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Abstract

In this dissertation we study several problems on curves, surfaces, and graphs.

Broadly speaking, our problems are included in the fields of analysis and geometry.

More precisely, our studies are related to nonlinear analysis, ordinary and partial

differential equations, calculus of variations, differential geometry, and geometric

topology. The treated problems are motivated by both pure mathematics and physics

as materials science. Mathematically, a point in common between the problems is

that curvatures play crucial roles. We consistently study the properties, as shapes or

singularities, of solutions to the problems.

In Chapter 1 we address quite classical boundary value problems on elastic curves.

Namely, we consider the minimizing problems for the following two energies; the total

squared curvature energy defined for planar curves of clamped endpoints and fixed

length, and the modified total squared curvature energy defined for planar curves of

clamped endpoints. Our main result indicates a new theoretical connection between

elastic curve problems and phase transition problems. By using this observation, we

reveal the precise shapes of global minimizers in a “straightening” limit, and moreover

obtain a uniqueness result in a certain class of constraint parameters.

In Chapter 2 and Chapter 3 we deal with a free boundary problem on elastic curves.

The problem is formulated as the minimizing problem for the modified total squared

curvature energy with a contact potential term. The energy is defined for planar

periodic curves constrained above a graph substrate. Mathematically, this is a kind of

obstacle problem, and accordingly free boundary problem. This problem is motivated

by materials science, more precisely, adhesion problems on thin objects as filaments or

membranes. Our main concern is the graph representations of global minimizers.

In Chapter 2 we exhibit some sufficient conditions of parameters which ensure that

any global minimizer is represented by a graph, and examples of parameters which

guarantee that any global minimizer is overhanging, i.e., not represented by a graph.

The proofs rely on energy estimates and geometric classifications of the possible states

of admissible curves.

In Chapter 3 we study the case that the bending rigidity is sufficiently small, which

is not included in the study in Chapter 2. We prove that this case also ensures the

graph representations of minimizers. The main tool is a singular limit method as

Γ-convergence. In this part we essentially use the results obtained in Chapter 1.

In Chapter 4 we study a completely different problem. Our main result

characterizes the cut locus of a given open set with C1-boundary in the Euclidean

space. For a given open set, the cut locus is defined as the closure of the set of points

where the distance function from the boundary of the open set is not differentiable. This
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singular set appears in various contexts as differential geometry or partial differential

equations. We prove that the cut locus is characterized in terms of a generalized radius

of curvature of the boundary and its lower semicontinuous envelope. This result is a

generalization of a classical characterization for an open set with C2-boundary. Our

proof is based on more geometric arguments than classical proofs; namely, we use

comparisons of functions and the homotopy theory as mapping degree.

In Chapter 5, another different problem is treated. We study the smoothing effect

of the mean curvature flow equation, which is an evolution equation defined for

hypersurfaces. Our main result provides an example of a mean-convex mean curvature

flow in the sense of level-set flow which is not smoothed out instantly, i.e., developing

infinitely many singular epochs near the initial time. The constructed initial surface

is an axisymmetric topological sphere, smooth except a single singular point, and

mean-convex in the sense of White. Our example is useful to contrast some previous

known results on the smoothing effect of the mean curvature flow.

All the chapters are independent of each other in principle; in particular, they

include their own introduction and reference sections. As a general rule, the notations,

definitions, and citations are valid only in each of the chapters. In particular, the

reference numbers make sense only within each chapter since some papers are cited

in plural chapters with different reference numbers. Some results are cross-referenced,

but in that case we explicitly describe the chapter number.

Finally, we mention that this dissertation is basically a collection of the author’s

previous publications made adjustments. Chapter 1 and Chapter 2 correspond to [1]

and [2], respectively. Chapter 3 is based on [3]; however, compared with [3], in Chapter

3 we give major extensions and more advanced conclusions. Chapter 4 and Chapter 5

correspond to [4] and [5], respectively.
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Chapter 1

Boundary value problems for elastic curves

In this chapter we indicate a new theoretical connection between two classical theories;
elastic curves and phase transitions. Using this observation, we reveal the asymptotic
shape of planar curves of clamped endpoints minimizing the modified total squared
curvature as tension tends to infinity. We prove that any sequence of minimizing
curves converges to the borderline elastica near the endpoints in a rescaled sense, and
moreover becomes almost straight elsewhere. The borderline elastica is well-known
as a typical solution to the equation of elastica, but our analogy indicates that it can
also be regarded as a transition layer. Applying this result, we also prove that a
similar convergence holds in a straightening process for a classical elastic rod problem,
which is posed by D. Bernoulli and L. Euler in the 18th century. As a byproduct, the
uniqueness of global minimizers is proved for a certain region of constraint parameters.

Keywords: Euler’s elastica; Bending energy; Boundary value problem; Phase
transition; Singular perturbation; Asymptotic expansion.

1.1 Introduction

This chapter addresses two problems on elastic curves. The first problem is the
minimizing problem of the total squared curvature, so-called bending energy,

B[γ] =
∫
γ
κ2ds,(1.1.1)

where γ is a planar curve of fixed length and clamped endpoints, i.e., the positions and
the tangential directions at the endpoints are fixed as in Figure 1.1. Here s denotes the
arc length parameter and κ denotes the (signed) curvature. The second problem is the
minimizing problem for the modified total squared curvature,

Eε[γ] = ε2
∫
γ
κ2ds+

∫
γ
ds,(1.1.2)

where γ is a planar curve of clamped endpoints (and variable length). In this chapter,
we call the first problem inextensible problem and the second one extensible problem. These
problems are one-dimensional but higher order and strongly nonlinear, and hence there
are a number of unclear points even today. We mainly study the profiles of global
minimizers in both the problems.

1
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θ0 θ1
(0, 0) (l, 0)

γ

FIGURE 1.1: Clamped curve.

1.1.1 Euler’s elastica: the origin

The inextensible problem is motivated to determine the shapes of inextensible and
flexible elastic rods of clamped endpoints. This problem has a quite long history;
it is originated at least 270 years ago. Historically, Daniel Bernoulli is the first to
provide the completely same formulation as our problem (although a basic concept
has been posed by Jacob Bernoulli in earlier times). The formulation appears in his
letter to Euler in 1742. In response to it, in 1744, Euler provided the first study on
the inextensible problem [27]. He derived ordinary differential equations for solution
curves (i.e., critical points) and moreover classified the types of solutions qualitatively.
The solution curves are called Euler’s elasticae nowadays. For more details of the history,
see e.g. [43, 49, 55, 66, 70, 74].

Although Euler derived the equations in terms of Cartesian coordinates at that time,
it would be more convenient to adopt a modern and simpler intrinsic form expressed
in terms of the curvature. By the classical Lagrange multiplier method, for any critical
point γ in the inextensible problem, there is a multiplier λ ∈ R such that the curve γ is
also a critical point of the energy ∫

γ
κ2ds+ λ

∫
γ
ds

among curves satisfying the same clamped boundary condition. Calculating the first
variation, we find that the signed curvature κ of γ satisfies

2∂2sκ+ κ3 − λκ = 0.

In this paper we call it elastica equation. It is known that the elastica equation is uniquely
solved for any given multiplier λ and initial values κ(0) and κ′(0). Moreover, all
solutions are expressed in terms of the Jacobi elliptic functions. Figure 1.2 exhibits a
classification of basic patterns of elasticae. The cases (i)–(iii) (resp. (iii)–(v)) correspond
to that the curvatures are expressed in terms of dn functions (resp. cn functions). The
cases (i) and (v) are a line and a circle. The case (ii) is called non-inflectional or orbitlike
elastica. The case (iv) is called inflectional or wavelike elastica; this class includes a typical
closed curve, so-called figure-of-eight elastica. The case (iii) is called critical or borderline
elastica, and the only case having no periodicity. The borderline elastica plays a crucial
role in our results. For more details on basic facts of elasticae, see e.g. [4, 11, 49, 72].
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(i) (ii) (iii)

(iv) (v)

FIGURE 1.2: Basic patterns of elasticae.

FIGURE 1.3: Loops.

1.1.2 Shape of clamped elastica: problems

The elastica problem is already “solved” as above, at least, at the level of equation.
Notwithstanding, it is still difficult to perceive the exact shapes of solution curves for
arbitrary given constraints. One reason is that our clamped boundary condition does
not fix any of the parameters λ, κ(0), and κ′(0). The fact is that our problem admits
infinitely many local minimizers (stable critical points) as e.g. in Figure 1.3; this can be
easily proved by a winding number argument (see Appendix 1.A). Although there is a
general formula describing the relations between our constraints and solution curves
(cf. [46, 47]), the formula is given as involved simultaneous trancendental equations
(including elliptic functions and elliptic integrals), and not necessarily direct evidence
for a clear understanding of the shapes of solution curves in general.

For example, it is nontrivial which choice of constraints admits an embedded
solution, i.e., a solution curve without self-intersections. The nontriviality is clear
since the presence or absence of self-intersections is not determined by constraints. In
other words, for fixed constraints, there may be local minimizers with and without
self-intersections as in Figure 1.3. Hence, it is necessary to take the energy minimality
into account in the self-intersection problem.

Another interesting question is to ask the number of infection points, i.e., points
where the sign of the curvature changes. As a pioneering work on inflection points,
in 1906, Born proved that any solution curve without inflection point is stable [9].
Recently, a series of papers [66, 67, 69] revisits the elastica problem in view of optimal
control. In particular, Sachkov [67] states that any stable solution has at most two
inflection points. The upper bound two is optimal since a well-known buckling
example as in Figure 1.4 may be a global minimizer in a certain case. The figure-of-eight
is also an example of local minimizer with two inflection points. As will be discussed
below, it is quite nontrivial to exactly know the number of inflection points even if we
restrict ourselves to considering only global minimizers.
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FIGURE 1.4: Buckling.

(a)

(b)

FIGURE 1.5: Formal observation for a straightening process.

In addition, it is worth mentioning that the uniqueness of global minimizers is not
expected in general. It is a long-standing open problem to determine the region of
constraint parameters which ensures the uniqueness (see e.g. [69]).

In the rest of this subsection, to clarify the above problems, we formally observe
an example case of straightening by seeing Figure 1.5. The case of closed curves,
which corresponds to the left end of Figure 1.5, is well-understood. The papers
[5, 41, 68] show the following facts; any closed critical point is an n-wrapped circle
or an n-wrapped figure-of-eight, any local minimizer is an n-wrapped circle or the
1-wrapped figure-of-eight, and the only global minimizer is the 1-wrapped circle.
However, even just changing the distance of the endpoints from the closed case,
we would observe complicated deformation of minimizers. Each row in Figure 1.5
describes “continuous” deformation from a closed elastica. Since the two boundary
angles are given to be same in this figure, the dotted curves have the same energies
as the corresponding bold curves, respectively. The gray region in Figure 1.5 indicates
expected global minimizers. The point (a) indicates a topological change. The point
(b) indicates a symmetry breaking, and accordingly a change of the number of global
minimizers. The number of inflection points would also change at the typical points
(a) and (b). We emphasize again that Figure 1.5 is just a formal observation and
incomplete. For example, rotated figure-of-eights and n-wrapped circles are also local
minimizers in the left end. To the author’s knowledge, there is no general result to
determine typical points as (a) or (b) rigorously (cf. [3, 29, 69]).

1.1.3 Straightened elastica: main results

The purpose of this chapter is to obtain precise conclusions on the shapes of global
minimizers for generic boundary conditions. As discussed above, a general conclusion
is not expected for fully general constraints. In this chapter we focus on a straightening
problem, i.e., the limit that the distance of the endpoints tends to the length of a curve
while the tangential angles at the endpoints are fixed.



Boundary value problems for elastic curves 5

FIGURE 1.6: Straightened elastica.

θ0 θ1 θ0
θ1

FIGURE 1.7: Straightened elasticae with and without inflection point.

Even if we focus on the straightening problem, the inextensible problem is however
not easy to tackle directly. The main reason is the number of constraints. To circumvent
this difficulty, we first consider the singular limit ε → 0 for the extensible problem.
Considering this limit is physically natural. In fact, the constant ε2 is interpreted as
bending rigidity divided by tension, and we expect that straightened elastic curves
have very high tension. The extensible problem is relatively tractable in the sense that
the multiplier ε2 is a priori fixed. By using our results about the extensible problem, we
also obtain similar results for the inextensible problem in the straightening limit.

Our main result (Theorem 1.2.3) states that, in the extensible problem, any sequence
of global minimizers is straightened as ε → 0 as in Figure 1.6 for an arbitrary given
boundary condition. More precisely, for small ε, any minimizer bends at the scale
of ε near the endpoints and is almost straight elsewhere, i.e., the tangent vectors are
almost rightward. In addition, if we rescale a sequence of minimizers at an endpoint,
then the rescaled curves locally converge to a part of the borderline elastica. The proof
of these results is of most importance in this chapter; we use a theoretical analogy
to the phase transition theory, as explained precisely in the next subsection. Our
result also implies other more qualitative properties (Theorem 1.2.10). For instance,
as a direct corollary, we find that any minimizer has no self-intersection for any small
ε. In addition, combining our result with expressions of the curvatures by elliptic
functions, we determine the exact number of inflection points for generic boundary
angles providing that ε is small. The number is zero or one, and depends only on the
signs of boundary angles as in Figure 1.7. Furthermore, in the case of no inflection
point, we prove the uniqueness of global minimizers (Theorem 1.2.11). Our proof
uses a change of variables which rephrases the minimizing problem in terms of the
radius of curvatures parametrized by the tangential angles. In other words, we use a
coordinate induced by the Gauss map, which is often used for the analysis of convex
curves. The change of variables yields a “convexification” of the minimizing problem,
which directly implies the uniqueness. Such a convexification has been already used
in Born’s stability analysis [9]. Our main contribution is an a priori guaranty of the
convexity of global minimizers and determining the total variations of the tangential
angles.

We then prove that similar results are also valid in the straightening limit for
the inextensible problem. Generally speaking, by the Lagrange multiplier method,
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it is clear that there is some kind of relation between the extensible and inextensible
problems at the level of critical points. In this paper, we investigate the precise relation
of them at the level of global minimizers. We prove that the inextensible problem in
the straightening limit is reduced to the extensible problem in the limit ε → 0. At this
time, our result is proved only in a subsequential sense in the general case (Theorem
1.2.12). However, we succeed to prove a full convergence result in a “convex” case
(Theorem 1.2.14). For the fully general case there would remain an essential difficulty,
which crucially relates to the uniqueness problem.

It would be noteworthy that our results deal with generic boundary angles, and
do not impose any restrictive assumptions for curves as symmetry or the graph
representation. Another remarkable novelty is to conclude the uniqueness at a certain
level of generality.

1.1.4 Phase transition: a new perspective

As mentioned, the main feature of our result is to indicate a somewhat direct theoretical
connection between the (extensible) elastic problem and the phase transition theory.

We briefly recall the studies on phase transition energies. The minimizing problem
of a potential energy perturbed by a gradient term, as

Eϵ[u] = ϵ2
∫
Ω
|∇u|2 +

∫
Ω
W (u),

has been widely studied, in particular, in view of the van der Waals-Cahn-Hilliard
theory of phase transitions [15, 75]. Here Ω ⊂ Rn is a certain open set. The potential
functionW is often taken as the double-well potentialW (u) = (1−u2)2, and the volume
constraint

∫
Ω u =M is often imposed.

In the phase transition problem, for small ϵ, the values of a minimizer should be
almost separated into the phases 1 and −1 to minimize the potential energy. Moreover,
if a minimizer needs to have a transition between the two phases due to the volume
constraint, then the area of “interface” is expected to be minimized due to the effect
of perturbation. These expectations are proved by Carr-Gurtin-Slemrod [14] in a
one-dimensional case, and by Modica [58] and Sternberg [73] in higher-dimensional
cases. The higher-dimensional results [58, 73] are described in terms of Γ-convergence,
which is introduced by De Giorgi in 1970’s (see e.g. [10, 20]). The Γ-convergence result
particularly implies a first order expansion of the minimum value of Eϵ as ϵ → 0.
Moreover, it also implies that, up to a subsequence, any sequence of minimizers uϵ
converges inL1 to a characteristic function u0 ∈ BV (Ω; {−1, 1}) of which total variation
is minimized among functions u ∈ BV (Ω; {−1, 1}) with

∫
Ω u = M . Some stronger

convergence results are also known, even for local minimizers [13] or critical points
[33] with certain boundedness; roughly speaking, a locally uniform convergence holds
except interfaces. Furthermore, at least formally, one expects that the transition part of
a minimizer is close to a rescaled “transition layer” solution. In fact, in the particular
case that Ω = (−1, 1) and M = 0, it is easy to prove that the rescaled minimizer
ûϵ(x) = uϵ(ϵx) is nothing but a transition layer, i.e., a solution to |u′|2 = W (u), as in
Figure 1.8.
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FIGURE 1.8: A minimizer uε and a transition layer.

Finally, it should be mentioned that a basic strategy for the above higher
dimensional results [58, 73] has been provided in the earlier paper by Modica and
Mortola [59]. The paper deals with an unconstrained problem for the periodic potential
W (u) = sin2(πu), which is more directly relative to our problem.

We now go back to our elastic curve problem. For a curve γ as in Figure 1.1, we
denote its length by L and represent the modified total squared curvature in terms of
its tangential angle function ϑ : [0, L] → R (i.e., ∂sγ = (cosϑ, sinϑ)) as

Eε[γ] = ε2
∫ L

0
|∂sϑ|2ds+

∫ L

0
ds = ε2

∫ L

0
|∂sϑ|2ds+

∫ L

0
(1− cosϑ)ds+ l,

where l is the fixed distance of the endpoints. The last equality follows since
∫ L
0 cosϑds

is nothing but the difference of the x-coordinates at the endpoints. The above
expression indicates that Eε can be regarded as a one-dimensional phase transition
energy with the periodic potential W (θ) = 1 − cos θ (= 2 sin2(θ/2)). All the stable
phases θ ∈ 2πZ correspond to the rightward tangent vector. Of course, there are some
differences from the original phase transition problems; the integration interval [0, L] is
not fixed, and the number of constraints (due to the clamped boundary condition) are
greater than the above volume constraint. Nevertheless, for our extensible problem,
we obtain a first order expansion of the energy minimum, which is essentially similar
to the phase transition problem (Lemma 1.3.1). In this part we rely on the assumption
that the lengths of curves are unconstrained. By using the expansion, we reveal the
precise convergence of minimizers as ε → 0. In particular, near the endpoints, the
rescaled tangential angles converge to a part of transition layer, i.e., a solution to
|∂sϑ|2 = 1 − cosϑ (Figure 1.9). The curve corresponding to a transition layer has one
loop, and is nothing but the borderline elastica (Figure 1.2 (iii)). Thus we give a new
interpretation of this typical elastica in view of the phase transition theory.

We note that our proof also essentially relies on the concept of Γ-convergence
although this chapter includes no explicit statement. One may obtain a more general
Γ-convergence result such that the function space of the limits of the tangential angles
contains general 2πZ-valued BV -functions, but we do not state it in this chapter to
avoid digressing from our main subject.

1.1.5 Related problems and remarks

We finally mention some related problems and several remarks.
Elastic curve problems are classical but still ongoing. The minimization of total

squared curvature is studied not only in the plane but also in other manifolds or
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FIGURE 1.9: Tangential angle of a minimizer and a transition layer.

higher-dimensional spaces (e.g. [37, 39, 40, 41, 72]). In particular, there remain many
open problems on elastic knots (see e.g. [31, 32]).

Boundary value problems are well-studied for “free” elasticae (e.g. [22, 23, 44, 48,
51]). Free elasticae are defined as critical points of the total squared curvature without
length constraint unlike our problem. In this case we encounter another difficulty that
there is no global minimizer in general. On the other hand, the corresponding equation
is reduced, has no multiplier, and possesses a nice scale invariance; for a solution curve,
any dilated curve also satisfies the same equation.

Free elasticae are also referred as one-dimensional Willmore surfaces. Willmore
surfaces are critical points of the Willmore energy, i.e., the total squared mean
curvature. For recent developments on this higher dimensional problems, we pick
up some recent papers [7, 8, 35, 38, 54] (see also references therein). Boundary value
problems are also studied for Willmore surfaces (e.g. [16, 63, 71]). In particular,
Willmore surfaces of revolution are studied more precisely (e.g. [6, 18, 19, 26, 52]). This
case is more related to our problems since the corresponding equation in terms of the
hyperbolic curvature is reduced to our elastica equation.

There are various other points of view even in the plane. For closed curves, Gage’s
classical result of isoperimetric inequality type [30] is recently generalized in [12] and
[28] independently. For open curves, a well-studied topic is a bifurcation problem
concerning buckling (see e.g. [1, 2, 50]). The stability of post-buckling elasticae is even
now a central issue (e.g. [29, 34, 53, 67, 70]). Obstacle type problems are also studied
in various settings; confined closed curves [25, 21], graph curves above obstacles [17],
and adhesion problems [36, 56, 57]. In particular, the author studied a singular limit
for an adhesion problem in the paper [56], from which some ideas in the present paper
come. However, at that time, the author just derived a result of Γ-convergence for
graph curves, and in fact was not aware of the direct connection to phase transitions.

Concerning the terminology “phase transition”, one may suppose that our
viewpoint is not new in elastic problems since the “phase-field method” is often
used even for elastic problems (see e.g. [24, 25, 65]). The phase-field method is
also crucially based on the concept of phase transitions, but it is completely different
from our concept. Basically, the phase-field method approximates an objective
n-dimensional surface by an “interface” of a smoothed characteristic function defined
in (n+ 1)-dimension.

It is worth noting that our philosophy is similar to Ni and Takagi’s celebrated study
[61] (see also [60, 62]). They prove that, for a singularly perturbed elliptic equation
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with small perturbation, any solution of least energy has one peak at a boundary
point. In addition, the treated equation is essentially same as our elastica equation in
one-dimension. Although the imposed constraints, considered energies, and obtained
results are different, the concepts considering a limit of least energy solutions and
“localizing” the effect of energy are in common.

Last but not least, we do not claim that this paper is the first to point out that the
borderline elastica appears near the endpoints in the straightening limit. In fact, this
has been indicated in Audoly and Pomeau’s book in physics [4, Section 4.4.1] from
a viewpoint of boundary layer analysis. However, our result would be the first to
provide a mathematical proof on the rescaled convergence, and moreover to determine
the precise rate of magnification in the rescaling.

1.1.6 Organization

All the main results of this chapter are collected in Section 1.2. The results are
sequentially proved in subsequent Sections 1.3, 1.4, 1.5, and 1.6. We indicate the
positions of the proofs in Section 1.2 more precisely.

1.2 Preliminaries and main results

1.2.1 Extensible problem

Let I = (0, 1) be the open unit interval and Ī = [0, 1] be its closure. For a smooth regular
curve γ : Ī → R2 we denote the length by L[γ], and the total squared curvature by B[γ]
as (1.1.1). Then, for ε > 0, the modified total squared curvature (1.1.2) is represented as

Eε[γ] := ε2B[γ] + L[γ].

Hereafter, we use both the original parameter t ∈ Ī and the arc length parameterization
s ∈ [0,L[γ]] as the situation demands. For a regular curve γ ∈ C∞(Ī;R2), we often
denote its arc length reparameterization by γ̃ : [0,L[γ]] → R2.

Let l > 0 and θ0, θ1 ∈ [−π, π]. We say that a curve γ ∈ C∞(Ī;R2) is admissible if γ
is regular and constant speed, i.e., |γ̇| ≡ L[γ] > 0, and moreover satisfies the clamped
boundary condition:

(1.2.1)
γ(0) = (0, 0), γ̇(0) = L[γ](cos θ0, sin θ0),
γ(1) = (l, 0), γ̇(1) = L[γ](cos θ1, sin θ1).

We denote the set of all admissible curves by Aθ0,θ1,l ⊂ C∞(Ī;R2).
For ε > 0, we consider the following minimizing problem

min
γ∈Aθ0,θ1,l

Eε[γ].(1.2.2)

The existence of minimizers follows by a direct method in the calculus of variations
and a bootstrap argument (Appendix 1.A). Our purpose is to know the shape of global
minimizers, i.e., a curve γε such that Eε[γε] = minγ∈Aθ0,θ1,l

Eε[γ].
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FIGURE 1.10: Borderline elastica with initial angle.

Our main theorem states that any sequence of global minimizers γε converges as
ε → 0 to a part of the borderline elastica near each endpoint in a rescaled sense, and
becomes almost straight elsewhere, as in Figure 1.6. To state the main theorem, we
define borderline elasticae with initial angles as in Figure 1.10.

Definition 1.2.1 (Tangential angle). For a smooth regular curve γ defined on an interval
J̄ = [0, T ] (or J̄ = [0,∞)) we denote by ϑγ a continuous representation of the tangential
angle. More precisely, ϑγ is a smooth function on J̄ such that the vectors γ̇(t) and
(cosϑγ(t), sinϑγ(t)) are in a same direction for any t ∈ J̄ .

For a given curve, the tangential angle is unique if we fix the initial value ϑγ(0). In
other words, it is unique up to the addition of constants in 2πZ.

Definition 1.2.2 (Borderline elastica with initial angle). For θ ∈ [−π, π], we say that
a smooth curve γθB : [0,∞) → R2 parameterized by the arc length s is the borderline
elastica with initial angle θ if

γθB(0) = (0, 0), ϑγθB
(0) = θ, lim

s→∞
ϑγθB

(s) = 0,

and moreover |∂sϑγθB |
2 = 1 − cosϑγθB

holds in (0,∞). Such a curve is uniquely
determined for any given θ ∈ [−π, π]. (See also Definition 1.3.12.)

We are now in a position to state our main theorem.

Theorem 1.2.3 (Straightening result for extensible problem). Fix any convergent
sequences lε → l in (0,∞) and θε0 → θ0, θε1 → θ1 in [−π, π]. Let γε be a minimizer of Eε
in Aθε0,θ

ε
1,lε

for ε > 0. Let γ̃ε be the arc length parameterization of γε. Then the following
statements hold.

(1) Let γ̂ε(ŝ) := ε−1γ̃ε(εŝ). If |θ0| < π, then γ̂ε converges to γθ0B in C∞
loc as ε → 0. If

|θ0| = π, then for any subsequence of {γ̂ε}ε there is a subsequence {γ̂ε′}ε′ such that γ̂ε′
converges to γπB or γ−πB in C∞

loc as ε′ → 0.

(2) Denote the length of γε by Lε. Let Kcε = [cε, Lε − cε]. Then

lim sup
ε→0

max
s∈Kcε

|∂sγ̃ε(s)− (1, 0)| ≤ 4e
− c√

2 .

Theorem 1.2.3 is proved in Section 1.4. To prove this theorem, we first prove a key
step in Section 1.3, namely, a first order expansion of the energy minimum. By using the
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expansion, in Section 1.4, we first prove the rescaled convergence (1) in a weak sense,
and then complete the proof of the almost straightness (2). Finally, we improve the
regularity of the rescaled convergence by using explicit expressions of the curvatures
by elliptic functions.

We give some remarks on the main theorem.

Remark 1.2.4. To be more precise, the above C∞
loc-convergence means that for any c > 0

the restricted rescaled curve γ̂ε|[0,c] converges to γθ0B |[0,c] in C∞([0, c];R2) as ε → 0. The
rescaled curve γ̂ε(ŝ) is defined for ŝ ∈ [0, Lε/ε], and hence at least in [0, lε/ε]. Since
lε/ε→ ∞, for any fixed c > 0 there is εc > 0 such that for any ε ∈ (0, εc) the curve γ̂ε is
defined at least in [0, c]. Thus, the convergence of γ̂ε|[0,c] is well-defined for any c > 0.

Remark 1.2.5. Theorem 1.2.3 states a rescaled convergence only at the origin. However,
by symmetry, we immediately find that a similar rescaled convergence is valid for the
other endpoint (lε, 0) in the following sense. Let γ̃∗ε be the backward reparameterization
of half-rotated γ̃ε about the point (lε/2, 0) ∈ R2. Let γ̂∗ε (ŝ) := ε−1γ̃∗ε (εŝ). Then γ̂∗ε
converges to the borderline elastica with initial angle θ1 in the same sense as (1) in
Theorem 1.2.3.

Remark 1.2.6. By Theorem 1.2.3, for any fixed c > 0, a minimizer γ̃ε is controlled in
[0, cε] by (1) and [cε, Lε − cε] by (2) for any small ε > 0. Moreover, by symmetry, γ̃ε is
also controlled in [Lε − cε, Lε]. Hence, the whole shape of γ̃ε is controlled as ε→ 0.

Remark 1.2.7. In the case that |θ0| = π, the rescaled convergent limits are not unique.
This is natural because, for example, if we additionally assume that |θ1| = π or θ1 = 0,
then there are two different minimizers γε = (xε, yε) and γ′ε = (xε,−yε). If |θ1| ∈ (0, π),
then there remains a possibility to obtain the uniqueness, but we then need a higher
order expansion of the energy than our first order expansion.

Remark 1.2.8. Theorem 1.2.3 is valid only for global minimizers since there are local
minimizers with loops (as in Figure 1.3) as shown in Appendix 1.A.

Remark 1.2.9. In Theorem 1.2.3, the boundary condition is perturbed as lε → l, θε0 → θ0,
and θε1 → θ1. However, the effects do not appear in the conclusion. This means that our
result is “stable” for the perturbation. This stability would be useful for free boundary
problems as in [56, 57]; in fact, we use this stability in Chapter 3.

From our viewpoint, the cases that |θ0| = π and |θ1| = π are critical and rather
complicated than other generic cases. Moreover, the case that θ0 = θ1 = 0 is trivial but
also critical in a sense. In this chapter, we often assume the following generic angle
condition:

θ0, θ1 ∈ (−π, π), |θ0|+ |θ1| > 0.(1.2.3)

This condition excludes the above critical cases.
By using Theorem 1.2.3, we also obtain more qualitative properties of global

minimizers for small ε. We define an inflection point of a solution curve as a point (except
the endpoints) where the sign of the curvature changes. This is well-defined since
the curvature of any non-straight solution curve is represented by a nonzero elliptic
function (see Proposition 1.4.5).
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Theorem 1.2.10 (Qualitative properties). Fix any convergent sequences lε → l in (0,∞)

and θε0 → θ0, θε1 → θ1 in [−π, π]. Then there is ε̄ > 0 such that for any ε ∈ (0, ε̄) any
minimizer γε of Eε in Aθε0,θ

ε
1,lε

has no self-intersection. In addition, if we suppose (1.2.3), then
the following statements hold.

(1) If θ0θ1 < 0, then there is ε̄ > 0 such that for any ε ∈ (0, ε̄) any minimizer γε has no
inflection point, and moreover the total variation of ϑγε is |θε0|+ |θε1|.

(2) If θ0θ1 ≥ 0, then there is ε̄ > 0 such that for any ε ∈ (0, ε̄) any minimizer γε has exact
one inflection point. Moreover, the total variation of ϑγε converges to |θ0|+ |θ1| as ε→ 0.

Theorem 1.2.10 is proved in Section 1.5. This theorem roughly states that for any
small ε any minimizer is a straightened C-shaped or S-shaped curve as in Figure 1.7.
In particular, for angles such that |θ0|, |θ1| < π/2, any minimizer is represented by the
graph of a function for small ε.

We finally state that, if θ0θ1 < 0 holds in the generic angle condition, then the energy
Eε admits a unique global minimizer for any small ε. This theorem is also proved in
Section 1.5.

Theorem 1.2.11 (Uniqueness). Fix any convergent sequences lε → l in (0,∞) and θε0 → θ0,
θε1 → θ1 in [−π, π] with (1.2.3) and θ0θ1 < 0. Then there is ε̄ > 0 such that for any ε ∈ (0, ε̄)

the energy Eε admits a unique minimizer in Aθε0,θ
ε
1,lε

.

1.2.2 Inextensible problem

By using the above results, we also obtain a straightening result for the classical
problem of inextensible elastic rods.

Let 0 < l < L and θ0, θ1 ∈ [−π, π]. Let AL
θ0,θ1,l

⊂ Aθ0,θ1,l be the set of admissible
curves γ ∈ Aθ0,θ1,l of fixed length L[γ] = L. Recall that the inextensible problem is
formulated as

min
γ∈AL

θ0,θ1,l

B[γ].(1.2.4)

We are concerned with the shapes of straightened elastic rods, i.e., the asymptotic
shape of minimizers as the distance of the endpoints is enlarged as l ↑ L while the
length L and the angles θ0, θ1 are fixed. We prove that in the limit l ↑ Lwe can rephrase
(1.2.4) in terms of (1.2.2) at least in a subsequential sense.

Theorem 1.2.12 (Straightening result for inextensible problem: general case). Let L > 0

and θ0, θ1 ∈ [−π, π] with |θ0| + |θ1| > 0. Then there are sequences ln ↑ L and εn ↓ 0 as
n→ ∞ such that, for any minimizer γn of B in AL

θ0,θ1,ln
, the dilated curve L

ln
γn is a minimizer

of Eεn in Aθ0,θ1,L. Moreover,

lim
n→∞

L− ln
εn

= 4
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

We remark that the distance of the endpoints of L
ln
γn is fixed as L. The dilation is

just for the normalization to fix the endpoints of curves. It is not effective since the
magnification rate L/ln converges to 1.
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Theorem 1.2.12 is proved in Section 1.6. This theorem implies that similar
straightening results to Theorem 1.2.3 and Theorem 1.2.10 are also valid for the classical
inextensible problem, at least in a subsequential straightening process. In particular,
minimizers bend at the scale εn in a straightening process ln ↑ L. The last equation in
Theorem 1.2.12 means that the leading order term of εn is completely determined by
L− ln and the angles θ0 and θ1.

Remark 1.2.13. The case θ0 = θ1 = 0 is quite different from others, both physically and
mathematically. This case corresponds to buckling (Figure 1.4) but not straightening.
In addition, if θ0 = θ1 = 0, then the extensible problem admits only the trivial segment
minimizer, but such a segment is not admissible in the inextensible problem (except
l = L). Hence, the problem (1.2.4) can not be read as (1.2.2).

Theorem 1.2.12 requires to take a subsequence. It is expected to be a technical
assumption, but at this time we have no proof of a full convergence for the general
case. As mentioned, the difficulty is crucially due to the lack of general theory for
the uniqueness of minimizers in the extensible problem. In fact, if a given boundary
condition guarantees the uniqueness as ε → 0, then Theorem 1.2.12 is valid in a full
convergence sense. This issue is discussed in Section 1.6 more precisely.

We finally state that, thanks to Theorem 1.2.11, if the generic angle condition is
satisfied and θ0θ1 < 0 holds, then the uniqueness is also valid for the straightened
inextensible rods, and moreover Theorem 1.2.12 holds in a full convergence sense as
follows.

Theorem 1.2.14 (Straightening result for inextensible problem: convex case). Let L > 0

and θ0, θ1 ∈ [−π, π] with (1.2.3) and θ0θ1 < 0. Then there is l̄ ∈ (0, L) such that for any
l ∈ (l̄, L) the energy B admits a unique minimizer in AL

θ0,θ1,l
. Moreover, there is a strictly

decreasing function ε̃ : (l̄, L) → (0,∞) such that, for any l ∈ (l̄, L) and a unique minimizer γl
of B in AL

θ0,θ1,l
, the dilated curve L

l γl is a minimizer of Eε̃(l) in Aθ0,θ1,L, and

lim
l↑L

L− l

ε̃(l)
= 4

√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

1.3 Asymptotic expansion of the energies of minimizers

In this section, we prove a key step for our rescaled convergence: an asymptotic
expansion of the energies of minimizers as ε → 0. Throughout this section, we fix
convergent sequences lε → l in (0,∞) and θε0 → θ0, θε1 → θ1 in [−π, π].

Lemma 1.3.1. Let γε ∈ Aθε0,θ
ε
1,lε

be a minimizer of Eε in Aθε0,θ
ε
1,lε

for ε > 0. Then

Eε[γε]− lε − 8
√
2

(
sin2

θε0
4

+ sin2
θε1
4

)
ε = o(ε) as ε→ 0.

In the rest of this section we prove the above lemma. Note that it suffices to prove
that, for any sequence of minimizers,

lim sup
ε→0

Eε[γε]− lε
ε

≤ 8
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
(1.3.1)
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and

lim inf
ε→0

Eε[γε]− lε
ε

≥ 8
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.(1.3.2)

We define an energy functional Fε for any smooth regular curve γ by

(1.3.3) Fε[γ] =
∫ L[γ]

0

(
ε|∂sϑγ̃ |2 +

1

ε
(1− cosϑγ̃)

)
ds,

where θγ̃ is the tangential angle of the arc length parameterization γ̃ of γ. Note that F
is well-defined since this energy is invariant by the addition of constants of 2πZ to ϑγ̃ .
Moreover, we notice that for any γ ∈ Aθε0,θ

ε
1,lε

the relation

Fε[γ] =
Eε[γ]− lε

ε

holds since∫ L[γ]

0
|∂sϑγ̃ |2ds =

∫
γ
κ2ds,

∫ L[γ]

0
ds =

∫
γ
ds,

∫ L[γ]

0
cosϑγ̃ds = lε.

Note that Fε may be regarded as a phase transition energy since the latter term can be
interpreted as a periodic potential of infinitely many wells. The representation Fε is
essentially used in this chapter.

The following lemma is obvious by definition, but frequently used in this chapter.

Lemma 1.3.2. Let N be a positive integer and t0 < · · · < tN . Let J̄ = [t0, tN ] and J̄i =

[ti, ti+1] for i = 0, . . . , N−1. For any ε > 0 and any smooth constant speed curve γ : J̄ → R2,

Fε[γ] =
N−1∑
i=0

Fε[γ|J̄i ]

and each term of the right-hand sum is nonnegative. In particular, Fε[γ] ≥ Fε[γ|J̄i ] for each i.

1.3.1 Weighted total variation

The following weighted variation function is also frequently used in this chapter.

Definition 1.3.3 (Weighted variation of tangential angle). Define a strictly increasing
function V ∈ C1(R) by

V (θ) :=

∫ θ

0
2
√

1− cosϕdϕ.

Remark 1.3.4 (Calculation of weighted variation). By the half-angle formula, for any
θ ∈ [−π, π] we calculate

V (θ) = sign(θ) · 8
√
2 sin2

θ

4
.

By the periodicity, for any m ∈ Z and θ ∈ [(2m− 1)π, (2m+ 1)π) we have

V (θ) = sign([[θ]]) · 8
√
2 sin2

[[θ]]

4
+ 8

√
2m,
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where [[θ]] denotes a unique angle in [−π, π) so that θ − [[θ]] ∈ 2πZ. Hereafter, we
frequently use the notation [[·]] in this sense.

The weighted variation is essential for our arguments since the following lower
estimate holds.

Lemma 1.3.5. For any ε > 0 and smooth regular curve γ parameterized by the arc length s,
we have

Fε[γ] ≥
∫ L[γ]

0
|∂s(V ◦ ϑγ)|ds ≥ |V (ϑγ(L[γ]))− V (ϑγ(0))| .

Proof. The first inequality follows by the definition of F and the inequality εX2 +

ε−1Y 2 ≥ 2|X||Y |. The last inequality follows by the triangle inequality.

To compute the above lower bound, the following lemma is useful.

Lemma 1.3.6. Let θ, θ′ ∈ R. Then the following inequality holds:

|V (θ)− V (θ′)| ≥ 8
√
2

∣∣∣∣sin2 [[θ]]4 − sin2
[[θ′]]

4

∣∣∣∣ .
The equality is attained if and only if θ, θ′ ∈ [mπ, (m+ 1)π] for some m ∈ Z.

Proof. Fix θ, θ′ ∈ R. Then there exists unique θ∗ ∈ R so that |[[θ∗]]| = |[[θ′]]| and θ∗, θ ∈
[mπ, (m+ 1)π] for some m ∈ Z. By periodicity, we have |θ − θ′| ≥ |θ − θ∗|, and hence

|V (θ)− V (θ′)| ≥ |V (θ)− V (θ∗)|.

By Remark 1.3.4, the right-hand term is calculated as

|V (θ)− V (θ∗)| = 8
√
2

∣∣∣∣sin2 [[θ]]4 − sin2
[[θ∗]]

4

∣∣∣∣ .
Since sin2([[θ∗]]/4) = sin2([[θ′]]/4), the desired inequality holds. In view of the first
inequality, the equality is attained if and only if θ′ = θ∗, i.e., θ, θ′ ∈ [mπ, (m + 1)π]

for some m ∈ Z. The proof is complete.

1.3.2 Lower bound for the modified squared curvature

In this subsection we prove the liminf inequality (1.3.2), that is, the following
proposition.

Proposition 1.3.7. Let γε ∈ Aθε0,θ
ε
1,lε

be a minimizer of Eε in Aθε0,θ
ε
1,lε

for ε > 0. Then

lim inf
ε→0

Fε[γε] ≥ 8
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

We first confirm basic convergences on a sequence of minimizers.

Proposition 1.3.8. Let γε ∈ Aθε0,θ
ε
1,lε

be a minimizer of Eε in Aθε0,θ
ε
1,lε

for ε > 0. Then the
length Lε of γε converges to l, and the curve γε uniformly converges to the segment γ̄(t) =

(lt, 0), t ∈ Ī , as ε→ 0.
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FIGURE 1.11: An example of a curve of which tangent vector is not rightward.

Proof. Let Lε = L[γε] be the length (speed) of γε. It is easy to confirm that Eε[γε] → l

as ε → 0 since we can easily construct a sequence of curves γ′ε ∈ Aθε0,θ
ε
1,lε

such that
Eε[γ′ε] → l by using circular arcs of radius ε and a segment.. Since lε ≤ Lε ≤ Eε[γε]
and lε → l, the length (speed) Lε also converges to l. In addition, since the speeds Lε
are bounded as ε → 0, the curves γε are equicontinuous as ε → 0. Moreover, since
the endpoint γε(0) = (0, 0) is fixed and the lengths are bounded, we also find that the
curves γε are uniformly bounded as ε→ 0. Thus, by the Arzelà-Ascoli theorem, up to a
subsequence of any subsequence, γε uniformly converges to a continuous curve joining
(0, 0) to (l, 0). Since Lε → l and γε is constant speed, the convergent limit must be the
segment γ̄. Hence, γε fully converges to the segment γ̄. The proof is complete.

For such a convergent sequence, the following elementary lemma holds.

Lemma 1.3.9. Let lε → l be a convergent sequence in (0,∞) and γε : Ī → R2 be a smooth
(regular) constant speed curves joining (0, 0) to (lε, 0) for ε > 0. Suppose that γε uniformly
converges to the segment γ̄(t) = (lt, 0), and moreover the length Lε of γε converges to l as
ε → 0. Then for any open subinterval J ⊂ I there is a sequence of times {tε}ε ⊂ J such that
[[ϑγε(tε)]] → 0 as ε→ 0.

Proof. We suppose the contradiction that there are δ > 0, a subinterval J = (t0, t1) ⊂ I ,
and a sequence εj → 0 such that |[[ϑγεj (t)]]| ≥ δ for any j and t ∈ J . By this assumption,
the x-component of γεj satisfies

lim sup
j→∞

(xεj (t1)− xεj (t0)) = lim sup
j→∞

Lεj

∫
J
cosϑγεj dt ≤ l(t1 − t0)(cos δ) < l(t1 − t0),

where the convergence Lεj → l is used. On the other hand, since γεj converges to the
segment γ̄(t) = (lt, 0), we immediately have

lim
j→∞

(xεj (t1)− xεj (t0)) = l(t1 − t0).

This is a contradiction.

Remark 1.3.10. The above lemma is elementary but should be slightly noted, since there
is an example of a sequence of curves such that the sequence uniformly converges to a
segment but the tangent vectors maintain a certain distance from the rightward vector
anywhere. Such an example is constructed as in Figure 1.11, namely, as “sawtooth”
curves of which edges are modified by loops, so that the number of the tooths diverges
and the loops rapidly degenerate to points in the limit. Hence, the length convergence
is an essential assumption.

We are now in a position to prove Proposition 1.3.7
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Proof of Proposition 1.3.7. By Proposition 1.3.8 and Lemma 1.3.9, for ε > 0 there is tε ∈ I

such that [[ϑγε(tε′)]] → 0 as ε→ 0. Then, by Lemma 1.3.5 and Lemma 1.3.6, we find that

Fε[γε] = Fε[γε|[0,tε]] + Fε[γε|[tε,1]]

≥ 8
√
2

∣∣∣∣sin2 [[ϑγε(0)]]4
− sin2

[[ϑγε(tε)]]

4

∣∣∣∣
+8

√
2

∣∣∣∣sin2 [[ϑγε(tε)]]4
− sin2

[[ϑγε(1)]]

4

∣∣∣∣ .
Since

sin2
[[ϑγε(0)]]

4
= sin2

θε0
4
, sin2

[[ϑγε(1)]]

4
= sin2

θε1
4
,

and the convergences θε0 → θ0, θε1 → θ1, [[ϑγε(tε)]] → 0 hold as ε→ 0, we obtain

lim
ε→0

Fε[γε] ≥ 8
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

The proof is complete.

1.3.3 Construction of curves with energy convergence

In this subsection we prove that the limsup inequality (1.3.1) holds for any sequence
of minimizers. To this end, it suffices to construct a suitable sequence of test curves so
that the energies converge to the right-hand term of (1.3.1).

Proposition 1.3.11. There is a sequence of curves γ′ε ∈ Aθε0,θ
ε
1,lε

such that

lim
ε→0

Fε[γ′ε] = 8
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.(1.3.4)

This immediately implies (1.3.1) for any sequence of minimizers {γε}ε since Fε[γε]
is bounded above by Fε[γ′ε] for a curve γ′ε in Proposition 1.3.11.

For the proof, we construct suitable curves which are “optimally bending” as ε→ 0

near the endpoints. Some ideas are similar to the author’s previous paper [56].
In view of phase transitions, near the endpoints, the rescaled tangential angles are

expected to be close to transition layers for the phase transition energy Fε. Hence, we
consider the following ordinary differential equations:

∂sφ+(s) =
√

1− cosφ+(s), ∂sφ−(s) = −
√

1− cosφ−(s).(1.3.5)

For any initial values φ±(0) ∈ R, these equations are solved uniquely and globally
in s ∈ R. When φ±(0) ∈ 2πZ, the solutions are constant functions. In the case that
φ±(0) = ±π, the solutions are represented as

φ̄±(s) := ±4 arctan
(
e

s√
2

)
.(1.3.6)

The function φ̄+ is strictly increasing with lims→±∞ φ̄+(s) = π ± π and its graph
possesses point symmetry at (0, φ̄+(0)) = (0, π). Any other solution to (1.3.5) is of
the form φ̄±(s+ s0) + 2πm, where s0 ∈ R and m ∈ Z.
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An important property of the above solutions is that for any s0 < s1, by (1.3.5), the
following energy identity holds:∫ s1

s0

(
|∂sφ̄±|2 + (1− cos φ̄±)

)
ds = ±

∫ s1

s0

2∂sφ̄±
√

1− cos φ̄±ds(1.3.7)

= ±
∫ s1

s0

∂s(V ◦ φ̄±)ds

= ±(V ◦ φ̄±(s1)− V ◦ φ̄±(s0)),

= |V (φ̄±(s1))− V (φ̄±(s0))|,

where V is the weighted variation function. The last equality follows since V is
nondecreasing and φ̄+ (resp. φ̄−) is increasing (resp. decreasing).

A non-straight unit speed curve of which tangential angle satisfies (1.3.5) is nothing
but the borderline elastica; in fact, concerning (1.3.6) for example, we compute the
curvature as

κ̄±(s) = ∂sφ̄±(s) = ±
√
2 sech

s√
2
.

(See e.g. [72] to confirm that the above expression corresponds to the borderline
elastica.) By (1.3.5) and (1.3.6), the borderline elasticae γ̄± = (x̄±, ȳ±) such that
γ̄±(0) = (0, 0) and ∂sγ̄±(0) = (−1, 0) are explicitly parameterized as

x̄±(s) =

∫ s

0
cos φ̄± = s−

∫ s

0
(1− cos φ̄±) = s∓

∫ s

0
∂sφ̄±

√
1− cos φ̄±

= s−
√
2

∫ s

0
∂sφ̄± sin

φ̄±
2

= s+ 2
√
2 cos

φ̄±(s)

2
= s− 2

√
2 tanh

s√
2
,

ȳ±(s) =

∫ s

0
sin φ̄± = ∓

∫ |s|

0

√
1− cos2 φ̄± = −

∫ |s|

0
∂sφ̄±

√
1 + cos φ̄±

=
√
2

∫ |s|

0
∂sφ̄± cos

φ̄±
2

= 2
√
2

(
sin

φ̄±(s)

2
∓ 1

)
= ±2

√
2

(
sech

s√
2
− 1

)
.

Using the borderline elasticae, we can construct a sequence of curves satisfying
(1.3.4). For the sake of convenience, we prepare a precise definition of borderline
elasticae, which is equivalent to Definition 1.2.2.

Definition 1.3.12 (Borderline elastica with initial angle). Let θ ∈ [−π, π]. A function
ϑθB : [0,∞) → R is called borderline angle function with initial angle θ if ϑθB is a solution
to either of the equations (1.3.5) such that ϑθB(0) = θ and ϑθB(s) → 0 as s → ∞. Such a
function is uniquely determined for any θ ∈ [−π, π].

Similarly, a smooth curve γθB : [0,∞) → R2 parameterized by the arc length is called
borderline elastica with initial angle θ if γθB(0) = (0, 0) and its tangential angle ϑγθB is the
borderline angle function with initial angle θ in the above sense.

Lemma 1.3.13. Let α ∈ (0, 1) and θε → θ be a convergent sequence in [−π, π]. Then there is
a sequence of smooth regular curves γε = (xε, yε) parameterized by the arc length s ∈ [0, εα]

such that the following conditions hold:

(1) γε(0) = (0, 0), −2
√
2ε ≤ xε(s) ≤ εα and |yε(s)| ≤ 2

√
2ε for s ∈ [0, εα].

(2) ϑγε(0) = θε and limε→0 ϑγε(ε
α) = 0.
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(3) limε→0Fε[γε] = 8
√
2 sin2(θ/4).

Proof. We prove this lemma by using a part of the rescaled borderline elastica: we
define the curve γε so that L[γε] = εα and γε(s) = εγθεB (s/ε) for s ∈ (0, εα), where
γθεB is the borderline elastica with initial angle θε in Definition 1.3.12. Note that
ϑγε(s) = ϑθεB (s/ε). By the aforementioned properties of the borderline elastica, it is
straightforward to confirm the conditions (1) and (2). It should be noted that εα−1 → ∞
as ε → 0 by α < 1, and hence ϑγε(εα) = ϑθεB (εα−1) converges to zero as ε → 0. The last
condition (3) follows by the energy identity (1.3.7):

Fε[γε] =

∫ εα

0

(
ε|∂sϑγε |2 +

1

ε
(1− cosϑγε)

)
ds

=

∫ εα−1

0

(
|∂s′ϑθεB |2 + (1− cosϑθεB )

)
ds′ (s′ = s/ε)

= |V (ϑθεB (0))− V (ϑθεB (εα−1))| ε→0−−−→ |V (θ)− V (0)| = 8
√
2 sin2

θ

4
.

The last equation follows by Lemma 1.3.6.

Lemma 1.3.14. Let Aε = (axε , a
y
ε), Bε = (bxε , b

y
ε) ∈ R2 be points such that Aε → (0, 0) and

Bε → (l, 0) as ε → 0 for some l > 0. Let θAε , θBε be angles converging to zero as ε → 0.
Suppose that |ayε | + |byε | = o(ε1/2) as ε → 0. Then there is a sequence of smooth curves γε of
length Lε, parameterized by the arc length s ∈ [0, Lε], such that the boundary conditions

γε(0) = Aε, γ(Lε) = Bε, ∂sγε(0) = (cos θAε , sin θ
A
ε ), ∂sγε(Lε) = (cos θBε , sin θ

B
ε )

hold, the length Lε converges to l, and moreover

lim
ε→0

Fε[γε] = 0.

Proof. We first note that it suffices to construct a sequence of curves of class C1 and
piecewise C2 by a standard mollifying argument. We construct γε as in Figure 1.12;
namely, we use circular arcs of radius ε near the endpoints, and connect them by a
segment.

By using circular arcs of radius ε and central angles ϕAε , ϕBε such that ϕAε , ϕBε → 0

near the endpoints (and noting Lemma 1.3.2), we can modify the boundary conditions
as A′

ε, B
′
ε, θ

A′
ε , θ

B′
ε such that A′

ε, B
′
ε satisfy the same assumptions as Aε, Bε, and θA

′
ε =

θB
′

ε = 0 for any small ε > 0. Note that the energy Fε of the circular arc parts γcε tends to
be zero as ε→ 0 since

ε

∫
γcε

κ2ds = ε · 1

ε2
· ε(ϕAε + ϕBε ) → 0,

1

ε

∫
γcε

ds =
1

ε
· ε(ϕAε + ϕBε ) → 0,

1

ε

∣∣∣∣∣
∫
γcε

cosϑγcεds

∣∣∣∣∣ ≤ 1

ε

∫
γcε

ds→ 0.

Then, by using again circular arcs of radius ε such that the central angles converge
to zero, we may assume that the boundary conditions A′′

ε , B
′′
ε , θ

A′′
ε , θB

′′
ε allow a segment

which is compatible with the conditions.
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FIGURE 1.12: Construction of a curve for Lemma 1.3.14.

The energy Fε of the segment γsε joining A′′
ε = (axε

′′, ayε
′′
) to B′′

ε = (bxε
′′, byε

′′
) also

satisfies Fε[γsε ] → 0. In fact, the curvature of the segment is zero, and

1

ε

∫
γsε

(1− cosϑγsε )ds =
1

ε

(√
|axε ′′ − bxε

′′|2 + |ayε ′′ − byε
′′|2 − |axε

′′ − bxε
′′|
)

= ε−1o(|ayε
′′ − byε

′′|2) = o(1) → 0

since |axε ′′ − bxε
′′| → l > 0 and |ayε ′′|+ |byε ′′| = o(ε1/2). The proof is now complete.

By using the above lemmas, we complete the proof of Proposition 1.3.11.

Proof of Proposition 1.3.11. As mentioned in the proof of Lemma 1.3.14, it suffices to
construct a sequence of curves of class C1 and piecewise C2 by a standard mollifying
argument. We construct a sequence {γ′ε}ε as in Figure 1.13.

Fix any α ∈ (0, 1). Let ε be small as εα < l. To construct γ′ε, we use the curves in
Lemma 1.3.13 near the endpoints and connect them suitably by Lemma 1.3.14. Namely,
denoting the curves of Lemma 1.3.13 with θ = θεi (i = 0, 1) by γiε, we define γ′ε so that

γ′ε(s) =


γ0ε (s), s ∈ [0, εα],

γ′′ε (s− εα), s ∈ [εα, L′
ε − εα],

(lε, 0)− γ1ε (L
′
ε − s), s ∈ [L′

ε − εα, L′
ε],

where the connecting part γ′′ε is taken as in Lemma 1.3.14 of which boundary conditions
are suitably set so that γ′ε is of class C1 (the length L′

ε is a posteriori defined). Note that
the points and tangential angles at s = εα and s = L′

ε − εα satisfy the assumptions in
Lemma 1.3.14 by Lemma 1.3.13. Then, since Lemma 1.3.2 implies that

Fε[γ′ε] = Fε[γ′ε|[0,εα]] + Fε[γ′ε|[εα,L′
ε−εα]] + Fε[γ′ε|[L′

ε−εα,L′
ε]
],

Lemma 1.3.13 and Lemma 1.3.14 imply that the constructed curve γ′ε satisfies the energy
convergence (1.3.4). In particular, we note that

F [γ′ε|[L′
ε−εα,L′

ε]
] = Fε[γ1ε |[0,εα]]
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FIGURE 1.13: Construction of a curve for Proposition 1.3.11.

since the combination of the backward reparameterization and the half-rotation for a
curve maintains the value of Fε (the translation also maintains Fε obviously). The proof
is now complete.

1.4 Convergence of minimizers

In this section, we prove Theorem 1.2.3 by using results in the previous section. The
rescaled convergence part is first proved in a weak sense, more precisely, the H2-weak
sense of curves. The almost straightness part is then fully proved. For these parts
we mainly use properties of the energy. After that, we improve the regularity of our
rescaled convergence; in this regularity part we strongly use properties of the equation
of elastica.

1.4.1 Rescaled weak convergence to borderline elasticae near the endpoints

We first prove (1) of Theorem 1.2.3 in a weak sense.
The following fact is an essential step of our proof.

Lemma 1.4.1. Let c > 0 and ϑ ∈ H1(0, c). Suppose that ϑ(0) ∈ [−π, π] and

8
√
2

(
sin2

ϑ(0)

4
− sin2

[[ϑ(c)]]

4

)
≥
∫ c

0

(
|ϑ′|2 + (1− cosϑ)

)
,

where [[·]] is defined in Remark 1.3.4. Then, in the above inequality, the equality is attained.
Moreover, if |ϑ(0)| < π, the function ϑ is the borderline angle function with initial angle ϑ(0)
(in the sense of Definition 1.3.12). In the case that |ϑ(0)| = π, up to the addition of a constant
in {0,±2π}, the function ϑ is either the borderline angle function with initial angle π or −π.

Proof. By the inequality X2 + Y 2 ≥ 2|X||Y |,∫ c

0

(
|ϑ′|2 + (1− cosϑ)

)
≥
∫ c

0
2|ϑ′|

√
1− cosϑ =

∫ c

0
|(V ◦ ϑ)′|.(1.4.1)

By the triangle inequality,∫ c

0
|(V ◦ ϑ)′| ≥ |V (ϑ(0))− V (ϑ(c))|.(1.4.2)
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Moreover, by Lemma 1.3.6,

|V (ϑ(0))− V (ϑ(c))| ≥ 8
√
2

∣∣∣∣sin2 [[ϑ(0)]]4
− sin2

[[ϑ(c)]]

4

∣∣∣∣(1.4.3)

≥ 8
√
2

(
sin2

ϑ(0)

4
− sin2

[[ϑ(c)]]

4

)
.(1.4.4)

The last inequality follows by the definition of absolute value and the assumption that
ϑ(0) ∈ [−π, π], i.e., |[[ϑ(0)]]| = |ϑ(0)|.

Then, by the assumption, it turns out that in all the above inequalities (1.4.1)–(1.4.4)
the equalities are attained. The equality in (1.4.1) implies |ϑ′|2 = 1 − cosϑ for a.e. in
[0, c]. The equality in (1.4.2) implies that (V ◦ ϑ)′ does not change the sign, i.e., ϑ is
monotone. Thus, ϑ satisfies either of the equations (1.3.5) in the classical sense.

By the above fact, the proof is complete when ϑ(0) = 0 since the solution of (1.3.5)
is unique in this case. Moreover, if |ϑ(0)| = π, we also obtain the conclusion by noting
the symmetry of the solutions. In the case that 0 < |ϑ(0)| < π, there are still two
possibilities on ϑ since there are two solutions to (1.3.5). One solution is the desired
borderline angle function; in this case the function |ϑ| is strictly decreasing. The other
one corresponds to the case that |ϑ| is strictly increasing. However, since ϑ(0) ∈ (−π, π),
Lemma 1.3.6 and the equality in (1.4.3) imply that ϑ(c) ∈ [−π, π]. In addition, by
the equality in (1.4.4) and [[ϑ(0)]] = ϑ(0) ∈ (−π, π), we find that |[[ϑ(c)]]| ≤ |ϑ(0)|. In
particular, |[[ϑ(c)]]| < π, and hence [[ϑ(c)]] = ϑ(c). Consequently, |ϑ(c)| ≤ |ϑ(0)|. Thus
the function |ϑ| is decreasing, and hence ϑ is nothing but the borderline angle function
with initial angle ϑ(0). The proof is now complete.

We are now in a position to prove the (weak) rescaled convergence. We prove it in
terms of the tangential angle.

Proposition 1.4.2. Let {γε}ε be a sequence as in Theorem 1.2.3. Let γ̃ε be the arc length
parameterization of γε. Let ϑγ̃ε be the unique tangential angle such that ϑγ̃ε(0) = θε0. Fix any
c > 0. Define the rescaled tangential angle ϑ̂ε ∈ C∞([0, c]) as ϑ̂ε(ŝ) := ϑγ̃ε(εŝ) for any small
ε (so that εc < lε). Then, for any subsequence of {ϑ̂ε}ε there is a subsequence {ϑ̂ε′}ε′ such that
ϑ̂ε′ converges to some ϑ∗ ∈ H1(0, c) weakly in H1(0, c).

Moreover, if |θ0| < π, the function ϑ∗ is the (unique) borderline angle function with initial
angle θ0 (in the sense of Definition 1.3.12), and hence the convergence is valid in the full
convergence sense. If |θ0| = π, up to the addition of a constant in {0,±2π}, the function
ϑ∗ is either the borderline angle function with initial angle π or −π.

Proof. We decompose the curve γ̃ε(s) into the part s ∈ [0, cε] and s ∈ [cε, Lε] (where
Lε = L[γε]). By Lemma 1.3.2, the energy Fε[γε] is also decomposed as

Fε[γε] = Fε[γ̃ε|[0,cε]] + Fε[γ̃ε|[cε,Lε]].(1.4.5)

By Lemma 1.3.1, the energy convergence (1.3.4) holds. Moreover, since ϑ̂ε(0) = θε0 → θ0
and

Fε[γε] ≥ Fε[γ̃ε|[0,cε]] =
∫ c

0

(
|∂ŝϑ̂ε|2 + (1− cos ϑ̂ε)

)
dŝ ≥

∫ c

0
|∂ŝϑ̂ε|2dŝ,
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the sequence {ϑ̂ε}ε is bounded in H1(0, c) as ε → 0. Thus, for any subsequence there
is a subsequence (without relabeling) such that ϑ̂ε weakly converges to some function
ϑ∗ ∈ H1(0, c) as ε → 0, and hence ϑ̂ε uniformly converges to ϑ∗ in [0, c] by the Sobolev
embedding.

We next prove

lim inf
ε→0

Fε[γ̃ε|[cε,Lε]] ≥ 8
√
2

(
sin2

[[ϑ∗(c)]]

4
+ sin2

θ1
4

)
.(1.4.6)

Notice that ϑγ̃ε(cε) (= ϑ̂ε(c)) converges to ϑ∗(c) as ε → 0 since ϑ̂ε uniformly converges
to ϑ∗ in [0, c]. Moreover, by Proposition 1.3.8 and Lemma 1.3.9, there exists a sequence
of sε ∈ [cε, Lε] such that [[ϑγε(sε)]] → 0 as ε → 0. Then, by Lemma 1.3.2, Lemma 1.3.5,
and Lemma 1.3.6, we find that

Fε[γ̃ε|[cε,Lε]] = Fε[γ̃ε|[cε,sε]] + Fε[γ̃ε|[sε,Lε]]

≥ 8
√
2

∣∣∣∣sin2 [[ϑγ̃ε(cε)]]4
− sin2

[[ϑγ̃ε(sε)]]

4

∣∣∣∣+ 8
√
2

∣∣∣∣sin2 [[ϑγ̃ε(sε)]]4
− sin2

[[ϑγ̃ε(Lε)]]

4

∣∣∣∣ .
Since |[[ϑγ̃ε(Lε)]]| → θ1, taking the limit ε→ 0, we obtain (1.4.6).

Combining the energy limit (1.3.4) with (1.4.5) and (1.4.6), we have

8
√
2

(
sin2

θ0
4

− sin2
[[ϑ∗(c)]]

4

)
≥ lim sup

ε→0
Fε[γε|[0,cε]]

= lim sup
ε→0

∫ c

0

(
|∂ŝϑ̂ε|2 + (1− cos ϑ̂ε)

)
dŝ.

Moreover, since ϑ̂ε converges to ϑ∗ weakly in H1(0, c), we also have

lim inf
ε→0

∫ c

0

(
|∂ŝϑ̂ε|2 + (1− cos ϑ̂ε)

)
dŝ ≥

∫ c

0

(
|ϑ′∗|2 + (1− cosϑ∗)

)
.

Therefore, the function ϑ∗ satisfies the assumption of Lemma 1.4.1, which implies the
conclusion. The proof is complete.

Since the endpoint γε(0) = (0, 0) is fixed, we find that any sequence of minimizers
converges to the borderline elastica in a weak sense.

1.4.2 Almost straightness except the endpoints

In this subsection, we prove (2) of Theorem 1.2.3 by using the above weak convergence.
We improve the regularity of the weak convergence from the next subsection.

Since |(cos θ, sin θ)− (1, 0)| ≤ |θ| for θ ∈ [−π, π], we find that

|∂sγ̃ε(s)− (1, 0)| ≤ |[[ϑγ̃ε(s)]]|.

Hence, it suffices to prove the following proposition.

Proposition 1.4.3. Let {γε}ε be a sequence in Theorem 1.2.3. Let γ̃ε be the arc length
parameterization of γε. Fix any c > 0. Let Kcε = [cε, Lε − cε] for any small ε (so that
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ε < lε/c), where Lε = L[γε]. Then

lim sup
ε→0

max
s∈Kcε

|[[ϑγ̃ε(s)]]| ≤ 4e
− c√

2 .

Proof. By Proposition 1.4.2 and symmetry, the angles [[ϑγ̃ε(cε)]] and [[ϑγ̃ε(Lε − cε)]]

converge as ε→ 0, and moreover

lim
ε→0

|[[ϑγ̃ε(cε)]]| = |[[ϑθ0B (c)]]| ≤ |θ0|, lim
ε→0

|[[ϑγ̃ε(Lε − cε)]]| = |[[ϑθ1B (c)]]| ≤ |θ1|,

where ϑθiB is the borderline angle function with initial angle θi for i = 0, 1. Notice that

|[[ϑθiB(c)]]| ≤ |[[ϑπB(c)]]| = |φ̄±(c)∓ 2π| = |φ̄±(−c)| = 4arctan
(
e
− c√

2

)
.

by the representation (1.3.6). Since arctanX ≤ X for X ≥ 0, we see that, for i = 0, 1,

|[[ϑθiB(c)]]| ≤ 4e
− c√

2 .

Thus it suffices to prove that

lim sup
ε→0

max
s∈Kcε

|[[ϑγ̃ε(s)]]| = max{|[[ϑθ0B (c)]]|, |[[ϑθ1B (c)]]|} =: θ∗c .

Note that θ∗c ∈ (0, π). We prove it by contradiction, so we assume that there would exist
δ ∈ (0, π − θ∗c ), a sequence εj → 0, and sj ∈ K̊cεj := (cεj , Lεj − cεj) such that

lim
j→∞

|[[ϑγ̃εj (sj)]]| = θ∗c + δ ∈ (θ∗c , π).

By taking a subsequence if necessary, we may assume that sj converges. Then, by
Proposition 1.3.8 and Lemma 1.3.9, there is a sequence of s∗j ∈ K̊cεj such that s∗j ̸= sj
and [[ϑγ̃εj (s

∗
j )]] → 0 as j → ∞. We then cut the arc length interval [0, Lεj ] at the points

cεj , sj , s∗j and Lεj − cεj and decompose the curve γεj into the corresponding five parts.
(Note that the order of sj and s∗j may change as j → ∞.) By using Lemma 1.3.5 and
Lemma 1.3.6 for each of the parts and applying Lemma 1.3.2, we find that

lim inf
j→∞

Fεj [γεj ] ≥ 8
√
2

(
sin2

θ0
4

+ sin2
θ1
4

− 2 sin2
θ∗c
4

+ 2 sin2
θ∗c + δ

4

)
.

However, this contradicts the energy convergence (1.3.4). The proof is complete.

1.4.3 Jacobi elliptic functions and elastica equation

In the rest of this section we improve the regularity of the weak convergence in
Proposition 1.4.2. To this end we use some properties of elliptic functions. In this
subsection we briefly recall some properties of elliptic functions, and expressions of
solutions to the elastica equation by elliptic functions.

We first recall that any minimizer satisfies the following elastica equation.

Proposition 1.4.4 (e.g. [11, 72]). Let γε be any minimizer of Eε in A (with any boundary
condition) and γ̃ be the arc length parameterization. Then its signed curvature κ = ∂sϑγ̃
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satisfies

ε2(2∂2sκ+ κ3)− κ = 0.(1.4.7)

It is well-known that any solution of the above equation is solved in terms of the
Jacobi elliptic functions. We briefly recall the definitions and some properties of elliptic
functions (see e.g. [42] for details).

Let F (ξ, k) be the incomplete elliptic integral of the first kind of modulus k ∈ (0, 1):

F (ξ; k) :=

∫ ξ

0

dt√
1− t2

√
1− k2t2

.

Let K(k) be the complete elliptic integral of the first kind, i.e., K(k) := F (1; k).
The function sn(x, k) is defined so that x = F (sn(x, k); k) for |x| ≤ K(k), and

sn(x, k) = − sn(x+ 2K(k), k) for x ∈ R. Note that sn(·, k) is an odd 2K(k)-antiperiodic
function and, in [−K(k),K(k)], strictly increasing from −1 to 1.

The function cn(x, k) is defined as a unique smooth function such that cn(0, k) = 1

and cn2(x, k) + sn2(x, k) = 1 for x ∈ R. Note that cn(·, k) is an even 2K(k)-antiperiodic
function and, in [0, 2K(k)], strictly decreasing from 1 to −1.

The function dn(x, k) is defined as a unique smooth function such that dn(0, k) = 1

and dn2(x, k) + k2 sn2(x, k) = 1. Note that dn(·, k) is a positive even 2K(k)-periodic
function and, in [0,K(k)], strictly decreasing from 1 to

√
1− k2.

For k = 0, the functions sn, cn, dn are interpreted as sin, cos, 1, respectively. For
k = 1, they are interpreted as tanh, sech, sech, respectively.

The following derivative formulae hold: for k ∈ [0, 1],

sn′ = cndn, cn′ = − sn dn, dn′ = −k2 sn cn .(1.4.8)

We finally recall that any solution to the equation (1.4.7) is expressed by an elliptic
function.

Proposition 1.4.5 (e.g. [45]). For any given ε > 0 and initial values κ(0) = a0 and ∂sκ(0) =
b0, the equation (1.4.7) is uniquely solved in R. Moreover, the solution is given by either

(1) κ(s) = A cn(αs + β, k), where k ∈ [0, 1] is modulus, A cn(β, k) = a0,
−Aα sn(β, k) dn(β, k) = b0, A2 = 4k2α2, and ε2(A2 − 2α2) = 1, or

(2) κ(s) = Adn(αs + β, k), where k ∈ [0, 1] is modulus, Adn(β, k) = a0,
−Aαp2 sn(β, k) cn(β, k) = b0, A2 = 4α2, and ε2(A2 − 2α2k2) = 1.

If (a20 − 2ε−2)a20 + 4b20 ≥ 0 then the solution is (1), and otherwise (2).

Since ∥ cn ∥∞ = ∥dn ∥∞ = 1, the above solution κ satisfies ∥κ∥∞ ≤ |A|. We call the
number |A| virtual maximum of κ, since the maximum |A| may not be attained in a finite
interval.

Remark 1.4.6. Since ε2 is positive, in the case of cn, the modulus has a lower bound as
k ∈ (1/

√
2, 1].
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1.4.4 Boundedness of higher derivatives

For improving the regularity of the weak convergence in Proposition 1.4.2, it suffices
to prove that any higher order derivative of the rescaled tangential angle is (locally)
bounded as ε → 0. We prove the boundedness by using the expression by elliptic
functions.

Proposition 1.4.7. Let c > 0 and ϑ̂ε ∈ C∞([0, c]) be the rescaled tangential angle function in
Proposition 1.4.2 for ε > 0 with cε < lε. Then for any positive integer k the sequence of ϑ̂ε is
bounded in Ck([0, c]) as ε → 0. Accordingly, the H1-weak convergence in Proposition 1.4.2 is
improved to the C∞-convergence.

Proof. Let κε(s) = ∂sϑγ̃ε(s) be the signed curvature of the original minimizer γε. Recall
that κε satisfies (1.4.7). Hence, the rescaled curvature κ̂ε defined by

κ̂ε(ŝ) := ∂ŝϑ̂ε(ŝ) = εκε(εŝ)

satisfies the normalized elastica equation:

2∂2ŝ κ̂ε + κ̂3ε − κ̂ε = 0.

By Proposition 1.4.5, the rescaled curvature κ̂ε is of the form either (1) or (2) with ε = 1.
Thus, it suffices to prove that the virtual maximum |Âε| of κ̂ε and the coefficient α̂ε of
the variable is bounded as ε→ 0; in fact, by the derivative formulae (1.4.8) and the fact
that all the elliptic functions and modulus k̂ε are bounded above by 1, any derivative of
κ̂ is bounded by a polynomial of |Âε| and |α̂ε|. Moreover, by the relations in Proposition
1.4.5 (with ε = 1), the boundedness of |Âε| and of |α̂ε| are equivalent. Hence, it suffices
to prove that |Âε| is bounded as ε→ 0.

We now assume the contradiction that a subsequence (not relabeled) of the virtual
maximum |Âε| of κ̂ε diverges to infinity as ε → 0. We prove that this assumption
contradicts the fact that the sequence of κ̂ε is bounded in L2(0, c) (by Proposition 1.4.2).
By the relations of constants in Proposition 1.4.5 for κ̂ε, the assumption that |Âε| → ∞
implies that only the case (1) occurs for any small ε. Hence, the following relations
hold:

κ̂ε(ŝ) = Âε cn(α̂εŝ+ β̂ε, k̂ε), k̂2ε =
Â2
ε

2(Â2
ε − 1)

, α̂2
ε =

Â2
ε − 1

2
.

Then we calculate

∥κ̂ε∥2L2(0,c) =
Â2
ε

|α̂ε|

∫ α̂εc+β̂ε

β̂ε

| cn(x, k̂ε)|2dx.

Since α̂ε → ∞ and k̂ε → 1/
√
2, for any small ε the interval [β̂ε, α̂εc + β̂ε] includes one

period 4K(k̂ε) of cn(x, k̂ε):∫ α̂εc+β̂ε

β̂ε

| cn(x, k̂ε)|2dx ≥
∫ 4K(k̂ε)

0
| cn(x, k̂ε)|2dx.
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By the dominated convergence theorem and K(k̂ε) → K(1/
√
2), the right-hand term

converges to a positive value, namely,∫ 4K(1/
√
2)

0
| cn(x, 1/

√
2)|2dx.

Since Â2
ε/|α̂ε| → ∞, the L2-norm ∥κ̂ε∥L2(0,c) diverges to infinity. This is a contradiction.

The improvement of the regularity of convergence is obvious since, by the
boundedness of higher order derivatives, the Arzelà-Ascoli theorem implies the
desired C∞-convergence. The proof is now complete.

We shall complete the proof of Theorem 1.2.3.

Proof of Theorem 1.2.3. Let {γε}ε be any sequence of minimizers as in the assumption.
For the part (1), since the position of γε(0) is fixed at the origin, it suffices to prove (1) in
terms of the tangential angles. This follows by Proposition 1.4.2 and Proposition 1.4.7.
The almost straightness part (2) is proved in Proposition 1.4.3, which is also in terms of
the tangential angles. The proof is now complete.

1.5 Qualitative properties

In this section we prove Theorem 1.2.10 and Theorem 1.2.11 by using Theorem 1.2.3. In
this part we also use expressions of the curvatures of solutions by elliptic functions.

1.5.1 Self-intersection and inflection point

We first confirm that any minimizer has no self-intersection in the limit ε→ 0.

Proposition 1.5.1. Let {γε}ε be any sequence of minimizers as in Theorem 1.2.3. Then there
is ε̄ > 0 such that for any ε ∈ (0, ε̄) the curve γε has no self-intersection.

Proof. Fix sufficiently large c > 0 so that 4e−
c√
2 < 1 and the x-component of γθiB (c) is

positive for i = 0, 1, where γθiB is the borderline elastica with initial angle θi. Decompose
the domain of the arc length parameterized curve γ̃ε into [0, cε], [cε, Lε − cε], and [Lε −
cε, Lε]. Then, for any small ε, the curve γ̃ε has no self-intersection in each of the parts
by Theorem 1.2.3. Moreover, for any small ε, the parts γ̃ε|(0,cε), γ̃ε|(cε,Lε−cε), γ̃ε|(Lε−cε,Lε)

are respectively included in the sets

{x < x̃ε(cε)}, {x̃ε(cε) < x < x̃ε(Lε − cε)}, {x̃ε(Lε − cε) < x},

where x̃ε denotes the x-component of γ̃ε. This implies that there is no self-intersection
in the whole of γ̃ε for small ε.

We next determine the number of the inflection points, i.e., the sign changes
of the curvature. Recall that the curvatures of all nontrivial (non-straight) solution
curves are represented by non-zero elliptic functions, and hence their sign changes are
well-defined if |θ0| + |θ1| > 0. In particular, all the zeroes of the curvature (except the
endpoints) are nothing but the sign changes.
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The key step is to prove that the number of the inflection points are bounded above
by one for any small ε. This upper bound is valid even for the critical cases |θ0| = π

and |θ1| = π.

Proposition 1.5.2. Let {γε}ε be any sequence of minimizers as in Theorem 1.2.3. Suppose that
|θ0| + |θ1| > 0. Then there is ε̄ > 0 such that for any ε ∈ (0, ε̄) the curve γε has at most one
inflection point.

Proof. By symmetry, we may assume that θ0 > 0 without loss of generality. We suppose
the contradiction that there is a sequence εj → 0 such that γεj has at least two inflection
points. Recall that the signed curvature κε of γ̃ε is represented by an elliptic function as
in Proposition 1.4.5. Since κεj has a zero (and κε ̸≡ 0 by θ0 ̸= 0), it is of the form

κεj (s) = Aj cn(αjs+ βj , kj),

where kj ∈ (0, 1), Aj ̸= 0, and αj ̸= 0. We take the smallest two zeroes sj0, s
j
2 ∈ (0, Lεj )

of κεj with sj0 < sj2. By the 2K-antiperiodicity of cn, we find that

sj2 = sj0 + 2K(kj)/|αj |.

We now extend the curvature function κεj (s) as a 2K(kj)-antiperiodic function defined
for any s ∈ R by using the elliptic function cn; we use the same notation κεj for the
extended curvature. Let

sj±1 := sj0 ±K(kj)/|αj |.

By the periodicity of cn, the curvature κεj takes its maximum or minimum at sj±1. Take
arbitrary large c > 0. Since θ0 > 0, Theorem 1.2.3 implies that the rescaled curvature
κ̂ε(ŝ) := εκε(εŝ), defined for ŝ ∈ [0, c], smoothly converges to ∂sϑθ0B , where

∂sϑ
θ0
B (ŝ) = −

√
2 sech

(
ŝ+ sθ0√

2

)
,

and sθ0 > 0 is a unique constant. Thus, for any small εj , the curvature κεj is negative
and increasing in [0, cεj ]. Hence, for any small εj the interval [0, cεj ] is included in
[sj−1, s

j
0]. In particular, sj0 > cεj . Moreover, we have sj0 − sj−1 ≥ cεj , and hence sj2 − sj1 ≥

cεj . Since sj2 < Lεj , we also find that sj1 < Lεj − cεj . Combining with sj0 > cεj , we see
that [sj0, s

j
1] ⊂ [cεj , Lεj − cεj ]. Noting the periodicity of cn, we have

2

(
lim sup
j→∞

max
s∈[cεj ,Lεj−cεj ]

|ϑγ̃εj (s)|

)
≥ lim sup

j→∞
|ϑγ̃εj (s

j
1)− ϑγ̃εj (s

j
0)|

= lim sup
j→∞

|ϑγ̃εj (s
j
0)− ϑγ̃εj (s

j
−1)|

≥ lim
j→∞

|ϑγ̃εj (cεj)− ϑγ̃εj (0)|

= |ϑθ0B (c)− ϑθ0B (0)| = θ0 − ϑθ0B (c).

The last term tends to θ0 > 0 as c→ ∞. This contradicts (2) in Theorem 1.2.3.

By using the above upper bound, we determine the exact number of the inflection
points providing the generic angle condition.
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Proposition 1.5.3. Let {γε}ε be any sequence of minimizers as in Theorem 1.2.3. Suppose the
generic angle condition (1.2.3). If θ0θ1 ≥ 0 (resp. θ0θ1 < 0), then there is ε̄ > 0 such that for
any ε ∈ (0, ε̄) the curve γε has exact one inflection point (resp. no inflection point).

Proof. By symmetry, we may assume that θ0 ∈ (0, π) without loss of generality. Let κε
denote the curvature of a minimizer γε

In the case that θ0θ1 < 0, we easily find that κε(0)κε(1) < 0 for any small ε by (1) in
Theorem 1.2.3. Hence, κε has at least one sign change for any small ε. By Proposition
1.5.2, κε has exact one sign change.

In the case that θ0θ1 > 0, we similarly find that κε(0)κε(1) > 0 for any small ε.
Hence, κε has either no sign change or at least two sign changes. By Proposition 1.5.2,
κε has no sign change.

We finally prove that, if θ0θ1 = 0, i.e., θ1 = 0, then the curvature has (at least) one
sign change for any small ε. We notice that, by (1) in Theorem 1.2.3 and symmetry, the
straightness (2) in Theorem 1.2.3 extends to the endpoint (lε, 0), i.e., for any c > 0,

lim sup
ε→0

max
s∈[cε,Lε]

|∂sγ̃ε(s)− (1, 0)| ≤ 4e−c/
√
2.

Let c > 0 be sufficiently large so that for any small ε the x-component of ∂sγ̃ε is
positive in [cε, Lε]. By (1) in Theorem 1.2.3, the assumption that θ0 > 0 implies that
the y-components of γ̃ε(cε) and ∂sγ̃ε(cε) are positive for any small ε. Then the curve
γ̃ε|[cε,Lε] is represented as the graph of a function uε defined on an interval [aε, bε] such
that

uε(aε) > 0, u′ε(aε) > 0, uε(bε) = 0, u′ε(bε) = 0.

By these boundary conditions, the second derivative u′′ε must have a zero in (aε, bε).
Since a zero of u′′ε corresponds to a sign change of κε, we find that κε has a sign change
for any small ε. By Proposition 1.5.2, κε has exact one sign change. The proof is now
complete.

Remark 1.5.4. In the last part of the above proof, the graph representation is essential. In
particular, for any nonzero vectors v0, v1 ∈ R2, there is a non-graph (looping) smooth
regular curve γ : Ī → R2 without inflection point such that γ(0) = (0, 0), γ(1) = (1, 0),
γ̇(0) = v0 and γ̇(1) = v1.

Remark 1.5.5. The critical cases |θ0| = π and |θ1| = π are omitted since our results are
not sufficient to determine the curvature signs near the endpoints. However, for the
special case that |θ0| = π and θ1 = 0 (or left and right reversed), the same argument
implies that any minimizer has exact one inflection point for small ε.

We shall complete the proof of Theorem 1.2.10.

Proof of Theorem 1.2.10. Proposition 1.5.1 and Proposition 1.5.3 directly imply the
self-intersection part and the inflection point part in Theorem 1.2.10, respectively.
For example, if there would be a sequence εj → 0 and a sequence of minimizers
{γεj}j having self-intersections, then Proposition 1.5.1 would immediately imply
a contradiction. Moreover, combining Proposition 1.5.3 with Theorem 1.2.3, we
immediately obtain the part on the total variation of the tangential angle in Theorem
1.2.10. The proof is now complete.
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1.5.2 Uniqueness

We finally prove the uniqueness result as in Theorem 1.2.11.
For l > 0 and θ0, θ1 ∈ R with θ0 ̸= θ1, we denote by Ãθ0,θ1,l the set of all smooth

constant speed curves joining (0, 0) to (l, 0) such that the tangential angles are strictly
monotone functions from θ0 to θ1. Notice that Ãθ0,θ1,l ⊂ Aθ0,θ1,l if θ0, θ1 ∈ [−π, π]. We
remark that the constraint of Ãθ0,θ1,l completely fixes the variation of the tangential
angle of a curve unlike our original clamped boundary condition.

The following statement is a key step for the proof.

Proposition 1.5.6. Let l > 0 and θ0, θ1 ∈ R with θ0 ̸= θ1. Then, for any ε > 0 the energy
Eε : Ãθ0,θ1,l → (0,∞) admits at most one minimizer in Ãθ0,θ1,l.

To prove Proposition 1.5.6, we convexify our minimizing problem by using the
radius of curvatures parameterized by the (monotone) tangential angles. As mentioned
in Introduction, this idea is classical (see e.g. Born’s stability analysis [9]).

Proof of Proposition 1.5.6. We may assume that θ0 < θ1 without loss of generality. For
any γ ∈ Ãθ0,θ1,l, we can define the radius of curvature function ρ : [θ0, θ1] → (0,∞)

parameterized by the tangential angle as ρ(ϕ) := 1/κ(ϑ−1
γ̃ (ϕ)), where γ̃ is the arc length

parameterization of γ and κ(s) = ∂sϑγ̃(s). For any ε > 0 and γ ∈ Ãθ0,θ1,l, the energy Eε
is represented as

Eε[γ] =
∫ L[γ]

0

(
ε2κ2 + 1

)
ds =

∫ θ1

θ0

(
ε2

ρ
+ ρ

)
dϕ =: Ẽε[ρ].

In particular, for any fixed ε, the energy Ẽε is strictly convex with respect to ρ since ρ > 0

and the integrand f(ρ) = ε2/ρ+ρ is strictly convex in (0,∞). Moreover, the constraints
on the positions of γ at the endpoints∫ L[γ]

0
cosϑγ̃ds = l,

∫ L[γ]

0
sinϑγ̃ds = 0,

are also expressed in terms of ρ as∫ θ1

θ0

ρ cosϕdϕ = l,

∫ θ1

θ0

ρ sinϕdϕ = 0.(1.5.1)

We now denote by R̃θ0,θ1,l the set of all functions ρ ∈ C∞([θ0, θ1]; (0,∞)) satisfying
(1.5.1). Clearly, the set R̃θ0,θ1,l is convex. Moreover, by the above arguments, we find
that the minimizing problem of Eε : Ãθ0,θ1,l → (0,∞) is equivalent to the minimizing
problem of Ẽε : R̃θ0,θ1,l → (0,∞). More explicitly, there is a bijection Φ from R̃θ0,θ1,l

to Ãθ0,θ1,l such that for any ε > 0 and ρ ∈ R̃θ0,θ1,l the equality Eε[Φ(ρ)] = Ẽε[ρ] holds.
In addition, we easily find that the energy Ẽε : R̃θ0,θ1,l → (0,∞) admits at most one
minimizer since Ẽε is a strictly convex functional defined on a convex set. Therefore,
we also find that the energy Eε : Ãθ0,θ1,l → (0,∞) admits at most one minimizer. The
proof is now complete.

We shall complete the proof of Theorem 1.2.11.
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Proof of Theorem 1.2.11. By Theorem 1.2.10, there is ε̄ > 0 such that, for any ε ∈ (0, ε̄)

and any minimizer of Eε in Aθε0,θ
ε
1,lε

, the tangential angle is strictly monotone from θε0
to θε1, that is, the curve γε belongs to Ãθε0,θ

ε
1,lε

. Since Ãθε0,θ
ε
1,lε

is included in Aθε0,θ
ε
1,lε

, any
minimizer of Eε in Aθε0,θ

ε
1,lε

also minimizes Eε in Ãθε0,θ
ε
1,lε

. Therefore, Proposition 1.5.6
implies the desired uniqueness.

Remark 1.5.7. As explained precisely in Appendix 1.A, for any fixed l > 0 and θ0, θ1 ∈
[−π, π], the set of admissible curves Aθ0,θ1,l is decomposed into the sets Aθ0,θ1,l,m by
winding number m ∈ Z. For each m, the set Aθ0,θ1,l,m is defined to fix the variation of
the tangential angle as

ϑγ(1)− ϑγ(0) = θ1 − θ0 + 2πm.

It is known that, for any inflectional elastica (i.e., cn-solution) of finite length, the range
of its tangential angle is included in an interval of which width is less than 2π (see e.g.
[11]). Hence, if |m| > 1, then |ϑγ(1) − ϑγ(0)| ≥ 2π, and hence any critical point in
Aθ0,θ1,l,m must be a non-inflectional elastica (i.e., dn-solution). Therefore, for |m| > 1,
by the same convexification as above, we find that Eε admits a unique minimizer in
Aθ0,θ1,l,m. For |m| ≤ 1, there may be multiple candidates of minimizers.

1.6 Connection of inextensible and extensible problems

In this section we prove Theorem 1.2.12 and Theorem 1.2.14. The relation between the
problems (1.2.2) and (1.2.4) is not so trivial at the level of global minimizers. As already
mentioned, the case that θ0 = θ1 = 0 is omitted since it is not possible to express the
inextensible problem (1.2.4) by the extensible problem (1.2.2).

1.6.1 Length of minimizers of the modified total squared curvature

We shall confirm some properties of the minimum values of energy and the lengths of
minimizers in the extensible problem. Throughout this subsection, we fix l > 0 and
θ0, θ1 ∈ [−π, π] with |θ0|+ |θ1| > 0, and denote Aθ0,θ1,l by A simply.

We first confirm basic properties of the minimum function

m(ε) = min
γ∈A

Eε[γ].

We extend the function m to the origin as m(0) = l.

Proposition 1.6.1. The minimum function m is strictly increasing and continuous in [0,∞).
Moreover, m is locally semi-convex in (0,∞).

Proof. First we note that m(ε) > l for ε > 0 and m(ε) → l as ε→ 0 by Lemma 1.3.1 and
the assumption that |θ0| + |θ1| > 0. Let 0 < ε0 < ε1. By taking a minimizer γ1 ∈ A of
Eε1 , we find the strict monotonicity

m(ε0) ≤ Eε0 [γ1] < Eε1 [γ1] = m(ε1).

Moreover, for any ε > 0 and δ ∈ R with small |δ|, taking any minimizer γε ∈ A of Eε,
we have

m(ε+ δ) ≤ Eε+δ[γε] = B[γε]δ2 + 2εB[γε]δ +m(ε).
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This relation and the monotonicity imply the remaining conclusions.

We define a set-valued function L̃ as

L̃(ε) := {L[γ] | γ ∈ A is a minimizer of Eε}(1.6.1)

for ε ∈ (0,∞), and extend L̃ to the origin by L̃(0) = {l}. (Note that the definition
depends on the constraints l, θ0, θ1.) By the existence of minimizers (Appendix 1.A),
the set L̃(ε) is nonempty for any ε > 0. Moreover, we notice that L̃(ε) ⊂ (l,∞) for
ε > 0.

Proposition 1.6.2. The set-valued function L̃ is nondecreasing in the sense that, for any 0 ≤
ε0 < ε1, any L0 ∈ L̃(ε0) and L1 ∈ L̃(ε1) satisfy L0 ≤ L1.

Proof. Fix such ε0, ε1, L0 and L1. The case ε0 = 0 is obvious since m(ε1) > l so we
assume that ε0 > 0. By the definition of L̃, for i = 0, 1, there is a minimizer γi ∈ A of
Eεi with length Li. Then, noting the minimality of γ0 and γ1, we have

Eε0 [γ0] ≤ Eε0 [γ1], Eε1 [γ1] ≤ Eε1 [γ0],

that is,
ε20B[γ0] + L0 ≤ ε20B[γ1] + L1, ε21B[γ1] + L1 ≤ ε21B[γ0] + L0.

Combining these inequalities, we obtain (ε21 − ε20)(L1 − L0) ≥ 0, which implies L0 ≤
L1.

Recall that L̃(ε) is nonempty for any ε. Moreover, as in [64], it is known that
L̃(ε) is a finite set. Hence, the following upper and lower envelopes of L̃, which are
single-valued functions, are well-defined:

L∗(ε) := max{L | L ∈ L̃(ε)}, L∗(ε) := min{L | L ∈ L̃(ε)}.

Proposition 1.6.3. The function L∗ (resp. L∗) is nondecreasing and upper (resp. lower)
semicontinuous.

Proof. Notice that the monotonicity in [0,∞) follows by Proposition 1.6.2. Moreover,
the continuity at the origin follows by the length convergence in Proposition 1.3.8.
Hence, it suffices to prove the semicontinuity for any fixed ε > 0. We prove only the
upper semicontinuity.

For any δ ∈ R with small |δ|, we take a minimizer γε+δ ∈ A of Eε+δ so that L∗(ε +

δ) = L[γε+δ]. Then, since the sequence {γε+δ}δ is H2-bounded by their minimality, for
any subsequence there is a subsequence {γε+δ′}δ′ converging to a regular H2-curve γ′

weakly in H2 and strongly in C1; in particular, L[γε+δ′ ] → L[γ′]. Noting the H2-weak
lower semicontinuity of Eε and Proposition 1.6.1, we have

Eε[γ′] ≤ lim inf
δ′→0

Eε[γε+δ′ ] = lim inf
δ′→0

Eε+δ′ [γε+δ′ ] = lim inf
δ′→0

m(ε+ δ′) = m(ε),

which implies that γ′ is a minimizer of Eε (and hence γ′ ∈ A by Appendix 1.A). Then
we find that

lim
δ′→0

L∗(ε+ δ′) = lim
δ′→0

L[γε+δ′ ] = L[γ′] ≤ L∗(ε),
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and hence we obtain the upper semicontinuity

lim sup
δ→0

L∗(ε+ δ) ≤ L∗(ε)

in the full limit sense. The proof is now complete.

Combining Proposition 1.6.2 and Proposition 1.6.3, we see that the set of jump
points

J = {ε ∈ [0,∞) | L∗(ε) > L∗(ε)} = {ε ∈ [0,∞) | L̃(ε) is not a singleton}

consists of at most countably many elements, and moreover for any open set U ⊂
[0,∞) \ J the function L∗ (= L∗) is a strictly increasing continuous function on U .

We finally confirm a first order expansion of the lengths of minimizers with respect
to ε.

Proposition 1.6.4. Any sequence of Lε ∈ L̃(ε) satisfies, as ε→ 0,

Lε = l + 4
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
ε+ o(ε).

Proof. Let Xε :=
√
εB[γε] and Yε :=

√
(Lε − l)/ε. By Lemma 1.3.1,

X2
ε + Y 2

ε =
Eε[γε]− l

ε
= 8

√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
+ o(1)

as ε→ 0. Moreover, by the Cauchy-Schwarz inequality,

2XεYε = 2

(∫ Lε

0
|∂sϑγ̃ε |2ds

)1/2(∫ Lε

0
(1− cosϑγ̃ε)ds

)1/2

≥
∫ Lε

0
|∂sϑγ̃ε |2

√
1− cosϑγ̃εds =

∫ Lε

0
|∂s(V ◦ ϑγ̃ε)|ds.

By Lemma 1.3.9, there is a sequence of sε ∈ [0, Lε] such that [[ϑγ̃ε(sε)]] → 0. Hence, by
the triangle inequality and Lemma 1.3.6, we find that

2XεYε ≥
∫ sε

0
|∂s(V ◦ ϑγ̃ε)|ds+

∫ Lε

sε

|∂s(V ◦ ϑγ̃ε)|ds

≥ 8
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
− o(1)

as ε→ 0. Therefore, 0 ≤ (Xε−Yε)2 ≤ o(1) as ε→ 0. Noting thatXε and Yε are bounded
as ε→ 0, we find that Xε and Yε converges to a same value; hence, we find that

Lε − l

ε
= Y 2

ε → 4
√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
as ε→ 0. The proof is complete.
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1.6.2 Connection of inextensible and extensible problems: fixed endpoints

We prove a prototype of Theorem 1.2.12, which connects the inextensible problem to
the extensible problem under a fixed clamped boundary condition. This prototype
deals with “shortening” (L ↓ l) but not straightening (l ↑ L); in the next subsection, we
give a statement in terms of straightening.

Proposition 1.6.5. Let L > l and θ0, θ1 ∈ [−π, π] with |θ0| + |θ1| > 0. Let L̃ be the length
function (1.6.1) for l, θ0, θ1. Then, for any ε > 0 such that L ∈ L̃(ε), any minimizer of B in
AL
θ0,θ1,l

is a minimizer of Eε in Aθ0,θ1,l.

Proof. Let γ be a minimizer of B in AL
θ0,θ1,l

and ε > 0 satisfyL ∈ L̃(ε). Then, byL ∈ L̃(ε),
there exists a minimizer γ′ of Eε in Aθ0,θ1,l with L[γ′] = L (= L[γ]). Since γ minimizes
B in AL

θ0,θ1,l
, we have B[γ] ≤ B[γ′] and hence Eε[γ] ≤ Eε[γ′]. Since γ′ minimizes Eε in

Aθ0,θ1,l, so does γ.

We are now in a position to state the following Theorem 1.6.6, which ensures that
the inextensible problem in the shortening limit is read as the extensible problem.

Theorem 1.6.6. Let l > 0 and θ0, θ1 ∈ [−π, π] with |θ0| + |θ1| > 0. Let L̃ be the length
function (1.6.1) for l, θ0, θ1. Let Lε ↓ l be a sequence such that there is ε̄ > 0 such that
Lε ∈ L̃(ε) for any ε ∈ (0, ε̄). Then any minimizer γε of B in ALε

θ0,θ1,l
is a minimizer of Eε in

Aθ0,θ1,l. Moreover, as ε→ 0,

lim
ε→0

Lε − l

ε
= 4

√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

Proof. An immediate corollary of Proposition 1.6.4 and Proposition 1.6.5.

1.6.3 Dilation

We finally prove Theorem 1.2.12 and Theorem 1.2.14 via Theorem 1.6.6 and simple
dilation arguments. We use the following elementary facts, the proofs of which are
omitted.

Lemma 1.6.7. Let θ0, θ1 ∈ [−π, π] and 0 < λ < Λ. Then a curve γ is a minimizer of B in
AΛ
θ0,θ1,λ

if and only if the curve Λγ/λ is a minimizer of B in AΛ2/λ
θ0,θ1,Λ

.

Lemma 1.6.8. Let ϵ > 0, θ0, θ1 ∈ [−π, π] and 0 < λ < Λ. Then a curve γ is a minimizer of Eϵ
in Aθ0,θ1,Λ if and only if the curve λγ/Λ is a minimizer of Eλϵ/Λ in Aθ0,θ1,λ.

Proof of Theorem 1.2.12. Recall that the constants L, θ0, θ1 are given in the assumption.
Let L̃ be the length function defined as (1.6.1) for L, θ0, θ1. Notice that L′

ε → L holds
as ε ↓ 0 for any sequence of L′

ε ∈ L̃(ε) by Proposition 1.6.4; in particular, there are
sequences L′

n ↓ L and εn ↓ 0 as n → ∞ such that L′
n ∈ L̃(εn) for any n. Then, by

Theorem 1.6.6 with l = L, any minimizer of B in AL′
n

θ0,θ1,L
is a minimizer of Eεn in Aθ0,θ1,L,

and moreover

lim
n→∞

L′
n − L

εn
= 4

√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

We now define ln as ln := L2/L′
n. We confirm that the sequences ln ↑ L and εn ↓ 0

satisfy the desired properties. Let γn be any minimizer of B in AL
θ0,θ1,ln

. By Lemma
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1.6.7 with λ = ln and Λ = L, the curve L
ln
γn is a minimizer of B in AL′

n
θ0,θ1,L

. Hence, by
Theorem 1.6.6, the curve L

ln
γn is a minimizer of Eεn in Aθ0,θ1,L. Thus the first assertion

is confirmed. Moreover, since L′
n = L2/ln, we have

lim
n→∞

L− ln
εn

= lim
n→∞

L′
n − L

εn
· ln
L

= lim
n→∞

L′
n − L

εn
= 4

√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
,

which is nothing but the last assertion. The proof is now complete.

Remark 1.6.9. In the above proof we need to take a subsequence since the “continuity” of
L̃ is not guaranteed in general even in a neighborhood of the origin. Once the continuity
is ensured, then there is no need to take a subsequence as shown in the following proof.

Proof of Theorem 1.2.14. Recall that the constants L, θ0, θ1 with (1.2.3) and θ0θ1 < 0 are
given in the assumption. By Theorem 1.2.11, there is ε̄ > 0 such that for any ε ∈ (0, ε̄)

the energy Eε admits a unique minimizer in Aθ0,θ1,L.
Let L̃ be the length function defined as (1.6.1) for fixed L, θ0, θ1. Then, by the above

uniqueness, L̃ is a single-valued function in [0, ε̄), and hence the lower semicontinuous
envelope L∗ is a continuous nondecreasing function in [0, ε̄]. Then, in particular, the
function L∗ : [0, ε̄] → [L,L∗[ε̄]] is surjective, and hence we can define a function ε̃′ :

[L,L∗(ε̄)] → [0, ε̄] so that L∗ ◦ ε̃′ is the identity map on [L,L∗(ε̄)]. Note that ε̃′ is a
strictly increasing function since L∗ is nondecreasing. In addition, by Theorem 1.6.6
with l = L, for any L′ ∈ (L,L∗(ε̄)), any minimizer of B in AL′

θ0,θ1,L
is a minimizer of

Eε̃′(L′) in Aθ0,θ1,L, and moreover

lim
L′↓L

L′ − L

ε̃′(L′)
= 4

√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

In particular, for any L′ ∈ (L,L∗(ε̄)) the energy B admits a unique minimizer in AL′
θ0,θ1,L

(since Eε̃′(L′) admits a unique minimizer in Aθ0,θ1,L).
Now we set l̄ := L2/L∗(ε̄). Define a function ε̃ : [l̄, L] → [0, ε̄] by ε̃(l) := ε̃′(L2/l).

Notice that ε̃ is strictly decreasing. Then, by Lemma 1.6.7, for any l ∈ (l̄, L) and any
minimizer γl of B in AL

θ0,θ1,l
, the dilated curve L

l γl minimizes B in AL2/l
θ0,θ1,L

. Since L <

L2/l < L∗(ε̄), the desired uniqueness holds by the above arguments. In addition, we
find that the curve L

l γl also minimizes Eε̃(l) in Aθ0,θ1,L. Moreover, we also find that

lim
l↑L

L− l

ε̃(l)
= lim

l↑L

L2/l − L

ε̃′(L2/l)
· l
L

= lim
L′↓L

L′ − L

ε̃′(L′)
= 4

√
2

(
sin2

θ0
4

+ sin2
θ1
4

)
.

The proof is now complete.

Remark 1.6.10. It is not claimed that the above function ε̃ (or ε̃′) is continuous. The
continuity is ensured if the length function L̃ (or equivalently L∗) is strictly increasing.



Appendices

1.A Existence of minimizers

Fix l > 0 and θ0, θ1 ∈ [−π, π]. We say that γ ∈ H2(I;R2) ⊂ C1(Ī;R2) is H2-admissible
if γ is of constant speed and satisfying the boundary condition (1.2.1). We denote the
set of H2-admissible curves by X . Note that the H2-weak topology is stronger than
C1-topology; hence, in particular, the set X is H2-weakly closed in H2(I;R2).

Theorem 1.A.1. Let X ′ ⊂ X be anH2-weakly closed subset. Then the functional Eε = ε2B+L
defined on X ′ attains its minimum in X ′.

Proof. The proof is straightforward. Since any γ ∈ X ′ is of constant speed, we have the
following representations:

L[γ] ≡ |γ̇| ≥ l, B[γ] = 1

L[γ]3

∫
I
|γ̈(t)|2dt.

By the above relations and the boundary condition, we find that a minimizing sequence
isH2-bounded. Since Eε is lower semicontinuous with respect to theH2-weak topology,
a standard direct method argument implies the existence of a minimizer.

Moreover, if X ′ admits any local perturbation, then we find that any minimizer
γ ∈ X ′ is of class C∞ by a standard bootstrap argument.

By the above results, the problems (1.2.2) and (1.2.4) admit minimizers. (In the
case of fixed length, we use the Lagrange multiplier method to modify the length
constraint.)

In addition, it is also proved that there are infinitely many local minimizers with
different winding numbers in a sense. Here γ ∈ X is a local minimizer of the energy Eε
if there is δ > 0 such that Eε[γ] ≤ Eε[γ′] for any γ′ ∈ X with ∥γ − γ′∥H2 ≤ δ. To state the
above fact, we use a kind of winding number; for γ ∈ X we define N [γ] ∈ Z as

N [γ] =
1

2π

(∫
γ
κds+ θ0 − θ1

)
,

where κ is the counterclockwise signed curvature (κ = ∂sϑγ̃). We notice that the
functional N is Z-valued and continuous with respect to the H2-weak and -strong
topologies. Thus for any m ∈ Z the set Xm = {γ ∈ X | N [γ] = m} is open and
closed in X both weakly and strongly. Since Xm is weakly closed, by Theorem 1.A.1,
the energies Eε defined on Xm and B defined on Xm∩XL attain their minimizers, where
L > l and XL = {γ ∈ X | L[γ] = L}. Moreover, the set Xm is strongly open, and hence
such minimizers are local minimizers on X or XL, respectively.
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Chapter 2

A free boundary problem for elastic curves I:
Formulation and graph representation

In this chapter we mathematically study membranes and filaments adhering to
periodic patterned substrates in a one-dimensional model. The problem is formulated
by the minimizing problem of an elastic energy with a contact potential on graph
substrates. Global minimizers (ground states) are mainly considered in view of their
graph representations. Our main results exhibit sufficient conditions for the graph
representation and examples of situations where any global minimizer must overhang.

Keywords: Adhesion; Euler’s elastica; Obstacle problem; Contact potential; Free
boundary problem; Graph representation.

2.1 Introduction

The figuration of elastic bodies is complicated to comprehend, in particular, if external
factors and constraints are taken into consideration. Our study is devoted to a
theoretical study of slender elastic bodies adhering to solid substrates.

The contact and adhesion problems between soft objects and solid substrates appear
in various contexts. For example, complex adhesion patterns are observed when soft
nano-objects, as graphene [24, 38] or carbon nanotubes [9], are sheeted on rough
patterned substrates. The adhesion property is also known for vesicles (cf. [36]).
More broadly, in contact mechanics [16], it is a central question to ask how elastic
bodies contact rough substrates [30, 41]. This question is relevant for many motivating
problems as rubber friction [28] or adhesion in biological systems as geckos [14, 29, 33].
Recently, there are remarkable progresses in “elasto-capillary” problems [34]. The
elasto-capillary problems essentially relate to our problem in the sense that they are
focused on the competition between elasticity and adhesiveness.

2.1.1 Our model

In this chapter we mathematically study the adhesion problems of filaments and
membranes in a one-dimensional setting, as in [31]. To be more precise, we consider
the minimizing problem of the energy

E [γ] =
∫
γ
ds

[
C

2
κ2(s) + σ (γ(s))

]
(2.1.1)

42
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FIGURE 2.1: Periodic substrate function ψ and periodic admissible curves. Admissible
curves may overhang or self-intersect.

defined for planar curves γ. Here κ and s denote the curvature and arc length
parameter, respectively. Admissible curves γ (corresponding to elastic bodies) are
constrained in the upper side of a given λ-periodic substrate function ψλ as in Figure
2.1. The constant C > 0 corresponds to the bending rigidity. The contact potential σ is
defined as σ = σF in the free part and σ = σB in the bounded part, where 0 < σB < σF
are constants. The constants σB and σF correspond to tension or surface energies. (See
Section 2.2 for details.)

Our energy is a simple generalization of the modified total squared curvature,
so-called Euler’s elastica energy (see [2, 3, 4, 19, 20] and also [21, 35, 37]), so that
an adhesion effect (contact potential) is included. Its minimization invokes a free
boundary problem of the elastica equation, i.e., the free part of any minimizing curve
satisfies the curvature equation C(κss+κ3/2)−σFκ = 0. The free boundary conditions
are concerned with curvature jumps (see [31] and also [18, 27, 34, 36]). Our model can
be regarded as an elastic version of wetting problems (cf. [10, 22]).

Our model concerns only the bending modes of filaments or membranes and
neglects the stretching modes. As mentioned in [31], the underlying physical
assumptions are that elastic bodies are sufficiently thin, vary only in one direction, and
move along substrates freely (no friction). The stretching modes should be taken into
account in fully two-dimensional models, even for thin films without friction (see e.g.
[15, 38]).

2.1.2 Our goal

The local laws (as the elastica equation or boundary conditions) are well-known in
our model since similar models have been widely studied (e.g. in [18, 27, 34, 36]).
Our fundamental goal is to know the whole shapes of minimizers in our model.
However, it is not realistic to determine the exact whole shapes of minimizers for
arbitrary parameters and a substrate. This chapter focuses on whether minimizers are
represented by the graphs of functions or not.

Whether minimizers are graphs or have overhangs is an important assertion on the
shapes. In fact, the absence of overhangs guarantees that the shape of a solution is not
so “complex”, in particular, there is no self-intersection. Conversely, the presence of
overhangs implies the possibility of self-intersections. Once membranes or filaments
self-intersect, then other mechanisms (not taken into account in our model) may yield
more complex shapes as rackets [6, 7, 42] (see also [34]).
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An a priori guarantee of the graph representation is also important for the
theoretical study. Such a guarantee rigorously justifies the graph setting, i.e., the
assumption to consider only graph curves as admissible curves. The graph setting
yields strong topological and morphological constraints, and hence makes the analysis
considerably simpler. In fact, there are theoretical studies [17, 23, 31] concerning the
whole shapes of minimizers in our model, but all of them rely on the graph setting.
The paper [31] particularly depends on the graph setting since its analysis crucially
uses the small slope approximation.

2.1.3 Main results

The present paper gives a rigorous study on the graph representations of global
minimizers (ground states). A theoretical reason to consider only global minimizers is
that the shapes of local minimizers (metastable states) may be more complicated even
for parameters ensuring the graph representations of global minimizers (see Section
2.5 for details). The assumption of global minimality would be however appropriate
for some experimental situations, for example, thin films on substrates with wetting
fluids at the interfaces (almost no friction) as in [15]. In addition, as a mathematical
assumption, we assume that curves γ and a substrate ψλ have a same period λ.

To describe our results, it is convenient to recall the typical length scale ℓ =
√
C/σF ,

which compares bending rigidity and surface tension. The scale ℓ is called the
elasto-capillary length e.g. in [15, 34]. As mentioned in [15, 34], the scale ℓ appears
as a typical bending scale of an elastic body. We also use the length scale r = ∥ψ′′

λ∥−1
∞

which is the reciprocal of the maximum of the second derivative. The scale r roughly
corresponds to the minimal bending scale of ψλ. Moreover, the dimensionless ratio
α = σB/σF is also important since it corresponds to adhesiveness.

Global minimizers are flat in many limiting cases; dominant bending effect (C =

∞), no adhesion (σB = σF ) or flat substrate (ψ = 0). Hence, the graph representation is
expected at least nearly the above cases. Indeed, Theorem 2.3.3 and Theorem 2.3.4 give
explicit conditions ensuring that global minimizers must be graphs. The first condition
is described as α−1 − 1 ≪ (ℓ/λ)2. In particular, this condition is satisfied as the limits
C → ∞ and σB → σF . The second condition is described as (r/λ)2 ≫ α−1 + (ℓ/λ)−2.
In particular, this condition is satisfied as the limit r → ∞, which means a second order
flatness of ψλ. Our proof uses only energy arguments; we compare the energies of all
non-graph curves and special graph competitors.

On the other hand, even if ψ is smooth of class C∞, it turns out that there are
situations such that global minimizers are overhanging, i.e., not represented by graphs.
The mechanism of overhangs is involved, so we deal with only special substrates like
“fakir carpets” (see the figures in Section 2.4). Our result indicates that the wave height
length scale H and dimensionless “deviation” ∆ := min{λ,H}/(λ + 2H) of a fakir
carpet appear as characteristic quantities. More precisely, as a main result (Theorem
2.4.4), we rigorously prove that global minimizers must overhang if ψλ is smooth but
shaped like a fakir carpet and moreover the relations r ≪ ℓ ≪ min{λ,H} and α ≪ ∆

are satisfied. Our proof is based on a geometric viewpoint to classify possible global
states of non-overhanging curves, and an energy estimate for each of the cases. A
special overhanging competitor is then constructed in view of the optimal bending
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scale ℓ. We notice that the condition r ≪ ℓ requires that ℓ is not arbitrary small for
overhangs. However, we also prove that if such substrates are Lipschitz (i.e., folding
singularly r = 0), then ℓ can be arbitrary small for a fixed substrate (Theorem 2.4.7). To
this end, we need further discussion for local bending structure, but we still use only
energy arguments.

2.1.4 Related mathematical results

In the rest of this section, reviewing related mathematical literature, we see that in our
one-dimensional problem both the contact potential and the total squared curvature
play crucial roles for overhangs.

There is much mathematical literature of first order energies with contact potentials
on flat substrates (see e.g. [1, 5, 39, 40] for graphs, [5, 22] for the boundary of sets,
and references therein). The problems in the cited papers roughly correspond to our
problem with C = 0 and ψλ ≡ 0 (but in higher dimensions). In first order cases,
solutions may have edge singularities at the free boundary and the contact angle θ
satisfies Young’s equation cos θ = σB/σF . In higher dimensional cases, the contact
potential may imply the loss of graph representation even in first order cases (cf. [39]).
However, although our substrates are not flat, our problem is one-dimensional and
periodic, so the graph setting would be still suitable while C = 0.

To our knowledge, there is little mathematical literature of higher order problems
with contact potentials except the aforementioned papers [17, 23]. In [23], the author
obtains an energy expansion as C → 0. The paper [17] studies a discretization of
our model and proposes numerical results. As already mentioned, the papers [17, 23]
assume that admissible curves are graphs.

The total squared curvature is higher order and a main reason of the loss of graph
representation. In fact, it is well-known that there are non-graph solutions to the
elastica equation, which our minimizers obey in the free part (see e.g. the figures in
[4, 21]). Thus, if we impose suitable fixed boundary conditions, it is not difficult to
prove that a global minimizer of the modified total squared curvature overhangs. Our
problem is a free boundary problem, and hence the graph representation problem is
more involved.

We finally mention that, in dynamical problems of curves (without substrates), the
graph representations of solutions have also been concerned. Although the L2-gradient
flow of the length energy (curve shortening flow) preserves the graph property [12],
one of the modified total squared curvature (curve shortening-straightening flow
[20, 25, 26, 32]) may lose in the middle even in the periodic setting [13]. However,
in such a periodic case (without external factors), stationary global minimizers are only
straight lines. Our problem takes an adhesion effect into account and thus even global
minimizers may not be graphs.

2.1.5 Organization

This chapter is organized as follows. Basic notation and definitions are prepared
in Section 2.2. Section 2.3 provides some sufficient conditions for the graph
representations of global minimizers. In Section 2.4, we prove the existence of
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situations where global minimizers must overhang. In Section 2.5, we give further
discussion on overhangs and also mention self-intersections and local minimizers.

2.2 Preliminaries: curves, energy and quantities

In this section we prepare notation of admissible curves and the total energy and
then formulate our problem. For simplicity, throughout this chapter, we impose
normalizations with respect to the wavelength and tension. In the last subsection we
mention the relation between our normalized problem and original physical quantities.

2.2.1 Definition of admissible curves

Let ψ : R → R be a continuous function with 1-periodicity, that is, ψ(x) = ψ(x+ 1) for
any x ∈ R. Let Ω ⊂ R2 be the strict epigraph of ψ:

Ω :=
{
(x, y) ∈ R2 | y > ψ(x)

}
.

Denote its closure by Ω = {y ≥ ψ(x)} and the boundary by ∂Ω = {y = ψ(x)}. The set
Ω corresponds to the upper side of the substrate ψ.

Let I be the open interval (0, 1). We denote byH2
Ω the set of all curves γ ∈ H2(I;R2)

such that γ is regular and confined in Ω, that is, |γ̇(t)| > 0 and γ(t) ∈ Ω for any t ∈ Ī .
TheH2-Sobolev setting corresponds to the square integrability of curvature. Recall that
any regular H2 curve is a regular C1 curve by Sobolev embedding and hence γ and γ̇

are defined pointwise in Ī (including the endpoints).
Moreover we say that a curve γ = (x, y) ∈ H2

Ω is admissible if it satisfies the
following periodic boundary condition:

x(0) = 0, x(1) = 1, y(0) = y(1), γ̇(0) = γ̇(1).

We denote the set of admissible curves by A ⊂ H2
Ω. We remark that the set A consists

of the restrictions to I of regular curves γ = (x, y) ∈ H2
loc(R; Ω) such that x(0) = 0 and

γ(t+ 1) = γ(t) + (1, 0) ∈ R2 for any t ∈ R.
In this setting, admissible curves may have any self-intersections, and thus it would

not be compatible with membrane problems. However, we easily confirm that all the
results in this chapter are valid in a membrane setting (see Section 2.5 for details).

2.2.2 Definition of the total energy

For any admissible curve γ ∈ A we define the length of one period by

(2.2.1) Lγ :=

∫
I
|γ̇(t)|dt ≥ 1.

The lower bound follows by the periodicity, in particular, by x(0) = 0 and x(1) = 1.
Using the arc length parameterization 0 ≤ s ≤ Lγ , for given constants ε > 0 and

0 < α < 1, we define the total energy of one period:

(2.2.2) E[γ] :=

∫ Lγ

0

[
ε2|γss(s)|2 +Θ(γ(s))

]
ds,
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where Θ : Ω → R is defined as Θ ≡ 1 in Ω and Θ ≡ α on ∂Ω. Note that |γss|2 is equal to
the squared curvature κ2.

2.2.3 Minimizing problem

Our problem is formulated as

min
γ∈A

E[γ].(2.2.3)

Our purpose is to know the shapes of global minimizers, i.e., curves γ ∈ A satisfying
E[γ] = minAE. Hereafter a global minimizer is often called a minimizer simply.

The problem (2.2.3) is determined by the quantities ε > 0 and 0 < α < 1 and the
substrate ψ. The quantity ε corresponds to the normalized elasto-capillary length scale
(or bending scale) of minimizing curves. The coefficient α corresponds to adhesiveness.
The smaller α is, the easier the curves become to adhere. From Section 2.3, changing
the parameters ε, α and ψ, we consider whether minimizers are represented as graphs
or not.

We shall state the existence of solutions to the problem (2.2.3).

Theorem 2.2.1. The problem (2.2.3) admits a minimizer.

This is proved by a basic direct method in the calculus of variations. However, we
need some careful arguments to prove it rigorously and thus postpone the precise proof
until 2.A. In general, the uniqueness is not expected in this problem.

We have simple bounds for the minimum of E:

α ≤ min
A

E ≤ 1.(2.2.4)

The upper bound follows since the trivial straight line γ̄(t) = (t, c), where c is a constant
larger than the maximum of ψ, belongs to A and satisfies E[γ̄] = 1. The lower bound
follows since for any γ ∈ A we have Lγ ≥ 1 and also

E[γ] ≥
∫
γ
αds = αLγ .(2.2.5)

2.2.4 On normalization of the problem

As mentioned, our problem is normalized with respect to the wavelength and tension.
To clarify the normalizations, we consider the relation between our normalized
problem and the original one. In the original problem, we only assume that admissible
curves and a substrate have a same periodicity λ > 0.

If the substrate ψλ and admissible curves γλ have a general period λ > 0 and tension
in the energy is also a general positive number, then as in Introduction our original
problem is the minimization of

(2.2.6) E [γλ] :=
∫ Lγλ

0

[
C

2
|(γλ)ss(s)|2 + σ(γλ(s))

]
ds,
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where C > 0 and σ is defined as σ ≡ σF in {y > ψλ(x)} and σ ≡ σB on {y = ψλ(x)}
with 0 < σB < σF .

Normalizing ψλ and γλ by rescaling as ψ(x) = λ−1ψλ(λx) and γ(s) = λ−1γλ(λs),
we have

E [γλ] = λσFE[γ],

where the dimensionless quantities ε > 0 and 0 < α < 1 in E are defined as

ε :=
1

λ

√
C

2σF
, α :=

σB
σF

.(2.2.7)

Since we only used a similarity transformation, the shapes of curves and a substrate
are maintained. Thus, the minimizing problem of (2.2.6) is equivalent to (2.2.3) up to
rescaling. We finally recall that ε has the same scale as the normalized elasto-capillary
length scale, i.e., ε ∼ ℓ/λ.

2.3 Graph solutions

In this section we prove that, under suitable conditions for ε, α, and ψ, the problem
(2.2.3) admits only graph minimizers.

We shall give the definition of graph curves.

Definition 2.3.1 (Graph curves). We say that γ = (x, y) ∈ A is a graph curve if x′(t) > 0

for any t ∈ Ī .

Remark 2.3.2. By the periodicity, the condition x′(t) > 0 is equivalent to x′(t) ̸= 0. Any
graph curve γ is represented by an H2 function in the y-direction; more precisely, there
exists a 1-periodic function u ∈ H2

loc(R) such that its graph curve (·, u(·)) ∈ A is a
reparameterization of γ.

2.3.1 Statements and discussion

We first observe the following limiting cases; ε = ∞, α = 1 and ψ ≡ 0. We easily notice
that in all the cases minimizers are only straight lines. Indeed, in the case that ε = ∞ or
α = 1, our energy is regarded as the (modified) total squared curvature, which admits
only straight line minimizers under the periodicity. Moreover, in the case that ψ ≡ 0, it
is trivial that a unique minimizer is the completely adhering straight line.

By the above observation, when ε ≫ 1, α ≈ 1 or ψ ≈ 0, we expect that any
minimizer is nearly flat and hence a graph curve. In fact, the following two statements
hold.

Theorem 2.3.3. Suppose that (π2ε2 + 1)α ≥ 1. Then, independently of ψ, any minimizer of
(2.2.3) is a graph curve.

Theorem 2.3.4. Suppose that ψ is of class C2 and ∥ψ′′∥2∞ ≤ 8π2

8/α+1/ε2
. Then any minimizer

of (2.2.3) is a graph curve.
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Remark 2.3.5. Theorem 2.3.3 immediately implies that, if we fix ε and take α ≈ 1, or fix
α and take ε≫ 1, then any minimizer is a graph curve.

In view of the original physical quantities (2.2.7), the condition that (π2ε2 +1)α ≥ 1

in Theorem 2.3.3 is read as

π2

2

C

λ2σF
=
π2

2

(
ℓ

λ

)2

≥ σF
σB

− 1.

This is enough to indicate the following two qualitative features: if the effect of
adhesion is weak (σB → σF ), or the effect of bending is strong (C → ∞), then any
minimizer must be a graph curve.

Remark 2.3.6. Theorem 2.3.4 states that, for any ε and α which may be small, if the
substrate ψ is sufficiently flat in a second order sense ψ′′ ≈ 0, then our problem still
admits only graph curve minimizers.

Recall that the sup norm ∥ψ′′∥∞ = maxx∈R |ψ′′(x)| is also a dimensionless quantity
since ∥ψ′′∥∞ = λ/r, where r = ∥ψ′′

λ∥−1
∞ corresponds to the minimal bending scale of the

original substrate ψλ. By (2.2.7), the condition in Theorem 2.3.4 can be also expressed
by the original quantities.

2.3.2 Proof of graph representation

In this section we prove Theorem 2.3.3 and Theorem 2.3.4. We first obtain a lower
bound for the energies of non-graph curves. This is a key step to prove our theorems.

Proposition 2.3.7. Any non-graph curve γ ∈ A satisfies

E[γ] > min
{
1, (π2ε2 + 1)α

}
.

Proof. By (2.2.5), any curve γ ∈ A with Lγ > 1/α satisfies E[γ] ≥ αLγ > 1. Thus it
suffices to prove that any non-graph curve γ ∈ A with 1 ≤ Lγ ≤ 1/α satisfies E[γ] >

(π2ε2 + 1)α. By the Cauchy-Schwarz inequality, we have

E[γ] ≥ ε2
∫
γ
κ2ds+ αLγ ≥ ε2

Lγ

(∫
γ
|κ|ds

)2

+ αLγ .

Moreover, since γ is non-graph and periodic, its total absolute curvature (i.e., the total
variation of its tangential angle) is larger than π. Noting that 1 ≤ Lγ ≤ 1/α, we have

E[γ] >
ε

1/α
π2 + α = (π2ε2 + 1)α.

The proof is complete.

We are in a position to prove the theorems.

Proof of Theorem 2.3.3. Proposition 2.3.7 and the assumption (π2ε2 +1)α ≥ 1 imply that
any non-graph curve γ ∈ A satisfies E[γ] > 1. By the upper bound in (2.2.4), such a
curve is not a minimizer.
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Proof of Theorem 2.3.4. By Theorem 2.3.3, we may assume (π2ε2 + 1)α < 1. Thus, by
Proposition 2.3.7, we only need to prove that any γ ∈ A such that E[γ] > (π2ε2 +1)α is
not a minimizer.

We compare such γ with the completely adhering competitor γ̃ := (·, ψ(·)) ∈ A,
which is a graph curve since ψ is of class C2. Noting that 2∥ψ′∥∞ ≤ ∥ψ′′∥∞ by the
1-periodicity, we find that the curve γ̃ satisfies

E[γ̃] = ε2
∫
I

|ψ′′|2

(1 + |ψ′|2)5/2
+ α

∫
I

√
1 + |ψ′|2

≤ ε2∥ψ′′∥2∞ + α

(
1 +

1

2

(
∥ψ′′∥∞

2

)2
)
.

=

(
8ε2 + α

8α
∥ψ′′∥2∞ + 1

)
α.

The assumption on ∥ψ′′∥∞ immediately implies that 8ε2+α
8α ∥ψ′′∥2∞ ≤ π2ε2 and hence

E[γ] > E[γ̃]. Therefore, the curve γ does not minimize E.

Remark 2.3.8. In the proof of Proposition 2.3.7, using the inequality of arithmetic and
geometric means, we also have another type of lower bound as

E[γ] >
ε2

Lγ
π2 + αLγ ≥ 2πε

√
α.

Thus the condition in Theorem 2.3.3 can be replaced by 4ε2α ≥ 1. Although this
condition is meaningful quantitatively, it is not sharp enough to obtain the qualitative
property that any minimizer is a graph curve for any fixed ε and α ≈ 1.

2.4 Overhanging solutions

In this section we show that there is a combination of ε, α, and ψ such that any
minimizer must overhang.

Definition 2.4.1 (Overhanging). We say that a curve γ = (x, y) ∈ A is overhanging if
there exists t ∈ Ī such that x′(t) < 0.

Remark 2.4.2. By the periodicity of γ ∈ A, there is t ∈ Ī such that x′(t) > 0 in general,
and thus any overhanging curve must have “turns” in the x-direction.

Heuristically, overhanging solutions should appear in order to circumvent sharp
mountain folds of substrates as in Figure 2.2 since minimizing curves should bend as
the scale ε in principle.

However, this is a kind of local necessary condition and in general the global shape
formation of curves is very complicated. In order to find overhanging minimizers
rigorously, we deal with a special substrate (fakir carpet), which is simple enough to
analyze.

In what follows, we first give a formal discussion for a very singular substrate, and
then rigorously prove the existence of overhanging minimizers for smooth or Lipschitz
substrates.
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FIGURE 2.2: Curves near mountain folds. Minimizing curves should bend at the scale
ε and hence overhang to circumvent more sharp folds (center). Curves would not
overhang for folds with large bending scale (left) or small slope (right).

FIGURE 2.3: Fakir carpet of height h and the 1-periodicity.

FIGURE 2.4: Non overhanging curves not touching the base part.

FIGURE 2.5: Non overhanging curves touching the base part.

2.4.1 For fakir carpets: strategy

In this subsection we give an intuitive explanation by formally taking a singular
substrate as in Figure 2.3; ψ is the fakir carpet of height h and period 1, which is
the most simple substrate with a singularly sharp mountain fold (but no longer a
continuous function). For a fakir carpet substrate, we obtain a general lower bound for
the energy of all non-overhanging curves and show that, under suitable assumptions
on the smallness of ε and α, there is a special overhanging competitor so that its energy
is lower than any non-overhanging curve.

We first obtain a lower bound for non-overhanging curves. In the present setting, it
turns out that, for any ε and α, any non-overhanging curve γ ∈ A satisfies

(2.4.1) E[γ] ≥ min{1, h}.

In fact, any non-overhanging curve γ is either, not touching the base part of the fakir
carpet as in Figure 2.4, or touching as in Figure 2.5. Note that in both cases γ touches at
most one side of the needle as in the figures since γ is not overhanging. (To touch both
sides, the curve must have a singularity.) In the former case (Figure 2.4), the curve γ has
the free part of length at least 1, i.e., E[γ] ≥ 1. In the latter case (Figure 2.5), the curve γ
has the free part of length at least h, i.e., E[γ] ≥ h. Consequently, any non-overhanging
curve satisfies (2.4.1).
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FIGURE 2.6: Overhanging competitor above the fakir carpet. The curve consists of the
adhering straight parts and the non-adhering circular arc parts of radius ε.

On the other hand, providing that ε is sufficiently small as ε < min{1, h}/5, we can
define an overhanging competitor γ̂ ∈ A as in Figure 2.6, which is almost adhering to
the fakir carpet and bending in the free (non-adhering) part as circular arcs of radius ε.
Then γ̂ satisfies

(2.4.2) E[γ̂] < (1 + 2h)α+ 20πε.

In fact, the total length of the bounded (adhering) part γ̂B is less than 1 + 2h, that is,
E[γ̂B] < (1 + 2h)α, and in the free part γ̂F the energy E[γ̂F ] is bounded as∫

γ̂F

[
ε2κ2 + 1

]
ds < 10πε

[
ε2

1

ε2
+ 1

]
= 20πε,

where 10π = 5× 2π is a rough upper bound for the total angle of the circular arcs.
Combining (2.4.1) and (2.4.2), we see that the conditions

α < ∆ :=
min{1, h}
1 + 2h

, ε <
(1 + 2h)(∆− α)

20π

imply E[γ] > E[γ̂], which means that the energy of any non-overhanging curve γ is
strictly higher than the overhanging competitor γ̂. In conclusion, for any fakir carpet
ψ, if α and ε are sufficiently small as α ≪ ∆ and ε ≪ min{1, h}, then any minimizer
must overhang.

Finally, we remark that for any h > 0 the inequality

∆ =
min{1, h}
1 + 2h

≤ 1

3

holds, and the equality is attained if and only if h = 1. This means that, at least in
our method, the case of height 1 allows the optimal (highest) upper bound for α or ε
to observe overhangs. The dimensionless quantity ∆ may be read as a “deviation” of
the hall of a fakir carpet. Indeed, the hall is the square when ∆ takes the maximum 1/3

(h = 1), and the halls become thin rectangles as ∆ ↓ 0 (h → 0 or h → ∞). Thus, the
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FIGURE 2.7: Curve γ = (x, y) under the assumption of Lemma 2.4.3.

more a hall deviates from the square, the smaller the ε and α are necessary to be for the
presence of overhangs.

2.4.2 For smooth substrates

A similar consideration is valid for a smooth but fakir carpet like substrate ψ as in
Figure 2.8. The main difference from the singular case is that, in the smooth case, curves
may touch both the walls of substrates. Thus we need to state that if a non-overhanging
curve touches both the wall parts of a “thin” needle then the total energy is sufficiently
high. To this end, we prepare a general lemma concerning a lower bound for the
bending energies of non-overhanging curves as in Figure 2.7. The lower bound only
depends on the width of curves in the x-direction and the tangential angles at the
endpoints.

We define the following nonnegative even function:

f(θ) :=

∣∣∣∣∫ θ

0

√
cosφdφ

∣∣∣∣ = ∫ |θ|

0

√
cosφdφ.

Moreover, for a regular curve γ, we define the tangential angle θ(t) ∈ (−π, π] at t ∈ Ī

so that γ̇(t) = |γ̇(t)|(cos θ(t), sin θ(t)). Then we have the following

Lemma 2.4.3. Let J = (a, b) be a bounded interval and γ = (x, y) ∈ H2(J ;R2) be a regular
curve such that x′(t) ≥ 0 for any t ∈ J and y′(t0) = 0 for some t0 ∈ J . Then the following
inequality holds: ∫

γ
κ2ds ≥ [f(θ(a)) + f(θ(b))]2

x(b)− x(a)
.

Proof. We first assume that a curve γ = (x, y) satisfies x′(t) > 0 for any t ∈ J . Then the
curve is represented by some function u ∈ H2(x(a), x(b)) such that u′(x(a)) = tan θ(a),
u′(x(b)) = tan θ(b), u′(x(t0)) = 0 and∫

γ
κ2ds =

∫ x(b)

x(a)

|u′′(z)|2

(1 + u′(z)2)5/2
dz.
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The Cauchy-Schwarz inequality yields that∫ x(b)

x(a)

|u′′(z)|2

(1 + u′(z)2)5/2
dz

≥ 1

x(b)− x(a)

(∫ x(b)

x(a)

|u′′(z)|
(1 + u′(z)2)5/4

dz

)2

.

By change of variables, we have∫ x(b)

x(a)

|u′′(z)|
(1 + u′(z)2)5/4

dz

≥

∣∣∣∣∣
∫ 0

tan θ(a)

dw

(1 + w2)5/4

∣∣∣∣∣+
∣∣∣∣∣
∫ tan θ(b)

0

dw

(1 + w2)5/4

∣∣∣∣∣
= f(θ(a)) + f(θ(b)),

and thus we obtain the desired lower bound.
For general γ = (x, y) with x′ ≥ 0, we obtain the same conclusion by considering

modified curves as γδ(t) = (x(t) + δt, y(t)) for small δ > 0 and taking the limit δ → 0.
Note that x(b) > x(a) holds even in this case by the assumption of γ.

We now state and prove the main theorem. Let h > 0 and 0 < 2δ < min{1, h}. A
1-periodic function ϕ is called δ-smooth fakir carpet of height h if ϕ is as in Figure 2.8,
namely, of class C∞ and satisfies

(1) ϕ(x) = ϕ(1− x) for any x ∈ [0, 1/2],

(2) ϕ ≡ 0 in [0, 1/2− δ] and ϕ(1/2) = h,

(3) ϕ′ ≥ 0 in [0, 1/2],

(4) ϕ′′(x) = 0 while δ ≤ ϕ(x) ≤ h− δ.

Moreover, we define its base and wall parts as in Figure 2.9; the base part is the part
with y = ϕ(x) = 0 and the left (resp. right) wall part is the part with y = ϕ(x), δ ≤ y ≤
h− δ and ϕ′(x) > 0 (resp. ϕ′(x) < 0). All the parts are straight. Note that δ ≳ ∥ϕ′′∥−1

∞ .

Theorem 2.4.4. Let h > 0 and ∆ := min{1,h}
1+2h . Then for any α < ∆ and ε < (1+2h)(∆−α)

20π

there exists 0 < δ̄ < ε such that, for any δ-smooth fakir carpet substrate ψδ of height h with
0 < δ < δ̄, any minimizer of (2.2.3) is overhanging.

Proof. Fix any α < ∆ and ε < (1+2h)(∆−α)
20π . For any small 0 < δ ≪ ε, we take a substrate

ψδ of δ-smooth fakir carpet of height h. Take the overhanging competitor γ̂δ ∈ A as in
Figure 2.10. Then, by the similar way to obtain (2.4.2), we see that

E[γ̂δ] ≤ (1 + 2h)α+ 20πε.

By the assumptions on α and ε, we have

E[γ̂δ] ≤ min{1, h} − c,
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FIGURE 2.8: A 1-period part of the smooth but fakir carpet like substrate. The function
is bending only in the gray regions and otherwise straight.

FIGURE 2.9: Base part and left and right wall parts of δ-smooth fakir carpets.

FIGURE 2.10: Overhanging competitor γ̂δ above the smooth substrate ψδ defined for
any small δ ≪ ε. The curve γ̂δ is adhering to the substrate only in the base and wall
parts and otherwise bending as circular arc of radius ε. For any small δ the curve γ̂δ is
overhanging.

where c > 0 is some constant independent of δ. Therefore it suffices to prove that

lim
δ↓0

inf
γ
E[γ] ≥ min{1, h},(2.4.3)

where the infimum is taken over all non-overhanging curves in the upper side of ψδ.
Indeed, if this is proved then there exists 0 < δ̄ < ε such that for any 0 < δ < δ̄ any
non-overhanging curve γ satisfies E[γ̂δ] < E[γ].

Notice that any (non-overhanging) curve γ ∈ A belongs to at least one of the
following three cases:
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FIGURE 2.11: A curve not touching the base part in (−1
2 ,

1
2 ). To avoid the base part,

any periodic curve γ ∈ A must cross the gray region without touching the graph of
ψδ .

FIGURE 2.12: A curve touching the base part but avoiding the right wall part in
(−1

2 ,
1
2 ). To touch the base part and avoid the right (or left) wall part, any periodic

non-overhanging curve γ ∈ A must cross the gray region without touching the graph
of ψδ at least one time.

1. γ does not touch the base part (Figure 2.11),

2. γ touches the base part but not the left nor right wall part (Figure 2.12),

3. γ touches both the left and right wall parts.

We prove (2.4.3) for all the cases 1, 2, and 3.
Case 1. By the periodicity, as in Figure 2.11, any curve γ = (x, y) ∈ A may be

regarded as satisfying x(0) = −1/2 and x(1) = 1/2. Then the condition of Case 1
implies that γ passes through the region {|x| < 1/2− δ} freely. Hence we have E[γ] ≥
1− 2δ, which implies (2.4.3).

Case 2. Similarly, as in Figure 2.12, we may regard any curve γ = (x, y) ∈ A as
satisfying x(0) = −1/2 and x(1) = 1/2, and hence y(0) = y(1) ≥ h. Then the condition
of Case 2 and the fact that γ is non-overhanging imply that γ passes through the region
{δ < y < h − δ} freely at least one time. Hence we have E[γ] ≥ h − 2δ, which implies
(2.4.3).

Case 3. For any non-overhanging γ ∈ A touching both the wall parts (tangentially),
there are t1, t2 ∈ I such that the part of γ from t1 to t2 satisfies the assumption of Lemma
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2.4.3 with x(t2) − x(t1) ≤ 2δ and |θ(t1)| = |θ(t2)| = θδ, where θδ > 0 is the slope angle
of the left wall part. Then Lemma 2.4.3 implies that

E[γ] ≥ ε2
∫
γ
κ2ds ≥ ε2

4f(θδ)
2

x(t2)− x(t1)
≥ 2ε2f(θδ)

2

δ

and especially (2.4.3). The proof is now complete.

Theorem 2.4.4 indicates that the smallness of the height of ψ does not imply the
graph representations of minimizers. In this view, we can simplify the statement as

Corollary 2.4.5. For any h > 0, there exist ε, α, and smooth ψ of height h such that any
minimizer of (2.2.3) must overhang.

In addition, as mentioned in the previous subsection, h = 1 gives the optimal upper
bound 1/3 for α in our method. In this view, Theorem 2.4.4 is simplified as

Corollary 2.4.6. For any 0 < α < 1/3, there exist ε and smooth ψ such that any minimizer of
(2.2.3) must overhang.

2.4.3 For Lipschitz substrates

Finally, for small α, we give an example of a Lipschitz (singularly folding) substrate
with large slope such that any minimizer must be overhanging for “any” small ε. This
kind of uniformity is mathematically important. An intuitive meaning of this result has
been given in Introduction.

We shall state it as a proposition. Let h > 0 and 0 < 2δ < min{1, h}. A 1-periodic
function ϕ is called δ-Lipschitz fakir carpet of height h if

ϕ(x) := max

{
0, h−

∣∣∣∣hδ x− 1

2

∣∣∣∣}
for x ∈ [0, 1]. We also define the base and wall parts as well as the smooth case; namely,
the base part is the part with y = ϕ(x) = 0 and the left (resp. right) part is the part with
y = ϕ(x), δ < y < h− δ and ϕ(x)′ > 0 (resp. ϕ′(x) < 0).

Theorem 2.4.7. Let h > 0 and α < ∆ := min{1,h}
1+2h . Then there exist ε̄ > 0 and δ̄ > 0 such

that, for any 0 < ε < ε̄ and the δ-Lipschitz fakir carpet substrate ψδ of height h with any
0 < δ < δ̄, any minimizer of (2.2.3) is overhanging.

Proof. Noting the condition of α, in the same way as Case 1 and Case 2 in Theorem 2.4.4,
we see that there are δ0 > 0 and ε0 > 0 such that, for any 0 < δ < δ0 and 0 < ε < ε0,
any non-overhanging curve is necessary to touch the left and right wall parts in order
to minimize E. Note that for arbitrary small ε > 0 an overhanging competitor as in
Figure 2.10 is well-defined since the substrate ψδ is folding singularly.

To complete the proof, we shall prove that, for any small δ, ε, and any
non-overhanging γ touching both the wall parts, there is an overhanging competitor
γ̂ such that E[γ] > E[γ̂].

Fix arbitrary 0 < δ < δ0 and 0 < ε < ε0 and take any non-overhanging γ = (x, y) ∈
A touching both the wall parts. Then there are times t1 < t2 such that γ touches the
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FIGURE 2.13: Non overhanging curve γ touching the left and right wall parts. There
are two touching points γ(t1) and γ(t2) of height less than h − δ. There are also two
points such that γ is tangent to the left and right slope there but does not touch ψδ

between them.

FIGURE 2.14: The curve of Figure 2.13 modified from γ(t1) to γ(t2). The modified part
consists of straightly adhering parts and a freely bending part with radius ε. This curve
is well-defined and not self-intersecting whenever ε ≪ δ and moreover overhanging
whenever θδ > π/3.

left (resp. right) wall part at t1 (resp. t2). Define t3 ∈ [t1, t2] (resp. t4 ∈ [t1, t2]) as the
supremum (resp. infimum) of time t ∈ [t1, t2] such that γ(t) touches ψδ and x(t), 1/2

(resp. x(t) > 1/2). Note that θ(t3) = −θ(t4) = θδ, where θδ > 0 denotes the slope
angle of ψδ. Moreover, in (t3, t4) the curve γ does not touch ψδ except at the vertex
(1/2, ψδ(1/2)). Denote r0 = x(t2)− x(t1) and r = x(t4)− x(t3) as in Figure 2.13.

Then, by Lemma 2.4.3 and the fact that γ circumvents the vertex of ψδ freely (except
the vertex), the energy E of the part of γ from t3 to t4 is bounded below as

E[γ|[t3,t4]] ≥ ε2
4f(θδ)

2

r
+

r

cos θδ
.

In addition, the part from t1 to t3 and from t4 to t2 is totally bounded below as

E[γ|[t1,t3]] + E[γ|[t4,t2]] ≥ α · r0 − r

cos θδ

since the energies of γ|[t1,t3] and γ|[t4,t2] are more than or equal to the energies of
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the completely adhering straight lines joining the endpoints of γ|[t1,t3] and γ|[t4,t2],
respectively. Therefore, the part of γ from t1 to t2 is bounded below as

E[γ|[t1,t2]] ≥ ε24f(θδ)
2

r
+

r

cos θδ
+
α(r0 − r)

cos θδ

= ε24f(θδ)
2 1

r
+

1− α

cos θδ
r +

αr0
cos θδ

≥
(
2

√
4f(θδ)2

1− α

cos θδ

)
ε+

αr0
cos θδ

,

which does not depend on r.
On the other hand, providing that δ and ε are sufficiently small as θδ > π/3 and

ε < δ/3, the competitor γ̂ constructed by modifying γ in (t1, t2) as in Figure 2.14 is
well-defined and overhanging. The energy of γ̂ from t1 to t2 is bounded above as

E[γ̂|[t1,t2]] ≤ 6πε

[
ε2

1

ε2
+ 1

]
+ α · r0

cos θδ

= 12πε+
αr0
cos θδ

.

In the outside of (t1, t2), the curves γ̂ and γ coincide.
Consequently, noting that for any small δ > 0

2

√
4f(θδ)2

1− α

cos θδ
> 12π,

we have E[γ] > E[γ̂] for any small δ and ε. The proof is now complete.

2.5 Discussion

In this last section, we give some further remarks and discussions.

2.5.1 Small bending scale

We first discuss the graph representations of minimizers for small bending scale ε.
Recall that Theorem 2.3.3 states that large bending scale ε ≫ 1 implies the graph
representation independently of ψ. This theorem is relatively easy to prove since,
if ε ≫ 1, the periodic boundary condition is effective and hence non-graph curves
must have large energies. On the other hand, the case that ε ≪ 1 is not easy to
obtain the graph representation rigorously since there is no large difference in the
energies of graph and non-graph curves. In fact, Theorem 2.4.4 and Theorem 2.4.7
state that overhanging minimizers exist when ε is small and the minimal bending scale
r = ∥ψ′′∥−1

∞ of ψ is much smaller. However, we may expect the graph representation
when ε ≪ r by the following formal observation. When ψ is smooth and ε = 0,
minimizers would be Lipschitz functions with straight free parts as in Figure 2.15. They
have edge singularities at the contact points as valley folds and the minimal distance d
among the singularities is bounded below (by a constant depending on α and ψ). Thus,
for small ε ≪ min{d, r}, any minimizer would be obtained by modifying such valley
folds smoothly as in Figure 2.15. Moreover, in contrast to mountain folds (Figure 2.2),
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FIGURE 2.15: Minimizer on a smooth substrate for small ε. If ε = 0 then the minimizer
has valley fold singularities as the left. When ε is small the singularities would be
modified as smooth curves with scale ε as the right.

the modification of valley folds would not require to increase the slopes. Hence any
minimizer is expected to be a graph curve. This observation is rigorously justified in
the next chapter (Chapter 3).

2.5.2 Flat substrates

Theorem 2.3.4 states that a second order flatness of ψ implies the graph representations
of minimizers; for any ε > 0 and 0 < α < 1 there is k > 0 such that if ψ satisfies
∥ψ′′∥∞ ≤ k then any minimizer is a graph curve. The problem would become more
difficult if we replace ψ′′ with ψ′ or ψ.

Another interesting problem is the following uniform and strong version: is there
k > 0 such that for any ε, α, and ψ with ∥ψ′′∥∞ ≤ k or ∥ψ′∥∞ ≤ k any minimizer is
a graph curve? Notice that Theorem 2.4.7 states that any smallness of ∥ψ∥∞ does not
imply the above conclusion.

2.5.3 On self-intersections

Self-intersections are more difficult to occur than overhangs in the sense that any
self-intersecting curve in A must be overhanging. Here we say that γ ∈ A has a
self-intersection if there are 0 ≤ t1 < t2 < 1 andm ∈ Z such that γ(t1) = γ(t2)+(m, 0) ∈
R2. This definition is suitable for our periodic setting; if we take γ̃ ∈ H2

loc(R;R2) such
that γ̃(t + 1) = γ̃(t) + (1, 0) for any t ∈ R, then γ̃ is not injective if and only if the
restriction γ = γ̃|I ∈ A has a self-intersection in the above sense. In this chapter we
proved the existence of overhanging minimizers, but it is not clear whether there exist
self-intersecting minimizers in our setting.

Our admissible curves γ ∈ A may have any self-intersection (self-contact and
self-crossing) as mentioned, and thus our problem would be a priori suitable only for
filaments but not membranes. To make our problem compatible with membranes, we
especially need to exclude self-crossing curves. To this end, let A∗ ⊂ A be the H2-weak
closure of the set of curves without self-intersection. This set is compatible with
membranes since A∗ consists of non self-intersecting curves and limits of such curves
at least in C1; especially, any curve of A∗ is not self-crossing but only self-contacting.
Then all the results in this chapter are valid even if we replace A with A∗ in the
problem (2.2.3) since all the competitors used in our proof have no self-intersection.
The existence of minimizers is proved in the same way as 2.A since A∗ is H2-weakly
closed.
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We mention that this kind of self-contact setting has been considered in e.g.
[8, 11]. In particular, the paper [8] proves that, for confined closed free elasticae,
(i) any convex confinement admits only convex minimizers, which especially
have no self-intersection, and (ii) there is a confinement with two halls which
admits a self-contacting minimizer. These results indicate that whether minimizers
have self-contacts crucially relates to the simplicity of confinements. Our graph
confinements are simple but the effect of adhesion make curves easier to form
complicated shapes, and hence the self-intersection problem becomes more nontrivial.

2.5.4 Local minimizers

We next give a theoretical discussion on local minimizers. A curve γ0 ∈ A is called a
local minimizer if there is δ > 0 such that E[γ] ≥ E[γ0] for any γ ∈ A with ∥γ−γ0∥H2 ≤
δ.

A straight line not touching ψ is obviously a graph local minimizer in any case.
However, the straight line touching ψ is not necessarily a local minimizer. The existence
of graph local minimizers touching ψ is not trivial.

Moreover, it is shown that there are infinitely many self-intersecting local
minimizers in A by using a kind of winding number (as in Section 1.A of Chapter
1). For γ ∈ A, the winding number Nγ ∈ Z is defined so that 2πNγ is equal to the total
curvature, or equivalently

2πNγ = θ(1)− θ(0),

where θ : I → R is a continuous representation of tangential angle (unique up to
addition by a constant of 2πZ). The winding number is obviously continuous with
respect to the C1-topology, and hence continuous with respect to the weak and strong
H2-topologies. We denote by An ⊂ A the set of all curves with Nγ = n. Then, since
Nγ is discrete-valued and (weakly and strongly) continuous on A, for any n ∈ Z the
set An is open and closed in A with respect to both the weak and strong H2-topologies.
Since An is weakly closed, in the same way as 2.A, we can prove that for any n ∈ Z
there is a minimizer of E among An. Then, since An is strongly open, it turns out
that such a minimizing curve is nothing but a local minimizer in the whole space A.
Any curve with Nγ ̸= 0 has a self-intersection, and thus there are infinitely many
self-intersecting (and overhanging) local minimizers in A. In the membrane setting
A∗, the above argument does not work since the winding number of any curve is zero,
and thus the existence of overhanging local minimizers is nontrivial.

2.5.5 Periodic boundary condition

We finally give a brief remark on periodicity. In this chapter we assumed that
admissible curves and minimizers have a same period, but the paper [17] proposes
a numerical example of a global minimizer of a period several times a substrate period.
Hence, physically, a more natural assumption is that, if an original substrate has a
period λ, then a minimizer γ has the period nλ for a positive integer n. It is not
easy to determine n for a general case. However, in terms of scale, our assumption
would be formally justified. In fact, the elasto-capillary length scale ℓ =

√
C/σF may
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be interpreted as the optimal bending scale of a minimizer (as in [15, 34]), and thus
we would formally expect that a minimizing curve crosses over several periods of a
substrate if and only if the scales ℓ and λ balance each other out (ℓ ∼ λ), where λ is
the original substrate period (wavelength). In our normalized setting, this balance is
described as ε ∼ 1. The main concerns in this chapter are the cases that ε ≫ 1 and
ε ≪ 1 (even though our results give more precise conditions), and hence our periodic
assumption would not be restrictive from this viewpoint. The case that ε ∼ 1 is of
course more interesting and challenging, but our study is a first step and does not
address the precise analysis.



Appendices

2.A Existence of minimizers

We confirm the existence theorem (Theorem 2.2.1) by a direct method in the calculus of
variations. In this part we deal with a more general σ; we assume that the values of σ
may depend on the positions in ∂Ω. However, we still assume that σ ≥ σB holds for a
positive constant σB > 0, and σ ≡ σF in Ω for a constant σF > σB .

Proof of Theorem 2.2.1. We first note that infAE ≤ σF by (2.2.4) and the case infAE = σF
is trivial since a trivial straight line competitor is nothing but a minimizer. Thus we may
assume that infAE < σF .

Take a minimizing sequence {γn}n ⊂ A such that

σF > E[γn] → inf
A
E (≥ σB).

Without loss of generality, we may assume that all the curves are of constant speed. In
this case, the total energy of γn is represented as

E[γn] =
C

2L3
γn

∫
I
|γ̈n(t)|2dt+ Lγn

∫
I
σ(γn(t))dt.

Now we obtain the boundedness of {γn}n in H2(I;R2). Since LγnσB ≤ E[γn],
the sequence {Lγn}n is bounded. Thus, since γn is of constant speed, the sequence
of ∥γ̇n∥2 = Lγn is also bounded. Moreover, since C

2L3
γn
∥γ̈n∥22 ≤ E[γn], the sequence

of ∥γ̈n∥2 is also bounded. Finally, since E[γn] < σF , we see that all the curves γn
must touch ∂Ω. Combining this fact with the uniformly boundedness of length and
the periodic boundary condition, we find that the sequence of ∥γn∥∞ is bounded, and
thus the sequence of ∥γn∥2 is also bounded. Therefore, the sequence {γn}n is bounded
in H2(I;R2).

Noting that H2(I;R2) is compactly embedded in C1(Ī;R2), there exists γ ∈
H2(I;R2) such that, up to a subsequence (not relabeled), γn converges to γ in C1 and
weakly in H2. Notice that γ ∈ A, the curve γ is of constant speed, and Lγn → Lγ ≥ 1.
It only remains to prove lim infn→∞E[γn] ≥ E[γ]. The lower semicontinuity of σ and
Fatou’s lemma imply

lim inf
n→∞

∫
I
σ(γn(t))dt ≥

∫
I
σ(γ(t))dt.
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Moreover, lim infn→∞ ∥γ̈n∥2 ≥ ∥γ̈∥2 holds since γ̈n → γ̈ weakly in L2. Noting the
convergence of length, we obtain the lower semicontinuity of E. Consequently, the
curve γ is a minimizer.



References

[1] H. W. Alt, L. A. Caffarelli, Existence and regularity for a minimum problem with
free boundary, J. Reine Angew. Math. 325 (1981), 105–144.

[2] G. Bellettini, L. Mugnai, Characterization and representation of the lower
semicontinuous envelope of the elastica functional, Ann. Inst. H. Poincaré Anal.
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Chapter 3

A free boundary problem for elastic curves II:
Singular limit

This chapter is a direct continuation of Chapter 2. In this chapter we deal with the
almost same adhesion problem on elastic curves as Chapter 2 for smooth substrates.
The only difference from the previous chapter is that the adhesion coefficient may be
inhomogeneous, that is, its values may depend on the positions. In this chapter we
consider the case of small bending rigidity. For a general periodic graph substrate of
class C2, we first study the case of no bending rigidity precisely, and then obtain a
singular limit result in terms of Γ-convergence in the small bending rigidity limit. The
singular limit result is applied to obtaining the precise convergences of sequences of
global minimizers. As a corollary, we prove that any global minimizer is represented
by a graph providing that the bending rigidity is small.

Keywords: Free boundary problem; Euler’s elastica; Obstacle problem; Γ-convergence;
Singular perturbation; Graph representation.

3.1 Introduction

3.1.1 Problem

Let us briefly recall our adhesion problem. Let Ω = {y > ψ(x)} ⊂ R2, where ψ ∈ C2(R)
is a given function (substrate) with the periodicity ψ(x + 1) = ψ(x). We consider only
C2-substrates in this chapter. For a planar curve γ constrained in the closure Ω, the total
energy is defined as

Eε[γ] = ε2
∫
γ
κ2ds+

∫
γ
Θ(γ)ds,

where κ denotes the curvature, and s denotes the arc length parameter. Here ε > 0 is
a given constant, and the function Θ : Ω → R is a contact potential function defined as
Θ ≡ 1 in Ω and Θ(x, y) = α(x, y) on ∂Ω, where α : ∂Ω → (0, 1) is a given uniformly
continuous function with the periodicity α(x + 1, y) = α(x, y). Unlike Chapter 2, the
adhesion coefficient α may be inhomogeneous (i.e., depending on the position). Then
our problem is formulated as

min
γ∈X2,2

Eε[γ],
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FIGURE 3.1: Graph minimizers for ε→ 1 (left) and ε≪ r (right), where 1 is the period
of the substrate ψ and r = 1/∥ψ′′∥∞.

FIGURE 3.2: An overhanging minimizer for r ≪ ε≪ 1.

where X2,2 is a certain space of periodic W 2,2-curves (see Section 3.4). See Chapters 1,
2 or the paper [9] for more details of the backgrounds and references on our problem.

We also recall that, at least formally, the constant ε corresponds to the “minimal
bending scale”, i.e., for any minimizing curve, the minimal radius of curvature in the
free part would have the scale ε. As shown in the previous chapter, comparing the
constant ε and typical quantities of ψ plays an important role for the shape analysis
on minimizers. In the previous chapter, we especially proved the following facts; if
ε → ∞, then any minimizer is a graph curve (Figure 3.1 left); and if r ≪ ε ≪ 1 (where
r := 1/∥ψ′′∥∞ is the minimal bending scale of ψ), then there is a chance that a minimizer
overhangs (Figure 3.2).

3.1.2 Main results

The purpose of this chapter is to study the remaining case ε ≪ r. In this case, in view
of the minimal bending scale, we expect that any minimizer is represented by a graph
as in the right of Figure 3.1. In this chapter we prove that this expectation is true in
the sense that, for any fixed α and ψ of class C2, there is small ε̄ > 0 such that for any
ε ∈ (0, ε̄) any minimizer of Eε is represented by a graph (Corollary 3.6.1).

The above intuitive expectation is however not easy to justify rigorously. For the
justification, we take the following steps; we first prove that in the case that ε = 0

any minimizer is represented by a Lipschitz graph (Figure 3.3 right); we then prove
that for any subsequence of minimizers of Eε there is a subsequence converging to a
minimizer of E0 as ε → 0 in a certain sense (Figure 3.3 left). Our convergence result is
enough sharp to conclude the graph representations of minimizers for small ε. In what
follows, we explain the above steps more precisely. Throughout this paper, we deal
with constant speed curves in principle.

If ε = 0, then our problem degenerates in the sense that the higher order term of
the energy vanishes. In this case, the setting of W 2,2-curves is not suitable, and it is
appropriate to take admissible curves as Lipschitz curves. In fact, due to the adhesion
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FIGURE 3.3: Minimizers for small ε (left), and ε = 0 (right).

FIGURE 3.4: Cutting a loop (left), and replacing a free part with an adhering curve
(right): the procedures are always allowed if ε = 0.

effect, any minimizer is expected to have “edge” singularities at the contact points as
in the right of Figure 3.3. Our first theorem (Theorem 3.3.7) states that any minimizer
is represented as the graph of a Lipschitz function as in the right of Figure 3.3. To be
more precise, we first prove that any minimizer has a finite number of segment parts
(free parts). This property is naturally expected since the effect of adhesion implies that
a “small free part” should be replaced by an adhering curve in order to minimize E0 as
in the right of Figure 3.4. We then confirm that any minimizer has no self-intersection.
This is also natural since any “loop” should be cut to minimizeE0 as in the left of Figure
3.4. By using the fact of no self-intersection, we prove that any minimizer is represented
by the graph of a Lipschitz function. In this part we employ the Jordan curve theorem
to control the global behavior of minimizers. Moreover, we also prove that the angles θ
of edges are determined by the adhesion coefficient α at the contact points p ∈ ∂Ω; any
contact angle θ satisfies Young’s equation cos θ = α(p). We mention that similar facts
have been proved in the author’s previous paper [9], but the paper [9] deals with only
graph curves. In the present chapter, the arguments are extended to general non-graph
curves. In particular, obtaining the graph representation of a minimizer is a totally new
part.

We then study the convergence of minimizers of Eε as ε → 0. Since our general
curve setting implies an L∞-compactness, it is easy to prove that any sequence of
minimizers of Eε has a subsequence converging to a minimizer of E0 in L∞. However,
this convergence does not imply the graph representations of minimizers. Our goal
is to prove an “adhesion convergence”, i.e., up to a subsequence, any sequence of
minimizers {γε}ε converges to a minimizer γ of E0 in the sense that γε has the same
number of contact points as γ for small ε, and moreover the positions of the contact
points of γε converge to those of γ as ε→ 0 (see Definition 3.5.1 for details). Combining
the adhesion convergence with the straightening result in Chapter 1, we obtain the
graph representation theorem as in Corollary 3.6.1.

The adhesion convergence is proved by a first order expansion of Eε. For
minimizers γε, it is not difficult to prove the zeroth order energy expansion, i.e., as
ε→ 0,

Eε[γε] = minE0 + o(1).(3.1.1)
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FIGURE 3.5: Replacing free parts with adhering curves: these are allowed even if ε > 0
while the endpoints are “ordered”.

FIGURE 3.6: Examples of free parts that may not be replaced by adhering curves when
ε > 0.

This expansion implies the following facts; up to a subsequence, the sequence of γε
converges to a minimizer γ of E0 in L∞, and moreover γε “almost” adheres to the
substrate near the part where γ adheres. If admissible curves are supposed to be graph
curves, then the above facts imply the adhesion convergence with comparative ease. In
fact, in the graph setting, we may always replace a small free part with an adhering
curve as in the left of Figure 3.5, and this procedure makes the energy Eε strictly
smaller while ε is sufficiently small; hence, we find that for small ε a minimizer is not
“almost” but “completely” adhering to the substrate near the part where γ adheres (as
in Figure 3.3). However, our admissible curves are not necessarily to be graph curves,
and hence the problem is more involved. In particular, the above replacing procedure
is not necessarily allowed in general; Figure 3.5 and Figure 3.6 indicate some allowable
and non-allowable cases, respectively. Indeed, there are sequences of admissible curves
which satisfy (3.1.1) but the keep having small free parts as in Figure 3.6. In other
words, the zeroth order expansion (3.1.1) is not enough sharp to exclude such planar
tangles.

In order to confirm that minimizers γε of Eε have no planar tangles, we obtain the
following first order energy expansion (Corollary 3.4.7):

Eε[γε] = minE0 +mε+ o(ε)(3.1.2)

as ε → 0, where m ≥ 0 is a constant depending on ψ and α. As shown in Chapter 1,
the first order expansion of an elastic energy is expected to control the precise shapes
of minimizers. We prove that in fact the expansion (3.1.2) is enough sharp to exclude
planar tangles. Accordingly, we obtain our main result (Theorem 3.5.2) which states
that any L∞-convergent sequence of minimizers satisfies the adhesion convergence.

The expansion (3.1.2) is a direct corollary of Theorem 3.4.6, which is one of our main
results. Theorem 3.4.6 provides the first order asymptotic expansion of the energy Eε
as

Eε = E0 + εF + o(ε)
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in the sense of Γ-convergence (cf. [1, 5]) with respect to the L∞-topology. The singular
limit energy F is defined for any minimizer γ of E0 as

F [γ] =

∫
Cγ

4(
√
2−

√
1 + α)dH0,

where Cγ ⊂ ∂Ω denotes the set of the contact points of γ, and H0 denotes the
zero-dimensional Hausdorff measure. The energy F counts the number of contact
points weighted by the adhesion coefficient α. The constant m in (3.1.2) is nothing
but the minimum of F . Theorem 3.4.6 is a generalization of the main theorem in
the aforementioned paper [9], which provides the same asymptotic expansion in a
graph setting (with a different boundary condition and a slightly stronger topology).
We emphasize that our generalization is not a mere graph-to-curve extension, but
quite meaningful. In fact, thanks to our general curve setting, the Γ-expansion
result obtained in the present paper is compatible with the equi-coerciveness of Eε.
Such a compatibility is not valid in the previous W 1,1-graph setting in [9] due to
the lack of compactness. The compatibility is important since it is not until the
equi-coerciveness (compactness) holds that any sequence of minimizers of Eε has
a subsequence converging to a minimizer of F ; the Γ-expansion itself implies only
that any “convergent” sequence of minimizers of Eε converges to a minimizer of F .
Minimizing F yields a selection principle among minimizers of E0 as stated in [9], and
our generalization is the first result to completely justify the selection principle for Eε
as ε→ 0.

3.1.3 Organization

We prepare definitions and state basic properties on E0 in Section 3.2. We then prove
precise properties of minimizers of E0 in Section 3.3. We prove the Γ-expansion of
Eε in Section 3.4. By using the expansion we prove the main theorem of adhesion
convergence in Section 3.5. Finally, we prove the graph representation result in Section
3.6.

3.2 Preliminaries on the energy E0

We first prepare some terminologies for general curves. Let J be a bounded open
interval, and J̄ be its closure. LetW 1,∞(J ;R2) be the set of vector-valuedW 1,∞-Sobolev
curves. We denote the length of γ ∈W 1,∞(J ;R2) by

L[γ] =
∫
J
|γ̇(t)|dt.

A curve γ ∈ W 1,∞(J ;R2) is called regular if there is a positive constant c > 0 such that
|γ̇| ≥ c a.e. in J . Any regular curve has a positive length. We remark that a curve
γ ∈ W 1,∞(J ;R2) may not be regular in general. A curve γ ∈ W 1,∞(J ;R2) is called
constant speed if there is L ≥ 0 such that |γ̇| = L a.e. in J . In this case, the constant L is
nothing but the length, but often called the speed of γ.
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A well-known fact identifies the set W 1,∞(J ;R2) with the set Lip(J̄ ;R2), namely,
the set of vector-valued Lipschitz functions defined on the closure of J . Hence, we may
regard that any curve γ ∈W 1,∞(J ;R2) is defined pointwise in J̄ (up to the endpoints).
Moreover, any Lipschitz curve γ ∈ Lip(J̄ ;R2) is differentiable almost everywhere in
J̄ by Rademacher’s theorem, and this classical derivative coincides with the weak
derivative almost everywhere. Theses facts are frequently used in this paper without
notice.

We also recall the following compactness, which is a direct consequence of the
Arzelà-Ascoli theorem (see Appendix 3.A).

Lemma 3.2.1. Let {γk}k ⊂ W 1,∞(J ;R2) be a bounded sequence in W 1,∞. Then there are
γ ∈W 1,∞(J ;R2) and a subsequence {γk′}k′ such that γk′ → γ in L∞. Moreover,

lim inf
k′→∞

∥γ̇k′∥∞ ≥ ∥γ̇∥∞.

Now we shall define our problem. Throughout this paper, we assume that a domain
Ω ⊂ R2 is admissible in the following sense.

Definition 3.2.2 (Admissible domain). A domain Ω ⊂ R2 with C2-boundary ∂Ω is
called admissible if Ω = {y > ψ(x)}, where ψ ∈ C2(R) is a function such that ψ(x+1) =

ψ(x) for any x ∈ R and ψ attains its maximum at the origin.
For any given admissible Ω ⊂ R2, there is a (sufficiently small) positive constant

RΩ > 0 such that the curvature of the boundary κ∂Ω satisfies

max
p∈∂Ω

|κ∂Ω(p)| ≤ 1/RΩ,

and for any p ∈ ∂Ω the set ∂Ω∩BRΩ
(p) is path-connected and represented by the graph

of a C2-function in the normal direction of ∂Ω. Here BRΩ
(p) ⊂ R2 denotes the open

ball of radius RΩ centered at p. We call RΩ admissible constant of Ω.

Remark 3.2.3 (Geodesic in boundary). Some of our arguments in this paper may work
for more general open sets. However, in this paper, we restrict ourselves to only
admissible domains in order to avoid difficulties due to the topological generality of
boundaries. For an admissible domain Ω, it is obvious that for any two different points
in the boundary p0, p1 ∈ ∂Ω, there exists a constant speed C2-curve γ : [t0, t1] → ∂Ω

such that γ(t0) = p0 and γ(t1) = p1. Such a curve is unique up to the choice of domain
[t0, t1]. We call such γ geodesic in ∂Ω joining p0 to p1.

Remark 3.2.4. The assumption that ψ attains its maximum at the origin is just a
normalization due to the periodicity, and not restrictive.

Let I be the open unit interval (0, 1). We say that a curve γ ∈W 1,∞(I;R2) is confined
in Ω if γ ∈ W 1,∞(I; Ω), or in other words, γ(t) ∈ Ω for any t ∈ Ī . A curve γ = (x, y) ∈
W 1,∞(I;R2) is called admissible if γ is constant speed and confined in Ω, and moreover
satisfies the following periodic boundary condition:

x(0) = 0, x(1) = 1, y(0) = y(1).

Denote by X1,∞ ⊂W 1,∞(I;R2) the set of all admissible curves.



A free boundary problem for elastic curves II: Singular limit 74

For a curve γ ∈ X1,∞, we define the total energy by

E0[γ] :=

∫
γ
Θ(γ)ds :=

∫
I
Θ(γ(t))|γ̇(t)|dt.

Here Θ : Ω → R is the following lower semicontinuous contact potential:

Θ(x, y) =

{
1 in Ω,

α(x, y) on ∂Ω,

where α : ∂Ω → (0, 1) is a uniformly continuous function satisfying the 1-periodicity
with respect to x ∈ R, i.e., α(x, y) = α(x + 1, y) for any (x, y) ∈ R2. Notice that
0 < α ≤ ᾱ < 1, where

α := min
(x,y)∈∂Ω

α(x, y), ᾱ := max
(x,y)∈∂Ω

α(x, y).

For a curve γ defined on an interval J , and for a subset J ′ ⊂ J (at least measurable),
the notation γ|J ′ denotes the restriction of γ to J . The energy E0 is also defined for a
restricted curve.

We exhibit some basic properties on the energy E0, the proofs of which are given
in Appendix 3.A. First, we often use the constant speed reparameterization hereafter
based on the following lemma.

Lemma 3.2.5. For any γ ∈ W 1,∞(J ;R2), which may not be regular, there is a constant speed
reparameterization of γ, i.e., there are a nondecreasing continuous surjective function τ : J̄ →
J̄ and a constant speed curve γ̂ ∈W 1,∞(J ;R2) such that γ = γ̂ ◦ τ . Moreover,

E0[γ] = E0[γ̂].

Since Θ is lower semicontinuous, the energy E0 satisfies the following L1-lower
semicontinuity.

Lemma 3.2.6. Let {γk}k ⊂ W 1,∞(J ; Ω) and γ ∈ L∞(J ; Ω). Suppose that {γk}k is bounded
in W 1,∞ and γk → γ in L1. Then γk → γ in L∞ and γ ∈W 1,∞(J ; Ω) with

lim inf
k→∞

∥γ̇k∥∞ ≥ ∥γ̇∥∞.

Moreover,
lim inf
k→∞

E0[γk] ≥ E0[γ].

In addition, if a convergent sequence of constant speed curves satisfies the energy
convergence for E0, then some other quantities are also controlled.

Lemma 3.2.7. Let {γk}k ⊂ W 1,∞(I; Ω) be a sequence of constant speed curves and γ ∈
W 1,∞(I; Ω). Suppose that γk → γ in L∞ and

lim
k→∞

E0[γk] = E0[γ].

Then
lim
k→∞

E0[γk|J ] = E0[γ|J ]
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holds for any open subinterval J ⊂ I . Moreover, γ is also constant speed, and the speed of γk
converges to the speed of γ as k → ∞.

Finally, we state the existence theorem of minimizers of E0. The proof is given in
Appendix 3.B.

Theorem 3.2.8. The energy E0 : X
1,∞ → (0,∞) attains its minimum in X1,∞.

3.3 Properties of minimizers of E0

In this subsection we prove some properties of minimizers of E0. In particular, any
minimizer is represented by the graph of a Lipschitz function.

3.3.1 Statement on properties of minimizers

To describe our statement, we prepare some definitions.

Definition 3.3.1 (Coincidence set and free boundary). Let J be an open interval and
γ ∈ W 1,∞(J ; Ω). Recall that γ has a unique representation of Lipschitz continuous
curve defined pointwise in J̄ . We define the non-coincidence set and coincidence set by

{γ ∈ Ω} := {t ∈ J̄ | γ(t) ∈ Ω}, {γ ∈ ∂Ω} := {t ∈ J̄ | γ(t) ∈ ∂Ω},

respectively. Moreover, the topological boundary of the non-coincidence set ∂{γ ∈ Ω}
in J̄ is called free boundary.

Since γ is continuous, the sets {γ ∈ Ω} and {γ ∈ ∂Ω} are open and closed in J̄ ,
respectively. Note that the disjoint union of the coincidence and non-coincidence sets
is nothing but J̄ .

Definition 3.3.2 (Partition of time interval). Let N ≥ 0 be a nonnegative integer. We
call closed intervals K0, . . . ,KN ⊂ Ī partition if there are numbers 0 = t0 < t1 < · · · <
t2N+1 = 1 such that Kj = [t2j , t2j+1] for 0 ≤ j ≤ N . In the case that N > 0, we often use
the notation Uj = (t2j−1, t2j) for 1 ≤ j ≤ N as the complement of the partition. We call
N partition number.

Definition 3.3.3 (Partitional regular). A curve γ ∈ X1,∞ is called partitional regular if
there is a partition K0, . . . ,KN such that the coincidence set {γ ∈ ∂Ω} is equal to the
(disjoint) union of K0, . . . ,KN , and the curve γ is of class C1 in the non-coincidence set
{γ ∈ Ω} if N > 0.

Remark 3.3.4. Note that for any partitional regular curve its partition is unique. If
the partition number N is positive, then the (disjoint) union of the complement
Uj = (t2j−1, t2j), j = 1, . . . , N , is nothing but the non-coincidence set. Moreover,
the set of the points t1, . . . , t2N is nothing but the free boundary set. If N = 0,
then the non-coincidence set and the free boundary are empty, and hence the above
interpretations are also valid in this case.
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Definition 3.3.5 (Contact angle). Let γ ∈ X1,∞ be a partitional regular curve with
positive partition number N > 0. Recall that the free boundary set consists of a finite
number of times t1, . . . , t2N ∈ I which are the points of partition except t0 = 0 and
t2N+1 = 1. We define contact points p1, . . . , p2N by pi := γ(ti). For any contact point pi,
there is a unique angle θi ∈ [−π, π) such that

Rθi γ̇(ti−) = γ̇(ti+),

where
γ̇(ti±) := lim

t→ti±0
γ̇(t)

andRθ denotes the counterclockwise rotation matrix through angle θ. We call θi contact
angle at pi.

Definition 3.3.6 (Ordered partitional regular). A partitional regular curve γ ∈ X1,∞ is
ordered partitonal regular if either, the partition number N is zero, or N is positive and
the contact points p1, . . . , p2N satisfies 0 < xp1 < · · · < xp2N < 1, where xp denotes the
x-component of p.

We are now in a position to state our main theorem in this section.

Theorem 3.3.7 (Minimizers for admissible domains). Any minimizer γ ∈ X1,∞ of E0

is ordered partitional regular. In addition, the restriction γ|Kj is a geodesic in ∂Ω for any
0 ≤ j ≤ N , where K0, . . . ,KN are the partition. If N > 0, then the restriction γ|Uj is
a segment for any 1 ≤ j ≤ N , where U1, . . . , UN are the complement. Furthermore, for
any 1 ≤ i ≤ 2N , the contact angle θi at the contact point pi satisfies cos θi = α(pi) and
θi ∈ (0, π/2).

We remark that for any given p ∈ ∂Ω there is a unique candidate of the contact angle
at p by the above contact angle condition. The above theorem immediately implies that
any minimizer is represented by the graph of a function, and especially ensures that
there is a minimizer in a graph setting.

Corollary 3.3.8 (Lipschitz graph representation). For any minimizer γ ∈ X1,∞ of E0,
there is a Lipschitz function u : Ī → R with u(0) = u(1) such that γ is the constant speed
reparameterization of the graph curve of u.

3.3.2 Finitely adhesion property

In this subsection we prove that any minimizer adheres to a substrate at most finitely
many times.

Lemma 3.3.9. Let J be an bounded interval. Let p0, p1 ∈ ∂Ω, and X1,∞
p0,p1 be the set of all

constant speed curves inW 1,∞(J ; ∂Ω) joining p0 to p1. Then the energyE0 : X
1,∞
p0,p1 → (0,∞)

attains its minimum in X1,∞
p0,p1 . Moreover, a minimizer is the unique geodesic in ∂Ω joining p0

to p1.

Proof. If a curve γ ∈ X1,∞
p0,p1 is not injective, then we can make a new curve γ′ by cutting

the “loop” (and reparameterization) such that γ′ ∈ X1,∞
p0,p1 and E0[γ

′] < E0[γ]. Hence,
the only minimizer is the unique injective curve in X1,∞

p0,p1 , which is nothing but the
constant speed curve γ ∈ C2(J̄ ; ∂Ω) joining p0 to p1.
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Lemma 3.3.10. Let p0, p1 ∈ ∂Ω with r := |p1 − p0| < RΩ. Let J be a bounded open interval
and γΩ ∈ C2(J̄ ; ∂Ω) be the unique geodesic joining p0 to p1 in ∂Ω. Then γΩ(J̄) ⊂ BRΩ

(p0),
and the length of γΩ satisfies

L[γΩ] ≤
r

1− r/RΩ
.

Proof. By the definition of admissible constant RΩ, the boundary ∂Ω is connected and
represented by a graph in the open ball BRΩ

(p0); there is a Euclidean transformation
Φ : R2 → R2 with Φ(p0) = O := (0, 0) such that the set Φ(∂Ω ∩ BRΩ

(p0)) coincides
with {y = ϕ(x)} ∩ BRΩ

(O) for some function ϕ ∈ C2(R) with ϕ(0) = ϕ′(0) = 0. Since
r = |p1 − p0| < RΩ, the point p1 belongs to the open ball BRΩ

(p0). Thus, there is x1 ∈ U

such that Φ(p1) = (x1, ϕ(x1)). We may assume that x1 ≥ 0 without loss of generality.
Moreover, we may assume that x1 > 0 since the case that x1 = 0, i.e., p0 = p1, is trivial.

By the above graph representation, we see that the unique geodesic γΩ in ∂Ω joining
p0 to p1 is a reparameterization of the graph curve of ϕ : [0, x1] → R up to the
transformation Φ. Hence, in particular, γΩ(J̄) ⊂ BRΩ

(p0). Moreover, the length of
γΩ is represented as

L[γΩ] =
∫ x1

0

√
1 + ϕ′2dx.

Recall that the upward curvature κϕ of the graph curve of ϕ satisfies(
− 1√

1 + ϕ′2

)′

=
ϕ′′

(1 + ϕ′2)3/2
= κϕ.

Integrating it from 0 to x ∈ [0, x1] and noting that ϕ′(0) = 0, |x1| ≤ r, and κϕ ≤ 1/RΩ,
we have

1− 1√
1 + ϕ′(x)2

=

∫ x

0
κϕdx ≤ |x1|

(
max
[0,x1]

κϕ

)
≤ r

RΩ
,

and hence
max
x∈[0,x1]

√
1 + ϕ′2(x) ≤ 1

1− r/RΩ
.

This implies that

L[γΩ] ≤ |x1|
(

max
x∈[0,x1]

√
1 + ϕ′2(x)

)
≤ r

1− r/RΩ
.

The proof is complete.

The following lemma states that a “small free part” must adhere to a substrate in
order to minimize E0. For a Lebesgue measurable set A ⊂ R we denote the measure by
|A|.

Lemma 3.3.11. Let J = (t0, t1) be a bounded open interval. Let γ ∈W 1,∞(J ; Ω) be any curve
of constant speed L > 0 such that γ(t0), γ(t1) ∈ ∂Ω, {γ ∈ Ω} = J , and

L|J | (= L[γ]) ≤ RΩ(1− ᾱ(1 + δ))
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for some δ ∈ (0, 1/ᾱ − 1). Then the unique geodesic γΩ ∈ C2(J̄ ; ∂Ω) joining γ(t0) to γ(t1)
satisfies

E0[γΩ] ≤
1

1 + δ
E0[γ].

Moreover, the speed LΩ of γΩ satisfies 0 ≤ LΩ < L/ᾱ.

Proof. Since J ⊂ {γ ∈ Ω}, the energy E0[γ] is nothing but the length:

E0[γ] = L|J | > 0.

Let r := |γ(t1) − γ(t0)|. The case r = 0 is obvious (since E0[γΩ] = 0 and LΩ = 0) so we
may assume that r > 0. Since γΩ lies in ∂Ω, we easily find that E0[γΩ] ≤ ᾱL[γΩ]. Since
L|J | < RΩ by the assumption, Lemma 3.3.10 implies the upper bound

L[γΩ] = LΩ|J | ≤
r

1− r/RΩ
,

and hence
E0[γΩ] ≤ ᾱLΩ|J | ≤

ᾱr

1− r/RΩ
.

Since r ≤ L|J | and r < RΩ(1− ᾱ(1 + δ)), the above right-hand term is estimated as

ᾱr

1− r/RΩ
≤ L|J |

1 + δ
=

1

1 + δ
E0[γ],

and hence E0[γΩ] ≤ 1
1+δE0[γ]. This is the first conclusion. Moreover, the intermediate

estimates (and |J | > 0) imply that LΩ ≤ (L/ᾱ)/(1 + δ) < L/ᾱ.

The above lemma implies the finite adhesion property of minimizers.

Proposition 3.3.12. Let γ ∈ X1,∞ be a minimizer of E0. Then the number of the connected
components of {γ ∈ Ω} is finite.

Proof. If the number of the connected components of {γ ∈ Ω} is infinite, then for any
small δ > 0 there is a connected component J of {γ ∈ Ω}, which is an open interval,
such that γ(∂J) ⊂ ∂Ω and |J | < δ. Let δ be taken so that δ ≤ RΩ(1 − ᾱ)/L ab initio,
where L is the speed of γ. Then the curve γ|J satisfies the assumption of Lemma 3.3.11,
and hence the geodesic γΩ in ∂Ω joining the endpoints of γ|J satisfies E0[γ|J ] > E0[γΩ].
Then the curve γ replaced by γΩ in J has a strictly smaller energy than γ; hence, so does
its constant speed reparameterization. This contradicts the minimality of γ.

In the rest of this subsection, we state that for an almost adhering curve, which may
have an infinitely many free parts, the corresponding geodesic has a smaller energy.
This result is not used in this section, but used later (Lemma 3.5.7).

Lemma 3.3.13. Let J = (t0, t1) be a bounded open interval and γ ∈ W 1,∞(J ; Ω) be any
curve of constant speed L > 0 such that γ(t0), γ(t1) ∈ ∂Ω. Suppose that any open subinterval
J ′ ⊂ {γ ∈ Ω} satisfies

L|J ′| < RΩ(1− ᾱ).
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Then the unique geodesic γΩ ∈ C2(J̄ ; ∂Ω) in ∂Ω joining γ(t0) to γ(t1) satisfies

E0[γΩ] ≤ E0[γ].

Proof. The case that {γ ∈ Ω} = ∅ is trivial by Lemma 3.3.9; hence, we may assume
that {γ ∈ Ω} ̸= ∅. Since {γ ∈ Ω} is an open set in R, it consists of at most countably
many disjoint open intervals J1, J2, · · · ⊂ J . Moreover, since

∑∞
i=1 |Ji| ≤ |J | < ∞, we

have limi→∞
∑∞

k=i |Jk| = 0. For each interval Ji = (ti0, t
i
1), the curve γ touches ∂Ω at

the endpoints, i.e., γ(ti0), γ(t
i
1) ∈ ∂Ω. Thus, the assumption that L|Ji| < RΩ(1− ᾱ) and

Lemma 3.3.11 imply that the unique geodesic γiΩ ∈ C2(J̄i; ∂Ω) in ∂Ω joining γ(ti0) to
γ(ti1) satisfies E0[γ

i
Ω] < E0[γ|Ji ] and 0 ≤ Li < L/ᾱ, where Li denotes the speed of γiΩ.

We then define a sequence of Lipschitz curves γi ∈W 1,∞(J ; Ω) by γ0 := γ and

γi :=

{
γiΩ in Ji
γi−1 otherwise.

Since E0[γi]− E0[γi−1] = E0[γ
i
Ω]− E0[γ|Ji ] < 0, the energy E0[γi] strictly decreases as i

increases.
If the number N of Ji is finite, then γN is a Lipschitz curve joining γ(t0) to γ(t1)

along ∂Ω. Notice that E0[γ] = E0[γ0] > E0[γN ]. We denote by γ̂N the constant speed
reparameterization of γN . By Lemma 3.2.5, E0[γN ] = E0[γ̂N ]. Moreover, since γ̂N (J̄) ⊂
∂Ω, Lemma 3.3.9 immediately implies that E0[γ̂N ] ≥ E0[γΩ]. Therefore, we find that
E0[γ] > E0[γΩ], which is the desired conclusion.

The remaining case is that the number of Ji is infinite. Even in this case, the
sequence {γi}i ⊂W 1,∞(J ;R2) is bounded in W 1,∞; in fact,

∥γ̇i∥∞ ≤ max{Li, L} ≤ L/ᾱ

and the endpoints γi(∂J) are fixed. Moreover, {γi}i is a Cauchy sequence in L1(J ;R2);
in fact, Lemma 3.3.10 implies that γiΩ(Ji) ⊂ BRΩ

(γ(ti0)) and hence

∥γi − γi+1∥L1 =

∫
Ji

|γ − γiΩ| ≤
∫
Ji

(
|γ|+ |γ(ti0)|+ |γiΩ − γ(ti0)|

)
≤ |Ji|(2∥γ∥∞ +RΩ).

Since limi→∞
∑∞

k=i |Jk| = 0, the sequence {γi}i is Cauchy. Thus there is a limit γ∞ ∈
L1(J ;R2) such that γi → γ∞ in L1. Then Lemma 3.2.6 implies that γ∞ belongs to
W 1,∞(J ;R2), the L∞-convergence γi → γ∞ holds, and

lim inf
i→∞

E0[γi] ≥ E0[γ∞].

In particular, E0[γ] > E0[γ∞]. Notice that γ∞ has the same endpoints as γ, i.e, the curve
γ∞ joins p0 to p1. We also notice that γ∞(J̄) ⊂ ∂Ω by definition of γi. Then, by the
same argument as in the finite case, we conclude that E0[γ] > E0[γΩ]. The proof is now
complete.
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3.3.3 Partitional regularity and contact angle condition

In the previous subsection, it is proved that for any minimizer γ ∈ X1,∞ the number of
the connected components of {γ ∈ Ω} is at most finite. Hence, {γ ∈ ∂Ω} consists of the
disjoint union of closed intervals of positive width or isolated single points. To obtain
the partitional regularity, we need to prove that a minimizer γ is smooth in {γ ∈ Ω} (in
fact straight), the curve γ touches ∂Ω at least near ∂I , and any connected component of
{γ ∈ ∂Ω} has a positive width (not a point).

To uniformly deal with periodic curves at the endpoints and interior points of I , it
is convenient to use the following periodic extension.

Definition 3.3.14 (Periodic extension of curves). For a curve γ ∈ X1,∞ we define its
(unique) periodic extension γ̃ : R → R2 so that γ(t) = γ̃(t) for t ∈ I and γ̃(t) = γ̃(t)+(1, 0)

for t ∈ R.

For a periodic extension curve, the coincidence set {γ̃ ∈ ∂Ω} and non-coincidence
set {γ̃ ∈ Ω} are similarly defined. In particular, each connected component of {γ̃ ∈ Ω}
is an open interval in R. We notice that if γ is a minimizer of E0 then its periodic
extension γ̃ also minimizes E0 locally, i.e., E0[γ̃|J ] ≤ E0[ζ] for any open interval J with
|J | ≤ 1 and any ζ ∈W 1,∞(J ; Ω) with γ̃ = ζ on ∂J .

The following proposition states that a minimizer γ is straight in {γ ∈ Ω}, which
especially implies the smoothness of γ in {γ ∈ Ω}.

Proposition 3.3.15. Let γ ∈ X1,∞ be a minimizer of E0 and γ̃ be its periodic extension. Then,
for each (open) connected component U of {γ̃ ∈ Ω}, the curve γ̃|U is an open segment.

Proof. Since U ⊂ {γ̃ ∈ Ω}, the curve γ̃|U minimizes the length functional locally, thus
the assertion follows by the standard minimal surface theory. (Since our problem is
one-dimensional, it is also proved by an elementary argument.)

We next prove that the adhesion effect implies that the segment parts do not contact
∂Ω tangentially.

Lemma 3.3.16. Let γ ∈ X1,∞ be a minimizer of E0. Let J ⊂ {γ ∈ Ω} be an open interval.
Suppose that γ(t0) ∈ ∂Ω for an endpoint t0 ∈ ∂J . Then the segment γ|J is not tangent to ∂Ω
at γ(t0).

Proof. We prove by contradiction. Suppose that γ|J would be tangent to ∂Ω at p0 :=

γ(t0). To obtain a contradiction, we suitably perturb γ in Br̄(p0), where r̄ is sufficiently
small to be less than RΩ and the length of the segment γ|J . Since we only consider
a local perturbation, we may suppose the following assumptions; the point p0 is the
origin, γ|J is the segment ℓγ joining the origin to (r̄, 0) ∈ R2 in Br̄(p0), the domain Ω

is the epigraph of ψ in Br̄(p), and ψ′(0) = ψ(0) = 0. Any other case is reduced to the
above case by a Euclidean transformation.

Then there is a sequence δj ↓ 0 such that for any j the (open) segment joining
(δj , ψ(δj)) to (r̄, 0) is included in Ω. Denote the segment by ℓj . Moreover, we denote the
geodesic in ∂Ω joining the origin to (δj , ψ(δj)) by γjΩ.

We now perturb γ; we replace the segment part ℓγ by γjΩ and ℓj . Note that the
perturbed curves remain admissible up to the reparameterization. We denote such a
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curve by γj . Then we calculate the first variation of E0 as

E0[γj ]− E0[γ] = E0[γ
j
Ω] + E0[ℓj ]− E0[ℓγ ]

=

∫ δj

0
α̃(x)

√
1 + ψ′2(x)dx+

√
(r̄ − δj)2 + ψ′(δj)2 − r̄

= (α̃(0)− 1)δj + o(δj),

as δj → 0, where α̃(x) := α(x, ψ(x)). Since α̃(0) ≤ ᾱ < 1, the leading order term is
negative, and hence E0[γj ] < E0[γ] for any large j. This contradicts the minimality of
γ.

In particular, the above contact condition implies the following

Lemma 3.3.17. Let γ ∈ X1,∞ be a minimizer of E0. Then there is t ∈ Ī such that γ(t) ∈ ∂Ω.

Proof. If there would not exist such t ∈ Ī , then γ would be a segment parallel with the
x-axis by Proposition 3.3.15 and the periodic boundary condition. We shift γ downward
to touch ∂Ω. This procedure does not increase the energy. Then we would have a new
minimizer that touches ∂Ω tangentially. This contradicts Lemma 3.3.16.

Then we have the following statement as a maximum principle.

Lemma 3.3.18. Any minimizer γ = (x, y) ∈ X1,∞ of E0 satisfies

max
t∈Ī

y(t) = y(0) = max
x∈Ī

ψ(x) (= ψ(0)).

In particular, ∂I ⊂ {γ ∈ ∂Ω}, i.e., γ touches ∂Ω at the endpoints.

Proof. We easily notice that maxt∈Ī y(t) ≥ y(0) ≥ maxx∈Ī ψ(x). Thus it suffices to prove
that maxt∈Ī y(t) ≤ maxψ. We consider the periodic extension γ̃ = (x̃, ỹ) of γ and prove
that maxt∈R ỹ(t) ≤ maxψ. Obviously, it suffices to confirm the estimate only for the
non-coincidence set, i.e.,

sup
t∈{γ̃∈Ω}

ỹ(t) ≤ maxψ.

By Lemma 3.3.17, the set {γ̃ ∈ ∂Ω} is nonempty. Hence, by periodicity, any connected
component J of {γ̃ ∈ Ω} is a bounded open interval. Moreover, by Proposition 3.3.15,
the curve γ̃|J is a segment joining points in ∂Ω. This implies that supt∈J ỹ(t) ≤ maxψ.

Since J is an arbitrary connected component of {γ̃ ∈ Ω}, the proof is complete.

Proposition 3.3.12, Lemma 3.3.16 and Lemma 3.3.18 immediately imply the
following

Lemma 3.3.19. Let γ = (x, y) ∈ X1,∞ be a minimizer. Then there are closed intervals
K,K ′ ⊂ {γ ∈ ∂Ω} of positive width such that 0 ∈ K and 1 ∈ K ′.

The above fact especially implies that any connected component of {γ ∈ Ω} is an
open interval in R, i.e., {γ ∈ Ω} does not include the endpoints of Ī .

We finally confirm that a minimizer does not touch ∂Ω as a point in I .



A free boundary problem for elastic curves II: Singular limit 82

Proposition 3.3.20. Let γ ∈ X1,∞ be a minimizer of E0. Then for any connected component
K of {γ ∈ ∂Ω}, the set K is a closed interval of positive width, and the curve γ|K is a geodesic
in ∂Ω of positive length.

Proof. By Lemma 3.3.9, the curve γ|K is a geodesic in ∂Ω for any connected component
K. In addition, Lemma 3.3.19 implies that K is not a point if K includes an endpoint of
Ī . Hence, the remaining part is to confirm that any K ⊂ I (included in the interior of Ī)
is not a point.

If K would be a single point {t0}, then it would be isolated in {γ ∈ ∂Ω} by
Proposition 3.3.12, and hence there would be small t̄ > 0 such that

γ((t0 − t̄, t0 + t̄)) ⊂ BRΩ
(γ(t0)),

and the curve γ touches ∂Ω only at t0 in (t0 − t̄, t0 + t̄). Then, both γ|(t0−t̄,t0) and
γ|(t0,t0+t̄) are segments by Proposition 3.3.15. By Lemma 3.3.16, the segments are not
tangent to ∂Ω at γ(t0). Hence, the curve γ would have an “edge” at γ(t0) such that,
in the ball BRΩ

(γ(t0)), the acute angle cone made by the edge is included in Ω. This
edge obviously allows a local modification of γ in Ω to decrease the length, and hence
decrease E0. This contradicts the minimality of γ.

At this time we know that any minimizer γ is partitional regular, and moreover γ is
a segment in each connected component of {γ ∈ Ω}. We now confirm the contact angle
condition.

Proposition 3.3.21. Let γ ∈ X1,∞ be a minimizer of E0. For any contact point p ∈ ∂Ω, the
contact angle θ ∈ [−π, π) satisfies cos θ = α(p).

Proof. For the contact angle condition, it suffices to see local properties for each contact
angle. Thus we consider a sufficiently small interval J = (t0 − t̄, t0 + t̄) ⊂ I so that
γ(t0) = p and γ(J̄) ⊂ BRΩ

(p). Since γ is partitional regular, we may assume that the
curve γ|J̄ is a geodesic in ∂Ω on a half of J̄ , and a segment in Ω on the other half part.
Without loss of generality, we may assume that the geodesic part is the former part
[t0 − t̄, t0]. To obtain the contact angle condition, we suitably perturb γ.

By using a Euclidean transformation, we may assume that the contact point p is the
origin, the domain Ω is the epigraph ψ in BRΩ

(p), and ψ(0) = ψ′(0) = 0. Moreover,
we may assume that the x-components of the geodesic part γ|[t0−t̄,t0] are nonpositive.
Then the segment part γ|[t0,t0+t̄] joins the origin to a point (r̄ cos θ′, r̄ sin θ′) ∈ R2 for
some r̄ ∈ (0, RΩ), where θ′ = |θ| ∈ [0, π] (not necessarily θ′ = θ due to a Euclidean
transformation). Denote the above segment part by ℓγ . By Lemma 3.3.16, the segment
ℓγ is not tangent to ∂Ω, i.e., θ′ ∈ (0, π); this property implies that for any δ ∈ R
with small |δ|, the open segment ℓδ joining (δ, ψ(δ)) to (r̄ cos θ, r̄ sin θ) is included in
Ω. Moreover, for any small δ, we denote the geodesic in ∂Ω joining γ(t0 − t̄) to (δ, ψ(δ))

by γδΩ. Finally, we denote the x-component of the point γ(t0 − t̄) by x̄ < 0.
We now perturb γ; we define a sequence {γδ}δ by replacing γ by the geodesic γδΩ

in [t0 − t̄, t0], and by the segment ℓδ in [t0, t0 + t̄] (and reparameterization). Then we
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calculate the first variation of E0 as

E0[γδ]− E0[γ] = E0[γ
δ
Ω] + E0[ℓδ]− E0[ℓγ ]

=

∫ δ

x̄
α̃(x)

√
1 + ψ′2(x)dx+

√
(r̄ cos θ′ − δ)2 + (r̄ sin θ′ − ψ′(δ))2 − r̄

= (α̃(0)− cos θ′)δ + o(δ),

as δ → 0, where α̃(x) := α(x, ψ(x)). By the minimality of γ, the leading order term
vanishes, i.e., α̃(0) = cos θ′. Since α̃(0) = α(p) and cos θ = cos θ′, the proof is now
complete.

The above result and the positivity α > 0 imply that θ ∈ (−π/2, π/2). However, the
condition θ > 0 is not proved yet. This condition immediately follows by the ordered
partitional regularity, which is proved in the next subsection.

3.3.4 Self-intersection and ordered partitional regularity

We are now in a position to complete the proof of Theorem 3.3.7 by proving that any
minimizer is ordered partitional regular. The order is a global property, so we need
some topological arguments.

We first confirm that any minimizer has no self-intersection.

Lemma 3.3.22. Any minimizer γ ∈ X1,∞ of E0 has no self-intersection.

Proof. We prove by contradiction. Suppose that there would be t0, t1 ∈ Ī such that
t0 < t1 and γ(t0) = γ(t1). By the periodic boundary condition of γ, we notice that
t1 − t0 < 1, i.e., at least one of t0 and t1 is not in ∂I . Then, we can make a new curve
γ′ by cutting the “loop” (and reparameterization) so that γ′ ∈ X1,∞ and E0[γ

′] < E0[γ].
This contradicts the minimality of γ.

This implies that any minimizer is included in the “one period” of a substrate.

Lemma 3.3.23. The image of any minimizer γ ∈ X1,∞ of E0 is included in the set

[Ω] := {(x, y) ∈ Ω | 0 ≤ x ≤ 1, y ≤ maxψ}.

Moreover, any contact point p ∈ ∂Ω of a minimizer satisfies 0 < xp < 1, where xp denotes the
x-component of p.

Proof. We confirm that γ(Ī) ⊂ [Ω]. The y-component part is proved in Lemma 3.3.18.
The x-component part follows by Lemma 3.3.18 and Lemma 3.3.22. In fact, if there is
t ∈ I such that the x-component of γ satisfies x(t) < 0 or x(t) > 1, then the intermediate
value theorem implies that there is t′ ∈ I (not in ∂I) such that x(t′) = 0 = x(0) or
x(t′) = 1 = x(1). By Lemma 3.3.18, y(t′) = y(0) or y(t′) = y(1). This contradicts Lemma
3.3.22.

Let p be a contact point. Since γ(Ī) ⊂ [Ω], we find that 0 ≤ xp ≤ 1. If xp = 0

or xp = 1, then γ would touch ψ tangentially; this contradicts Lemma 3.3.16. Hence,
xp ̸= 0, 1. The proof is now complete.

The following lemma is an essential step for the ordered partitional regularity.
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Lemma 3.3.24. Let γ ∈ X1,∞ be a minimizer of E0. Let p, p′ ∈ ∂Ω be points with p ̸= p′ such
that, for a connected component U of {γ ∈ Ω}, the curve γ̃|U is the segment joining p to p′. Let
γΩ be the geodesic in ∂Ω joining p to p′. Then the curves γ and γΩ intersect only at p and p′.

To prove the above lemma, we recall the Jordan curve theorem (see e.g. [8,
Proposition 2B.1 (b)]).

Lemma 3.3.25 (Jordan curve theorem). For any simple closed curve C : J̄ → R2 (where J
is a bounded interval), the set R2 \ C(J̄) consists of two disjoint connected components; one is
bounded and the other is unbounded.

We call the bounded part inside and the unbounded part outside.

Proof of Lemma 3.3.24. Without loss of generality, we may assume that xp < xp′ . Lemma
3.3.23 implies that 0 < xp < xp′ < 1. We define a simple closed curve C : [0, 4] → R2 so
that

– C|[0,1] is the segment from p to p′,

– C|[1,2] is the segment from p′ to p′ + (0,−1),

– C|[2,3] follows the graph curve of ψ − 1 from p′ + (0,−1) to p+ (0,−1), and

– C|[3,4] is the segment from p+ (0,−1) to p.

We decompose the graph curve of ψ by C into the three parts;

Γ1 = {y = ψ(x) | x < xp},
Γ2 = {y = ψ(x) | xp < x < xp′},
Γ3 = {y = ψ(x) | xp′ < x}.

The set Γ2 is nothing but the image of the geodesic γΩ except the endpoints. It is
straightforward to confirm that Γ2 is in the inside of C, and the other parts Γ1 and
Γ3 are in the outside.

We now prove the assertion by contradiction. Suppose that there would be q ∈ Γ2

and tq ∈ I such that γ(tq) = q. Notice that tq ∈ I \ U since γ(U) ⊂ Ω and γ(∂U) =

{p, p′} ̸∋ q. Then there is a closed interval J̄ ⊂ Ī \U such that the endpoints of J̄ consist
of tq and either 0 or 1. The curve γ|J̄ is a path which connects Γ2 and either Γ1 or Γ3

(since γ(0) ∈ Γ1 and γ(1) ∈ Γ3). Then, by the Jordan curve theorem, γ|J̄ intersects C.
Since γ(J̄) ⊂ Ω and moreover C([0, 4])∩Ω = γ(U), the curves γ|J̄ and γ|U intersect, i.e.,
there are t1 ∈ J̄ ⊂ Ī \ U and t2 ∈ U such that γ(t1) = γ(t2). This contradicts Lemma
3.3.22. The proof is now complete.

We are now in a position to prove the ordered partitional regularity.

Proposition 3.3.26. Let γ ∈ X1,∞ be a minimizer of E0 of positive partition number N > 0.
Then the x-components of the contact points p1, . . . , p2N ∈ ∂Ω satisfy 0 < xp1 < · · · <
xp2N < 1.
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Proof. For convenience, we define p0, p2N+1 ∈ ∂Ω as p0 = γ(0) and p2N+1 = γ(1).
Notice that xp0 = 0 and xp2N+1 = 1. By Lemma 3.3.23, we know that the points
xp1 , . . . , x2N are included in the interval (0, 1). Recall that γ has no self-intersection.
Hence, in particular, we find that xpi ̸= xpi′ for any i ̸= i′.

We first prove that, for j = 0, . . . , N − 1, if xp2j < xp2j+1 , then xp2j+1 < xp2j+2 . We
prove it by contradiction, so suppose that xp2j , xp2j+2 < xp2j+1 . Then there are only the
following two cases; xp2j < xp2j+2 < xp2j+1 and xp2j+2 < xp2j < xp2j+1 . Recall that
γ|[t2j ,t2j+1] is the geodesic joining p2j to p2j+1 in ∂Ω and γ|(t2j+1,t2j+2) is a segment from
p2j+1 to p2j+2 in Ω. Thus, the case that xp2j+2 < xp2j < xp2j+1 contradicts Lemma 3.3.24.
Moreover, if xp2j < xp2j+2 < xp2j+1 , then p2j+2 lies in the geodesic joining p2j to p2j+1

along ∂Ω, and hence γ has a self-intersection as p2j+2 ∈ γ([t2j , t2j+1]); this is also a
contradiction.

Moreover, it is similarly proved that, for j = 0, . . . , N − 1, if xp2j+1 < xp2j+2 , then
xp2j+2 < xp2j+3 . Noting that xp0 = 0 < xp1 , the above order preservations imply that
xp0 < · · · < xp2N+1 . The proof is now complete.

We shall complete the proof of Theorem 3.3.7.

Proof of Theorem 3.3.7. It follows by Propositions 3.3.12, 3.3.20, 3.3.21, and 3.3.26.

3.4 Γ-convergence

Hereafter, we consider the minimizing problem for the original energyEε, where ε > 0.
In this section we obtain a first order singular limit energy of Eε as ε → 0. To this end
we utilize the notion of Γ-convergence.

3.4.1 Definition and basic properties of Γ-convergence

We first recall the definition of Γ-convergence. See [3, 4, 6] for more details.

Definition 3.4.1 (Γ-convergence and equi-coerciveness). Let X be a metric space and
Fε, F : X → [0,∞] be functionals. We say that Fε Γ-converges to F on X as ε → 0 if the
following conditions hold.

(1) For any convergent sequence uε → u in X as ε→ 0,

lim inf
ε→0

Fε[uε] ≥ F [u].

(2) For any u ∈ X , there exists a convergent sequence uε → u in X as ε→ 0 such that

lim sup
ε→0

Fε[uε] ≤ F [u].

The functionals Fε are equi-coercive if the following condition holds.

(3) If {uε}ε ⊂ X satisfies lim supε→0 Fε[uε] < ∞, then there is a subsequence {uεj}j
converging to some u ∈ X in X as εj → 0.

It is well-known that the above conditions imply the following convergences.
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Corollary 3.4.2 (e.g. [4, Theorem 2.1]). Under the above conditions (1)–(3), we have

lim
ε→0

inf
X
Fε = inf

X
F.

Moreover, for any sequence of minimizers of Fε, there is a subsequence converging to a
minimizer of F in X as ε→ 0.

Remark 3.4.3. Our definition of equi-coerciveness is slightly different from the reference
[4], but the difference does not make any change for the proof of Corollary 3.4.2.
In addition, the reference [4] assumes the separability of X throughout, but this
assumption is not used until [4, Theorem 2.1] at least. For Corollary 3.4.2, see e.g. also
[3, Theorem 1.21] or [6, Theorem 7.4].

3.4.2 Γ-convergence for the energy Eε

In this subsection we rigorously state our Γ-convergence result for the energy

Eε[γ] = ε2
∫
γ
κ2ds+

∫
γ
Θ(γ)ds,

where κ is the curvature, s is the arc length parameter, and Θ is the potential function
defined in Section 3.2.

We first define the set of admissible curves for the energy Eε.
Let J be a bounded open interval and J̄ be its closure. Let W 2,2(J ;R2) be the set of

allW 2,2-Sobolev curves, which may not be regular. Recall thatW 2,2(J ;R2) is embedded
inC1(J̄ ;R2). Hence, for any curve inW 2,2(J ;R2), the curve itself and its first derivative
are defined pointwise in J̄ ; in particular, its arc length parameterization is defined in the
classical sense. For any regular W 2,2-curve, the curvature κ is defined in the L2-sense.

We define the set of admissible curves forEε as the set of all curves γ ∈W 2,2(I;R2)∩
X1,∞, where I = (0, 1), such that γ̇(0) = γ̇(1). We denote the set of admissible curves
by X2,2. Notice that any γ ∈ X2,2 is a constant speed C1-regular curve confined in Ω,
and moreover satisfies the periodic boundary condition in the first order sense.

We shall state the existence of minimizers for Eε in this setting. The proof is given
in Section 2.A of Chapter 2.

Theorem 3.4.4. The energy Eε : X2,2 → (0,∞) attains its minimum in X2,2.

We now state our Γ-convergence result on Eε. Let m0 := minX1,∞ E0. Define Fε :

L∞(I;R2) → [0,∞] as

Fε[γ] :=


Eε[γ]−m0

ε
for γ ∈ X2,2 ⊂ L∞(I;R2),

∞ otherwise.
(3.4.1)

Let M0 be the set of all minimizers of E0, i.e.,

M0 := argmin
X1,∞

E0 := {γ ∈ X1,∞ | E0[γ] = m0}.
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We define a limit energy functional F : L∞(I;R2) → [0,∞] as

F [γ] :=


2N∑
i=1

8
√
2 sin2

θi
4

for γ ∈M0 ⊂ L∞(I;R2),

∞ otherwise,

(3.4.2)

where N is the partition number of γ, and θ1, . . . , θ2N denote the contact angles of γ.
When N = 0, we interpret the sum as zero.

Remark 3.4.5. The half-angle formulae and the contact angle condition imply that

8
√
2 sin2

θi
4

= 4(
√
2−

√
1 + cos θi) = 4(

√
2−

√
1 + α(pi)),

where pi denotes the i-th contact point. Hence, the energy F is also interpreted in terms
of the adhesion coefficient α as in Introduction.

The main result of this section is stated as

Theorem 3.4.6 (Γ-convergence). Let Fε and F be as in (3.4.1) and (3.4.2). Then the
functionals Fε are equi-coercive, and Fε Γ-converges to F on L∞(I;R2) as ε→ 0.

The functional Fε admits a minimizer for any ε > 0, which is nothing but a
minimizer of Eε. Hence, in particular, Corollary 3.4.2 implies that the functional F
admits a minimizer in L∞(I;R2) (and hence, in M0).

We summarize more important consequences of Theorem 3.4.6 and Corollary 3.4.2
as the following

Corollary 3.4.7 (Convergence of minimizers). Let {γε}ε ⊂ X2,2 be a sequence of
minimizers of Eε. Then there is a subsequence {γεj}εj and a minimizer γ of F (in particular, of
E0) such that, γεj → γ in L∞, the speed of γεj also converges to the speed of γ, and moreover

Eεj [γεj ] = E0[γ] + εjmF + o(εj)

as εj → 0, where mF := minM0 F .

We confirm the above corollary by assuming Theorem 3.4.6.

Proof of Corollary 3.4.7. Under the assumption that Theorem 3.4.6 is valid, Corollary
3.4.2 directly implies the L∞-convergence part and the minimum convergence part.
Moreover, since limεj→0E0[γεj ] = E0[γ] follows by the convergence of the minima,
Lemma 3.2.7 implies the convergence of the speeds.

Remark 3.4.8. The above result is also valid even if the original sequence {γε}ε is taken
as a subsequence {γε′}ε′ of minimizers. This is because, if Fε Γ-converges to F , then
any subsequence {Fε′}ε′ also Γ-converges to F obviously.

In the rest of this section, we prove Theorem 3.4.6.



A free boundary problem for elastic curves II: Singular limit 88

3.4.3 Equi-coerciveness

We first confirm the equi-coerciveness in Theorem 3.4.6.

Proof of the equi-coerciveness of Theorem 3.4.6. Let {γε}ε ⊂ L∞(I;R2) such that

lim sup
ε→0

Fε[γε] <∞.

It suffices to prove that this sequence satisfies the assumption of Lemma 3.2.1 as ε→ 0.
Since Fε[γε] <∞ for small ε, we find that γε ∈ X2,2 for any small ε. Moreover, since

F [γε] = ε

∫
γ
κ2ds+

1

ε
(E0[γε]−m0)

and both the two terms are nonnegative, the last term is bounded as ε→ 0 in particular,
and hence

lim
ε→0

E0[γε] = m0 <∞.

Let Lε (= ∥γ̇ε∥∞) be the speed of γε. Since αLε ≤ E0[γε], the sequence of speed is
bounded as ε→ 0; hence, ∥γ̇ε∥∞ is bounded as ε→ 0.

Recall that, any curve in X1,∞ not touching ∂Ω satisfies E0[γ] ≥ 1, a non-touching
segment γ̄ attains E0[γ̄] = 1, and any minimizer touches ∂Ω by Theorem 3.3.7.
Therefore, we find that m0 < 1, and moreover for any small ε > 0 the curve γε touches
∂Ω. Then, as in the proof of Theorem 3.2.8, we find that ∥γε∥∞ is also bounded as ε→ 0.
The proof is complete.

3.4.4 Lower bound inequality

In this subsection we prove the lower bound inequality of Theorem 3.4.6, i.e., for any
convergent sequence γε → γ in L∞(I;R2),

lim inf
ε→0

Fε[γε] ≥ F [γ].

Notice that it suffices to confirm the above property for a subsequence of any
subsequence of {γε}ε. In this subsection we do not take care relabeling in such a
procedure to simplify notation. (Careful readers may interpret the index ε as a subindex
ε′ in this subsection.)

We only consider a (sub)sequence satisfying the following assumption since any
other case is trivial or reduced to this case.

Assumption 3.4.9. A sequence γε → γ in L∞(I;R2) is assumed so that {γε}ε ⊂ X2,2,
the curve γ is a minimizer of E0 in X1,∞ with a positive partition number N > 0, and

lim
ε→0

E0[γε] = E0[γ] (= m0).

Lemma 3.4.10. If the lower bound inequality of Theorem 3.4.6 is valid for any sequence
satisfying Assumption 3.4.9, then it is valid for any sequence γε → γ in L∞(I;R2).
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Proof. Consider any convergent sequence γε → γ in L∞(I;R2). If γ is not a minimizer,
then by the lower semicontinuity of Lemma 3.2.6 we have

lim inf
ε→0

Eε[γε] ≥ E0[γ] > m0,

and hence lim infε→0 Fε[γε] = ∞; this case is trivial. By the same reason, the case that
lim infε→0Eε[γε] > E0[γ] is also trivial. Moreover, if γ is a minimizer but the partition
number is zero, then F [γ] = 0, so it is also trivial.

We finally consider the case that {γε}ε ̸⊂ X2,2. The case that lim infε→0 Fε[γε] = ∞
is trivial. If lim infε→0 Fε[γε] <∞, then there is a subsequence {γεj}j such that

lim
j→∞

Fεj [γεj ] = lim inf
ε→0

Fε[γε] <∞.

Then, since Fεj [γεj ] < ∞ for any large j, we find that γεj ∈ X2,2 for any large j. By
relabeling, we can also reduce this case to Assumption 3.4.9.

In the rest of this subsection, we prove the lower bound inequality for a sequence
in Assumption 3.4.9.

Let Eε be the modified total squared curvature energy, which is defined for any
regular W 2,2-curve γ:

Eε[γ] := ε2
∫
γ
κ2ds+

∫
γ
ds.

Let lγ denote the distance of the endpoints of γ. In addition, we define Fε as

Fε[γ] :=
Eε[γ]− lγ

ε
.

Our temporary goal is to obtain the following lower bound.

Lemma 3.4.11. Let γε → γ be as in Assumption 3.4.9. Let 0 < t1 < · · · < t2N < 1

be the partition of γ. Then there is ε̄ > 0 such that for any ε ∈ (0, ε̄) there are numbers
0 < tε1 < · · · < tε2N < 1 such that the following properties hold; Jεj = (tε2j−1, t

ε
2j) is a connected

component of {γε ∈ Ω} for j = 1, . . . , N , the convergences tεi → ti and γε(tεi ) → γ(ti) hold as
ε→ 0 for i = 1, . . . , 2N , and moreover for any ε ∈ (0, ε̄)

Fε[γε] ≥
N∑
j=1

Fε[γε|Jε
j
].

To prove this lemma, we first confirm that the energy convergence on E0 implies an
“almost” adhesion convergence.

Lemma 3.4.12. Let γε → γ be an L∞-convergent sequence in X1,∞ such that

lim
ε→0

E0[γε] = E0[γ].

Then, for any open interval J ⊂ Ī with J ⊂ {γ ∈ ∂Ω}, there is εJ > 0 such that the curve γε
touches ∂Ω in J for any ε ∈ (0, εJ).
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Proof. Fix J . We prove by contradiction; suppose that there would be εj → 0 such that
any γεj does not touch ∂Ω in J . Then J ⊂ {γεj ∈ Ω}, and hence

E0[γεj |J ] = Lεj |J | = Lεjδ,

where Lεj is the speed of γεj . On the other hand, since J ⊂ {γ ∈ ∂Ω}, we would have

E0[γ|J ] ≤ ᾱL|J | = ᾱLδ,

where L is the speed of γ. Taking the limit j → ∞ we obtain a contradiction to Lemma
3.2.7.

We next confirm that any free segment connecting boundary points allows a small
perturbation.

Lemma 3.4.13. Let γ ∈ X1,1 be a minimizer of E0 of positive partition number N > 0 and
p1, . . . , p2N be the contact points. Then there is r > 0 such that, for any 1 ≤ j ≤ N and any
points p′2j−1 ∈ ∂Ω ∩ Br(p2j−1) and p′2j ∈ ∂Ω ∩ Br(p2j), the open segment from p′2j−1 to p′2j
is included in Ω.

Proof. Note that any original segment from pj to pj+1 is not tangent to ∂Ω at the
endpoints, and moreover the segment does not touch ∂Ω except the endpoints. Hence,
the segment can be perturbed within Ω.

We are in a position to prove Lemma 3.4.11.

Proof of Lemma 3.4.11. We first prove that for any small ε > 0 there are 0 < tε1 < · · · <
tε2N < 1 such that tεi → ti as ε → 0 for i = 1, . . . , 2N and the interval Jεj = (tε2j−1, t

ε
2j) is

a connected component of {γε ∈ Ω} for j = 1, . . . , N . By Lemma 3.4.12, for any small
δ > 0 there is εδ > 0 such that γε with ε ∈ (0, εδ) touches ∂Ω in each of the intervals

(t1 − δ, t1), (t2, t2 + δ), . . . , (t2N−1 − δ, t2N−1), (t2N , t2N + δ).

In addition, by the uniform convergence γε → γ, for given δ > 0 there is ε′δ > 0 such
that for any ε ∈ (0, ε′δ) and any j = 1, . . . , N , we have (t2j−1 + δ, t2j − δ) ⊂ {γε ∈ Ω}.
The above facts imply that for any small ε > 0 there are open intervals Jεj = (tε2j−1, t

ε
2j),

j = 1, . . . , N , such that they are connected components of {γε ∈ Ω}, and moreover
tεi → ti for any i = 1, . . . , 2N . The convergence γε(tεi ) → γ(ti) immediately follows by
tεi → ti and the uniform convergence γε → γ.

We finally prove the energy estimate. Define a new curve γ′ε ∈ W 1,∞(I;R2) as, for
j = 1, . . . , N , the curve γ′ε is a segment from γε(t

ε
2j−1) to γε(tε2j) in Jεj , and otherwise

γ′ε = γε. Then, by Lemma 3.4.13, for any small ε > 0 the image of γ′ε is included in
Ω; in particular, the segment parts are included in Ω except the endpoints. Notice that
E0[γ̂

′
ε] ≥ E0[γ], where γ̂′ε is the constant speed parameterization of γ′ε, since γ̂′ε ∈ X1,∞

and γ is a minimizer of E0. Let Jε be the union of disjoint intervals Jε1 , . . . , J
ε
2N . Then
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we find that

E0[γε]− E0[γ] ≥ E0[γε]− E0[γ̂
′
ε]

= E0[γε|Jε ]− E0[γ
′
ε|Jε ]

=

∫
γε|Jε

ds−
∫
γ′ε|Jε

ds

=

N∑
j=1

∫
γε|Jε

j

ds− lγε|Jε
j

 .

Therefore, we have

Fε[γε] = ε

∫
γε

κ2ds+
1

ε
(E0[γε]− E0[γ])

≥ ε

∫
γε

κ2ds+
1

ε

N∑
j=1

∫
γε|Jε

j

ds− lγε|Jε
j


≥

N∑
j=1

1

ε

(
Eε[γε|Jε

j
]− lγε|Jε

j

)
.

The proof is now complete.

To conclude the lower bound inequality, we confirm that the obtained lower bound
in Lemma 3.4.11 is bounded below by the functional F as ε→ 0.

Lemma 3.4.14. Let γε → γ be as in Assumption 3.4.9 (and recall the notations in Lemma
3.4.11). Let θε2j−1, θ

ε
2j ∈ [−π, π) be the angles between the curve γε|[tε2j−1,t

ε
2j ]

and the segment
from γε(t

ε
2j−1) to γε(tε2j) at the endpoints for j = 1, . . . , N (i.e., the three vectors

γε(t
ε
2j)− γε(t

ε
2j−1), Rθε2j−1

γ̇ε(t
ε
2j−1), R(−θε2j)γ̇ε(t

ε
2j)

are in the same direction). Then the following statements hold.

(1) For any i = 1, . . . , 2N , any subsequence of {θεi }ε has a subsequence converging to either
θi ∈ (0, π/2) or θi − π ∈ (−π/2,−π), where θi is the i-th contact angle of γ.

(2) Let {γε′}ε′ be any subsequence of {γε}ε such that θε′i converges to some θ∗i for any i =
1, . . . , 2N . (Here θ∗i is either θi or θi − π.) Then, for any j = 1, . . . , N , each term of the
lower bound in Lemma 3.4.11 is estimated as

lim inf
ε′→0

Fε[γε′ |Jε′
j
] ≥ 8

√
2

(
sin2

θ∗2j−1

4
+ sin2

θ∗2j
4

)
.

(3) In particular, the following estimate holds in the full limit ε→ 0:

lim inf
ε→0

N∑
j=1

Fε[γε|Jε
j
] ≥

2N∑
i=1

8
√
2 sin2

θi
4

= F [γ].

Proof. We first prove (1). Note that γε is of class W 2,2, and hence C1. Thus, the
curve touches ∂Ω at γε(tε2j−1) and γε(t

ε
2j) tangentially. Recall that, by Lemma 3.4.11,
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the endpoints of the segment from γε(t
ε
2j−1) to γε(t

ε
2j) converge to the endpoints of

the segment from γ(t2j−1) to γ(t2j). Therefore, for any i = 1, . . . , 2N , the angle θεi
converges, up to a subsequence of any subsequence, to the contact angle θi ∈ (0, π/2)

or the opposite angle θi − π ∈ (−π,−π/2).
The estimate in (2) follows by Proposition 1.3.7 in Chapter 1. More precisely, if we

apply Proposition 1.3.7 to the (suitably translated and rotated) sequence of γε′ |Jε′
j

, then

we reach the conclusion. (Note that the curve γε′ |Jε′
j

may not be a minimizer in the

sense of Proposition 1.3.7, but the energy Fε[γε′ |Jε′
j
] is not smaller than the energy of

such a minimizer.)
We finally prove (3). For the full limit estimate, it suffices to confirm that for any

subsequence of {γε}ε there is a subsequence {γε′}ε′ such that the desired estimate
holds. Notice that the result (1) implies that for any subsequence of {γε}ε there is a
subsequence {γε′}ε′ such that the assumption of (2) holds, and hence the estimate in (2)
holds. Recall that the limit angle θ∗i in (2) is either θi or θi − π for any i = 1, . . . , 2N . In
addition, since θi/4 ∈ (0, π/8) and (θi−π)/4 ∈ (−π/4,−π/8), we immediately find that

sin2
θi − π

4
> sin2

θi
4
, and hence sin2

θ∗i
4

≥ sin2
θi
4
.

This implies the desired estimate in (3). The proof is complete.

We shall complete the proof of the lower bound inequality.

Proof of the lower bound inequality of Theorem 3.4.6. By Lemma 3.4.10, it suffices to
consider a sequence as in Assumption 3.4.9. For such a sequence, Lemma 3.4.11 and
Lemma 3.4.14 directly imply the desired lower bound inequality.

3.4.5 Upper bound inequality

We finally complete the proof of Theorem 3.4.6 by proving the upper bound inequality.

Proof of the upper bound inequality of Theorem 3.4.6. Let γ ∈ X1,∞ be any minimizer of
E0. If the partition number N of γ is zero, i.e., γ is the graph curve of ψ, then the trivial
sequence of γε := γ satisfies the conclusion. Suppose that N > 0. Let 0 = t0 < · · · <
t2N+1 = 1 be the partition. We construct a suitable sequence by modifying γ in the
segment part Uj = (t2j−1, t2j) for any j = 1, . . . , N .

For each j, we take a minimizer γjε of Eε among all smooth constant speed curves
ζ : [t2j−1, t2j ] → R2 satisfying ζ = γ and ζ̇ = γ̇ at t2j−1 and t2j . Noting that ∂Ω is of
class C2 and the contact angles of γ are strictly positive, we find that Theorem 1.2.3 of
Chapter 1 implies that for any j and small ε the minimizer γjε is included in Ω except
the endpoints. Moreover, Lemma 1.3.1 of Chapter 1 implies that the sequence of γjε
satisfies

lim
ε→0

Fε[γjε ] = 8
√
2

(
sin2

θ2j−1

4
+ sin2

θ2j
4

)
,

where θi denotes the i-th contact angle of γ. We then define γε so that γε = γjε in
Uj = (t2j−1, t2j) for any j = 1, . . . , N , and γε = γ elsewhere. It turns out that the
sequence of the constant speed reparameterization γ̂ε of γε (defined for small ε) satisfies
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the desired upper bound inequality. In fact, since the difference between the energies
E0 of γ̂ε and γ appears only in the free part, we find that

Fε[γ̂ε] =
Eε[γ̂ε]−E0[γ]

ε
=

N∑
j=1

Fε[γjε ].

Taking the limit ε→ 0, we reach the conclusion.

3.5 Adhesion convergence

In this section, by using Theorem 3.4.6 (in particular, the minimum convergence in
Corollary 3.4.7), we prove that any convergent sequence of minimizers of Eε converges
not only in L∞ but also in the sense of adhesion convergence as follows.

Definition 3.5.1 (Adhesion convergence). Let γ ∈ X1,∞ be partitional regular of
partition 0 = t0 < t1 < · · · < t2N < t2N+1 = 1. Let {γε}ε ⊂ X2,2. We say that γε
A-converges to γ as ε → 0 if there is ε̄ > 0 such that γε is ordered partitional regular of
partition number N for any ε ∈ (0, ε̄), and moreover its partition 0 = tε0 < tε1 < · · · <
tε2N < tε2N+1 = 1 satisfies the convergence tεi → ti as ε→ 0 for any 1 ≤ i ≤ 2N .

The main theorem of this section is the following

Theorem 3.5.2 (Adhesion convergence of minimizers). Let {γε}ε ⊂ X2,2 be a sequence
of minimizers of Eε and γ ∈ X1,∞ be a minimizer of F such that γε → γ in L∞. Then γε
A-converges to γ as ε→ 0.

The adhesion convergence is also defined for a subsequence {γε′}ε′ in the same
way. In this subsection we also use the notation ε as the index even for a subsequence;
in particular, Theorem 3.5.2 is valid for any sequence ε′ → 0 and any sequence {γε′}ε′ ⊂
X2,2 of minimizers of Eε′ converging to a minimizer of F in L∞.

3.5.1 Partitional regularization

In this subsection we confirm that a new notion “partitional regularization” is
well-defined for any convergent sequence of minimizers ofEε. This notion is important
since, as shown in the next subsection, it turns out that a minimizer coincides with its
partitional regularization for small ε.

We first prove that, for a sequence of minimizers, the angles in Lemma 3.4.14 fully
converge to the corresponding contact angles.

Lemma 3.5.3. Let {γε}ε ⊂ X2,2 be a sequence of minimizers of Eε and γ ∈ X1,∞ be a
minimizer of F such that γε → γ in L∞. Suppose that the partition number N of γ is positive.
(Note that γ also minimizes E0 and

lim
ε→0

E0[γε] = E0[γ]

holds, and hence the assumption of Lemma 3.4.11 is satisfied.) Then, for any i = 1, . . . , 2N , the
angle θεi defined in Lemma 3.4.14 converges to the corresponding contact angle θi ∈ (0, π/2) of
γ in the full limit ε→ 0.
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Proof. Since γε also minimizes Fε, Corollary 3.4.7 implies that

lim
ε→0

Fε[γε] = F [γ] =

2N∑
i=1

8
√
2 sin2

θi
4
.

On the other hand, by Lemma 3.4.11 and Lemma 3.4.14,

lim
ε→0

Fε[γε] ≥ lim inf
ε→0

2N∑
i=1

8
√
2 sin2

θεi
4

≥
2N∑
i=1

8
√
2 sin2

θi
4
.

Recalling that θεi converges to θi or θi−π up to a subsequence of any subsequence, and

sin2
θi − π

4
> sin2

θi
4
,

we find that the lower bound estimate is also valid for each term, i.e., for any i =

1, . . . , 2N ,

lim inf
ε→0

sin2
θεi
4

≥ sin2
θi
4
.

Since each term in the sum is positive, we find that

lim
ε→0

sin2
θεi
4

= sin2
θi
4
.

Therefore, we conclude that θεi fully converges to θi as ε→ 0.

By using the above result, we can appropriately modify minimizers as partitional
regular curves.

Corollary 3.5.4. Suppose the same assumption as in Lemma 3.5.3. Using the same notations
as in Lemma 3.4.11, we define a curve γ̄ε : Ī → Ω for any ε ∈ (0, ε̄) so that, γ̄ε(0) = (0, ψ(0)),
γ̄ε(1) = (1, ψ(1)), γ̄ε = γε in Jε1 , . . . , J

ε
N , and γ̄ε is a constant speed geodesic in ∂Ω in each of

the connected components Kε
0 , . . . ,K

ε
N of Ī \ Jε, where Jε is the union of Jε1 , . . . , J

ε
N . Then

there exists ε̄′ ∈ (0, ε̄) such that for any ε ∈ (0, ε̄′) the constant speed reparameterization ˆ̄γε of
γ̄ε belongs to X2,2(I; Ω). In particular,

Eε[ˆ̄γε] ≥ Eε[γε].

Proof. To confirm that the reparameterization of γ̄ε belongs to X2,2, it suffices to prove
that, all the geodesic parts of γ̄ε have positive lengths (speeds), and γ̄ε is “smoothly”
connected at all the connection points γ̄ε(tεi ), i = 1, . . . , 2N , i.e., the direction of the
tangent vector γ̄ε/|γ̄ε| is continuous at tεi for any i = 1, . . . , 2N .

Recall that the convergent limit γ in Lemma 3.5.3 is represented as a graph curve; in
particular, the (x-components of the) points γ(0), γ(t1), . . . , γ(t2N ), γ(1) are ordered in
the left-to-right direction. Hence, by the convergence γε(tεi ) → γ(ti) in Lemma 3.4.11,
the points γ̄ε(0), γ̄ε(tε1), . . . , γ̄ε(t

ε
2N ), γ̄ε(1) are also ordered in the left-to-right direction

for any small ε > 0. Since the every other two adjacent points are the endpoints of the
geodesic parts of γ̄ε, all the geodesic parts have positive lengths for any small ε > 0.

The remaining part is to confirm that the connection points are “smooth”. We
consider the half-limits of the tangent vector ˙̄γε at tεi for any i = 1, . . . , 2N . By the above
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argument on the order, we also notice that for any small ε > 0 the geodesic parts of γ̄ε
follow ∂Ω in the left-to-right direction. In particular, noting that each of the connection
points converges to the corresponding contact point of γ as ε→ 0, we find that for any
small ε > 0 and j = 1, . . . , N the half-limits (from the geodesic parts) ˙̄γε(t

ε
2j−1−) and

˙̄γε(t
ε
2j−+) make acute angles with the vector γ̄ε(tε2j) − γ̄ε(t

ε
2j−1). On the other hand,

the original curve γε touches ∂Ω tangentially at the connection points; hence, for the
direction of each of the half-limits ˙̄γε(t

ε
2j−1+) (= γ̇ε(t

ε
2j−1)) and ˙̄γε(t

ε
2j−) (= γ̇ε(t

ε
2j)),

there are only two possibilities; the same direction in the corresponding half-limit from
the geodesic part, or the opposite direction. By Lemma 3.5.3, we find that ˙̄γε(t

ε
2j−1+)

and ˙̄γε(t
ε
2j−) also make acute angles with the vector γ̄ε(tε2j)− γ̄ε(t

ε
2j−1); this means that

the two half-limits are in the same direction at each connection point. Therefore, the
constant speed reparameterization ˆ̄γε belongs to X2,2.

The last inequality in the statement is an immediate consequence of the minimality
of γε. The proof is now complete.

We are in a position to define the partitional regularization of a minimizer.

Definition 3.5.5 (Partitional regularization). Let {γε}ε ⊂ X2,2 be a sequence of
minimizers of Eε, and γ ∈ X1,∞ be a minimizer of F such that γε → γ in L∞. Let
N be the partition number of γ. If N > 0, then we define the curve γ̄ε as a (unique)
curve in Corollary 3.5.4 for ε ∈ (0, ε̄′). If N = 0 (i.e., γ is the geodesic in ∂Ω joining
(0, ψ(0)) to (1, ψ(1))), then for any ε > 0 we define γ̄ε just as equal to γ. (In this case we
interpret as ε′ = ∞.) We call γ̄ε partitional regularization of γε.

3.5.2 Minimizers coincide with the partitional regularizations

As mentioned, in this subsection, we prove that the partitional regularization of a
minimizer coincides with the minimizer itself for any small ε > 0. This immediately
implies Theorem 3.5.2.

We first state that the difference between a minimizer and its partitional
regularization tends to be small as ε→ 0 in the following sense.

Lemma 3.5.6. Let {γε}ε ∈ X2,2 be a sequence of minimizers of Eε and γ ∈ X1,∞ be a
minimizer of F such that γε → γ in L∞. Let γ̄ε be the partitional regularization of γε for
ε ∈ (0, ε̄′). LetMε be the supremum of the widths |J | of all open intervals J in {γε ∈ Ω}∩{γ̄ε ∈
∂Ω}, where Mε := 0 if there is no such interval. Then Mε → 0 as ε→ 0.

Proof. We prove by contradiction; suppose that there would be r > 0 and εk → 0 such
that Mεk ≥ 4r for any k. Then for any k there is an open interval Jk = (tk0, t

k
1) in

{γεk ∈ Ω} ∩ {γ̄εk ∈ ∂Ω} such that |Jk| ≥ 3r. Since the intervals Jk are included in the
compact set Ī , the endpoints tk0, t

k
1 ∈ ∂Jk ⊂ {γ̄ε ∈ ∂Ω} converge to some limits t0, t1 ∈ Ī

with t1 − t0 ≥ 3r up to a subsequence (without relabeling). Recall that, by Lemma
3.4.11, the closed set {γ̄ε ∈ ∂Ω} converges to a limit set included in {γ ∈ ∂Ω} as ε → 0

(at least, the closure of the limit set coincides with {γ ∈ ∂Ω}). Hence, in particular,
[t0, t1] ⊂ {γ ∈ ∂Ω}. Let J := (t0 + r, t1 − r) ⊂ {γ ∈ ∂Ω}. Note that |J | ≥ r. Then, by the
convergences tk0 → t0 and tk1 → t1, for any large k (small εk) the interval J is included
in Jk, and hence in {γεk ∈ Ω}. Therefore, J ⊂ {γεk ∈ Ω} ∩ {γ ∈ ∂Ω} for any large k.
This contradicts Lemma 3.4.12.
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We then prove that a part of minimizer does not have a smaller energy than a
geodesic in ∂Ω of the same endpoints as follows.

Lemma 3.5.7. Let {γε}ε ⊂ X2,2 be a sequence of minimizers of Eε and γ ∈ X1,∞ be a
minimizer of F such that γε → γ in L∞. Let γ̄ε be the partitional regularization of γε for
ε ∈ (0, ε̄′). Let γ̃ε and ˜̄γε be the periodic extensions of γε and γ̄ε, respectively. Then there is
ε̄′′ ∈ (0, ε̄′) such that, for any ε ∈ (0, ε̄′′) and any open interval J ⊂ {˜̄γε ∈ ∂Ω} with γ̃ε(∂J),

E0[γ̃ε|J ] ≥ E0[γ
ε,J
Ω ],

where γε,JΩ denotes a geodesic in ∂Ω joining the points of γ̃ε(∂J) ⊂ ∂Ω. If the partition number
of γ is zero, then the above estimate also holds for ε ∈ (0, ε̄′′) and any interval J in R of width
1.

Proof. By Lemma 3.5.6 and the fact that the speed Lε of γε converges (to the speed of
γ), there is ε̄′′ ∈ (0, ε̄′) such that Lε|J ′| < RΩ(1 − ᾱ) holds for any ε ∈ (0, ε̄′′) and any
open interval J ′ ⊂ {γ̃ε ∈ Ω} ∩ {˜̄γε ∈ ∂Ω}. Fix any ε ∈ (0, ε̄′′) and any open interval
J ⊂ {˜̄γε ∈ ∂Ω} with γ̃ε(∂J) ⊂ ∂Ω. Then Lemma 3.3.13 implies that E0[γ̃ε] ≥ E0[γ

ε,J
Ω ],

which is the desired estimate.
Suppose that the partition number of γ is zero. In this case {˜̄γε ∈ ∂Ω} = R. Then,

by Lemma 3.5.6, there is ε̄′′ ∈ (0, ε̄′) such that for any ε ∈ (0, ε̄′′) any open interval
J ′ ⊂ {γ̃ε ∈ Ω} (= {γ̃ε ∈ Ω} ∩ {˜̄γε ∈ ∂Ω}) satisfies not only Lε|J ′| < RΩ(1 − ᾱ) but also
|J ′| < 1. This implies that for any ε ∈ (0, ε̄′′) the curve γ̃ε touches ∂Ω at some tε ∈ R
(and hence at tε + 1 by periodicity); thus, Lemma 3.3.13 implies that E0[γ̃ε] ≥ E0[γ

ε,J
Ω ]

also holds for J = (tε, tε + 1). By the periodicity of γ̃ε, the interval J can be taken as
any interval of width 1. The proof is complete.

As the last preparation for the proof of Theorem 3.5.2, we state that, for small ε,
original minimizers are represented by graphs at least on the coincidence sets of their
partitional regularizations.

Lemma 3.5.8. Let {γε}ε ⊂ X2,2 be a sequence of minimizers of Eε and γ ∈ X1,∞ be a
minimizer of F such that γε → γ in L∞. Let γ̄ε be the partitional regularization of γε and
Kε

0 , . . . ,K
ε
N be the partition of γ̄ε for ε ∈ (0, ε̄′). Then there is ε̄′′′ ∈ (0, ε̄′) such that for any

ε ∈ (0, ε̄′′′) the curve γε is represented by the graph of an H2-function in each of Kε
0 , . . . ,K

ε
N .

Proof. We first suppose that N > 0. Let γ̃ε and ˜̄γε be the periodic extensions of γε and
γ̄ε. Let K̃ε

0 be the union of Kε
0 and Kε

N − 1, i.e.,

K̃ε
0 := {t ∈ R | t ∈ Kε

0 or t+ 1 ∈ Kε
N},

and K̃ε
j := Kε

j for any j = 1, . . . , N − 1. Note that K̃ε
0 is a closed interval including the

origin, and γ̃ε touches ∂Ω at the endpoints of K̃ε
0 , . . . , K̃

ε
N−1. Since Eε[γε] ≤ Eε[ˆ̄γε] by

Corollary 3.5.4, where ˆ̄γε is the constant reparameterization of γ̄ε, we find that, for any
ε ∈ (0, ε̄′),

N−1∑
j=0

(
Eε[γ̃ε|K̃ε

j
]− Eε[˜̄γε|K̃ε

j
]
)
≤ 0.(3.5.1)
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Moreover, for any small ε ∈ (0, ε̄′), each term is estimated from below as

Eε[γ̃ε|K̃ε
j
]− Eε[˜̄γε|K̃ε

j
] ≥ E0[γ̃ε|K̃ε

j
]− E0[˜̄γε|K̃ε

j
]− ε2

∫
˜̄γε|K̃ε

j

κ2ds(3.5.2)

≥ −ε2
∫
I

ψ′′2

(1 + ψ′2)5/2

since ˜̄γε|K̃ε
j

is a geodesic included in one period of ψ and E0[γ̃ε|K̃ε
j
] ≥ E0[˜̄γε|K̃ε

j
] for any

small ε by Lemma 3.5.7. Therefore, combining (3.5.1) and (3.5.2), we find that

Eε[γ̃ε|K̃ε
j
]− Eε[˜̄γε|K̃ε

j
] = o(ε2)(3.5.3)

as ε→ 0 for any j = 0, . . . , N − 1.
We now suppose the contradiction that there would be a subsequence {γ̃εk}k of

{γ̃ε}ε and a sequence of times {tk}k in the union of K̃εk
1 , . . . , K̃

εk
N such that for any k the

x-component of ˙̃γεk(tk) is nonpositive. We extract a subsequence (without relabeling)
so that there is j such that tk ∈ K̃εk

j for any k. Then there are a connected component J ′
k

of {γ̃εk ∈ Ω}∩K̃εk
j and a time t′k ∈ J ′

k such that the x-component of ˙̃γεk(t
′
k) is zero. Note

that γ̃εk touches ∂Ω at the endpoints of J ′
k. We decompose K̃εk

j into J ′
k and K̃εk

j \ J ′
k.

The part γ̃εk |K̃εk
j \J ′

k
still satisfies

Eεk [γ̃εk |K̃εk
j \J ′

k
]− Eεk [˜̄γεk |K̃εk

j \J ′
k
] ≥ −ε2k

∫
I

ψ′′2

(1 + ψ′2)5/2
(3.5.4)

for any small εk by the same reason as (3.5.2). The part γ̃εk |J ′
k

is estimated as

Eεk [γ̃εk |J ′
k
]− Eεk [

¯̃γεk |J ′
k
]

≥ εk
2

∫
γ̃εk |J′

k

κ2ds+

∫
γ̃εk |J′

k

ds− E0[¯̃γεk |J ′
k
]− εk

2

∫
I

ψ′′2

(1 + ψ′2)5/2
.

By Lemma 3.3.11 and Lemma 3.5.6 (and the fact that the speed Lεk of γ̃ε converges),
there are δ > 0 and εδ > 0 such that for any εk ∈ (0, εδ) we have

E0[˜̄γεk |J ′
k
] ≤ 1

1 + δ
E0[γ̃εk |J ′

k
] =

1

1 + δ

∫
γ̃εk |J′

k

ds.

Therefore, for any small εk,

Eεk [γ̃εk |J ′
k
]− Eεk [˜̄γεk |J ′

k
]

≥ εk
2

∫
γ̃εk |J′

k

κ2ds+
δ

1 + δ

∫
γ̃εk |J′

k

ds− εk
2

∫
I

ψ′′2

(1 + ψ′2)5/2

≥ 2εk

√
δ

1 + δ

∫
γ̃εk |J′

k

|κ|ds− εk
2

∫
I

ψ′′2

(1 + ψ′2)5/2
.

Recall that the total absolute curvature
∫
|κ|ds of a curve is nothing but the total

variation of the tangential angle of the curve. Hence, by the assumption that the
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x-component of ˙̃γεk is zero at t′k ∈ J ′
k and the fact that γ̃εk touches ∂Ω tangentially

at the endpoints of J ′
k, there is rψ > 0 such that for any εk∫

γ̃εk |J′
k

|κ|ds ≥ rψ.

This implies that there is Cδ,ψ > 0 such that

Eεk [γ̃εk |J ′
k
]− Eεk [˜̄γεk |J ′

k
] ≥ Cδ,ψεk.(3.5.5)

for any small εk. The sum of (3.5.4) and (3.5.5) contradicts (3.5.3). Therefore, the proof
is complete in the case that N > 0.

We finally consider the case that N = 0. In this case, for any small ε the curve
γ̃ε touches ∂Ω at some tε ∈ Ī (and hence at tε + 1) by Lemma 3.5.6. Then, letting
K̃ε

0 := (tε, tε + 1), we can proceed the same argument as in the case that N = 1, and
then reach the conclusion. The proof is now complete.

We finally complete the proof of Theorem 3.5.2 by showing that any minimizer γε
coincides with the partitional regularization γ̄ε for any small ε.

Proof of Theorem 3.5.2. It suffices to prove that {γ̃ε ∈ ∂Ω} = {˜̄γε ∈ ∂Ω} for any small ε.
By the definition of γ̄ε, we know that {γ̃ε ∈ ∂Ω} ⊂ {˜̄γε ∈ ∂Ω}. Therefore, it suffices to
prove that {γ̃ε ∈ Ω} ∩ {˜̄γε ∈ ∂Ω} is empty for any small ε.

We suppose the contradiction that there would be a sequence εk → 0 and
(nonempty) connected component Jεk of {γ̃εk ∈ Ω} ∩ {˜̄γεk ∈ ∂Ω} for any small εk.
By Lemma 3.5.6, |Jεk | → 0 as εk → 0. Recall that γ̃εk touches ∂Ω at the endpoints of Jεk
and the speed Lεk of γ̃εk converges. Then, by Lemma 3.3.11, there is δ > 0 such that,
for any small εk,

E0[γ
εk
Ω ] ≤ 1

1 + δ
E0[γ̃εk |Jεk ],

where γεkΩ is a geodesic in ∂Ω joining the points γ̃εk(∂Jεk). Since the speed LεkΩ of γεkΩ
satisfies LεkΩ ≤ Lεk/ᾱ, we also have

ε2k

∫
γ
εk
Ω

κ2ds ≤
ε2kL

εk
Ω |Jεk |
R2

Ω

≤
ε2kLεk |Jεk |
R2

Ωᾱ
=

ε2k
R2

Ωᾱ
E0[γ̃εk |Jεk ],

and hence, for any small εk (as ε2k
R2

Ωᾱ
≤ δ/2

1+δ ),

Eεk [γ
εk
Ω ] ≤ 1 + δ/2

1 + δ
E0[γ̃εk |Jεk ] < E0[γ̃εk |Jεk ] ≤ Eεk [γ̃εk |Jεk ].

Let γ̃′εk be the curve γ̃εk replaced by the geodesic γεkΩ in Jεk and, in Jεk + Z, replaced by
the translated geodesics so that γ̃′εk has the 1-periodicity. By Lemma 3.5.8, we know that
for any small εk the curve γ̃εk is represented as a graph in Jεk . Hence, the modification
from γ̃εk to γ̃′εk is “smooth” in the sense that the constant speed reparameterization ˆ̃γ′εk
of γ̃′εk belongs to X2,2. Moreover, by the above energy estimate, we find that

Eεk [
ˆ̃γ′εk |I ] < Eεk [γ̃εk |I ]
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for any small εk. This contradicts the minimality of γ̃εk . The proof is complete.

3.6 Graph representation result

In this last section, we confirm that any minimizer is represented by a graph for small
ε by using the adhesion convergence result.

Corollary 3.6.1 (Graph representation). There is ε̄ = ε̄(α, ψ) > 0 such that, for any ε ∈
(0, ε̄), any minimizer of Eε is represented by the graph of a function u ∈ H2(I) such that
maxu = maxψ, ∥u′∥∞ ≤ ∥ψ′∥∞, and moreover u′′(x) > 0 for any x ∈ Ī with u(x) > ψ(x).

Proof. It suffices to prove that, for any sequence εj → 0 and any sequence of minimizers
{γεj}j of Eεj , there is a subsequence {γεk}k such that for any small εk the curve γεk is
represented by the graph of some uk ∈ H2(I) with the desired properties.

By Corollary 3.4.7, for any sequence of minimizers there are a subsequence {γεk}k
and a minimizer γ of F such that γεk → γ in L∞. Then, by Theorem 3.5.2, we also
find that γεk A-converges to γ. By the adhesion convergence, in the case that N = 0,
any curve γεk is the graph of ψ; this immediately implies the conclusion. Suppose that
N > 0. Let 0 < tεk1 < · · · < tεk2N < 1 be as in Definition 3.5.1 and Jkj := (tεk2j−1, t

εk
2j )

for j = 1, . . . , N . For j and εk, we denote by γjεk a minimizer of Eεk among all smooth
constant speed curves ζ : Jkj → R2 with the same positions and tangential angles as
γεk |Jk

j
at the endpoints. Noting that ∂Ω is of class C2 and the contact angles of γ are

strictly positive, we find that Theorem 1.2.3 in Chapter 1 implies that for any j and
small εk the minimizer γjεk is included in Ω except the endpoints. Then, noting that γεk
minimizes Eε, we find that for any j and small εk the curve γεk |Jk

j
is nothing but the

minimizer γjεk ; in particular, the curve γεk |Jk
j

is a convex curve (i.e., no sign change of
the curvature) near the corresponding segment part of γ. This implies the conclusion,
and the proof is now complete.



Appendices

3.A Lipschitz curves and line integrals

This section completes the proofs (or references) of the statements in §3.2. For any
γ ∈W 1,∞(J ;R2) and Borel function ρ : R2 → R, we define the line integral of ρ along γ
as ∫

γ
ρds :=

∫
J
ρ(γ(t))|γ̇(t)|dt.

Lemma 3.A.1. For any γ ∈ W 1,∞(J ;R2) (not necessarily regular), there is a constant speed
reparameterization of γ, i.e., there are a nondecreasing continuous surjective function τ : J̄ →
J̄ and a constant speed curve γ̂ ∈ W 1,∞(J ;R2) such that γ = γ̂ ◦ τ . Moreover, for any Borel
function ρ : R2 → R, the line integrals along γ and γ̂ coincide:∫

γ
ρds =

∫
γ̂
ρds.

Proof. See [7, Section 3].

Lemma 3.A.2. Let {γk}k ⊂ W 1,∞(J ;R2) be bounded in W 1,∞. Then there are γ ∈
W 1,∞(J ;R2) and a subsequence {γk′}k′ such that γk′ → γ in L∞. Moreover,

∥γ̇∥∞ ≤ lim inf
k′→∞

∥γ̇k′∥∞.

Proof. Since {γk}k ⊂ W 1,∞(J ;R2) is bounded in W 1,∞, the Arzelà-Ascoli theorem
implies that there is a subsequence {γk′}k′ converging to some continuous curve γ in
L∞. Recall that, for any k′ and t0, t1 ∈ J̄ with t0 < t1,

|γk′(t1)− γk′(t0)| =
∣∣∣∣∫ t1

t0

γ̇k′(t)dt

∣∣∣∣ ≤ ∫ t1

t0

|γ̇k′(t)|dt ≤ ∥γ̇k′∥∞|t1 − t0|.

By the uniform convergence (in particular, pointwise convergence),

|γ(t1)− γ(t0)| = lim
k′→0

|γk′(t1)− γk′(t0)| ≤ lim inf
k′→∞

∥γ̇k′∥∞|t1 − t0|.

Noting that lim infk′→∞ ∥γ̇k′∥∞ < ∞, we reach the conclusions γ ∈ W 1,∞(J ;R2) and
∥γ̇∥∞ ≤ lim infk′→∞ ∥γ̇k′∥∞.

Lemma 3.A.3. Let {γk}k ⊂W 1,∞(J ;R2) and γ ∈ L1(J ;R2). Suppose that {γk}k is bounded
in W 1,∞ and γk → γ in L1. Then γk → γ in L∞ and γ ∈W 1,∞(J ;R2) with

∥γ̇∥∞ ≤ lim inf
k→∞

∥γ̇k∥∞.
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Moreover, for any lower semicontinuous function ρ : R2 → [0,∞],

lim inf
k→∞

∫
γk

ρds ≥
∫
γ
ρds.

Proof. Lemma 3.A.2 implies that any subsequence of {γk}k includes a subsequence
converging to some curve ζ ∈ W 1,∞(I;R2) in L∞. By the assumption of
L1-convergence and the uniqueness of L1-limit, the curve ζ is nothing but γ. Hence,
γ ∈ W 1,∞(I;R2), and γk fully converges to γ in L∞. The estimate in Lemma 3.A.2 is
also valid in the full limit sense:

∥γ̇∥∞ ≤ lim inf
k→∞

∥γ̇k∥∞.

In the rest of the proof, we confirm the lower semicontinuity of the line integral for
any fixed ρ satisfying the assumption.

We first assume that ρ is a bounded m-Lipschitz continuous function such that

ρ∗ := inf
(x,y)∈R2

ρ(x, y) > 0.

Since {γk}k is bounded in W 1,∞, the sequence {γ̇k}k is bounded in L2 and hence
relatively L2-weakly compact. Since the L2 space is separable, {γ̇k}k is relatively
sequentially L2-weakly compact. Therefore, γ̇k → γ̇ weakly in L2 (in the full
convergence sense, by the uniqueness of weak derivative); in particular, γ̇k → γ̇

weakly in L1. Recall that any convex and L1-strongly lower semicontinuous functional
Φ : L1(J ;R2) → R is also L1-weakly lower semicontinuous; in particular, Φ satisfies
the sequential lower semicontinuity for γ̇k → γ̇: lim infk→∞Φ[γ̇k] ≥ Φ[γ̇]. Since ρ is
bounded and ρ∗ > 0, the functional Φ[ζ] :=

∫
J ρ(γ(t))|ζ(t)|dt is a norm equivalent to

∥ · ∥1, and hence this functional is convex and L1-strongly continuous. Thus

lim inf
k→∞

∫
J
ρ(γ(t))|γ̇k(t)|dt ≥

∫
J
ρ(γ(t))|γ̇(t)|dt.

In addition, by the m-Lipschitz continuity of ρ,

lim
k→∞

∣∣∣∣∫
J
ρ(γk(t))|γ̇k(t)|dt−

∫
J
ρ(γ(t))|γ̇k(t)|dt

∣∣∣∣ ≤ lim
k→∞

m∥γk − γ∥∞∥γ̇k∥∞ = 0.

Therefore,

lim inf
k→∞

∫
γk

ρds = lim inf
k→∞

∫
J
ρ(γk(t))|γ̇k(t)|dt ≥

∫
J
ρ(γ(t))|γ̇(t)|dt =

∫
γ
ρds.

We next consider any lower semicontinuous function ρ : R2 → [0,∞] with ρ∗ :=

inf ρ > 0. Then there is a sequence {ρm}m such that ρ(p) = supm ρm(p) for p ∈ R2 and
any ρm is a bounded m-Lipschitz function with ρm ≥ ρ∗; for example, we define ρm for
m ≥ ρ∗ as the cut-off inf-convolution of ρ, that is,

ρm(p) = min

{
m, inf

q∈R2
(ρ(q) +m|p− q|)

}
.
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Let Φ[ζ] :=
∫
ζ ρds and Φm[ζ] :=

∫
ζ ρmds. Then, by the monotone convergence theorem,

we find that Φ[ζ] = supmΦm[ζ] for any ζ ∈ W 1,∞(L;R2). Recall that for any m ≥ ρ∗
the functional Φm is L1-lower semicontinuous on a bounded set of W 1,∞(L;R2) by
the above argument. Hence, Φ is also L1-lower semicontinuous on a bounded set of
W 1,∞(L;R2). This implies the conclusion in this case.

We finally take any lower semicontinuous function ρ : R2 → [0,∞]. Let δ > 0 and
ρδ := ρ+ δ. Then, by the above argument,

lim inf
k→∞

∫
γk

ρδds ≥
∫
γ
ρδds ≥

∫
γ
ρds.

Since there is M > 0 such that ∥γ̇k∥∞ ≤M ,

lim inf
k→∞

∫
γk

ρδds ≤ lim inf
k→∞

(∫
γk

ρds+ δ∥γ̇k∥∞
)

≤ lim inf
k→∞

∫
γk

ρds+ δM.

Taking the limit δ → 0, we obtain the conclusion. The proof is now complete.

We remark that there is no need to suppose the W 1,∞-boundedness for obtaining
only the lower semicontinuity; see e.g. [2].

Lemma 3.A.4. Let {γk}k ⊂ W 1,∞(I;R2) be a sequence of constant speed curves and γ ∈
W 1,∞(I;R2) with E0[γ] < ∞. Let ρ : R2 → [0,∞] be a lower semicontinuous function such
that

ρ∗ := inf ρ > 0, ρ∗ := sup ρ <∞.

Suppose that γk → γ in L∞ and

lim
k→∞

∫
γk

ρds =

∫
γ
ρds.

holds. Then
lim
k→∞

∫
γk|J

ρds =

∫
γ|J

ρds

holds for any subinterval J ⊂ I . Moreover, γ is also constant speed, and the speed of γk
converges to the speed of γ as k → ∞.

Proof. Notice that {γk}k is bounded in W 1,∞ since
∫
γk
ρds is bounded as k → ∞ and∫

γk

ρds ≥ Lkρ∗ = ρ∗∥γ̇k∥∞.

Fix J ⊂ I . Denote the interior set of the complement of J by J ′, which is the union
of at most two open intervals. Then, by Lemma 3.A.3, the line integral is lower
semicontinuous for γk|J → γ|J and γk|J ′ → γ|J ′ . Moreover, the Lebesgue measure
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of the boundary of J ′ is zero. Then we have∫
γ|J

ρds ≤ lim inf
k→∞

∫
γk|J

ρds ≤ lim sup
k→∞

∫
γk|J

ρds

= lim sup
k→∞

(∫
γk

ρds−
∫
γk|J′

ρds

)
=

∫
γ
ρds− lim inf

k→∞

∫
γk|J′

ρds

≤
∫
γ
ρds−

∫
γ|J′

ρds =

∫
γ|J

ρds,

and thus the first assertion holds.
Let Lk be the speed of γk. Let L∗ := lim infk→∞ Lk and L∗ := lim supk→∞ Lk. The

case L∗ = (L∗ =) 0 is trivial (since γk degenerates to a single point and the energy
converges to zero); thus, we may assume that L∗ > 0. Then we notice that L∗ < ∞
since ρ∗ > 0 and

L∗ρ∗ = lim sup
k→∞

Lkρ∗ ≤ lim
k→∞

∫
γk

ρds =

∫
γ
ρds <∞.

Let J = (0, t) for any t ∈ I . Since 0 < L∗ < ∞, there is a subsequence {γk′}k′ ⊂ {γk}k
such that L∗ = limk′→∞ Lk′ . Then we have∫

γ|J
ρds = lim

k→0

∫
γk|J

ρds = lim
k′→∞

Lk′

∫ t

0
ρ(γk′(r))dr(3.A.1)

≥ L∗ lim inf
k′→∞

∫ t

0
ρ(γk′(r))dr.

By Fatou’s lemma and L∗ ≤ L∗,

L∗ lim inf
k′→∞

∫ t

0
ρ(γk′(r))dr ≥ L∗

∫ t

0
ρ(γ(r))dr ≥ L∗

∫ t

0
ρ(γ(r))dr.(3.A.2)

Then, by Lemma 3.A.2, we have ∥γ̇∥∞ ≤ L∗, and hence

L∗

∫ t

0
ρ(γ(r))dr ≥

∫ t

0
ρ(γ(r))|γ̇(r)|dr =

∫
γ|J

ρds.(3.A.3)

Therefore, all the inequalities in (3.A.1), (3.A.2), and (3.A.3) hold as the equalities. In
particular,

L∗ lim inf
k′→∞

∫ t

0
ρ(γk′(r))dr = L∗

∫ t

0
ρ(γ(r))dr ≥

∫ t

0
ρ(γ(r))|γ̇(r)|dr.

Then we find thatL∗ = L∗ since ρ is positive; in particular, the speedLε converges toL∗.
Moreover, the Lebesgue differentiation theorem implies that L∗ρ(γ(r)) = ρ(γ(r))|γ̇(r)|
holds for a.e. r ∈ I . Since ρ is positive, L∗ = |γ̇(r)| holds for a.e. r ∈ I . This implies that
γ is constant speed, and moreover the speed of γ coincides with the limit of the speed
of γk. The proof is complete.
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3.B Existence of minimizers of E0

We prove Theorem 3.2.8, i.e., the existence theorem of minimizers of E0.

Proof of Theorem 3.2.8. We first note obvious facts; the set {E0[·] < ∞} ⊂ X1,∞ is
nonempty, and infX1,∞ E0 > 0. Hence we can take a minimizing sequence {γk}k ⊂
X1,∞, i.e.,

lim
k→∞

E0[γk] = m := inf
X1,∞

E0 ∈ (0,∞).

To apply Lemma 3.2.1, we confirm the W 1,∞-boundedness of {γk}k.
Let Lk be the speed of γk. Notice that

E0[γk] ≥ αLk = α∥γ̇k∥∞.

Since α > 0 and E0[γk] is bounded, the sequence of ∥γ̇k∥∞ is bounded.
We next confirm that the sequence of ∥γk∥∞ is also bounded. Denote the x- and

y-component of γk by xk and yk, respectively. Then, the boundary condition xk(0) = 0

implies that
∥xk∥∞ = max

t∈Ī
|xk(t)− xk(0)| ≤ Lkmax

t∈Ī
|t| = Lk.

Since Lk is bounded, the x-components are bounded. The remaining part is to confirm
the uniform boundedness for yk. Without loss of generality, we may assume that any
γk touches ∂Ω. In fact, if not, then by shifting γk downward we obtain a new curve γ′k
touching ∂Ω such that E0[γ

′
k] ≤ E0[γk]; we notice that this procedure does not change

the x-component and speed. Hence, there is tk ∈ Ī such that γ(tk) ∈ ∂Ω. Thus we have

∥yk∥∞ ≤ max
t∈Ī

|yk(t)− yk(tk)|+ |yk(tk)| ≤ Lkmax
t∈Ī

|t− tk|+ sup
∂Ω

|y| ≤ Lk + ψ(0).

Since Lk is bounded, we find that the y-components are also bounded.
Therefore, by Lemma 3.2.1, there is a subsequence {γk′}k′ converging to some γ ∈

W 1,∞(I;R2). We confirm that γ is nothing but a minimizer. We first notice that the
L∞-convergence γk′ → γ immediately implies that the image of γ is included in Ω, and
γ satisfies the same periodic boundary condition as γk. Moreover, Lemma 3.2.6 implies
that

m = lim
k′→∞

E0[γk′ ] ≥ E0[γ],

and hence m = E0[γ]. Then, by Lemma 3.2.7, γ is also constant speed. The above facts
imply that γ is admissible. Since m = E0[γ], the curve γ is nothing but a minimizer.
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Chapter 4

A characterization of cut locus for C1

hypersurfaces

Let Ω be an open set in Rn withC1-boundary and Σ be the skeleton of Ω, which consists
of points where the distance function to ∂Ω is not differentiable. In this chapter we
characterize the cut locus (ridge) Σ, which is the closure of the skeleton, by introducing
a generalized radius of curvature and its lower semicontinuous envelope. As an
application we give a sufficient condition for vanishing of the Lebesgue measure of
Σ.

Keywords: Distance function; Eikonal equation; Singularity; Ridge; Cut locus; Radius
of curvature.

4.1 Introduction

Let n ≥ 2 and Ω ⊂ Rn be an open set with nonempty boundary ∂Ω. The distance function
d : Ω → (0,∞) and the metric projection π : Ω → P(∂Ω) are defined by

d(x) := inf
ξ∈∂Ω

|ξ − x|, π(x) := {ξ ∈ ∂Ω | d(x) = |ξ − x|}.

The relation between the differentiability of the distance function and the number of
elements of the metric projection is well-known:

Theorem 4.1.1 (e.g. [4, Corollary 3.4.5]). The distance function d is differentiable at x ∈ Ω

if and only if π(x) is a singleton.

Thus we define the singular set Σ ⊂ Ω called skeleton (or medial axis) by

Σ := {x ∈ Ω | π(x) is not a singleton}.

Besides the above characterization, several properties of the skeletons are known for
general open sets Ω: the skeletons are C2-rectifiable [2], in particular they have null
Lebesgue measure, and they have the same homotopy type as Ω at least in the bounded
case [13] (cf. [1]). Skeletons (medial axes) are also studied in view of image processing,
see e.g. [3] and references therein. The generality of Ω is important to contain noisy
cases.
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In this chapter we study the set Σ, which is the closure of the skeleton in Ω, called
cut locus (or ridge). The complement of the cut locus concerns the differentiability of the
distance function not only at points but also in neighborhoods of points.

Cut loci have also been studied in several (generalized) settings, see e.g. [7, 10, 12,
15]. The complement set Ω \ Σ is the largest open set where the distance function is of
class C1. For general Ω the distance function is a unique nonnegative viscosity solution
to the simplest Eikonal equation |∇u| = 1 with the zero Dirichlet condition (see e.g.
[9, 14]). Since this is a first order equation, it is natural to know where the solution is of
class C1. We mention that cut loci also appear in the studies of other partial differential
equations, see e.g. [5, 6, 11].

Unlike skeletons, some properties of cut loci crucially depend on the regularity
of boundary. In particular, it is critical whether the boundary is of class C2. If the
boundary is at least C2, then the cut locus behaves rather well [7, 10, 12, 15]; in
particular, it still has null Lebesgue measure [7]. On the other hand, in [15, Section
3], Mantegazza-Mennucci give a pathological example of a planar convex C1,1-domain
such that the cut locus has positive Lebesgue measure.

Our purpose is to find a general theory for cut loci without the C2 assumption,
that is, with pathological cases. We emphasize that the theories in the above cited
papers basically work only for regular sets at least C2. In this paper, as a first step, we
characterize the cut locus by a geometric quantity of the boundary for a general open
set with C1-boundary.

We first recall a characterization of cut loci by radius of curvature in the C2 case:

Theorem 4.1.2 (e.g. [7]). Let ∂Ω be of class C2. Then x ∈ Ω \ Σ if and only if π(x) is a
singleton and d(x) < ρ(ξ), where π(x) = {ξ}.

Here ρ(ξ) is the classical inner radius of curvature of ∂Ω at ξ (see Remark 4.2.2 for
the definition). Theorem 4.1.2 is well-known: the cited paper [7] proves it in terms of
principal curvature κ instead of ρ (for the Minkowski distance). Theorem 4.1.2 means
that the differentiability of d near a point depends on not only the global shape of ∂Ω
but also the local shape as curvature. That curvature appears in the statement also tells
the importance of the C2 assumption.

The main result of this chapter is to characterize cut loci in the C1 case by a kind of
radius of curvature. To state it we should extend the definition of radius of curvature
ρ. This can be easily achieved for general open sets by using locally inner touching
spheres (see Definition 4.2.1). Unfortunately, by just this extension, the “if” part of the
above characterization is not valid even in the C1,1 case due to the loss of rigidity of C2.
Indeed, the example provided in [15, Section 3] is also a counterexample to this case.
Nevertheless, we can characterize cut loci by taking a lower semicontinuous envelope
of radius of curvature ρ∗ as Definition 4.2.1. Our main result is the following:

Theorem 4.1.3. Let ∂Ω be of class C1. Then x ∈ Ω \ Σ if and only if π(x) is a singleton and
d(x) < ρ∗(ξ), where π(x) = {ξ}.

Since ρ∗ coincides with classical ρ in the C2 case, Theorem 4.1.3 is a generalization of
Theorem 4.1.2.

As an application of this characterization, in Section 4, we show that if ∂Ω is C1,1

and almost C2, then the Lebesgue measure of the cut locus vanishes.
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We finally emphasize that our proof of Theorem 4.1.3 quite differs from that of C2

case; it does not calculate second derivatives and is more geometric. The “if” part is
proved by considering its contrapositive. The inequality d(x) ≥ ρ∗(ξ) is obtained for
x ∈ Σ \ Σ by seeking a sequence of suitably “curving” points in ∂Ω converging to ξ.
To state “curving” we use comparisons of functions. Our proof of this part depends
on the local C1-graph representation of ∂Ω. The “only if” part is proved by showing
that, for x ∈ Ω \ Σ, any point near ξ has a locally inner touching sphere with suitably
large radius. To this end we use the homotopy theory as mapping degree. This part
is proved for a wider class of Ω (see Definition 4.3.5). Another more conceptual and
geometric proof is also given.

The organization of this chapter is as follows. Some notations and known results
are prepared in Section 2. Theorem 4.1.3 is proved in Section 3. The proof is separated
into the “if” part (Section 3.1) and the “only if” part (Section 3.2). As a corollary of
Theorem 4.1.3, a sufficient condition for vanishing of the Lebesgue measures of cut loci
is given in Section 4. Finally, we mention remarks for non-smooth cases in Section 5.

4.2 Envelope of inner radius of curvature

In this section, we prepare notation and review a known result.
We first prepare some notations. Let Bm

r (x) denote an m-dimensional open ball of
radius r centered at x ∈ Rm and B

m
r (x) denote the closure. Let Sm−1

r (x) denote an
(m− 1)-dimensional sphere of radius r centered at x ∈ Rm, that is, Sm−1

r (x) = ∂Bm
r (x).

Let Umx denote the set of open neighborhoods of x in Rm.
Then we define a generalized inner radius of curvature as follows.

Definition 4.2.1. Let Ω ⊂ Rn be an open set with nonempty boundary and ξ ∈ ∂Ω. We
say that an open ball Bn

r (x) ⊂ Rn is a locally inner touching ball at ξ if ξ ∈ ∂Bn
r (x) and

there exists a neighborhood U ∈ Unξ such that Bn
r (x) ∩ U is contained in Ω ∩ U . We

denote the set of locally inner touching balls at ξ by Bn
ξ . Then we define the inner radius

of curvature at ξ by

ρ(ξ) :=

sup
{
r > 0

∣∣∣Bn
r (x) ∈ Bn

ξ

}
if Bn

ξ ̸= ∅,

0 if Bn
ξ = ∅.

Note that ρ : ∂Ω → [0,∞]. Moreover, we denote by ρ∗ the lower semicontinuous
envelope of ρ, that is, for ξ ∈ ∂Ω

ρ∗(ξ) := lim
r↓0

inf{ρ(η) | η ∈ Bn
r (ξ) ∩ ∂Ω}.

The function ρ∗ : ∂Ω → [0,∞] is lower semicontinuous.

Remark 4.2.2. If ∂Ω is of class C2, then both ρ and ρ∗ coincide with the classical inner
radius of curvature 1/κ, where

κ := max{0, κ1, . . . , κn−1}.
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Here κ1, . . . , κn−1 are the inner principal curvatures of ∂Ω, and we interpret 1/κ = ∞
when κ = 0.

Finally we review a well-known result about the continuity of the metric projection,
which is frequently used in this chapter. The proof is elementary so is safely omitted.

Lemma 4.2.3. For any open set Ω ⊂ Rn with nonempty boundary, the map π : Ω → P(∂Ω)

is set-valued upper semicontinuous. In particular, the induced map π̂ : Ω \Σ → ∂Ω defined by
x 7→ ξ ∈ π(x) is well-defined and continuous.

4.3 Characterization of the cut locus by radius of curvature

In this section we prove our main theorem (Theorem 4.1.3). Let en denote the n-th unit
vector of Rn and ⟨·, ·⟩ denote the Euclidean inner product. Let p̃r : Rn → Rn−1 be a map
induced by the orthogonal projection to the hyperplane {⟨y, en⟩ = 0}, that is,

p̃r(y1, . . . , yn) := (y1, . . . , yn−1).

Throughout this section we fix these notations.

4.3.1 Upper bound for radius of curvature

In this subsection we prove the “if” part of Theorem 4.1.3 by proving its contrapositive.
By the definition of Σ, it suffices to prove the following:

Proposition 4.3.1. Let x ∈ Σ \ Σ, π(x) = {ξ} and ∂Ω be of class C1 near ξ. Then the
inequality d(x) ≥ ρ∗(ξ) holds.

To prove this proposition we prepare the following two lemmas about locally
touching spheres and circles for the subgraphs of functions.

Here we say that a continuous function f1 on A1 ∈ Umy touches a function f2 on
A2 ∈ Umy from below (resp. above) at y ∈ Rm if the function f2 − f1 defined on A1 ∩A2

attains its local minimum (resp. maximum) at y, and f1(y) = f2(y) holds. Moreover,
we say that a function defined on an open setA ⊂ Rm is an upper semi-sphere function
if there are c0 > 0, r0 > 0 and x0 ∈ Rm such that

f(x) =
√
r20 − |x− x0|2 + c0

holds for all x ∈ A. When m = 1, it is called an upper semi-circle function.

Lemma 4.3.2. Let h : [a, b] → R be a continuous function and h̃ : [a, b] → R be a part of an
upper semi-circle function with radius r̃ > (b − a)/2 such that h ≥ h̃ in [a, b] and h = h̃ on
∂[a, b]. Then there exists c ∈ (a, b) such that any upper semi-circle function with radius larger
than r̃ can not touch h from below at c.

Proof. The case h ≡ h̃ is obvious; thus we assume h ̸≡ h̃. Since h ≥ h̃, and h − h̃ is
continuous on [a, b], we can take a constant α := max(h− h̃) > 0. Then h̃+α ≥ h holds
in [a, b] and, by the boundary condition, there exists c ∈ (a, b) such that h̃(c)+α = h(c).
In particular, the upper semi-circle function h̃ + α with radius r̃ touches h from above
at c (see Figure 4.1). This implies that any upper semi-circle function with radius larger
than r̃ can not touch h from below at c.
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FIGURE 4.1: Continuous function on upper semi-circle.

Remark 4.3.3. In the above lemma, the fact is that the subgraph {y < h(x)} does not
admit a locally inner touching ball (disk) with radius larger than r̃ at (c, h(c)). We
should be careful that, in general, the existence of a locally inner touching ball for
the subgraph of a function f does not imply the existence of an upper semi-sphere
function with the same radius touching f from below (the converse is generally valid).
A counterexample is given by f(x) = sign(x)

√
1− (|x| − 1)2. In this case any upper

semi-circle function does not touch f from below at 0 since limx→±0 f
′(x) = ∞ but the

subgraph admits a locally inner touching ball with radius 1 at the origin. However, in
particular, if f is differentiable at a point, then the two conditions are equivalent there.
(The fact is that it is sufficient that f is touched by a cone function from above.)

Lemma 4.3.4. Let m ≥ 1, x0 ∈ Rm, U ∈ Umx0 and f : U → R be a continuous function which
is differentiable at x0. Suppose that there exists an upper semi-sphere function with radius r̃
touching f from below at x0. Then, for any open segment I ⊂ U including x0, there exists an
upper semi-circle function with radius not smaller than r̃√

1+|∇f(x0)|2
touching f |I from below

at x0.

Proof. Without loss of generality, we may assume that |x0| < r̃, I ⊂ Bm
r̃ (0) and the

upper semi-sphere in the assumption is represented by

f̃(x) =
√
r̃2 − |x|2.

Since f̃ touches f from below at x0, we have f ≥ f̃ near x0 and

∇f(x0) = ∇f̃(x0) =
−x0√

r̃2 − |x0|2
.

Now let L ⊂ Rn be the line through I , and x∗ ∈ L be a unique point so that |x∗| =
minx∈L |x|. Since x0 ∈ I ⊂ L, we notice that |x∗| ≤ |x0|. Moreover, for any x ∈ I , noting
that x− x∗ is perpendicular to x∗, we have

f̃ |I(x) =
√
r̃2 − |x∗|2 − |x− x∗|2,
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which implies that f̃ |I is an upper semi-circle function with radius
√
r̃2 − |x∗|2.

Therefore, noting that f̃ |I touches f |I from below at x0 ∈ I and

√
r̃2 − |x∗|2 ≥

√
r̃2 − |x0|2 =

r̃√
1 + |∇f(x0)|2

,

we obtain the conclusion.

Now we prove Proposition 4.3.1. We may refer Figure 4.2 in the proof. Without
loss of generality, we may assume x = 0 and ξ = den, where d = d(x) > 0. Then we
can represent ∂Ω by a C1-graph near ξ in the direction of en: there exist 0 < ε0 < d, a
neighborhood Uξ ∈ Unξ and a C1-function g on Bn−1

ε0 (0) such that g(0) = d, ∇g(0) = 0

and g̃(Bn−1
ε0 (0)) = ∂Ω ∩ Uξ, where g̃(·) := (·, g(·)).

Proof of Proposition 4.3.1. Since x = 0 ∈ Σ, there exists a sequence {xk} ⊂ Σ such that
xk → 0. Then for any k the set π(xk) ⊂ ∂Ω has at least two elements. We denote them
by ξ1k and ξ2k . Since π is set-valued upper semicontinuous by Lemma 4.2.3, both ξ1k and
ξ2k converge to ξ as k → ∞. Thus we may assume that for any k

ξ1k, ξ
2
k ∈ g̃(Bn−1

ε0 (0)) = ∂Ω ∩ Uξ

and the n-th components of ξ1k − xk and ξ2k − xk are positive, that is, the points ξ1k and
ξ2k lie in the upper semi-sphere part of Sn−1

d(xk)
(xk). Define ξ

′i
k := p̃r(ξik) ∈ Bn−1

ε0 (0) for

i = 1, 2. Noting that ξ
′1
k ̸= ξ

′2
k , we can define Ik as the closed segment joining ξ

′1
k to ξ

′2
k .

Since the radius of any circle obtained as a section of Sn−1
d(xk)

(xk) is at most d(xk), the
function g|Ik satisfies the assumption of Lemma 4.3.2 for an upper semi-circle function
with radius not larger than d(xk). Thus, by Lemma 4.3.2, there exists ξ

′3
k ∈ Ik \ {ξ

′1
k , ξ

′2
k }

such that any upper semi-circle function with radius larger than d(xk) can not touch
g|Ik from below at ξ

′3
k .

Therefore, by the contrapositive of Lemma 4.3.4, any upper semi-sphere function

with radius larger than d(xk)
√

1 + |∇g(ξ′3k )|2 can not touch g from below at ξ
′3
k .

Noting Remark 4.3.3 and that g is differentiable, we find that the above fact
yields the nonexistence of locally inner touching balls with radius larger than

d(xk)
√

1 + |∇g(ξ′3k )|2 at ξ3k := g̃(ξ
′3
k ) ∈ ∂Ω; thus we have

ρ(ξ3k) ≤ d(xk)
√

1 + |∇g(ξ′3k )|2.

Since d(xk) → d(x), ξ
′3
k → 0 and ξ3k → ξ as k → ∞ and g is of class C1, we obtain

ρ∗(ξ) ≤ lim inf
k→∞

ρ(ξ3k) ≤ d(x)
√

1 + |∇g(0)|2 = d(x),

which is the desired inequality.

4.3.2 Lower bound for radius of curvature

In this subsection we prove the “only if” part of Theorem 4.1.3 for a class of Ω ⊂ Rn.
The class contains all open sets with C1-boundary. We first define this class.
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FIGURE 4.2: Panorama of the sequences: proof of Proposition 4.3.1.

Definition 4.3.5. Let Ω ⊂ Rn be an open set with nonempty boundary. We say that
a point η ∈ ∂Ω has non-spreading inner perpendicular if either, π−1({η}) is empty, or
nonempty π−1({η}) is included in a (unique) line L ⊂ Rn. In addition, if ∂Ω is locally
represented by a graph near η in the direction of L, then we say that the point η ∈ ∂Ω

has non-spreading inner perpendicular with graph representation.

Remark 4.3.6. Note that if η ∈ ∂Ω has non-spreading inner perpendicular and there
exists y ∈ Ω such that η ∈ π(y), then, even when y ̸∈ π−1({η}), the pull-back π−1({η})
is not empty and the line L passes through y and η. That is because for any t ∈ (0, 1)

the point ty + (1− t)η belongs to π−1({η}).

Remark 4.3.7. For any open set with C1-boundary, all points in its boundary have
non-spreading inner perpendicular with graph representation (in this case L is in
the normal direction of ∂Ω). In addition, the same property is valid for some more
non-smooth sets, for example general convex open sets.

The “only if” part follows by proving the following proposition.

Proposition 4.3.8. Let x ∈ Ω \ Σ and π(x) = {ξ}. Suppose that ξ ∈ ∂Ω has non-spreading
inner perpendicular with graph representation. Then there exist δ > 0 and rδ > 0 such that for
any η ∈ Bn

rδ
(ξ) ∩ ∂Ω the inequality d(x) + δ ≤ ρ(η) holds.

To prove this, we prepare a key lemma (Lemma 4.3.10) about the image of the metric
projection π̂. To this end we check a basic property of continuous maps.
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Lemma 4.3.9. Let m ≥ 1, D ⊂ Rm be a bounded region containing the origin, and f : D →
Rm be a continuous map such that

⟨f(y), y⟩+ |f(y)||y| > 0 for any y ∈ ∂D.(4.3.1)

Then there exists r̄ > 0 such that Bm
r̄ (0) ⊂ f(D).

Proof. Define the homotopy between the identity map id and the function f by

H(y, t) := tf(y) + (1− t)y.

Then, by (4.3.1), it is easily confirmed that |H(y, t)|2 > 0 for any (y, t) in ∂D × [0, 1].
Since ∂D × [0, 1] is compact and H is continuous, there exists r̄ > 0 such that |H| > r̄

on ∂D × [0, 1]. Then for any z ∈ Bm
r̄ (0) we have z ̸∈ H(∂D, [0, 1]) and hence

deg(f,D, z) = deg(id, D, z) = 1

by the homotopy invariance of mapping degree (see e.g. [16, Section IV.2]). This implies
that there exists x ∈ D such that f(x) = z. Thus Bm

r̄ (0) ⊂ f(D).

Now let us go back in our situation (Proposition 4.3.8). We may assume again
x = 0 and ξ = den, where d = d(x) > 0. Under the assumption of Proposition 4.3.8,
∂Ω has a local graph representation near ξ = den in the direction of en: there exist
ε0 > 0, a neighborhood Uξ ∈ Unξ and a function g on Bn−1

ε0 (0) such that g(0) = d and
g̃(Bn−1

ε0 (0)) = ∂Ω ∩ Uξ, where g̃(·) := (·, g(·)).
Since Ω \ Σ is open, we may also assume Bn

ε0(0) ⊂ Ω \ Σ. Moreover, we define a
lower semi-sphere in Bn

ε0(0) by

Sn−1
ε1,− := {y ∈ Bn

ε0(0) | ⟨y, en⟩ ≤ 0, |y| = ε1}(4.3.2)

so that π̂(Sn−1
ε1,−) ⊂ ∂Ω ∩ Uξ. Such 0 < ε1 < ε0 can be taken since π̂ is continuous by

Lemma 4.2.3.
Then the following key lemma holds (see also Figure 4.3).

Lemma 4.3.10. Suppose the assumption of Proposition 4.3.8 and let Sn−1
ε1,− be the semi-sphere

defined as (4.3.2). Then there exists r̄ > 0 such that

Bn
r̄ (ξ) ∩ ∂Ω ⊂ π̂(Sn−1

ε1,−).

Proof. Define a homeomorphism p1 : Sn−1
ε1,− → B

n−1
ε1 (0) by the restriction of p̃r, namely

p1 := p̃r|Sn−1
ε1,−

. If the map

p̃r ◦ π̂ ◦ p−1
1 : B

n−1
ε1 (0) → Rn−1

satisfies the assumption of Lemma 4.3.9, then there exists small 0 < r̄ < ε0 such that
Bn
r̄ (ξ) ⊂ Uξ and

Bn−1
r̄ (0) ⊂ p̃r ◦ π̂ ◦ p−1

1 (B
n−1
ε1 (0)) = p̃r

(
π̂(Sn−1

ε1,−)
)
.
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FIGURE 4.3: Image of the metric projection π̂(Sn−1
ε1,−).

Using these inclusions and noting that π̂(Sn−1
ε1,−) ⊂ ∂Ω ∩ Uξ, we obtain the conclusion

Bn
r̄ (ξ) ∩ ∂Ω ⊂ g̃(Bn−1

r̄ (0)) ⊂ g̃
(
p̃r
(
π̂(Sn−1

ε1,−)
))

= π̂(Sn−1
ε1,−).

Therefore, it suffices to confirm that the map p̃r ◦ π̂ ◦ p−1
1 satisfies the assumption of

Lemma 4.3.9, where D = B
n−1
ε1 (0). This map is obviously continuous by Lemma 4.2.3.

The condition (4.3.1) is proved as follows. Fix any y′ ∈ ∂B
n−1
ε1 (0) and denote

y := p−1
1 (y′) = (y′, 0) ∈ Rn.

Clearly, d(y) ≤ |ξ − y| holds. Moreover, we see that d(y) < |ξ − y| since ∂Ω has
non-spreading inner perpendicular. Indeed, the equality d(y) = |ξ − y| implying
π̂(y) = ξ can not be attained since, if so, then {0, y} ⊂ π−1({ξ}), but the three points 0,
ξ, y ∈ Rn are not in alignment. Thus we find that π̂(y) ∈ Bn

|ξ−y|(y) ∩ ∂Ω. In addition,
we find that π̂(y) /∈ B

n
d (0) since Bn

d (0) ∩ ∂Ω = {ξ} and ξ /∈ Bn
|ξ−y|(y). Noting that any

z ∈ Bn
|ξ−y|(y) \ B

n
d (0) satisfies ⟨p̃r(z), p̃r(y)⟩ > 0 by the shape of Bn

|ξ−y|(y) \ B
n
d (0), we

have
⟨p̃r (π̂(y)) , p̃r(y)⟩ = ⟨p̃r ◦ π̂ ◦ p−1

1 (y′), y′⟩ > 0.

This immediately implies the condition (4.3.1).

We are now in a position to prove the main proposition.

Proof of Proposition 4.3.8. By Lemma 4.3.10, there exists r̄ > 0 such that

Bn
r̄ (ξ) ∩ ∂Ω ⊂ π̂(Sn−1

ε1,−).

Therefore, for any η ∈ Bn
r̄ (ξ) ∩ ∂Ω there exists yη ∈ Sn−1

ε1,− such that π̂(yη) = η, which
implies that Bn

|η−yη |(yη) is an inner touching ball at η ∈ ∂Ω. This yields that ρ(η) ≥
|η − yη|. In addition, by the definition of Sn−1

ε1,−, there exist δ > 0 and 0 < rδ < r̄ such
that the distance between Bn

rδ
(ξ) and Sn−1

ε1,− is not smaller than d(x) + δ. Then for any
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η ∈ Bn
rδ
(ξ) ∩ ∂Ω we have

ρ(η) ≥ |η − yη| ≥ d(x) + δ.

The proof is complete.

Remark 4.3.11. The above proof does not use the differentiability of the distance
function. We have another proof of this part, which uses the implicit function
theorem for the distance function (and requires slightly different assumptions) but is
considerably shorter. The statement and proof are given in the rest of this section.

Proposition 4.3.12. Let x ∈ Ω \ Σ and π(x) = {ξ}. Suppose that there is a neighborhood U
of ξ in ∂Ω such that any η ∈ ∂Ω ∩U has non-spreading inner perpendicular and ∂Ω ∩U is an
(n− 1)-dimensional topological manifold. Then there exist δ > 0 and rδ > 0 such that for any
η ∈ Bn

rδ
(ξ) ∩ ∂Ω the inequality d(x) + δ ≤ ρ(η) holds.

Proof. Since x ∈ Ω \ Σ, there is small r > 0 such that the function d is of class C1 in
Bn
r (x) ⊂ Ω \ Σ and, by Lemma 4.2.3, π̂(Bn

r (x)) ⊂ ∂Ω ∩ U . Define

Γ := {y ∈ Bn
r (x) | d(y) = d(x)}.

Noting that |∇d| = 1 if it is differentiable, we find that Γ is a C1 hypersurface by the
implicit function theorem. By the assumption of non-spreading inner perpendicular,
the restriction map π̂|Γ is injective. Hence, by the assumption of topological manifold
and the invariance of domain theorem, the map π̂|Γ is a homeomorphism to its image;
in particular, the image of any neighborhood of x in Γ of π̂ is a neighborhood of ξ in
∂Ω. For any small open region neighborhood V of x in Γ, the boundary of π̂(V ) in
∂Ω is strictly far from ξ; thus, even if the set V is slightly shifted in the direction away
from ∂Ω (while V ⊂ Bn

r (x)), the image of π̂ still contains a neighborhood of ξ. This is
justified by the theory of mapping degree. The proof is now complete.

4.4 A sufficient condition for vanishing of Lebesgue measure

In this section, for Ω ⊂ Rn with C1,1-boundary we give a sufficient condition that
the Lebesgue measure of the cut locus Σ vanishes by utilizing Theorem 4.1.3. Let Ln

and Hn−1 denote the n-dimensional Lebesgue measure and the (n − 1)-dimensional
Hausdorff measure.

The following is the main theorem in this section.

Theorem 4.4.1. Let Ω ⊂ Rn be an open set with C1,1-boundary. If there is an Hn−1-negligible
subset Γ ⊂ ∂Ω such that ρ∗ = ρ in ∂Ω \ Γ, then Ln(Σ) = 0.

By this theorem we immediately obtain:

Corollary 4.4.2. Let Ω ⊂ Rn be an open set withC1,1-boundary. If there is an Hn−1-negligible
subset Γ ⊂ ∂Ω such that ∂Ω \ Γ is C2, then Ln(Σ) = 0.

Here that ∂Ω \ Γ is C2 means that for any ξ ∈ ∂Ω \ Γ there is an open neighborhood
U ∈ Unξ such that (∂Ω\Γ)∩U is a C2-manifold. Of course, the assumptions in Theorem
4.4.1 and Corollary 4.4.2 exclude the example of Mantegazza-Mennucci [15, Section 3].

We now prove Theorem 4.4.1. Our proof is inspired by [7]. We first prepare the
following inclusion relation.
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Proposition 4.4.3. Let ∂Ω be of class C1. Define for ξ ∈ ∂Ω and 0 ≤ t <∞

Ψ(ξ, t) := ξ + tν(ξ),

where ν(ξ) is the inner unit normal at ξ, and

S := {Ψ(ξ, t) ∈ Rn | ξ ∈ ∂Ω, ρ∗(ξ) <∞, ρ∗(ξ) ≤ t ≤ ρ(ξ)}.

Then Σ \ Σ ⊂ S .

Proof. Fix any x ∈ Σ \ Σ and let ξ = π̂(x) ∈ ∂Ω. By Theorem 4.1.3 we have

ρ∗(ξ) ≤ d(x) = |x− ξ| <∞.

Noting that Bn
|x−ξ|(x) is an inner touching ball at ξ of Ω, we also have

|x− ξ| ≤ ρ(ξ).

Since ν(ξ) = x−ξ
|x−ξ| , we obtain Ψ(ξ, |x− ξ|) = x and hence x ∈ S .

By the above proposition and the fact that Ln(Σ) = 0 (see e.g. [2]), it suffices to
confirm the following proposition in order to prove Theorem 4.4.1.

Proposition 4.4.4. Let ∂Ω be of class C1,1 and suppose that there is an Hn−1-negligible subset
Γ ⊂ ∂Ω such that ρ∗(ξ) = ρ(ξ) holds for any ξ ∈ ∂Ω \ Γ. Then Ln(S) = 0.

Proof. Under the assumption, by Proposition 4.4.3 we notice that S ⊂ S1 ∪ S2, where

S1 := {Ψ(ξ, t) ∈ Rn | ξ ∈ ∂Ω, t = ρ∗(ξ) <∞},

S2 := {Ψ(ξ, t) ∈ Rn | ξ ∈ Γ, t ≥ 0}.

Thus it suffices to confirm that Ln(S1) = Ln(S2) = 0.
Since ∂Ω is C1,1, there exist countable local parametrizations: for k ∈ N there are

open sets Uk ⊂ Rn−1, Vk ⊂ Rn, a compact set Ck ⊂ Uk and a C1,1-diffeomorphism
Yk : Uk → ∂Ω ∩ Vk such that ∂Ω =

∪
k Yk(Ck). Then, noting that ν is Lipschitz since ∂Ω

is C1,1, we can define Lipschitz maps Ψk : Rn ⊃ Ck × [0,∞) → Rn by

Ψk(x
′, t) := Ψ(Yk(x

′), t) = Yk(x
′) + tν(Yk(x

′)).

Now we define a set A1
k ⊂ Ck × [0,∞) for any k by

A1
k := {(x′, t) ∈ Ck × [0,∞) | t = ρ∗(Yk(x

′))}.

Since A1
k is a part of the graph of the lower semicontinuous function ρ∗ ◦ Y ′

k, we have
Ln(A1

k) = 0. Noting that S1 =
∪
kΨk(A

1
k), we obtain

Ln(S1) ≤
∑
k

Ln(Ψk(A
1
k)) ≤

∑
k

LnkLn(A1
k) = 0,

where Lk is the Lipschitz constant of Ψk on Ck.



A characterization of cut locus for C1 hypersurfaces 117

Next we define a set A2
k ⊂ Ck × [0,∞) for any k by

A2
k := Y −1

k (Γ ∩ Yk(Ck))× [0,∞).

By the area formula (see e.g. [8]) and Hn−1(Γ) = 0, we have

Ln−1(Y −1
k (Γ ∩ Yk(Ck))) ≤ J−1

k Hn−1(Γ ∩ Yk(Ck)) = 0,

where Jk := minCk
|JYk| > 0. Thus we have Ln(A2

k) = 0 and hence, similarly as above,
Ln(S2) = 0.

4.5 A counterexample with Lipschitz boundary

The statement of Theorem 4.1.3 does not hold in Lipschitz cases. A counterexample
Ω ⊂ R2 is simply given as the union of the unit disc {x21 + x22 < 1} and the upper half
plane {x2 > 0}. Note that Σ = {x1 = 0} ∩ {x2 ≥ 0}. Then, for example, the point
x = (1, 2) ∈ Ω \ Σ satisfies π̂(x) = (1, 0) but we find that d(x) = 2 and

ρ∗(π̂(x)) = lim
θ↑0

ρ((cos θ, sin θ)) = 1.
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Chapter 5

An example of a mean-convex flow
developing infinitely many singular epochs

In this chapter, we give an example of a compact mean-convex hypersurface with a
single singular point moved by mean curvature having a sequence of singular epochs
(times) converging to zero.

Keywords: Mean curvature flow; Singularity; Smoothing effect; Mean-convex.

5.1 Introduction

The regularity and singularity of mean curvature flow, which is a one-parameter family
of hypersurfaces in Rn+1 moving by its mean curvature, have been studied by many
authors. There is an excellent survey paper [8] on this issue from classical results to
recent developments.

In particular it is well-studied for mean-convex flows, namely, mean curvature
flows of hypersurfaces with positive mean curvature. A well-known conjecture
about such flows is: any mean-convex flow from a smooth initial surface develops
singularities only at finitely many epochs (for example see [20]).

The main result of this chapter, Theorem 5.2.1, shows that there is a chance that the
set of singular epochs is not finite even if an initial surface has only one singular point.
Such an example is rigorously given in Section 5.3 but rough shape of the initial surface
is as drawn in Figure 5.1.

Our initial surface is constructed by dilation. Thus it is self-similar near the
singularity. Using the self-similarity, we prove that the flow from the surface pinches at
infinitely many epochs (times) tk ↓ 0 by comparing Angenent’s doughnuts [2] and balls.
One may be tempted to construct such a surface by using a rescaled periodic function.
However, this simple idea does not work directly, although the idea of rescaling is
important. Our construction looks slightly complicated because we have to connect a
ball like shape in a suitable way. An advantage of our construction is that it is easy to
confirm the desired properties like mean-convexity. The feature of our construction is
explained in detail in Remark 5.3.7.

We describe the result in terms of the level set method introduced by
Chen-Giga-Goto [5] and Evans-Spruck [10] (see a self-contained book by Giga [12] for
details). This method can define a(n) (generalized) interface evolution of mean curvature
flow for all times through singularities. The interface evolution is uniquely determined
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FIGURE 5.1: Example.

by a given initial surface, although in general it is not necessarily unique in the sense of
“surface evolution”. The reason is that interface evolutions can fatten, namely, have an
interior point at some time. However, our example is now mean-convex in the sense of
White [21], and hence it does not fatten.

In the rest of this section, we mention some related known results. Our example is
useful to contrast them.

For any smooth compact initial surface, there is a unique classical solution of
mean curvature flow at least locally in time (see e.g. [3, 17]). However it must
develop singularities in finite time and it is complicated generally. The first non-simple
singularity is given by Grayson [13] called “neck-pinching”, which inspires the result
of this chapter.

On the other hand, the mean curvature flow has a smoothing effect due to its
parabolicity. A remarkable well-known result by Ecker and Huisken [9] is that any
uniformly Lipschitz initial surface admits a classical solution of mean curvature flow
locally in time. This result is proved by establishing local interior regularity estimates.
Some other results are also known. For example, Evans and Spruck [11] proved a local
interior regularity result for a level set flow provided that it is given locally as the graph
of a continuous function. In addition, the recent works of Tonegawa and his co-authors
[15, 18, 19] show the local existence of a classical solution for C1 initial surfaces in terms
of the Brakke flow (with a transport term). Our example suggests that these smoothing
effects are crucially based on that an initial surface is locally represented by a graph.

As mentioned above, mean-convex flows are well-studied compared with general
flows. There are many results about the size or nature of the singular set of
mean-convex flows (see e.g. [6, 7, 21, 22, 23] or the subsection 2.3 in [8] for details).
In particular, if n = 2, the mean-convex interface evolution is smooth for almost every
time [21]. Our example shows that the set of singular times can be an infinite set (in a
finite time interval).

The case that an initial surface is given by rotating a graph is studied even
better in [1]. In particular, an axisymmetric compact smooth initial surface develops
singularities only at finitely many epochs. Our example is axisymmetric, and thus also
complements the above result.

Finally, we mention the case of curve shortening flow (n = 1). In this case, recently,
Lauer proved that any finite length Jordan curve is smoothed out instantly [16]. This
result is in marked contrast to our higher dimensional result (n ≥ 2). In fact, our
example is of finite area and the image of a continuous injection from the n-dimensional
sphere, although the smoothing effect as in [16] is not valid.
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5.2 An example of mean-convex hypersuface developing
infinitly many singular epochs moved by mean curvature

In this section we state our main theorem rigorously. Throughout this chapter, for a
given open set D0 (resp. boundary Γ0 = ∂D0, closed set E0 = D0 ∪ Γ0) in Rn+1, the set
D (resp. Γ, E) in Rn+1 × [0,∞) denotes the open (resp. interface, closed) evolution of
mean curvature flow, and the set Dt (resp. Γt, Et) in Rn+1 denotes its cross-section at
time t > 0. See [12] for details of the above definitions.

Here is our main theorem.

Theorem 5.2.1. Let n ≥ 2. There exists a compact connected axisymmetric initial hypersurface
Γ0 ⊂ Rn+1, which is the boundary of some bounded open set D0 of finite perimeter, satisfying
the following conditions:

(1) all points except one point in Γ0 are C∞-regular and mean-convex points,

(2) the generated evolutions satisfy the monotonicity Et+h ⊂ Dt for any t ≥ 0 and h > 0;
in particular, Γt does not fatten for any t ≥ 0,

(3) for any τ > 0 there exists 0 < t < τ such that Γt has a singularity.

A point x ∈ Γ0 is called C∞-regular point if there exists some open neighborhood U
in Rn+1 containing x such that U∩Γ0 is an embedded n-dimensionalC∞-hypersurface.
A C∞-regular point x ∈ Γ0 = ∂D0 is called mean-convex point if the inward mean
curvature at x is positive.

Remark 5.2.2. If we drop the connectivity, an example of initial surface developing
infinitely many singular epochs is easily provided, for example, by the countable union
of dwindling spheres converging to a point.

Remark 5.2.3. The monotonicity in (2) is the same as the mean-convexity of White [21].
This monotonicity directly implies that the interface evolution does not fatten so that
the level set flow is nothing but a Brakke flow (see also [12, 14]).

5.3 Construction of an example

We construct an example concretely in order to prove Theorem 5.2.1. This construction
is based on the comparison principle of mean curvature flow (Lemma 5.3.1) and two
self-shrinking classical solutions (Examples 5.3.2 and 5.3.3). Using them, we can obtain
a “neck-pinching” singularity as shown in [2].

Lemma 5.3.1 (Avoiding property). Let Γ, Γ′ ⊂ Rn+1 × [0,∞) be interface evolutions
generated by compact initial surfaces Γ0, Γ′

0 ⊂ Rn+1, respectively. If Γ0 and Γ′
0 are disjoint,

then so are Γ and Γ′.

Proof. See [12, Theorem 4.5.2, Lemma 4.5.13].

Example 5.3.2 (Spheres). The n-sphere Sn ⊂ Rn+1 shrinks to its center without
changing the shape since the curvature is the same all around. The n-sphere with radius
R disappears at time R2/2n.
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FIGURE 5.2: Graphs of fδ and f̃ .

Example 5.3.3 (Shrinking doughnuts). For n ≥ 2, Angenent [2] showed that there exists
a self-shrinking doughnut An ≈ S1 × Sn−1 ⊂ Rn+1. More precisely, An is created
by rotating a suitable simple closed curve γ around the x0-axis, where γ lies in the
x0x1-plane with x1 > 0, and is symmetric with respect to reflection in the x1-axis. The
doughnut An shrinks to its center without changing the shape and disappears in finite
time. We define the radius of hole r and the thickness R of An by

r := min{x1 | (x0, x1, 0, . . . , 0) ∈ γ}, R := max{2x0 | (x0, x1, 0, . . . , 0) ∈ γ}.

Now we construct our example. Let ϕ0 : [0, 12 ] → [0, 1] be a nondecreasing function
of class C∞ such that ϕ0 ≡ 0 in [0, 16 ] and ϕ0 ≡ 1 in [13 ,

1
2 ]. Fix a positive constant

ε0 ∈ (0, 1) so that (1 + max |ϕ′′0|)ε20 < 1. For δ ∈ (0, ε02 ) we define fδ : R → [0, ε0] by

fδ(x) :=


(ε0 − δ)ϕ0(x− 3

2) + δ (32 < x ≤ 2),

( ε02 − δ)ϕ0(
3
2 − x) + δ (1 < x ≤ 3

2),

0 (otherwise).

Next, let Ω0 be a planer convex domain in the xy-plane such that, Ω0 is symmetric
with respect to reflection in the x- and y-axis, and its boundary ∂Ω0 is of class C∞,
passes through the four points (0,±ε0), (±1, 0) ∈ R2, is straight in the region {|x| ≤ 1

6},
and has positive inner curvature at (±1, 0) ∈ R2. Then we define f̃ : R → [0, ε0] so that
the graph curve {(x, f̃(x)) | x ∈ (0, 1]} is contained in ∂Ω0 and f̃ ≡ 0 elsewhere.

Finally, we define F : R → [0, ε0] by

F (x) := f̃(x− 2) +
∞∑
k=0

2−kfδ0(2
kx),

where δ0 ∈ (0, ε02 ) is taken to be sufficiently small so that there exists a self-shrinking
doughnutAn0 with thicknessR0 <

1
3 and radius of hole r0 > δ0 such thatAn0 disappears

earlier than the n-sphere with radius ε0
12 . Notice that F is self-similar in [0, 2] in the

sense that for x ∈ [0, 1]

F (2x) = 2F (x).(5.3.1)
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It turns out that the hypersurface Γ̃0 ⊂ Rn+1 created by rotating the graph of F with
respect to the x0-axis (as Figure 5.1), namely Γ̃0 := ∂D̃0 where

D̃0 :=
{
(x0, . . . , xn) ∈ Rn+1

∣∣∣ F (x0) >√x12 + . . .+ xn2
}
,

satisfies all conditions of Theorem 5.2.1. The surface Γ̃0 lies in the region {0 ≤ x0 ≤ 3}.
The origin is only one singular point in Γ̃0.

We shall check that this compact connected axisymmetric surface Γ̃0 of finite area
satisfies the conditions of Theorem 5.2.1. The following three propositions 5.3.4, 5.3.5
and 5.3.6 correspond to the three conditions (1), (2) and (3), respectively.

Proposition 5.3.4. All points except the origin in Γ̃0 are C∞-regular mean-convex points.

Proof. It is easy to check that Γ̃0 is of class C∞ except the origin. Thus we only confirm
the mean-convexity. It suffices to confirm in the region {0 < x0 ≤ 2} since Γ̃0 is convex
in {2 < x0 ≤ 3}. Moreover, the mean-convexity is preserved by dilation, and hence we
only need to confirm in {1 < x0 ≤ 2}.

The inward mean curvature of Γ̃0 in {0 < x0 ≤ 2} is represented as

n− 1

F (x0)
√

1 + (F ′(x0))2
−

F ′′(x0)

(
√

1 + (F ′(x0))2)3
.

Therefore, to confirm its positivity it suffices to prove that for 1 < x ≤ 2 the inequality
F (x)F ′′(x) < 1 holds. This inequality follows since in this case F ≡ fδ0 holds and for
any δ ∈ (0, ε02 ) we have fδ ≤ ε0 and

f ′′δ ≤ (ε0 − δ)|ϕ′′0|+ δ ≤ (1 + max |ϕ′′0|)ε0 < ε−1
0 .

The last inequality follows from the definition of ε0 ∈ (0, 1).

We denote the evolutions corresponding to Γ̃0 by Γ̃, D̃ and Ẽ.

Proposition 5.3.5. The monotonicity Ẽt+h ⊂ D̃t holds for any t ≥ 0 and h > 0.

Proof. By order preserving property [12, Theorem 4.5.2], it suffices to prove that Ẽt ⊂
D̃0 for any t > 0. For any positive integer k we define Fk : R → [0, ε0] by

Fk(x) :=


F (x) (x > 2−k+1),

ε02
−k (2−k ≤ x ≤ 2−k+1),

2−kf̃(1− 2kx) (x < 2−k),

and
D̃k

0 :=
{
(x0, . . . , xn) ∈ Rn+1

∣∣∣ Fk(x0) >√x12 + . . .+ xn2
}

(see Figure 5.3) and denote the corresponding closed evolution by Ẽk. By definition,
we find that all points in ∂D̃k

0 are C∞-regular mean-convex points. Since the classical
mean-convexity implies the monotonicity [12, Theorem 4.5.7], we have Ẽk

t ⊂ D̃k
0 for all
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FIGURE 5.3: ∂D̃k
0 .

k and t > 0. Hence, noting the convergence D̃k
0 ↓ D̃0, we find that for all t > 0

∞∩
k=0

Ẽkt ⊂
∞∩
k=0

D̃k
0 = D̃0.

Using monotone convergence property [12, Theorem 4.5.4], we have Ẽkt ↓ Ẽt for all
t > 0, and thus we conclude that Ẽt ⊂ D̃0 for any t > 0.

Proposition 5.3.6. For any τ > 0 there exists 0 < t < τ such that Γ̃t has a singularity.

Proof. Denote e0 := (1, 0, . . . , 0) ∈ Rn+1. Seeing our construction of Γ̃0, we notice
that Γ̃0 encloses the two n-spheres with radius ε0

12 centered at e0 and 2e0. Moreover,
noting the definition of δ0, we also notice that Γ̃0 is circled by a self-shrinking doughnut
centered at 3

2e0 disappearing earlier than the spheres. Then we find that the interface

evolution Γ̃ has a neck-pinching singularity at some time t0 ∈ (0,
ε20

144n). By the self
similarity (5.3.1), for any positive integer k we can take the two spheres with radius
ε0

12·2k centered at 1
2k
e0 and 1

2k−1e0 and the doughnut centered at 3
2k+1e0 disappearing

earlier than the spheres as above. We thus obtain a sequence of singular times {tk}k of
Γ̃ such that tk ∈ (0,

ε20
144n·4k ). Since tk ↓ 0, we reach the conclusion.

Remark 5.3.7. As mentioned in the introduction, we are tempted to construct the
self-similar part of an initial surface by a simpler scaling argument, for example rotating
some rescaled periodic function as

f(x) = x (ϕ(ε log x) + δ) ,

where ϕ is a suitable nonnegative periodic function and ε, δ are sufficiently small
positive numbers. This construction is simpler than ours and should provide a surface
satisfying the main desired properties. Unfortunately, we then need to be careful to
confirm the properties rigorously. For example in the proof of Proposition 5.3.5, we
made a new surface by cutting and pasting smoothly. In addition, the obtained surface
should enclose the original one and remain mean-convex. It is not trivial to confirm
them for the simply constructed surface. However, the surface given in this chapter is
partially just straight, and its overall shape is also clear, so that there is no need to be
careful in such a process.
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