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The purposes of thesis are to optimize the operation of electric vehicle (EV) and 

infrastrucutre design of wireless power transfer system (WPT), so that the eco-driving (energy-

saving) operation of EV can be achieved, and the investment cost of WPT system is minimized. 

These are stated in Chapter 1. For those purposes, the disseratation is organized into two main 

parts: Theory and Application. The destails of each part are presented as follows: 

 

<I> In theory part, optimal control theory and nonlinear optimization theory are reviewed, then 

current problems of the conventional approaches are investigated. In order to resolve those 

problems. The following five methods are proposed: 

(1) Parameterization method (Chapter 2 + Chapter 3). The features of the method are 1) 

unlike analytical methods e.g., Pontryagin’s maximum principle (PMP), it avoids analitically 

mathematical derivations; therefore, it can handle complicated models of optimal control 

problem (OCP), (2) instead of finding a functional, i.e, the control signal, like analytical methods, 

it solves an nonlinear optimization problem to obtain unknown parameters of the control signal; 

thus, the control signal is determined, (3) if the initial condition is appropriately chosen, 

solution of the optimimization problem is easily obtained; therefore, it is faster than 

conventional dynamic programming (DP). However, drawback of the parameterization method 

is when the model of OCP is strongly nonlinear with strict constraints involved, it is not easy to 

choose an appropriate initial condition for a correct solution. 

(2) Iterative dynamic programming with proposals of approximate generation of forward-

reachable state space and grid resolution adaptation (AHiDP) (Chapter 2). It is well known that 

DP always guarantees the global optimality of solution, but its computational time is large. In 

order to overcome this drawback, iterative dynamic programming (iDP) was proposed. However, 

the global optimality of its solution is not completely guaranteed, and its computational time is 

still large. Therefore, in order to reduce the computational effort and enhance the accuracy of 

solution, approximation of forward-reachable state space and grid resolution adaptation are 

proposed. 

(3) Iterative dynamic programming for optimal control problem with isoperimetric constraint 

(Chapter 2). In general, optimal control problem (OCP) with isoperimetric constraint is a 

difficult problem since the constraint of integral type is included. One only finds a solution in 

analytical form for simple problems, e.g., Dido’s problem, by using Euler-Lagrange equations. 

For complicated problems, new states are defined to handle the isoperimetric constraint, 

resulting in increase of the OCP’s size. The author proposes the combination of AHiDP with 

adaptive objective function to consider this isoperimetric constraint. Therefore, the 

computational time is kept as same as that of the orignial OCP (without isoperimetric 

constraint). 



(4) Dynamic programming with variable time step (Chapter 2). It is known that the control 

signal of the OCP obtained by conventional DP is in the switching form, where this control 

signal is continously changed. This is an undesired phenomenon in some particular cases. By 

augmenting the time step in a vector of control signals and the instantaneous time in a vector of 

states, the time step can be flexiblely adjusted in a wide range, which allows the number of time 

steps to be small. Therefore, the switching phenomenon is removed while a high accuracy of 

solution is guaranteed. 

(5) Modified epsilon-constrained method (MeCM) (Chapter 3). This method is proposed to 

handle with severe equality and inequality constraints of a nonlinear optimization problem. 

Besides being used in DE, MeCM also can be applied in other evolutionary algorithms (e.g., 

PSO and GA). 

 

<II> In application part, mathematical models of EV operation and allocation of WPT system 

are constructed. Then, the following five models are proposed such as: 

(1) Optimal eco-driving control problem of EV operation with isoperimetric constraint (Chaper 

4). By transforming the conventional optimal eco-driving control problem of EV operation to the 

one with isoperimetric constraint, the proposal in Chapter 2 can be applied. Therefore, the 

computaional effort of using AHiDP is reduced, and the solution accuracy is improved. In 

addition, it can handle optimal eco-driving control of EV with very long operational range (e.g., 

more than 100 [km]). 

(2) Optimal control problem for allocation of WPT system (Chapter 5). With conventional 

approaches, allocation of WPT system is a static nonlinear optimization problem for minimizing 

the total length of WPT sections, leading to minimizing the investment cost. It is well known 

that the solution obtained by solving a nonconvex nonlinear optimization problem can not 

guarantee the global optimality. However, it is possible to obtain the global solution of an 

optimal control problem (OCP) by using dynamic programming (DP) or Pontryagin’s maximum 

principle (PMP). Therefore, a new approach of transforming the allocation problem of WPT 

system to an OCP is proposed. Thus, the proposals in Chapter 2 can be applied to find the global 

solution. 

(3) Simultaneous optimization problem of EV operation and allocation of WPT system 

(Chapter 6). For conventional approaches, EV operation and allocation of WPT system are 

separately designed. However, since allocation of WPT system depends on EV operation, there 

exists an optimal EV operation so that the optimal allocation of WPT system is achieved, where 

the investment cost of WPT system is minimal. By applying the parameterization method in 

Chapter 2 + Chapter 3, simultaneous optimization of EV operation and allocation of WPT 

system is considered, which allows us to design a WPT system with the lowest investment cost. 



Besides, the other applications of the proposals in theory part are considered such as: 

(4) Parameterization of control signal of EV for optimal eco-driving control of EV (Chapter 4). 

It is a simple and intuitive method proposed in Chapter 2 + Chapter 3. For a simple road profile 

and sectional speed constraint, the solution is obtained with much less computational time than 

that of DP. 

(5) Parameterization of control signal of WPT power in optimal control problem for allocation 

of WPT system (Chapter 5). With the initial condition of control signal of WPT power obtained 

by Pontryagin’s maximum principle (PMP) at the first step, it is easy to obtain an improved 

solution at the second step by using parameterization method proposed in Chapter 2 + Chapter 

3. Calculation results show that Pontryagin’s principle + parameterization method achieve a 

high accuracy solution, compared to DP. 

In Chapter 7, technical contributions are stated, where the advantages and disadvantages of 

the proposed methods for problems of EV operation or allocation of WPT system are compared. 

Academic contributions are presented also. Finally, outlooks of this dissertation are discussed. 

 


