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Introduction

0.1 Introduction

0.1.1 Reduction of a microscopic system

A physical system is characterized by the motion of energy through space. Energy
manifests itself in various forms, such as matter, radiation, or a force field. In the
presence of energy, dynamical motion may occur. The description of the dynamics
requires two fundamental concepts: time, the parameter with respect to which we
measure change, and space, the set of possible states that are dynamically accessible.
The essential feature of the dynamics of a closed physical system is the conservation
of total energy throughout dynamical evolution, while internal order is prohibited
from increasing by the second law of thermodynamics.

The dynamics of microscopic physical systems, such as the motion of a point
charge in an electrostatic field or that of a point mass in the gravitational field of
the Earth, is naturally formulated in the language of canonical Hamiltonian me-
chanics [I]. The behavior of a canonical Hamiltonian system is determined by the
Hamiltonian, the scalar function measuring the energy of the system. The resulting
motion, which is prescribed on the level sets of the Hamiltonian, occurs in a ‘flat’
space, the so called phase space. The phase space does not have preferential direc-
tions or inaccessible regions, and is mathematically characterized as a symplectic
manifold [2], 3].

A macroscopic system arises when the microscopic description of a certain physical
system exhibits negligible degrees of freedom. The removal (or reduction) of such
negligible degrees of freedom preserves the essential features of the original system,
while providing a simpler description that can be used to understand and predict
the relevant global behavior. A tangible example of reduction to a macroscopic

system is the formulation of the collective motion of water molecules in the flow of



a river as the motion of a fluid: the fluid elements no longer remember the complex
interactions occurring among the molecules and their erratic motion caused by all
sort of fluctuations, but contain the information necessary to construct a physical
theory of fluid dynamics.

The constitutive property of macroscopic systems is that the process of reduc-
tion by which they are generated may destroy the canonical Hamiltonian form: the
space where the motion of the macroscopic system takes place may not, in general,
be qualified as a phase space. Consider, for example, the mechanical description of
a rigid body. Rigidity is an ideal concept that acquires consistent physical meaning
on appropriate length and time scales where the constituents of the rigid body can
be considered as fixed with respect to each other. Such idealization imposes a set
of constraints on the constituents of the rigid body, which are not allowed to move
according to their microscopic dynamics and must occupy a prescribed position in
space. Therefore, on the length and time scales where rigidity holds, the phase
space of the microscopic constituents is no longer flat: certain regions are now inac-
cessible and preferential directions arise. The macroscopic model is then obtained
by eliminating these inaccessible regions from the mathematical formulation of the
dynamics. In the specific case of a rigid body that moves in the absence of external
forces in a rotating reference frame determined by the principal axes of inertia, the
reduced space is three dimensional with the components of the angular velocity (or

angular momentum) as coordinates.

0.1.2 Conservative dynamics and topological constraints

If the cut performed on the microscopic phase space is ‘sharp enough’, the surviving
slice of space may resemble a flat phase space. This occurs when the constraints
acting on the system delineate a smooth surface, i.e. the macroscopic dynamics is
forced on the level set of some integral manifold. Physically, these constraints repre-
sent additional constants of motion that do not depend on the energy (Hamiltonian)
of the macroscopic system, but on the geometric properties of the reduced space.
Whenever the reduced dynamics of a macroscopic system can be locally described
as a canonical Hamiltonian system up to a change of coordinates, we speak of a
non-canonical Hamiltonian system, which is mathematically characterized in terms
of a Poisson algebra [4, 5]. The Poisson algebra is defined by a ‘bracket’ (a type
of inner product whose action is represented by a Poisson ‘operator’) that satisfies
certain mathematical properties, among which the so called Jacobi identity. The
Jacobi identity ensures that space has the geometrical attributes of canonical phase

space. In this formalism, one obtains the time evolution of a physical observable by
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taking the bracket between the observable itself and the Hamiltonian of the system.
The Euler equations for the motion of a rigid body, as well as the Euler equations
for the motion of an ideal fluid are examples of non-canonical Hamiltonian systems
[6, 17, 18,9]. Consider again the rigid body: if the body is made up of N particles, only
3 of the 6N phase space degrees of freedom are required to describe the dynamics.
If we further note that total angular momentum is preserved, the actual degrees of
freedom are just 2. By changing coordinates, the original 6/N dimensional phase
space can be transformed to a 2 dimensional phase space on a 6/N — 2 dimensional
integral manifold.

However, when the constraints representing the macroscopic properties of a physi-
cal system cannot be integrated to form an integral surface, the reduced dynamics is
not, in general, Hamiltonian. In other words, there is no coordinate change by which
the reduced space qualifies as a canonical phase space. In the Lagrangian formula-
tion of mechanics, non-integrable constraints are usually called nonholonomic. The
fundamental result on nonholonomically constrained mechanical systems is that they
do not admit an Hamiltonian representation due to the failure of the Jacobi identity
that characterizes the Poisson algebra of Hamiltonian mechanics [10] 111 12} 13, 14].
It is known that the failure of the Jacobi identity has important consequences for
the dynamics [I5]. In general, a system that fails to be Hamiltonian due to the fail-
ure of the Jacobi identity is called almost Hamiltonian, and the associated space is
characterized as an almost symplectic manifold [16] endowed with an almost Poisson
bracket. We will avoid such terminology, and refer to those systems that possess an
energy function but that violate the Jacobi identity simply as conservative systems
with associated antisymmetric brackets. This choice is made to stress the fact that
the failure of the Jacobi identity results in a strong departure from Hamiltonian me-
chanics which does not justify the word ‘almost’ in the context of the present study.
We remark that both non-canonical and canonical Hamiltonian mechanics can be
regarded as subclasses of conservative mechanics. A classical example of a nonholo-
nomic mechanical system is the rolling of a disc without slipping on a horizontal
surface, and, more generally, the rolling of a rigid body. This type of macroscopic
dynamics, which displays peculiar and exotic properties, is yet unexploited and rep-
resents a promising source of applications.

Both non-canonical and conservative mechanics originate from certain constrains
that are imposed on space. For this reason, they are named topological constraints.
Object of the present study is the effect of such topological constraints on the sta-
tistical behavior of an ensemble of particles that lack (either in the non-canonical or

conservative sense) a canonical phase space.
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0.1.3 The problem of statistical mechanics

At present, there exists a satisfactory mathematical theory of reduction that relates
the symmetry properties of the microscopic Hamiltonian function to transformations
endowed with a Lie group structure [I7], and effective analytical tools have been de-
veloped to describe infinite dimensional Hamiltonian systems through the algebraic
construction provided by the Poisson bracket. However, a rigorous analysis of dy-
namical and geometrical properties resulting from inner products that fail to define
a canonical phase space, as well as the formulation of the statistical mechanics of
non-canonical and conservative systems, are physical and mathematical problems
that deserve investigation.

So far, the progress in the field of conservative dynamics pertains to the integra-
tion of the equations of motion of particular systems (mainly rigid bodies affected by
non-integrable constraints). The explicit integration of such systems, which finds its
roots in the seminal work of [I8],[19], is performed on a case by case basis by exploit-
ing the Lagrangian representation of the dynamics, and specifically the existence
of special classes of symmetries in the Hamiltonian function [20} 21, 22]. In recent
years, with the growing interest in strongly reduced, macroscopic, and nonlinear
systems, the need to study statistical properties of non-canonical and conservative
ensembles has progressively emerged. The purpose here is evidently different from
the integration of the dynamics, where the properties of matter (the Hamiltonian)
play a crucial role. Statistical considerations rely on the nature of space-time, i.e.
the geometrical properties of the inner product that determines the evolution of a
physical system. For this reason, in the theory we develop, precise dynamical and
statistical predictions are made only on the basis of the character of the inner prod-
uct, while the Hamiltonian is not specified. Note that, in the standard formulation
of statistical mechanics, the inner product is the canonical Poisson bracket of mi-
croscopic dynamics [23]. This ansatz, implying a flat phase space where Liouville’s
theorem holds [24], provides the preserved volume element (invariant measure) that
is a prerequisite for the ergodic hypothesis [25, 26, 27, 28 29] and the standard
notion of entropy of a probability distribution. However, the brackets defined by
the inner products we are concerned with are not canonical and thereby none of the

results above can be used to construct statistical mechanics.

0.1.4 Self-organization by topological constraints

The physical motivation behind the present study is the understanding of certain

phenomena where a system adjusts autonomously to a macroscopically ordered and

viii



organized form in a process called self-organization. These phenomena represent a
conundrum when considering the second law of thermodynamics and pose a funda-
mental theoretical challenge. Aim of the present study is to formulate a rigorous
statistical theory of those self-organizing phenomena that owe their internal struc-
ture to the existence of topological constraints affecting the phase space of micro-
scopic dynamics. Examples of this kind of self-organization are the vortical shape
of a galaxy [30], the accretion of a radiation belt [31], 32, [33], turbulent and vortical
structures in fluid and plasma flow [34} 35], [36] 37, [38], the anisotropy in the mag-
netization of a ferromagnet [39, 40], the bizarre motion of a rattleback [41l [42]. We
shall argue that such self-organizing phenomena can be ascribed to the same and
basic physical principle: a topological constraint distorts the metric of the phase
space and causes the emergence of a macroscopic structure. The emergent structure
is, therefore, consistent with the second law of thermodynamics provided that the
entropy principle is formulated on an appropriate metric reflecting the topology of
the constraint.

The annular radiation belts (clumps of charged particles) that encircle the Earth
are one among several heterogeneous structures that can be found in astronomical
environments. Analogous formations are observed in other physical systems and
across different scales. The common denominator is a non-trivial macroscopic struc-
ture that exhibit long term stability. For example, radiation belts (although subject
to fluctuations in their shape) probably have the same age as the magnetosphere
of the Earth, and the turbulent flows found in gaseous planets such as Saturn or
Jupiter have conserved their shape since they were first observed some centuries ago.

The endurance of such self-organized structures seemingly violates the entropy
principle dictated by the second law of thermodynamics [43] [44] [45] [46]. Indeed,
according to the second law of thermodynamics, the internal disorder of a closed
system, which is measured by the scattering of a probability distribution, must
increase. The fundamental question we would like to answer is therefore how can
those systems that exhibit self-organizing properties be consistent with the postulate
of maximum entropy. So far, we have explained that the more macroscopic a system
is, the more space-time departs from canonical phase space. Thus, we will show
that the standard logic of Boltzmann statistics breaks down, and we will construct
a new paradigm that takes into account the geometric properties of space-time. The
statistical distribution of a macroscopic system will be determined not only by the
Hamiltonian (as in the case of a microcanonical ensemble), but by the intrinsic metric
dictated by the underlying inner product. It is therefore through this novel paradigm

that entropy maximization leads to the emergence of macroscopic structures.
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The type of self-organization discussed in the present study must be distinguished
from biological, open, and ‘non-physical’ self-organization. The physical phenomena
we are concerned with can be characterized as closed (in general non-equilibrium)
systems affected by topological constraints (although the concept of topological con-
straint applies to open systems as well). In sharp contrast, biological, chemical,
and certain physical systems display complex pattern formation driven by non-
equilibrium thermodynamics of open systems [47, [48], [49]. Some biological examples
pertain to the emergence of life and associated structures (from the deoxyribonu-
cleic acid (DNA) to the organized behavior of groups of animals), while formation
of ice crystals is a prototype of chemical pattern generation. ‘Non-physical’ self-
organization include social and virtual systems, among which stock markets, traffic,
internet and virtual networks [50 51]. Although these ‘non-physical’ phenomena
may be treated with the formalism of modern mathematical physics, they are sub-
stantially different in that they are not subjected to a conservation law such as

conservation of energy in a closed physical system.

0.2 Objective and Outline of the Thesis

Aim of the present study is to formulate the statistical theory of those physical
systems that lack the phase space of canonical Hamiltonian mechanics in virtue of
topological constraints, and to construct the mathematical tools that are necessary
to achieve this objective.

The present thesis is organized as follows. The first three chapters, constitut-
ing the first part (the mathematical background) of the thesis, are dedicated at
reviewing the theoretical and mathematical tools that will be exploited in our inves-
tigation. In chapters 4 and 5, the second part of the thesis, we develop a geometrical
characterization and categorization of antisymmetric operators by introducing novel
classes of operators (measure preserving and Beltrami) and by defining the notion of
current of an operator (the word current is used in analogy with electromagnetism).
The concept of topological constraint in the context of conservative dynamics is also
discussed. The statistical theory dictated by topological constraints is developed in
chapter 6, where we explicitly calculate the equilibrium probability distribution for
different classes of antisymmetric operators. The theory formulated in chapters 4—6
is applied to the modeling of the diffusion of charged particles in magnetospheric
plasmas in chapter 7, to the study of conformal mechanical systems in chapter 8, and
extensively tested by detailed numerical simulations in chapter 9. Finally, chapter

10 is centered around the normal Laplacian, a novel (non-elliptic) differential oper-



ator whose properties determine the equilibrium probability distribution of certain
conservative systems.

The order of the chapters follows a logical criterion that does not reflect the
chronological development of the theory. In the following, we outline the main
contents of the thesis by starting from the motivating physical problem, the self-

organization of a radiation belt in a magnetospheric plasma.

0.2.1 Inward diffusion and entropy production in magnetospheric

plasmas

Our investigation begins with a very practical problem: how to confine a hot plasma
(simplistically an ionized gas, see [52), [53]) in a suitably designed ‘magnetic bottle’
in order to obtain thermonuclear fusion reactions that can be exploited as an en-
ergy source. In the core of a star, the temperature, density, and pressure required
to sustain fusion reactions are achieved through the gravitational force. However,
replicating the same thermodynamic conditions in the laboratory requires a different
kind of ‘trap’, since using gravity would need an unfeasible mass distribution. The al-
ternative trapping force is the magnetic field. Several magnetic confinement devices
have been designed and constructed based on different magnetic configurations, such
as linear traps [54), 55, [56], donut-shaped tokamaks [57], and stellarators, which use
coils with more complicated (such as helical) geometries [58]. Although important
progress has been made toward the realization of a thermonuclear fusion power plant,
significant hurdles still remain. Namely, plasma instabilities [59] [60] 611 62, [63], tur-
bulence [64], material and divertor technology, cost-effective superconducting coil
manufacturing, radiation (mainly neutrons) shielding, and so on.

An alternative configuration is the so called dipole confinement [65] [66]. In this
magnetic configuration, a dipole magnetic field that mimics the magnetosphere of
the Earth is generated by a levitated superconducting coil [67, 68, [69]. Such magne-
tospheric plasma, which is trapped in the same way charged particles accumulate in
a radiation belt, shows superior stability properties and is expected to achieve sen-
sibly higher temperatures than a conventional tokamak. These temperatures would
allow the deuterium - helium-3 reaction, which does not produce neutron radiation,
and therefore is preferable to the deuterium - tritium based fusion that will be ex-
ploited in the first generation of thermonuclear fusion power plants. In addition, the
dipole magnetic field is the favorite candidate for optimal antimatter, single species
and pair plasma confinement [70, [71] as it would not require external electric fields
[72, [73].

The efficient trapping mechanism provided by the dipole magnetic field, whose
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complex dynamics is only partially understood, will be discussed in detail in chap-
ter 7 and represents an important test for the theory we develop. Let us briefly
summarize the content of this part.

In a dipole magnetic field, a charged particle performs three distinct periodic mo-
tions: the cyclotron gyration around the magnetic field, the bounce motion along
the magnetic field, and the toroidal drift around the symmetry axis [74} [75]. Each
periodic motion is characterized by an adiabatic invariant that is preserved on a
time scale reflecting the strength of the constraint. It is the interplay between such
hierarchy of constraints and self-induced electromagnetic fluctuations that gener-
ates a peculiar random walk, the so called inward diffusion of charged particles
[76l [77, 167, [69), [78]. This process drives the system to the self-organized statisti-
cal equilibrium, whose heterogeneity seemingly violates the entropy principle. The
naturally achieved equilibrium is characterized by strongly inhomogeneous particle
density and temperature, a self-induced electric field, and a rigid rotation around
the symmetry axis.

The creation of the density clump can be properly understood if we interpret the
adiabatic invariants as topological constraints affecting the phase space of a non-
canonical Hamiltonian system [79} [80, BI]: the electromagnetic fluctuations destroy
the weaker invariants (magnetic flux and bounce action) but the charged particles
are forced to move on the symplectic submanifold where the first adiabatic invariant
(the magnetic moment) is constant. Due to the distorted metric on the symplectic
submanifold, the concomitant inward diffusion pushes particles toward domains with
higher magnetic field strength and entropy is maximized on the metric induced
by the magnetic coordinates [82), 83, 84, 85, 86]. The plasma toroidal rotation
is further explained as the necessary outcome of the relaxation process: the self-
induced electric field is cancelled by the Lorentz-transformed electric field in a rigidly
rotating coordinate system [83]. These results, which we generalize to arbitrary non-
canonical Hamiltonian systems, represent the main achievement of this part of the
study and are summarized in [82, [83], 84} [85].

The diffusion operator obtained by such rigorous geometrical construction exhibits
an intrinsic complexity that reflects the non-trivial topology of the underlying mag-
netic field and clearly shows the inaccuracy of phenomenological diffusion equations

that are not derived on the basis of solid statistical mechanical arguments.

0.2.2 The geometrical hierarchy of conservative dynamics

From a mathematical standpoint, the mechanical behavior of a charged particle in

a dipole magnetic field is a consequence of the degeneracy of the Poisson operator
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(certain regions of the phase space are not accessible), and its non-zero current (the
phase space metric is distorted by the constraints). Therefore, we can extend and
apply the present theory to general systems (not necessarily Hamiltonian) affected
by topological constraints that will not, in general, be integrable. A prototypical
example of this scenario is the E x B drift motion of a charged particle in a non-
integrable magnetic field, such as a Beltrami field (a vector field completely aligned
with its own curl). E x B drift dynamics motivates the next part of the present
work. Here, we investigate the nature of statistical processes in the presence of
non-integrable topological constraints. Several complex mechanical systems exhibit
analogous non-Hamiltonian behavior. In addition to nonholonomic dynamics of rigid
bodies and dynamical equations in the context of molecular dynamics [87, [88], 89, [90]
we will show that other systems of physical interest, such as the Landau-Lifshitz
equation [39,/40] for the magnetization of ferromagnetic materials, fall in the category
of conservative dynamics and owe their special properties to the failure of the Jacobi
identity of Poisson algebras.

The main results of this second part can be summarized as follows. In our study
of conservative dynamics, we categorize antisymmetric operators and the associated
brackets: we find a hierarchical structure on top of which lies the symplectic matrix
of canonical phase space. Immediately around canonical phase space, we encounter
Poisson brackets of non-canonical Hamiltonian mechanics. Beyond Poisson brack-
ets, the Hamiltonian nature of dynamics is lost, and we find the closest type of
motion, governed by the conformal operator. Conformal dynamical systems, which
are known in the literature [I8] 20], are characterized by the fact that they can be
transformed to a Hamiltonian form by a proper time reparametrization dictated by
the failure of the Jacobi identity. Accordingly, we discuss the notion of conformal
operator, and determine specific classes of systems that fall in this category. The
tipping point of conservative dynamics is represented by the subsequent measure
preserving operator: such novel operator guarantees the existence of an invariant
measure for any choice of the Hamiltonian function. Using this property, we are able
to prove a theorem on the form of the equilibrium distribution function for systems
endowed with the measure preserving operator. We remark that this theorem, which
does not require the existence of canonical phase space, applies to Poisson operators
and reproduces the standard Maxwell-Boltzmann distribution in the special case of
a canonical Hamiltonian system. In the specific case of a non-canonical Hamiltonian
system we find that, on the invariant measure, the form of the distribution function
at equilibrium is determined by the Hamiltonian function, as in the canonical case,

and by the integrable kernel of the Poisson operator, which is the seed of what we
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call type I self-organization.

In this type of self-organization, the equilibrium probability distribution is, in
general, a function of the Casimir invariants [5], the distinguished functions (first
identified by Sophus Lie) whose gradients span the kernel of the Poisson operator
of non-canonical Hamiltonian systems. Such functions are constants of motion that
do not depend on the specific form of the Hamiltonian, but on the geometry of
space dictated by the Poisson operator. The integrability (in the sense of Frobenius
[911, 92, 93]) of the kernel of a Poisson operator, i.e. the existence of Casimir invari-
ants, is guaranteed by the Darboux theorem of differential geometry [94] 95| 96].
Since the dynamics is constrained on the level sets of the Casimir invariants (the so
called Casimir leaves), type I self-organization is characterized by the existence of
inaccessible regions in the phase space.

Regarding measure preserving operators, we prove a second result: any antisym-
metric operator can be extended to a measure preserving operator by adding a
new degree of freedom to the dynamics. Thus, the probability distribution in the
extended space can be obtained by application of the previous result on the equilib-
rium of measure preserving operators.

A drastic change in the structure of space (and therefore in the nature of the
dynamics) occurs when we leave the realm of measure preserving operators. It is an
essential achievement of the present study the proof that a measure preserving opera-
tor is represented by a closed differential form so that the operator does not generate
current (which is given by the exterior derivative of the differential form associated
to the operator) in the coordinates spanning the invariant measure. Hence, violation
of measure preservation emerges when an operator causes a non-vanishing current in
any coordinate system. Since operators determine the properties of space, operators
with non-vanishing current impart flows and vortices to the metric of space. These
‘metric’ currents are the origin of what we call type II self-organization. In this case,
phase space does not have inaccessible regions but preferential directions: a particle
will tend to follow the current and fall toward the center of the eddies. See figure
0. 1]

Immediately after measure preserving operators, we identify the new class of Bel-
trami operators. These operators, characterized by being completely aligned with
their own current in an appropriate coordinate system, display peculiar properties
from the standpoint of statistical mechanics: even if they do not define an invariant
measure, a diffusion process driven by a Beltrami operator results in the complete
flattening of the probability distribution. This fact can be rephrased by stating that

they represent the largest class of operators whose diffusion admits, in a precise sense
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TYPE | TYPE Il

CASIMIR LEAF METRIC CURRENT

Figure 0.1: Types of self-organization. Left: type I self-organization driven by Casimir invariants.

Right: type II self-organization driven by metric current.

we will specify later, the standard definition of differential entropy. Furthermore,
Beltrami operators generalize the notion of Beltrami field, which plays a critical role
in plasma and fluid relaxation theories [97], 98, [99] 100, 10T} 102], from three to
arbitrary dimensions.

The last class we encounter is that of antisymmetric operators that do not fall
in any of the previous categories. See figure To this last class belong E x B
dynamics, the Landau-Lifshitz equation, and, in general, rigid body dynamics with
nonholonomic constraints.

It is worth to mention that beyond antisymmetric operators, which identify con-
servative mechanics, we find dissipative systems. This transition is mathematically
represented by the violation of operators antisymmetry. Dissipative systems will not

be object of the present study.

0.2.3 On the second law of thermodynamics in a topologically

constrained phase space

In our construction of statistical mechanics, we constantly deal with the implica-
tions of canonical phase space deficiency with respect to the second law of ther-
modynamics. Without the invariant measure of canonical phase space, the con-
ventional entropy measure for continuous probability distributions breaks down
[104], [105], 106, 107], and Boltzmann’s H-theorem ceases to hold. Indeed, the con-

ventional entropy measure of continuous probability distributions, which is derived
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ANTISYMMETRIC

Conservative Systems

BELTRAMI
MEASURE PRESERVING

Systems whose
operator is aligned

S, o] Systems whose space is endowed with an invariant measure
with its own vorticity

CONFORMAL POISSON

Systems that are
Hamiltonian up to a time Non-Canonical Hamiltonian Systems

reparametrization HOLONOMIC DYNAMICS

SYMPLECTIC
NULL
NONHOLONOMIC DYNAMICS Canonical
Hamiltonian Systems (No motion)

(Microscopic Dynamics)

Figure 0.2: The hierarchical structure of antisymmetric operators. Each box is named by the cor-
responding operator. The yellow line indicates transition from microscopic to macroscopic dynamics.
The red line indicates transition from Hamiltonian to conservative dynamics, with corresponding
loss of phase space. Systems affected by integrable (holonomic) constraints possess a Poisson op-
erator and lie within the red line. Systems affected by non-integrable (nonholonomic) constraints
violate the Jacobi identity and fall outside the red line. The green line indicates transition from

conservative to dissipative dynamics. The latter is not object of the present study.

from Shannon’s entropy measure for discrete probability distributions [108], is not
covariant and relies on the tacit assumption that space is canonical.

Exploiting the mathematical construction developed to characterize the geometric
properties of antisymmetric operators, we construct a proper entropy measure that
is not anymore determined by the probability distribution alone, but that explicitly
depends on the degeneracy and the current of the operator. The new entropy mea-
sure, which displays a non-negative entropy production, implicitly defines a time-
independent coordinate change dictated by the aforementioned geometric properties
of space. Here, the laws of thermodynamics are fully respected.

The sharp departure from the conventional entropy measure is a direct conse-
quence of the deviation from the flat metric of phase space. Thus, this study clearly

shows that, in the general context of the statistical behavior of a macroscopic en-
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semble, the structure of space-time cannot be neglected in the determination of the
thermodynamic behavior of the system. Moreover, the developed theory, which can
account for the physics of complex phenomena such as the accretion of a radiation
belt or the magnetization of a ferromagnet, is notably simple in that it derives its
physical predictions only from two ingredients: the antisymmetric matrix represent-
ing the operator of the system, and its Hamiltonian function.

At this point, it is worth to add some general considerations on the perspective
regarding the second law of thermodynamics developed here. First, we note that
the essence of the question considered in this work lies in the non-trivial topology of
macroscopic systems. This should not be confused with the infringement of the addi-
tive property in some entropy measures, such as the Tsallis entropy [109]. Indeed, the
Tsallis entropy suffers the same problem of Shannon’s discrete entropy when non-flat
metrics are taken into account. In addition, we stress that the present theory gives
an explicit expression of entropy production. Thereby, the problem addressed here is
conceptually different from extremum principles for entropy production encountered
in non-equilibrium thermodynamics of open systems [110], 111} 112}, 113}, 114].

From a mathematical standpoint, the principal hurdle affecting conservative dy-
namics is represented by the non-elliptic nature of the general stationary form of
the Fokker-Planck equation describing the evolution of the probability distribution.
At present, there is no satisfactory mathematical theory of non-elliptic partial dif-
ferential equations. In our study we use elementary tools of functional analysis
[115, 116, 117, T18] to examine existence and uniqueness of solutions to a special
non-elliptic equation arising in the case of 3 dimensional antisymmetric operators.
Exploiting the non-integrability property of the topological constraint affecting the
conservative formulation of the dynamics, a novel type of inner product is defined.
The associated Hilbert space provides the natural setting to determine a weak solu-
tion to the normal Laplace equation, the second order non-elliptic partial differential
equation examined in the last chapter of this work. This result shows a clear re-
lationship between the geometrical concept of integrability, and the mathematical
theory (functional analysis) of non-elliptic partial differential equations.

Finally, we refer the reader to the following references concerning physical and
mathematical tools that will be exploited in the present work: Brownian motion
[119, [120], Langevin equation [I2I], probability theory [122], stochastic analysis
[123, 124, 125] 126, 127, 128, 129, 130], Fokker-Planck equation [I31], nonlinear and
chaotic dynamics [132].

xXvii



Part 1

Mathematical Background



Chapter 1

Conservative Dynamics

Let M be a smooth manifold of dimension n.
Def 1.1. An antisymmetric operator is a bivector field J € /\2 TM.

Let (3:1, e x") be a coordinate system on M. Consider the tangent basis (91, ..., Oy).
We have:
T=> J90;n0;= %jijal- Ny, TV =g (1.1)
1<J
Here and throughout this study the summation convention on repeated indices is
used. Note that the matrix J% is antisymmetric. Here and throughout this study
we shall assume J% € C°° (M).

Def 1.2. The pair (M, J) is called an antisymmetric manifold.
We now introduce a notion of inner product on M.

Def 1.3. An antisymmetric bracket on M is a binary operation {,} : C*° (M) x
C® (M) = C*® (M) satisfying antisymmetry, bilinearity, and the Leibniz rule:

{af +g,6h+i} = af{f,h} + o{f,i} + B{g,h} + {9, 1}, (1.3)
{fg9,h} = f{g.h} +{f . h}y, (1.4)

for every f,g,h,i € C>®° (M) and o, 5 € R.



Proposition 1.1. Let J be an antisymmetric operator on M. The inner product

on pairs of functions f,g € C*® (M):

{f.9} = T (df,dg) = TV fig;, (1.5)
s an antisymmetric bracket.

In this notation, lower indices applied to a function indicate derivation, i.e. f; = %.

Verification of proposition [I.1]is immediate. To clarify the mathematical formalism,
let us review the passages leading to equation (|1.5)):

1 ..
J (df,dg) = 5\7”31' A 0; (fkdzbk,gldxl)
1

Lot (0 o) o0, (1) o, o) 00 (1)) 0

1 3
= 55” (figj — fi9:) = TV fig;-

In the last passage, we used antisymmetry of J%.

The definition of conservative vector field is the following:

Def 1.4. An antisymmetric operator J € /\2 TM and an Hamiltonian function
H € C*® (M) define a conservative vector field X € TM as:

X = J (dH). (1.7)

Remark 1.1. In this notation, the action of J on the 1-form dH is calculated as

follows:
1 . -
X = 5;7” (81 & 8j (de:l:k) — 8j ® 0; <demk)) = jl]Hjai- (1_8)
Thanks to antisymmetry, the result below holds:

Proposition 1.2. A conservative vector field X preserves the Hamiltonian H along
the flow:
SxH = ixdH = Hdz' (jf'kaaj) = J*HH, = 0. (1.9)

In many practical situations a dual representation of ([1.7]) is useful. To introduce

this alternative notation, first consider the following definition:

Def 1.5. A worticity 2-form on M is a 2-form w € N> T* M. The pair (M,w) is

called a vorticity manifold.

Here and throughout this study we shall assume w” € C° (M). Then, we have a

second definition of conservative vector field:



Def 1.6. A vector field X € TM is called a conservative vector field with Hamil-

tonian H and vorticity 2-form w if:
ixw = —dH. (1.10)

Remark 1.2. One can move from the representation (1.7) to (1.10) and vice versa

when the matriz J% (or wij) 1s tnvertible. In this case, we have jijwjk = (5,@.

Proposition 1.3. The conservative vector field defined by (1.10) preserves the
Hamiltonian H along the flow:

1 . . o
SxH =ixdH = —i%w = —§wiji§(d:nz Adar! = wi; X' X7 =0. (1.11)

Remark 1.3. Note that in definitions and [5.9 both J and w do not have, in
general, a constant rank. This implies that the matrices J9 and wij may have a

non-trivial kernel whose dimensionality changes depending on the position x on M.

So far we have introduced the concept of conservative vector field. From a physical
standpoint, this mathematical object characterizes the dynamics of conservative
systems. The conserved quantity is the Hamiltonian H, which does not need to
be the energy, but can represent any other constant of motion. Conservation is
guaranteed by the antisymmetry of the matrices J% and wij. In the next step, we

add a special structure to the space where motion occurs, the Poisson bracket.

Def 1.7. Let J be an antisymmetric operator on M. The antisymmetric bracket
defined by J is called a Poisson bracket if it satisfies the Jacobi identity:

{f7{gvh}}+{97{h7f}}+{h7{fag}}:0’ (112)

for every f,g,h € C*°(M). In this case, J is called a Poisson operator and the

associated vector field X a non-canonical Hamiltonian vector field.

Remark 1.4. In terms of the Poisson operator J, the Jacobi identity reads:

ajjk 8jkz

jzm + j]m jkm aj

=0 Vi, jk=1,. (1.13)

If J is invertible with inverse w, this condition is equivalent to requiring that dw = 0.

This can be seen in the following manner:

Owi &Uk &uk
dw = ) L YY) dat Adad A d 1.14
n Z(@xk+8xl+8m) Ads? Adst. (1.14)



Multiplying each component of this 3-form by JUJ™ J™ and summing over i, j, k,

we obtain:
oo Owi;  Ow; Owgi
li 7mj 7nk j ik ki
JITET <6wk+ ozt +8xj>
— _ gmj gnk, _ gli gnk, li m]
THIT iy e =TT ey =TT W (1.15)
i nk
:5’ j”k’aj 5njlz \7 N4
w]
jnka‘jlm jlz jmn jm] jnl.
oxJd

Thus, if dw = 0, the Jacobi identity is satisfied. With a similar procedure, one can

show that the converse is also true.

Let us now review the definition of non-canonical Hamiltonian vector field in terms

of w:

Def 1.8. Let (M,w) be a vorticity manifold and H the Hamiltonian function. If
dw = 0, w is called a symplectic 2-form. Furthermore, a vector field X such that

ixw = —dH is a non-canonical Hamiltonian vector field.

Remark 1.5. In the literature, both vorticity and symplectic 2-forms are defined
with the additional requirement that w;; is an invertible matriz, i.e. it has constant
and mazximum rank 2n for somen € N. We remark that this assumption is not made
here, since non-vanishing kernels impart non-trivial topologies that have important

consequences for the construction of statistical ensembles.

Proposition 1.4. A non-canonical Hamiltonian vector field X preserves the sym-
plectic 2-form w:
Lxw=dixw = —ddH = 0. (1.16)

The physical properties of the Poisson operator can be understood through the
Darboux theorem of differential geometry. Since this is a central result for the
purpose of the present study, we shall give a complete proof and refer the reader to
the literature [94) [133], 134, 135] 136] for additional details.

Theorem 1.1. (Darboux)

Let (M, w) be a symplectic manifold of dimension 2n + r. Suppose that w has rank
2n. Then, Yx € M one can find a coordinate neighborhood U € M of x with
coordinates (xl,...,xQR,Cl,...,CT) such that:

w= dei Adx"™ T on U. (1.17)
i=1



Proof. (Moser-Weinstein) The first step of the proof consists in showing that one
can find a coordinate neighborhood U € M with coordinates (yl, NS TELN LI CT)

such that:
2n

w= Zaijdyi Ady’, (1.18)
1<j
for some appropriate coefficients o;; = o (yl, BRETELN GLI CT). We will give an
original proof of this statement in the next part of the present study (see propo-
sition . Using this result, we can restrict our attention to the submanifold
C' =constant, ..., C" =constant and forget about the C's.
Let wp be the constant 2-form on R?” defined by:

wo (x) = Z dz' Ada" T, x e R*™. (1.19)
i=1

Consider the following family of 2-forms:
we=wo+t(w—wy), te]0,1]. (1.20)

Note that at any point p € M we can set w; (p) = wo (p) = w(p). Hence, we can
find a small neighborhood U of p where w; is non-degenerate for all ¢ € [0, 1] since
the general linear group Gl (2n,R) is an open set of the set of 2n x 2n matrices on
R, gl (2n,R).

Now consider the family of vector fields:

d

a@ (p) = Xt (ot), ¢o(p) =Dp. (1.21)

Here, ¢, is a one-parameter group of diffeomorphisms. We want to determine ¢,

such that the pull back of w; with respect to this transformation satisfies:
Pfwr = wo. (1.22)

Using the Poincaré lemma, w — wg = da.. Then, from ([1.22)):

d ., . d
@‘btwt = ¢y <£tht + dtwt)

= ¢y (dix,wt +w — wp) (1.23)
= ¢z< (dixtwt + dOé)
=0.
Setting X; = X}0;, w; = %wt,i]’dyi Adyl, and o = a;dy’, we arrive at:
wy,ij X, + a; = 0. (1.24)



Since wy is non-degenerate, this equation has always solution and we can determine
in a unique manner X;. Thus, we can find the desired transformation ¢; mapping

w to wy. L]

Def 1.9. The symplectic 2-form.:

We = Z dz' A dz™ e, (1.25)

i=1

is called canonical symplectic 2-form of R®™. The inverse matriz:
n
Je=> Onsi N0, (1.26)
i=1

is called symplectic operator (or simplectic matriz). Let H be the Hamiltonian func-
tion. The vector field:
X =J.(dH), (1.27)

or, equivalently,
ixwe = —dH, (1.28)

1s called a canonical Hamiltonian vector field.

In light of Darboux’s theorem [1.1] we see that any symplectic 2-form w of rank 2n on
a 2n-dimensional manifold M is locally diffeomorphic to the canonical symplectic
2-form w,. on R?”. In physical terms, this means that, locally, one can always find
an appropriate coordinate change such that w = w,. If we further rename each pair
(xﬁa:””) as the canonical pair (pi,qi), from we find Hamilton’s canonical

equations of motion:

OH OH

i + szaqz (1.29)

When w is degenerate, i.e. its rank is 2n in a 2n + r-dimensional manifold, on every
integral surface C' =constant, ..., C" =constant one can still find a local coordinate
change sending w to w.. It is also clear that, on such surface, Hamilton’s canonical
equations preserve the value of the C's.

As shown in remark to every symplectic 2-form w that is invertible, we can
associate a Poisson operator J, whose components are exactly the components of
the inverse matrix (wil)ij = J%. Therefore, thanks to Darboux’s theorem, an
invertible Poisson operator admits a local coordinate change such that J is the
symplectic operator . If J is a degenerate Poisson operator of rank 2n in



a 2n + r-dimensional manifold, it can be shown that ker (J) is spanned by the

gradients of r functions (Cl, e C’”):
ker (J) = span {dC",...,dC"} . (1.30)

A proof of this statement completely in terms of J will be given in the next part
of the present study (see proposition [5.2)). Therefore, as in Darboux’s theorem
one can find a set of local coordinates (3:1, Lz O ...,CT) such that J is the
symplectic operator: .
J = Z On+i N O; (1.31)
i=1
The distinguished functions C? play a crucial role in determining the topology of

space. We have the following definition:

Def 1.10. Let J € /\2 TM be an antisymmetric operator on a smooth manifold
M. A function C : M — R such that:

J (dC) =0, (1.32)
1s called a Casimir invariant.

Proposition 1.5. Given an antisymmetric operator J with a Casimir invariant C,
we have:

exC ={C,H} = J(dC,dH) = J9C;H; =0 VH. (1.33)

Therefore, regardless of the specific form of the Hamiltonian function H, a Casimir
invariant is a constant of the flow generated by X. In particular, the orbit of a
particle moving with velocity X always remain on the surface C =constant. Thus,
if the shape of the level set (or leaf) C=constant is curved, the Casimir invariant
induces a non-flat metric on this surface. It is clear that such topological constraint
will have implications from a statistical standpoint, since the accessibility of space

is limited.
Remark 1.6. In general, any 1-form 6 € ker (J) is orthogonal to the conservative
vector field X = J (dH) for any choice of H:

ix0=0;J9H; =0 VH, (1.34)

Given an antisymmetric operator J with a non-trivial kernel of dimension r, it
turns out that the possibility of determining r Casimir invariants is a necessary

condition for the validity of the Jacobi identity that defines Poisson operators (see



proposition [5.2)). This can be rephrased by saying that ker (J) must be integrable.
Physically, ker (J) is the remnant of some process of reduction from microscopic
dynamics, which is naturally described by canonical Hamiltonian vector fields. If
ker (J) cannot be integrated, one cannot find a suitable coordinate change to recast
the macroscopic dynamics in the form of a canonical Hamiltonian system. Therefore,
one would like to know the mathematical conditions under which this is possible.
This is the right juncture to introduce the notion of integrability. To do so, we need
some new concepts. For the next definitions, we follow [9I]. Denote with M" a
smooth manifold of dimension n. Consider two integers r,k € N such that r < n
and k<n-—r

Def 1.11. An r-dimensional distribution A, on M™ assigns in a smooth fashion

to each x € M™ an r-dimensional subspace A, (x) of the tangent space TpM™ to

M™ at x.

Def 1.12. A k-dimensional integral manifold of A, is a k-dimensional submanifold

of M™ that is everywhere tangent to the distribution.

Def 1.13. A distribution A, is (completely) integrable if there are local coordinates
(:Ul, ozt oyt y”_r) on M™ such that the level sets y* =constant, ..., y" " =constant

are n — r-dimensional integral manifolds of A,.

An r-dimensional distribution A, can be conveniently represented through a set of

n — r linearly independent 1-forms 6;:
A={XeTM":0;,(X)=0 Vi=1,...n—r}. (1.35)

Here, 0; (X) = ix0; is a contraction of the form 6; with the vector field X. From
now on, both notations (the bracket or the i symbol) will be used when dealing with

contractions of forms.

Def 1.14. A distribution A, is in involution if it is closed under brackets:
(X, Y]e A, VXY €A, (1.36)
In terms of the 1-forms 0; defining the distribution this is equivalent to:

d@l(X,Y):XGZ(Y)—YGZ(X)—GZ([X,Y]):O VXY € A, 1=1,...,n—r.
(1.37)

The square bracket above [X,Y] = XY — Y X is the Lie bracket of vector fields.

Finally, we arrive at the Frobenius integrability theorem:



Theorem 1.2. (Frobenius)

In a local neighborhood U € M, the propositions below are equivalent:
i) Ay is in involution.

it) A, is integrable.

i11) The following identities hold:

49; (X,Y)=0 VX, YeEA,, i=1..n—r (1.38)

iv) There are 1-forms X\i; such that locally:

db; :Z)\ij/\gj Vi=1,...n—r. (1.39)
j=1

v) The following identities hold:
LN ANOp_p NdO; =0 Vi=1,...n—r. (1.40)

vi) There are functions 1;; and y; such that locally:
0;=> wijdy’ Vi=1,.,n-r (1.41)
j=1

We refer the reader to [91) 02] for the proof of this theorem. In practice, the inte-
grability of a distribution is checked by applying equation .

The following example is useful. Consider a smooth manifold M of dimension
2n + r. Let J be an antisymmetric operator on M with rank 2n. Construct a a
cotangent basis (&1, ..., &) to span ker (J). The null space of these 1-forms defines a
distribution A = {X € TM : & = 0}. Construct a cotangent basis (61, ..., 02,,) with
associate distribution Ag = {X € T M : §; = 0} such that TM = A¢ ® Ay. Suppose
that we verified integrability of A¢ with . Then, since A¢ is integrable, from
we can find a set of coordinates (yl, NS TELN GLI C’r) such that the level sets
C'! =constant, ..., C" =constant are integral manifolds of A¢, i.e. A} = ker (J) =
span (51, ...,§T) = span {dC’l,...,dCT}. Here Aj and Az are the duals of Ay and
Ag.

We conclude this chapter with the statement of Carathéodory’s theorem [137]
relating the notion of accessibility and the integrability of a constraint. This theorem

will be extremely useful in the final part of the present study.

Theorem 1.3. (Carathéodory)

Let 6 be a continuously differentiable non-vanishing 1-form on a smooth manifold

10



M of dimension n. Assume that the constraint 6 = 0 is not integrable. Thus, at
some xy € M we have:
O NAdI#0. (1.42)

Then there is a neighborhood U of xg such that any y € U can be joined to xg by a

piecewise smooth path that is always tangent to the distribution.

11



Chapter 2

Statistical Mechanics in the Phase Space

The cornerstone of the standard formulation of statistical mechanics is Liouville’s
theorem, according to which the phase space volume is preserved by the canonical
Hamiltonian flow. To understand the meaning of this assertion, we must define what

phase space is.

Def 2.1. If it exists, the phase space is that set of coordinates (:1;1, e x2") such that
J = J. is the symplectic operator (1.26)), or, equivalently, w = w, is the canonical
symplectic 2-form (1.25)). The coupled coordinates (xi,x”‘”) = (pi,qi) are called

canonical pairs.

As an example, consider the phase space of a charged particle moving in an elec-
tromagnetic field. If £ = (x,y, 2) is the position in space and v = (v, vy, v;) the
velocity of the point charge, it is well known that the three canonical pairs are
(p,q) = (mv + qA,x). Here, m is the particle mass, ¢ the electric charge, and A
the vector potential of the magnetic field B, i.e. B = V x A. If we write J in

matrix notation by means of the canonical variables, we obtain:

0 -1 0 0 0 0
1 0 0 0 0 0
00 0 -10 0

J = (2.1)
00 1 0 0 0
00 0 0 0 —1
0 0 0 0 1 0

Hence, in the tangent basis (am,am, Op, > Oy, 8pz,8z), the components of J are con-
stants, specifically the values 0, 1, or —1. Since J determines the geometrical

properties of space, one then sees that the symplectic operator dictates a flat and

12



homogeneous metric. The metric of the phase space is characterized by the following

volume element:

Def 2.2. The phase space volume element is the volume 2n-form.:
vol, = dp* Adg* A ... Adp™ A dg" (2.2)
Then, we have Liouville’s theorem:

Theorem 2.1. (Liouwville)

A canonical Hamiltonian vector field X preserves the phase space volume vol..

Proof. Recalling that p* = ~0H/0q" and ¢ = OH/0p,

Lxwol. = dixvol,
=d{[p'dp' N...Ndg" NG Ao Ndg" — G dpt A A dp' AdpTTE AL N dg™] )
0’H 0’H
_aplﬁqi + dqidp vo
=0.

le

(2.3)
OJ

The phase space volume vol, is a special type of volume form called invariant mea-

sure:

Def 2.3. Let M be a smooth manifold of dimension n. Consider a real valued
smooth function g # 0, g € C*° (M), g : M — R. The n-dimensional volume form
vol™ = gdx' A ... Adx" is called an invariant measure with respect to the vector field
X if:

10

1" = div (X) vol” = —— (gX") vol" = 0. 2.4
Lxvo v (X) vo 400 (9X*) vo (2.4)

Thanks to Darboux’s theorem [1.1], we know that any non-canonical Hamiltonian
vector field locally admits canonical coordinates. It follows that, locally, any non-
canonical Hamiltonian vector field is endowed with the invariant measure provided
by Liouville’s theorem.

An invariant volume form is needed for the standard formulation of statistical
mechanics in virtue of 2 main reasons: 1. The ergodic theorem, which is used to
invoke the ergodic hypothesis, holds for measure preserving transformations. 2. The
conventional definition of entropy measure for continuous probability distributions
requires an invariant volume form. First, let us review some basic facts about the
ergodic theorem due to G. D. Birkhoff.

13



Def 2.4. A transformation T : M — M on a measure space (M, B, u) is called

measure preserving if:
VAEB, p(T7'(A) =pn(A). (2.5)

In this notation, B is a so called o-algebra on M, and p : B — [0, 1] a probability
measure on M, i.e. f(M) =1 and p(0) = 0. Measure preserving transformations
are at the basis of the concept of recurrence. A system is recurrent if it returns
arbitrarily close to its original configuration after a sufficiently long time. J. H.

Poincaré proved the following result:

Theorem 2.2. (Poincaré)
Let T : M — M be a measure preserving transformation on a measure space
(M, B, ). Then, for all measurable sets E € B there exists F C € with pu (F) = p (E)

such that Vx € F we can find infinite many non-zero integers n; € N satisfying:
Thx € £. (2.6)

This result can be summarized by saying that, if T' is measure preserving, almost
every point in £ returns to £ as many times as desired by a sufficient number of

iterations.

Def 2.5. A measure preserving transformation T : M — M on a measure space

(M, B, 1) is called ergodic if:
VEeB, T 'E) =€ = wulE =1 o0 pE)=0. (2.7)
The statement of the ergodic theorem is the following:

Theorem 2.3. (Ergodic theorem)
Let T : M — M be an ergodic (and measure preserving) transformation on a
measure space (M, B, u) and f € L' (M, B, ). Then:

n—1
lim — Zf (TVz) = /fd,u a.e. (2.8)
=0

Discussing the notion of ergodic transformation and measure space is beyond the
scope of the present study. We refer the reader to [25, 26, [139] for proofs and
additional details. Physically, the ergodic theorem states that, under appropri-
ate hypothesis (among which measure preservation), the time average of a certain
observable f converges to its spatial mean. This fact is a direct consequence of er-

godicity, which ensures that trajectories explore the whole space. In the context of
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canonical Hamiltonian mechanics, the measure preserving transformation 71" is pro-
vided by the flow generated by the canonical vector field X, while the probability
measure is given by the probability distribution in the phase space times the phase
space volume, du = fvol.. However, we must remark that the transformation T
generated by a canonical flow is not, in general, ergodic. This can be understood
by observing that if the Hamiltonian function has some symmetry, the resulting
orbit will lie on the level set of the corresponding constant of motion, and thus
certain regions of the phase space would be precluded to the dynamics. Although
in practical situations verifying whether a certain transformation satisfies the er-
godic property may be challenging, one can easily check if a physical system has
an invariant measure by solving equation with respect to g. If such a func-
tion g can be found, one usually assumes the ergodic hypothesis on the volume
form vol™, and exchanges spatial means with time averages. This substitution may
have great advantages: the ergodic hypothesis is at the basis of the procedure by
which complex interactions in a physical system are represented through simplified
random processes such as Gaussian white noise or Brownian motion. Clearly, such
simplification, which ultimately enables the derivation of the evolution equation for
the probability distribution of the system, cannot be made without an invariant
measure. The importance of Liouville’s theorem should now be very clear.

What about the relationship between entropy and Liouville’s theorem? In order
to clarify this point, a few considerations on the concept of entropy are now nec-
essary. First of all, we must distinguish between thermodynamic entropy S and
information entropy S. The former is the physical quantity appearing in the cel-
ebrated second law of thermodynamics. Various formulations of this fundamental
law have been proposed. Below we report those due to Lord Kelvin, R. Clausius,
and C. Carathéodory [140), [44]:

Lord Kelvin: ‘In no quasi-static cyclic process can o quantity of heat be converted

entirely into its mechanical equivalent of work’.

R. Clausius: ‘There exists no thermodynamic transformation whose sole effect is to

extract a quantity of heat from a colder reservoir and deliver it to a hotter reservoir’.
C. Carathédory: ‘In every neighborhood of every thermodynamic state x there are

states y that are not accessible from x via quasi-static adibatic paths, that is, paths

along which Q@ = 0.
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In the last statement, ) is the heat 1-form. Together with the work 1-form W,
representing the work done by the system, the first law of thermodynamics for
the change in internal energy U reads dU = @ — W. It is worth to note that,
while Kelvin’s and Clausius’ formulations are equivalent, Carathédory’s ansatz is a
weaker requirement. Using Carathédory’s statement of the second law, it is possible
to show that the heat 1-form @ defines a constraint Q = 0 (representing adiabatic
transformations) that is integrable in the sense of the Frobenius theorem Thus

locally one can find appropriate functions 7" and S such that:
Q="TdS. (2.9)

Equation locally defines thermodynamic entropy S and temperature 7. Fur-
thermore, it can be shown that the second law of thermodynamics determines the
sign of the rate of change in entropy with respect to time in a closed system:
dS
T >0. (2.10)
The ineluctable nature of thermodynamic entropy increase describes the irreversibil-
ity of any isolated physical process.
Now consider a probabilistic set of events represented by a discrete probability
distribution p1, ..., pn. The information entropy S measures the degree at which we
are uncertain of the outcome of such probabilistic process. In his influential study,

C. E. Shannon proved the following theorem [108]:

Theorem 2.4. (Shannon)

Let S = S(p1,...,pn) be the entropy measure of a probabilistic set of events with
discrete probability distribution pi, ..., pn. Suppose that:

1. S is continuous in the p;.

2. When all the probabilities are equal with values p; = 1/n, i = 1,...,n, S is a
monotonic increasing function of n.

3. If a choice is divided in multiple choices, the total entropy S is given by the
weighted sum of the individual entropies.

Then, the only function of the p; satisfying these requirements is:
n
S = —chi log p;. (2.11)
i=1

where ¢ € Rsq is an arbitrary normalization constant.

For the proof see [I08]. From a mathematical standpoint the hypothesis made

in Shannon’s theorem are not necessary. However, they have important physical
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implications. On one hand, the function S defined in equation (2.11)) vanishes only

when all the probabilities except one are zero, i.e.:
S=0 <= p;=0 Vi#k, pr=1. (2.12)

This situation correspond to complete knowledge of the outcome of the probabilistic
process, because the only possible event is that with probability pg. Accordingly,
the entropy is minimum. On the other hand, when all the events have the same
probabilities p; = 1/n, ¢ = 1,...,n, the function S takes its maximum value logn,
describing a state of maximal uncertainty. Finally, S is additive, i.e. the uncertainty
S (A, B) of a joint event (A, B) satisfies:

S(A,B) =S (A)+ S (BJA) < S(A)+ S (B). (2.13)

with equality holding when the events A and B are independent.

A central question is if and when thermodynamic and information entropy co-
incide, that is if and when & = S. As we will discuss later on, this problem is
strictly related to how does the information entropy S look like when the proba-
bility distribution is continuous, i.e. when a notion of metric space is introduced.
Unfortunately, S # S in general.

Consider a physical system described by a continuous probability distribution
P € C* () on a volume element vol”, with P : Q@ — R>g, Q@ C M", and:

/ Pool™ = 1. (2.14)
Q

The information entropy S is defined as follows:

Def 2.6. The information entropy of the probability distribution P is:
S = —/ Plog Pvol". (2.15)
Q

One soon realizes that definition [2.6|is not covariant because the value of S depends
on the specific measure vol™ chosen to define P [104, 105, [106]. To see this, we
introduce a novel coordinate system with volume element vol} related to the original
one as:

vol = gvol™. (2.16)

Here, g is the Jacobian determinant of the transformation. Probability is a number,
i.e. a scalar quantity. Therefore the probability distribution f on the new volume
element must satisfy:

fvoll! = Pvol™. (2.17)
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Then, we obtain fg = P. Let ¥ be the information entropy of f. It follows that:

E:—/flogfvolf:S—i—/Ploggval":5’+<logg>#S. (2.18)
Q Q

The angle bracket (, ) denotes ensemble averaging. Note that the discrepancy be-
tween X and S is completely determined by the metric factor g. This result points
to the fact that, while definition [2.6] is mathematically consistent as an information
measure (i.e. as a measure of the scattering of a distribution), it is empty of any
physical information. The entropy measure S can acquire physical significance if
we specify the physically correct metric g containing the missing information on the
structure of space where dynamics occurs. Defining the exact meaning of ‘correct
metric’ will be a key topic of the present study. Below we give a concrete example
of the unphysical results one can obtain by a wrong assumption of g.

Suppose that vol. = dp, Adg, Ndpy Adgy Ndp. Adg. is the 6-dimensional canonical
phase space of a molecule in an isolated neutral gas occupying a volume 2. Let f
be the probability distribution on wol. of an ensemble of such particles. The second
law of thermodynamics demands that the probability distribution of thermodynamic
equilibrium maximizes the entropy of the system, while keeping the total energy E
and the total particle number N constant. If H is the energy of a molecule, this
condition can be written in the form of a variational problem with respect to the

function f:

5(S—BE—7N):5[/Q(—flogf—ﬁfH—vf)volc =0. (2.19)

Here, § and « are Lagrange multipliers and we assumed that the thermodynamic
entropy S coincides with the information entropy of f. The solution of the variational

problem is:
f=exp{—FH —1—~}. (2.20)

The multiplier v serves as a normalization constant. One sees that is the
standard Maxwell-Boltzmann distribution of a neutral gas. Now, instead of the
distribution f on vol., consider the distribution P on vol, = gvol.. Further assume
that the information entropy of P coincides with the thermodynamic entropy S.

With the same procedure, one arrives at:
P =exp{—fH —1—~}. (2.21)
But then:

f=gexp{—-BH —1—~}. (2.22)
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Unless ¢ is a constant, this function is not the expected Maxwell-Boltzmann distri-
bution.

From experiments, we know that the correct result is . The fact is that the
phase space volume vol. where we defined f is ‘special’, in the sense that it is an
invariant measure due to Liouville’s theorem 2.1l We will see that this is the reason
why the variation worked in the first case, while the second choice vol, gave a wrong

result.
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Chapter 3

Stochastic Calculus and The Fokker-Planck
Equation

This last introductory chapter is dedicated at reviewing the theory behind the
Fokker-Planck equation, a second order partial differential equation describing the
time evolution of a probability distribution. The derivation of the Fokker-Planck
equation is based on the concept of Wiener process, a type of random process that
exemplifies Brownian motion. For the results presented in this chapter, we refer the
reader to [119, 120}, 121], 122, 123, 124], 125 126, 127, 128, [129| 130} 131].

The Wiener process W is defined as below:

Def 3.1. (Wiener process)
The Wiener Process (or Brownian motion) is a real-valued stochastic process W (+)

with the properties:

1. W(0)=0 a.s., (3.1a)
2. W(@t)—W(s)~N(0,t—s) Vt>s>0, (3.1b)
3.0 W (), W (t1) =W (ta),.... W (tn—1) — W ()

are independent V0 < t1 <ty < ... < tp,.

The first equation states that, at time ¢ = 0, the Wiener process is 0 almost
surely, i.e. with probability 1. The second equation implies that the incre-
ments W (t) — W (s) are distributed as a normal distribution of mean zero and vari-
ance t — s. The third equation (3.1c|) requires that the increments W (t;—1) — W (t;)

are independent random variables. If (-) denotes the expectation value, we see that:
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(W (t)) = (W(t) =W (0)) =0, (3.2a)

(W2(1)) = (W (&) - W (0))) =, (3.2b)

(W ()W (s)) = (W (s)) (W (£) = W (s)) + (W?(s)) =s Vt>s5>0. (3.2c)

If we identify the value W with the spatial position = of a Brownian particle, we

obtain a random process in which the expectation value of x is the initial condition
z (0) = 0 and the expectation value of 2% the elapsed time t.

The Wiener process W can be conveniently related to Gaussian white noise I'.

Specifically, I' can be thought as the time derivative of W in the sense we specify

below.

Def 3.2. (White noise)

Gaussian white noise is a real-valued stochastic process I' (+) satisfying the properties:

(T) =0, (3.3a)
(DT (s) =6(t—s) Vit s € Rsg. (3.3b)

Then, we have an alternative definition of Wiener process in terms of I':
dW =W (t +dt) — W (t) = I'dt. (3.4)

This equation has to be interpreted in the sense that:

hm<W(t+h)—W(t)W(s+h)—W(s)

= — R>o. .
. h h > ) (t 8) Vt,s € >0 (3 5)

A direct application of the Wiener process is stochastic calculus. As an example, we
can write the equation of motion of a Brownian particle in the form of a stochastic
differential equation:

dX = dW. (3.6)

In this notation, the upper case letter X specifies that x is now a random vari-
able. More generally, one can consider the following class of multivariate stochastic

differential equations:
dX'=F' (X, t)dt + G7 (X, t)dW;, i=1,..,n, j=1,.,m. (3.7)

Here, X = (Xl, e X"). F'is a deterministic term corresponding to the Newtonian

force (or velocity if X is a position) and mathematically represents ordinary calculus.
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The (generally non-square) matrix G% accounts for the randomness of the system.
Notice that the number of independent random processes appearing on the right-
hand side is m. It is also worth to note that W) does not need to be a Wiener
process, but may describe other kinds of stochastic motion. However, in this study
we will be concerned only with Brownian motion.

Equation is not a complete mathematical definition of stochastic differential
equation. Indeed, for to make mathematically sense, a notion of stochastic
integral has to be introduced. Depending on such definition, the result of integration
of equation will change. As one may expect, this arbitrariness is transferred
to the chain rule of stochastic calculus, which varies according to a parameter o €
[0,1]. Physically, « reflects the properties of the actual process whose limiting
representation is the Wiener process appearing in the stochastic differential equation.
We will not discuss in depth this issue, and refer the reader to [123, [I31] 124] and
references therein for additional details. The chain rule of stochastic calculus is the

following:

Theorem 3.1. (Generalized Ito’s lemma,)
Let f be a real valued function. Define the stochastic integral of f according to the

following mean-square limit:
/ fAW = ms- lim D Fti + als)[W(t) — W(tio)]. (3.8)
Here o € [0,1]. Let X() be a real-valued stochastic process obeying:

X(v)=X(u)+ /U Fdt+ /v GodW. (3.9)

Here F € L'(0,T), G € L?>(0,T) and 0 < u < v < T. Let Y = y(X(t),t) be a
stochastic process depending on X, with y : R x [0,T] — R and y € C%. Then, the
stochastic differential of Y reads:

ot ox 2 0
(%, o (1 2 0% %
_<6t+F6x+<2 O‘)Gaxz Gl 5, ) AW

Here, the subscript a denotes evaluation at to, = t;_1 + alt;.

2
av(x.t)= Yar+ Wax 4 <1 - oz) G2a—gdt
X
(3.10)

See [82] for the proof of this result. Notice that, when o = 1/2, the chain rule of

standard calculus is recovered. This choice is known as Stratonovich integral. The

22



case o = 0 is referred to as Ito’s integral. Equation (3.10) can be generalized to the

multivariate case:

Theorem 3.2. (Multivariate Ito’s Lemma)
Lety : R" x [0,T] — R be a real-valued function of n random variables X (-) and let

y be of class C? on its domain. Let the stochastic integral be defined as in theorem
and take F* € L' (0,T), GY € L?(0,T) such that:

dX' = F'dt + G4dwy, (3.11)

where the subscript o denotes evaluation at t,, = t;_1 + aAt;. Then, the stochastic

differential of y reads:

; 1 L 2
ay (X,t) = % gt 4 O gxi 4 <2 - a) aitait_9Y 4

ot ox’ Oxt0xI
oy 0y (1 ik Oy i ( Oy
= —_— FZ - - — ¢ J —_— v . i,
<6t + Dy + (2 a) G"d Dt dt + G o ) dw;
(3.12)

A standard result of stochastic analysis is the following:

Theorem 3.3. (Fokker-Planck equation) The time evolution of the probability dis-
tribution f of a set of random variables obeying the stochastic differential equation

(3.7) is given by the Fokker-Planck equation:

oGt
oI

Of _ 0 | _pip 1 0 ( ikpin
8t_8:vi[Ff+28xj(GGf>

Gj’“f] . (3.13)

See [123] [131] for proofs.
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Part 11

Classification of Conservative

Dynamics



Chapter 4

Geometrical Classification of Antisymmetric
Operators

In this chapter we discuss the geometrical properties of antisymmetric operators. It
is shown that antisymmetric operators can be categorized according to a hierarchical
structure that reflects the departure from flat phase space. This hierarchy is at the

basis of the statistical theory we develop.

4.1 The Jacobiator

In order to obtain the hierarchy, we need a mathematical measure of the degree at
which the space defined by a certain antisymmetric operator departs from phase
space. Clearly, the first discriminating factor is provided by the Jacobi identity of
Poisson operators, equation . Therefore, the following measureﬂ is useful:

Def 4.1. Let J € /\2 T M be an antisymmetric operator. The trivector & € /\3 M
defined by:

7k
&= 6 () = J””aj

1s called the Jacobiator of J.

i A D; A O, (4.1)

Proposition 4.1. The Jacobiator & measures the failure of the Jacobi identity.

Proof. We have:

ik ki iJ
6= > (J”” 0T +jﬂma‘7 +jkmaj )a A 3j A B (4.2)

e ox™
1<j<k

Thus, & = 0 if and only if J satisfies the Jacobi identity ([1.13). O

'See [211, [138] for a definition in terms of the Schouten bracket.
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The Jacobiator & only measures the component of the current of J (which we
will define afterward) ‘aligned’ with 7 itself. Even if the aligned component may be
different from zero (and thus the system is not Hamiltonian), the ‘normal’ component
of the current may vanish. Operators with this second property have notable features
both from the mechanical and statistical point of view and will be discussed later on.
We remark that here we used the words ‘aligned’ and 'normal’ in reference to the
3-dimensional case (which will be discussed later) where the current of the operator

can be decomposed in a parallel and a normal component.

4.2 The Conformal Operator

We already know that Hamiltonian systems, either canonical or not, fall in the
category & = 0, because both symplectic and Poisson operators satisfy the Jacobi
identity (remember definition . The next step is then to determine the type
of dynamics that is the most similar to Hamiltonian mechanics. The answer to
this problem is closely related to the possibility of transforming a non-Hamiltonian
system with & # 0 to an Hamiltonian one by some appropriate method that is
not limited to a spatial coordinate change (remember that a coordinate change is
not enough for non-Hamiltonian systems because the Darboux theorem locally
assigns canonical coordinates only when & = 0). A system admitting such procedure
would be closer to Hamiltonian mechanics than those systems to which canonical
phase space cannot be assigned. Since a spatial coordinate change is not sufficient,
we are left with two possibilities: performing a time reparametrization or increasing
the number of variables.

In the following sections we will show that there are certain classes of opera-
tors that can be transformed to a Poisson operator by a combination of coordinate
change, time reparametrization, and variable increase without altering the original
dynamics.

Systems that can be transformed to a Poisson operator by a time reparametriza-
tion are already known in the literature and are called conformal. This idea origi-
nates from the work of [I§] and is discussed in [20], where a time reparametrization is
used to ‘Hamiltonize’ (i.e. transform to an Hamiltonian form) certain nonholonomic
systems with symmetries and the notion of conformal bracket is introduced. In this
section, we cast the concept of conformal system in the perspective of the geometrical
hierarchy of antisymmetric operators, and define the conformal operator.

Consider a conservative vector field X = J (dH). Evidently, this representation
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does not contain any notion of time. The standard interpretation is that:

dx
X:E:j(d}[). (4.3)

However, we may think that more generally:

X =r(z) ‘ij = J (dH), (4.4)

where 7 : M — R+ is a C*° (M) function called conformal factor and T is a proper
time. It is worth noticing that in an even more general setting one could introduce
multiple time variables. However, we will not explore this possibility here.

The proper time 7 can be related to the standard time variable ¢ by the differential
equation:

dt 1
— L 4.
ar (45)

If one integrates equation (4.4) and obtains @ (7), the orbit in time ¢ can then be
calculated as @ (7 (t)) by integration of equation (4.5). Now the objective is clear:

if we can find a conformal factor r such that the vector field:

y =X r T (dH) , (4.6)

r

is Hamiltonian, we are done. Therefore, we have the following definition:

Def 4.2. (Conformal operator)
Let J € /\2 TM be an antisymmetric operator. J s called a conformal operator

(or conformally Poisson operator) if there exists a non-zero function r : M — R,
re C® (M), such that:

9 (r177%)

& (T_lj) = T_ljim gy O; N 6j A0, = 0. (4.7)

There is an equivalent concept in terms of the 2-form w:

Def 4.3. (Conformal 2-form)
Let w € /\2 T*M be a vorticity 2-form. w is called a conformal 2-form (or con-

formally symplectic 2-form) if it is conformally closed, i.e. there exists a non-zero
function r : M — Rsq, r € C*° (M), such that:

d(rw) = 0. (4.8)

The equivalence of these concepts can be understood by considering an invertible
conformal operator [ with conformal factor r—!. Clearly, if w is the inverse, d (rw) =
0.

We have the following:
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Example 4.1. A Poisson operator is conformal with r = 1.
The physical meaning of the conformal factor r will be discussed later. It should be

noted that it is not always possible to find a conformal factor.

4.3 Covorticity and Cocurrent

In order to explore the next class of antisymmetric operators we need to introduce
a new representation of the antisymmetric operator J in terms of differential forms.
In the following, the prefix co- is used to distinguish quantities defined in terms of
the antisymmetric operator J € /\2 T M from those defined in terms of the vorticity
2-form w € A2 T* M.

Def 4.4. (Covorticity)
Let J € /\2 TM be an antisymmetric operator. Let vol® = gdz' A ... A dz™ be a

volume element on M. The covorticity n — 2 form with respect to vol™ reads:
T2 = iqvol™ (4.9)
The covorticity 2-form is defined as:
T? =g 2 (4.10)

In order to understand the meaning of this definition, it is useful to evaluate explicitly

equation ((4.9):

T2 = (ijgdxl A dm”)
= Z (—l)l'“_1 A (iai/\ajdxi A darj) A da;?j_Q

1<)
— Z (—1)Z+j 1 QJUZ(&@BJ—@J@@) (dacl [ d.ij — dx] (024 dl‘z) A dZUZ 2 ( )
1<J
=2 Z (—1)H—t gjijdaz%ﬂ.
1<J

In this notation dm%_Q =dz' A ANdeTE A deTE A LA d2I T A dad T A LA da
The last term in equation can also be thought as an alternative definition of
the covorticity n — 2 form.

By analogy with electromagnetism where the Faraday tensor F acts as vorticity
2-form and d x F = J represents the current 3-form, we can now introduce a notion
of current associated to both vorticity 2-forms and antisymmetric operators in the

following manner:
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Def 4.5. (Current of vorticity 2-form)
Let w € /\2 T*M be a vorticity 2-form on a smooth manifold M of dimension n.

The current n — 1 form is defined as:
J =dxw. (4.12)
The current 1-form is defined as:
JH =" = bw, (4.13)
where § = xdx* is the codifferential.

Def 4.6. (Cocurrent of antisymmetric operators)
The cocurrent n — 1 form of an antisymmetric operator J € /\2 T M with respect to

the volume form vol™ on M is:
O t=dxJ?*=dJg" 2 (4.14)
The cocurrent 1-form is defined as:
Ol =01 =572, (4.15)
where § = xdx* is the codifferential.

In the same way the closeness of the 2-form w defines Hamiltonian mechanics, the
closeness of the n — 2 form J" 2 is a powerful condition. Indeed, we can prove the

fundamental result:

Proposition 4.2. (Ezistence of invariant measure)

Let J € /\2 TM be an antisymmetric operator. The conservative vector field X =
J (dH) admits an invariant measure vol™ for any choice of the Hamiltonian function
H if and only if O"~' =dJ" 2 =0 on the volume form vol™:

Cxvol" =0 VH <+ O0"'=0 on wol" (4.16)

Proof. First, let us show that if O"~! = 0 then £xwvol™ = 0 for any choice of the
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function H. We have:

On—l _ djn—2
=d (z’ggdxl A ... \dz")
= dz (=) g g% (iai,\ajdxi Ada?) A dx?j_Q
1<J
= dz (—1)i+j_1 gjiji(a.@)a._a.@@.) (dl’l X d.’BJ — d.%'] & dl’z) A d.%'@_2
L 150 TS )
' w g (4.17)
= 2dz (—1)7+i-t gj”dx:.lj*Z
i<j
i+j— 0 i n—
=(-1) +i-l Bk (gJ]) da A dz}; 2
;9 (97%)

— n—1
=0.

On the other hand:

Lxvol" = [aaxi (gjiij)] dz' A ... Ada" =

9 (977)

9 Hidx' A ... Adz™.  (4.18)

If we want this equation to vanish for every H, we must have:

9 (9T) .
This is the same condition appearing in equation (4.17) and the first implication
follows. Now it is also clear that if equation (4.18|) vanishes for all H, we must have

O™ ! =0 and the statement is proved. ]

We conclude this section by noting that in the proof of the previous proposition we
have obtained the explicit expression of O™~ !:
;9(977)

n—1 __ n—2 __ .
Ot =dg" Tt =2(-1) =%

da . (4.20)

4.4 The Measure Preserving Operator

The essential result of proposition [4.2] is that it introduces a notion of invariant
measure that does not depend on the specific choice of the Hamiltonian H, but only
on the geometrical properties of the operator 7. To know whether a certain operator
J admits such kind of Hamiltonian-independent invariant measure it is therefore
sufficient to determine whether a metric g can be found such that O"~! = 0. At

this point, it is natural to define the measure preserving operator:
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Def 4.7. An antisymmetric operator J € /\2 TM on a smooth manifold M of
dimension n is called measure preserving if there exists a volume form vol™ on M
such that O 1 =dJg"2 = .

Remark 4.1. An antisymmetric operator can be measure preserving without satis-
fying the Jacobi identity (1.13)), i.e. without being a Poisson operator.

We have the following:
Example 4.2. A constant rank conformal operator is measure preserving.

Proof. Let J be conformal with conformal factor r € C*° (M). We must show that

there is a Jacobian g € C*° (M) solving the divergence equation:

0(9TY) _ o i

Since r~1J satisfies the Jacobi identity and has constant rank, the Darboux theorem
states that for every point P € M there is a neighborhood & C M such that
the Hamiltonian vector field X = r— 17 (dH) takes the form:

m k m
X = szapi +4'0y + Z C’0¢j = Z —H 0y + HpiOyi- (4.22)
i—1 j=1 i=1

Here, the rank of 7 is 2m = n — k and the CJ are k constants of motion (Casimir
invariants) with ¢/ = 0. Due to Liouville’s theorem for Hamiltonian vector

fields, one sees that the volume form:
vol® = dp' Adg' A ... Adp™ Adg™ AdCH A ... AdCT, (4.23)

is an invariant measure. Indeed, in light of (4.22):

" —op | 0¢t\
Lxvol] = <i:1 ap + 6qi> vol} = 0. (4.24)

Let G be the Jacobian of the coordinate change vol™ = dz' A ... A dz" = G_lvol?.
In these coordinates equation (4.21)) becomes:

o (Gr1 v
—= =0 Vj=1,...,n. 4.25
5 j=1,..,n (4.25)
Thus, the desired Jacobian is g = Gr~. O

Since a Poisson operator is conformal, it also follows that a constant rank Poisson

operator is measure preserving. It is worth noticing that the invariant measure
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g = Gr~! obtained in the previous example concerns the standard time ¢, and not

the proper time 7. Indeed, we have:

0 _dzt 0 da'\
2 ()2 2 (68 g a0

Thus, if we consider the proper time 7, the invariant measure is simply g = G.

In the next part of the present study it will be shown that on the invariant measure
defined by a measure preserving operator the standard results of statistical mechan-
ics can be recovered. Physically, this is because the metric associated to a measure
preserving operator is ‘current free’, i.e. ©@"~! = 0. This means that, regardless of
the form of the energy H, the dynamics can never encounter sinking or diverging
points. Because of the special properties of the measure preserving operator, we
would like to know if a general antisymmetric operator can be transformed to a
measure preserving one through some procedure that is not necessarily limited to a

spatial coordinate change. On this regard, we have the following extension method:

Proposition 4.3. (Extension)
Let J € /\2 TM be an antisymmetric operator on a smooth manifold M of dimen-
sionn. Let x"1 be a new variable with domain D C R. Then, the n+1 dimensional
antisymmetric operator on N\*T (M @ D):

~ N

J=J+ x"HWaj A Oni1, (4.27)

18 measure preserving.

Proof. We want to show that on the volume form vol® ™! = dz! A...Adz" Ad2z", the
cocurrent O™ = dJ"~! vanishes. Recalling the condition given by equation ([4.17)),

we have:
n+1 831] 63n+1,j n 832]

L gt Qxntl L~ Ozt
=1 =1
- 9 n+1 8‘72]
== (1= djn+1) ; Ozl (a: O )
N o~ n ” 4.28)
84” 8jzg (
Oin —+ (1 —4din —_—
+ 9, +1;8x1 + (1 =4, +1); B
n 32._7]“
_ n+l
- Z OxtOxk
i,k=1
= ()7
and the statement is proved. ]
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The meaning of this extension method can be understood as follows: at the price of
increasing by one the degrees of freedom of a dynamical system, we can always find

a preserved volume element that is independent of the Hamiltonian H.

Remark 4.2. Observe that if by chance J is already measure preserving, i.e.
0; (gjij) = 0 for some metric g, there is no need to perform the extension of propo-

sz’tz’on (in fact, the extended term will vanish in the coordinate system g = 1, see

&)

It turns out that all operators with n = 3 can be extended not only to a measure

preserving but to a conformal form. To see this, first we need the following;:

Proposition 4.4. Let J € /\2 TM be an antisymmetric operator on a smooth
manifold M of dimension n. If n =4 and J is measure preserving with a non-zero

Jacobiator & (J) # 0, then J is conformal.

Proof. First, we use the fact that J is measure preserving, and perform a change of
coordinates dz! A ... Adz™ = g tdy' A ... Ady™, where dy' A ... Ady™ is the invariant
measure and g the Jacobian of the coordinate change. Let Z be the expression of
J in the new coordinates. We need to prove that there is some non-zero function
r € O (M) such that 1T satisfies the Jacobi identity . Equation ([1.13))

becomes:

(5] (r_ll') =r! Iim—a rolzik —i—Ijm—a plzk +Ikm—8 iz
dy™ dym oy (4.29)
— ! 9 [r—1 (Iiml-jk | pimki +Ikaij)} ‘
oy™

In the above equation, we used the fact that ;2% = 0 Vj = 1, ...,n. With the choice:

r= ‘I21:Z'34 +I3II42 +I41I23

, (4.30)

the right-hand side of equation vanishes because the only nontrivial case is
when i, j, k,m are all different and any of such combinations gives the quantity
+ (121134 + 731742 4 I4II23). Note that r can never vanish because by hypothesis
the Jacobiator is different from zero, i.e. & (J) # 0 (and therefore & (Z) #0). O

This result implies that a constant rank measure preserving operator with n = 4 that
does not satisfy the Jacobi identity can always be transformed to a Poisson operator
by operating the time reparametrization dr/dt = r. By combining propositions
and [£.4] we also have the following result regarding the ‘Poissonization’ of 3-

dimensional antisymmetric operators:
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Proposition 4.5. Let J € /\2 TM be an antisymmetric operator on a smooth
manifold M of dimension n. If n =3 and & (J) # 0, J can always be extended to

a conformal operator of dimension n+ 1 = 4.

Proof. First, notice that if & (J) = 0 there is no need to perform any extension since
the system is already Hamiltonian. Assuming that & () # 0 on M, apply proposi-
tion to obtain a 4-dimensional measure preserving bracket. Then, according to
proposition this extended bracket is conformal. O

Remark 4.3. Note that by operating the time reparametrization dictated by the
conformal factor, the conformal operator can be converted to a Poisson operator. We
also remark that if a 3-dimensional antisymmetric operator is measure preserving
there is no need for extension since it will be shown that such operator is a Poisson

operator (see below).

Proposition 4.6. Let J € /\2 TM be an antisymmetric operator with constant rank
on a smooth manifold M of dimension n = 3. Let X = J (dH) be the conservative
vector field generated by the Hamiltonian H. Then there exists a unique smooth
vector field w such that X = w x VH. Furthermore, the following conditions are

locally equivalent:

1. YeeM 3UCM: &(J)=0, (4.31a)

2. YeeM FIUCM, \\C:U—-R: w=AVC, (4.31b)

3. VeeM JUCM, g#0, g:U—-R: Lxgdx NdyNdz=0 VH.
(4.31c¢)

Proof. One can verify that with the identification:

= wz0; N\ Oy + wy0y A O, +w,0y A O,

we have in a unique manner X = J (dH) = w x VH. The vector field w is also

smooth because, by definition, the components of 7 are smooth.
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(1 = 2) is the Frobenius theorem [I.2] Indeed, using equation ([{4.1)):

6 (J)
Yz 2T Ty
(J”ﬁj y gLy gt )a/waAa
Yz Yz 2T zZT xy Yy
( 8j + I 07 +L7y””8j +Jyz8j +JZ“8“7 Jzyaj )895
0z ox 0z ox oy
A Oy /\8

- 8wx_w 8wx_w 8wy+w ow y—i—w awz_w ow
U7 oy Y 0z * Ox T 0z Y ox ¥

—(w -V xw)dy ANOy A 0,.

8y>8z/\8y/\82

(4.33)

Therefore, the Jacobiator & (J) = & (w) vanishes if and only if the vector field w
is integrable in the sense of Frobenius ie. w-V xw=0. Indeed, if we define
the 1-form 0 = w,dxr + wydy + w.dz the condition w - V x w = 0 is exactly the
integrability condition 8 A df = 0 of equation . But then locally we can find
two functions A and C' such that w = AVC.

(2 = 1) is trivial since:

G (w)=—(w-Vxw)dy NOy N0,
—(AVC - VA X VC) 0y A Dy A0, (4.34)
= 0.

(2 = 3) can be verified by observing that:

B ,

- (gX*') =0 VH
oz’ (9X°) (4.35)
<= VH-Vx(gw)=0 VH.

Lxgdx NdyNdz=0 VH <=

If A = 0 or C=constant on U, w = 0. Then, any function g # 0 will prove the
statement. Otherwise, the implication follows by setting g = A1,

(3 = 2) If there is an invariant measure g for any choice of H, then V x (gw) =
0. Therefore w = g~'VC on U. O

From the calculation of equation we have learned that in 3-dimensions the
Jacobiator & (w) vanishes if and only if the quantity w - V x w is zero. This fact
will be used extensively in our study of 3-dimensional dynamics and diffusion. From
a strictly geometrical point of view, w -V x w = 0 means that the curl V x w of

the operator w is perpendicular to w itself. It is instructive to show that V x w
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corresponds to the cocurrent @2 on the metric dz A dy A dz we have introduced in
definition Using the fact that JY* = w,, J* = w,, and J** = w,:

O? = d (igdz A dy A dz)
1 7700, Ny + T 705 N+ T, A, AT N dy N dz)
J¥dr — J*dy — J¥"dz)
—wedxr — wydy — w,dz)

=d (i
— 2 (-
24
((%)y - awI) dy A dx + (éhuz - 8wx> dz A dx + (8wz - 8wy> dz/\dy]

=2
[ Ox oy Ox 0z oy 0z
=-2|(Vxw), dy/\dz—i—(VXw)ydz/\da:—i-(VX'w)zd:U/\dy}.
(4.36)
Note that we have also shown that for n = 3 we have 7" 2 = J! = (wida:i).

4.5 The Beltrami Operator

In the same way the condition w - V x w = 0 defines Hamiltonian mechanics, we
may wonder whether the vanishing of the component of V x w normal to w has
relevant implications for the dynamics. The answer is positive, and we will examine
the dynamical and statistical properties of such operators later on. The vanishing

of the normal component is expressed by the Beltrami condition:
b=wx (Vxw)=0. (4.37)

In general, a vector w that satisfies equation (4.37) is called a Beltrami field. A
Beltrami field is characterized by the fact that it is completely aligned with its own

curl V x w and therefore obeys the Beltrami equation:
V X w = pw. (4.38)

Here p is, in general, a scalar function called the Beltrami parameter.

As one may expect, the quantity b appearing in equation does not vanish
for a general w. When w is the antisymmetric operator associated to the E x B
drift motion (see chapter 8) of a charged particle in a magnetic field B of constant
strength B =constant, the vector b is nothing but the magnetic force B x (V x B).
Therefore, we shall name the quantity b the field force vector of w. The more b
approaches zero, the more w will resemble a Beltrami field. To understand the

geometrical meaning of b the following vector identity is useful:

b:'wx(wa):%V(wQ)—(w-V)w. (4.39)
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Normalize w to w = w/w. Then, using the previous formula for w:

b=—(w-V)w = —k, (4.40)

g

where k is the curvature vector measuring the rate of change of the unit vector w
along itself. Therefore, the vector b is geometrically related to the curvature of w.

Nevertheless, since b is a vector, we would like to obtain a better (scalar) measure
of the degree at which a certain w resembles a Beltrami field. For reasons that we
will explain in the next part of the present study, one finds that such proper measure
is:

B=4V-b=4V - [w x (V x w)]. (4.41)

We call B the field force divergence of w.
The following result clarifies the relationship between the field force vector b and

the cocurrent V x w.

Proposition 4.7. (Beltrami-Jacobi decomposition of the curl operator)

The curl of a vector field w admits the following decomposition:

b
VX w— M) (4.42)

w2
where b = w x (V x w) is the field force vector of w, and & = w -V x w its

Jacobiator.

The task we are left with is the generalization of the concept of field force to arbitrary
dimensions n. By consistency with equation , the field force divergence of a
general antisymmetric operator J must be a 0-form. Furthermore, since B is the
divergence of the vector b, the generalization of b must be an n — 1 form. This is

done in the following manner:

Def 4.8. (Field force)
Let J € /\2 TM be an antisymmetric operator on a smooth manifold M of dimen-
ston n. The field force n — 1 form of J is defined as:

bl = g2 A xd T2 (4.43)
The field force divergence of J is defined as:

B =xdb" " =xd (T AxdT"7?). (4.44)
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Let us check that, for n = 3, these definitions reproduce b and B of equation
on vol® = dx A dy A dz. First consider b"~! for a general n

1 — jn—2/\*djn—2

Ik
=93 (—1)H T g7 A (~1)F a (9T")

Y dxnfl
i<j Ot g (4.45)
o za gjlk e e
=4y (-1 ng](axl )dxij 2 A xda
1<J

Here, we used equations (4.11)) and (4.20)). Now observe that in the case n = 3 of
3

R, g =1 and that (x,y, z) is an orthonormal coordinate system

-1 :42(_ n—i—H—] 1jz]8j Cl n— 2/\d(1}

1<j

L li lj
:42(_1)n+1+]71 (jz] ‘-7 ;1 2 A dx’ +jz] 0T

1<j

dx?j_Q A dz? >
jll

j

8ja:y 8jzy 8sz 8JW
yr _ 72T
{ J ( ox + 0z ) J ( ox + oy )} dy ndz

I AN og** 0JY*
Y Y
—|—4_j < a9y + 9 > +J < B + ay )} dxr Ndz

Yyx zZT Ty 2y
+4|-J% 07 + 0T _ JY* 0T + 07 dz A dy
i oy 0z

4(- )JU

Ox 0z
o () (2 B
() (- 52)

+4 :—wy (8;; — %) + wyg (_Bau;z + 811;)] dx N dy

:4[(w><(V><w))xdy/\dz—|—(w><(V

X w)), dz Adz + (w x (V x w)), dv

ANdyl| .
(4.46)
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Now we return to equation (4.45) and evaluate B:

B = xdb" !
D ) (gjlk) _ _
_ _1\it+jt+k-1 ij m n—2 n—1
4;( 1) S (gj ol * <d$ /\dxw N *dx); )
J+k 0

Ik
4(-1yH (j” (gjl )> *<daz;f1mdx;;*1)
Ik 4.47
=4 (=1)y"" ai ( T4 (gjl )> *<dx?_1,dxz_1>vol" (447)
3} 0 (9Tl
:48:ﬂ (gj”(gi )) * vol™
_ 40 (. 2i909T7)
B 8 ( J ozt '

Recalling the calculation of (4.46)), for the case n = 3 with g = 1 of R3:

B =4{V:[wx (Vxw)]}deAdyAdz, (4.48)

which is the desired result.
A result analogous to the decomposition [1.7] can be obtained for a general n. For
this purpose we need to define the norm of an antisymmetric operator. The standard

Frobenius norm will serve our purposes:

Def 4.9. (Frobenius norm)
Let J € /\2 TM be an antisymmetric operator on a smooth manifold M of dimen-
sion n. Let vol™ = gdz' A ... Ndz™ be a volume form on M and J" 2 the associated

covorticity n — 2 form. The Frobenius norm of J on vol™ is

g =172 = T [ = A )

1) 3

Let us check the value of this norm when n = 3 and g = 1 on R?:

3
1 ..
ij=1

We can now obtain the following decomposition:

Proposition 4.8. (Beltrami-Jacobi decomposition of the cocurrent n — 1 form)
Let J € /\2 TM be an antisymmetric operator on a smooth manifold M of di-

mension n. Let O™ be the cocurrent n — 1 form of J on a volume form vol™ =
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gdx' A ... Adz™. Then:
(—1)* g7 (&85 + R ) day ™ = (<1)" & (1) A 72
TP '

Onfl — djn72 —
(4.51)

Here &k = g gkm (gjij)m +gJm (gjjk)m +gJm (]’“)m is the kij component
of the Jacobiator & (¢J) and RE™ = [? (TUT™F + Jm Tk + jjmjik)]m; with

the subscript meaning derivation.

Proof. We have:

9 (gTm* 9 (g

2|‘7’2W)_92jij(gfm)
i 0 2 7ij 7mk 2 7ij mka(gjij)
—gjjw(gjjj )_gj]j 81’77”

_ g'jijaf;m <92jijjmk)

. v 0 gk ) ki
—l—ngj(jkm (‘7 ) jzm (gj )+gjjm (gj ))

oxr™m
9 ik R | ki
_gQszjzm (gj ) _g2jz]jjm (gj )
' oz™ ,
o L .0 mm y .0 Jm
:gjzj@kw +gj2]R%mk+92j2]jjk (gj ) +92jz]jkz (9‘7 )
dz™ ox™
— g (05’“7 + Rijmk> n 292jijjjk8 (gjzm)‘
m ox™
(4.52)
On the other hand:
1 pr—1 n—2 _ 1)ititk—1 50 (9T™*) A2 A sedg™ 1
1(* )/\J = Z(—) qJ W*(:ﬂw A xdzx)) )
i<j (4.53)
A2 Z (_1)r+sfl gj’"sdxfg2.
r<s

Without loss of generality, we may assume that we have chosen the z’ to be or-
thonormal coordinates in R™. In such case we can conveniently evaluate the Hodge

star and obtain:

1 n— n— n+r+s— 1] TS (ij) n
i S RV DI I AVAN el Y
r<s (4.54)
s red (9T
_ _9(_1\ts 2 .7ir grs
= 21" P T T—

Recalling the definition (4.17)) and substituting (4.54)) in (4.52)), one obtains equation
(4.51)). O

n—1
dry .
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To verify this result, we consider the case n = 3 with g = 1 of R3. First, observe

that RY™ = 0 since at least 2 of the indices ijmk are equal when n = 3. Secondly:

(—1)k jijﬁkijdmzfl = —2(w-V xw) (wedy N dz + wydz A\ do + w.dz A dy) .
(4.55)
Finally, using equation (4.46) and recalling that b = w x (V X w):

— (=" i (#0" N AT = x (bpdy A dz + bydz A dz + boda A dy) A (—wida’)
= —bidx’ A wjd:rj
= —biwjda:i A dz?
=—-2(bxw),dyNdz—2(bxw),dz
Ndz —2(bxw),dr Ady.
(4.56)

Since 0? = -2 {(V X w), dy Adz+ (V x w),dzANdx+ (V xw), dr A dy] we re-
cover the decomposition of proposition [4.7]

Observe that from equation , when n > 3, we see that the cocurrent O~ !
on a certain metric g does not vanish even if both & and b"~! are zero. Furthermore,
since for a measure preserving operator O" ! = dJ"2 = 0, it follows that in this
case b1 = 0 and therefore & = — RHUMK,

This is the right juncture to define the Beltrami operator:

Def 4.10. (Beltrami operator)

Let J € /\2 TM be an antisymmetric operator on a smooth manifold M of dimen-
sion n. If a volume form vol™ = gdax A...Adx™ can be found such that the field force
divergence is zero, i.e. B = xdb" ' =0, J is called a Beltrami operator on vol™.
If the field force n — 1 form is zero, i.e. b"~' =0, J is called a strong Beltrami

operator on vol™.
The following result holds:

Example 4.3. Let J € /\2 TM be a measure preserving operator on a smooth
manifold M of dimension n with invariant measure vol™. Then, J is a strong

Beltrami operator on the invariant measure, i.e. b" "1 =0 on vol™.

Proof. A measure preserving operator satisfies d7" 2 = 0 on the metric of the
invariant measure (recall proposition [4.2)). Therefore, the corresponding field force
n—1 form "1 = 772 A xd 772 identically vanishes. O
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4.6 The Hierarchy of antisymmetric operators

Figure summarizes the geometrical categorization of antisymmetric operators
developed in the present chapter. The available transformations among different
categories are also shown. Figure shows a similar summary for the special and
instructive case n = 3. These figures should be compared with the expressions of
the cocurrent O"~! given in propositions and each category is characterized
by a different form of O™~ 1.

ANTISYMMETRIC

Jimm =T

BELTRAMI

weak
N @t pedsn-ty =g MEASURE PRESERVING

strong gl = g~ =0
b1 = 912 Ak d9n2 = 0

CONFORMAL
POISSON

G- =0
®(1) =0

SYMPLECTIC
o NULL

o

1=0

Figure 4.1: The hierarchical structure of antisymmetric operators. Each box is named by the
corresponding operator. The arrows specify the available transformations. The operator 7. in the

symplectic domain represents the canonical symplectic matrix.
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ANTISYMMETRIC

WX==XW

BELTRAMI

B=F-b=V-[wx(Fxw)]=0

POISSON

Gw)=w-Fxw=20

NULL

w=10
No motion

Figure 4.2: The hierarchical structure of antisymmetric operators for n = 3. Notice that measure
preserving and conformal operators do not appear because they degenerate to Poisson operators
when n = 3. Specifically, both the conformality condition & (rilw) = 0 and the measure preserving

condition V x (gw) = 0 reduce to the integrability condition for w. See proposition
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Chapter 5

Topological Constraints and Integrability

In this short chapter we discuss the relationship between the degeneracy of antisym-

metric operators and the topological constraints affecting the phase space.

5.1 Topological Constraints on the Phase Space

In the introduction we have explained that the effect of constraints on the phase
space of microscopic dynamics is the emergence of a macroscopic system. This
transition can be summarized as the substitution of the canonical description of the
dynamics in terms of the symplectic operator J., with an antisymmetric operator
J. The constraints appear as a non trivial kernel ker (J) in the matrix J. Such
kernel can be truncated. The truncation results in the reduction of the number of
degrees of freedom (the dimension of the original microscopic system).

We have also seen that, given an antisymmetric operator J on a smooth manifold
M and a 1-form 6 € ker (J), the conservative vector field X = J (dH) satisfies
0 (X) = 0 for any choice of the Hamiltonian function. Thus, we can introduce a

formal definition of topological constraint in the following manner:

Def 5.1. (Topological constraint)
A topological constraint is a 1-form 0 € ker (J). The topological constraint is simply
denoted as 0 = 0.

In the discussion of the Darboux theorem we used, without proof, the following
result relating the closeness of the symplectic 2-form w of rank 2n to the integrability

2n aijdy’ A dy?

of ker (w), i.e. the existence of 2n coordinates y* such that w = >_; <

and ker (w) = {X € TM :dy* (X)=0 V i=1,..,2n}.
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Proposition 5.1. Let (M,w) be a symplectic manifold of dimension 2n-+r. Suppose
that w has rank 2n. Then, Vo € M one can find a coordinate neighborhood U € M
with coordinates (yl, NETELN G C"’) such that:

w= Zaij (yl, Ly ot ...,C’r) dy* Ndy? on U. (5.1)

Proof. Let (xl, ...,wQ"”) be a Cartesian coordinate system and let & € TM be
r orthonormal vectors that span ker (w). Consider the associated 1-forms § =
{fdacj and construct a cotangent basis (01, ..., 02y, &1, ..., &) of T*M by adding 2n
orthonormal vectors 8; with corresponding 1-forms 6; = Hg dz?. Note that & (6)) =

0; (&) =0Vi,=1,..,7 and j = 1,...,2n. In the new basis, w has the expression:

2n 2n,r r
w = Zaijei /\Hj +Z’8ij0i/\£j —l—Z’yijfz‘/\fj, (5.2)
1<j 2,J 1<J

for some appropriate coefficients «;j, Bij,7vij. Let 6 = Zf’;l ¢'8; be a vector or-
thogonal to ker (w), i.e. such that & (6) = 0 Vi = 1,...,r. By definition, we have:

2n
izmﬂw =w(&m,0) = ZﬁimCi =0 Vm=1,..,r. (5.3)
Since 0 is arbitrary, we must have 3;,, =0 Vi =1,..,2n and m = 1, ...,r. Similarly:

iém,ﬁnw =w(&m, &) =Ymn =0 VYm,n=1,..r (5.4)

Therefore, we have shown that

2n
w = Zaijﬁi VAN Hj. (5.5)

1<J

Since w is symplectic, dw = 0. Then:
d (051]91) A 9]' — Oéijgi VAN d@j =0. (56)

Multiply the above expression by the 2n—1 form QZ”_I = O A AO_1 ANOg 1 A NOoy:

(_1)2n—k 01 A ...\NO, Nd (azkﬁl) — (_1)2n—k akjé?l A ... A\ BOgy A d@j = 0. (57)

Now observe that the matrix «;; is invertible since w has rank 2n. If we multiply

the last equation by (oz_l)kl and sum over k, we arrive at:
200 N ... Ny NdO; =0 VI=1,...,2n. (58)
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This is the Frobenius integrability condition for the distribution :
ker (w)=Ag={X €TM:0;(X)=0Vi=1,...,2n}. (5.9)

Therefore we can find 2n 4+ r coordinates (yl, R TELN G C””) on an appropriate
neighborhood U C M such that the coordinate slices y* =constant, ..., 4> =constant
are integral manifolds of Ay, i.e. they are everywhere tangent to the distribution.
Thus, we can write 8; = 23221 92 dy’ Vi = 1,...,2n. Substituting these expressions
in , we obtain the desired result. ]

An analogous result in terms of 7, relating the Jacobi identity to the existence of

Casimir invariants, is the following.

Proposition 5.2. Let J € /\2 TM be an antisymmetric operator of rank 2m on
a smooth manifold M of dimension n = 2m + r. J satisfies the Jacobi identity
& (J) = 0if and only if the distribution A¢ ={X € TM : & (X) =0V i=1,..,r}
such that ker (J) = span {&1, ..., &} is integrable, and the reduced operator ¢ on the

2m-dimensional integral manifold satisfies the Jacobi identity & (¢) = 0.

Proof. Let & € T*M, i = 1,...,r, be r orthonormal cotangent vectors that span
Ap = ker (J) = span (&1, ...,&), i.e. J (&) =0Vi=1,...,r. Define an orthonormal
basis of cotangent vectors on T*M as (61, ...,091m,&1,-..,& ) and such that Az =
span (01, ...,02m,) is the complementary distribution to Aj, ie. T"M = Aj ® Ag.
Construct the covorticity n — 2 form J" 2 on the measure vol® = 6; A ... A&, on

M. The general expression of * 772 is:

2m 2m,r r
*j"’2 = ZaijOiAHjJr Zﬁijei/\fj+27ij§i/\§ja (5'10)
1<j %, 1<j

for some appropriate coefficients j, Bij,7ij. Following the same argument of the
previous proof, we must have *7" 2 (0,€,) = 0 and *J" 2 (£,,€,) = 0 for all
0 € A¢ and (§,,&,) € Ag. Therefore, 3;; = v;; = 0. Now, observe that since the
basis (61 A ... A&,) is orthonormal:

(0 A 0;) = (=1)"THOMTE AL AL NG (5.11)
Taking the Hodge star of equation ({5.10]), we have then:
T"TE=G N NG NG, (5.12)

where we defined the 2m — 2 form ¢*m~2 = % (—1)i+j_1 aiﬂfjm_2.
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Let (ml, - me”) be a coordinate system on M such that vol™ =61 A ... A& =
dr' A...Adz*™F7. In such coordinates, 7™ 2 takes the expression given by equation
(4.11). The next step is to redefine the bracket {,} of the system in terms of

differential forms. Consider two smooth O-forms f and g on M. We have:

{f, 9} == (df NT" 2 Ndyg)

= | fida! /\22 +k ! Jkdx” 2\ gidat

<k (5.13)
=2(=1)" fjg T % vol"
=2(=1)" figr T’
= (=1)" % (A A& ASTTENAf N dg) .

One can see that, apart from a constant factor, this new bracket corresponds to the
standard bracket J (df,dg). In terms of the new bracket, the Jacobi identity
reads as:
& (T) ={fAg h}} +{g.{h, f}} +{h.{[. 9}}
= ()" [G A NG NG A (fd{g, b} + gd{h, f} + hd {f,g})]
=+ {&GACANGAPTTEND[x (G N NG AP Adh Adg) df +
# (ELN NG NG TN NdR) dg+x (S0 A NE NS T2 Ndg Adf) dh] )
(5.14)

Here f,g,h are smooth 0O-forms on M. First, suppose that the distribution A =
{XeTM:¢(X)=0 V i=1,..,r} is integrable and that the 2m —2 dimensional
operator ¢?" 2 satisfies the Jacobi identity & (¢) = 0. Since Ay is integrable, from
the Frobenius theorem on integrable distributions for each © € M we can find
a neighborhood U C M of x such that & = /\jidei, i1=1,..,7, j; = 1,...,r, where

Aj;, C7i are O-forms. This implies:

QA LNG= D Ay X dCT AL AdCH = LACT A . A dCF (5.15)
1y

for some function L. The functions C?, i = 1,...,r, define a local foliation of the

manifold M. Thus, we look at the 2m — 2 dimensional submanifold defined by

the level sets C' =constant, ..., C"=constant, and consider the new differential J,

which does not variate the C?, together with the new Hodge star % operating on

the reduced space as % (61 A ... A O2,,) = 1. Next, decompose the differentials of the

functions f, g, h in the following way:
df = fe.& + fo,0; = feidC' + fo,0; = feidC' + df, (5.16)
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and similarly for g and h. The Jacobi identity (5.14)) becomes:
&(T) == {jn_z Ad [aijhaigejdf + Oéijfgihej(ig + aijggifgjdh} } (5.17)
- {gl A NEn A FR {¢2mf2

Ad [* (¢2m—2 A dh A Jg) df +5 (qs?m—? Adf A Jh) dg+* (¢2m—2 Adg A Jf) Jh] }}
=+ {& AL AENFB (D))

In this passages we used the fact that the terms involving the functions C? in the
differentials df, dg, and dh identically vanish because of & A...A&, = LAC'A...AdC"
in 7"~2 at the left of the expression. Since by hypothesis & (¢) = 0, we have proven
the first implication.

Now assume that & (J) = 0. First we must show that the distribution A¢ is
integrable. According to the Frobenius theorem this is true provided that:

X, Yle Ay V XY € Ag. 5.18
€ €

Observe that the n vectors J* = J™0,,, i = 1,...,n form a tangent basis of the
2m dimensional distribution A¢. Indeed, by definition, J(¢;) = J™¢j, = 0V
i=1,..,n, j =1,...,r. Therefore, any vector X € A¢ can be expressed as a linear
combination of the J* and proving amounts at showing that:

(8, J7] = A J*, (5.19)

for some appropriate coefficients AZJ Substituting the expressions of the vectors J*

inside this equation, we obtain:

kj ki
[Ji’Jj] — <jmia‘7] _jmjaj> O
ox™
ik ki
<.7””a‘7 -I—J]maj >8k
8 Z
jkm j O
_ qm j”
=J ox™

Here, we used the fact that, by hypothesis, & (J) = 0. Thus, we have shown
that Azj = J4. Tt follows that the distribution A¢ is integrable and there are r
integral manifolds C! =constant, ..., C" =constant that are always tangent to the

distribution.
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Substituting again the expressions of the differentials df, dg, and dh, the Jacobi

identity (5.14]) becomes:

0= {& A A& A2 Ad [ujho,go,df + aijfo,ho,dg + cjge, fo,dh] }
=5 {& N A& NS N [aij (ho,go, fe, + fo.ho, 96, + 90, fo, hey) En
+ i (he,ge, fo, + fo.ho,90, + 96.f0,he,) Ok] }
=« {vij (ho, 90, fe, + fo.ho,9e, + 96, fo,he) ELA o N NdER NG+ EL A L NEr
A 672 N d [aij (ho,go, fo, + fo,ho,90, + 90,.fo,ha,) Ok] } -

(5.21)
Since the functions f, g, and h are arbitrary, the previous equation implies:
ENLNENAELN P2 =0, (5.22a)
E1NA o N NP2 A d i Bijrfr] = 0. (5.22b)
(5.22¢)

Here we set B, = (hgi 90, fo, + fo,ho, 90, + 90, fo, hgk). Equation ([5.22al) identically
vanishes because the distribution A¢ is integrable and satisfies the Frobenius inte-

grability condition:
N NENdE =0, Yi=1, .7 (5.23)

Finally, with the same argument of equation , one sees that the second equation
is just the Jacobi identity & (¢) for ¢>™~2. Therefore, we have proven the
second implication.
In conclusion, J satisfies the Jacobi identity if and only if the distribution A is
integrable and the reduced operator ¢ satisfies the identity itself.
O
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Chapter 6

The Fokker-Planck Equation and Equilibrium

In this chapter we derive a set of general results regarding the statistical properties of
the probability distribution f of dynamical ensembles endowed with antisymmetric
operators. The results presented here will be employed in the next chapters where

we discuss specific physical systems.

6.1 The Fokker-Planck Equation

In order to construct the evolution equation for the probability distribution f, we
must first obtain the relevant stochastic differential equations governing particle
dynamics. Consider an antisymmetric operator J € /\2 TM on a smooth manifold
M of dimension n and an Hamiltonian function Hy € C*° (M), Hy : M — R. The
motion of a single particle is described by the differential equation:

dx

— = Xo=J (dHy) . (6.1)

dt
Now, take an ensemble of non-interacting particles, each of them obeying equation
(6.1). Then, if we switch on some interaction, the energy Hy will change according

to:
H = Hy(x)+ Hy (x,1), (6.2)

where H is the new Hamiltonian function accounting for the interaction energy
Hp(z,t). We take Hj, and thus H, to be C* on its domain M ® R>o. The

interaction is therefore represented by the vector field X; with components:

X} =JY9Hy,. (6.3)
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To complete the description of particle dynamics, we further assume that all per-

turbations caused by Hj are counterbalanced by a friction force:
. g 1 . . 1.
Xjp = 77 Hyj = — BT "I Hyj = ST X (6.4)

Here, 4% = %ﬁjikjjk is the friction coefficient with 8 € Ry a constant. One can
check that, if 7 is the symplectic matrix of canonical phase space (p, q), the friction
force given by equation is the classical result pr = —%540- More generally,
since the gradient of the Hamiltonian physically represents force, equation ([6.4))
leads to a total force Hy; + Hp; — % BXé where the friction term is proportional to
the velocity as in the conventional definition.

We remark that the matrix J appearing in the expressions and does
not need, in general, to be the same operator defining Xy in equation . In
particular, one can, for example, truncate J in and depending on the
specific physical picture, i.e. the dynamical variables that are subject to change due
to interaction and friction. In the present study, we consider only the case in which
J is exactly the same operator for all the three terms X, X7, and Xp.

In summary, the equation of motion governing the dynamics of a particle in the

ensemble is:
X=Xo+ X+ Xp

ij Lo ik g
i Lo ik ik ij
=(J *5@7 J? | Hoj + T T 0.
In the last passage we made the substitution:
JYHr; = JVT;. (6.6)

Here, we assumed that the j component of the gradient of Hy is represented by Gaus-
sian white noise, i.e. Hr; =1I'; (see definition . We will justify this assumption
later.

In the following, we will need a slightly more general form of equation .
Indeed, in equation the white noise is applied in the same coordinate system
xr = (xl, ,x") used to describe the dynamics. However, we want to be able to
perturb the ensemble so that the noise is white in a different coordinate system,
say Yy = (yl, ...,y"). Restricting to the cases in which the map 7 : € — y is a

diffeomorphism, we introduce the tensor R;” = Oy™ /02’ and generalize equation

(6.5) as below:

X = Kjij - ;BjirR,’fjjSR’§> Ho; + jin;TT] ;. (6.7)
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Here, the friction coefficient is ’yij = % BT "Rffj Js R’; and we used the formula Hy; =
RIT,. As one sees from this formula, now the noise is white in the new coordinate
system y since 0H;/0y" =T

Observe that equation is a stochastic differential equation (see equation
(3.7). Therefore, by application of equation , we can derive the corresponding
Fokker-Planck equation for the probability distribution f on the volume element
vol™ = dx' A ... Adz™. We have:

0 0 1] ir s I ir s
o = [_ (‘7] 2P Rk) oif + 55 (T FRT VRS (6.8)
_ 8JZTRT j]stf:l
OxJ

Finally, we must assign a specific value to the parameter a € [0, 1] for the stochastic
differential equation and for the Fokker-Planck equation to make math-
ematically sense. Assuming that the white noise I' appearing in our equations is
the limiting representation of a continuous perturbation, we take the value o = 1/2.

We shall not be concerned with other values of «, unless differently specified. When
a = 1/2, equation reduces to:

gia
ot ozt

1 . . 0
[— (J” - QﬁJ”R,‘fJJSR’;> Ho,f + J"R’: e (jJSRk’ f)} . (6.9)

We conclude this section by noting that the matrix R can be interpreted as the

square root of a generalized diffusion parameter.

6.2 Equilibrium with Measure Preserving Operators

A look at the derived Fokker-Planck equation shows that the behavior of the
probability distribution f depends on three main factors: the energy H representing
the properties of matter, the metric of space characterized by the operator 7, and
the type of perturbations described by the tensor R¥ and the parameter o (notice
that R¥ accounts for the spatial properties and « for the type of time evolution of
perturbations). In this section we examine the form of f in the limit ¢ — oco. For
this purpose, it is useful to introduce the following notation:

f= lim f. (6.10)

t—o00

Furthermore, it is convenient to define the concept of Fokker-Planck velocity Z.

Since the probability fvol™ enclosed in each volume element must be preserved
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along the trajectories, if Z € T .M is the dynamical flow generating the evolution of
such probability, we must have the following conservation law:

of |
ot

(O + £2) fvol™ = [ (fZl)} " =0. (6.11)

Comparing this equation with the Fokker-Planck equation , wee see that:

1 9
of Oai

ijr js pk
oxI “ow B

(6.12)

7t — <jz] . ;ﬂjerfjstlsc> HOj (jerkjstkf>

The quantity Z is called the Fokker-Planck velocity of the system.

We anticipated that, in the absence of canonical phase space, the form of f€¢
departs from the standard Maxwell-Boltzmann distribution of equation and
assumes a novel form that depends on the operator J. On this regard, we begin

with the following convergence theorem for measure preserving operators:

Theorem 6.1. (Equilibrium with measure preserving operators)

Hypothesis:

o Let M be a smooth manifold of dimension n.

o Let 7 € N>*TM be a measure preserving operator with J € C%(M) Vi,j =
1,..,n.

o Let x = (xl, ,a;") be the coordinate system on M endowed with the invariant
measure, i.e. ;J9 =0Vj=1,..,n

o Let Wi, i = 1,...,n be n Wiener processes, with dW; = TI'jdt and o = 1/2
(Stratonovich stochastic integral).

e Define R = Oy, j,k=1,...,n, where y = (yl, vy y”) s a new coordinate system
such that the map T : x — y is a diffeomorphism.

e Let the equations of motion be:
Xt — (JZ] _ ,yij) HOj + jZkRiF” (613)

where the function H (x,t) = Hg (x) + y'T; (t) is the Hamiltonian of the system,
Hy € C*® (M), and v = 38T T RFJIRE is the friction coefficient with B € R a
constant.

e The corresponding transport equation for the probability distribution f € C* (R>0)®
C?(Q) on a smoothly bounded compact domain Q C M with volume element vol™ =
det A ... A da”

of o

ot Oxt

jl’r‘R

T j]stf
(6.14)

iJ i . li ir pk 7js pk _
g gl (g )
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Suppose that on the boundary 0N the conditions Z - N = 0 and Xo- N = 0 hold,
with Z the Fokker-Planck velocity such that Oyf = —0; (fZi), Xy = jinojai, and
N the outward normal to OS).

o Assume that f > 0 on Q.

Thesis:

Then, the solution to s such that:

tlim J (dlog f + BdHp) =0 a.e., (6.15)
for any choice of the diffeomorphic coordinates y?, j =1,...,n

Proof. Recalling the expression of the Fokker-Planck velocity Z, equation ,
and setting a = 1/2 we obtain:

7' = (JY —~") Hy; — %jirRkjstk aéog;f. (6.16)
In going from to this expression, we used the fact that 7 is measure preserving
(0;J9 =0, j = 1,..,n) and that the matrix R’;j = 0%y*/0x°027 is symmetric so
that J° ngj =0, k=1,...,n. Consider now the following entropy functional:

S = —/ flog fvol™. (6.17)
Q
The rate of change of S is:
ds of n
¥ o ot (1+log f) vol
a A
—/ (12) (1+log f) vol™
0 8 g

/ f quol" / flog f Z'N; dS™ 1
Oz 00

Z’L
/f(9 vol™

fZ’N st / fi Z¢ vol™

/ f; Z vol™.

Here we used the fact that Z‘N; vanish on the boundary 9. In this notation

(6.18)

N = N;0; is the outward normal to the bounding surface €2 with surface element

dS™~1. Substituting (6.16)) in (6.18) we get:
dS . 1 . . o1
o = _/ fiijHOj vol"™ + / fijWR,’fj]sRl; Og-f + ﬁHQj vol™
dt 0 O (6.19)

1 ) . 0l
= 2/ fz'j"Rfjstf< ;gf BH0J> vol™.
0 xd
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Here we used the fact that J is measure preserving and thus the term involving
fiJ" Hyj = % ( fXé) can be written as a vanishing surface integral. Consider now

conservation of total energy E = [, f8Hvol™:

dE = —/ ﬁa(fZ.)Hovol”
dt Q i

ox
= / BfZHo; vol™
0
. 1 ) ) 1
:/ﬁij]HOjHOiUOZn_/ijTRI;j]SRI; 80g'f+BHoj BHOiUOln
Q 2 Ja oxJ
1 ir pk 7js pk n 1 ir pk 2 n
= —= [ J7"RFFIRE f;8Ho; vol™ — ~ f(ﬁj RTHOZ-) vol
2 Ja 2 Ja
=0.

(6.20)

Again, we used the fact that surface integrals vanish and the antisymmetry of J.

This implies:
ir ok s ok i ok 2
/jZTRTJJSRSijHOZ‘UOZn——/f(,@jerrH[)i> vol™. (6.21)
Q Q

Substituting this result in (6.19)), we arrive at:

ds 1 ir 0108 ) ik \2| om
=3 /Q f (J RE=2E ) — (BT REH) | wol (6.22)
2
5|1 { s (OB s )| -2 (57 Rbm) - zjiTR,’ijSR’;ijHo,} vol".
2 QO 8JZ‘Z

Using again conservation of energy (/6.20]), the last two terms in the final passage

vanish, and we obtain:

2
s 1/Qf [jier (81°gf +BH0¢>} vol™. (6.23)

dt 2 ozt

It is useful to rewrite equation 1| in matrix notation: defining RT = (Rfdaf ® (9k)T =
RFO, ® da”, we have:

ds 1
2 / f|RYT (dlog f + 5dH0)\2voz“. (6.24)
a2 Jq
In the limit of thermodynamic equilibrium we must have:
. ds
i G =0 (629

In light of equation (6.23]), this implies that for all non-zero f:

tlim J (dlog f + BdHp) =0 a.e. (6.26)
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for any choice of the diffeomorphic coordinates y. Notice that the matrix R¥ could
be removed because the transformation 7 : & — vy is a diffeomorphism and is

therefore invertible. O

Let us make some considerations on the meaning and the physical implications of

this result.

e The first aspect we want to stress is that the reason why equation holds is
that J is taken to be measure preserving. Without this assumption, there would not
be any grounds to examine the entropy functional of equation . In fact, one
can check that in the case of a general antisymmetric operator, the rate of change
of this functional in not positively defined (and thus violates the second law of ther-

modynamics).

e Secondly, it is important to remark that f is the probability distribution on the
invariant measure dictated by the measure preserving operator J. Only in such
coordinate system has proper physical meaning, i.e. the entropy production
represented by equation has a definite sign and therefore an extremum prin-
ciple (maximum entropy) applies to the functional . If g is the Jacobian of
the coordinate change sending the invariant measure vol™ to a different reference

Lyol™, the probability distribution in the new frame would be

system vols = g~
u = fg. Here, the letter C' stands for Cartesian, since usually one is interested in
the probability distribution observed in the Cartesian coordinate system of the lab-
oratory frame. Recalling the change of coordinates formula for information entropy,
equation , and defining the information entropy of the new distribution u as

Sc = — [ uloguwvolc, we have the following definition:

Def 6.1. (Proper entropy for measure preserving operators)
Let J € /\2 TM be a measure preserving operator on a smooth manifold M of
dimenston n. Then, on the invariant measure vol™, there is a proper and thermody-

namically consistent information entropy measure %:

Z:—/flogfvol”
Q

:—/flog(fg)vol”—i—/floggvol"
Q Q
:SC+<10gg>a

(6.27)

where f is the probability distribution on vol™, Q C M, and Sc is the information

1

entropy of the probability distribution uw = fg on volg = g~ vol™.
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It is also useful to introduce the notion of entropy production. The rate of change

in ¥ is given by:

dx 0
i Qa{(l—i—logf) vol™
a(f7
= /Q ((%i) (1 +log f) vol™ (6.28)
_ / 192 Lo +/ Flog f Z'N; dS™ !
Q" Oz o0
=c—
The term: o7
o= /Qfaxi vol™, (6.29)

is called the entropy production rate of the system. The term:

o = —/ flog f Z'N;dS™ 1, (6.30)
o0

represents the flow of entropy across the boundary 0€2. Notice that the entropy pro-
duction ¢ is caused by the divergence of the Fokker-Planck velocity Z. Whenever
the Fokker-Planck velocity Z is divergence free and the system is closed (i.e. ® = 0),

the entropy X remains constant.

e The third remark is that, according to proposition we can always take any
antisymmetric operator of dimension n and extend it to a measure preserving form in
a n+ 1 dimensional setting. Here, the result of theorem apply. However, it must
be noted that the equilibrium obtained from the extended operator has a different
physical meaning from the equilibrium in the original system. Indeed, even though
the particle Hamiltonian Hy does not depend on the new variable z™*!, the noise
I',,4+1 associated to this variable affect the other coordinates through the interaction
term H; = y'T;. If J is the extended n+ 1 dimensional measure preserving operator,
we have: .

@' =JUH; =Y JY (Ho; + Hrj) + 3" RE Ty (6.31)

j=1

The second term on the right-hand side exists only in virtue of the extension and

does not appear in the original n-dimensional dynamics.

e It is useful to add some explanation to the chosen boundary conditions Z - N =0
and Xy - N = 0 on 0f2. Physically, they express the fact that probability does not
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escape from the domain €2, and therefore the system can be considered as thermo-
dynamically closed. The condition Xy - N = 0 can be thought as a definition of
the boundary itself, and can be satisfied, for example, by taking an Hamiltonian Hy
that is constant on the boundary, Hy; = 0 on 0f2. The condition Z - N = 0 is rather
a boundary condition for f. If Hp; = 0 on 92 one can use the Neumann boundary
condition df = 0 on 0f2.

e If the matrix J is invertible, equation (6.15)) becomes:
fe = tlim f=Aexp{—fHo} a.e., (6.32)
—00

where A € R+ is a normalization constant. Thereby, we can rephrase the result of
theorem in the following way: if the metric of space if vortex free, i.e. O"~! =0,
and space is accessible, i.e. ker (J) = 0, the standard result of statistical mechanics
apply on the invariant measure.

The effect of a non-trivial kernel ker (J) # 0 can be understood with the next
corollary of theorem [6.1}

Corollary 6.1. (Equilibrium with Poisson operators)

Assume the hypothesis of theorem[6.1]. In addition, assume that J has constant rank
2m = n—r and that it is a Poisson operator satisfying the Jacobi identity & (J) = 0.
Furthermore, assume that the limit f¢1 = limy o f is itself of class C? (Q). Then,

for almost every point x € Q) there exists a neighborhood U C ) of  such that:
f9=lim f = Aexp{—BHo—vC'} on U, (6.33)
t—o0

where v; € R, i = 1,...,r, are constants and the functions C* are the r Casimir

invariants whose gradients span the kernel of J, i.e. J (dC’i) =0.

Proof. Thanks to Darboux’s theorem[I.1], V& € Q there exists a neighborhood U C Q
of * where we can find coordinates (ul, ...,u2m,01,...,07”) such that the C* are

Casimir invariants. Thus, exception made for a set of measure zero, the local solution
to equation ([6.15)) is of the form (6.33)). O

In the case of a non-canonical Hamiltonian system, we see that statistical equilib-
rium, which is achieved on the invariant measure assigned by Liouville’s theorem
is determined by the energy Hy and the Casimir invariants C?. In this way, the

functions C? impart a non-trivial structure to the probability distribution f:

Def 6.2. (Self-organization by Casimir invariants)
The self-organized probability distribution caused by a Casimir invariant is called a

type-1 distribution. The associated self-organizing process is a type-1 self-organization.
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As we have explained in the introduction, this type of self-organization is caused by
the existence of inaccessible regions in the phase space represented by the fact that
ixdC' =7 (dC",dH) = 0.

e The last remark concerns the white noise assumption we made. This assumption
must be justified on a case by case basis by showing that the perturbations affecting
a certain ensemble statistically behave as Gaussian white noise in some appropriate
coordinate system y (in the sense the gradient 0H;/0y" of the interaction Hamil-
tonian H; with respect to the coordinates y can be considered as Gaussian white
noise). In practical situations, using the invariant measure provided by the measure
preserving operator, one invokes the ergodic hypothesis in virtue of the ergodic the-
orem [2.3] and exploits the fact that ensemble and time averages can be interchanged
to show that the fluctuations can be linked to Gaussian white noise. In the next
chapter we will discuss concrete examples of this procedure.

Finally, notice that equation does not depend on the specific coordinates
y where noise is white. This means that, regardless of the coordinate frame where
a system is homogeneously perturbed, statistical equilibrium is achieved on the

invariant measure.

6.3 Equilibrium with Beltrami Operators

So far, we have studied the equilibrium probability distribution for the class of
measure preserving operators. We now move to operators that are not endowed with
an invariant measure. Since the problem becomes mathematically more convoluted,
we proceed with a gradual approach.

First, consider the case of pure diffusion, Hy = 0. Then, from equation , the

relevant equation of motion reads:
X = (JYRiT,) 0. (6.34)
To further simplify the problem, set R} = 47 to obtain:
X = (J7I;) 0;. (6.35)

Recalling the transport equation and setting o = 1/2, we arrive at the corre-

sponding diffusion equation:

of 10 0 (T7*))
ot~ 200 [7 “ow | (6-36)
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It is instructive to rewrite this equation in terms of the covorticity n — 2 form J n—2
given by (4.11)). Using the same calculation of equation (4.47)), one obtains:
of 1
— = — x
ot 8
Now assume that J is a Beltrami operator (8 = 0, see definition [4.10). We have
the following;:

d[T" 2 Axd (T"2f)]. (6.37)

Theorem 6.2. (Diffusion with Beltrami operators)

Let J € /\2 TM a Beltrami operator on a smooth manifold M of dimension n.
Consider the diffusion equation for the probability distribution f € C* (R>()®
C?(Q), f > 0, on a smoothly bounded compact domain Q@ C M. Assume the
boundary conditions Z - N =0 and b- N = 0 on 0f), where Z is the Fokker-Planck
velocity such that O,f = —0; (fZ), b = jikjjjkﬁi is the field force, and N the

outward normal to 02. Then,
tli)rgloj(dlog f)=0 a.e. (6.38)
Proof. Consider the entropy functional:
S=- /Q flog fwol™. (6.39)

The rate of change in § is:

as 0
i 8{ (1 + log f) vol™
8 Z
:/Q ((‘;;z ) (1 + log f) vol™

= / faZ. vol + | flog f Z'N;dS™ 1
a:l]l o0
/ Z f; vol™ + / fZIN;dS™ 1
]k
/fl ljlk f) Oln

= 2/ [fzjzkaj +fzjlkjjkalogf:| UOln
Q

N LA
3:L“J

a
1
N Q/Q [_ﬁ‘BJrfU(dlogf)\Q] vol™
= ;/Qflj(dlogf)ﬁvoz".

- fjlk N dsn 1
o0

(6.40)

61



Here, we used the boundary conditions to eliminate surface integrals and the van-

ishing of 6. We conclude that for any non-zero f:

tli)m J(dlogf)=0 a.e. (6.41)

This result deserves comments.

e First, we must explain the chosen boundary conditions. As for theorem [6.1] the
physical meaning of the requirements Z-N = 0 and b-N = 0 on 012 is that probability
does not escape from the boundaries. If the diffusion equation is written in terms
of the standard Cartesian coordinate system of R™, the components of the vector b
correspond to the components of the field force n — 1 form and, when n = 3,
one obtains the field force vector encountered in section .5l The vector b acts as an
effective drift. Indeed, from equation , one sees that the Fokker-Plack velocity
Z can be decomposed in the form below:
g Lwd T L 1 dlonf
2f ox7 2 2 ox7
Thus, b- N = 0 on 92 means that the boundary must be chosen so that the drift

b does not transport any probability out of the domain 2. The second condition

(6.42)

Z-N =0 is a boundary condition for the probability distribution f. A possible way
to satisfy these conditions is, for example, to assume that J is a strong Beltrami
operator in a Cartesian coordinate system so that b = 0 and then take the Neumann
boundary condition df = 0 on 052 for f.

e The result of equation is remarkable from the standpoint of statistical
mechanics. Let us explain why. If 7 happens to be measure preserving, the result
is expected: if J is invertible, we get a flat distribution df = 0 almost
everywhere on the invariant measure. Now, suppose that 7 is still invertible but not
measure preserving: we obtain a flat distribution df = 0 almost everywhere even if no
invariant measure exists! In other words, the Beltrami operator is the largest class of
antisymmetric operators such that the diffusion equation admits the solution
f =constant. This fact can be verified by substituting the solution f =constant in
equation . One obtains:

0= -8. (6.43)

This is possible only if B = 409;b' = 0. Therefore, in the case of diffusion with
a Beltrami operator, the entropy functional (6.39) on the coordinate system where
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B = 0 is physically consistent. Notice that such coordinate system is not, in general,

the standard Cartesian coordinate system.

6.4 Equilibrium with Antisymmetric Operators

Unfortunately, beyond the case of pure diffusion with Beltrami operators presented
in the last section, the determination of f in the limit ¢ — oo becomes a sensibly more
complicated problem, because we need to solve a non-elliptic second order partial
differential equation. As we have outlined in the introduction, there is no systematic
mathematical theory for such kind of equations. In the final chapter of this study
we will try to lay the ground for such systematic treatment, and discuss existence
and uniqueness of solutions to the normal Laplacian, the non-elliptic second order
differential operator we introduce to calculate the equilibrium distribution. Again,
we restrict our attention to the easier case of pure diffusion, equation . Let us
show why, for a general 7, this equation is non-elliptic. First, consider the linear

differential equation with respect to the function wu:
o (@) sy + B (@) ui + 7 () u + 6 () = 0. (6.44)

Here, the subscripts mean derivation, i.e. u;; = §%u/0z'dx7. This equation is elliptic

if the matrix o/ is positive definite in the domain of its arguments:
QgL >0 VE#O. (6.45)

A comparison with equation (6.36)) shows that:

1 9bt

Yok zgry 1| O (k] 1OV . _
5 I T f”+2[bf+axi(5 J ) it 550 =0 (6.46)

Therefore, in the specific case of interest the matrix a¥ is:
S R
ol = ijlkjjk. (6.47)

It is clear that if we take £ € ker (J), the condition of ellipticity, equation ,
cannot be satisfied.

In this section we will study the converge of the solution for a general antisym-
metric operator (i.e. an operator that does not fall in any of the classes we have
defined so far) for special cases that do not require the discussion of the solvability
of the normal Laplace equation (which we will introduce in the final chapter). To
simplify the problem, we set n = 3. Equation reduces to:

% = %V w x (V x fw)]. (6.48)

We have the following:
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Theorem 6.3. (Diffusion with antisymmetric operators in 3D)

Let w be a constant rank antisymmetric operator on a smooth manifold M of di-
mension n = 3. Consider the diffusion equation on a domain 0 C M and
assume f € Ct (R>0) ® C?(Q), f > 0. We study the following three cases:

e Suppose that & (w) = 0 so that for each x € Q) there exists a neighborhood U C § of
x where w = A\VC'. Further assume that we can extend the representation w = AVC
to the whole Q. Consider the boundary condition Z - N =0 on 0. Then:

tlim VCxV(Af)=0 a.e. (6.49)

e Suppose that & (w) # 0 and B = 0. Consider the boundary conditions Z - N =0
and b- N =0 on 9Q. Then:

limwxVf=0 a.e. (6.50)
t—00

e Suppose that & (w) # 0 and B # 0. Consider the boundary condition Z-N = 0 on
0). Further assume that the field force vector b=w x (V x w) of the normalized
vector field w = w/w can be written by means of a a scalar potential ¢ as b= V(.
Then:

tlgglow x V[log (fw)+¢l=0 a.e. (6.51)

Proof. We begin with the first statement. Recalling the result of proposition
since w = AVC on Q, A~!'dx A dy A dz is an invariant measure on Q and w is a
measure preserving operator on ). Therefore, on the invariant measure, we can
apply theorem for Hy = 0 and obtain:

tli>rrolow xV(fA\)=0 a.e. (6.52)

This is the desired result.
The second statement is the three dimensional version of theorem

We move on to the third statement. Consider the following entropy functional:

S=— / fllog (fw) + ] vol®. (6.53)
Q
The rate of change in entropy is:
as _ _
dt

_ ! w x (V x fw) -n[1+log (fw) + ¢] dS?
2 Joo (6.54)

+ ;/ fw? [V¢ + Vo log (fw)] - V[log (fw) + ¢]vol®
Q

/ Orf [1 4 log (fw) + ¢]vol®
Q

:;/wa [V¢ 4 V1 log (fw)] - V[log (fw) + ¢]vol®.
Q
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The surface integral was eliminated by application of the boundary condition Z-N =
0 on 9. Now observe that, since b-w = 0, b = V(¢ = V1 ( and therefore the above

equation becomes:

as
=3 [ fu? IV log () + G vol?

X (6.55)
= 2/Qf]w x V [log (fw) + ¢]|? vol®.
Therefore, for any f > 0, we must have:
tli)rgow x V[log (fw)+{] =0 a.e. (6.56)
O

The following remarks are necessary.

e The remaining case where b cannot be expressed as the gradient of some scalar
potential will be outlined in the final chapter because, as we have anticipated, we
need to define the normal Laplace operator.

e Notice that the geometric properties of the vector field w determine the specific
coordinate system where entropy is maximized.

In the first case, w is integrable and defines a Poisson operator. The resulting
equilibrium, equation , is a type-I self-organization on the invariant measure of
the system. Specifically, assuming that the limit Af¢ = lim;_ o, Af is itself C2 (2),
from equation we see that:

l]—"(C’) a.e. (6.57)

eq _
/ A

Here F = F (C) is a function of the Casimir invariant C.

In the second case, w is a Beltrami operator. From equation (6.50) one obtains:
lim Vf =M a.e., (6.58)
t—o0

for some appropriate function A. Assuming that the limit f°? = lim;_ o f is itself
C? (Q), since the components of w are smooth, X is at least C' (€2). Then, we must
have A = 0 almost everywhere to guarantee that & (w) =w -V x w # 0 on Q. We
conclude that:

f=c ae. (6.59)

Here ¢ € R+ is some non-zero positive constant. This flat distribution tells us that

a Beltrami operator prevents the emergence of any kind of self-organized structure.
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We remind the reader that the distribution f is defined on the reference frame where
B=V-:[wx(Vxw)=0.

The third case is characterized by an antisymmetric operator of the most general
type with the condition that b= V(. The associated system is neither Hamiltonian,
nor measure preserving, nor Beltrami. Assuming that the limit lim;_,oo fwe® is still

C? (Q), with a similar reasoning to the previous case, it follows that:
[ = Lot a.e., (6.60)
w
for some non-zero positive constant ¢ € R~g. Observe that:
B=V.-b=V-(V()=AC (6.61)

Therefore, if we could define the inverse Laplacian A~! in some appropriate sense, we

would get ¢ = A~1B. Then, the thermodynamically consistent entropy functional

(6.53) would become:
S = —/ / [10g (fw) + A_l‘g] vol®. (6.62)
Q

The novel term depending on B clearly reflects the fact that the metric of space
is intrinsically affected by a non-vanishing cocurrent that cannot be removed by
any coordinate change. The resulting self-organized distribution, equation ,
is the manifestation of a new type of self-organized structure that arises in virtue
of such ‘metric’ current. It is the right juncture to introduce a second notion of

self-organization by topological constraints:

Def 6.3. (Self-organization by metric current)
The self-organized probability distribution caused by the cocurrent O™ 1 is called
a type-11 distribution. The associated self-organizing process is a type-I1 self-

organization.

Remark 6.1. In general, type-I and type-11 self-organization can occur together.
This could happen, for example, if J is not measure preserving and at least a certain

part of its null space ker (J) is spanned by Casimir invariants.

Remark 6.2. Notice that whenever a certain system is observed in a coordinate
system where O # 0, the probability distribution on such reference frame will be a
type-11 distribution. This is true even if there exists another coordinate system where
the associated cocurrent O vanishes. In other words, even if a physical system is
measure preserving, if one observes it in the wrong coordinates, the information en-
tropy defined over such coordinates will not be maximized and a ‘fictitious’ structure

will appear. Such structure disappears if one moves back to the invariant measure.
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All the results presented in this section will be verified with concrete physical

examples and detailed numerical simulations in the following chapters.

e From the discussion of the previous section it should be clear that once we leave
the realm of measure preserving dynamics, even a simple three dimensional diffusion
process poses delicate physical and mathematical problems. Among these problems,
the central one pertains to the mathematical identity of the normal Laplacian A,
which we will investigate in the last chapter. Other fundamental questions are the
mathematical nature of the limit distribution f¢¢, i.e. the function space to which
f€4 belongs, and the feasibility of the non-trivial boundary conditions we assume,
as well as their physical interpretation.

Finally, it is worth to mention that there is a slightly different approach that can be
implemented to determine a suitable metric where to define an appropriate entropy
functional: time dependent metrics (i.e. a time dependent coordinate change). In
this approach, one looks for a time dependent metric which obeys a simpler evolution
equation with respect to the Fokker-Planck equation for the probability distribution.
Although this is only a partial solution of the problem because we still need to solve
for the metric, this method may be useful especially when the evolution equation for
the metric has more convenient mathematical properties. We will not pursue this

possibility here.
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Chapter 7

Self-Organization of a Radiation Belt

In this chapter, as a direct application of the theory developed so far, we study
a concrete example of self-organization pertaining to non-canonical Hamiltonian
mechanics, the creation of a radiation belt. The relevant operator is a Poisson
operator with a non-trivial kernel.

For the results presented here we refer the reader to [82], 83] 84 [85].

7.1 Motion of a Charged Particle in a Dipole Magnetic Field

Magnetospheres are commonly observed throughout the universe. This kind of mag-
netic field typically encircles planets and stars, as well as the Earth itself. The mag-
netosphere of the Earth exhibits, in an approximate fashion, rotational symmetry
around the axis going across the magnetic poles. Usually, the magnetosphere is

mathematically represented in terms of a dipole magnetic field:
B =Vy x V0, (7.1)

where 1) is the so called flux function (also stream function, or simply magnetic flux)
and 6 the toroidal angle around the axis of symmetry. If (r,z,0) is a cylindrical
coordinate system centered at the center of the Earth, the flux function has the

following expression:

7‘2

P = 7(72 el (7.2)
where normalized units were used. Notice that B - V¢ = B - V0 = 0. Thus, if we
interpret ¢ and 6 as magnetic coordinates, the level set (¢)=constant, §=constant)
identifies a magnetic field line (a curve with tangent vector always aligned with

B). Tt is worth to remark that, since for a general magnetic field we always have
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V - B = 0, the vector field B is properly described as a closed 2-form B = dA,
with B = Bydy A\ dz + Bydz A\ dx + B.dx A dy. Therefore, a direct consequence of
Darboux’s theorem for closed two forms is that, in regions where the rank of
B is constant, we can always find two functions ¢ and 6 such that locally one has
B =diy Adf and A = pdf.

It is convenient to introduce a magnetic coordinate £ along the magnetic field B
itself, i.e. we seek for a variable ¢ satisfying B = BJ;. The coordinate £ represents
the length of a field line as measured from the equatorial plane z = 0. Since,
by definition, the magnetic flux ¢ is constant along a field line, differentiation of
equation (7.2]) gives the condition satisfied by the infinitesimal displacements dr and
dz when moving along the magnetic field B by an infinitesimal amount d¢:

2,375 —
ER L R (7.3)

\/r%q/)_g — 2

Then, the length of the field line starting at the equatorial point (r,z) = (7,0) as a

function of (r, z) is:

l(r,z) =

\
I
(S

<dr>2 (7.4)

log \/§\/1—m/}s+\/4 3r¢§>
+\/1—mp \/4 3(r J

Here we used the fact that along a field line v = 1 (r,2) = ¢ (7,0) = # ! and
evaluated the integral by the change of variable £ = (7"1/;)2/ 3. Figure shows the
contour plots of the functions B, v, ¢ in the (r, z) plane (poloidal section) defined

I
‘Hﬁx\

g
Sl

L«Jt\.’)

by 6=constant.
A schematic representation of the magnetosphere of the Earth and the ‘natural’
magnetic coordinate system (¢,1,0) is given in figure

The set of magnetic coordinates (4,1, #) can be related to the Cartesian coordinate
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Figure 7.1: Contour plots of the magnetic field strength B (black lines), stream function 1 (green

lines), and field line length ¢ (pink lines) in the poloidal section § =constant.

system (z,y, z) according to:

Al A dip A\ dO = £iapiOpda’ A dxd A da®
= &d.’L’Z A Z (ijk - ¢kej) dzd A da®
j<k
= (VL-Vip x VO)dx Ndy N dz
=(V{-B)dx Ndy Ndz
= B(V{-0p)dx Ndy N dz
= Bdx Ndy Ndz.

(7.5)

Recalling that dx A dy A dz = rdr A df A dz, it also follows that df A dy A df =
Brdr Ndf A dz.

Magnetospheres are often populated by ‘clouds’ of charged particles that form a
plasma. In the specific case of the Earth, these aggregations are called Van Allen
radiation belts. The sharp density and temperature gradients characterizing the
magnetospheric plasma represent a paradigmatic example of self-organization where
an ordered structure is created and sustained in a process that apparently contradicts

the entropy principle. Our objective in this chapter is to show that the mechanism
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Figure 7.2: Schematic view of the Earth magnetosphere and the associated magnetic coordinate

system (£,,0).

behind the creation of a radiation belt is a type-I self-organization (see definition|[6.2)
on the metric induced by the magnetic coordinates. To see this, we need to determine
the equations of motion of a charged particle in the new magnetic coordinate system
(£,7,0).

Without entering into details, we recall that in a dipole magnetic field the motion
of a charged particle is endowed with three adiabatic invariants which are preserved
on distinct time scales typically separated by three orders of magnitude. The first
and strongest invariant is the so called magnetic moment p defined as the ratio
between the kinetic energy mwv?/2 of the cyclotron gyration around the magnetic
field lines and the field strength B:

2

muvs
i (7.6)

M:

The phase of the cyclotron gyration is usually denoted by 6.. The second adia-

batic invariants is the bounce action J| associated to the periodic motion along the
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magnetic field. In formulas:
J” = m%v”dé, (77)

where the loop integral is carried along the bounce orbit and v is the velocity along
a field line. The third and weakest adiabatic invariant is the flux function ¢ which
acts as the action variable associated to the periodic revolution around the symmetry
axis with corresponding angle variable 6.

Due to the strength of the magnetic moment invariance, the motion of a mag-
netized particle can be accurately described by considering the dynamics of the
geometrical center of the cyclotron gyration around the magnetic field (the so called

guiding center). The resulting guiding center equations of motion read:

. 1

=~ (uB +eg) +vjvexp -k, (7.8a)

V=0 +VExB T VVB T Uk, (7.8b)

=0, (7.8¢)

. B

0, = el (7.8d)
m

In these equations, e specifies the electric charge, ¢ the electric potential, v the
velocity along a magnetic field line, k = 9, (B/B) = 0,0 = 07 the curvature of the
magnetic field, v the particle velocity, vgxB, vvp, and v the E x B, VB, and
curvature drifts, and the subscript notation means derivation.

The E x B drift velocity vgx g plays a crucial role in the diffusion process at the
basis of magnetospheric self-organization and has special mathematical properties
that will serve us in the next chapters. It is therefore desirable to add some additional
considerations on this drift velocity. The term ‘drift’ means that no acceleration is
involved. In the specific case of the E x B drift, the associated velocity is obtained

by requiring that the Lorentz force F}, vanishes:
FLZB(E+UEX3XB):O. (79)

Noting that vgx p has to be orthogonal to the magnetic field, we can solve for vgxp

and obtain:
Ex B

BQ

The conservation of the first adiabatic invariant p can be interpreted as a topolog-

VExB — (7.10)

ical constraint affecting the 6-dimensional canonical phase space (x,v, 2, Dz, Dy, P2)

of charged particle dynamics. To see this, let us ‘separate’ the topological constraint
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p from the phase space coordinates (x,y, 2, pz, Dy, P2):
dx Ndy Ndz N\ dpy N\ dpy N\ dp, = Bildﬁ/\dw/\dG/\dpL/\dp” A dpyg
= B7'd A dy Adf A dmoy Admuoy Ad <mvg + w)
,

=m3B 0 Adip AdO A d(vecosbe 4+ vg-01)

0,
/\dv” Ad | vesinf. + vy - 90 + %
|0p|  mr

1
= —ym’ BTl Ady A d A doy A dv A dfe

= mPdoy Adl A dip AdO A dp A dBe.
(7.11)

Here, we used equations and , and defined the parallel moment p| = muyj,
the perpendicular moment p; = mv; = m(v.cos6, + vq - 1), and the toroidal
moment pg = m(vesinte + vq - Jg/|0pl) + ep/r, with vg = v — v, — v the drift
velocity (assumed to be only a function of the spatial coordinates). In this notation
01 = Vi /|V| denotes the unit normal vector to field lines and Jy/|0p| the unit
vector in the toroidal direction.

Now we want to write the guiding center equations of motion in the novel
coordinate system (U” JA,0,0, 1, 90). First, consider the rate of change in v, equation
(7.8a)). The only term that needs to be expressed in the new coordinates is that
involving the curvature k = 07 and the E x B drift velocity (7.10). Since we
assume the magnetic field to be static, i.e. we take ;B = 0, we have E = —V¢.
This is reasonable as long as the background dipole magnetic field is much stronger
than the self-induced magnetic field. Noting that due to #-symmetry 63 -Vo =0,
and using |V¢| = B/|V0| = rB, we have:

B x V¢

O x (¢gV0)
B2

VY
UH'UEXB k= UH 8% = 'U” B . 83 = —'U”(ﬁg@ . 83 (7.12)
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Now, define ¢ = —9, - 9, and observe that:

0
~ 90 (O - Oy)

= —0%- 0y — - Doy
1
=07 -0y — 50, |’

qv =

=07 -y
- g.<5w'WW

rB rB + (8w %) (9@) T

=0} 55
Putting this result in equation ([7.12)) one sees that:
UHUEXB k= —U”qu)g. (7.14)
Now, consider the rate of change in ¢:

(=V10-v
=V (Unag +UE><3)

— v + pVL - (aﬂ TBW’) (7.15)

Here we used the fact that, by symmetry, both the gradient and curvature drift vy g

and vy, are directed along V6 and therefore do not affect £. We also have:

Ay - V1 \h
Op = =55z V¥ =40 = 555 —ad (7.16)
Then: -
Vﬁ-awzw—q:(), (7.17)

Substituting this result in the previous equation, we arrive at:

(= V|| — qe- (7.18)

We move on to the rate of change in :

8@><V9__
5 =

VY-V

Y=V v =gV T

Pg — g (7.19)
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Finally, the rate of change in 6 is given by:

0=V0-v ,
= V- <0z >j<BV¢+%B>]<32VB+m:H BBX2k>
_vp. 0% (%vgw@vz) +£ve'ag Cop ”ve #x (7.20)
= V0 (rP¢yV0 + B $0p x qV) + G%VB : Zﬁ n eB” 82 - Zg.
Recalling equations ([7.16)) and ( we obtain:
0= ¢y +qpe+ = (B¢ +qBy) — mvﬁqg. (7.21)

Putting together these results, the guiding center equations of motion now read:

U = —% (1B + e¢), + v)ardo, (7.22a)
0= v —qdp (7.22b)
W = —gp, (7.22¢)
6 = (9 + q00) (%B n ¢>) _ %Uﬁqg, (7.22d)
=0, (7.22¢)
0c gB (7.22f)

7.2 The Poisson Operator of Guiding Center Dynamics in a Dipole
Magnetic Field

Purpose of the present section is to show that system is Hamiltonian. First,
let us calculate the associated antisymmetric operator J. Notice that, at this point,
we do not ask J to satisfy the Jacobi identity. We only need to find the Hamiltonian
H representing the energy of each charged particle. It is reasonable to expect H to

be the sum of kinetic and potential energy:
mi oo 2

Observe that we did not include any term involving the drift velocities because they
are derived by neglecting the particle mass m in the equations of motion perpen-
dicular to the magnetic field and therefore they should not contribute to the kinetic

energy. Now define the vector field:
Xge = 010y, + L0y + 190y + 00 + 005, . (7.24)
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The rate of change in H is then:

dH

i H
pral o

— ix, dH

= HUHQ'J” + Hpl + Hdﬂ/J + Hyb (7.25)

= mu|| —% (uB + e¢)g + U||Q£¢9] + (uB + 6¢)£ (’U” - q¢9)

_ ('u,B + €¢)¢, Do + edy |:<81/, + qag) (gB + ¢) - %’Uﬁq@}
=0.

Therefore, H is the energy of the system. Since H is constant, we can find an

antisymmetric operator J such that X,. = J (dH). Solving for J, one obtains:

I 0 -m~1 0 e_lquE 0 0 |
m~! 0 0 —elg 0 0
0 0 0 —e! 0 0
J= . ) ) (7.26)
—e v e q e 0 0 0
0 0 0 0 0 —em!
0 0 0 em™1 0 |

Let us check whether this operator satisfies the Jacobi identity , i.e. whether
J is a Poisson operator. First notice that the only non-constant components in J
are JUI% = eflqug and J% = —e~'q. Secondly, remember that the component
Bk — Jimj%k + jjmjg + jkmj,g of the Jacobiator & (7) is different from 0
only if all the indices (i, j, k) are different. Furthermore, any even permutation of
the indices gives the same value, while odd permutations only result in a change
of sign. For example 7% = —®*J, Finally, since all the components in J are
independent of the pair (u,0.) and the other variables (UH,E, 1P, 9) are not coupled
with them in J, we can neglect all the components of & involving p and .. In
light of these considerations one sees that the only non-trivial component of the

Jacobiator & is:

& (J) = &"1°0, N0y A Oy

€0 O )¢
_ (gm0 gemOT L gem 0T A Oy N Oy
Hxrm Hxm oxrm I
(7.27)
— _efljvumﬁ _ 671j€ma ('U”(]@) 81) A 85 A 89
Hxm oxrm I

= ¢! (jv“EQE + T %) RN
=0.
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We have thus shown that [J is a Poisson operator. It is easy to see that all the
columns of J are linearly independent vectors. Therefore, the Poisson operator J

has maximum rank and is invertible with inverse w such that dw = 0 and:
IX g W = —dH. (7.28)

Since we know both X,. and H, we can solve the last equation with respect to w

and obtain:

w = mdvy A dE+muvy gy A df + edip A 6 + madip A dvy + —dp A db,
(&
=mdv Adl+dyp Nd (69 + mqv”) + @du A db. (7.29)
(&

_ 4 (mdeE +bdy + %udﬁc) ,

where we defined 7 = e + mqu|. It immediately follows that (mUH,E), (¥,m),
and (u, %QC) are canonical pairs and that, in these coordinates, J is a symplectic
operator, i.e.:

J = 8mv” N Op+ Oy N\ Oy + 0y A 8%% (7.30)

7.3 Reduction of Cyclotron Motion

As anticipated, the conservation of the first adiabatic invariant can be interpreted
as a topological constraint affecting the canonical phase space of charged particle
dynamics. Let us see how.

In light of the results of the last section, the canonical phase space is spanned
by the magnetic coordinates (v”,f,w,G, M,9c)- Note that these are not canonical
variables, because the canonical set is (mvn,ﬁ,w, 7, [y %90). Nevertheless, we shall
proceed with the magnetic coordinate system as it is easier to handle (the new
variable 7 does not have a simple physical interpretation and its evaluation is more

complicated) and because the Jacobian of the coordinate change is constant:
dvoy AdlAdip AdO A dp A df = m™2d (moy) AdeAdi Adn AdpAd (%9) . (7.31)

Therefore, the volume element, which is the essential ingredient from the statistical
mechanics standpoint, looks the same in both reference frames.

Recalling the definition of topological constraint, we must ‘reduce’ the Poisson
operator so that 0 = du € ker (J). Typically, the frequency of the cyclotron
gyration around the magnetic field can be considered as high enough with respect
to all the characteristic frequencies determining dynamical change in the system.

Thereby, the phase of the gyration 6. is not a physically relevant quantity (on the
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time scale of interest the observables do not depend on 6.) and can be integrated to

give a factor 2w. Removing the constant 27, the reduced volume element reads:
doy ANde A dyp A df A dp. (7.32)

The Poisson operator is accordingly reduced to the truncated form:

0 -m~t 0 e‘lv”qg 0
m~! 0 0 —e g 0
J = 0 0 0 —e! 0 (7.33)
—eilv”qg e lqg et 0
i 0 0 0 O_

It is now clear that the 1-form & = du belongs to the kernel of the truncated operator
since J (du) = 0. Furthermore, the topological constraint £ is clearly integrable,
with integral u=constant. One can verify that the truncated operator itself satisfies
the Jacobi identity, and thus the magnetic moment p is a Casimir invariant. Observe
that, since the truncated operator is odd-dimensional, now there is no coordinate
change by which one can obtain a canonical coordinate system.

On each Casimir leaf (the level set p=constant) we can further truncate the Pois-

son operator and obtain the 4-dimensional Poisson operator:

0 —m~t 0 e*1v||qg
-1 -1
0 0o -
7= ™ cq (7.34)
0 0 0 —et
—e_lv”qg e lqg et 0

This operator can be inverted to the symplectic 2-form:
w=d (mu Ndl+ Adn). (7.35)

Thus, as prescribed by the Darboux’s theorem [1.1], we can define a canonical Hamil-
tonian system on each symplectic submanifold corresponding to a level set of the
Casimir invariant p.

Note that, although the 4-dimensional canonical form is useful to study
the motion of a single particle, the operator that encloses all the relevant physical
information is the 5-dimensional truncated operator . This is because even
though p is a dynamical constant, an ensemble of particles is characterized by a

distribution of magnetic moments that determines the global behavior of the plasma.
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7.4 Fokker-Planck Equation on a Foliated Phase Space

In this section we derive the Fokker-Planck equation of the diffusion mechanism
responsible of magnetospheric self-organization. Such diffusion process is usually
called inward (or up-hill) diffusion because of its peculiar property of creating density
gradients. Before doing so, it is worth to make some additional considerations on
the physical scenario we want to describe.

The separation of the gyro-phase 6. was carried out on the basis of the assump-
tion that the time and spatial scale of electromagnetic perturbations affecting the
dynamics of a charged particle do not reach cyclotron motion. Whenever this hy-
pothesis breaks down, a more careful treatment of guiding center dynamics may be
necessary (see, for example, gyro-kinetic models [74] [141], 142]).

The plasma we are concerned with is charge neutral, that is the ensemble average

of the electric field vanishes:
(E) = / fEwvol® = 0. (7.36)
Q

Here, f is the probability distribution on the canonical phase space vol® = dx A dy A
dz A dpy N dpy A dp, and €2 the domain occupied by the plasma. Physically, this
condition can be achieved in a ion-electron plasma with a null total charge. Then,
the guiding center equations of motion describe the motion of the heavier
ions, while the lighter electrons adjust their position accordingly to maintain charge
neutrality . In the case of a single species plasma, or if one is interested
in the detailed electromagnetic interaction between different species, the equations
of motion of the electrons must be considered separately together with the self-
induced electric and magnetic fields. For the purpose of the present study, this is
not necessary and we will work under the hypothesis .

To fully exploit charge neutrality, we must determine the invariant measure of
the system, which must exist (at least locally) because we have shown that guiding
center dynamics is Hamiltonian. Once we obtain the invariant measure, there
are grounds for the ergodic hypothesis (remember that measure preservation is a
necessary condition for the ergodic theorem to hold) and we can exchange the

ensemble average (¢) with the time average:

_ o1 T
E = Tlgréo T/o E dt. (7.37)
Using charge neutrality, we would have:

(E)=E = 0. (7.38)
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In light of the ergodic hypothesis ([7.38]), we can then represent each component of
the electric field in terms of a random process with null time average. Taking the
simplest Gaussian white noise I' (remember definition |3.2)):

E=-V¢=T. (7.39)

Thanks to Liouville theorem 23] we know that the desired invariant measure is
given by the volume element dvy AdlAdy Adf Adp A df. of equation because
the coordinate set (mvH J,0.m, . %90) on the right-hand side is canonical. Observe
that, the reduced volume element as well as the further reduced 4-dimensional
measure dv| Adl A dip Adf on each Casimir leaf ;4 =constant are also invariant mea-

sures with respect to the corresponding 5-dimensional and 4-dimensional dynamics.
Therefore, equation ([7.39) implies:

m .1/2 1/2 1/2
B = =D /"1 Vt+ DT V0 + Dy *TyV. (7.40)
. . 1/2 1/2
Here we restored physical units, and mD” [y/e = —¢e, DT = —¢p, and
Dé/ 2F9 = —¢y are Gaussian white noises with I'dt = dW. The parameters Dy,

D, and Dy are constants (diffusion parameters) scaling the strength of perturba-
tions. It is important to remark that the specific choice of the coordinate system
where noise is white is arbitrary from the standpoint of statistical mechanics be-
cause the hypothesis of theorem are all satisfied. Specifically, equation
corresponds to the choice R;'. = 5;'., that is the the gradient of the electrostatic po-
tential ¢ is represented by Gaussian white noise in the coordinate system spanning
the invariant measure.

Recalling the expression of the E x B drift velocity and substituting equa-

tion ([7.40]), we have:

r;, 1/2 mo1/2
—o1 — (Dy*rg + ZqD)1) ) 0. (7.41)

Now, we can evaluate the displacements caused by the stochastic drift (7.41]) along
the perpendicular directions 0, = V1 /|V| and 0y = 0y/|0s|:

1/2
vExB = D/

dXy = —r (Dg/ 20w, + %qu/ 2dWH> : (7.422)
D2

dX | = —=dw,. 7.42b

1 rB 1 ( )

Remember that in this notation upper case letters are used to identify stochastic
variables.

The next step involves the derivation of the stochastic differentials of the magnetic

coordinates (v”,&w,e,u,HC) by using equations ([7.40) and (7.42) and by invoking
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the chain rule of stocahstic calculus (Ito’s lemma when necessary. The stochastic
differential dV] of the variable v| is determined by a deterministic part (the first term
in ([7.22a))), the parallel component of E (the term proportional to dW) in (7.40))),
and the toroidal component of E (the term proportional to dW in ):

Vi = — (£ Be + oy — €, ) dt + D> dW; — DY/*vqedW . (7.43)
m I I

In the above expression we introduced the friction force yv| — <y, which is needed
to preserve total energy when the system is closed. This term corresponds to the
friction force of equation when the parameter defining the stochastic integral
isa=1/2.

The stochastic differential dL of the variable ¢ is determined by a deterministic
part (the first term in ) and additional terms caused by the displacement
dX | of equation . In this case dL is obtained by application of Ito’s lemma,
because £ is implicitly affected by the change dX | through the change of variables
dX | — dL. We have:

1 D, 9% D'* o
dL = vydt + (= — d
v (2 a) r2B? 0z2 toB or,) R

1 D oY 0 ol 0| V-V

2 r2B2 |0z, Oy = Ox, Of rB
- 1 D, [0 0 1/2
—U”dt-i- (2 Oé) B |:8¢+an:| TB(]-FDL qdW ..

Here, we used the fact that 9, = 9/0x, = Vi /|Vy| = V/rB. Thus,

1
dL = {U” +&+D; <2 — a) [(ad, +q0¢) q+q (81/, + q0y) log (T’B)]} dt + qDJl_/QdWJ_.
(7.45)
Again, the friction term €, (corresponding to (6.4) when o = 1/2) was added.

The stochastic differential dW of the variable v is calculated in the same way: dW
is determined by dX | through the change of variables d X, — d¥. We have:

1 D, 9% D'Y? oy
e
d <2 a> r2B? 0x? B 8deWL (7.46)
(1 D, (0 0 1/2
_ <2 —a> — <a¢+q8€>7“B+DJ_ AW, .

Therefore:

1
AV = [pL (2 - a) (g + qOy) log (rB) + ew] dt+ DY?dw,.  (7.47)
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The friction term & (corresponding to (6.4) when a = 1/2) was also added.
With the same procedure as above, one can evaluate the stochastic differential
d© of the variable #. This time d© is determined by dXy. Observing that xg = r0,

Ito’s lemma leads to:

do = [g (Op + q0¢) B+ €5 — %vﬁqe] dt — Dy *dw — %qDl/g

2wy (7.48)

Here, the friction term €y (corresponding to when a = 1/2) was added.

Finally, the equations of motion and are not affected by the random
electric field and are therefore unchanged.

At this point we invoke to obtain the Fokker-Planck equation of the system
of stochastic differential equations (7.43), (7.45)), (7.47), and for the proba-
bility distribution f on the reduced space dvj A dl A dip A dO A dp (see (7.32)). The
deterministic current F' appearing in equation is given by:

- <ﬁB@ v = Q:”n)

v+ €+ DL (3 — @) [(Op + q00) q + q (Oy + qIy) log (rB)]

F = D (3 —a) (9y + qdi)log (rB) + €y (7.49)
%(aw +qa£)B+Q:9 - ? ||QZ
-~ 0 -
Defining the 3-dimensional Wiener process W such that:
aw)
dW = [dW_ |, (7.50)
dWy

the matrix G appearing in the system of stochastic differential equations (3.7]) can

be calculated as:

[ Di/Q —DJ_’UHQg 0 ]
0 gD\ 0
_ 1/2
G= 0 DJ_ 0 (7.51)
_mpl/2 _pl/2
e | 0 DG
0 0 0 |

Note that in the expressions of F' and G the lines are ordered according to the

variables (vu,é,w,ﬁ, u). The columns of the matrix G correspond instead to the
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lines of the vector dW. The resulting Fokker-Planck equation is:

Z{ gﬁ {U| * <; - 0‘) D [(0y + q0¢) q+ q (Dy + qIy) log (rB)] + Q} f

0 [ (O + q0¢) B+ € — *UHCM] f

+ o (e Be 0 =C0) £ = 55

I

0 1 0%
92 f *f m, O m2 0? 1 0
+3 1507 " 3P0 D) e Piu 08 22 Pigg?f + 3P 5
0?2 0 2
+ Laganf—aDL@[(@p*anz) Q]f—DLagavuquwf
1 0?2 9 0?2 0
+ DLa 5 (vj@)” f— Dy d0u, vqef + OZDLTU” [0 (Oy + q00) e — vy a7 ] f

Y
(7.52)

This is the Fokker-Planck equation of inward diffusion. Although the physical mean-
ing of this expression is not immediate, notice that the first four terms are simply the
divergence of the deterministic flow associated to the underlying stochastic differen-
tial equations. The remaining terms represent the diffusion operator of the system.
Equation acquires a simpler form if we choose v = 1/2 (i.e. the white noise
can be considered as the limit of a continuous perturbation), neglect the geometrical
effect ¢ = —0, - 9y due to the non-orthogonality of tangent vectors in the magnetic

coordinate system, omit the friction force, and assume toroidal symmetry 9y = 0.

Then, ((7.52) reduces to:

of of of %f O’ f
a—+

1

ot~ Mar T m Ty, (7.53)

Notice that the key feature of inward diffusion is the last term appearing in equation
(7.53): the probability distribution f is progressively flattened with respect to the

variable .

7.5 Self-Organized Confinement in Magnetosphere

The last section of this chapter is dedicated to the study of the physical implications
of the Fokker-Planck equation (7.52)) for inward diffusion in a magnetosphere.

First, we define the proper density u as:

:/fd,u/\dv|. (7.54)
1%
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Here, V is the plasma domain in the coordinates (u,v”). Since the probability

contained in each volume element is a scalar, we have the equivalence:
udl Ndp Nd =uBdx ANdy Ndz = pdx Ndy \dz, (7.55)

where we used equation ([7.5)) to perform the change of coordinates (¢,,0) —
(z,y,z) and defined the laboratory density p such that:

p=uB. (7.56)

From we see that if fy, becomes progressively smaller as a consequence of the
diffusion process described by equation , so will uy,. Then, in light of equation
, py will approach the value uBy, # 0 whenever u # 0 and By # 0. In other
words, inward diffusion flattens the gradient of the proper density u but steepens the
profile of p. Physically, this is a direct consequence of the fact that the separation of
the cyclotron motion induces the proper metric ((7.32)) which differs by the Jacobian

factor B from the Cartesian metric on the Casimir leaf y=constant:
dvy NdCNdp NdO A dp = Bdoy Adx Ady Adz A dp. (7.57)

Next, we introduce the definitions of parallel and perpendicular temperatures.
The plasma parallel temperature is defined as the average in velocity space of the

kinetic energy associated to the motion along the magnetic field B:

m

—ut /vvﬁf dp A doy. (7.58)

Iy =5

Similarly, the plasma perpendicular temperature is defined as the average in velocity

space of the kinetic energy associated to cyclotron motion:

T, =Bu! /Vuf dp A doy (7.59)

The ratio:
o & B 2B fvufd,u/\dv”

a_ [
Ty m fyvpfdundy

(7.60)

is called temperature anisotropy.

In order to understand the thermodynamic properties of the system, we need
an entropy measure. Since the hypothesis of theorem [6.1] are verified with f the
probability distribution on the invariant measure , we know that the proper

entropy measure is given by the functional of definition 6.1

Y= —/ flog fdvy AdE A dip AdE A dp, (7.61)
Q
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Here € is the plasma domain. The rate of change in entropy is thus:

ax af
— = 1
7 (%( +log f) dvy Adl A dip AdO N dp
a fz
:/Q ((‘):n’ ) (1 +log f)dvy Adé A dip AdO A dp (7.62)
/ flog f Z'N;dS
o0
=c—
where o the entropy production of the system:
YA
cr:/ [ dvy NdbANdY NdO A dp, (7.63)
Q ox?
and ® is the entropy flux across the boundary 9€:
d=— / flog f Z'N;dS, (7.64)
[2/9)

with dS the surface element and N the unit normal on 0f2, and Z the Fokker-Planck
velocity of the system. From equation (7.52) one sees that:

v 1 Odlog f 810gf 1 1
h=— (= _ -
Z (mBe + v ¢”H> 2D|| (%” + 2€DHQ a0 D f~ Qéf
1 40
+ §DJ_f 1%vuqqgf + D, f~ &vaQef*FOéDw” [Qe (Oy + qOr) qg] ;
(7.65)
1
7t = v+ E+ Dy <2 — a) [(8¢ + qag) q+q (81/, + q0y) log (rB)]
1 1 1 0
- *Dif 1 @f—=D.f! Qf +aD; (9y + q0) q + DJ_f HU||QQ£f
(7.66)
1
Z¥ = D (2 — a) (&p + qag) log (TB) + de,
1 dlogf 1 d (7.67)
og _
- iDJ_ a0 §D¢f 1@(1f + sDLf™ 7U||Q£f,
dlo
ZG:H((%,—FQ@@)B—FQ:@— U||Q€ 2D9 80gf
€ (7.68)

’I’)’L

Mt 9
+26D||f 8U”qf 2 D,f OQ(Jf

85



Then:

a:/f{;;eﬁ (5 ) Dagy @+ a0 a 400 + a0 tox )

1 o\1/0 0
—5D15; [f <q2f+ quf 945, - Ufﬂ +04D¢8 [(q0¢ + 0p) g — v
+ oo T 2 507 2 oy |7 —qq 87”1)”er Uuﬁquf +’U||aw%f>
Dym 9 ( dlog f B
" o g _ ) il
2 o, < 50 > aDy [(9y + qd) qe — ;] + 8069
D”mg 8logf_@ 90log f _&OQIng Qj
2c 90 \" oy, e’ 08 R
1 0 D, 0 |1 0
#Du (5= o) 55 0+ a0 8) + G50 | (acgonf = Grar )|
D, 9%lo
- =t ad}%f}dm NdEAdy A dO A dp

(7.69)

Again, if we assume toroidal symmetry dy = 0, neglect the geometric factor ¢ and

friction, and take o = 1/2, the entropy production rate o reduces to:

82 82
g:_/QfK 150 2+DL8¢2> logf] dof A dl A dp NdO A dp (7.70)

In the following, we want to compare the behavior of ¥ with the standard (and
physically wrong) information measure S in the Cartesian coordinate system doj A
dx N\ dy A dz A dp with probability distribution P = fB:

S=— / flog (fB)dvy AdlAdip Adb A dy. (7.71)
Q

Evidently, ¥ and S are related by:
¥ =S5+ (logB). (7.72)

Figures and [7.6] show the results of the numerical simulation of the
Fokker-Planck equation ([7.52)). The specific conditions for this simulation are listed

below.

e Computational domain and boundary conditions: assuming toroidal symmetry
Op = 0, the computational domain lies on a surface 6§ =constant and is determined
by the intersection between a level set of ¢ (a field line) and a level set of B (see fig-
ure to visualize the boundary). The range of the variables u and v is taken to be
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such that it covers at least three times the standard deviation \/1/(8m) = \/kgT/m
of the Maxwell-Boltzmann distribution chosen as initial condition for the simulation
(see paragraph below for details on initial conditions). In this notation kp is the
Boltzmann constant, T the plasma temperature, and f~' = kgT. On the bound-
aries, we set Dirichlet boundary conditions for the probability distribution f. Phys-
ically, these boundary conditions reflect the fact that charged particles are lost once
they hit the atmosphere of the planet or when they escape its magnetosphere. For
technical reasons, Dirichlet boundary conditions are also used for the variables p and
v|- This is not a problem because their range is large enough so that particle loss
at the corresponding boundaries does not affect the relevant physics. In practice,
we limited the simulation to the upper half domain defined by z > 0 and assumed
reflection symmetry around the z = 0 axis. This is physically consistent because the

dipole magnetic field exhibits such symmetry.

e Initial conditions: the initial condition is a Maxwell-Boltzmann distribution:

=0 = (5) e {5 (549)

= 472 (@:)3/2 exp {—B (%vﬁ + MB) }

Here, the factor 472 is the result of the integration of the dummy variables 6 and

(7.73)

0.. We consider a plasma with initial temperature T = 10eV.

e Physical setting: in this simulation we choose @ = 0 for the definition of the
stochastic integral. Then, the Wiener processes appearing in the stochastic dif-
ferential equations can be thought as the limit of a discontinuous ‘step’ process.
Physically, this means that the random electric field perturbs the orbit of a
particle for very short time intervals followed by long periods of unperturbed mo-
tion (see [82] on this point). As already noted, we also assume that the probability
distribution f does not depend on the toroidal angle # because of the symmetry of
the dipole magnetic field B and set fy = 0. Furthermore we neglect the friction
terms &;, with ¢ = v, £, since we assume that the source of the fluctuations (7.40)
is external to the system and therefore we do not need to preserve total energy.
This choice reflects the fact that a radiation belt is, typically, an open system where
there is a constant and external energy supply. The diffusion parameters D and
Dy are chosen so that E; ~ 100V/m and Ej ~ 1V/m (since the electrons can

move almost freely along the magnetic field, any potential hole in the direction of B
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is immediately adjusted and therefore we expect a sensibly smaller parallel electric
field).

Consider now figure [7.3} in this picture the spatial profiles of density p, temper-
ature anisotropy a, parallel temperature 7}, and perpendicular temperature T'| are
reported for three distinct time shots ¢ = 5000, ¢ = 7500, and ¢ = 10000. Here,
time is given in arbitrary units. The contours appearing in the plots have the same
meaning as those in figures [7.1] and

Observe that due to the inward diffusion of particles, the density p becomes pro-
gressively peaked. At the same time, the temperature anisotropy a grows at the
equator where most of the particles accumulate. This is a direct consequence of the
increase in the kinetic energy pB stored in the cyclotron gyration (since u is constant
and particles tend to move toward regions of higher B, 7', has to increase). The
opposite happens for 7j: in this case particles with a high initial v are progressively
lost at the boundaries with a consequent decrease in Tj.

Figure[7.4 shows the time evolution of the spatially averaged parallel and perpen-
dicular temperatures (i.e. the ensemble averages <%v|2|> and (uB)) for two different
choices of the diffusion parameter D, scaling the strength of the inward diffusion
across the magnetic field. Notice how a stronger inward diffusion causes a faster and
more pronounced heating of T'; with a concomitant loss of Tj.

Figure shows the radial profiles of parallel and perpendicular temperatures
T} and T along the equator of the dipole magnetic field z = 0. The anisotropic
heating associated to inward diffusion is evident.

The behavior of the entropy measures ¥ and S is given in figure The ther-
modynamically consistent functional ¥ is correctly maximized and the associated
entropy production o is positive. This is consistent with the progressive flattening,
caused by inward diffusion, of the distribution f (as well as the proper density u) on
the invariant measure of the system. The wrong laboratory entropy measure
S is instead minimized with corresponding peaking of the laboratory density p. The
creation of the density gradient is thus explained in terms of the Jacobian B of
the coordinate change sending the invariant measure (UH,E, P, 0, ,u) to the Cartesian

coordinate system (v” , T, Y, 2, u).

We conclude this section with some considerations on the nature of magneto-
spheric self-organization. For this purpose it is useful to change the physical setting
by putting o = 1/2 and considering the friction term as expressed by equation .
Then, in light of theorem and recalling that the operator of the system is a Pois-
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son operator with Casimir invariant u, the solution to the Fokker-Planck equation
for the distribution f on the invariant measure ([7.32)) is of the type:

[ = foexp{—=BH —y.u}, (7.74)

where fy and 7, are constants. Therefore, the creation of a radiation belt is a type-I
self-organization driven by the Casimir invariant . Indeed on the invariant measure
the cocurrent of the Poisson operator O° = dJ* = digdoy ANdNdp NdO N dp
vanishes. When observed in the Cartesian coordinates, a spurious cocurrent 05 =
dJt = digdvy Ndx A dy N dz A dp appears and we see a combination of type-I and
(spurious) type-11 self-organization.

By integrating f over u and v), the laboratory density p can be evaluated explic-

itly:

o] +oo B
:Bu:B/ d / dv) = pg—————, 7.75
p ] fdv) M BB (7.75)

where pg is a constant.

Finally, while we have seen that the first adiabatic invariant p is a constant of
motion and that the third adiabatic invariant i obeys the stochastic differential
equation we did not discuss the behavior of the second adiabatic invariant Jj
defined in equation . Without entering into details, it can be shown that the
rate of change in bounce action is given by:

afy _

L= T [G0((uB + €6),) — (00) (B + €0),, — a{a) (uB + e0), + (da)mufar

(7.76)

In this expression, ( )/T stands for bounce orbit average, with T' = § ds /v = 2 /wy
the period of the bounce oscillation. From equation we can draw two main
conclusions. When the period T of bounce motion is negligible if compared to
the time scale of interest, d.J|/dt can be neglected. If the electric field ¢y is also
small, the variations of J become even smaller. However, if the time scale ¢ of
electromagnetic fluctuations is fast, that is 74 > T, and if their amplitude cannot
be neglected (e¢ > H), the second adiabatic invariant breaks down. This second
scenario amounts at considering a large diffusion parameter D ~ gbg /7¢ and the
value @ = 0 in the Fokker-Planck equation.

By taking the bounce orbit average of the rate of change , the classical
result (d.J/dt) = 0 of [I43] can be recovered. Nevertheless, note that d.Jj/dt can be
described in terms of its bounce orbit average only when electromagnetic fluctuations

¢y are sufficiently slow and small.
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Figure 7.3: First row: time evolution of density p (a.u.). Second row: temperature anisotropy .
Third row: parallel temperature Tj (V). Fourth row: perpendicular temperature 7 (V). See

main text for details.
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Chapter 8

Poissonization of E x B Drift Dynamics

This chapter is dedicated to the study of conformal mechanical systems. The phys-
ical motivation behind the conformal operator introduced in definition [4.2] is the
E x B drift velocity already encountered in the previous chapter. Consid-
ered alone, this drift velocity represents a 3-dimensional conservative system with
an associated antisymmetric operator. As already shown in proposition any 3-
dimensional antisymmetric operator can be extended to a 4-dimensional conformal
operator. Then, a time reparametrization in terms of the conformal factor gives a
4-dimensional Hamiltonian system. Here, this ‘Poissonization’ procedure is worked
out in detail and the statistical mechanics of the new extended system is investigated.
Other physical examples of 3-dimensional conservative systems will be presented in

the next chapter.

8.1 The Nonholonomic Plasma Particle

Consider a charged particle submerged in a magnetic field B = V x A and subjected

to an electric field E = —V¢. The equation of motion is:

mi = e (@ x B+ E). (8.1)

Here m is the particle mass, e its electric charge, and « € R3 its position. Suppose
that m is sufficiently small so that the left-hand side of equation can be ne-
glected. We have already seen that if we further take the cross product with the
magnetic field B, becomes:

(8.2)



where X = @ is the velocity in the direction perpendicular to the magnetic field.
We will also assume that the particle does not move along the magnetic field, giving
X = x. The motion resulting from equation goes under the name of £ x B
drift and will be the object of the present section. We refer the reader to [52] [74]
for a more systematic derivation in the context of plasma physics.

The procedure leading to equation can be made mathematically rigorous in
terms of a reduction process. To see this, recall that the canonical phase space of a

charged particle is described by the symplectic 2-form:

w =dp; Ndx + dpy Ndy + dp. N\ dz (8.3)
=d (mvy + eAy) Ndx + d (mvy + eAy) Ndy + d (mv, + eA,) Ndz.

The non-inertial reduction m — 0 reduces w to:
w =edAy Adz + edAy Ndy + edA, \Ndz = edA = eB3, (8.4)

where B = dA is the magnetic field 2-form. Notice that the components of w’ are now
only functions of the spatial variables (x,y, z). Thus the reduction resulted in the
contraction of the 6-dimensional canonical phase space to a 3-dimensional system.
Furthermore, since w = dA is closed, it defines a non-canonical Hamiltonian system
(it cannot be canonical because it is odd dimensional) with reduced equations of
motion X = & such that:

iyw = —edo. (8.5)

Here, we used the fact that, since the particle mass is small, the energy of the system
is the non-inertial Hamiltonian:

H = ed. (8.6)

Solving equation (8.5) for X' one obtains:
X' xB+E=0. (8.7)

Since the first term on the left-hand side is perpendicular to B, it follows that
E) = 0. Then, no motion occurs along the magnetic field. We can thus perform the
second reduction v — 0 so that X "= Xl = X and invert equation to obtain
the E x B drift equation of motion .

From this point we set e = 1 to simplify the notation. We want to show that, for
an arbitrary magnetic field, equation is conservative, i.e. it does not satisfy
the Jacobi identity in general. Since the configuration space is 3-dimensional, the

antisymmetric operator J associated to (8.2 will be a 3 x 3 matrix, whose action
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on the Hamiltonian can always be represented as the cross product of some vector

w, i.e. J = wx. Then,

X =J(dH) =w x VH. (8.8)

In our case w = B/B? and E = —V¢ = —VH. One can verify that:

J = wz0; N\ Oy + wyOy N\ 0y + w0y N Oy. (8.9)

For the system to be Hamiltonian, J has to be a Poisson operator, i.e. the
Jacobi identity has to be satisfied. Although equation may be directly
evaluated, we can avoid a lengthy calculation by recalling the Darboux theorem
according to which, in regions where the rank of w is constant, if the Jacobi
identity holds the kernel of the Poisson operator has to be integrable. Since J is a
3-dimensional antisymmetric matrix, its maximum rank is 2. This implies that the
dimension of the kernel is at least 1. In fact, noting that w x w = 0, one sees that

the covector associated to w:

0 = xigvol® = wydr + wydy + w,dz (8.10)

belongs to ker (J), i.e. J () = 0. In the above notation, vol® = dx A dy A dz, and *
is the Hodge star operator. Thus, assuming that the rank of w is two, a necessary

condition for the Jacobi identity to be satisfied is:

OAdH = (w-V x w)vol® = 0. (8.11)

Here, we used the Frobenius integrability condition for the covector € (see theorem
132).

In definition [5.1] we have seen that the kernel of an antisymmetric operator defines
topological constraints for the trajectory of the particle. Now, suppose that the con-
straint is integrable: 6 = AdC, where the functions A\ and C are integration factor
and Casimir invariant respectively. This implies that the orbit of the particle lies on
the integral manifold defined by C' =constant. Then, one could reduce the equations
of motion to the submanifold R?/C and obtain a 2-dimensional Hamiltonian system
with Hamiltonian H. Thus, equation is not only a necessary condition, but
also a sufficient condition for the Jacobi identity to hold. Note that, since
we have used neither a specific form of the Hamiltonian, nor an explicit expres-
sion for the antisymmetric operator 7, this argument is valid for all 3-dimensional
antisymmetric operators. In fact, a direct evaluation of would give exactly
(8.11]).
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In the light of (8.11), E x B dynamics (8.2) is Hamiltonian only if locally w =

AV, i.e. when the magnetic field is a local solution to the equation:

% = \VC, (8.12)

for some appropriate A and C. The condition above is verified, for example, in the
presence of an harmonic magnetic field B = V¢. In this scenario A\ = B~2 and
C = & However, equation does not hold in general, and the system is a
degenerate antisymmetric algebra with the nonholonomic constraint 8 = 0.

In order to understand the peculiar nature of nonholonomic dynamics, it is useful
to compare it with a conventional holonomic system. First, consider the following

nonholonomic particle performing E x B drift:

0 = (cos z + sin z) dx + (cos z — sin z) dy, (8.13a)
1
H = 3 (2% +y* + 27). (8.13Db)

The Jacobi identity (8.11)) reads:

ONdI = (w-V xw)vol® = (w-w)vol® = 2vol® # 0, (8.14)

which implies that this system is not Hamiltonian with nonholonomic constraint
0 = 0. From (8.2)), the equations of motion are:

X =(cosz—sinz)z0d, — (cosz+sinz) z 0
( )20z — ( ) 20y (8.15)
+[(cosz +sinz)y — (cos z — sin z) z] 9.

Now, consider the motion of a rigid body with angular momentum & and momenta

of inertia I, I, I.:

0 = xdx + ydy + zdz, (8.16a)
1 (a2 o 22
(T ), 16b
2<Ix+ly+Iz) (8.16D)

This time the Jacobi identity (8.11) is satisfied since df = 0 and the relevant Casimir
invariant is the total angular momentum C = x2/2, with § = dC. Thus, this second
system is Hamiltonian, with holonomic constraint C =constant. The equations of

motion are written as:

1 1 1 1 1 1
X=yo|——— )0, - — 2. 1
Yz <Iz Iy>8 +xz <Ix IZ>8y+xy (Iy Ix)B (8.17)



Figure shows the trajectory of the nonholonomic plasma particle and that
of the rigid body (8.17). Both of them lie on the integral surface of constant energy.
However, while the orbit of the rigid body is closed and results from the intersection
of the two integral manifolds defined by H and C' = x2/2, the plasma particle spirals
toward a sink and delineates an open path characterized by the non-zero divergence
of the conservative vector field .
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Figure 8.1: (a): numerical integration of (8.15). (b): numerical integration of (8.17).

This example shows that there is an important relationship between the existence
of an invariant measure and the Hamiltonian nature of the system. Specifically,
due to Liouville’s theorem the existence of an invariant measure is a necessary
condition that a general system must satisfy to be Hamiltonian. For a 3-dimensional
antisymmetric algebra it turns out that if the antisymmetric bracket is measure
preserving, it is also a Poisson bracket (see proposition . Indeed, an invariant
measure exists for any Hamiltonian provided that one can find a Jacobian ¢ such
that:

Lxgvol® = div (gX)vol> =0  VH, (8.18)

Recalling that in 3 dimensions X = w x VH, we obtain the condition:

V-(gwxVH)=VH-Vx (gw)=0 VH, (8.19)
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which holds when w = g~'VC for some function C, i.e. the constraint § = g~'dC
is integrable and the system is Hamiltonian.

The absence of an invariant measure may be interpreted as the consequence of
missing degrees of freedom that would compensate the compressibility of the system.
This is why we will need to ‘extend’ the system in order to recover an Hamiltonian

structure.

8.2 Poissonization in Three Dimensions

The purpose of the present section is to develop a systematic procedure to ‘repair’
an arbitrary 3-dimensional antisymmetric bracket and obtain an equivalent Hamil-

tonian system describing the same dynamics.

8.2.1 FExtension

The first step of the procedure consists of embedding the antisymmetric algebra in
a larger space. The objective is to restore an invariant measure and a conformally
Poisson structure. To do so in the three dimensional setting, it will be sufficient to

add a single new variable s. We begin by extending the antisymmetric operator J
of in the following manner:

J=J +ady A s+ bdy A Os + cd. A Os, (8.20)

where J is the 4 x 4 extended antisymmetric operator and the coefficients a, b, ¢ have
to be determined by requiring that the new operator is conformally Poisson. We
remark that these new terms do not affect the original equations of motion since the
Hamiltonian function does not depend on the new variable s, i.e. Hs = 0. Returning

to our problem, we must show that the differential 2-form 2 satisfying:

is conformally closed:

d(rQ) =0, (8.22)

for some conformal factor r # 0. First, let us evaluate Q. From equation (8.21)), we

have:

ixQ = (Z Qpda® A dxl) (39 H,;0;) = =3 H;da' = —Hyda', (8.23)
k<l

98



which amounts at finding the inverse matrix of J:

I = 6. (8.24)
Remembering ({8.20]), we find:
1 ow, Ow ow,; Ow
0= — =Y ) | dynd b— T2 )| dznd
awx—i—bwy—i—cwz{[a s(@y 0z )} Y z—i—{ 8(82 Ox >} s

+ [c—s <8wy_8wx>] d;v/\dy—i—d(wxs)/\dx—l—d(wys)/\dy—l—d(wzs)/\dz}.

oz y
(8.25)
With the choice:
ow ow
=D, - 2
a +8<8y 82)’ (8.26a)
ow, Ow,
owy, Owy
C_DZ+S<8:C_ 3y >, (8.26¢)
the vorticity 2-form 2 becomes:
Q_D+d(w$s)/\dm—l—d(wys)/\dy—i—d(wzs)/\dz_ d (€ + s0) (8.27)
B w- (D+ sV xw) k[0 A (dE +sd)]T

Here D = df = D,dy N dz + Dydz A\ dx + D.dx A dy is an arbitrary closed 2-form
that does not depend on s and D = (D,, D, D,):

dD = (V- D)dx Ady A dz = 0. (8.28)

From equation (8.27) we see that €2 is conformally closed with conformal factor:

r=w-(D+ sV xw)=x[0A(d€ + sdb)] . (8.29)

Notice that the vector D must be chosen so that r # 0 on the domain of interest.
It is useful to write down the explicit expression for the extended equations of
motion X = J(dH):

X =wxVH — (D + sV x w) - VHO,. (8.30)

Finally, one can verify that the new equations are divergence free (the extended

operator is measure preserving):

div(X)=V-(wxVH)-Vxw-VH =0. (8.31)
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8.2.2 Time reparametrization

The second step of the procedure involves a time reparametrization that will give
us the desired Poisson structure. From chapter 4 we already know that this result

can be achieved by introducing the new time variable (proper time) 7 satisfying:

CC% =r. (8.32)
Then, the operator r~1J satisfies the Jacobi identity and defines an Hamiltonian
system with energy H and time 7.

In this paragraph we want to show that the time reparametrization can be under-
stood in terms of a gauge transformation of the relevant vorticity 2-form (see [20]
for the concept of gauge transformation). First, we shall treat the time variables on

the same footing of the others and consider the vorticity 2-form:
dn
I'=Q+dtANdH = —L +dt AdH, (8.33)
r
where we set 7 = £ + s6 and used (8.27)). In terms of I', the equations of motion
take the form (f = 1):

i(X f:)l“ =0. (8.34)
There are two types of gauge transformations that act on vorticity 2-forms and leave
the dynamics unchanged. The first kind is called dynamical gauge transformation
and consists of adding a gauge 2-form U such that ¢ (x i)U =0

I'=T+U, (8.35)

where T is the transformed vorticity 2-form. The second kind involves the multi-

plication of I" by an arbitrary non-zero function V:

!

r =VrI. (8.36)
Now, set:
H
_ w —dt AdH, (8.37a)
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Using (8.32)), one can verify that i(XT. t-)Z/l =0, and, by definition, r # 0. Then,

I'=VT +U)=dy+dr AdH. (8.38)

This 2-form is closed. Thus, we have obtained a Poisson structure where the new
variable 7 has the role of time parameter.

Then, the reparametrization procedure can be understood as follows. Suppose
that we solved the new equations of motion:

i(leT,)F’ =0, (8.39)

in the new time variable 7 and obtained & = x (7). In this notation X' = da/dr
and 7" = 1. From we calculate t = ¢ (7) and, since r does not change sign, we
can invert the expression for ¢ to obtain 7 = 7 (t) and = = x (¢).

As an exercise, let us perform the reverse transformation from (8.38) to by
using different gauges. Deﬁneﬂ ¢ = 7/t. Then,

r :dn+%dn— %dnerdt/\dHthdw/\dH
o r : (8.40)
= <”+thdH> + <1—> iy + tdi A dH.
T T
From ixdn = —rdH and recalling ({8.32]):
i(X,i— ) [(1 — f) dn + tdy A dH:| =0. (8.41)
Thus, by setting:
U= <1 - Q’Z)) dn + tdy N dH, (8.42a)
T
V=y (8.42b)

the gauge transformation gives V (F/ — Z/{) =1TI.

8.3 Poissonization of the Nonholonomic Plasma Particle

Here we apply the procedure developed so far to Poissonize the nonholonomic plasma

particle obeying the equation of motion (8.15]).

'Tf 7 or t are 0 one can use the gauge transformation (8.37).
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8.3.1 The physical meaning of s and 7

First, let us spend some words on the physical meaning of the new variable s. From
equation (8.30)), and recalling that in this case w = B/B? with B% = 1/2, we have:

§=—(D+5sV xw)-VH = — (D + sw)-VH

=—<B+s§;>.vH:_<;§+s\@>3§;f’ (3.43)

Here we made the choice D = B (we will justify this choice later) and ¢ measures
the length along a field line (0 = B/B). We define:

miy = \}5 log [co (\2 + 3\/§>] : (8.44)

with ¢y a constant. This implies:

dt o0

Thus, the variable v can be interpreted as a pseudo-velocity in the direction parallel

(8.45)

to B: the new degree of freedom s compensates the motion along the magnetic field
that was missing in the 3-dimensional system. Inverting equation (8.44) we also

have (recall that m is small):

s = % (evPmer 1) = n\l/%” +o ((\/§m6|)2) . (8.46)

In the above equation we required that s = 0 when v = 0 so that ¢y = V2 (we will

justify this choice later).

What about the meaning of the proper time 77 Using the expression for r equation

B-29.

r=1l+sw-Vxw=1+2s. (8.47)

Here we used the fact that D -w = B -w = 1. From (8.32) and defining the
pseudo-length £ such that ) = dt/dt:

dr SBmi dl
o 1+2s=e exp {\/§m p } . (8.48)

Thus, the choices D = B and ¢y = /2 are now physically justified because the
conformal factor r must be 1 when w is integrable or v = 0, i.e. we must have

dr/dt = 1 when the Jacobi identity is satisfied or there is no motion along the
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magnetic field. The remarkable physical interpretation of the conformal factor is
that a non-integrable magnetic field B = w/w? determines a distortion of time
which depends on the non-zero helicity w -V x w = BB -V x B # 0. If the mass

m is small enough we can expand the exponential to obtain:
d dl i\’
T
— =1 2m— 2m— : 4
7 —i-\fmdt%-o (\fmdt> (8.49)

Neglecting second order terms, the final result is:

7 = constant + t + v2m/, (8.50)

and the proper time 7 can be interpreted as a measure of the distance traveled by

the particle along the magnetic field.

8.3.2 Poissonization tn Cartesian coordinates

We are now ready to write the canonical equations of motion for the nonholonomic
plasma particle. Recalling (8.13a]) and (8.38)), the symplectic 2-form of interest is:

I' = d[€ + s (cos z +sin 2) dz + s (cos z — sin z) dy] + dr A dH

=—d {xd [<s+ ;) (cosz+sinz)] +yd [(s—i— ;) (cosz — sinz)} } +dr NdH

= d (padq. + pydgy) + dr NdH,

(8.51)
where we used the fact that £ = 6/2 and introduced canonical variables:
Gz = (s + ;) (cosz +sinz), (8.52a)
Pz = —, (8.52Db)
qy = <s + ;) (cosz —sinz), (8.52¢)
Dy = —Y. (8.52d)
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In terms of these new variables we also have:

Gz — Qy
2 (a2 +q})

1 Jei+aq;
g r Y .53b
s—|-2 5 (8.53Db)

z = arcsin

(8.53a)

2 dz — Qy

1
H= 5 P+ pg + arcsin (8.53¢)
2 (43 + a3)
Here, we chose the positive root for s + 1/2. Finally,

qalr = Hp, = pa, (8.54a)

P, = -H,, = % arcsin |~z T ; (8.54b)
Gra 20+ 6

p;/ =-H, = % arcsin | 2% | (8.54d)
Gz Ty | \/2(23+43) |

Figure shows a numerical integration of the Hamiltonian system (8.54). The
solution progressively approaches a 2-dimensional uniform rectilinear motion.
Finally, in the original time ¢, the equations of motion for the canonical variables

Dz, Gz, Py, and gy take the form:

G =7r""'H,,, (8.55a)
Po=—1""Hy,, (8.55b)
Gy =r""H,,, (8.55¢)
Py =—1 TH,,. (8.55d)

These equations, which are not canonical, imply that the ‘force’ acting on the particle
is only proportional to the gradient of the Hamiltonian with proportionality factor
r~1. Therefore, the same energy gradient produces different forces depending on
the position in space. Such behavior departs from the standard laws of physics and
signals the importance of the Jacobi identity in determining the structure of the
equations of motion. This inhomogeneity is also the reason why canonical equations

can be obtained only by ‘adjusting’ the time variable.
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0.05

-0.05

Figure 8.2: Numerical integration of system l) (a): evolution with respect to the proper time

T of pa, q=/T, py, and q,/7. (b): evolution with respect to the proper time 7 of (s + 3) /7 and 2.

8.3.3 Poissonization in magnetic coordinates

Consider again the nonholonomic plasma particle of equation (8.15)). By performing
an appropriate change of coordinates before the Poissonization procedure, we can
simplify the antisymmetric operator J. The simplified form will offer us an insight
into the relation between 7, which is the result of the abrupt reduction (m, ’UH) — 0,
and the full dynamics of a magnetized particle. The target coordinates are the
magnetic coordinates (¢, 1, () (to avoid confusion with the constraint 6, the toroidal

angle is now (). This time we shall consider a more general type of magnetic ﬁel(ﬂ

B =V x V(+1i(£,1) Vip x VL. (8.56)

Here 7 is an arbitrary function of £ and . When ¢ = 0 equation can con-
veniently represent a dipole magnetic field. The flux function 1 is chosen so that
Y = ¢ (R,z), where (R,(,z) is a cylindrical coordinate system dx A dy A dz =
RdR N dC A dz with R the radial coordinate in the (z,y) plane and ¢ the toroidal
angle. Here, the coordinate ¢ is defined to be the length along the field lines of the
poloidal component B, = Vi) x V( of the magnetic field B. In formulae:

B
0y = =2. (8.57)
Bp
2Note that with the identification ¢ = 1y, ¥ = (sinz4cosz)/2, ¢ = =z, i =

(sinz + cos z) /(sin z — cos z), where (z, y, z) are Cartesian coordinates, equation (8.56)) also gives
the magnetic field studied in the previous example.
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Thus, if i # 0, the magnetic field has a toroidal component By = i (¢,1) Vi) x V£.

In terms of the new coordinates, the magnetic field 2-form B reads as:

B = dip AdC + idip A dl. (8.58)

Note that dB = 0. In order to express J in the new variables we need some geomet-
rical relationships among tangent and cotangent vectors. We begin by calculating

the Jacobian O of the coordinate change:

Q=VI-V¢xV( =B, (8.59)

Here we used V/-8, = 1. Similarly, by using the reciprocity relationships Va7 -9}, =

ik with 27, xF = ¢,1, ¢, one can obtain the following expressions:

1
Vi — s (q@w + [y 8@) , (8.60a)
1
Vi = ———— (0y +q0r) , (8.60D)
0y|” — ¢
Ve = 1o (8.60¢)
|0l” — g%
\ie
‘8’1/)’2 - ]|%2.B’§7 (860d)
1
B? = (8.60e)

"R (|3¢|2 = q2>'

Here ¢ = —0; - 0. Recalling that the E x B equations of motion are given by
(8:2) and exploting (8.60) with the identities Va’ = (9 X Or,) /(9; - O X ), 0; =
(ka X V:pm) /(V:J:j - Vak x V:Um) where 27, 2% 2™ = £,4, ¢ are all different:

(=V{-X=p(iR*Hy — qH;) , (8.61a)
b=V X =—p(H;+iR*H,), (8.61D)
(=VC¢ X =p(Hy+qHy), (8.61c)

where p = Bz% /B2. Therefore, the bivector J takes the form:

T =p(0c N0y +qdc N Oy +iR*0y N\ 9y) . (8.62)
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A straightforward application of the Poissonization procedure of section 4 (equations

(8.27) and (8.29))) gives the 4-dimensional conformal 2-form:

B+d(sh)

— 8.63
x [0 A (B+ sdf)]’ ( )

where we set D = dA = B and the kernel of J is the covector:
0 =p(dt —qdy —iR*dC) . (8.64)

Thus, a time reparametrization d7/dt = r with conformal factor:

r=x[0 A (B + sdb)]

8.65
p{reem o eim (20 9oy m) ), O

will give the symplectic 2-form:

=dy Nd¢ +idy Adl+d [sp (dl — qdip — iR*dC)] + dr A dH.

Now suppose that B = By, i.e. i = 0. Then, p = 1 (note that g- = 0 when ¢ = 0 due
to toroidal symmetry), O Adf = (dl—qd) A(qedl A dip) = 0 and r = 1. Furthermore,

Q) becomes symplectic:

Q= d(Yd¢ + sdl — sqdy)) . (8.67)

With the identification s = v) of equation ), the expression is exactly the
symplectic 2-form for the motion of a magnetized particle in a magnetic field of the
form Vi) x V( (remember equation ) From this example we can see explicitly
that the failure of the Jacobi identity is controlled by the non-integrability i of the
magnetic ﬁeldﬂ B, that the Poissonization procedure reproduces the correct physics,
and that in the presence of a general magnetic field (note that holds for any
B) canonical coordinates can be obtained by operating a time reparametrization.
We conclude this section by giving the antisymmetric operator and the conformal

factor for a magnetic field written as:

B = aVi x V( + iV x VI + BV x VL. (8.68)

30ne can verify that B -V x B =0 when i = 0 and ¢ = ¢ (R, 2).
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Here o, 3, and i are 3 arbitrary functions satisfying oy —i¢c + By = 0 to ensure that
dB = 0. Note that all magnetic fields with B, # 0 so that ¢ can be defined can be
cast in the form (8.68)). With the same procedure as above one obtains:

T =p [(a — Bq)8c N By + (ﬁ EN ozq) By A D¢ + iR2, A a@ , (8.69)

The kernel of this operator is the covector:

6= [(a — Bg)dl + (5 19 — aq) dip — z’deC} (8.70)

The conformal factor is:

r=p{ala—pq) +8 (810 - aq) + R

o(iR%) 90 (B10s —aq)

+5 [(a=Bqg) | - o0 ac ..
+ (8104 - aq) <8p(oég ba) , 9 (Z;ZQP))
e [P 00) gy g
o oY
Finally, the symplectic 2-form recovered after time reparametrization is:
I' = adi AdC + idy A dl+ BdC A dl 8.72)

+d {sp [(a — Bg)dl + (6 19)% — aq) dip — iRQdC] } +dr AdH.

8.4 Statistical Mechanics in Extended Phase Space

In this section we apply the theory developed so far to the study of the statistical
behavior of an ensemble of particles moving within the extended space obtained by

the Poissonization of a three dimensional antisymmetric algebra.

8.4.1 The Jacobian of the coordinate change

Let x,y, z be a reference system. We have seen that the equations of motion take

the form:

X =w x VH, (8.73)
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where w is the antisymmetric operator and H the Hamiltonian function. Extending
the system to 4-dimensions x = (x,y, z, s) according to equation (8.30]), we obtain

an extended bracket which is measure preserving with invariant measure:

volk = dx Ady A dz A ds. (8.74)

A further time reparametrization, equation (8.32)), gives a symplectic manifold y =
(p:lra qxvpya Qy)3

volj = dp, N\ dgy N dpy A dgy. (8.75)

The canonical variables y are determined by the specific form of the antisymmetric
operator w so that rQ = dp, A dq, + dpy A dg,. We want to determine the Jacobian
of the coordinate change going from (8.74]) to (8.75)). For this purpose, we need the

following:

Lemma 8.1. Let X = dx/dt and Y = dy/dr be two vector fields with © =
(xl,...,x”) and y = (yl,...,y”). Let g be the Jacobian of the coordinate change
voly = dy* A Ady™ =gl A A da™ = ol If

Lxvoly = Lywvoly =0, (8.76)
then,
dt
=—. 8.77
9= (8.77)

Proof. We have:

0 = L£xvoly,
= Lxgvoly
= dixgvol,,
= (=)™ d(gy™) Ady' Ao Ady™ T A dy™ TN LA dy™

1 0 r .. n
:QaTm (gdt(y ),> voly,

(8.78)
Ao WM 0 (A
Codt oym z oy™ \” dt O'w
0 N L
=, gdt vol,

_Lldfdr voly
gdr T z

" indicates derivation with respect to time 7 and we used the fact

Here, the apex
that £ywoly = 0 if and only if Oym (y™)" = 0. The solution is, up to constants,

g=dt/dr. & 0
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Applying lemma to the specific case © = (z,y, 2, s) and y = (pz, ¢z, Py, @y) We
conclude that the Jacobian g of the coordinate change is:

= = = . 8.79
I=ar =" T w (D+sVxw) (8:79)
In terms of the volume elements:
dps N dgg N d d
dx A dy A dz A ds = 2P\ Qe NGy 1 Gy (8.80)

w - (D + sV x w)
Thus, the Jacobian of the coordinate change from the initial (extended) coordinates
to the canonical phase space obtained by Poissonization is controlled by the Jaco-

biator, i.e. by the measure of the failure of the Jacobi identity. Indeed, recalling
definition we have:

6 =60, Ny AD. = (w-V X W)y Ay AD,. (8.81)

This implies g~ = w - D + s®?Y=,

8.4.2 The distribution function and thermal equilibrium

Let P = P(y,7) be the distribution function of an ensemble of particles on the
canonical phase space vol‘; at time 7. The value of the distribution function measures
the probability of finding a particle in the unit volume at a given time. We want to
know how the distribution function P is seen in the initial coordinates vols. Using
the result of equation , we have:

onlz = Prools, (8.82)
which implies that the distribution function f (x,7) on vol4 at the time 7 is related
to P as:

f=Pr=Pw-(D+sVxw)=P(w-D+ s&"?). (8.83)

From the result above we see that the distortion between f and P is dictated by the
Jacobiator (8.81)). Furthermore, by integrating over the variable s, we can calculate

the shape of the distribution F (z,y, z,7) in the initial coordinates (z,y, z):

F= /fds =w- D/Pds + @wyZ/Psds. (8.84)

Let us make some considerations on thermal equilibrium. Since voli is the preserved

volume element of a symplectic manifold spanned by canonical variables, we can
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exploit the usual formulation of statistical mechanics and define the differential

entropy > of the distribution function P:

¥ = —/ Plog Puoly,. (8.85)
V’y

Here the integral is performed on the whole phase space Vj,. The total number of
particles and the total energy E of the ensemble are given by N = ny onl;‘; and
E= fvy H onli respectively. The form of the distribution function at equilibrium
P.; = P (1 — o0) is calculated my maximizing the entropy ¥ under the constraints

N and FE with the variational principle:

5(S—aN — BE) = 0. (8.86)

Here o and 8 are the Lagrange multipliers associated to N and E. The result of the

variation is:

1
P, = Ee—ﬂH . (8.87)

In the above equation Z is a normalization constant. Thus, recalling equations (8.83))
and (8.84), we arrive at the following formulas for the equilibrium feq = f (7 — 00)

and F.q = F (7 — 00) in the initial coordinates:

r 1
feq = Ee_/BH = 2 (w - D+ S@Iyz> e_/BH; (8883‘)
A A
feq = /fequ = 78 (w - D+ ;ﬁmyz> e_BH- (8'88b)

Here As = [ds. The conclusion is that the thermal equilibrium of the extended
system departs from the standard thermal equilibrium with homogeneous probability
density on constant energy surfaces. The distortion is controlled by the Jacobiator,

i.e. by the measure of the failure of the Jacobi identity.

8.4.3 An example: thermal equilibrium by E x B drift in a
magnetic field

In this section we give a concrete example of how the theory developed so far can
be applied to predict the thermal equilibrium of an ensemble resulting from the

Poissonization of an antisymmetric algebra. We consider an ensemble of magnetized
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particles moving by E x B drift according to equation (8.2)). The magnetic field B

is assumed to be of the form:

Yy — siny cosy

— sin JJ) 0. (8.89)

One can verify that B =d [(% + ysin x) dx + ydz}. Recalling that the anti-

symmetric operator is w = B/B?, we have:

Oz + (w — sinw) 0,

w = - 5 (8.90)
1+ (yfsméz/cosy - sinx)
and also,
s B-VxB sin? y
GV =w - Vxw= 5 = . 73 (8.91)
{1 + (*yfsméy BSY _ sin :c) ]

A typical scenario encountered in magnetized plasmas is quasi-neutrality, already
discussed in the case of magnetospheric self-organization. In such situation, the
time average of the electric potential ¢ (7) generating the electric field is zero, i.e.
¢ = limp_yoo T7F fOT ¢dt = 0. Therefore, the Hamiltonian of each massless particle
is itself zero H = ¢ = 0. However, the random fluctuations in ¢ generated by the

electromagnetic interactions among the charged particles drive the ensemble toward
equilibrium, which according to (8.88b)) is:

.2
Fog = As )y 8 Sy . (8.92)

Z 2 . 212
1 (e ]

Here we used equation (8.91)) and set D = B = w/w? as required in the case of
E x B drift. Figure [8.3] shows a plot of the predicted thermal equilibrium. The

shape of the distribution sensibly departs from the flat profile one would expect by
a naive application of the entropy principle in the initial noncanonical coordinates.

This discrepancy is a consequence of the failure of the Jacobi identity.
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Figure 8.3: Thermal equilibrium F.q (z,y) by E x B drift in the magnetic field (8.89). The

inhomogeneous distribution is caused by the failure of the Jacobi identity.
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Chapter 9

Non-Elliptic Diffusion in Three Dimensions

Here, the theory developed in chapters 4, 5, and 6 is put to the test of numerical
simulations. This is done by comparing the analytical solution to the Fokker-Planck
equation for the probability distribution (predicted by the results of chapter 6) with
the direct integration of the stochastic differential equation governing the corre-
sponding ensemble of particles endowed with the relevant antisymmetric operator.

For the sake of simplicity, we limit our attention to the 3-dimensional case.

9.1 Constrained orbits
The equation of motion for a 3-dimensional system is of the form:
X =w x VHy, (9.1)

with w the antisymmetric operator and Hy the Hamiltonian of the system. It is
useful to make qualitative considerations on how the orbit of a conservative particle
obeying is modified by the introduction of random noise. First, consider again
the Euler rigid body with equations of motion given by . In this case w = x is
a Poisson operator because its Jacobiator & = &*¥*0, A9, A0, (remember definition
4.1)) vanishes:

G =g . Vxx=0. (9.2)

In fact, we have already seen that C' = 2?/2 is a Casimir invariant. The unperturbed
orbit of the rigid body, given by the intersection of the integral surfaces Hy =
(2171 + yQIy_1 + 22I;1) /2 and C, is given in figure (a). Now, we perturb the
Hamiltonian Hy so that the force acting on the particle becomes VH = VHy + T,
where I' = ([';, Ty, T'.) is 3-dimensional white noise (see figure [9.2)). The resulting
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stochastic differential equation is:
X=ax(@1;'9,+T). (9.3)

Clearly, the energy Hy is not anymore a constant of motion. However, the Casimir
invariant C' is unaffected by the perturbations. The result is a random process on
the level set C' =constant (see figure (b)). This is exactly what happened in
chapter 7 for the self-organization of a radiation belt where the inward diffusion

occurred on the Casimir leaf p=constant.

()

Hy = constant

Figure 9.1: (a): numerical integration of (8.17). The orbit is the intersection of the surfaces C
and Hy. (b): numerical integration of (9.3)). If the Hamiltonian is perturbed VH = VHo + T, the

particle explores the surface C'.
Next, consider the Beltrami operator w = (cosz — siny, — sin z, cosy) with the
same Hamiltonian Hj:
. . i r—1
X = (cosz —siny, —sin z,cos y) x (:U’Ixi ;) . (9.4)

One can check that $*¥% = w? so that no Casimir invariant exists. The unperturbed
orbit is shown in figure (a). This time the trajectory is spiraling above the energy
surface Hy. The absence of an invariant measure is also manifest. Again, perturb
the Hamiltonian as VH = VHy + I':

X = (cosz —siny, —sin z, cos y) X (mil;lai +T). (9.5)
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Figure 9.2: A typical numerical representation of the white noise process I' as function of time t.

Amplitude and time are given in arbitrary units.

The resulting orbit is shown in figure (b). Notice that no integral surface exists
anymore.

The remarkable fact about antisymmetric operators is that, even when they do
not impart integrable constraints to the dynamics, the apparently disordered motion
resulting by the breaking of the energy integral Hy may hide an ordered macroscopic
structure. The first step to see this is to superimpose the orbits of (statistically)

many particles. As an example consider the Poisson operator:

w = <\/1+cosa:2) V (z — cosz — cosy) . (9.6)

To further simplify the problem, we take the purely random Hamiltonian H such

that VH =T'. The stochastic equation of motion becomes:

X = (\/1+COS$2) V(z —cosz —cosy) x T. (9.7)

The superposition of the corresponding orbits of an ensemble of 250 particles is
shown in figure[9.4] Notice that, while each orbit may individually appear as purely

stochastic, vortices arise on the macroscopic level.
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Figure 9.3: (a): numerical integration of (9.4)). The orbit explores the energy surface Hy and falls
toward a sink. (b): numerical integration of (9.5). If the Hamiltonian is perturbed VH = VHo+T,

there are no integral manifolds.

9.2 The Diffusion Equation in Three Dimensions

In this section the results of numerical simulations are presented. We integrate the

stochastic equation of motion:
X =wxT, (9.8)

for different choices of w. In each simulation an ensemble of 8 - 10 particles is
considered. The trajectory of each particle is tracked for the same period of time.
A numerical probability distribution is obtained and compared with the expected
stationary analytical form. Except when differently specified, the computational
domain is a cube in (x,y, z) space with sides of size 6 and centered at = 0. The
boundary conditions are periodic (except when differently specified) with the period
given by the sides of the cube. The initial condition is a flat (or Gaussian when so
specified) probability distribution as shown in figure

The purely diffusive Fokker-Planck equation associated to is given by the
non-elliptic second order partial differential equation with stationary form:

0=V |wx (Vx fw)]. (9.9)
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' (b)

Figure 9.4: (a): Superposition of 250 sample paths generated by integration of in the (z,y)

plane. (b): Superposition of 250 sample paths generated by integration of .

The geometrical meaning of this equation can be made explicit by rewriting it in
terms of field force divergence and field force vector 8 = 4V-band b = w x (V x w)
of w (remember equation (4.41])). We have:

O:ALerVf-bJr}lf%. (9.10)

Here, we introduced the normal Laplace operator A| f =V - [w x (Vf x w)]. This
novel differential operator is clearly non-elliptic because the component of V f aligned
with w does not contribute to its value. The normal Laplace operator will be
discussed from the standpoint of functional analysis in the next chapter, where we
will show that equations of the type A | f = ¢ admit a weak and unique solution
as long as w is not integrable. Since we already know the nature of the solution
to when w is integrable, a Beltrami operator, or b= V( (see theorem ,
this result mathematically justifies and represents the fundamental step toward the

determination of the general solution to (9.9).

9.2.1 Constant operator

The simplest possible situation is given by a constant operator w. We choose w = 9,.
Obviously, the Jacobiator identically vanishes because V x w = 0. Therefore, such

w is a Poisson operator. The resulting dynamics X = 0, x I' can be thought as
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Figure 9.5: The initial flat probability distribution on the slice z = 0 of the cubic computational

domain.

the E x B motion of a charged particle in a constant magnetic field B = w™! = 1
(remember that in the case of E x B drift w = B/B?). It is also clear that
the coordinate system dx A dy A dz is an invariant measure for any choice of the
Hamiltonian function (the operator w is measure preserving). This can be verified

by showing that the cocurrent n — 1 form O™! vanishes on this volume form:

O =dJ"? =2d(J™dz + JVdx + T dy) = —2d (w'da’) = —2ddz = 0.
(9.11)
Here we used equations and . The analytical form of the equilibrium
probability distribution is then determined by corollary In our case Hy = 0 and
the kernel of w is spanned by the vector 0, itself. Such kernel is also integrable in
terms of an arbitrary function (Casimir invariant) C'(z) of the coordinate z, since
VC is aligned with 9,. Then, we expect f to be of the type:

tliglo f=Aexp{—C(2)} a.e., (9.12)

Here, A and ~ are positive real constants. Furthermore, since the initial distribution
is flat, the diffusion process X = 9, x I', which is constrained in the (z,y) plane,
cannot generate any inhomogeneity in the 0, direction. In conclusion, f must remain

constant throughout the simulation. The result of the numerical simulation is shown

in figure
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Figure 9.6: Calculated equilibrium probability distribution f in the (z,y) plane at z = 0 with
constant Poisson operator w = 0,. The initial condition at ¢ = 0 is the flat distribution of figure

Observe that the distribution remains flat.

In figure we report the result of the numerical simulation corresponding to a

different initial condition, a Gaussian distribution in the (x,y) plane.
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Figure 9.7: Time evolution of the probability distribution f in the (z,y) plane at z = 0 with
constant Poisson operator w = d,. The initial condition at ¢ = 0 is the Gaussian distribution in the
(z,y) plane of figure (1). Each plot number 4 corresponds to the state of time evolution t = iAt,
where At is a fixed time interval. The particle sample is ~ 10°. Observe that the distribution

converges to a flat profile.
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9.2.2 Poisson operator on an itnvariant measure
Next, we consider the following Poisson operator:
w=VC =V (z—cosz—cosy). (9.13)

Again, the Jacobi identity & = 0 is identically satisfied because Vxw = VxVC = 0.
If we interpret the resulting dynamics as the motion of a charged particle in the

magnetic field B = w/w?, the magnetic field strength is:
B=(1+sina?+siny?) />, (9.14)

See figure [9.8] for the plot of B.

3 o
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3 0.55

Figure 9.8: Magnetic field strength (9.14)) in the (x,y) plane.

This time the Casimir invariant whose gradient spans the kernel of w is the
function C' = z — cosx — cos y. Using proposition [4.6] we also know that dz Ady Adz
is an invariant measure for any choice of the Hamiltonian function (i.e. w is measure
preserving). Therefore, in light of corollarywe expect the equilibrium probability
distribution to be of the type:

tllglof = Aexp{—F (C)} a.e., (9.15)

where A and + are positive real constants, and F an arbitrary function of the Casimir

invariant C. Since the initial distribution is flat in the whole (x,y, z) space, and the
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diffusion process VC x I' flattens the distribution on each level set C'=constant, no
inhomogeneity can arise along VC. More precisely, the 2-dimensional volume form
vol% on each reduced space R?/C is itself an invariant measure for any choice of
the Hamiltonian function because dx A dy A dz = dC' A vol%v is a preserved volume
element and C' is a dynamical constant: Ly (dz Ady Adz) = dC A £xvol? = 0
VHy. It follows that, if X% = J2(dHo) is the 2-dimensional flow on the level
set C =constant, the reduced operator j(% is measure preserving. Therefore, to
each distribution fco on the volume element vol% on each leaf C' =constant the
result of corollary applies: lim;_,, fc =constant, exception made for a set of
measure zero. In conclusion, the three dimensional distribution f must remain
constant throughout the simulation. Figure shows the results of the numerical
simulation. In particular, notice that the distribution remains flat regardless of

the fact that the random process under consideration is spatially inhomogeneous:
| X| =|VC|=w= B

60
50
40
30
20
10
0

3 2 4 0 1 2 3
X

\V)

—

=

Figure 9.9: Calculated equilibrium probability distribution f in the (x,y) plane at z = 0 with
Poisson operator (9.13)). The initial condition ¢ = 0 is the flat distribution of figure Observe

that the distribution remains flat.

In figure [9.10] we report the result of the numerical simulation corresponding to a

different initial condition, a Gaussian distribution in the (z,y) plane.
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Figure 9.10: Time evolution of the probability distribution f in the (x,y) plane at z = 0 with
Poisson operator (9.13). The initial condition at ¢ = 0 is the Gaussian distribution in the (z,y)
plane of figure (1). Each plot number i corresponds to the state of time evolution ¢t = iA¢, where
At is a fixed time interval. The particle sample is ~ 10°. Observe that the distribution converges

to a flat profile.

9.2.3 Poisson operator in arbitrary coordinates

Consider now the Poisson operator:

w=AVC = (\/l—i—cost) V (z — cosz — cosy) . (9.16)

Here A = 1+ cosz? # 0 and C = z — cosz — cosy. The Jacobi identity is easily
verified: B** = AVC -V x AVC = 0. Furthermore, C is evidently a Casimir

invariant. The corresponding magnetic field strength:

1
B= : (9.17)

\/(1 + cos? z) (1 + sin z + sin? y)

is shown in figure [9.11
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Figure 9.11: Magnetic field strength (9.17) in the (z,y) plane.

According to proposition [4.6] this time the invariant measure is given by the
volume element A\~ dz Ady Adz. In light of corollary the probability distribution

f on our coordinate system dx A dy A dz must satisfy:

tlirﬁlof = %exp{—*yf (@)} ae. (9.18)

Here A and v are positive real constants and F is an arbitrary function of the
Casimir invariant C. Applying the same reasoning of the previous case on the
invariant measure A'dz A dy A dz, since the initial distribution is spatially flat, we
expect the solution to converge to f oc A~!. Figure shows the density plot of
AL Figure shows the result of the numerical simulation.
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Figure 9.13: Calculated equilibrium probability distribution f in the (z,y) plane at z = 0 with
Poisson operator (9.16). The initial condition ¢ = 0 is the flat distribution of figure Observe

that the distribution converges to the profile f ox A~*.
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In figure [9.14] we report the result of the numerical simulation corresponding to a

different initial condition, a Gaussian distribution in the (x,y) plane.
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Figure 9.14: Time evolution of the probability distribution f in the (z,y) plane at z = 0 with
Poisson operator . The initial condition at ¢ = 0 is the Gaussian distribution in the (z,y)
plane of figure (1). Each plot number ¢ corresponds to the state of time evolution ¢t = i{At, where
At is a fixed time interval. The particle sample is ~ 10°. Observe that the distribution converges

to the profile f oc A7

9.2.4 Beltramt operator

The next case we study is that of a Beltrami operator:
w = (cos z +sin z) O, + (cos z — sin z) 0. (9.19)

One can verify that the Jacobiator is &*¥* = w? = 2 # 0. Therefore, this operator
is not a Poisson operator. Furthermore, the field force vector is b = w x V x w =
w X w = 0. This means that w is a strong Beltrami operator. Notice that the
corresponding magnetic field strength is constant: B = w™' = 1/v/2. In this case
the statement of theorem applies:

limwxVf=0 a.e. (9.20)
t—00

Observe that, since w does not satisfy the Jacobi identity, there is no Casimir invari-
ant C' whose gradient spans the kernel of the operator. That is, if we could satisfy
Vf = aw a.e. for some function @ # 0, this would contradict non-integrability of
w. Therefore, equation implies Vf = 0 a.e.. In the next chapter we will
make this reasoning more rigorous, and show that due to the non-integrability of
w, we must have f = ¢ on €2, with ¢ € Ryg. This is confirmed by the result of the

numerical simulation, figure [9.15)
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Figure 9.15: Calculated equilibrium probability distribution f in the (z,y) plane at z = 0 with
Beltrami operator (9.19). The initial condition ¢ = 0 is the flat distribution of figure Observe

that the distribution remains flat.

In figure [9.16] we report the result of the numerical simulation corresponding to a

different initial condition, a constant distribution along the diagonal of the (z,y)

plane.

200 3 200 3 200
2 2

150 150 150
1 1

100 o 100 o 100
R 1

50 50 50
2 2

0 3 0 3 0

Figure 9.16: Time evolution of the probability distribution f in the (z,y) plane at z = 0 with
Beltrami operator . The initial condition at ¢ = 0 is the constant distribution along the
diagonal of the the (z,y) plane of figure (1). Each plot number i corresponds to the state of time
evolution t = iAt, where At is a fixed time interval. The particle sample is ~ 10°. Observe that

the distribution converges to a flat profile.
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9.2.5 Antisymmetric operator

Consider the antisymmetric operator:
w = 0 + (sinx + cosy) Oy + (cosx) 0. (9.21)

The Jacobiator is:
& =1+ sinxcosy > 0. (9.22)

Observe that & # 0 exception made for the set of measure zero {(z,y) € R? :
sinx cosy = —1}, that is the Jacobi identity is violated almost everywhere. Further-

more, the field force divergence is given by:
B = —4sinx cosy, (9.23)

which is different from zero exception made for the set of measure zero {(x,y) €
R? : sinz cosy = 0}. Therefore, this operator is neither a Poisson operator, nor a
Beltrami operator in the chosen coordinate system. The corresponding magnetic

field strength is:
1

B=w"! (9.24)

\/1 + (sinz + cosy)? 4 cos? z
A density plot of B is given in figure [9.17]

-3 -2 - 0 1 2 3
X

Figure 9.17: Magnetic field strength (9.24) in the (z,y) plane.
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The nature of the stationary solution to equation in the case of an anti-
symmetric operator like is the motivation behind the theory developed in the
next chapter. The result of the corresponding numerical simulation is given in figure
9.18] Notice that there is a strong similarity between the profile of magnetic field
strength B and that of the equilibrium probability distribution f. This fact should
be compared with the analytic result obtained in theorem [6.3|for the special class of
antisymmetric operators such that b= V¢ where f oc w™le™¢ = Be~¢ (although the
operator is such that b # V(). The tendency of the equilibrium probability

distribution to approach the shape of the magnetic field is observed also in the next

simulation.
3 60
2 90
1 40
y o0 30
-1 20
-2 10
3 0

Figure 9.18: Calculated equilibrium probability distribution f in the (z,y) plane at z = 0 with
antisymmetric operator (9.21). The initial condition ¢ = 0 is the flat distribution of figure

Observe that the distribution resembles the profile of the magentic field strength B (compare with

figure .

9.2.6 Antisymmetric operator without boundaries

In this simulation we change the boundary conditions. More precisely, we follow the

trajectories of the particles as far as they go. The antisymmetric operator is chosen
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to be: .
0, + (zmgw _ Sin:p) 0.

w =

: 5 (9.25)
1+ (y—stycosy . SiIlCL‘)
To prove that w is not integrable, we evaluate the Jacobiator of the associated

magnetic field B = w/w?, which has a simpler expression. We find that:
B* (B) =sin’y > 0, (9.26)

and equality holds on a set of measure zero. Therefore B is not integrable, and
thus w is not a Poisson operator. The field force divergence B of the operator w
does not vanish (the lengthy expression of B is omitted). Therefore, w is not a
Beltrami operator in the chosen coordinate system. The magnetic field strength has

the expression:

. 2
5wt \/1 (s, 027)

The profile of the magnetic field is shown in figure [9.19
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Figure 9.19: Magnetic field strength (9.27) in the (z,y) plane.
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The results of the numerical simulations are given in figures and The
initial conditions is still the flat distribution of figure Observe the creation of an
ordered structure. In figure [9.21] the probability distribution is shown on a domain
of similar size to that of plot Notice the similarity between the profiles of f
and B.
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Figure 9.20: Time evolution of the probability distribution f in the (z,y) plane at z = 0. Each

plot number i corresponds to the state of time evolution ¢t = {At, where At is a fixed time interval.
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Figure 9.21: Time evolution of the probability distribution f on a square of side 20 in the (z,y)
plane centered at & = 0. Observe the similarity between the calculated profile and the shape of the

magnetic field B as shown in figure 133



9.2.7 Antisymmetric operator with unit norm

So far, we have analyzed two cases of antisymmetric operators and observed that the
profile of the probability distribution tends to resemble that of the magnetic field

1

strength B = w™". The natural question is then what happens to the probability

1

distribution if the magnetic field strength B = w™" is constant. To answer this

problem we consider the antisymmetric operator:

1
W = ————=(cosy, cos x,siny) . 9.28
V1+ cos?x ( ) (9.28)

Observe that B = w~! = 1 (and thus B = w). The Jacobiator is evaluated more

easily for the rescaled vector field w = (cosy,cosz,siny):
B (w) = 1—sinysinz > 0, (9.29)

with equality holding on a set of measure zero. Therefore w’ is not integrable, and
thus w is not a Poisson operator. The field force divergence B of the operator w
does not vanish (the lengthy expression of B is omitted). Therefore, @ is not a
Beltrami operator in the chosen coordinate system.

The density profile obtained from the numerical simulation is shown in figure [9.22
Notice that, regardless of the fact that B = w~! = 1, an heterogeneous structure
is self-organized. What is the determinant of such structure? The answer to this
problem will be outlined in the next chapter. At this point we observe that the
essential ingredient is the non-vanishing field force divergence 8. In fact, there is a

strong similarity between the profile of the probability distribution and that of B
(compare figure with figure showing the profile of B).
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Figure 9.22: Time evolution of the probability distribution f in the (z,y) plane at z = 0. Each

plot number i corresponds to the state of time evolution ¢ = iAt, where At is a fixed time interval.
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9.2.8 The Landau-Lifshitz Equation

The last case we consider is the Landau-Lifshitz equation describing the time evo-
lution of the magnetization x in a ferromagnet (specifically, we study equation (35)
of [39]). Without entering into details, the Hamiltonian of the system, physically

corresponding to the total magnetization, is given by:

Ho = (9.30)

Therefore, in this simulation the perturbed Hamiltonian H is such that VH =
VHy+ I'. The antisymmetric operator of the system is:

A
w=H — EH X T. (9.31)

Here, v is the so called damping parameter, A a physical constant, and H the effective

magnetic field. The effective magnetic field H is chosen to be:
H = (h,0,z2), (9.32)

where h represents a constant external magnetic field. Then, equation (9.31)) can be

rewritten as:
zZY z (h — x) hy

One can verify that this operator violates the Jacobi identity:

—2h%2% — 224+ h [l’?’ + Ayz +x (y2 — 3z2)]

B = ) .

(9.34)

Therefore, w is not a Poisson operator. The field force divergence B can be calcu-
lated to give:

2h2\ (33:2 — 32) + A (34 — 11228 + 1424) —4h [)\ac (32 — 522) + ysz]

B = 4\ 7

(9.35)
Thus, in the chosen reference frame, the operator w of the Landau-Lifshitz equation
is not of the Beltrami type.

In figure the results of the numerical simulation are shown. This time, the
initial condition is a Maxwell-Boltzmann distribution centered at & = (0,0, 2p).
As in the previous case, the trajectory of each magnetization is followed as far
as it goes. Notice how the probability distribution becomes strongly anisotropic,
with preferential alignment of the magnetization along the z-axis (representing the

direction of easiest magnetization of the ferromagnetic crystal).
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Figure 9.23: Time evolution of the probability distribution f in the (z,z) plane at y = 0. Each

plot number 4 corresponds to the state of time evolution ¢ = iAt, where At is a fixed time interval.
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Chapter 10

The Normal Laplacian

In this last chapter we examine the normal Laplace operator A | encountered in equa-
tion , and study existence and uniqueness of solution to the normal Laplace
equation, which we will define shortly. To simplify the problem, the discussion is
mainly limited to the 3-dimensional case.

Exploiting the non-integrability of the vector field w, we show that a novel norm
||-|| | can be defined. Then, using Riesz’s representation theorem, the existence of a

weak unique solution is proven.

10.1 The Normal and Parallel Laplacian Operators

As usual, consider a smooth manifold M"™ of dimension n.

Def 10.1. (Normal gradient in 3D)
Let w € TM3 be a vector field. The normal gradient of a function f € C! (M3),
f: M3 = R with respect to w is defined as:

w x (Vf xw)

w2

Vif= (10.1)

Def 10.2. (Parallel gradient in 3D )

Let w € TM?3 be a vector field. The parallel gradient of a function f € C! (./\/l3),
f: M3 = R with respect to w is defined as:

w
V”f =— (w-Vf). (10.2)

w
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Def 10.3. (Normal Laplacian in 3D)
The normal Laplacian of a function f € C? (MS), f: M3 — R with normal gradient

given by definition [10.1] is defined as:
AL f=V-(w*VLf). (10.3)

Def 10.4. (Parallel Laplacian in 3D)
The parallel Laplacian of a function f € C? (./\/13), f o M3 — R with parallel
gradient given by definition [10.9 is defined as:

A f =V (V) f). (10.4)
These definitions can be generalized to higher dimensions in the following fashion.

Def 10.5. (Normal gradient)
Let J € /\2 TM™ be an antisymmetric operator. The normal gradient of a function
fecCt (M), f: M™ — R with respect to J is defined as:

ik ik £
Vif- j’jj‘fa (10.5)

Def 10.6. (Parallel gradient)
Let J € /\2 TM™ be an antisymmetric operator. The parallel gradient of a function
feCt (M), f: M™ — R with respect to J is defined as:

jikjjkfj) 0;.

X (10.6)

WMZ(ﬁ—

Def 10.7. (Normal Laplacian)
The normal Laplacian of a function f € C? (M™), f : M™ — R with normal gradient
given by definition 1s defined as:

ALf=V-(ITPVLS): (10.7)

Def 10.8. (Parallel Laplacian)
The parallel Laplacian of a function f € C?>(M™), f : M™ — R with parallel
gradient given by definition [10.6] is defined as:

af =9 (1P f). (10.8)
Next, we define the normal Laplace equation:
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Def 10.9. (Normal Laplace equation)

Let Q@ C M™ be a smoothly bounded compact domain with boundary 0. Let ¢ :
Q2 —= R and a: Q — Rsg be known functions. The normal Laplace equation with
respect to the function f € C?(Q), f: Q — R is the non-elliptic second order partial

differential equation:

Aif—af=¢ in Q,

10.9
f=0 on 09. ( )

We refer the reader to section for the discussion of the non-ellipticity of this
differential operator.

The parallel Laplace equation can be defined in a similar way. We omit it because
our attention will be focused exclusively on equation ((10.9).

10.2 Existence and Uniqueness of Solution to the Normal Laplace

Equation

From this point we set n = 3. Let Q C M3 be a smoothly bounded compact domain.
We denote by 02 the boundary of €2, and by n the unit outward normal vector on
99. For a given smooth vector field w € TM? such that

w-Vxw#0inQ, mn-w=0on0dQ,
we have (denoting w = w/|w|)
Viu=wx (Vuxw), Vu=Vu-V_u.

The direction of w is said parallel, and the others normal or perpendicular. We

consider the following spaces of scalar functions (firstly, without topology):

Def 10.10. (Normal space)
The normal space HY (Q) is the function space of L* ()-measurable functions u

such that |V u| € L? (2):
H+(Q) ={ueL?(Q); |[Viul € L*(Q)}. (10.10)

Def 10.11. (Parallel space)
The parallel space HI (Q) is the function space of L?(Q)-measurable functions u
such that ‘V”u‘ € L?(9Q):

7@ ={ueL?(Q); |Vju| € L*(Q)}. (10.11)
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Recall that L? (Q) is the set of functions u such that |u|? is Lebesgue-integrable on €.
We also denote with H' () = {u € L?(Q); |Vu| € L?(Q)} the standard Sobolev
space. Evidently H' (Q) ¢ H-(Q) ¢ L*(Q) and H' () c HI (Q) c L?*(Q).

In order to define a topology, we consider the following bilinear product:

Def 10.12. (Normal product)
Let w € TM?3 be a smooth vector field with &Y% = w -V x w # 0 on a smoothly
bounded compact domain Q@ C M3. Let a : Q — R be a non-negative smooth

function. The normal product of u,v € H+ () with respect to w is defined as:

(u,v), , = (u,av) + (VLu,wQVLv) = / [auv + w? (Vo u- Viv)] vol®.  (10.12)

' Q
where (f,g) denotes the standard L? inner product (f and g may be scalar or vector
valued functions). We define:
2
ull Lo = (wu)) 4 (10.13)

For the case a = 0, we will use the notation (u,v), = (u,v), o and ||lul|| = ||u]|, ;-
Evidently, we have
Proposition 10.1. For a > 0,

1. The bilinear form (u,v), , satisfies the azioms of inner-product on H(Q);

hence, ||ul|, , is a norm on HL(Q),
2. H+(Q) is complete for the norm ull | o

3. Hence, H+(Q) can be regarded as a Hilbert space endowed with the inner-

product (u,v), ,.

Proof. We begin by verifying that definition [10.12] is consistent with the require-

ments of an inner product on H= (£2).

(proof of 1)
First, we must check that Vu € H* (Q):

(wu); , >0, (wu), ,=0 < u=0. (10.14)

(u,u), , > 0 is immediate. Note that (u,u), , = 0 is possible only if u = 0 a.e..

The remaining requirements are trivial:

(u,0) ) o = (V,u), Yu,v€ HY(Q), (10.15a)

(crug + 02u27v)La =c (ul,v)L’a + ¢ (UQ,U)La Yui, ug,v € H* (Q), Yei,c0 € R
(10.15b)
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In a similar fashion, one can verify that the functional:

ullf o = (u,u) ,, (10.16)

satisfies the norm properties Vu,v € H+ (Q):

lull >0, lull,,=0 < u=0, (10.172)
4]l g < lall g+ 1] (10.17D)
leull o = lelllull o, VeeR. (10.17¢)

(proof of 2)

Suppose that uy,us, --- € H-(Q) is a Cauchy sequence with respect to the norm
|ul| Lo Then uj — Juee € L?(Q) and V u; — 3g € L*(2). Necessarily g = V| uoo,
80 Ueo € HH(Q), and uj — use € HH(Q).

O

Theorem 10.1. (Uniqueness of solution for the normal Laplacian with a > 0)
Let w € TM?3 be a smooth vector field with &Y% = w -V x w # 0 on a smoothly
bounded compact domain @ C M3. Suppose that a > 0. Then, if it exists, the

solution v € H+ (Q) to the normal Laplace equation:

Alu—au=¢ in £,

(10.18)
u=0 on 09,

18 unique.
Proof. Consider the functional:
F = / [au2 + w? \VJ_uﬂ vol®. (10.19)
Q

Evidently F > 0. Suppose that u; and us are two distinct solutions to system
(10.18). Set u = u1 — us. We have Aju —au = 0in © and u = 0 on 9f2. The
following identity holds:

A\ (uwQVLu) = w? |V iu* + ud v =w? |V iu + au’. (10.20)
Therefore:
F= / \E (’U/LUZVLU) vol® = / uw?V u-ndS* = 0. (10.21)
Q o0

The last passage can be obtained by using the boundary condition. However, due to
equation (|10.19), F = 0 is possible only if u = 0 a.e. on §2. It follows that u; = ug
a.e. on ). O
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Theorem 10.2. (Existence of weak solution for the normal Laplacian with a > 0)
Let H+ () be the normal (Hilbert) space equipped with the normal inner product
with a > 0 defined by a non-integrable smooth vector field w with &*Y* =
w- -V xw # 0. Then, the normal Laplace equation admits a unique and
weak solution u € H* () for any ¢ € H* ().

Proof. We apply Riesz’s representation theorem: since H* () is a Hilbert space,
we can find u € H+ (Q) such that:

/ vpvol® = — (v,u), , Yve€ HY(Q). (10.22)
Q

Now, observe that:

(v,u), , = / [auv + w? (V (v - V 1 u)] vol®
' Q

= / w?vVu-ndS? + / vau — Ay u]vol® (10.23)
o Q

= / v[au — A u]vol®.
Q

Therefore u is a weak solution to the normal Laplace equation. In virtue of theorem
[10.1] the solution is also unique. O

Notice that with theorem we have shown that we can solve equations of the

type: .
Alf+1‘3f20, (10.24)

with B < 0. The equation above should be compared with the original equation
(19.10)).

Now we want to consider the case a = 0. Define the function space:
Co(Q)={uel (Q): u=0ondQ}, (10.25)
Proposition 10.2. For a =0,

1. The bilinear form (u,v), = (u,v), o satisfies the axioms of inner-product on

C3 (9); hence, ||ul|| = (u, u), o s a norm on Ct ().

2. The function space C} () equipped with the norm ||u|| | is a pre-Hilbert space
and can be completed to the Hilbert space Hy (). We also have Hy (Q) C
Hy (Q).
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Proof. We begin by verifying that (u,v), is consistent with the requirements of an
inner product on C} (). First, we must check that Yu € C§ (Q):

(u,u), >0, (u,u), =0 <= u=0. (10.26)

(u,u), > 0is immediate. Note that (u,u), = 0is possible only if u = 0. Indeed, by
vector identity, |V u[* = w™? |w x Vu|* and since w is a non-integrable vector field,
no function u with Vu # 0 on Q, u € C} (2) can be found such that w x Vu = 0 a.e.
on Q (otherwise we could find o € C* (), a # 0 such that w = aVu, contradicting
the non-integrability of w). The remaining requirements are trivial and can be
verified as in proof of proposition It follows that the functional ||u||, satisfies
the norm properties in C3 (€2). With this norm, C} () is a pre-Hilbert that can
be completed to Hy (). The inclusion of the normed space Hg with norm ||-|| Las
(a > 0), into Hp ():

Hi (Q) Cc Hp (), (10.27)

also follows. O

Although the new Hilbert space H(J)- is an abstract object, Riesz’s representation
theorem can still be applied to prove existence and uniquencess of solution in HOL

to the normal Laplace equation with a = 0:

Theorem 10.3. (Ezistence of weak solution for the normal Laplacian with a = 0)
Let Hy be the normal (Hilbert) space equipped with the normal inner product ||-|| |
defined by a non-integrable vector field w with &Y% = w -V x w # 0. Then,
the normal Laplace equation with a = 0 admits a unique and weak solution
U E’Hé‘ for any ¢ € Hé‘.

Proof. We apply Riesz’s representation theorem: since 7-[& is a Hilbert space, we

can find a unique u € ’Hé‘ such that:
/ vovol® = — (v,u), Vv € Hy. (10.28)
Q

Now, observe that:

(v,u), = / w? (Vv -V u)vol®
Q

= / w2vVJ_u . ’I’I,dS2 — / UAJ_U U0l3 (1029)
o0 Q
= —/ vA U vol®.
Q
Therefore u is a unique and weak solution to the normal Laplace equation. ]
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At this point, we want to push our results further by showing that if a solution
u € Hg () to the normal Laplace equation (10.9) with a = 0 exists, then this

solution is also unique. For this purpose, we need the following lemma:

Lemma 10.1. The solution u € H* (Q) of the equations

wxVu=0 ae. in (10.30a)
u=0 on 0 (10.30b)

s uniquely u = 0 a.e. in €.

Proof. The proof involves three main steps:

Step 1: We show that the solution in C''(Q) is only u = 0. Equation
implies that Vu = aw with some scalar function «. We find that o must be zero
everywhere in {2, and thus, by , u = 0in Q. In fact, if @ # 0 in any open set
U C Q, we can write w = o~ 'Vu in U, which contradicts with the non-integrability
of w (Frobenius theorem [1.2]).

Step 2: The solution in H*(Q) is also only u = 0 (a.e. in Q); this is evident because
C1(9) is dense in HY(Q).

Step 3: When we extend the set of candidates for the solution to H+(£2), we have
to care for the possibility of u such that Vu is not definable in L?(€2). Suppose that
a solution in H*(Q) has a ‘singularity’ x5 € Q at which the variation of u in the
parallel direction is finite, but it cannot be evaluated by Vu (i.e., u is discontinuous
in the parallel direction). Solving

@€ _

o w, £(0)=xs,

we define a characteristic curve &£(7) of w including x, (see figure|10.1]). In a neigh-

borhood U of x5 = £(0), we choose two points

p=&(), q=¢&()

with 7— < 0 and 7 > 0. Since x, is a singularity (in the sense of the foregoing
definition), u(p) # u(q) H On the other hand, by Caratheodory’s theorem there
is a piecewise smooth connection I' C U (see figure , between p and g, such

that J
W =g

: T.
7 =0 n(r) €

lwe gt (©) is not necessarily a continuous function, so we may not evaluate the local values of
u. Here, by u(z), we mean the volume average in some neighborhood of x.
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In the direction parallel to I', we may evaluate V |« which must be zero if u satisfies
(10.30a)). Integrating the variation of u along I', we obtain u(p) = u(q) El, contra-
dicting with the previous assumption. Therefore, the variation is eliminated also in
the parallel direction when Vu = 0; this is because the non-integrable w cannot

define a boundary separating any sub-domain in which u # 0.

Figure 10.1: The singularity s and the curves £ (7) and T

Theorem 10.4. (Uniqueness of solution for the normal Laplacian with a =0)
Let w € TM3 be a smooth vector field with ™% = w -V x w # 0 on a smoothly
bounded compact domain Q@ C M?3. Suppose that a = 0. Then, if it exists, the

solution v € H+ (Q) to the normal Laplace equation:

Aju= in €,
=0 (10.31)
u=0 on 09,
1S Unique.
Proof. Consider the functional:
F= / w? |V L ul? vol®. (10.32)
Q

2 In H*(Q), Vi u is not necessarily an absolutely continuous function. However, for the solution
u, Vou =0 a.e. in U; hence the total variation of u along I is zero.
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Evidently F > 0. Suppose that u; and ug are two distinct solutions to system
(10.31)). Set u = u; — us. We have Aju =0 on 2 and u = 0 on 9. The following
identity holds:

V- (uw?V u) = w? Vi) +ulu=w? |V ou. (10.33)
Therefore:
F = / A (uw2VLu) vol® = / uw?V u-ndS* = 0. (10.34)
Q 19)

The last passage can be obtained by using the boundary condition. However, due
to equation (10.32), F = 0 is possible only if w? |V u|* = |w x Vu|* =0 a.e. on €.
Notice that w is always different from zero since by hypothesis &*¥* # (. Then, the
conditions of lemma [[0.1] are satisfied and we must have u = 0 a.e. on Q. It follows

that u1 = ug a.e. on 2. O
In virtue of lemma [L0.1}, we also have the following:
Proposition 10.3. For a =0,

1. The bilinear form (u,v), = (u,v), o satisfies the axioms of inner-product on

Hg- (Q); hence, ||u||| = (u,u), o is a norm on Hg ().

2. The function space Hy (Q) equipped with the norm ||u|| | is a pre-Hilbert space

and can be completed to a Hilbert space.

Proof. The proof is analogous to that of proposition except that the axioms of

inner-product are verified by using lemma [10.1 O

10.3 Estimates for the Normal and Parallel Gradients

It is worth to notice that the operator A does not involve any derivation of the

function w along the vector field w:

Aju=V-[wx (Vux w)]
=(Viuxw) Vxw—w- -V x(V,iuxw)
=Viuxw) Vxw—w-[w(w-V)—wx (0 x V)] x (V,uxw)
=(Viuxw) Vxw—-—w- -V, x(Viuxw).
(10.35)

Here, we decomposed the differential operator V in parallel and normal components

as:
V:VH-FVJ_

(10.36)
=w((w-V)—wx (wx V),
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with w = w/w.

Using the representation of the differential operator V of equation and the
decomposition of the curl of a vector field , we want to determine estimates for
the normal and parallel gradients V| and V. Take u € L§ (Q) and let w = w/w.
Futhermore, let ||-|| be the L? (€2) norm. Then, the following identity holds:

19 )| = [ 19 i) ol
= /Q [(Vu )’ 4+ 2u (V- W) (Vu-w) +u? (V- 12))2} vol®
_ HV||uH2+/Q(V-w) (- V) vol® 4 |[u (V- @) (10.37)
([l = [ V- oo (7 @) vol + (V- )l
=¥l = f i V(7 -y
Here we used the fact that since u € L3 (), u = 0 on 9. Therefore:
¥ = Hv-(uw)\|2+/gu2w-wv-w)voz3. (10.38)

Now suppose that Va € Q we have w - V (V- w) > 0. Then, we obtain the prelimi-
nary estimate:

[Vl [* = min i - (V- )] [[ul|. (10.39)

FASY)

The quantity h=w-V (V - w) can be related to the field force divergence B=V-b

of w in the following manner:

h=w- -V (V- w)
=V [ (V)] - |V w|*
=V [V (ww)] -V [ V] — |V - w]? (10.40)
=V [wx (Vxw)+V-[V- () —|V-w|
=B+ V[V (wwd)] — |V-w|
In figure we show the plot of h for:
w = __ (cosy,cosz,siny) . (10.41)

v 1+ cos z2

Note that this vector field is such that @ = 1.
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Figure 10.2: Plot of h = - V (V - w) for @ given by equation (10.41).

Consider now the normal gradient. Again, take u € LZ (Q2). The following identity
holds:

1V x (u’d))HQ:/Quw-VXVX(qu)Uol?’
:/[uw-vX(vuxw+quw)]voz3
Q

=/uw-[V><(vuxw)+wx(va)+quva]voz3
Q

).

:||vw||2+/ﬂu2(w-vxwa)voli”

(Vu x ) - V x (u) 4 u? <§+w-vaXw>]voz3

IV Ll +/ w (V- [(V ) x ] + [V x [} vor’
Q
= ||V Lul? +/ u? [—% + |V x 127|2} vol®
Q
(10.42)

Therefore:

IV Lul)? = ||V x (u)]]* + /Quz (% — |V x ﬁ)]2> vol®. (10.43)
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By combining equations (10.38]) and (10.43)) one obtains the identity:

|Vul> = ||V - (w)]]? + ||V x (u)||* + [ w?d - Awvol®. (10.44)
Q

This equation clearly shows the geometrical relationship between the L3 (€2) norm
of the gradient of a function, and the integrability of a vector field w. Indeed, the
first two terms on the right-hand side vanish when uw = V x & for some appropriate
vector £ and uw = VC for some appropriate function C respectively. Furthermore,
note that ||Vu||* is made up of three terms which reflect the Hodge decomposition
of differential forms in terms of closed, co-closed and harmonic components.

Using equation ((10.43]) we can prove the following estimate:

Proposition 10.4. (Estimates for the normal gradient)
Take u € L3 () and let w be a vector field with components in C* (Q) and &Y= =
w-V xw # 0. Suppose that V& € Q we have B — b® = V - [ x (V x w)] —
[ % (V x @[> > 0. Then, the following estimate holds:

2o s (B2 2
1V | —528(% b)HuH . (10.45)

Proof. First, note that if %% £ 0 also G*Y* £ 0

A A TYZ
@:ryz:w'vx,w:w.vX(w):@Q, (1046)
w w w

Thus, the non-integrability of w implies the non-integrability of w. Thereby, we
can perform all calculations in terms of w without loss of generality. To simplify
the notation we shall omit the apex zyz in By , and write just ®. The estimate
is a direct consequence of equation . To see this, observe that from
(4.51)):

IV x w|* = b% + &2 (10.47)
Furthermore:

u - [V x (uh)] = 1?6 = u |V x (uab)| cos 6. (10.48)

Here 0 is an angle depending on the choice of u. Then:

2 %2
AN12 u 6
|V X (uw)|” = o2 (10.49)
Combining this result with ((10.43|) and ((10.47]), we arrive at:
. 1 A
ViulP = [ w? |82 —— — 1) +B — b*| vol®. 10.50
IVl = [ 028 (g 1) + % - 8] o (1050

Note that, for any 6, (cos 9)72 — 1> 0. Therefore, if B — b2 > 0 V& € 2, we arrive
at (T0.45). 0
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In figure we show a plot of B — b2 (with w given by equation )
concerning the estimate for the normal gradient, equation . In figure m
we show a plot of the field force divergence B for w given by equation .
The shape of this distribution should be compared to figure [I0.5] where a plot of
the density resulting by solving the equation of motion X = w x I' for a system
of 8- 105 particles is shown (for the details of this simulation see section .
This profile corresponds to the stationary solution of the diffusion equation .
As already noted, there is a good resemblance between the profile of B and the
calculated density profile. This is a notable fact, since the absolute value of w,
representing the ‘strength’ of the fluctuations, is unity w = 1. This does not prevent
the creation of an ordered structure, which is determined by the non-vanishing field

force divergence B.
3
2 .
1
0

-

3-2-10 1 2 3

Figure 10.3: Plot of B — b? for w given by equation (10.41). Note that there are several regions
where b — 52 > 0. In such domains the estimate (10.45) holds.
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Figure 10.4: Plot of % for @ given by equation (10.41)).
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Figure 10.5: Calculated particle density in (z,y) plane.
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Conclusion

In the present study, dynamical and statistical properties of conservative mechanical
systems were investigated.

The orbit of a conservative system lies on the level set of the energy (Hamiltonian
function) and represents the building block of macroscopic phenomena. The special
nature of a macroscopic system originates from the process of reduction in which
the underlying microscopic dynamics is portrayed by ‘selecting’ the (dynamically)
relevant degrees of freedom and by removing redundancies. The macroscopic de-
scription of a physical system must not be intended as an artificial mathematical
construction: it represents the result of the superposition of microscopic degrees of
freedom on the spatial and times scales that define the identity of the macroscopic
system itself.

The dynamics of a microscopic system is naturally written in the language of
canonical Hamiltonian mechanics. A macroscopic system emerges when constraints
are imposed on the ‘flat’ phase space of microscopic degrees of freedom. Such topolog-
ical constraints may destroy the canonical Hamiltonian form. Integrable constraints
foliate the phase space and dictate a non-canonical Hamiltonian structure repre-
sented by a Poisson operator. Non-integrable constraints impart ‘current’ to the
metric of space and induce a conservative structure with an associated antisymmet-
ric operator.

Thereby, a statistical theory of macroscopic phenomena must take into account the
non-trivial topology of space-time dictated by topological constraints. The achieve-
ment of the present work is the development of such statistical theory and the
construction of the mathematical tools required to attain this novel formulation.

It is shown that the topology of space is directly reflected in the thermodynami-
cally consistent entropy measure, which now explicitly depends on the geometrical

properties (degeneracy and current) of the antisymmetric operator that acts on the
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Hamiltonian function to generate the dynamics. The probability distribution result-
ing from the maximum entropy principle changes accordingly and therefore departs
from the standard Maxwell-Boltzmann distribution of canonical Hamiltonian me-
chanics. The physics and thermodynamics of self-organizing phenomena arising
from topological constraints are thus explained.

The present research offers new perspectives from the mathematical point of view.
It is shown that the dynamics of conservative mechanical systems is endowed with a
geometrical hierarchy reflecting the properties of the antisymmetric operator. Each
of the new operators (measure preserving and Beltrami) introduced in this study
exhibits peculiar dynamical and statistical properties. In particular, it is found
that the standard results of statistical mechanics can be extended to the class of
measure preserving operators. This fact is remarkable, because such operators do
not posses an Hamiltonian structure and the canonical phase space dictated by
Liouville’s theorem. Furthermore, it is demonstrated that entropy maximization
can occur even in the absence of an invariant measure, as is in the case of diffusion
driven by a Beltrami operator. These results suggest that, beyond Hamiltonian
mechanics, an entire unexplored world deserving further investigation exists.

The normal Laplace operator discussed in the last chapter is also a novel object
of special mathematical interest: this operator shows a clear interplay between inte-
grability in the context of differential geometry and the study of non-elliptic partial

differential equations.
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