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1 Introduction

Ultrasound computed tomography (USCT) is a prospective modality for breast cancer diagnosis providing
three kinds of three-dimensional images related to the acoustic coefficients: speed of sound, attenuation, and
reflection. The classical ultrasound imaging utilizes the reconstruction of acoustic impedance to perform the
structure of breast tissues by the use of echo. On the contrary, the reconstruction for quantitative imaging, i.e.
speed of sound and attenuation, identifies the spatial distribution for the different types of breast tissues other
than the structure. It is roughly classified into two categories: ray-based tomography and waveform tomography.
In terms of ray-based tomography, for instance, Qu et al. [7, 8] reconstructs the speed-of-sound images on a ring-
transducer imaging system using Fermat’s principle for ray tracing. On the other hand, waveform tomography,
based on the wave equation retaining the integrated feature of acoustic wave, allows us to reconstruct the high-
resolution and accurate images; see [9, 4, 15, 10]. Duric et al. [3] develops a commercial ultrasound tomography
imaging system named SoftVue and demonstrates that the clinical studies of reconstructing the USCT images
by means of waveform tomography. Compared with ray-based tomography, the images of the breast tissue
reconstructed by waveform tomography have an advantage of higher resolution and accuracy. However, it is
always time-consuming because of a large number of iterations as well as grid points. The contrast source
inversion (CSI) method is a kind of inversion methods for ultrasound waveform tomography that does not
require the forward solver through the reconstruction [13]. It is able to be calculated on a coarse grid because
of the explicit introduction of the Green’s function; see [2, 16]. In the literature, there have existed various
extensions for the CSI method, such as extended contrast source inversion [14], finite-difference contrast source
inversion [1], etc. Ozmen [6] published the pioneer work on the inversion of speed of sound using the CSI
method applied to low-frequency data, in terms of breast cancer detection.

The objective of this thesis is to find an effective, efficient, and applicable way to implement the CSI method
in the real configuration of the ring-transducer diagnostic device. One can consider more practically that the
proposed CSI method stipulates to reconstruct the robust result whenever the raw data with the unknown noise
level are applied. One attempts to make full use of the abundant frequency components from dataset for the
sake of alleviating the computational cost as well as enhancing the resolution of speed-of-sound reconstruction.
Henceforth, one shows a way to process the raw data while employing the CSI method and propose the
multi-frequency accelerating strategy. Additionally, the study of calibration as well as the processing of the
experimental data are proposed. The phantom image based on the processed data is reconstructed and assessed
from the clinical view.
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2 Ultrasound waveform tomography with point sources/receivers

The problem of ultrasound waveform tomography is formulated in a ring-array transducer on S. The region of
interest (ROI) is denoted by D. We start with the two-dimensional acoustical wave equation in heterogeneous
media with the speed of sound c(x) and the attenuation coefficient α(x),

− ∂2P (x, t)

∂t2
+ c2(x)∇2P (x, t) + α(x)∇2 ∂P (x, t)

∂t
= Q(x, t). (1)

Where P (x, t) is the pressure field at the location x and the time t, and Q(t) denotes a pulse excitation from a
point-like source located at s. Note that the attenuation coefficient α(x) is temporally independent since only
the pressure field has a relatively narrow band of frequencies. And in this section, the point-like sources and
receivers are considered in order to validate the efficiency and robustness of the proposed algorithms. Hence,
the main inverse problem of USCT is to recover the speed of sound c(x) and attenuation coefficient α(x) images
in x ∈ D given the pressure field P (s, t) on s ∈ S.

The aim of the CSI method is to linearize the original nonlinear waveform inversion model by adding two
new variables which are composed by the functions of both the speed of sound and the attenuation coefficient,
namely, a contrast function and a contrast source. Then one can solve a two-objective optimization problem
with the use of the alternating minimization method. In terms of the robust CSI (RCSI) method proposed
in [14], the total-variation (TV) regularization method is additionally chosen to preserve more edge information
for the reconstructed image. Subsequently, the algorithm of the robust contrast source inversion with the
automatic choice rule of regularization parameter (RCSI-ACR) applied to the single-frequency measured data
was given in [5]. The automatic choice rule of regularization parameter is added to the alternating minimization
method in order to update the regularization parameter with the iteration steps.

The idea of multi-frequency accelerating strategy is that it tries to achieve the rapid convergence result of
the contrast function using the low-frequency data on a coarse grid, and then restart the RCSI-ACR method
through utilizing the last iteration result and the high-frequency data on a fine grid, leading to the improvement
of the resolution. This method is called frequency hopping which has been presented in [12]. We consider that
the value of points per wavelength is fixed for all frequency components, for instance, less than twenty [2]. As the
frequency increases while we do frequency hopping, the computational burden of RCSI-ACR enlarges gradually
because of the increasing number of grids for each frequency component. Moreover, compared with RCSI-ACR
using single-frequency data, this strategy significantly prevents the reconstruction from being trapped into a
local minima [12].

The time-domain wavefield measurements are simulated by the K-wave toolbox [11]. Each source emanates a
Gaussian pulse wave . The frequency-domain data are computed with the Fourier transform of the time-domain
measurements. Additionally, the dataset are contaminated by the 5% standard Gaussian noise.

One starts with the first example by applying the single-frequency measured data. A fixed regularization
parameter is fixed at 10−4 for RCSI and the automatic choice rule is starting at 10−4 for RCSI-ACR. For these
two methods, one-maximal-step inner iteration is chosen. Figures 1(a)-1(c) show the imaging quality under
different choice rules when the CSI methods terminate at sufficiently 400 outer iteration steps. Figures 1(b)
and 1(c) indicate that RCSI-ACR reconstructs a sharper image than RCSI. Moreover, the artifact, which
is attributed to the noisy boundary data we generated in the synthetic wavefield data, degraded the image
reconstructed by RCSI-ACR in Fig. 1(e), in comparison with the true one in Fig. 1(a).

In terms of the multi-frequency accelerating strategy, one can concentrate on the performance test of the
reconstruction with utilizing single frequency (SF) and multi-frequency (MF) datasets, respectively. In this
numerical test, we extract ten samples of the equi-spaced frequencies from the dataset with respect to each
receiver. These ten equi-spaced frequencies (N = 10) sequentially range from 0.1 MHz to 0.3 MHz, covering
the center frequency of 0.25 MHz. Meanwhile, a test on a single frequency dataset of 0.3 MHz is employed as
a reference experiment for the conventional RCSI-ACR method. The comparison of the computation cost on
the different datasets is illustrated in Fig. 2. We see that for the MF dataset with Kmax = 20, the proposed
method using multi-frequency accelerating strategy costs approximate 2.68 s per iteration, whereas for the case
of the SF data with the frequency of 0.3 MHz the computational time per iteration rises to approximate 4.04 s.
Moreover, after calculating several iteration steps, calculating on the MF dataset with larger Kmax may have
shorter computational time.
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(a) (b) (c)

Figure 1: Speed of sound image of the medical phantom using (a) true model, (b) RCSI with 400 outer iteration
steps, (c) RCSI-ACR with 400 outer iteration steps.

(a) (b) (c)

Figure 2: Computational time for the numerical solution of each iteration step using RCSI-ACR with multi-
frequency accelerating strategy. The MF dataset with Kmax = 10, 20, 30 as well as the SF dataset
with the frequency of 0.3 MHz are applied to the algorithm. (a) SF and MF reconstructions with the
same stop criterion of RMSE. (b) Computational Time v.s. Iteration step. (c) RMSE v.s. Iteration
step.

3 Ultrasound waveform tomography with finite sources/receivers –
practical configuration

The wavefield dataset acquired from the ring transducer are able to apply to RCSI-ACR with the consideration
of the configuration of finite sources/receivers. Each element of ultrasound transducer has its unique character-
istics, such as direction and aperture. Minimum variance beamforming is a way to synthesize the finite source
using the superposition of a number of the point-like sources. Meanwhile, the governing equation (1) should
adapt to the configuration of finite sources/receivers by taking their acoustic properties into consideration.

The urethane phantom images are calculated by applying the experimental measurements acquired from the
prototype of the ring transducer. Figure 3 shows that the structure of this defective hemisphere is successfully
reconstructed by the attenuation image rather than the speed of sound image. This is because the calibration
of the source/receiver locations is required to correct the phase information in the measurement. Moreover, the
gap between the governing equation and the real phenomenon probably depends on the boundary condition
related to the reflectivity of the ring transducer and the bad channels because of the intrinsic defects in the
structure of transducer.
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Figure 3: Ultrasound waveform tomography for the urethane phantom measurements: (a) the prototype of ring
transducer with the urethane phantom, (b) the speed of sound image, (c) the attenuation coefficient
image; solid line describes the base shape of the urethane phantom.
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