reconstructed images are normalized, what we concern in photoacous-
tic imaging is restricted to resolution and artifact. We observe that applied to
the noise-free data, the IA imaging functions I2 and the LPF-IA one I3 both
reconstruct higher-resolution images than the TR one I1. Additionally, the
reconstructed image using I2 is vulnerable to the artifact compared with that
using I3, especially with low-SNR data.

Figure B.5 shows the profiles of the reconstructed images along the hori-
zontal line through−0.005 m, which are extracted from figure B.4. Regarding
these profiles, there exist two principal peaks illustrating the brightness de-
fined as the relative intensity of pressure. The full width at half maximum
(FWHM) is introduced to assess the resolution of the profile quantitatively.
FWHM is measured by the length of the interval between two half-maximum
points on a peak. Moreover, the image contrast, assessing the maximum pixel
intensity for the proposed imaging method, is measured by the maximum of
a peak. The results of FWHM and the contrast are shown in table B.1. We
observe that TR always reconstructs images with relatively low resolution
but fine contrast. However, the images reconstructed by IA have high reso-
lution but are vulnerable to the low-SNR data. LPF-IA has both advantages
of the resolution and contrast, even if the applied data have low SNR. Here
is a remark that FWHM of IA with 20-SNR makes no sense because of its
corresponding negligible value of contrast.

FIGURE B.3: Initial pressure emitted from a vasculature which
is an example extracted from K-wave toolbox (kwave).
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TABLE B.1: Resolution and contrast results of the profile along
the horizontal line through −0.005 m with respect to the nu-
merical methods and the noise levels. Figure B.5 illustrates the
two peaks numbered from left to right. FWHM and maximum
of normalized pressure (abbreviated as maximum) assess res-
olution and contrast, respectively. We use the measurements
ĝ(y, ω) corrupted with noise-free, 40-SNR, and 20-SNR Gaus-

sian noise.

Methods
Data Noise free 40 SNR 20 SNR

Peak 1 Peak 2 Peak 1 Peak 2 Peak 1 Peak 2

IP FWHM (mm) 0.1429 0.1266 0.1429 0.1266 0.1429 0.1266
Maximum 0.3865 0.6395 0.3865 0.6395 0.3865 0.6395

TR FWHM (mm) 0.3662 0.3660 0.3237 0.3252 0.3727 0.3647
Maximum 0.3992 0.5338 0.3994 0.5322 0.3892 0.4812

IA FWHM (mm) 0.1596 0.1262 0.2083 0.2082 − −
Maximum 0.3143 0.4965 0.3047 0.4990 0.0570 0.1525

LPF-IA FWHM (mm) 0.1850 0.1297 0.1676 0.1303 0.1793 0.1287
Maximum 0.3683 0.6029 0.3825 0.6094 0.3521 0.6831

B.4.3 Sensor-element sampling test

The reconstructed vasculature images related to the number of sensors are
shown in figure B.6. The configuration is set as Section B.4.1 except for ap-
plying the noise-free data. Figure B.5 shows the profiles of the reconstructed
images along the horizontal line through−0.005 m, which are extracted from
figure B.6. And in table B.2, the relation between the sampling by the sensor
elements and the imaging functions is assessed by FWHM as well as the max-
imum. We observe that a large number of the sensor-element sampling sig-
nificantly improves the resolution of the reconstructed images using the TR
imaging function, whereas it upgrades the contrast of the images using the
IA imaging function. Regardless of the artifacts, the LPF-IA imaging func-
tion produces the sharp image even when a few sensors are provided for the
reconstruction.

B.5 Discussion

B.5.1 Model assumptions

Some assumptions are made for the particular purposes. In practice, the first
is that the ring array of sensors is designed to deploy limited sensor ele-
ments, owing to the fact of expense and technical complexity factors. The
abundant temporal samples can record the principal frequency components
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(a) TR, noise-free data. (b) IA, noise-free data. (c) LPF-IA, noise-free data.

(d) TR, 40-SNR data. (e) IA, 40-SNR data. (f) LPF-IA, 40-SNR data.

(g) TR, 20-SNR data. (h) IA, 20-SNR data. (i) LPF-IA, 20-SNR data.

FIGURE B.4: Numerical results with the use of the imaging
functions I1(x), I2(x), and I3(x). The measurements are noise-

free, 20 SNR, and 40 SNR for every row of images.

arising from the induced ultrasound impulse, since the temporal sampling
frequency is considerably high, and only the mollified impulse has been mea-
sured by the sensor in the real experiment. Thus, samples of sensors are
much less temporal samples in the measurements. From the theoretical as-
sumption on the far-field requirement of the ring array ∂S, the received data
set will dramatically increase at the dimension of the sensor element due to
the Nyquist criterion. However, from the aforementioned analysis, the IA
method reconstructs a high-quality image using only sub-Nyquist rate of the
sensor element in the data set. The progress of the IA method is of interest as
it compresses the data set, saves the cost of sensor elements, and potentially
accelerates the frame rate for the dynamic photoaoustic tomography images.
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TABLE B.2: Resolution and contrast results of the profile along
the horizontal line through −0.005 m with respect to the nu-
merical methods and the spatial sampling points. Figure B.7
illustrates the two peaks numbered from left to right. FWHM
and maximum of normalized pressure (abbreviated as maxi-
mum) assess resolution and contrast, respectively. The spatial
sampling points along the ring transducers are 35, 70, and 140.

We use the noise-free measurements ĝ(y, ω) in this case.

Methods
Ns 35 70 140

Peak 1 Peak 2 Peak 1 Peak 2 Peak 1 Peak 2

IP FWHM (mm) 0.1429 0.1266 0.1429 0.1266 0.1429 0.1266
Maximum 0.3865 0.6395 0.3865 0.6395 0.3865 0.6395

TR FWHM (mm) − 0.4690 0.3662 0.3660 0.2162 0.2309
Maximum 0.4140 0.4796 0.3992 0.5338 0.3896 0.5246

IA FWHM (mm) 0.1526 0.1329 0.1596 0.1262 0.1675 0.1366
Maximum 0.1517 0.2182 0.3143 0.4965 0.3398 0.5896

LPF-IA FWHM (mm) 0.1674 0.1377 0.1676 0.1303 0.1849 0.1333
Maximum 0.3886 0.5414 0.3825 0.6094 0.3284 0.6013

The second is that the lossless medium is assumed to be set in the en-
tail space. In Section B.3, all the analyses are based on the additional theo-
rem that expands the free-space Green’s function. However, the tissue in the
medium often has the properties of attenuation and heterogeneous speed of
sound in practice. The analyses in Section B.3 can not be extended to the
attenuated and heterogeneous medium since the explicit expression of the
Green’s function is not available. Nevertheless, the results may be valid in-
spired by Ammari2011 for the attenuated medium and Modgil2010 for the
heterogeneity.

B.5.2 Physical perspectives on photoacoustic imaging

Regarding the physical perspectives of TR and IA, the discussions are sepa-
rated into the continuous and discrete configuration. The continuous config-
uration of TR and IA has fully been discussed in Arridge2016a; Arridge2016b
using both mathematical and physical tools. They cope with the time-reversal
measurements in different ways. TR treats the measurements as the in-let
boundary (or mathematically, Dirichlet boundary condition) in an initial bound-
ary value problem (IBVP) of the wave equation, while IA considers them as
the time-varying pressure source for an initial value problem (IVP) of the
wave equation in the free space. Ammari2011 has shown that TR and IA
are equivalent under the assumption of the continuous configuration with
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setting the ring array in the far field. Simultaneously, the reconstructed re-
sults of TR and IA can both approximate to the initial pressure with the same
assumption.

However, regarding the discrete configuration, the ambiguity of equa-
tion (B.2.5) is apparently shown in the TR method. As the aforementioned
assumption in Section B.5.1, the sensor elements are sampled at the sub-
Nyquist rate. Due to the discrete sensor elements distributed on the ring
array, using the linear or nearest interpolation on the domain, the multiple of
continuous Dirichlet boundary condition can be made in the decision of the
Dirichlet Green’s function in equation (B.2.6). This problem as well happens
in equation (B.2.7) where the normal vector ny depends on the boundary
shape. On the other hand, the IA method is still well-defined in the discrete
configuration. The process of IA has the same mode of propagation as the
forward process. This may alleviate the lost accuracy from the discretization
of the mathematical model.
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(a) Profile, noise-free data.

(b) Profile, 40-SNR data.

(c) Profile, 20-SNR data.

FIGURE B.5: Profile along the horizontal line through−0.005 m
with the use of the imaging functions I1(x), I2(x), and I3(x).
The measurements are (a) noise-free, (b) 40 SNR, and (c) 20

SNR.
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(a) TR, Ns = 35. (b) IA, Ns = 35. (c) LPF-IA, Ns = 35.

(d) TR, Ns = 70. (e) IA, Ns = 70. (f) LPF-IA, Ns = 70.

(g) TR, Ns = 140. (h) IA, Ns = 140. (i) LPF-IA, Ns = 140.

FIGURE B.6: Numerical results with the use of the imaging
functions I1(x), I2(x), and I3(x). The numbers of sensors are

chosen as (a) 35, (b) 70, and (c) 140.
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(a) Profile, Ns = 35.

(b) Profile, Ns = 70.

(c) Profile, Ns = 140.

FIGURE B.7: Profile along the horizontal line through −0.005
[m] with the use of the imaging functions I1(x), I2(x), and I3(x).
The numbers of sensors are chosen as 35, 70, and 140 for each

imaging function.
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