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 Bio-oil derived from biomass is being considered as a sustainable source for the production of a 

variety of chemicals and fuels [1]. A major barrier in the application of the bio-oil is that it consists 

contains large levels of oxygen containing compounds (35 ~ 40 wt. %) which result in low heating 

value and chemical instability [2]. Hydrodeoxygenation (HDO) is a key process to lower the oxygen 

content of biomass streams, analogous to hydrodesulfurization (HDS) and hydrodenitrogenation 

(HDN) processes that lower sulfur and nitrogen levels in petroleum feedstocks [3]. The development 

of effective HDO catalysts is critical to unearthing the full potential of biomass-derived compounds. 

Transition metal sulfide catalysts (CoMoS and NiMoS) have been widely tried as candidates due to 

their hydrogenation ability in commercial HDS and HDN processes, which are closely related to HDO 

processes in the removal of a heteroatom with direct bonding to carbon [4]. However, a major problem 

of the sulfides is that they are deactivated in the absence of sulfur, which is not normally present in the 

bio-oil. Noble metals have also been tried as they are active in hydrogenation reactions at mild 

conditions. As a result, transition metal phosphide catalysts (metal-rich compounds, MP or M2P), 

which have combined physical properties of both metals and ceramic [5], are considered as alternative 

catalysts for HDO. Recently, a plethora of studies on HDO over phosphide catalysts have been 

reported showing their higher activity and stability compared to commercial catalysts [6,7]. 

Although studies of HDO of real bio-oil feeds have merits, they do not provide detailed insights into 

factors controlling catalyst performance because of the complexity of the bio-oil, so that model 

compound studies are required to give greater understanding of catalyst behavior. In addition, in situ 

spectroscopies such as FTIR and EXAFS are extensively used for identification of the active phase of 

catalysts and elucidation of reaction mechanism by providing information on the working state of the 

catalysts. 



 This thesis deals with the catalytic HDO on the cyclic five-membered ester γ-valerolactone 

(GVL-C5H8O2) on a series of supported metal phosphide catalysts. The compound GVL is found in 

bio-oil, and indeed, it is a so-called platform chemical because it is formed in large amounts in the 

degradation of cellulose and has potential use as a liquid fuel, an intermediate for fine chemicals, and a 

solvent. Furthermore, in order to understanding fundamental information about the manner of oxygen 

removal, the reaction pathways for HDO of GVL were investigated by kinetic, spectroscopic, and 

transient studies. 

 Chapter 1 describes the general motivation of this research, which is the use of biomass as a 

sustainable energy resource to replace petroleum liquid fuels. Then, literature review provides 

information including strategies for biomass upgrading and catalyst development for bio-oil. 

 Chapter 2 describes the catalytic HDO of GVL on a series of supported metal phosphide 

catalysts (Ni2P/MCM-41, CoP/MCM-41, MoP/MCM-41, WP/MCM-41) and a commercial Pd/Al2O3 

catalyst. Highly dispersed phosphide catalysts were successfully synthesized, which were 

characterized by Brunauer-Emmett-Teller, X-Ray diffraction, X-ray absorption fine-structure and 

CO-chemisorption measurements. Comparison of activities was based on turnover frequencies 

calculated from surface metal atoms determined from the chemisorption of CO at 50 oC. It was found 

that catalytic activity followed the order: Ni2P/MCM-41 >> CoP/MCM-41 >> Pd/Al2O3 ≈ 

MoP/MCM-41 > WP/MCM-41. On all catalysts ring opening of the lactone to produce pentanoic acid 

was the main initial step with subsequent hydrogenation to form pentanal. The product distribution on 

the iron-group phosphides (Ni2P/MCM-41 and CoP/MCM-41) and Pd/Al2O3 differed from that on 

group 6 metal phosphides (MoP/MCM-41 and WP/MCM-41), especially in the selectivity to 

hydrocarbons. The main hydrocarbon product was butane on Ni2P/MCM-41, CoP/MCM-41, and 

Pd/Al2O3 and was n-pentenes on MoP/MCM-41 and WP/MCM-41. This indicates that iron group 

phosphide catalysts and Pd/Al2O3 follow a decarbonylation pathway to produce CO and saturated C4 

hydrocarbons whereas group 6 phosphides follow an HDO pathway to produce unsaturated C5 

hydrocarbons in the removal of oxygen. The iron group phosphides and Pd/Al2O3 showed high 

hydrogenation ability to form saturated hydrocarbons. Based on the product selectivity, all applied 

catalysts followed a similar initial reaction sequence from GVL to pentanal involving ring-opening 

and hydrogenation. After formation of pentanal the main reaction was decarbonylation on 

Ni2P/MCM-41, CoP/MCM-41 and Pd/Al2O3 and was hydrodeoxygenation on MoP/MCM-41 and 

WP/MCM-41.  

 Chapter 3 describes the catalytic HDO of the GVL on a series of supported bimetallic NiMo 

phosphide catalysts. Alloy formation between Ni and Mo was indicated by X-ray diffraction analysis. 

Ni-rich samples such as Ni2P/MCM-41, NiMo(3:1)P/MCM-41, and NiMo(1:1)P/MCM-41 presented 



small peaks corresponding to Ni2P; however, the peaks were shifted to lower angles compared to those 

of the Ni2P phase. Similarly, the Mo-rich samples such as NiMo(1:3)P/MCM-41 and MoP/MCM-41 

exhibited a distinct peak corresponding to MoP, but the peaks of NiMo(1:3)P/MCM-41 were shifted to 

lower angle. The structure of NiMoP is hexagonal and is isomorphic with that of Ni2P [8 ] with 

similar crystallographic index a, but considerably larger index c. This explains why the (101) and (201) 

reflexions above are shifted to lower angle but the (210) reflexion is hardly displaced. The number of 

active sites of each metal species was estimated by factor analysis combining CO-uptake 

measurements and infrared (IR) spectra of adsorbed CO. Deconvolution of the IR spectra of the 

bimetallic phosphide catalysts revealed contributions from Ni and Mo sites These results suggest that 

there was no surface enrichment in the alloys. The activity was related to the proportion of Ni in the 

catalyst, following the order: Ni2P/MCM-41 > NiMo(3:1)P/MCM-41 > NiMo(1:1)P/MCM-41 ≅ 

(Ni2P+MoP)/MCM-41> NiMo(1:3)P/MCM-41 > MoP/MCM-41, indicating that Ni was the major 

active site, while Mo was a diluent. This interpretation is confirmed by results of TOF normalized by 

accessible Ni sites which revealed that the effect of alloying on the activity was very small indicating a 

single Ni atom was involved in the rate-determining step. In contrast to TOF results, the presence of 

Mo sites had a significant effect on the product selectivity: Ni2P/MCM-41 mostly produced butane, 

whereas Mo-containing catalysts produced higher amount of 1-pentanol and C5 hydrocarbons such as 

pentane and n-pentenes, suggesting that the product selectivity was strongly affected by the 

neighboring atoms of Ni. Therefore, while the proportion of Ni sites in the catalyst governed the 

activity, the Mo sites controlled the selectivity to C5 hydrocarbons. These results provide insights into 

the behavior of Ni and Mo sites during the HDO of γ-GVL: the Ni and Mo sites behaved 

independently, and as a result the HDO of GVL is structure-insensitive with regards to activity, but 

structure-sensitive with respect to selectivity. Interestingly, the NiMo(1:1)P/MCM-41 catalyst 

presented higher C5/C4 hydrocarbons selectivity ratio than the physical mixture of Ni2P/MCM-41 and 

MoP/MCM-41. Thus, the formation of Ni-Mo led to a slight ligand effect between the individual Ni 

and Mo sites. 

Chapter 4 describes determination of the reaction pathway and the estimation of the reaction 

constants of each step by a contact time study. There are two routes: the first route involves 

ring-opening of the lactone on the methyl-substituted side and the second route involves removal of 

the oxygen from the carbonyl group. Along the first route, which was proposed pentanoic acid is 

formed initially, which is then converted into pentanal. Following this, n-butene is produced by 

decarbonylation with the formation of CO, and the n-butene was further hydrogenated to n-butane. 

The pentanal could also be hydrogenated sequentially to n-pentane but this was not preferred. 

Simulated fitting results to a first-order network showed good agreement with the experimental results. 



From partial pressure analysis, it was concluded that higher H2 partial pressure favors hydrogenation 

and enhances the overall reaction rate. In situ infrared spectroscopy measurements indicated that an 

intermediate with greater number of CH2 groups than GVL was formed at reaction conditions, and this 

gave support for the proposed reaction mechanism, in which the initial reaction led to the production 

of pentanoic acid which has more CH2 bonds than GVL. In situ quick X-ray absorption fine structure 

(QXAFS) measurements confirmed that with increasing activity more reactant adsorbed on Ni sites, 

and as a result, the effect of GVL concentration exhibited the same behavior as that calculated from 

the coverage of C5 compounds. These include the GVL and pentanoic acid. Overall, the combined 

kinetic and spectroscopic results give a consistent picture of the mechanism of GVL 

hydrodeoxygenation on Ni2P/MCM-41. 

 

References 

                                                   

[1] G.S. Foo, A.K. Rogers, M.M. Yung, C. Sievers, ACS catal., 6 (2016) 1292-1307 

[2]  H. Wang, J. Male, Y. Wang, ACS catal., 3 (2013) 1047-1070. 

[3]  A.Y. Bunch, U.S. Ozkan, J. Catal., 206 (2002) 177-187. 

[4]  R.C. Nelson, B. Baek, P. Ruiz, B. Goundie, A. Brooks, M.C. Wheeler, B.G. Frederick, L.C. 

Grabow, R.N. Austin, ACS catal., 5 (2015) 6509-6523. 

[5]  S.T. Oyama, T. Gott, H.Y. Zhao, Y.K. Lee, Catal. Today 143 (2009) 94-107. 

[6]  R.H. Bowker, M.C. Smith, M.L. Pease, K.M. Slenkamp, L. Kovarik, M.E. Bussell, ACS catal., 1 

(2011) 917-922. 

[7]  H.Y. Zhao, D. Li, P. Bui, S.T. Oyama, Appl. Catal., A., 391 (2011) 305-310. 

[8]  P.R. Guirin, M. Serhent, Acta Crystallogr. Sect. B: Struct. Sci., B33 (1977) 2820-2823. 


