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SMCEH A new computational method to predict transcriptional activity of
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Introduction

Gene transcription regulatory code is surely encoded in the sequences of cis-regulatory elements
and revealing functional elements from cis-regulatory elements is a key of exploring its regulatory
mechanisms of transcription. Massively parallel reporter assay (MPRA) technology is kind of
reporter assay based on DNA barcoding and next generation sequencing. The application of
MPRAs for different purposes produced a large body of data which contain the sequence primary
activities. To detect the functional sequences, it requires a computational model to estimate the
relationship between sequences and transcription activities. However, a computational method
which could be applied to diverse MPRA data sets is not existed yet. In this research, | designed
a computational method to predict transcription activities using sequences and the corresponding
activities by TRANSFAC database and machine learning algorithms of regression tree and MARS.
According to analysis of predictive functions which estimated by the proposed method, it could
reveal the active transcription factor binding sites (TFBSs). The proposed method could be
applied to diverse MPRA as well as to luciferase reporter assay data sets despite different
transfected cell types, different sequence lengths (several ten bp to more than 1k bp), different
number of sequences (several hundred to more than several ten thousand) and different
sequence types (promoters, enhancers, artificial sequences, ChlP-seq peaks and genomic
variants). The applications of the proposed method also suggest that the method could predict
the transcription activities of unknown sequences by using the predictive functions for known
MPRA data sets.

Material and Methods

The proposed method consists of four steps: 1. Data pre-processing to format different MPRA
data sets; 2. TRANSFAC database searching to encode sequence into variables and construct
the explanatory variable matrix; 3. Variables clustering to assemble variables into more compact
subpopulation by regression tree; 4. Perform MARS in different clusters to construct predictive



functions (Figure 1).
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Figure 1. Workflow of proposed model

Data sets

To demonstrate the usability, we applied the proposed method to 10 public data sets from 8 previous works

(Table 1) that contain 8 MPRA data sets and 2 luciferase reporter assay data sets.

Data sets Description Construct Cell types Assayed #Construct
lengths

loci s

; o
CREInducedinHEK293 CRE enhancer with 10% = o HEK293  exvivo 27000
random mutations

181-703bp
DHSInMouseRetina hy;:ros(;nl:s)ir:il:esiltes (median  mouse retina  ex vivo 27161
466bp)
TFBS75InYeast Designed 75 yeast TFBSs 103bp yeast in vivo 6016
12 liver-specific TFBSs mouse,HepG  in vivo, ex
TFBS12InHepG2Mouse  assayed in HepG2 and 168bp 2 viw; 4742
Mouse
. 2,756 SNPs assayed in
RBCVariantsGATAIInKS GATA| overexpression+/- 145bp K562 ex vivo 15733
62
K562
755-1201bp
PromoterLuclnHEK293 Promoters (median HEK293 ex vivo 734
1081bp)
253 distal enhancers and mouse
CREBBPInMouseNeuron 234 promoters assayed by 139bp cortical X Vivo 3409
MPRA and STARR-seq neurons
Ags
G402
. 614-1301bp HCT116
PromoterLuc8celltypes Promoters assayed in 8 (median Hela ex vivo 4575
cell types 983bp) Hepg2
HT 1080
T98G
UB7mg

Table 1. The basic information of data sets.

Performances of the proposed method

The proposed method was applied to the 10 data sets (Table 1) and obtained the predictive
precisions (Pearson’s R of predicted values and experimental values) were approximately 0.5 to
0.9 (table 2). The open tests were estimated by 100-fold cross-validation and obtained the similar
predictive precisions with close test. The number of predictors were also small which are generally
lower than 50.



data set close test  open test # of predictors
RBCVariantsGATA1InK562 0.55 0.49 16 - 30
RBCVariantsCtrlinK562 0.57 0.50 21-26
CREBBPInMouseNeuron 0.64 0.50 21-36
DHSInMouseRetina 0.64 0.52 20-48
TFBS12InHepG2 0.73 0.71 28 -28
PromoterLuc8celltypes 0.73 0.70 21-50
TFBS12InMouse 0.78 0.76 35-35
CREInducedInHEK293 0.83 0.81 25-47
PromoterLucInHEK293 0.92 0.85 28-28
TFBS75InYeast 0.92 0.91 16-30

Table 2. The number of predictors of the estimated predictive functions and the correlation coefficients

between predicted values and experimental values of close test and open test.

Application

From the analysis of “CREInducedlnHEK293” and “CREBBPInMouseNeuron” , the candidate-active TFBSs

estimated by the proposed method are characterized via tree structure. The TFBSs tree have the advantages

of simply understandable and could provide the biological information for data set clustering (Figure 2).
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Figure 2. (Top left) Candidate-
active ~ TFBS  trees  for
“CREInducedInHEK293” data
sets. The values shown in each
cluster indicate the average
activity among samples within
the corresponding cluster, and
the percentages represent the
sample proportions in the cluster.
(Top righty PCA plot of
“CREInducedIlnHEK293” with
different colors indicate the
different cluster showed in the
candidate-active =~ TFBS tree.
(Lower)Known TFBSs in CRE
enhancer.

In the analysis for the data sets “RBCVariantsCtrlinK562” and “RBCVariantsGATA1InK562”, the proposed
method could pick up the candidate-active TFBSs that response to GATA1 OE. The candidate-active TFBS

tree and the sample clusters estimated by the proposed method also show different structure of different

experimental conditions. It suggests that the proposed method could detect the experimental condition-

specific TFBSs (Figure 3).
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Figure 3. (Left) Candidate-active
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RBC variants assayed in GATA| OE K562 percentages represent the sample
(z012)1 s I proportions in the cluster. (Right)
\100% :

pc2 i1 PCA plot of sets
“RBCVariantsCtrlInK562” and
“RBCVariantsGATA1InK562” with
different colours indicate the
different cluster showed in the
candidate-active TFBS tree.
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Using the predictive functions for data set of “CREBBPInMouseNeuron,” | predicted new sequences of 18
motifs with the same experimental condition as “CREBBPInMouseNeuron.” For the data set of
“PromoterLuclnHEK293", | predicted the transcription activities by the predictive functions estimated for
“PromoterLuc8celltypes” (Figure 4). This suggests that the transcription activities of unknown sequences

could be predicted by known data set in some extent, despite of the cell types.

PromoterLuclnHEK293 (R=0.68)
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° Figure 4. Plots between
20 ® predicted transcription
activities of
15 ® “PromoterLucInHEK293”
that were estimated by
predictive  functions  of
“PromoterLucScelltypes”
and observations of
“PromoterLuclnHEK293.”
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