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Research background

Since its discovery in 1950s, C-H activation reactions has become a powerful method to
direct functionalization of alkyl, alkenyl, and aryl C-H bonds over the past few decades.
Among of them, iridium catalyzed transformation of aryl C-H bonds to C-B bonds!"! is one of
the most useful methods because the borylated compounds can be converted to more complex
molecules by further transformations, such as cross-coupling reactions. However, a central
challenge in these reactions is controlling their site selectivity, especially for ortho-selectivity,
because steric effects often dominate the regioselectivity of C-H borylation'.
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(1) Lewis acid-base controlled ortho-selective C-H borylation of aryl sulfides

In 2015, our group successfully achieved meta-selective C-H borylation of aromatic
compounds controlled by hydrogen bonding between a ligand and substrates'*. Based on this
method, I developed an ortho-selective C-H borylation of aryl sulfides controlled by Lewis
acid-base interaction between a designed-ligand and substrates. Initially, I hypothesized that
ligands with a Lewis acidic boryl group attached at the ortho position of a bipyridine moiety
would be suitable for recognizing the functional group of substrates and promoting
ortho-selective C-H borylation (Figure 2). Thus, I initiated this study by investigated several
bipyridine-type ligands with a boryl group as a Lewis acid center. Treatment of thioanisole
(1a) with bis(pinacolato)diboron (2) in the presence of an iridium catalyst [Ir(OMe)(cod)]»
and dtbpy (4,4’-dimethyl-2,2’-dipyridyl) at 55 °C gave a mixture of ortho-, meta-, and
para-borylated thioanisoles 4a and Sa + 5a’ in 70% yield, and the [ortho/(meta + para)] ratio



was only 0.22. However, in the case of ligand 3a with a pinacolboryl group, the
[ortho/(meta + para)] ratio improved to 3.8. I thought that the pinacolboryl group was too
bulky for the ligand-substrate interaction. Then, I investigated several ligands with a sterically
less hindered boryl group. The ratio of the products, however, was not increased further using
ligands 3b, 3¢, or 3d (entries 3—5). One possiblity to account for this result is that the
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trifluoromethyl groups in the 1,3,2-dioxaborolanyl group. Besides its poor solubility, the
excessively strong interaction between the boryl group of 3g and a sulfur atom of substrate 1a
is another reason.
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(2) Iridium catalyzed ortho-selective C-H borylation of phenol and aniline derivatives

I also developed an ortho-selective C-H borylation reaction of phenol and aniline
derivatives. Introducing a methylthiolmethyl group on the oxygen or nitrogen atom of the
substrates, the borylation reaction proceeded in high ortho-regioselectivity using a



bipyridine-type  ligand  with  an
electron-withdrawing group at para
position. First, I investigated a series of
ligands with  different electronic
properties (Figure 4). In the case of
dtbpy, the [ortho/(meta + para)] ratio of
borylated product 3a was 0.83 in yield
of 88%. I found that electron-poor
ligands (L2, L3, L6) are beneficial to
increase the [ortho/(meta + para)] ratio.
Ligand L6 with a trifluoromethyl group
at a para position gave the best result
with a [ortho/(meta + para)] ratio over
30 in 90% yield. Under the best
conditions, I explored the substrates
scope. Using phenol and aniline
derivatives as substrates gave high yield
of the ortho-borylated products in wide
substrate scope and good functional
group tolerance.

I propose two possible mechanisms
for this reaction: (1) via outer-sphere
Lewis acid-base interaction between a
boryl ligand of an iridium center and a
sulfur atom of a substrate (Figure 6, 1));
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(2) via coordination of a sulfur atom of a substrate to an iridium center as a directing group

(Figure 6, 2)). The results of ligand

screening

support both pathways: an

electron-withdrawing group on the phenyl ring of Ar-bipyridine ligands could enhance

ortho-regioselectivity.
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