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Introduction 

Gene expression is determined by the eventual RNA abundance, that is the 

concentration of RNA molecule in a given cell at a given time. It is controlled by the rates of 

RNA generation, RNA processing and RNA degradation (Ben-Tabou de-Leon and Davidson, 

2009; Kim et al., 2009; Komili and Silver, 2008; Wang et al., 2007). Majority of genome-wide 

studies have focused on the transcription activation to understand the mechanism of gene 

expression (Bujold et al., 2016; Roadmap Epigenomics Consortium et al., 2015; 

Stamatoyannopoulos et al., 2007; The ENCODE Project Consortium et al., 2012). There have 

been efforts to estimate the abundance of RNA through the epigenomics data (Dong et al., 

2012; Karlic et al., 2010; Wang et al., 2012). 

Transcription is regulated through the structure of chromatin and transcription factor 

binding to the DNA elements. Chromatin states are regulated through chromatin modifiers, 

which move the histones along the DNA to expose DNA elements to transcription factors (TF), 

that can either enhance or repress the target gene. Chromatin states have a ‘histone code’, which 

is a covalent mark on the histone tail that can infer the transcriptional state of a given loci. 

These histone codes include histone H3 lysine 4 tri-methylation (H3K4me3), which is an active 

mark of transcription and it is often observed around active transcription start sites (TSS) (Koch 

et al., 2007; Mikkelsen et al., 2007). Transcription factors can either be general transcription 

factors or sequence-specific transcription factors. General transcription factors include RNA 

polymerase II (Pol II) that is associated with actively transcribed regions (Roeder, 1996) and 

sequence-specific transcription factors include HIF-1 (hypoxia inducible factor 1), that bind to 

hypoxia response element (HRE) to activate genes involved in hypoxia response. 

RNA degradation occurs through complex mechanisms, where more than 30 families 

of ribonucleases from more than 60 proteins are involved. They can be classed as 5’-3’ and 3’-

5’ exonucleases and exonucleases as molecular basis of action and they can be either be nuclear 
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RNA degradation or cytoplasmic RNA degradation depending on the location of action 

(Arraiano et al., 2013; Garneau et al., 2007; Stoecklin and Muhlemann, 2013). In the nucleus, 

pre-mRNAs are capped and the pre-RNAs are spliced co-transcriptionally to remove the 

introns and followed by the addition of poly A tail to protect both the 5’ and 3’ ends of mRNAs. 

Errors in the mRNA processing lead to the degradation of mRNA by surveillance pathways, 

that ensures mRNAs are correctly processed. One of the key players in the surveillance is the 

nuclear exosome (Chlebowski et al., 2013), which is a multi-subunit complex that include 

RRP46 (EXOSC5). The complex quality controls of the 3’ ends, where RNAs that have 

abnormal polyA tails are degraded (Porrua and Libri, 2013). In the cytoplasm, RNA decay 

occurs through multiple pathways, where the mRNA decay starts by the deadenylation of the 

3’ poly(A) tail (Godwin et al., 2013; Wahle and Winkler, 2013), where it is mediated by CCR4-

NOT complex and followed by 3’-5’ exonuclease degradation through the cytoplasmic 

exosome complex. In addition to the deadenylation of the 3’ poly(A) tail, the 5’-cap is removed 

by DCP2/DCP1 decapping enzymes, followed by a 5’-3’ exonuclease called XRN2 (Nagarajan 

et al., 2013). Another surveillance mechanisms include the nonsense-mediated decay (NMD), 

where the major player is UPF1 (Imamachi et al., 2012b; Schweingruber et al., 2013). It 

normally recognizes and selectively degrades RNA transcripts that have premature stop 

codons. In addition to the quality control mechanisms, there are reports that suggest the role of 

UPF1 in mediating approximately 3 to 20% of all transcripts, regardless of the presence or the 

absence of the PTC. STAU1 recognize double stranded RNA, and is a typical example of RNA 

binding protein. There is a report to suggest that STAU1 regulate approximately 1% of bona 

fide mRNA (Kim et al., 2007). 

In theory, cells can regulate their RNA abundance through changes in the transcription 

and decay (Ben-Tabou de-Leon and Davidson, 2009). In previous reports, they have suggested 

that the majority of RNA abundance is regulated at the transcriptional level (Schwanhäusser et 
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al., 2011), and that RNA decay ‘sharpens’ the response (Rabani et al., 2011). However, in 

majority of reports the RNA decay is indirectly inferred using the data from RNA generation 

or they use transcriptional inhibition and assay the RNA decay, which limits the biological 

relevance of the assay, as transcriptional inhibitors are toxic to cells (Tani et al., 2012b) and 

indirect inference by definition cannot directly measure RNA decay and have various 

assumptions. In addition 4-thiouridine and 5-ethyl uridine are toxic when used as a metabolic 

label at required concentrations, thus there is an advantage in BrU based labelling (Tani et al., 

2012b). 

In many cancers, cells proliferate aggressively without adequate oxygen supply through 

the blood vessels, which lead to the low oxygen potential towards the centre of tumours. 

Numerous cancer cells still proliferate even in low oxygen potential, also known as the state of 

hypoxia (usually defined to be 0.02% to 3% of O2), by gene expression changes in response to 

hypoxia (Keith and Simon, 2007; Pouysségur et al., 2006; Semenza, 2010). The molecular 

response to hypoxia is mediated through hypoxia-inducible factors (HIFs), that directly bind 

to DNA to activate downstream genes, where the protein levels increase dramatically with the 

decrease in the O2 concentration (Semenza, 2014). HIFs are heterodimers with alpha and beta 

subunits, and the alpha subunit is regulated through the protein stability, where the subunit is 

unstable in normoxia and stable in hypoxia. This is achieved by hydroxylation of the proline 

residue by prolyl hydroxylase domain protein (PHD), which leads to von Hippel-Lindau 

protein (VHL) - dependent ubiquitination leading to proteosomal decay in normoxia (Semenza, 

2014). However, HIFs does not regulate all of the transcription response in response to hypoxia 

with vascular endothelial growth factor (VEGF) only blocked partially in with HIF1 

knockdown in hypoxia (Mizukami et al., 2005), suggesting an alternative mechanism of action 

in response to hypoxia. 
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There are studies to suggest that HIF-1 knockout is not sufficient to induce VEGFA up-

regulation, and that other factors are necessary (Mizukami et al., 2005). There have been 

studies into the role of AU-rich element in VEGFA regulation through HuR; however, a 

systematic analysis of the RNA decay in this system was far from complete (Kurosu et al., 

2011; Levy, 1998).  

In this thesis, I will discuss on two topics. In the first chapter, I will discuss on the 

contributions of RNA decay in the RNA abundance in an unstressed state. In addition, I will 

discuss on the role of RNA decay factors in mediating the RNA stability to affect the RNA 

abundance (Maekawa et al., 2015). In the second chapter, I will discuss on the effects of 

hypoxia on RNA decay and its effects on the RNA abundance. 
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Chapter One: Regulation of the eventual RNA abundance in the 

steady-state 

 

Rationale 

 

 The contribution of RNA decay to regulate the RNA abundance is far from elusive. To 

address this issue, in this chapter, I address the possible contribution of RNA decay on RNA 

abundance in the steady-state. Firstly, I analysed the correlation between active chromatin 

marks, and the eventual RNA abundance in HeLa cell, that is the concentration of RNA in a 

cell. This was done by comparing the histone intensities of histone H3K4me3 and RNA 

polymerase II ChIP-seq and RNA abundance estimated from RNA-seq.  Secondly, I analysed 

the RNA decay profile by BRIC-seq for HeLa cell and compared against the ChIP-seq and 

RNA-seq data. Through the comparison with ChIP-seq, RNA-seq and BRIC-seq, I was able to 

characterise the types of genes that undergo regulation through RNA decay.   
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Material and Methods 

Cell culture 

HeLa cells were cultured in high glucose Dubelcco’s Modified Eagle’s Medium (D-

MEM: Wako) supplemented with 10% Fetal bovine serum (FBS: Gibco) and 1% antimyotic-

antibiotic (Gibco) in a humidified incubator at 37ºC in 5% CO2.  

Chromatin immunoprecipitation sequencing (ChIP-seq) 

 ChIP-seq was conducted as previously conducted in (Kanai et al., 2011; Tanimoto et 

al., 2011). In brief, cells were grown to 5×107 and crosslinked in 0.5% formaldehyde solution 

(50mM 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES)-KOH pH7.5, 100mM 

NaCl, 1mM ethylendiaminetetraacetic acid (EDTA), 0.5 mM ethylene glycole tetraacetic acid 

(EGTA), 5.5% formaldehyde) by incubation for 10 minutes at room temperature. Crosslinking 

was quenched by the addition of glycine (150mM). Cross-linked cells were washed with 

phosphate buffered saline (PBS) and harvested using a scraper, and the pellet was frozen at -

80ºC to be stored.  

The frozen pellet was defrosted and resuspended in 5ml of Lysis buffer 1 (50mM 

HEPES-KOH pH7.5, 140mM NacCl, 1mM EDTA, 10% glycerol, 0.l5% NP-40 and 0.25% 

Triton X-100). The cell lysate was incubated on ice for 10 minutes and centrifuged at 1500 

rpm for 5 minutes at 4ºC and the supernatant was discarded. The cell pellet was resuspended 

in 5ml Lysis buffer 2 (10 mM Tris-HCl, pH8.0, 200 mM NaCl, 1mM EDTA and 0.5 mM 

EGTA) and incubated on ice for 10 minutes. The lysate was centrifuged at 1500 rpm for 5 

minutes at 4ºC and the supernatant was discarded. The cell pellet was resuspended in 1ml of 

lysis buffer 3 (10mM Tris-HCl, pH 8.0, 100mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% 

Na-deoxycholate and 0.5% N-lauroylsarcosine) and kept on ice. The supernatant was 

sonicated with a sonicator (Tomy Seiko) at maximum power with 16 cycles of 30 seconds 
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followed by 90 seconds of rest. 100µl of 10% Triton X-100 was added to the lysate, 

transferred to a new 1.5 ml tube and centrifuged for 10 minutes at 14,000 rpm at 4ºC. The 

supernatant was collected and transferred to a new 1.5 ml tube and 50µl of the lysate was 

aliquoted as a whole cell extract (WCE) DNA and stored at -20ºC.  

To conduct the immunoprecipitation, 100µl of protein A or G magnetic beads were 

washed on ice with 1ml blocking buffer (0.5% Bovine serum albumin (BSA) in PBS) three 

times using the magnetic stands. 250µl of blocking buffer and 10µg of the antibodies were 

incubated at 4ºC overnight on rotation. The antibodies-beads were washed 3 times with 1ml of 

blocking buffer and resuspended in 100µl blocking buffer on ice. 100µl antibody-bead mixture 

was added to the lysate and incubated at 4ºC overnight with rotation. The immunoprecipitated 

lysate was placed on the magnetic stand to remove the lysate and washed 9 times with 1ml 

wash buffer (50mM HEPES-KOH pH 7.5, 500mM LiCl, 1mM EDTA, 1% NP-40, 0.7% Na-

deoxycholate) on the magnetic stand. 1ml TE buffer with 10µl of 5M NaCl was added to the 

washed immunoprecipitated lysate and the supernatant was removed. The lysate is centrifuged 

for 3 minutes at 1000 rpm at 4ºC and the supernatant was removed. To elute, 200µl of the 

elution buffer (50mM Tris-HCl pH8.0, 10mM EDTA, 1% sodium dodecyl sulphate (SDS)) 

was added to the lysate and incubated at 65ºC for 15 minutes. The sample was centrifuged for 

1 minute at 14000 rpm at room temperature and 200µl of the supernatant was transferred to a 

fresh 1.5ml tube. The samples were incubated overnight at 65ºC and to reverse cross-link. In 

addition, 150 µl of the elution buffer was added to the WCE-DNA samples and incubated 

overnight.  

Both the immunoprecipitated samples and WCE samples are diluted with 200µl TE 

buffer. 8µl of RNase A is added and incubated at 2 hours at 37ªC, followed by the addition of 

4µl of Proteinase K and 7µl CaCl2 with 30-minute incubation at 55ºC. Following the RNase 
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and Proteinase K digestion, phenol/chloroform (1:1) purification was conducted by the addition 

of 400µl of phenol/chloroform followed by centrifugation for 10 mintues at 14000 rpm at room 

temperature.  The sample in the liquid phase was transferred to a new tube and the DNA was 

isolated using the addition of 16µl of 5M NaCl, 1µl ethachinmate and 880µl of 100% ethanol. 

The samples were cooled at -80ºC and centrifuged for 15 minutes at 14000 rpm at 4ºC. The 

pellets were washed with 100µl 70% ethanol and resuspended in 35µl distilled water. The 

quality of the samples was verified using qPCR. 

The antibodies used were the following: anti-H3K4me3 (Abcam, ab1012), anti-

H3K27Ac (Abcam, ab4729), anti-H3K27me3 (Abcam, ab6002), anti-H3K36me3 (Abcam, 

ab9050), anti-RNA polymerase II (Abcam, ab817). The libraries were made using Tru-seq 

ChIP-seq (Illumina) and sequenced on Illumina Genome Analyzer IIx or HiSeq 2000 with 36bp 

single read. 

With the analysis, the reads were base-called using CASAVA (Illumina) according to the 

manufacturer’s instructions and mapped to the human genome (hg19) using Eland (Illumina) 

according to manufacturer’s instructions. The peaks were called using MACS (v1.8.3) at 

default settings. Sequencing statistics are shown in supplementary table 5.  

RNA sequencing (RNA-seq) 

 RNA was harvested from approximately 1×106 cells using 1ml TRIzol reagent 

(Invitrogen) and purified as described in the manufacturer’s protocol. Approximately 1µg of 

RNA was used to create Illumina RNA-seq sequencing library using Tru-seq (Illumina) and 

sequenced on the Illumina HiSeq 2500 according to the standard protocol. 

 The sequenced tags were base-called using the standard manufacturer’s protocol and 

aligned to the rRNA genes were removed by Bowtie 2 (v2.1.0) (Langmead and Salzberg, 
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2012). Reads unmapped to rRNA gene sequences were mapped to the human genome (hg19) 

using Tophat2 (Kim et al., 2013; Trapnell et al., 2009) using RefSeq (Pruitt et al., 2012) and 

lincRNA databases (Cabili et al., 2011) (downloaded on 2nd July 2013) as gene models, 

where reads were only mapped if compatible. For the enhancer RNA (eRNA) analysis, 

enhancer regions were defined using ChIP-seq peaks using H3K4me3 and H3K27Ac HeLa 

data from the ENCODE project, without any overlap within 1.5kb of the entire length of gene 

body. To map the eRNA reads, Tophat (2.0.8) was used to map the reads without a reference 

gene model. For RefSeq mRNA, lincRNA and eRNA, reads were quantified using Cufflinks 

(Trapnell et al., 2010) without generating novel isoforms. The transcript with the highest 

RNA expression was used as a reference isoform for which the transcription start site (TSS) 

was based. The sequencing statistics were shown in table XX.   

Bromouridine-immunoprecipitation pulse chase sequencing (BRIC-seq) 

 Bromouridine immunoprecipitation pulse chase sequencing (BRIC-seq), was 

performed as conducted previously (Imamachi et al., 2014; Tani et al., 2012b). HeLa cells were 

incubated with 150 µM BrU containing high glucose D-MEM (Wako) supplemented with 10% 

FBS and 1% antimyotic-antibiotic in 5% CO2 humidified incubator at 37ºC for 24 hours. 

Following the incubation with BrU, media containing BrU is removed, and the cells are washed 

with D-PBS (Wako) three times followed with the addition of BrU free media. The cells are 

incubated for 15 minutes to start the pulse-chase at time 0h and harvested at indicated time 

points. For the sample without siRNA, the time points collected were 0 min, 15 min, 30 min 

45 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h and 12 h. For EXOSC5 knock-down samples and 

its siCTRL, there were five time points at following times: 0 min, 4 h, 8h, 12 h and 24 h. For 

STAU1 knock-down samples and its siCTRL, there were 11 times point at the following times: 

0 min, 15 min, 45 min 75 min, 105 min, 165 min, 225 min, 345 min, 465 min, 585 min and 

705 min.  siUPF1 and its control data were obtained from the previous study (Imamachi et al., 
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2012a), where the BRIC-seq time points were: 0 min, 4 h, 8 h and 12 h. Total RNA was isolated 

using Takara RNAiso Plus (Takara), according to the manufacturer’s protocol. Twelve 

micrograms of RNA of BrU-labelled total RNA were denatured by incubating at 80ºC for 1 

minute and added to anti-BrdU mAB-conjugated beads with 2µg of anti-BrdU mAB (clone 

2B1, MBL). The antibody-mRNA mixture was incubated at room temperature for 1 h by 

rotation. Beads were washed with 0.1 % BSA in PBS four times followed by RNA isolation 

using ISOGEN LS (Nippon Gene) to isolate BrU labelled RNA according to the 

manufacturer’s protocol. The isolated BrU labelled RNA were checked for its quality and 

quantity by Bioanalyzer 2100 (Agilent Technologies). NGS library preparation was conducted 

on the BrU labelled RNA using Tru-seq RNA-seq library preparation kit (Illumina), without 

polyA selection and run on HiSeq 2500 platform (Illumina).  

 The bioinformatics pipeline follows previously reported methods (Imamachi et al., 

2014; Tani et al., 2012a; Tani et al., 2012b). The sequenced reads are base-called in with 

CASAVA (Illumina) using the manufacturer’s protocol. The reads are filtered against rRNA 

genes using Bowtie2 and filtered reads are mapped (to mRNA, lincRNA and eRNA) as 

described in the protocol for the RNA-seq. The quantified reads in RPKM are normalized to 

time = 0 h to calculate the relative abundance and then normalized to GAPDH at respective 

time points to remove the variation in the immunoprecipitation efficiency. The normalized 

abundance is then fitted to decay curves of three different models. Model 1 is , 

where  is the time following the pulse-chase,  is the normalised RPKM at time (t),   is 

the relative RNA abundance at time (t) and is the decay constant. The half-life for model 1 

was calculated by . Model 2 is , where  and  are the 

different half-lives of two populations,  is the asymptomatic value. The half-life for model 2 

yt =
xt
x0

= e−λt

t xt yt

λ

t1/2 =
loge(2)

λ yt = ae
−λ1t + (1− a)e−λ2t λ1 λ2

a
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was calculated by the following equation . Half-life is nearly equal 

to , when is the minimal value. To assess the performance of the models, I used Akaike 

Information Criterion (AIC) to determine the fit relative to the increase in the parameter, where 

it is calculated by , where  is the number of parameters and is the 

residual sum of squares and I chose the model with minimum AIC value. 

Acquired data 

 The siUPF1 knockdown data for RNA-seq, BRIC-seq was used from a previous study 

(Tani et al., 2012a), with the sequence accession numbers DRA000591 and DRA001215. 

ENCODE (The ENCODE Project Consortium, 2011) and DBTSS (Yamashita et al., 2012) data 

were obtained from the URL shown in tables 1-2. 

siRNA transfection 

 siRNA transfection was conducted using Lipofectamine RNAiMAX reagent 

(Invitrogen) with 10nM as a final concentration according to the manufacturer’s protocol. The 

siRNA sequences are shown in table 3. Cells were harvested at 72 hours following the 

transfection and the knockdown efficiencies were determined using qRT-PCR and western blot. 

qRT-PCR 

 RNA were reverse-transcribed into cDNA using PrimeScript RT Master Mix (Takara) 

and the target cDNA were amplified by SYBR Premix Ex Taq II (Takara) according to the 

manufacturer’s protocol. GAPDH was used for normalization. Quantitative real-time reverse 

transcription PCR analysis was performed using a Thermal Cycler Dice Real Time System 

(Takara). The oligonucleotides used as primers are listed in table 4. 

Western blot 

 The cells were harvested using RIPA buffer (50mM Tris-HCl, pH7.4, 150 mM NaCl, 

Zt = (ae
−λ1t + (1− c)e−λ2t )2

t Zt

AIC = 2k − n loge(L) k L
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5 mM EDTA, 1% NP-40, 1% Na-deoxycholate, 0.1% SDS, 1% proteinase inhibitor cocktail 

(Sigma-Aldrich)). Proteins from lysates were resolved using 10% SDS-PAGE gel and 

transferred to a PVDF membrane (GE Healthcare). Membranes were incubated for 1 hour with 

primary antibodies indicated, followed by incubation with anti-mouse or anti-rabbit secondary 

antibodies conjugated to horseradish peroxidase (HRP). The blotted protein was imaged by 

using the ECL Prime plus (GE Healthcare), which uses HRP substrate to allow the 

chemiluminsecnce to be detected with Luminescent Image Analyzer LAS-4000 (Fujifilm). The 

following antibodies were used for as primary antibodies: rabbit anti-UPF1 (Abcam), rabbit 

anti-STAU1 (kindly provided by Dr. Ortín), rabbit anti-EXOSC5 (Sigma-Aldrich), rabbit anti-

actin (Sigma-Aldrich, 1978) and rabbit anti-tubulin (MBL). 

Integrated Analysis 

 To assign histone intensities to genes, for H3K4me3 and RNA pol II, peaks that were 

called by MACS were assigned to genes if any of the peak was present within +/- 1.5kbp of 

the TSS of the most expressed isoform (determined by Cufflinks). To count the intensity, wig 

files generated by MACS were used to calculate the number of tags in the given loci. Pearson 

product-moment coefficient was calculated by using the log-transformed H3K4me3 tags + 1, 

where 1 was used as a pseudocount to avoid errors generated by log(0) and log-transformed 

gene expression in RPKM + 1×10-6. Gene ontology data (Ashburner et al., 2000) were used by 

downloading from the National Center for Biotechnology Information (NCBI) on 8 May 2014. 

To calculate the enrichment of a particular gene ontology (GO) term, the number of genes that 

possessed the annotation of a particular GO term was calculated in the sample gene-list and to 

the total mRNA followed by hypergeometric test to calculate the probably of occurrence 

through p-value. The p-values were normalised for the multiple testing by Benjamini-Hochberg 

false-discovery rate (Benjamini and Hochberg, 1995) using custom script in R (R Core Team, 

2012). 
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Computational Simulation and Modelling 

 To conduct the simulation, linear regression was used to predict the eventual RNA 

abundance. Linear regression was conducted by using number of sequenced tags regardless of 

the presence of peaks. To calculate the tags for H3K4me3 and H3K27Ac, the frequency of 

sequenced tags was calculated +/- 1kb of the TSS. For H3K27me3 and H3K36me3, the gene 

body was used to calculate the ChIP-seq intensities through .wig files generated by MACS.  

The tag counts were then log-transformed and z-standardised (mean = 0 and standard deviation 

= 1) to build a linear model using the following: 

 

Where N is studentised read coverage. mRNA level is log-transformed RPKM+1×10-6, half-

life is log-transformed decay constant  and e is the residual error. 

 To simulate the contribution of RNA stability for individual genes, there was an 

assumption that RNA stability does not play a role to changes in the transcription initiation and 

the following equation was used for the simulation: 

 

Model A: mRNA level ~ b0NH3K4me3 + b2NH3K27Ac + b3NH3K27me3 + b4NH3K36me3 + e
Model B: mRNA level ~ b0NH3K4me3 + b2NH3K27Ac + b3NH3K27me3 + b4NH3K36me3 + b5half-life + e

λ = log(2)
half-life

⎛
⎝⎜

⎞
⎠⎟

dY
dt

= b − aY

when dY
dt

= 0

Y = b
a

RNAseqsiCTRL = b
asiCTRL

b = asiCTRL ⋅RNAseqsiCTRL

RNA half-life: T1
2
= log(2) / a

asiCTRL ⋅RNAseqsiCTRL = asiX ⋅RNAseqsiX

∴RNAseqsiX = asiCTRL ⋅
RNAseqsiCTRL

asiX
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where   

ENCODE Data Analysis 

 To analyse the ENCODE dataset for ChIP-seq and RNA-seq, cells that possess ChIP-

seq data for H3K4em3, H3K36me3 and RNA pol II with RNA-seq data was used for seven 

cell types (The ENCODE Project Consortium et al., 2012). In addition, the same analysis was 

conducted for the DLD-1 from DBTSS (Yamashita et al., 2012) (URLs in supplementary tables 

1-2). Average enrichment for the H3K4me3 ChIP-seq data were used to compare with their 

gene expression values. 

 

  

a and b are constants;
Y :  total RNAabundance
RNAseqy :RNA expression in RPKM
X :UPF1, EXOSC5 or STAU1
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Results 

Correlation between histone epigenome and the transcriptome data 

To investigate the contribution of transcription initiation in regulating the eventual 

RNA, I conducted ChIP-seq for histone H3K4me3 and RNA polymerase II to estimate the 

transcription initiation and I also conducted RNA-seq to estimate the RNA abundance, which 

were conducted on the Illumina HiSeq2500. For the analysis of ChIP-seq, I used MACS 

software (Zhang et al., 2008) to identify the peaks that were statistically significantly enriched 

with p-value of less than 1×10-10 in the sample compared to the negative control. In ChIP-seq 

of H3K4me3, I identified in total of 11116 genes with H3K4me3 peaks (2732, low peak genes 

8,384 high peak genes), with 6319 genes that possess both H3K4me3 and pol II, respectively, 

within 1.5kb of TSS, as shown in the Figure 1.  When the ChIP-seq peaks were quantitatively 

compared against the RNA abundance of the target genes, I observed a positive correlation of 

R=0.71 (p-value < 2.2x10-16), as shown in the Figure 2a and Figure 2b. Despite the correlation, 

there are genes that vary from the correlation. In particular, there were 2861 genes that show 

high H3K4me3 ChIP-seq intensity with less than 10 RPKM in RNA abundance (ChIP+/RNA- 

in upper-left hand corner of Figure 2b, example in Figure 3b), estimated through RNA-seq and 

2897 genes that show low H3K4me3 ChIP-seq intensity, no pol II ChIP-seq peak, with more 

than 10 RPKM in RNA abundance (ChIP-/RNA+ in lower-right hand corner of the Figure 2b, 

Example in Figure 3c). Through these comparisons, I identified discrepancies between the 

ChIP-seq and RNA-seq data. 
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Figure 1 
The correlation between the H3K4me3 ChIP-seq peaks and gene expression 
The positive correlation is present between the presence of the H3K4me3 peaks near the 
TSS and the gene expression values 
(Maekawa et al., 2015) 
 



 20 

 

  

1e+02

1e+03

1e+04

1e+05

1e+06

Below
1E-1

1E-1 to
1E0

1E0 to
1E+1

1E+1 to
1E+2

1E+2 to
1E+3

Above
1E+3

Gene Expression Values

H
3K

4m
e3

 In
te

ns
iti

es

***" ***" ***" ***"

1e+02

1e+03

1e+04

1e+05

1e+06

1e-01 1e+00 1e+01 1e+02 1e+03
Gene Expression Values

H
3K

4m
e3

 In
te

ns
iti

es

R=#0.71#

ChIP#(+)#/#RNA#(2)#

ChIP#(2)#/#RNA#(+)#ChIP#(2)#/#RNA#(2)#

ChIP#(+)#/#RNA#(+)#

Figure 2 
 
The relationship between the ChIP-seq intensities for H3K4me3 and gene 
expression 
A) Binned boxplot shows that there is a positive correlation between H3K4me3 

intensities and gene expression (RPKM). 
Scatterplot also shows the positive correlations between H3K4me3 intensities and 
gene expression values (RPKM). Genes can be classed as ChIP+/RNA+, 
ChIP+/RNA-, ChIP-/RNA+, ChIP-/RNA- depending on the H3K4me3 intensities 
and gene expression values 
(Maekawa et al., 2015) 
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Figure 3 
Examples of genes in different regions 
B) RPS8 as an example of ChIP+/RNA+ gene with ChIP-seq peak of H3K4me3 and RNA 

polymerase II with RNA accumulation 
C) PTGS2 as an example of ChIP+/RNA- gene with ChIP-seq peak of H3K4me3 and RNA 

polymerase II without RNA accumulation 
NES as an example of ChIP-/RNA+ gene without ChIP-seq peak but with RNA accumulation 
(Maekawa et al., 2015) 
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Correlation amongst RNA half-life, RNA abundance and chromatin marks 

To investigate the hypothesis that RNA decay is a factor that explain the discrepancy, 

I used BRIC-seq to determine the RNA stability. BRIC-seq uses 5’-bromouridine (BrU) as a 

nucleoside analogue to pulse-chase the RNA from BrU saturation at time = 0h, and it can be 

used to measure the RNA half-life at a genome-wide level by using next-generation sequencing 

(Imamachi et al., 2014; Tani et al., 2012a; Tani et al., 2012b). In this study, I sequenced 11 

time points from time=0 hours to 12 hours to determine the RNA stability, with the average of 

10 million sequenced mapped reads per time point. When I compared the RNA abundance and 

RNA half-life, there was an overall positive correlation where the increase in RNA half-life 

correlated with the increase in RNA abundance (Figure 4a). However, I detected no significant 

correlations between the intensity of active chromatin marks and RNA stability (Figure 4b). 

These observations suggest the potential of RNA stability in contributing to the mRNA 

abundance. 

 Through these observations, I speculated the possibility of the RNA stability to explain 

those that show discrepancies between chromatin marks and RNA abundance. To conduct the 

analysis, I compared the RNA half-lives between different regions in from the Figure 2b, I 

observed that ChIP+/RNA- region have significantly shorter RNA half-life in comparison to 

genes that show correlation between ChIP-seq and RNA-seq (Figure 5a), with ChIP+/RNA- 

genes having the median RNA half-life of 6.0h in comparison to the ChIP+/RNA+ genes 

having 11.6h. Through the correlation of ChIP-seq and RNA-seq, I was able to define genes 

that fit the least-squares regression line, which may potentially act as genes with default half-

lives, where genes in the 2x and 1.1x of the least squared regression line had 11.0h and 10.9 

hours respectively. 
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Figure 4 
Relationships between RNA half-life, chromatin marks and gene expression 
Correlation between RNA half-life and gene expression shows that genes with longer RNA 
half-lives correlate with genes with higher gene expresssion values 
Correlation between RNA half-life and H3K4me3 intensities and it shows that there are no 
statistical significance in the correlation between these two variables 
(Maekawa et al., 2015) 
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Figure 5 
A) Genes with ChIP+/RNA- half-lives have shorter RNA half-life  
Genes that are ChIP+/RNA- have the median half-life of 6.0h in contrast 10.9h of ChIP+/RNA+ 
genes with correlation between ChIP-seq and RNA-seq 
B) Genes that correlate between ChIP-seq and RNA-seq. Genes in orange are within 1.1x of the 
least squares regression line and genes in yellow are within 2x of the least squares regression line. 
(Maekawa et al., 2015) 
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Figure 6  
 
Relationship between ChIP-seq, RNA-seq and RNA half-life 
Genes that have shorter RNA half-life (t1/2 < 4h) have tendencies to be ChIP+/RNA- genes 
(Maekawa et al., 2015) 
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I defined genes with ‘short’ RNA half-life to be less than RNA half-life of 4 hours, as 4 hours 

was 2 standard deviations away from the median ChIP+/RNA+ genes. I overlaid the RNA half-

life to the scatterplot with RNA abundance and chromatin marks and it showed that genes with 

shorter RNA half-life tend to be in the ChIP+/RNA- region with 865 genes in ChIP+/RNA-

/short RNA half-life, further suggesting the potential role of RNA decay in regulating the RNA 

expression in HeLa cells (Figure 6). 

 In order to identify the types of genes that was in different regions, I conducted gene 

ontology analysis to determine GO terms that statistically enrich in each region. In the 

ChIP+/RNA+ region, I found that there are terms associated with RNA processing; for ChIP-

/RNA+ genes, GO terms enriched in cytoplasm as a location. Interestingly, I found that genes 

in ChIP+/RNA- region are strongly enriched in terms associated with transcription factors and 

even more so for ChIP+/RNA- genes with short RNA half-life (t1/2 < 4 h).  

 In addition, I conducted a simple computational simulation to predict the RNA 

abundance when the RNA stability was simulated to be 10.9h (median RNA half-life for 

ChIP+/RNA+ 1.1x) and fitted against the original ChIP-seq and RNA-seq. I found that out of 

total of 9407 genes, 1540 genes and 229 genes were simulated to have the correlation between 

ChIP-seq and RNA-seq data, between 2x and 1.1x of the least-squared regression line; thus, 

suggesting the role of RNA stability in mediating changes to the RNA abundance (Figure 7). 

Furthermore, I conducted a linear regression using the normalised Z-scores of H3K4me3, 

H3K27me3, H3K36me3, Pol2 and RNA decay constant and I tested the fit with and without 

RNA decay constants. I found that the fitting increased from R=0.41 to R=0.58 upon the 

addition of RNA decay component (Figure 8). 
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Table 1 

List of Gene ontology enrichments 

ChIP(+) / RNA(+) genes 

GO ID GO Term GO Genes FDR 

GO:0044822 

poly(A) RNA 

binding 618 6.00E-216 

GO:0006412 translation 293 3.86E-196 

GO:0010467 gene expression 387 5.61E-162 

 

ChIP (-) / RNA (+) genes 

GO ID GO Term GO Genes FDR 

GO:0005737 cytoplasm 138 2.26E-02 

GO:0070062 

extracellular 

vesicular exosome 74 2.61E-02 

GO:0005635 nuclear envelope 15 2.81E-02 

 

ChIP (+) / RNA (-) genes 

GO ID GO Term GO Genes FDR 

GO:0003677 DNA binding 378 2.96E-28 

GO:0006355 

regulation of 

transcription, DNA-

templated 266 4.44E-17 

GO:0006351 

transcription, DNA-

templated 361 8.60E-17 
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ChIP (+) / RNA (-) / short RNA half-life genes 

GO ID GO Term GO Genes FDR 

GO:003677 DNA binding 216 5.19E-58 

GO:0006351 

transcription, DNA-

templated 192 1.37E-37 

GO:0006355 

regulation of 

transcription, DNA-

templated 147 5.13E-34 
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Figure 7 
 
Computational simulation on the role of RNA stability on RNA abundance 
 
This was done through normalising the RNA decay of each gene to 10.9 hours and predict RNA 
decay Left and right panels show the measured and predicted RNA abundance, respectively. Top 
and bottom panels show genes when the ‘correct’ measurement is defined as 1.1x and 2x, 
respectively. 
(Maekawa et al., 2015) 
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Figure 8 
Linear regression to predict RNA abundance 
 
A ) shows linear regression of H3K4me3, RNA Pol2, H3K27me3 and H3K36me3 
B) shows linear regression of a with a linear RNA decay constant component. 
(Maekawa et al., 2015) 
 



 31 

 

Role of RNA decay factors in mediating changes to the RNA abundance 

 To identify the potential role of RNA decay factors in mediating changes to the RNA 

abundance through the RNA stability, I investigated the role of UPF1, EXOSC5 and STAU1.  

For EXOSC5 and STAU1, I conducted siRNA knockdown to these factors and conducted 

RNA-seq and BRIC-seq to identify the targets of these RNA decay factors. With UPF1, I used 

the previous siRNA followed by RNA-seq and BRIC-seq in the same cell line from the 

Akimitsu laboratory. By looking at the overlap of genes that were up-regulated in RNA 

abundance by more than two-fold (UPF1 and EXOSC5) or 1.5-fold (STAU1) and elongated in 

RNA half-life by more than two-fold (UPF1 and EXOSC5) or 1.5-fold (STAU1), I identified 

266, 219 and 39 genes upon depletion in UPF1, EXOSC5 and STAU1, respectively. Of those 

target genes 23, 40 and 4 were in the ChIP+/RNA-/short RNA half-life region of the Figure 2, 

which is 3, 5 and 0.5% out of 895 genes in this region, for UPF1, EXOSC5 and STAU1 

respectively (Figures 9-11). I also examined the overlap between the target genes and found no 

evidence of overlap. Through these analysis, I was able to start to observe the extent of RNA 

decay factor contribution for limited RNA decay factors. 

Interestingly, when I analysed genes that were elongated in RNA half-life upon siRNA knock-

down to UPF1 and EXOSC5, I observed that 975 and 6309 genes showed elongation of RNA 

half-life without up-regulation of the RNA abundance. This phenomenon could be explained 

by the feedback of RNA decay to transcription factor, where the elongation of RNA decay to 

a negative regulator of transcription leads to the increase in the transcription repressor, which 

increase in the protein expression and lead to the repression of the downstream genes that 

oppose the effect of RNA stability increase. To test the hypothesis, I conducted a motif search 

of the promoter regions for those 975 and 6309 genes (Figure 12). In the case of UPF1, I was 

able to detect statistically significant binding motif for HIC1, a zinc finger transcription factor 
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and validate the changes in expression and RNA half-life for HIC1; however, I could not 

conduct a ChIP as no working antibodies were available (Figure 13). 
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siUPF1_1: 50.8 

siControl1: 12.0 

pol II: 9167 
H3K4me3: 71904 GADD45A A 

siControl1: 3.51 

H3K4me3: 20739 
pol II: 2046 

siEXOSC5_1: 12.9 

FAM120C B 

siControl: 5.91 

H3K4me3: 39892 
pol II: 3933 

siSTAU1: 11.18 

CDKN2B C 

D E F 

Figure 9 
Examples of genes that are regulated through RNA decay factors 
D) and D) Example of GADD45A that is regulated by UPF1 
E) and E) Example of FAM120C that is regulated by EXOSC5 
and F) Example of CDKN2B that is regulated by STAU1 
(Maekawa et al., 2015) 
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Figure 10 
The targets of RNA decay factors for ChIP+/RNA- genes 
Genes in colours show genes that are targeted by UPF1 (red), EXOSC5 (blue) and STAU1 (green). 
Genes in grey are genes that are not regulated by RNA decay factors 
(Maekawa et al., 2015) 
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A B 

C 

Figure 11 
Computational simulation to show the effects of changes to the RNA half-life upon siRNA 
knockdown to RNA decay factors A) UPF1, B) EXOSC5 and C) STAU1 
(Maekawa et al., 2015) 
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c" V$CES1P54_02 

V$AREB6_02 

V$HIC1_02 

Figure 12 
Transcription factor search for ENCODE and DBTSS cell types 
These transcription factor motifs were enriched in genes suspected for negative 
feedback 
(Maekawa et al., 2015) 
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Figure 13 
Transcription factor that may be regulated by RNA decay factors 

A) and B) HIC1 is induced upon UPF1 knockdown with changes to the RNA decay 
B) C) siUPF1 in read and siCTRL in blue 
 

(Maekawa et al., 2015) 
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Figure 14 
Validation of RNA decay factor knockdown 

A) And D) Validation of UPF1 knockdown by qRT-PCR (A) and Western blot (D) 
B) And E) Validation of EXOSC5 knockdown by qRT-PCR (B) and Western blot (E) 
C) And F) Validation of STAU1 knockdown by qRT-pCR (c) and Western blot (F)  

 
(Maekawa et al., 2015) 
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Analysis of ENCODE cell lines 

To evaluate the role of RNA decay contributions on mRNA abundance for genes encoding 

transcription factors, I used ENCODE data and DBTSS data to analyse on the types and 

distribution of genes that have the chromatin marks but without the accumulation of RNA. As 

ENCODE and DBTSS datasets do not possess RNA stability data, I analysed ChIP-seq and 

RNA-seq data and I ran the dataset through similar criteria to the previous analysis. I found 

that there were on average of 338 candidate genes that were ChIP+/RNA- with 2705 genes that 

are specific to the particular cell type (Figures 15 and 16). When I ran the GO analysis, I found 

that 7 out of 8 cell types available had shown statistically significant enrichment of gene 

ontology terms associated with DNA binding. This suggests a more general role of 

transcription factors having shorter RNA half-life. 
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Figure 15 
Number of genes that were ChIP(+)/RNA(-) 
Barplot showing the number of genes that were ChIP+/RNA- 
(Maekawa et al., 2015) 

Figure 16 
Frequency of overlap of genes in the ChIP+/RNA- region 
2705 genes are unique in one particular cell type 
(Maekawa et al., 2015) 
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R = 0.38 R = 0.32 

R = 0.64 R = 0.40 

R = 0.57 R = 0.34 

R = 0.70 R = 0.60 

Figure 17 
Correlation between ChIP-seq and RNA-seq data in ENCODE and DBTSS cell-line 
 
y-axes are the ChIP-seq intensities and x-axes are the RNA expression data (RPKM) 
R is calculated with log transformed Pearson’s correlation coefficient 
 
(Maekawa et al., 2015) 
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Distinct regulation of non-coding RNAs in comparison with mRNAs 

 In addition to mRNAs, I also investigated the role of RNA decay in determining the 

level of RNA abundance, as previous studies have identified that ncRNA have low expression; 

which some can be attributed to RNA decay. To analyse the regulation of ncRNA, here I 

focused on the long intergenic non-coding RNA (lincRNA) and used ChIP-seq and RNA-seq 

to determine the number of lincRNA that are potentially regulated. Interestingly, out of 141 

lincRNA in HeLa cells, 103 lincRNA had short RNA half-life, with 84 lincRNA being in the 

ChIP+/RNA- region of the figure 18. I analysed the contribution of UPF1 and EXOSC5 to 

regulate these lincRNA, as there are recent reports on the possible role of UPF1 in regulating 

ncRNA and EXOSC5 is also thought to be regulating ncRNA. Interestingly, no lincRNA was 

regulted by UPF1, whereas 26 were regulated by EXOSC5; suggesting a more extensive role 

of exosome in regulating the lincRNA but not the nonsense mediated decay in this primitive 

analysis (examples in figure 19). In addition to the lincRNA, I investigated the role of enhancer 

RNA (eRNA), that is transcribed from the enhancer regions of the genome. To identify 

enhancers, I used H3K4me1 and H3K27ac ChIP-seq, from ENCODE dataset of HeLa cells, 

which are representative chromatin marks for active enhancers. I defined enhancers as loci that 

possess both H3K4me1 and H3K27ac peaks that are 1.5kb away from any RefSeq gene. Out 

of 49903 genomic locations identified as potential enhancers, 77 and 358 eRNA loci that are 

potentially regulated by UPF1 and EXOSC5, respectively, with an example in figure 20. 

Although the study is still primitive, it highlights the different regulation that ncRNA receives 

in comparison with mRNA and that they may be controlled by these RNA decay factors. 
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Figure 18 
Correlation between ChIP-seq and RNA-seq (A) and with RNA half-life (B) 

A) Scatterplot for ChIP-seq and RNA-seq for HeLa cells for lincRNA 
Majority of genes have low gene expression values as expected but many still have ChIP-
seq signal 

B) With RNA decay data, it shows that majority of lincRNA genes have shorter RNA 
half-life (red dots t1/2 < 4h) 

 
(Maekawa et al., 2015) 
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Figure 19 
Examples of genes that could be regulated by UPF1 and EXOSC5 for lincRNA 

A) And C) example of a lincRNA regulated by UPF1 
B) And D) example of a lincRNA regulated by EXOSC5 

 
(Maekawa et al., 2015) 
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Figure 20 
Example of an eRNA possibly regulated by RNA decay 

a) By UPF1 b) by EXOSC5 
 
(Maekawa et al., 2015) 
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Discussion 

 Through this study, I was able to determine the contribution of RNA decay in mediating 

the RNA abundance levels. I identified that RNA decay play an important role in subset of 

genes for those that have inconsistencies between the ChIP-seq and RNA-seq. I was able to 

identify 865 genes with inconsistency between ChIP-seq and RNA-seq and also showed shorter 

RNA half-life. Through the gene ontology analysis, I was able to identify that these 865 genes 

were statistically enriched in GO terms associated with transcription factors. The analysis of 

different cell lines in the ENCODE dataset has come to the similar conclusions regarding the 

inconsistencies between ChIP-seq and RNA-seq and that genes that are ChIP+/RNA- are 

enriched in transcription factors for majority of cell lines. In addition, I was able to evaluate 

the contributions of three RNA decay factors and I found that out of 865 genes, 60 genes (8.5%) 

were targeted by UPF1, EXOSC5 and STAU1 to control their RNA abundance through their 

RNA decay. I also conducted analysis on long ncRNA and eRNAs, as they are known to have 

lower RNA abundance. I was able to identify that the lincRNA and eRNA seemed to have 

different modes of regulation in contrast to the mRNA as majority of RNA were ChIP+/RNA- 

with short RNA half-life. To my knowledge, this is one of the first attempts to directly compare 

ChIP-seq, RNA-seq and RNA half-life information to understand the regulatory mechanisms 

behind human cells.  
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Chapter Two: Contribution of effects on RNA decay to hypoxia stress 

Rationale 

In the previous chapter, I have predominantly analyzed the absolute level of RNA 

decay. In this chapter I will discuss on the role of RNA decay under stress to analyze the 

contributions of the RNA decay in mediating changes to the transcriptome, in contrast to 

transcription. To investigate on the effect of changes to the RNA decay, I used hypoxia as a 

model in DLD-1 human colorectal cancer cell-line. Hypoxia was used as a model as the role 

of transcription is relatively well established in hypoxia response, as hypoxia inducible factors 

(HIFs) have been identified and extensively studied (Keith et al., 2011; Keith and Simon, 2007; 

Kim et al., 2006; Semenza, 2010; Semenza, 2014; Tanimoto et al., 2011; Tsuchihara et al., 

2009).  

In this chapter of the thesis, I highlight the extent of the RNA decay contributions to 

the RNA abundance upon cellular stress to uncover the extent of the contribution of RNA 

stability changes in the changes to the RNA expression. Firstly, I profiled the RNA stability by 

using BRIC-seq for hypoxia and normoxia in DLD-1 cancer cells. Secondly, I investigated the 

role of RNA stability on the change in RNA abundance by comparing the BRIC-seq to the 

RNA-seq data. Following the comparison, I conducted some computational simulation to 

predict RNA abundance in hypoxia with the contribution of RNA decay upon hypoxia 

stimulation. Finally, I analysed the potential trans-factors that could play a role in the feedback 

loop of gene regulation in hypoxia. 
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Materials and Methods  

 

Cell culture 

DLD-1 cells were grown in high glucose DMEM supplemented with anti-anti and Fetal 

bovine serum in a humidied 5% CO2 incubator. Hypoxia condition was induced with 1% O2 

condition for 24 hours. 

 

Western blot 

The cell culture media was removed from the cell then washed with PBS. Cells were 

then treated with 200 µl cell lysis buffer (50mM Tris-HCl, 1mM EDTA, 1% Triton X-100, 

160mM NaCl) directly on to the cells. Cells were scraped then boiled at 100ºC for 5 minutes. 

Proteins were quantified by BCA and run on 7.5% SDS-PAGE. Proteins were transferred to 

the PVDF membrane with a semi-dry blot and the membrane was blocked with 5% BSA at 

room temperature for 1 hour and primary antibodies (anti-HIF1: Novus, anti-ACTB: Abcam) 

were diluted by 1:1000 (HIF1) and 1:2500 (ACTB) with 5% BSA at 1hour. Membrane was 

incubated with diluted secondary antibodies (1:25000) at room temperature for 1 hour. The 

imagine was conducted using ECL Prime Western blot (GE Healthcare) and imaged on LAS-

4000 system (GE Healthcare). 

 

BRIC-seq 

BRIC-seq was conducted as above and previously reported (Tani et al., 2012b) with the 

following time-points: 0h, 0.25h, 0.5h, 1h, 1.5h, 2h, 3h, 4h, 6h, 8h, 10, 12h. The hypoxia 

condition was conducted in a 1% O2 over 24 hours and the control normoxia at 20% O2. The 

immunopurified RNA were sequenced using Illumina Tru-seq RNA-seq library preparation kit 

without polyA selection on HiSeq 2500. The sequencing statistics are on the supplementary 
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table 11. The reads were mapped against rRNA genes to remove rRNA in the library by 

Bowtie2 (Langmead and Salzberg, 2012) then mapped to the human genome reference of hg19 

with GENCODE gene annotation (v19) using Tophat2 (Kim et al., 2013; Trapnell et al., 2009) 

and the mapped sequences were quantified using Cufflinks (Trapnell et al., 2010). The RNA 

abundances were normalized to ACTB, to account for the immunoprecipitation efficiency 

variances. The normalized RNA abundance was normalized to time 0h to calculate the relative 

RNA remaining for the particular gene. The relative RNA abundances were fitted against the 

one-phase exponential decay model and to calculate the decay constant and the residuals. The 

decay constant was then converted to RNA half-life using t1/2 = ln(2)/decay constant. The 

genes were then filtered for the fitting. The half-life was used if the gene had r2 > 0.7 and with 

a positive RNA half-life. For genes that had RNA half-life of more than 24 hours, the half-life 

was set to 24 hours as a maximum possible RNA half-life to avoid over-extrapolation.  

 

ChIP-seq and RNA-seq 

RNA-seq, and ChIP-seq raw sequence reads were obtained from the previous study 

(Tanimoto et al., 2011). RNA-seq was mapped to the human genome (hg19) using Tophat2 

with GENCODE annotation (V19) (Kim et al., 2013; Trapnell et al., 2009) and quantified with 

Cufflinks (Trapnell et al., 2010). 

ChIP-seq was mapped to the human genome (hg19) using Bowtie2 (Langmead and 

Salzberg, 2012) and the peaks were called using MACS v1.8.2 (Zhang et al., 2008). The peaks 

were assigned to genes by assessing whether the peak summit of ChIP-seq was within +/- 1.5kb 

of the TSS of the longest isoform in GENCODE v19 database.  
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Gene ontology analysis 

Gene ontology database was obtained from gene ontology database (Ashburner et al., 

2000). The presence of each gene ontologies was counted for the background (all mRNA 

genes) and the subset of genes of interest. To find the statistical significance, hypergeometric 

test was used to calculate the p-value with False-discovery rate (FDR) to correct for the 

multiple testing. 

 

Transcription factor and RNA binding factor enrichments 

To find the enrichment of transcription factor binding sites, Regulome DB (Boyle et 

al., 2012) was used. It has over 400 transcription factor ChIP-seq from the ENCODE dataset. 

To conduct the analysis, I used any loci that is marked as level 5, where the binding is inferred 

from ChIP-seq data. I analysed the presence of the ChIP-seq binding sites for -500 bp to +100 

bp of the TSS and compared between the background and the gene list of interest.  The 

statistical enrichment analysis was conducted using hypergeometric distribution.  

HuR binding sites were investigated by using the CLIP-seq data from (Lebedeva et al., 

2011), where they had the conservative estimates for the genes that are bound by HuR in HeLa 

cells. These HuR binding was compared between the background and the sample to find the 

enrichment and the statistical analysis was conducted using hypergeometric distribution. 

 

Computational simulation to predict the RNA abundance 

The computation simulation was conducted by normalizing the RNA decay constant in 

hypoxia by RNA decay constant in normoxia and multiplying with RNA abundance.   

 

 

RNAhypo =
λnorm ⋅RNAnorm

λhypo
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Results 

Comparison of RNA half-lives in hypoxia and normoxia 

I used the previous method of BRIC-seq (Imamachi et al., 2014; Tani et al., 2012b) to 

determine the RNA half-lives of DLD-1 colorectal adenocarcinoma cell-lines, where the 

nascent RNAs are labelled with 5’-bromouridine (BrU) and pulse-chased in a time-course over 

12 hours, with 11 time points. The labelled RNAs were immunoprecipitated through anti-BrU 

antibodies and then sequenced through an RNA-seq on Illumina HiSeq2500, where we 

sequenced on average of 20 million reads per time point (Detailed sequencing statistics on the 

Table 13). The reads were mapped to the human genome (hg19) using Tophat2 mapping 

software aided by the Gencode v19 gene model and the gene expression was quantified by 

normalisation using reads per kilobase exon per million mapped reads (RPKM). By using 

RPKM normalised RNA expression, the fraction of the RNA remaining were calculated from 

the start of the pulse-chase, and also normalised by the stable gene (ACTB) in order to minimise 

the variation between time-points. The obtained relative abundances were used to calculate the 

RNA half-life where they were modelled to the one-phase exponential decay, the simplest 

model of decay function. I was able to obtain the RNA half-life measurements of 4902 and 

4546 genes, with r2 value of more than 0.7 and initial RNA expression of more than 5 RPKM, 

in hypoxia and normoxia respectively (Figure 21). When I compared the distributions of RNA 

decay, I observed elongation of the overall RNA-life in the hypoxia condition, with the RNA 

half-lives being 5.62 and 4.59 hours in hypoxia and normoxia respectively (Figure 22). When 

I compared the RNA stability at the gene level, we found 361, 50 and 3552 genes that were 

elongated, shortened and unchanged in RNA stability when subjected to hypoxia (Figure 22), 

further suggesting that RNA becomes more stable on average; however, the changes in the 

RNA stability is not uniform, with gene specific changes to RNA decay in hypoxia. 
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Interestingly for 361 genes that increase in RNA half-life by more than two-fold, gene ontology 

terms for genes involved in regulation of DNA-templated transcription is significantly 

enriched; whereas I fail to see the enrichment of any gene ontologies for 50 genes that shorten 

in RNA half-life. This suggest a potential role of RNA decay induced transcriptional network 

change that mediate changes in the eventual RNA abundance. Another point is that the changes 

in that there is an inverse correlation between the original (normoxia) RNA half-life to the 

changes in RNA abundance (Figure 23) One example of gene that is involved in the regulation 

of transcription that is elongated in RNA half-life that is KDM3A (also known as JMJD1A) 

shown in Figure 22, which activate target genes through histone demethylation of the histone 

H3K9me1 and H3K9me2. KDM3A is a factor that is known to be regulated by HIF-1 (Lendahl 

et al., 2009) and KDM3A regulates GLUT3 (SLC2A3) aided by cooperative DNA binding of 

HIF-1 (Mimura et al., 2012). Du et. al. identifies that endogenous miRNA MiR-155 directly 

targets KDM3A and downregulate KDM3A nasopharyngeal carcinoma (Du et al., 2011). This 

suggest the potential role of RNA decay in mediating genes that are biologically relevant for 

hypoxia, with KDM3A as an example.  

One of the regulators that are known to regulate genes in the hypoxia response include HuR,  

which is a known regulator to stabilise VEGF mRNA, by direct binding to the target 

mRNA(Levy et al., 1998).  To investigate on the effect of HuR, I used CLIP-seq data from 

previous publication(Lebedeva et al., 2011) to obtain the positions of HuR binding in the 

transcriptome and observe the overlap with those that are elongated in RNA half-life. Out of 

361 genes that have their mRNA stabilised in hypoxia, 40 genes had HuR binding sites, which 

was statistically significant (p-value: 5.26×10-5). In the example of KDM3A, I was able to 

detect a CLIP-seq peak at the 3’UTR of the KDM3A gene, suggesting that HuR is involved in 

the elongation of RNA half-lives. 
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Figure 21 
Distribution of RNA stabilities for DLD-1 in hypoxia and normoxia 
RNA decay was modelled to the exponential decay model in order to compare between two 
conditions.  
R2 value is the fit to the decay model.  
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Comparison of RNA half-lives in hypoxia and normoxia 
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Figure 23  
Comparison of original RNA half-life to the changes of RNA half-life 

R=-0.22 
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Comparison between changes in RNA expression and changes in RNA decay 

In order to identify the contribution of changes in RNA decay that determine the 

eventual level of RNA expression, I compared the BRIC-seq based RNA decay data to the 

RNA-seq based eventual RNA abundance data from the previous study (Tanimoto et al., 2011). 

I directly compared the fold-change of RNA half-lives and RNA expression as shown in the 

scatterplot (Figure 25). For 179 genes that showed more than two-fold increase in the eventual 

RNA abundance upon hypoxia, 20 genes showed elongation of RNA half-lives by more than 

two-fold in hypoxia and 158 genes showed no changes in RNA half-lives, consistent with the 

idea that transcription is the major player in regulating the changes of gene expression in 

hypoxia. This includes the example of KDM3A from the previous figure, which is up-regulated 

by more than two-fold in the eventual RNA abundance as well as the increase in its mRNA 

stability. 

To identify the contributions of hypoxia inducible factors, I used HIF1A ChIP-seq data 

in hypoxia and normoxia conditions from the previous study to identify genes that are targeted 

by HIF1A. HIF1A is a sequence specific transcription factor that is expected to bind to hypoxia 

element in cis-regulatory regions of genes that they transcriptionally activate in hypoxia. I used 

MACS software (v1.8.9) to call the peaks that significantly enrich in a particular locus in 

comparison with the background control. When I set the p-value threshold for 1×10-10 to call 

the ChIP-seq peaks, I identified 618 peaks in the whole-genome corresponding to 172 genes in 

hypoxia. To identify the target genes of HIF1A, I assigned HIF1A peaks to genes, if the loci 

of the peak was between 1kb either side of the transcription start sites (TSS). I assigned 172 

peaks to genes that could be compared against RNA decay and RNA abundance, and I found 

that 36 genes that showed HIF1A binding showed no changes in RNA stability, in comparison 
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to 9 genes that showed HIF1A binding and showed elongation in RNA stability in hypoxia, 

suggesting that genes that are regulated through RNA decay do not tend to be regulated by 

HIF1A, and that they have separate mechanisms (Figure 26). In the example of KDM3A, it is 

regulated by both HIF-1 and RNA half-life. When I additionally analysed the epigenome, I was 

able to observe the increase in the levels of H3K4me3, pol2, HIF1 and RNA abundance, 

suggesting that both the transcription initiation and RNA decay are involved in regulating 

KDM3A. 

 In addition, I was able to identify 301 genes that show increase in RNA stability in 

hypoxia without changes in the eventual RNA abundance. If I assume the simplest model of 

regulation, the increase in the RNA half-life by two-fold will increase the RNA abundance by 

two-fold, if the rates of RNA generation were constant. It means that these 301 genes are under 

an alternative methods regulation other than RNA decay to balance the increase in stability of 

RNA. Interestingly, when these 301 genes were subjected to gene ontology analysis, GO terms 

for transcription factor activities were enriched suggesting that transcription factor undergoes 

tight regulatory process, which is consistent with the fact that mRNA encoding transcription 

factors tend to have shorter RNA half-lives, therefore they have more potential in being able 

to use RNA half-life. One of the example of this is ELK4, which is ETS domain containing 

transcription factor (Figure 27), where there are little changes to the epigenome, lack of HIF-1 

binding and lack of changes to the RNA abundance, but with changes to the RNA decay (Figure 

25).  
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Figure 25  
Comparison of the changes to the RNA half-life and RNA abundance 
Top figure shows the scatterplot between the fold change (hypoxia/normoxia) of RNA 
expression and RNA half-life. 
Bottom figure shows the frequency of occurrence  

Fold change of RNA expression 
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Figure 26 
Comparison of the changes to the RNA half-life and RNA abundance for HIF-1 peaks 
The same graph as figure 24 with genes targeted by HIF1 shown in orange. 
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Figure 27 
An example of ELK4, a gene that change in RNA stability without changes to the 
epigenome or the RNA abundance 
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Computational simulation to find the contribution of RNA decay in mediating changes in the 

transcriptome 

 I evaluated the contribution of RNA decay through simple computational simulation to 

predict the eventual RNA abundance, so that the contribution of the RNA decay can be inferred. 

In order to achieve the simulation, I simply used changes in the RNA decay constants and 

multiplied by the RNA abundance in normoxia (in RPKM) to estimate the RNA abundance in 

hypoxia. When the simulation was conducted, I observed that out of 179 genes that are up-

regulated in the eventual RNA abundance by more than two-fold in hypoxia, there were 10 

genes (5.6%) that could predict more than 80% of the changes in the eventual RNA abundance 

through changes in the RNA decay (Figure 28). In contrast, for 559 genes that are down-

regulated in the eventual RNA abundance by less than 0.5-fold in hypoxia, the simulation was 

able to explain 133 genes (23.8%) that could explain the 80% of the changes in the eventual 

RNA abundance (Figure 29). This suggests that the on average the contribution of RNA decay 

is modest in regulating the RNA abundance, especially for genes that are up-regulated in 

hypoxia.  
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Figure 28 
Simulation of effects of changes in RNA decay on RNA abundance for up-regulated genes 
Left panel shows the absolute change of RNA abundance and right panel shows the percent 
of the measured RNA difference between hypoxia and normoxia. 



 63 

  

  

−20000

−15000

−10000

−5000

0

0 200 400
Ranked Genes

C
ha

ng
es

 in
 R

N
A 

ab
un

da
nc

e 
(R

PK
M

)

Measured difference
Simulated difference −800

−400

0

0 200 400
Ranked Genes

Pe
rc

en
t r

eg
ul

at
ed

 b
y 

R
N

A 
st

ab
ilit

y

Figure 29 
Simulation of effects of changes in RNA decay on RNA abundance for dowm-regulated 
genes 
Left panel shows the absolute change of RNA abundance and right panel shows the percent 
of the measured RNA difference between hypoxia and normoxia. 
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Potential feedback mechanisms 

 I investigated on the regulatory mechanisms of genes that show elongation in RNA 

half-life without changes in the eventual RNA abundance, by investigating the enrichment of 

ChIP-seq peaks around the TSS of those genes. This was done by using the RegulomeDB 

(Boyle et al., 2012), which collates ChIP-seq of numerous transcription factors as well as other 

functional genomics datasets from ENCODE ChIP-seq data. When compared to the 

background, there were transcription factors that enrich in between -500 to +100 bp of the TSS, 

including E2F1 (Table 2). E2F1 belongs to the E2F family of transcription factors that activate 

their target gene, and E2F1, E2F2 and E2F3 are all down-regulated in hypoxia (Figure 30). 

This suggest that these E2F factors could play a role in the negative feedback of these target 

genes. 
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Figure 30  
Expression of E2F family genes from RNA-seq data 
These E2F activators are down-regulated in hypoxia and potentially targeting genes that are 
enriched in E2F1 binding sites. 
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Gene ID Description List FDR 

TBP TATA-box binding protein 229 1.27E-21 

ELF1 E74 like ETS transcription factor 1 222 3.98E-21 

POLR2A RNA polymerase II subunit A 273 1.01E-20 

E2F1 E2F transcription factor 1 210 1.59E-20 

HEY1 hrs-related family bHLH transcription 

factor with YRPW motif 1 

217 1.04E-19 

 

Gene ID Description List P-value 

HuR Hu antigen binding R protein 39 1.51E-06 

  

Table 2 
Transcription factor enrichment for promoters of genes that show changes in RNA decay 
without changes in the RNA abundance 
Enrichment was conducted by using the RegulomeDB  (Boyle et. al. 2012) with elements 
that are within -500bp and +100bp of the TSS. 

Table 3 
RNA binding factor that may explain the elongation of RNA decay 
HuR binding sites were obtained from Lebedeva et. al. 2011 and enrichment conducted 
against the background 
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Supplementary figure 1 
Confirmation of the hypoxia condition through western blot 

HIF-1 ACTB 
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Conclusion 

In this chapter I have characterized the RNA decay profiles for cancer cells that are subjected 

to hypoxia. Through this analysis, I was able to observe that the RNA in general is more stable 

in hypoxia; however, it is gene specific rather than a general form. I was able to indicate the 

possibility that some key genes that are up-regulated at the transcriptional initiation level is 

also regulated at the RNA decay level including KDM3A. I identified 361 genes that showed 

stabilization in its RNA upon hypoxia; however, only 20 genes showed increase in the RNA 

abundance as well, suggesting a potential feedback through other mechanisms. I was able to 

infer that HuR binding occurs for a subset of genes that are elongated in RNA half-life, 

suggesting the possibility of HuR mediated RNA stabilization and it included KDM3A. I was 

able to identify that those genes that increase in RNA stability without changes in the RNA 

abundance have enrichment for transcription factors including E2F1, which as an activator it 

is downregulated in hypoxia. This is further evidence to suggest that feedbacks do occur.  

 

Through these analyses, I was able to start to uncover the extent of the contributions of RNA 

decay, which could play an important role in mediating the gene expression. As previously 

reported, RNA decay does not seem to be the major player in determining the absolute levels 

of RNA abundance nor the changes in the RNA abundance upon a stimulus. However, it is still 

biologically relevant as it is involved in selected subset of genes, especially transcription factor 

that I have highlighted here. The improvement in the resolution of the understanding of 

different layers of gene expression is only going to increase the current knowledge of biology 

and to the disease.  
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Supplementary tables 

 

Cell 

Types 

ChIP-seq 

Condition

s 

URL Project 

GM1287

8 
H3K4me3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneGm128

78H3k04me3StdPkV2.broadPeak.gz 

ENCOD

E 

GM1287

8 
Pol II  

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeOpenChromChip/wgEncodeOpenChromChip

Gm12878Pol2Pk.narrowPeak.gz 

ENCOD

E 

GM1287

8 

H3K36me

3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneGm128

78H3k36me3StdPk.broadPeak.gz 

ENCOD

E 

H1-hESC H3K4me3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneH1hesc

H3k4me3StdPk.broadPeak.gz 

ENCOD

E 

H1-hESC Pol II 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeOpenChromChip/wgEncodeOpenChromChip

H1hescPol2Pk.narrowPeak.gz 

ENCOD

E 

H1-hESC 
H3K36me

3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneH1hesc

H3k36me3StdPk.broadPeak.gz 

ENCOD

E 

K562 H3K4me3 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC ENCOD
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C/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H

3k4me3StdPk.broadPeak.gz 

E 

K562 Pol II 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneK562P

ol2bStdPk.broadPeak.gz 

ENCOD

E 

K562 
H3K36me

3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneK562H

3k36me3StdPk.broadPeak.gz 

ENCOD

E 

HepG2 H3K4me3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneHepg2

H3k04me1StdPk.broadPeak.gz 

ENCOD

E 

HepG2 Pol II 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeOpenChromChip/wgEncodeOpenChromChip

Hepg2Pol2Pk.narrowPeak.gz 

ENCOD

E 

HepG2 
H3K36me

3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneHepg2

H3k36me3StdPk.broadPeak.gz 

ENCOD

E 

HUVEC H3K4me3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneHuvec

H3k4me3StdPk.broadPeak.gz 

ENCOD

E 

HUVEC Pol II 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneHuvecP

ol2bStdPk.broadPeak.gz 

ENCOD

E 

HUVEC H3K36me ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC ENCOD
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3 C/wgEncodeBroadHistone/wgEncodeBroadHistoneHuvec

H3k36me3StdPk.broadPeak.gz 

E 

MCF-7 H3K4me3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeUwHistone/wgEncodeUwHistoneMcf7H3k4m

e3StdPkRep1.narrowPeak.gz 

ENCOD

E 

MCF-7 Pol II 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeOpenChromChip/wgEncodeOpenChromChip

Mcf7Pol2PkRep1.narrowPeak.gz 

ENCOD

E 

MCF-7 
H3K36me

3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeSydhHistone/wgEncodeSydhHistoneMcf7H3k

36me3bUcdPk.narrowPeak.gz 

ENCOD

E 

NHEK H3K4me3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneNhekH

3k4me3StdPk.broadPeak.gz 

ENCOD

E 

NHEK Pol II 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneNhekPo

l2bStdPk.broadPeak.gz 

ENCOD

E 

NHEK 
H3K36me

3 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneNhekH

3k36me3StdPk.broadPeak.gz 

ENCOD

E 

DLD-1 H3K4me3 
http://dbtss.hgc.jp/cgi-

bin/downloader2.cgi/DLD1_H3k4me3_peaks.xls.gz 
DBTSS 

DLD-1 Pol II 
http://dbtss.hgc.jp/cgi-

bin/downloader2.cgi/DLD1_Pol2_peaks.xls.gz 
DBTSS 
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DLD-1 
H3K36me

3 

http://dbtss.hgc.jp/cgi-

bin/downloader2.cgi/DLD1_H3k36me3_peaks.xls.gz 
DBTSS 

HeLaS3 H3K27Ac 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneHelas3

H3k27acStdPk.broadPeak.gz 

ENCOD

E 

HeLaS3 H3K4me1 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDC

C/wgEncodeBroadHistone/wgEncodeBroadHistoneHelas3

H3k04me1StdPk.broadPeak.gz 

ENCOD

E 

 

Supplementary Table 1 

List of URLs of ChIP-seq used 
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Cell 

Type 

RNA sub-

fractionation 
URL  Project 

GM128

78 
Cell 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqGm12878CellPapGeneGencV7.gtf.gz 

ENCO

DE 

GM128

78 
Nucleus 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqGm12878NucleusPapGeneGencV7.gtf.gz 

ENCO

DE 

GM128

78 
Cytosol 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqGm12878CytosolPapGeneGencV7.gtf.gz 

ENCO

DE 

H1-

hESC 
Cell 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqH1hescCellPapGeneGencV7.gtf.gz 

ENCO

DE 

H1-

hESC 
Nucleus 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqH1hescNucleusPapGeneGencV7.gtf.gz 

ENCO

DE 

H1-

hESC 
Cytosol 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqH1hescCytosolPapGeneGencV7.gtf.gz 

ENCO

DE 

K562 Cell 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqK562CellPapGeneGencV7.gtf.gz 

ENCO

DE 
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K562 Nucleus 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqK562NucleolusTotalGeneGencV7.gtf.gz 

ENCO

DE 

K562 Cytosol 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqK562CytosolPapGeneGencV7.gtf.gz 

ENCO

DE 

HepG2 Cell 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqHepg2CellPapGeneGencV7.gtf.gz 

ENCO

DE 

HepG2 Nucleus 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqHepg2NucleusPapGeneGencV7.gtf.gz 

ENCO

DE 

HepG2 Cytosol 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqHepg2CytosolPapGeneGencV7.gtf.gz 

ENCO

DE 

HUVEC Cell 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqHuvecCellPapGeneGencV7.gtf.gz 

ENCO

DE 

HUVEC Nucleus 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqHuvecNucleusPapGeneGencV7.gtf.gz 

ENCO

DE 

HUVEC Cytosol 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqHuvecCytosolPapGeneGencV7.gtf.gz 

ENCO

DE 
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MCF-7 Cell 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqMcf7CellPapGeneGencV7.gtf.gz 

ENCO

DE 

MCF-7 Nucleus 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqMcf7NucleusPapGeneGencV10.gtf.gz 

ENCO

DE 

MCF-7 Cytosol 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqMcf7CytosolPapGeneGencV10.gtf.gz 

ENCO

DE 

NHEK Cell 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqNhekCellPapGeneGencV7.gtf.gz 

ENCO

DE 

NHEK Nucleus 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqNhekNucleusPapGeneGencV7.gtf.gz 

ENCO

DE 

NHEK Cytosol 

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeD

CC/wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRna

SeqNhekCytosolPapGeneGencV7.gtf.gz 

ENCO

DE 

DLD-1 Cell 
http://dbtss.hgc.jp/cgi-

bin/downloader2.cgi/DLD1_RNAseq.wig.gz 
DBTSS 

 

Supplementary table2 

List of URLs of RNA-seq used 
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Name Sense sequece (5'-3') Antisense sequece (5'-3') 

Control 

siRNA-1 

GTACCTGACTAGTCGCAGAA

G 

TCTGCGACTAGTCAGGTACG

G 

Control 

siRNA-2 

UUCUCCGAACGUGUCACGUT

T 

ACGUGACACGUUCGGAGAAT

T 

UPF1 siRNA-1 
GAUGCAGUUCCGCUCCAUUd

TdT 

AAUGGAGCGGAACUGCAUCd

TdT 

UPF1 siRNA-2 
AAUUUCUGUAACUUGUUUCC

U 

GAAACAAGUUACAGAAAUUA

C 

EXOSC5 

siRNA-1 

CAACACGUCUUCCGUUUCUd

TdT 

AGAAACGGAAGACGuGuuGdT

dT 

EXOSC5 

siRNA-2 

GCAAAGAGAUUUUCAACAAd

TdT 

UUGUUGAAAAUCUCUUUGCd

TdT 

STAU1 siRNA-

1 

CUCUGCGUGUGGUCCGUAUG

G 

AUACGGACCACACGCAGAGC

C 

STAU1 siRNA-

2 

CAGGGGAUCAAUCCGAUUAG

C 

UAAUCGGAUUGAUCCCCUGG

C 

 

Supplementary table 3 

Sequences of siRNA used 
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Name Sense sequece (5'-3') Antisense sequece (5'-3') 

GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA 

UPF1 AGATCACGGCACAGCAGAT TGGCAGAAGGGTTTTCCTT 

EXOSC5 CCACACTCGAAGTGATCCTG CCGGCTCTTCTCTGCAAC 

STAU1 TATCGGCAAGGATGTGGAGT TGGTCCAACTCAGACAGCAA 

HIC1 GATGCTGGACACGATGGA CTTGGTGCGCTGGTTGTT 

PVT1 CTCTTCCTGGTGAAGCATCTG ATGGCTGTATGTGCCAAGGT 

XLOC_00373

4 

TTTCAGAGGTTCTTTAGGGAA

AAG 

ACGTGCAAGAGGTCAAAGAA

C 

XLOC_00760

4 
GGACTGAGGCAACCCATCTA 

TTCAAGATGAACCTTATGAGT

GGT 

XLOC_01319

4 
GGGGGCTCTGTGATATGCTA 

TTCCTTTTCCTCTTGGGTTTA

GT 

XLOC_00004

8 

TGGAATATGGCTAATGTAAAG

TTCA 
GCCCGTTCTTGTGGTAGAAG 

 

Supplementary table 4 

Sequences of primer pairs used for qRT-PCR 
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Sample Name Sequencing Depth 
Uniquely Mapped 

Reads 
Number of peaks 

H3K4me3 29607438 22520220 13829 

PolII 186897451 139395594 11395 

Input 71328884 54200494  

 

Supplementary table 5 

Sequence statistics for ChIP-seq data 

 

Sample Name Sequencing Depth Uniquely Mapped Reads 

Basal 38260387 16146827 

siCTRL_1 34070704 15353237 

siCTRL_2 35590030 15965080 

siUPF1_1 30991212 15029160 

siUPF1_2 41238364 17146466 

siCTRL_1 46202054 23153491 

siCTRL_2 52056079 24794738 

siEXOSC5_1 35065084 17853409 

siEXOSC5_2 40062193 20404942 

siCTRL 36876205 29287082 

siSTAU1_1 30256722 23896759 

siSTAU1_2 36353208 29049849 
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Supplementary table 6 

Sequence statistics for RNA-seq data 

 

 

Sample Name Sequencing Depth Uniquely Mapped Reads 

siCTRL_1 0h 32113983 11795163 

siCTRL_1 4h 27332602 8410082 

siCTRL_1 8h 29910113 8223544 

siCTRL_1 12h 29209782 4683418 

siUPF1 0h 35319906 11151822 

siUPF1 4h 40875119 7125974 

siUPF1 8h 32442201 6047454 

siUPF1 12h 30350033 4353768 

siCTRL_1 0h 16889847 10067525 

siCTRL_1 4h 14850192 8384827 

siCTRL_1 8h 16570098 8854992 

siCTRL_1 12h 11755236 6132423 

siCTRL_1 24h 14667835 5230211 

siEXOSC5 0h 18576472 9683224 

siEXOSC5 4h 17433615 8799438 

siEXOSC5 8h 15412791 7458473 

siEXOSC5 12h 17570157 9208784 

siEXOSC5 24h 31969879 13096031 

siCTRL 0min 45023135 10594823 
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siCTRL 15min 59225958 13936994 

siCTRL 45min 50683722 12952619 

siCTRL 75min 28327195 6211525 

siCTRL 105min 48647819 11909083 

siCTRL 165min 40151717 8021772 

siCTRL 225min 33619287 7437648 

siCTRL 345min 38757947 6494652 

siCTRL 465min 60184115 8497967 

siCTRL 585min 59306310 7014734 

siCTRL 705min 54748461 6036560 

siSTAU1 0min 40475633 6053372 

siSTAU1 15min 38958412 5826463 

siSTAU1 45min 63492284 9828708 

siSTAU1 75min 53641757 8666838 

siSTAU1 105min 38332782 6163057 

siSTAU1 165min 48164040 6399917 

siSTAU1 225min 26029128 3633723 

siSTAU1 345min 41558057 4375736 

siSTAU1 465min 55302129 4631584 

siSTAU1 585min 31968358 1731351 

siSTAU1 705min 67427989 3747637 

 

Supplementary table 7  

Sequence statistics for BRIC-seq 
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RPKM Total No peak % 
Low 

peak 
%  

High 

peak 
% 

Total 18853 7737 41% 2732 14.5% 8384 44.5% 

> 0.001 15251 4245 27.8% 2652 17.4% 8354 54.8% 

> 0.005 15222 4221 27.7% 2650 17.4% 8351 54.9% 

> 0.01 15146 4153 27.4% 2645 17.5% 8348 55.1% 

> 0.05 14159 3282 23.2% 2558 18.1% 8319 58.8% 

> 0.1 13493 2730 20.2% 2478 18.4% 8285 61.4% 

> 0.5 11491 1348 11.7% 2095 18.2% 8048 70% 

> 1 10421 957 9.2% 1808 17.3% 7656 73.5% 

> 5 6736 315 4.7% 947 14.1% 5474 81.3% 

> 10 4848 175 3.6% 600 12.4% 4073 84% 

> 50 1488 39 2.6% 108 7.3% 1341 90.1% 

> 100 775 20 2.6% 40 5.2% 715 92.3% 

 

Supplementary table 8 

Distribution of ChIP-seq and RNA-seq data 
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 Total ChIP(-)

/RNA(-) 

ChIP(-)

/RNA(+

) 

ChIP(+

)/RNA(-

) 

ChIP(+

)/RNA(

+) 

(Total) 

ChIP(+)

/RNA(+

) (×2) 

ChIP(+

)/RNA(

+) 

(×1.1) 

Number 

of genes 

12,479 6,235 603 2,745 2,896 1,617 187 

Median 

half-life 

(hours) 

nd nd 13.2 6 11.6 11 10.9 

 

Supplementary table 9 

RNA half-life statistics  
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Cell Type GO Term GO Name 
Numb

er  
P-value 

GM12878 GO:0003677 DNA binding 21 1.5E-02 

H1-hESC GO:0003677 DNA binding 211 2.6E-32 

HUVEC GO:0003677 DNA binding 222 6.7E-13 

K562 GO:0008270 zinc ion binding  116 3.9E-05 

HepG2 GO:0005886 plasma membrane 15 3.9E-02 

MCF7 GO:0008270 zinc ion binding  59 1.2E-08 

NHEK GO:0003677 DNA binding 177 2.3E-04 

DLD-1 GO:0006355 
regulation of transcription, 

DNA-templated 
19 4.8E-02 

 

Supplementary table 10 

List of GOs enriched for ChIP+/RNA- genes in ENCODE cell line 
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Mapped reads Hypoxia Normoxia 

0h 8,973,103 4,840,754 

0.25h 12,356,596 3,234,528 

0.5h 11,020,498 3,708,792 

1h 9,788,648 3,818,593 

2h 13,408,793 3,463,636 

3h 14,603,126 5,137,848 

4h 18,782,748 6,064,246 

6h 14,055,035 3,379,641 

8h 10,818,309 4,856,825 

10h 12,223,632 4,711,979 

12h 14,859,722 3,478,927 

Average 12,808,201 4,159,841 

 

Supplementary table 11 

Sequencing statistics for BRIC-seq in hypoxia  
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