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Abstract 

The deep sea is referred to as the ocean below 1,000 m depth and is characterized by high 

hydrostatic pressure, low temperature, low nutrients and the absence of sunlight. 

Although it is regarded as one of the extreme environments on the Earth, generally 103-4 

cells/mL of prokaryotes are found in entire deep-sea water. It has been expected that those 

microorganisms might have community structures and characteristics that are unique to 

the environment and allow them to survive and grow under such conditions. Recent 

application of molecular techniques to deep-sea microorganisms made it possible to 

clarify the community structures and genetic characteristics without depending on culture 

techniques. However, such genetic information does not offer meaningful information 

unless we have actual cultured strains. Our knowledge on such physiological 

characteristics, their functions or ecological implications is quite limited, primary due to 

the paucity of cultures isolated from the deep sea. Therefore, most works have been 

conducted with very few culturable groups, typically, Gammaproteobacteria. It is critical 

to apply some new technique to isolate more diverse groups of microorganisms and obtain 

information with those strains. It is then possible to clarify how they respond to the deep-

sea environmental conditions and what kind of gene is involved in actual microbial 

processes for the growth and survival in the extreme environment.  

The purpose of this thesis was to clarify physiological and genetic characteristics 

of deep-sea bacteria in comparison with their surface-sea relatives by using culture-

dependent and independent approach, physiological examination and genetic analyses. In 

order to expand our knowledge, newly isolated strains were used. For this purpose, first, 

the isolation of deep-sea prokaryotes in diverse phylogenetic groups was tried using 
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newly designed culture media. Second, culture independent approach was taken to 

investigate the vertical community structures in the north-western Pacific Ocean. This 

clarified the phylogenetic and distributional position of my new isolates. Third, the 

physiological and genetic characteristics of the deep-sea isolates were investigated in 

comparison with phylogenetically relatives isolated from the surface environments. 

Whole genome of 7 strains were sequenced and used for the analyses.  

The major contents of each chapter are as follows. In chapter 2, total 681 isolates 

were obtained from the deep-sea water in north-western Pacific Ocean using 1/5 marine 

agar 2216, 1/10 R2A agar and natural seawater liquid medium. 16S rRNA gene sequences 

of them revealed their phylogenetic positions. All the deep-sea isolates belonged to the 

domain Bacteria and none for Archaea. Among the isolates, strains of phyla 

Verrucomicrobia and Lentisphaerae were the first isolates in the phyla from the deep sea. 

Strains of orders Arenicellales, Thiotrichales, Cellvibrionales, Kiloniellales and 

Acidimicrobiales were also the first isolates within the orders. Strains affiliated to 22 

genera were considered as novel deep-sea species. Among them, Rubrivirga marina, 

Rubrivirga profundi, Aurantivirga profunda, and Lentisphaera profundi were validated 

after taxonomical investigations and reported as novel deep-sea species. Approximately 

90 % of the identified isolates showed the similarity to the strain isolated from the surface 

with more than 99 % 16S rRNA sequence similarity, suggesting that the majority of the 

deep-sea bacterial isolates may have closely related strains in the surface layer.  

In chapter 3, the vertical community structures of bacteria in two water columns 

were investigated using pryoseqeuncing technique for clarifying the presence of depth 

related groups and also differentiating particle associated (PA) and free living (FL) state. 

Among the phylotypes affiliated with the deep-sea isolates, Erythrobacter phylotypes 
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were detected in all depths. Sulfitobacter, Paracoccus, Sphinogomonas, Colwellia, 

Alcanivorax, Marinobacter, Alteromonas, Moritella and Rubritalea-like phylotypes were 

more retrieved from the deeper layers than the surface layer. Most of the phylotypes 

affiliated with the deep-sea isolates showed preference toward PA state. PA state suggests 

the tendency to attach particles and/or to colonize easily. Also, it suggests the possibility 

to attach sinking particles that are originating in upper water column. In addition, SAR11 

and Sphingomonadales of Alphaproteobacteria, and Bacteroidetes were vertically 

cosmopolitan. Deltaproteobacteria, Deferribactere, Planctomycetes, Actinobacteria and 

Nitrospirae were confirmed as specific bacterial lineages in the deep layers. SAR11, 

Chromatiales of Gammaproteobacteria, SAR324 of Deltaproteobacteria, Nitrospirae 

and Deferribactere were found to be more as FL state in the deep sea. Sphingomonadales 

and Alteromonadales of Proteobacteria, Planctomycetes, Bacteroidetes, Lentisphaerae 

and Verrucomicrobia were more as PA state in the deep sea.  

In chapter 4, growth characteristics, cellular membrane composition and hydrolytic 

enzymes of eight strains within phyla Proteobacteria, Verrucomicrobia and Bacteroidetes 

were tested in combination with their “surface relatives” to clarify the characteristics of 

deep-sea bacteria. All the isolates showed decreasing growth at a higher pressure than 

atmospheric pressure, indicating that they are non-piezophiles. Of the 8 strains, only 

Rubritalea sp. SAORIC-165 of the phylum Verrucomicrobia showed optimum growth at 

10℃ and no growth above 20℃, indicating that the strain is psychrophilic and probably 

staying in the deep-sea for long time. Erythrobacter sp. SAORIC-644 and Limnobacter 

sp. SAORIC-580 showed optimum NaCl concentration at 1 and 0 %, suggesting the 

origin of low salinity environment. The deep-sea strains commonly contain higher 

numbers of phospholipids, compared to their surface-relatives. The additional 
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phospholipids may allow the deep-sea strains to maintain the fluidity of cellular 

membrane under high pressure.  

In chapter 5, whole genome of 7 strains within phyla Proteobacteria and 

Verrucomicrobia were sequenced and their genetic features were examined in comparison 

with those of the surface relatives. Comparisons with metagenome data were also made 

for genes that appeared unique to the deep-sea. The strains, of which group prefer PA 

state, contained genes encoding for pili assemble or adherence proteins (FAS1 and von 

Willebrand A domain), suggesting that the genes are supportive in attachment processes. 

Some deep-sea strains (more than 3 strains) showed the unique presence or more than 1.5 

folds abundance in the numbers of the following genes (51 genes), compared to their 

surface-sea relatives. These genes were related to respiration, stresses response, cellular 

structure, metabolism of in- and organic substrates, replication and transcription. Of 51 

genes, 39 genes were over-represented in deep-sea metagenomic data, compared to 

surface-sea metagenomics data. Some of the genes were related with response in high 

pressure and low temperatures. Although further works are required, genetic (pili, flagella, 

adhesion proteins and abundant 51 genes) characteristics of the deep-sea isolates appear 

to support growth and survival in the-deep sea environment.  

In conclusion, bacteria from diversified phylogenetic groups were obtained from 

the deep sea for the first time. Some of them were investigated taxonomically, 

physiologically and genetically by recent whole-genome sequencing. In addition, their 

preference to either PA or FL life style was investigated. Their physiological and genetic 

characteristics allowed to consider their ecology and evolutionary processes as well. In 

particular, amino acids and lipids metabolism, and osmotic reguration of deep-sea 

bacteria were newly demonstrated in this study. Further investigation on the isolation and 
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characterization of more deep-sea bacteria will offer clues to better understand the nature 

of the deep-sea prokaryotes. 
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Feature of the deep-sea 

The deep sea is referred as sea below 1000 m depth (Jannasch and Taylor, 1984). It is 

characterized by high hydrostatic pressure, low temperatures, no sunlight and low 

nutrients. The ambient hydrostatic pressure increases by 1 atm per 10 m. So, for instance, 

the ambient hydrostatic pressure at 3000 m is 300 atm. Another unit of pressure, pascal 

(Pa), defined as one newton per square meter, is widely used for the research in deep-sea 

environments. One atm corresponds to approximately 0.1 MPa. This unit will be used 

entirely in this thesis. The average temperature of the deep sea is 2-3℃, except for deep-

sea hydrothermal vents. Dissolved organic carbon (DOC) concentration decreases with 

increasing depth down to approximately 1000 m, below which the concentration is 

relatively constant. At 1,000 m, DOC is roughly 0.5 mgC/L which is about 50-60 % of 

those in the surface layer (Ogawa and Tanoue, 2003). In most of ocean, less than 1 % of 

sunlight penetrates to 100 m depth. Below the euphotic zone which is defined as the zone 

receiving enough light for primary production, the organic matter available for 

heterotrophic organisms are supplied from the upper layer. Therefore, downward flux of 

particulate organic matter from the surface is the major control factor for the biomass and 

community structures of living organisms in deep-sea (Ducklow et al., 2001; Arı́stegui et 

al., 2002).  

 

Biomass and community structures of prokaryotes in the deep sea 

In spite of the extreme conditions, generally 103-4 cells/mL of prokaryotes exist in entire 

deep-seawater (Morris et al., 2002). It is estimated that the number of aquatic prokaryotic 

cells below 1,000 m depth is approximately 5.1⨯1028 cells and in deep-sea sediments, 

approximately 2.8⨯1030 cells, comprising one third of the total living biomass on Earth 
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(Whitman et al., 1998). Moreover, they are even found in seawater at 11,000 m or the 

deepest depths of the entire ocean (Kato et al., 1998).  

     Numerous efforts have been made to elucidate what kind of prokaryotes are present 

in the deep sea with various approaches. Before molecular techniques were introduced in 

early 90s, cultivation and identification of isolates were the sole approach. Members 

belonging to orders of Alteromonadales, Vibrionales and Oceanospirillales in the class 

Gammaproteobacteria have been often recovered (Yayanos et al., 1979; Jannasch and 

Wirsen, 1984; DeLong and Yayanos, 1985; Kato et al., 1995; Nogi et al., 1998a; Nogi et 

al., 1998b; Radjasa et al., 2001; Cao et al., 2014). Members of orders of 

Sphingomonadales and Rhodobacterales in the class Alphaproterobacteria have been 

also isolated from deep-sea environment (Gärtner et al., 2011). Besides them, members 

of phyla Firmicutes and Bacteroidetes were also reported (Gärtner et al., 2011; Hwang et 

al., 2015). Because only a portion of deep-sea bacteria are recovered on culture media, it 

is difficult to assume actual community structures using culture techniques. However, the 

great advantages are that the isolates can be used for further analyses of their physiology, 

biochemistry, phylogeny, genetics and so on. Therefore, culture-based approach still has 

significance for any biological investigations of deep-sea prokaryotes.   

The culture-independent approaches based on molecular techniques were first 

introduced to marine microbiology in early 90s, then the prokaryotic community 

structures in the deep sea have been intensively investigated. Generally, members of the 

domain Archaea and classes Alphaproteobacteria and Gammaproteobacteria within the 

domain Bacteria constitute to the majority of deep-sea prokaryotic population (Karner et 

al., 2001; Jing and Ying, 2008). Recent research using the second generation sequencing 

technology reveled that deep-sea prokaryotic communities are far more diverse than 
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previously anticipated (Sogin et al., 2006; Martín-Cuadrado et al., 2007; Eloe et al., 2010; 

Zinger et al., 2011; Wang et al., 2011).  

 

Factors controlling prokaryotic community structure in the deep sea 

In aquatic ecosystems, the community structure is formed as a relative balance between 

growth and death, and also inflow and outflow of the cells from the system. As for the 

growth, it is controlled by both physicochemical and biological factors. As is described 

above, in the deep sea, the cells possessing tolerance to high pressure, low temperature 

and low nutrient conditions may be able to grow and maintain their population. In 

addition, quantity, quality and form (dissolved or particulate) of organic compounds are 

important factors to select specific groups. Virtually, most parts of dissolved organic 

matter in the deep sea are characterized by low concentration, unknown chemical 

structure, relatively low molecular weight, and refractory nature. Therefore, only selected 

groups that are adaptable to these nutritional conditions should grow and survive. As was 

discussed above, fresh organic matter is usually supplied by the sinking particles from the 

upper water column (Volk and Hoffert, 1985). As sinking particles are usually colonized 

by prokaryotes, they are also important as a mechanism to transport prokaryotes from 

surface to deep layers (Hansel and Ducklow, 2003; Vezzi et al., 2005). It is estimated that 

1010–1012 cells m-2 y-1 may be transferred to the deep-sea by this way (Turley and Mackie, 

1994). 

In aquatic environments, predation by flagellates or viruses may be the major death 

processes of prokaryotes (Danovaro and Serresi, 2000; Anantharaman et al., 2014; 

Morgan-Smith et al., 2013). However, very limited investigations have been so far made 

for predations in the deep sea.  
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Physiological characteristics of deep-sea prokaryotes  

The deep sea is regarded as one of the extreme environments and its features suppress 

diverse biological processes, causing depression of physiological responses such as 

metabolic processes or growth rate (Wirsen and Molyneaux, 1999). The pressure 

generally affects the interactions among high molecular weight subunits and also DNA 

hydrogen bonds, resulting in difficulty of metabolic processes, replication and 

transcription (Gross and Jaenicke, 1994; Macgregor, 2002). High pressure leads to the 

formation of crystalline lipids in cell membrane, which causes lower cell membrane 

fluidity, making the membrane impermeable to water and other molecules (Braganza and 

Worcester, 1986; Bartlett, 2002). Therefore, deep-sea prokaryotes tend to have higher 

proportion of unsaturated fatty acids in their cytoplasmic membranes, allowing the 

membranes to remain functional at high pressure or at low temperature (Bartlett, 2002; 

Feller and Gerday, 2003; Siddiqui and Cavicchioli, 2006). Furthermore, high pressure 

may inhibit motility and cell division of Escherichia coli (Bartlett, 2002). Prolonged 

starvation are reported to cause a reduction of RNA, total lipids and protein content 

(Mukamolova et al., 1995).  

Although high pressure constrains normal bacteria’s growth, particular groups of 

deep-sea bacteria show optimum growth at higher pressure than atmospheric pressure. 

They are called as piezophile (from Greek verb piezo, to press). So far, 38 piezophiles 

have been identified. They belong to genera Colwellia, Moritella, Pyschromonas and 

Shewanella of the order Alteromonadales and genus Photobacterium of the order 

Vibrionales (Eloe et al., 2011b). Some of them do not grow at atmospheric pressure 

(obligate piezophile), whereas some of them can grow (facultative piezophile or 

piezotolerant). As for low temperature, most of the piezophilies and particular deep-sea 
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bacteria exhibited optimum growth below 15℃, and no growth above 20℃. This group 

is called psychrophile (from Greek verb psychro, to cold). Seo et al. (2005) and Xiao et 

al. (2007) reported the deep-sea psychrophiles affiliated with genera Shewanella and 

Photobacterium. Recently, Hwang et al. (2015) first reported a deep-sea psychrophile 

within the phylum Bacteroidetes.  

 

Genetic characteristics of deep-sea prokaryotes  

Traditionally, genetic characteristics of deep-sea prokaryotes have been introduced by 

transcriptional observation. It has been reported that respiratory system (cytochrome C 

and NADH; Yamada et al., 2000; Kato and Qureshi, 1999), outer membrane porin (ompH; 

Bartlett et al., 1989), DNA replication and cell division (Campanaro et al., 2005) seem to 

function more under high hydrostatic pressure.  

Recent databases of genetic information have facilitated the understanding of the 

nature of deep-sea prokaryotes. One is a database of metagenomes or information on 

microorganisms in natural environments, such as Tara Ocean (http://ocean-

microbiome.embl.de/companion.html) or iMicrobe (https://www.imicrobe.us/). Another 

is whole genome of living organisms. For instance, NCBI comprises huge datasets which 

include genome information of prokaryotes. Currently, nearly 100 thousands sequences 

are available at NCBI database (https://www.ncbi.nlm.nih.gov/genome/browse/). 

Although data for deep-sea prokaryotes is rather limited, those information help to 

understand their unique characters.  

The biased presence of particular genes or functions in deep layers compared with 

surface layers strongly suggests that those genes or functions are important for the 

microorganisms present in the deep sea. Also abundance of particular genes on genomes 
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of deep-sea prokaryotes, compared with those of surface dwelling prokaryotes, may 

suggest the potential importance of those genes among deep-sea prokaryotes. For instance, 

mobile elements and diverse hydrolytic enzymes were found in deep-sea data of the North 

Pacific Ocean (Konstantinidis et al., 2009). Deep-sea bacterial genomes contained 

diverse peptidases and amino acid uptake systems for hydrolyzing and metabolizing 

organic substrates (Hou et al., 2004; Wang et al., 2008; Qin et al., 2010). Furthermore, 

the deep-sea bacterial genomes showed higher numbers of signal transduction and 

flagella biosynthesis genes, compared to their surface sea counterparts. It is suggested 

that the genes facilitate quick response to sporadic influxes of nutrients supplied via 

sinking particles (Lauro and Bartlett, 2008; Qin et al., 2010). 

 

Limitations  

Our knowledge on the characteristics, functions or ecological implications of deep-sea 

prokaryotes is still quite limited. There are several reasons. First, evidently, the sampling 

itself is not easy. It requires the cruise to the open ocean area and devises to collect 

seawater samples from deep layers. If one wishes to isolate piezophiles, special sampling 

and incubation devices to maintain the ambient hydrostatic pressure are required. 

Obviously, the cost for those instruments is not small. These situations results in the 

presence of relatively few researcher in this field.   

Second, the indigenous microbial population has extremely long generation times 

(> 600 hr) under in situ pressure and nutrient conditions (Wirsen and Molyneaux, 1999). 

Hence, it takes long time to treat deep-sea isolates to obtain enough cell biomass. If 

growth characteristics that enable high growth rates are found, we will be able to obtain 

more information on various deep-sea microorganisms. Therefore, it is necessary to work 
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with deep-sea strains for clarifying their optimum growth condition, physiological 

responses to environmental conditions, and specific genes that are involved in various 

physiological responses.  

Finally, although culture independent approaches shows the presence of 

prokaryotes of various phylogenetic groups, most of actual isolates from deep-sea fall 

into classes Alphaproteobacteria and Gammaproteobacteria (Karner et al., 2001; Jing 

and Ying, 2008). This makes it difficult to investigate the representative strains to 

elucidate their characteristics. For instance, so far only about 50 genomes of prokaryotes 

have been subjected at NCBI database. Except for the ones from hydrothermal vents, 

which are not common deep-sea habitat, the prokaryotic genomes derived from deep-

seawater or sediment are only 27 genomes. This situation would be ascribed to the few 

number of isolates from deep-sea and also their biased compositions.  

One of the reasons of this biased isolation may be the use of “traditional” media. 

Typical media such as ZoBell 2216E for marine microorganisms contain nearly 4g/L 

carbon compounds that far exceed natural concentration (approx. 1mgC/L). Only the 

microorganisms that can tolerate such drastic change may be able to start growing. It is 

also doubtful whether the composition is suitable for many microorganisms. Therefore, 

examination of culture media and condition should be investigated to isolate those that 

have never been appeared.  

 

The purpose of this doctoral thesis 

It is assumed that there are huge number of unknown microorganisms present in the deep 

sea and they have physiological and genetic characteristics which are different from those 

in surface layers. Therefore, I had raised the following questions; 
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1. Which of deep-sea prokaryotes are culturable?  

2. What taxonomical position they may possibly have? And are there any new 

isolates from the deep sea?  

3. What about their actural distribution in deep-sea environment?  

4. Are they mainly in particles-associated or free living state? This is because 

particles can be important organic source for deep-sea bacteria. 

5. What kind of physiological and genetic characteristics do they have in 

comparison with those in surface layers?  

6. Are there any key functions that make prokaryotes live and survive in the deep 

sea?  

Based on answering these questions, the purpose of this doctoral thesis is to clarify 

physiological and genetic characteristics of deep-sea bacteria in comparison with their 

surface-sea relatives by using culture-dependent and independent approaches, 

physiological examination and genetic analyses. First, I tried to isolate strains from the 

deep sea by culture dependent approach and checked the taxonomical positions of new 

isolates (Chapter 2). Subsequently, I described some new species among them (Chapter 

2). Second, I investigated the vertical community structures of deep-sea bacteria and their 

particles-associated or free living state (Chapter 3). Third, some physiological 

characteristics of the deep-sea isolates were checked by conducting biochemical 

examinations in comparison with close relatives obtained from surface layers (Chapter 

4). Fourth, the whole genome information was obtained for the deep-sea isolates and 

comparisons with those of close relatives from the surface layers were conducted to 

clarify the genetic characteristics of the deep-sea isolates (Chapter 5). Sixth, key functions 

for living and surviving in the deep sea were investigated by reffering to the literatures 
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and metagenomic data (Chapter5). Finally, general discussion was made for this thesis 

(Chapter 6).    
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Isolation and phylogenetic position of deep-sea 
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Introduction 

In order to clarify the distribution, possible ecological contribution and physiological 

characterizations of microorganisms, there are two major approaches, i.e., culture 

dependent and independent ones. Because only a small portion of prokaryotes are 

recovered by any culture methods available at present, culture independent approach is 

indispensable for investigations of distribution and genetic analyses. One of the most 

remarkable successes of this approach is the finding of wide distribution of the SAR11 

group. This group is present not only in surface layers but also in deep-sea environments 

(Morris et al., 2002; Eloe et al., 2010). However, actual behaviour, responses to 

environmental factors, growth characteristics and physiological features are only 

available by isolates. Hence, numerous efforts to isolate prokaryotes from the deep-sea 

have been made. Resultant deep-sea isolates were mainly assigned to orders 

Alteromonadales and Vibrionales within the domain Bacteria and they have been well 

characterized (Yayanos et al., 1979; Jannasch and Wirsen, 1984; DeLong and Yayanos, 

1985; Kato et al., 1995; Nogi et al., 1998b). However, the features of orders 

Alteromonadales and Vibrionales could not represent the characteristics of deep-sea 

prokaryotes, since they accounted for less than 1 % of deep-sea bacterial populations 

(Eloe et al., 2010). Except for the members of the orders, most of deep-sea prokaryotes 

remain uncultured and poorly understood. In particular, the  deep-sea member of the 

SAR11 group and the class Deltaproteobacteria have not been cultured yet, members of 

which making up for a far large proportion of the deep-sea bacterial populations (Martín-

Cuadrado et al., 2007; Eloe et al., 2010),  

One of the reasons of lack of isolates is due to the high concentration of organic 

carbons in culture media. The marine broth 2216 (MA) or 1/2 MA have been widely used 
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to isolate prokaryotes including for deep-sea ones (Kato et al., 1995; Radjasa et al., 2001; 

López-López et al., 2005). These media containing high concentration of organic carbons 

that far exceed the level in marine environments (Button et al., 1998; Connon and 

Giovannoni, 2002). Therefore, application of much lower carbon media would be 

necessary for the cultivation of prokaryotes in oligotrophic environments including the 

deep sea. In addition, it is expected that lower carbon media will retard growth of the 

members of orders Alteromonadales and Vibrionales which generally grow fast in rather 

high concentrations of carbon.  

Then, what kinds of lower carbon media are available for deep-sea cultures? For 

cultivating prokaryotes in surface layer, the dilution to extinction culture method based 

on liquid culture medium with low carbon content (NSLM) has succeeded to culture 

numerous bacterial groups that had never been cultured before (Rappé & Giovannoni, 

2003; Cho et al., 2004a; Cho et al., 2004b). Eloe et al. (2011b) have applied NSLM with 

high pressure in the deep-sea microbial cultivation and succeeded in isolating a novel 

piezophilic Alphaproteobaterium phylogenetically close to the SAR11 group. Hence, 

NSLM would be suitable to culture a deep-sea member of the SAR11 group.  

The use of 1/10 R2A media has also yielded many novel isolates in cultivation from 

marine environments. For instance, Opitutales proposed as a novel order within the 

phylum ‘Verrucomicrobia’ (Choo et al., 2007), oligotrophic marine 

Gammaproteobacteria group (Cho et al., 2004b; Kim et al., 2007) and several novel 

species within Betaproteobacteria from a fresh water lake (Song et al., 2007). However, 

there is no report on application to the deep-sea environments. In addition, 1/5 MA was 

newly designed for this research.  

Here, I aimed to obtain diverse prokaryotic isolates from the deep-sea and identify 
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their phylogenetic position for further studying. I collected 9 deep-seawater samples from 

various locations in the north-western Pacific Ocean from a range of 1000 to 4000 m 

depth. For isolating diverse prokaryotes, NSLM, 1/5 marine agar (MA) and 1/10 R2A 

agar, of which carbon content is lower than MA or 1/2 MA, were applied under 

atmospheric pressure. 

 

Materials and methods 

Samples and isolation 

Deep-seawater samples were obtained from the north-western Pacific Ocean during 4 

research cruises (KT10-25 and KT12-08 by R/V Tansei Maru, JAMSTEC, and MR11-02 

and MR-11-05 by R/V Mirai, JAMSTEC) shown in Table 2-1 and Figure 2-1. Niskin 

water samplers equipped with a conductivity, temperature, and depth (CTD) device were 

used to collect seawater samples. Collected seawater samples were immediately stored in 

darkness at 4℃ until the further inoculation. Total cells of each seawater samples were 

stained with 4, 6-diamidino-2-phenylindole (DAPI) and counted via epifluorescence 

microscopy (Nikon 80i, Nikon, Japan).   

A portion of 150 μl of each seawater sample was inoculated on 7 plates of 1/5 

strength Marine agar 2216E (1/5 MA; BD Difco) (Agar 15 g, Peptone 1 g, Yeast extract 

0.2 g, MgCl2 1.76 g, Na2SO3 0.65 g, CaCl2 0.36g, KCl  0.1 g, NaHCO3 0.32 g, Ferric 

citrate 0.2 g, KBr 0.016 g, SrCl2 6 mg, H3BO3 4 mg, Na2HPO4 1.6 mg, Na2SiO3 0.8 mg, 

NaF 0.48 mg, NH4NO3 0.32 mg in 1 L of 80 % aged seawater) and 1/10 strength marine 

R2A (1/10 R2A; BD Difco) (Agar 15 g, Peptone 0.05 g, Yeast extract 0.05 g, Casamino 

Acids 0.05 g, dextrose 0.05 g, Soluble starch 0.05 g, Sodium pyruvate 0.03 g in 1 L of 

aged seawater). Subsequently, the plates were incubated at 10℃. After incubation for 4 
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weeks in darkness, all of colonies were transferred on new 1/5 MA or 1/10 R2A and 

maintained at 10℃. The culture with NSLM was prepared using the protocol by Connon 

and Giovannoni (2002) after slight modification. NSLM was prepared using deep-sea 

water filtered by 0.1 µm pore size membranes. The culture medium was supplemented 

with the following chemicals: 1.0 μM NH4Cl, 0.1 μM KH2PO4, 0.001% (w/v) of D-

glucose, D-ribose, glycerol, N-acetyl-D-Glugosamine, methylamine, pyruvic acid and 

ethanol, and a 10-4 dilution of a vitamin mixture (Davis & Guillard, 1958). The sampled 

seawater was diluted to 15-20 cells ml-1 with the culture medium and 1ml of that was 

dispensed into each well of 48-well-polystyrene microtiter plates. After incubation at 

10℃ for 8 weeks in darkness, 150 µl of medium in each well was loaded into a custom-

made 48-array facilitating filtration with 0.2 µm pore-sized black polycarbonate 

membranes (48 x 60 mm, Osmonics, USA). After staining with DAPI, the cultured 

medium was filtered. Cellular growth was checked via epifluorescence microscopy 

(Nikon 80i, Nikon, Japan). Wells with higher than 2.0 x 105 cells ml-1 cell densities were 

considered positive growth, and stored as 10 % (v/v) glycerol suspensions at -80℃ for 

further analyses. Among the wells, the growth of one more types of organisms in a well 

is considered a mixed culture. 

Phylogenetic position by 16S rRNA gene sequences 

DNA was extracted from cells of purified colonies on agar plates or concentrated cells 

from positive wells in 48-well-polystyrene microtiter plates using InstaGene Matrix 

(BioRad). The 16S rRNA gene fragment covering positions 27–1492 in the E. coli 16S 

rRNA gene was amplified using the bacteria-universal primers 27F (5'- AGGTTTGA 

TCCTGGCTCAG -3') and 1492R (5'- GGCTACCTT GTTACGACTT -3') (Lane, 1991). 

PCR reaction was performed by using TaKaRa EX Taq polymerase (Takara, Japan) by 
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the following condition; one cycle of 95℃ for 5 min, followed by 35 cycles of 95℃ for 

30 s and 58℃ for 1 min, followed by 72℃ for 1 min 30s, followed by a final 5-min 

incubation at 72℃. The PCR products were grouped by restriction fragment length 

polymorphism (RFLP) analyses employing HindII restriction.  

Sequencing was performed using primers 27F and 1492R by BigDye Terminator v. 

3.1 cycle sequencing kit (ABI). Sequencing products were analyzed by 3730 DNA 

analyzer (ABI). Sequence data was edited and assembled by using BioEdit software 

package. To ascertain the phylogenetic position, the resulting 16S rRNA gene sequence 

of isolates was queried in BLASTn search of GenBank (National Center for 

Biotechnology Information, http://www.ncbi.nlm.nih.gov) and the EzTaxon-e server 

(Kim et al., 2012). In order to construct phylogenetic trees, multiple sequences alignment 

was performed using CLUSTAL_X (version 1.83) (Thompson et al., 1997). The aligned 

sequences without gaps and ambiguous bases were analyzed using MEGA version 7 

(Kumar et al., 2016) using neighbor-joining (Saitou & Nei, 1987) with Jukes-Cantor 

correction (Jukes & Cantor, 1969).  

 

Results 

Total number of cells in deep-sea water and isolates from the media 

Total numbers of cells in each deep-sea water sample are shown in Table 2-1. A total of 

681 strains were obtained from 9 deep-sea water samples collected from the north-

western Pacific Ocean using 3 kinds of media, 1/5 MA, 1/10 R2A and NSLM. Except for 

mixed cultures, 617 strains were idendified in this work. Numbers of isolates within 

classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria of the 

phylum Proteobacteria are shown in Table 2-2, and those within phyla Bacteroidetes, 
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Actinobacteria, Verrucomicrobia and Lentisphaerae are shown in Table 2-3. Mixed 

cultures are also shown in Table 2-3 as well. 

Deep-sea isolates from KT10-12-S1-3 seawater sample (3000 m) 

From KT10-12-S1-3 sample, 69 strains belonging to classes Alphaproteobacteria and 

Gammaproteobacteria, and the phylum Bacteroidetes were obtained (Table 2-4). Their 

phylogenetic positions are shown in Figures 2-2 and 2-3. Among the alphaproteobacterial 

isolates, 14 strains were assigned to the order Sphingomonadales. These strains fell into 

genera Erythrobacter (10 strains), Sphingobium (3 strains) and Sphingopyxis (1 strain). 

Erythobacter-like strains were divided into two subgroups. One subgroup made a 

monophyletic clade with to the species E. citreus RE35F/1T (>99 %; 16S rRNA gene 

similarity) isolated from surface seawater in the western Mediterranean Sea (Denner et 

al., 2002). In this study, such phylogenetic position refers to “identical”. Another 

subgroup shows a distinct lineage separated from species E. citreus and E. pelagi with 

less than 97 % 16S rRNA gene similarity. Sphingobium-like strains were highly close to 

the species S. abikonense NBRC 16140T (>99 %) isolated from oil-contaminated soil 

(Kumari et al., 2009). Sphingopyxis-like strain was close to the species Sphingopyxis 

baekryungensis IAM 12404T (98.3 %) isolated from surface seawater (Yoon et al., 2005). 

Of 14 strains within the order Sphingomonadales, 12 strains were highly close to surface-

derived strains with >99 % of 16S rRNA gene similarity. Nine strains assigned to the 

order Rhodobacterales fell into 3 genera, Oceanicola (7 strains), Sagittula (1 strain) and 

Loktanella (1 strain). Oceanicola-like strains were almost identical to O. nanhaiensis 

DSM 18065T originating from deep-seawater (1100 m) in the Pacific Ocean as well as 

strains isolated from surface seawater (KP639144). Strains affiliated with Sagittula and 

Loktanella were identical to species S. stellata E-37 (99.3 %) and L. aestuariicola J-TF4T 
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(99.1 %), which were isolated from costal environments (Gonzalez et al., 1997; Park et 

al., 2014). Other alphaproteobacterial isolates were affiliated with genera Aurantimonas 

of the order Rhizobiales (1 strain) and Phenylobacterium of the order Caulobacterales (1 

strain). These isolates also showed higher than 99 % 16S rRNA gene sequences similarity 

with their relatives originating from the surface sea. 

Among the gammaproteobacterial isolates, 25 strains were assigned to the order 

Oceanospirillales. These strains were close to the species Alcanivorax venustensis ISO4T 

(>99 %) isolated at a depth of 200 m in the eastern Mediterranean Sea (Fernández-

Martínez et al., 2003). Most of Alcanivorax-like strains in this sample were retrieved from 

NSLM and 6 strains were assigned to the order Alteromonadales. These strains fell into 

genera Alteromonas (2 strains), Marinobacter (2 strains), Colwellia (1 strain) and 

Pseudoalteromonas (1 strain). Strains affiliated with genera Alteromonas and 

Marinobacter were identical to species A. macleodii ATCC 27126T (>99 %) and M. 

algicola DG893T (>99 %) originating from surface-sea environments (Baumann et al., 

1972; Green et al., 2006). Other gammaproteobacterial strains were affiliated with genera 

Psychrobacter (1 strain) and Acinetobacter (1 strain) within the order Pseudomonadales. 

These isolates also showed higher than 99 % 16S rRNA gene similarity with strains 

originating from the surface sea. Strains affiliated with genera Colwellia, 

Pseudoalteromonas and Acinetobacter showed less than 97 % 16S rRNA gene similarity 

with known species within the genera. 

Among the isolates belonging to the phylum Bacteroidetes, isolates within the order 

Flavobacteriales (12 strains) were close to the species Arenibacter palladensis KMM 

3961T (>99 %) isolated from the green alga (Nedashkovskaya et al., 2010). All 

Arenibacter-like strains were retrieved from NSLM. Isolates within the order 
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Rhodothermales (2 strains) showed less than 97 % 16S rRNA gene sequences similarity 

with any of the known species within the order. 

Deep-sea isolates from MR11-02-K2-2 seawater sample (2000 m) 

From MR11-02-K2-2 samples, 12 strains belonging to the class Gammaproteobacteria, 

phyla Verrucomicrobia and Bacteroidetes were obtained (Table 2-5). Their phylogenetic 

positions are shown in Figure 2-4. All the strains within the phylum Verrucomicrobia 

were affiliated with the genus Rubritalea. These strains were retrieved from 1/10 R2A 

agar and showed less than 97 % 16S rRNA gene sequences similarity with any of the 

known species. Rubritalea-like strains were highly close to their relative derived from the 

surface of the Arctic Ocean (GQ452897 and EU919773). Strains belonging to the class 

Gammaproteobacteria were close to either species Alteromonas macleodii ATCC 27126T 

(99.7 %) or Pseudoalteromonas shioyasakiensis SE3T (100 %), which originated from 

surface-sea environment (Matsuyama et al., 2014). Isolate of the phylum Bacteroidetes 

(1 strain) was affiliated with the genus Aquimarina, showing less than 97 % 16S rRNA 

gene sequences similarity with any of the known species. 

Deep-sea isolates from MR11-05-K2-1 seawater sample (1000 m) 

From MR11-05-K2-1 sample, 18 strains belonging to classes Alphaproterobacteria and 

Gammaproteobacteria, and phyla Bacteroidetes were obtained (Table 2-6). Their 

phylogenetic positions are shown in Figure 2-5. One alphaproterobacterial isolate was 

identical to a surface-derived bacterium (KJ475182). Its closest species was Loktanella 

tamlensis SSW-35T (98.2 %). Another alphaproterobacterial isolate was identical to 

Sulfitobacter sp. H24 (99.2%). 

Among the gammaproteobacterial isolates, 9 strains were assigned to the order 

Alteromonadales. These strains fell into genera Moritella (7 strains), Colwellia (3 strains) 
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and Shewanella (1 strain). Moritella-like strains were identical to the species M. viscosa 

NVI 88/478T (>99 %) isolated form a fish (Lunder et al., 2000). Colwellia-like strains 

were divided into two subgroups, which were close to species C. psychrerythraea 34HT 

(>98 %) and C. hornerae ACAM 607T (>97 %). Shewanella-like strain was close to the 

species S. Canadensis (97.8 %). One isolate of the order Pseudomonadale was identified 

and its closest species was Pseudomonas koreensis Ps 9-14T (>99 %) isolated from farm 

soil (Kwon et al., 2003). Other gammaproteobacterial isolates were affiliated with either 

genera Arenicella of the order Arenicellales (1 strain) or Sinobacterium of the order 

Oceanospirillales (1 strain).  

Isolates belonging to the phylum Bacteroidetes were assigned to only the order 

Flavobacteriales. One strain affiliated with the genus Aquimarina was identical to A. 

atlantica 22II-S11-z7T (99.6 %) isolated from surface seawater (Li et al., 2014b). 

Tenacibaculum and Dokdonia-like strains showed less than 97 % 16S rRNA gene 

sequences similarity with any species within the order.  

Deep-sea isolates from MR11-05-S1-1 seawater sample (1000 m) 

From MR11-05-S1-1 sample, 96 strains belonging to the class Alphaproteobacteria and 

Gammaproteobacteria, and the phylum Bacteroidetes and Actinobacteria were obtained 

(Table 2-7). Their phylogenetic positions are shown in Figures 2-6 and 2-7. Among the 

alphaproteobacterial isolates, 23 strains were assigned to the order Rhodobacterales. 

These strains were close to either species Oceanibulbus indolifex HEL-45T (>99 %) 

isolated from surface seawater (Agner-Döbler et al., 2004) or Sulfitobacter pontiacus 

ChlG 10 (>99 %) isolated from the Black Sea (Sorokin, 1995). Fourteen strains were 

assigned to the order Sphingomonadales and fell into genera Erythrobacter (12 strains) 

and Blastomonas (1 strain). Erythrobacter-like strains of this sample were similar with 
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those of KT10-25-S1-3 sample. Blastomonas-like strain showed less than 97 % 16S 

rRNA gene sequences similarity with known species. As for other alphaproteobacterial 

isolates, two strains were affiliated with the genus Thalassospira of the order 

Rhodospirillales and identical to Thalassospira-like strains isolated from soil 

(AUNC01000051) and 3000 m in the South China Sea (KF906554). One 

alphaproteobacterial strain was affiliated with the genus Phenylobacterium of the order 

Caulobacterales and its phylogenetic position was very close to the species P. falsum 

AC-49T derived from groundwater (Tiago et al., 2005). 

Among the gammaproteobacterial isolates, 17 strains were assigned to the order 

Oceanospirillales and affiliated with species Alcanivorax. Alcanivorax-like strains were 

divided into two subgroups, which were close to species A. venustensis and A. 

borkumensis with higher than 99 % 16S rRNA gene sequences similarity. Fifteen strains 

were assigned to the order Alteromonadales. These strains fell into genera Marinobacter 

(14 strains) and Pseudomonadales (1 strain), which were identical to species M. algicola 

CM19T and P. shioyasakiensis SE3T respectively. Ten strains were assigned to the order 

Pseudomonadales and identical to the species Pseudomonas aestusnigri VGXO14T 

isolated from crude oil-contaminated intertidal sand (Sánchez et al., 2014). Other 

gammaproteobacterial isolates were 6 strains in the order Thiotrichales. Their closest 

species was the species Methylophaga nitratireducenticrescens JAM7T isolated from 

biofilm (Villeneuve et al., 2013). 

Strains within the phylum Bacteroidetes were identical to a Gramella-like 

bacterium isolated from soil (EU328069). Strains within the phylum Actinobacteria were 

close to the species Nocardioides basaltis J112T (>99 %) isolated from sand (Kim et al., 

2009). 
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Deep-sea isolates from MR11-05-S1-2 seawater sample (2000 m) 

From MR11-05-S1-2 sample, 101 strains belonging to two bacterial lineages, classes 

Alphaproteobacteria and Gammaproteobacteria were obtained (Table 2-8). Their 

phylogenetic positions are shown in Figure 2-8. More than 70 % of total isolate in this 

sample were assigned to the order Rhodobacterales of the class Alphaproteobacteria. 

Most of them were affiliated with the genus Sulfitobacter (49 strains) and close to the 

species Sulfitobacter pontiacus ChlG 10 (>99 %). Other alphaproteobacterial isolates fell 

into genera Hyphomonas (20 strains), Oceanibulbus (4 strains) and Erythrobacter (3 

strains). Hyphomonas-like strains were close to the species H. atlantica 22II1-22F38T 

(99.0 %) isolated from surface seawater (Li et al., 2014a) and mainly retrieved from 

1/10R2A and NSLM. Oceanibulbus and Erythrobacter-like strains were identical to O. 

indolifex HEL-45T and E. citreus RE35F/1T. 

Among the gammaproteobacterial isolates, 13 strains were assigned to the order 

Alteromonadales and fell into the genera Marinobacter (11 strains) and Moritella (2 

strains). Marinobacter-like strains were divided to two subgroups, which were affiliated 

with two species, M. lipolyticus SM19T isolated from saline soil (Martín et al., 2003) and 

M. salaries R9SW1T isolated from surface seawater (Ng et al., 2014). Moritella-like 

strains were close to the species M. viscosa NVI 88/478T (>99 %) isolated from fish. 

Isolates affiliated with the species Alcanivorax atlantica ISO4T (9 strains) and 

Methylophaga nitratireducenticrescens JAM7T (2 strains) within the order Thiotrichales 

were identified. 

Deep-sea isolates from MR11-05-S1-3 seawater sample (3000 m) 
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From MR11-05-S1-3 sample, 20 strains belonging to the classes Alphaproteobacteria, 

Betaproteobacteria and Gammaproteobacteria, and the phyla Bacteroidetes and 

Actinobacteria were obtained (Table 2-9). Their phylogenetic positions are shown in 

Figure 2-9. Strains belonging to the class Alphaproteobacteria fell into genera 

Oceanibulbus (2 strains) and Erythrobacter (2 strains). They were similar with those of 

MR11-05-S1-2 sample.  

Among gammaproteobacterial isolates, strains within the order Pseudomonadales 

fell into genera Alkanindiges (6 strains) and Pseudomonas (1 strain). Alkanindiges-like 

strains were close to A. illinoisensis MVAB Hex1T (97.8 %) and identical to Alkanindiges 

sp. 5-0-9 isolated from soil (LT158291). Pseudomonas-like strain were identical to P. 

koreensis Ps 9-14T (99.7 %). Two strains were assigned to the order Alteromonadales. 

These strains were identical to Pseudoalteromonas marina mano4T isolated from tidal 

flats (Nam et al., 2007). Remarkably, a strain of the class Betaproterobacteria was 

obtained and close to the species Limnobacter thiooxidans CS-K2T (99.9 %) derived from 

a freshwater lake (Spring et al., 2001).  

As for the phylum Bacteroidetes, two strains of the order Sphingobacteriales were 

close to the species Pedobacter silvilitoris W-WS1T (99.6 %) isolated form a wood fall 

in coastal area (Park et al., 2015). The strain of the order Rhodothermales within the 

phylum showed less than 97 % 16s rRNA gene sequences similarity with any known 

species. As for the phylum Actinobacteria, two strains of the order Propionibacteriales 

were identical to species Nocardioides furvisabuli SBS-26T (99.6 %) and Nocardioides 

basaltis J112T (99.4 %), respectively. One strain of the order Micrococcales was close to 

the species Microbacterium lacus A5E-52T (98.2 %) and identical to Microbacterium sp. 

SMXB24 isolated from sludge (HF571532). Except for the strains of Rhodothermales, 
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the deep-sea strains shared almost same phylogenetic position with strains originating 

from surface-sea environments. 

Deep-sea isolates from MR11-05-S1-4 seawater sample (4000 m) 

From MR11-05-S1-4 sample, 95 strains belonging to classes Alphaproteobacteria, 

Betaproteobacteria and Gammaproteobacteria of the phylum Proteobacteria, 

Bacteroidetes and Actinobacteria were obtained (Table 2-10). Their phylogenetic 

positions are shown in Figures 2-10 and 2-11. Among the alphaproteobacterial isolates, 

16 strains were assigned to the order Sphingomonadales. These strains fell into genera 

Erythrobacter and Sphingopyxis. Erythrobacter-like strains were close to E. citreus 

RE35F/1T. Sphingopyxis-like strains were identical to S. chilensis S37T (100 %) isolated 

from the surface sea (Godoy et al., 2003). Other alphaproteobacterial isolates fell into 

genera Paracoccus (1 strain) and Sulfitobacter (1 strain) of the order Rhodobacterales, 

and Brevundimonas (2 strains) of the order Caulobacterales. Paracoccus-like strain was 

close to P. oceanense JLT1679T isolated from surface West Pacific (Fu et al., 2011) and 

a deep-sea isolate in the eastern Mediterranean (Gärtner et al., 2011). Sulfitobacter-like 

strain was identical to strains isolated from the deep sea (AB526332) and surface sea 

(FJ161246). Brevundimonas-like strains (2 strains) were identical to the species B. 

vesicularis IHBB 11140T isolated from lake water (Segers et al., 1994). More than 40 % 

of the isolates (42 strains) in this sample were assigned to the order Burkholeriales of the 

class Betaproteobacteria. These strains were close to the species Limnobacter thioxidans 

CS-K2T (>99 %). Another betaproteobacterial phylotype (1 strain) was close to the 

species Achromobacter spanius LMG 5911T (100 %) isolated from human clinical sample 

(Coenye et al., 2003).  
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Among the gammaproteobacterial isolates, 21 strains were assigned to the order 

Pseudomonadales. These strains were affiliated with genus Pseudomonas (16 strains), 

Alkanindiges (3 strains) and Acinetobacter (2 strains). Pseudomonas-like strains were 

divided into three subgroups, which were close to species P. stutzeri ATCC 11607T, P. 

rhodesiae CIP 104664T and P. koreensis Ps 9-14T. Seven strains affiliated with P. stutzeri 

were identical to strains isolated from deep-sea sediment in the Pacific Ocean (KR012296, 

KR012018-KR012025). Two strains were assigned to the order Oceanospirillales. One 

strain was close to the species Halomonas sulfidaeris Esulfide1T (98.5 %) isolated from 

deep-sea hydrothermal vent environment (Kaye et al., 2004) and identical to a strain 

isolated from deep-sea sediment (AB166966). Another strain was identical to the species 

Alcanivorax venustensis ISO4T.  

Isolates of the phylum Bacteroidetes fell into genera Leeuwenhoekiella (3 strains), 

Flavobacterium (1 strain) and Zunongwangia (1 strain) within the order Flavobacteriales. 

They were affiliated with species L. aequorea LMG22550T, F. ahnfeltiae KMM6686T 

and Z. profunda SMA-87T. The strains belonging to the phylum Actinobacteria were 

affiliated with genera Rhodococcus of the order Corynebacteriales and Microbacterium 

and Brachybacterium of the order Micrococcales. 

Deep-sea isolates from KT12-08-OT5 seawater sample (1000 m) 

From KT12-08-OT5 sample, 90 strains belonging to the classes Alphaproteobacteria and 

Gammaproteobacteria, and the phylum Bacteroidetes were obtained (Table 2-11). Their 

phylogenetic positions are shown in Figures 2-12, 2-13 and 2-14. Among the 

alphaproteobacterial isolates, 12 strains were assigned to the order Rhizobiales. These 

strains were identical to the species Aurantimonas coralicida WP1T (>99.0 %) isolated 

from coral and Aurantimonas sp. C5-1 isolated form the deep-sea (AB937559). Fourteen 
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strains assigned to the order Sphingomonadales fell into genera Sphingorhabdus (5 

strains), Erythrobacter (3 strains), Sphingomonas (3 strains) and Sphingopyxis (3 strains). 

Sphingorhabdus-like strains were close to the species Sphingorhabdus flavimaris SW-

151T (>99.0 %) isolated from surface seawater (Ogler et al., 2013) and identical to a strain 

isolated from oil amended marine particulate matter (EU239907). Erythrobacter-like 

strains were close to E. citreus RE35F/1T (>99.0 %). Sphingomonas-like strains were 

identical to the species Sphingomonas paucimobilis ATCC 51231T. Sphingopyxis-like 

strains were identical to the species Sphingopyxis baekryungensis SW-150T. Twelve 

strains assigned to the order Rhodobacterales fell into genera Sulfitobacter (5 strains), 

Oceanicola (3 strains), Shimia (2 strains), Loktanella (1 strains), Octadecabacter (1 

strains) and Henriciella (1 strain). Sulfitobacter and Shimia-like strains showed less than 

97 % 16S rRNA gene sequences similarity with validly published species. Oceanicola-

like strains were close to the species Oceanicola nanhaiensis DSM 18065T (99 %) 

isolated from sediment at a depth of 1100 m of the South China Sea (Gu et al., 2007). 

Loktanella and Octadecabacter-like strains was respectively identical to Loktanella sp. 

K4B-4 isolated from Arctic seawater (FJ889559) and uncultured bacterium OA8-30d-

034 retrieved during ocean acidification experiment (JN976549). Three strains assigned 

to the order Caulobacterales were affiliated with the genus Phenylobacterium and similar 

with ones of MR11-05-S1-1 seawater sample. 

Among gammaproteobacterial strains, deep-sea isolates assigned to the order 

Cellvibrionales fell into genera Oceanicoccus, Dasania and Haliea. All of them showed 

less than 97 % 16S rRNA gene sequences similarity with validly published species. 

Twenty strains assigned to the order Alteromonadales were affiliated with genera 

Colwellia, Moritella, Psychromonas and Shewanella. Colwellia-like strains were 
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clustered to two groups affiliated with species C. hornerae IC035T (>98.0 %) and C. 

aestuarii SMK-10T (>98.0 %). Moritella-like strains were close to species Moritella 

japonica DSK1Tand Moritella yayanosii DB21MT-5T (>97.0 %), which are piezophilic 

bacteria isolated from Japan Trench sediment (Nogi et al., 1998; Nogi and Kato, 1998). 

Other gammaproteobacterial isolates were genera Thalassolitus of the order 

Oceanospirillales (2 strains) and Photobacterium of the order Vibrionales (2 strains). 

All of strains belonging to the phylum Bacteriotedes were assigned to the order 

Flavobacteriales including genera Algibacter, Ulvibacter, Lutimonas, Aquimarina, 

Lewinella and Winogradskyella, Except for 2 strain affiliated with the genus Lutimonas, 

Flavobacteriales-like strains affiliated with showed less than 97 % of 16S rRNA gene 

sequences similarity with validly published species.  

Deep-sea isolates from KT12-08-ON8 seawater sample (1700 m) 

From KT12-08-ON8 sample, 115 strains belonging to classes Alphaproteobacteria and 

Gammaproteobacteria, and the phylum Bacteroidetes, Actinobacteria, Lentisphaerae 

and Verrucomicrobia were obtained (Table 2-12). Their phylogenetic positions are shown 

Figures 2-15, 2-16 and 2-17. Among strains belonging to the class Alphaproteobacteria, 

those belonging to the order Sphingomonadales fell into genera Erythrobacter 

Sphingomonas, Sphingorhabdus and Sphingopyxis. Fourteen strains were close to the 

species E. citreus RE35F/1T. Fourteen strains were identical to Sphingomonas 

pauimobilis ATCC 51231T (100 %) and uncultured deep-sea bacterium Bac3B84 

(KJ548890). Three Sphingobium strains were closely related to clones in Puerto Rico 

Trench (HM798716). These strains were identical to the species Sphingobium olei 

IMMIB HF-1T (>98 %). Seven strains were assigned to the order Rhizobiales. Of 7 strains, 

6 strains were close to Aurantimonas coralicida DSM14790 and similar with ones of 
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KT12-08-OT5 sample. One strain was close to the species Jiella aquimaris (>98%) and 

identical to Aurantimonas sp. 5C.5 isolated from Juan de Fuca Ridge basalt (HQ427427). 

Twelve strains assigned to the order Rhodobacterales fell into genera Paracoccus (6 

strains), Oceanicola (3 strains), Loktanella (1 strain), Roseobacter (2 strains), 

Planktotalea (1 strain), Sulfitobacter (1 strain) and Shimia (1 strain). Six strains were 

identical to the species Paracoccus oceanense JLT1679T and an isolate from the Eastern 

Mediterranean deep-sea (Gärtner et al., 2011). All of strains assigned to the order 

Caulobacterales were affiliated with the genus Phenylobacterium, which were retrieved 

from only NSLM. Three Limnobacter-like strains were isolated and similar with ones of 

MR11-05-S1-4 sample.  

Among strains belonging to the class Gammaproteobacteria, strains assigned to the 

order Alteromonadales fell into genera Colwellia (10 strains), Moritella (5 strains), 

Paraglaciecola (2 strains), Psychromonas (2 strains) and Shewanella (1 strain). Colwellia 

Moritella and Psychromonas-like strains were similar with ones of other samples. 

Paraglaciecola-like strains were close to P. psychrophila 170T isolated from the Arctic 

(Zhang et al., 2006) 

Strains belonging to the phylum Bacteroidetes were assigned to orders 

Flavobacteriales. Except for one strain affiliated with the genus Sabulilitoribacter, strains 

affiliated with genera Winogradsskyella, Algibacter, Ulvibacter and Polaribacter showed 

less than 97 % of 16S rRNA gene sequences similarity with validly published species. 

One strain assigned to the order Cytophagales was affiliated with the genus 

Reichenbachiella. Two strains affiliated with the phylum Lentisphaerae were close to the 

species Lentisphaera marina IMCC 11369T (>98 %). One verrucomicrobial strain was 
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retrieved from 1/10R2A and affiliated with the genus Coraliomargarita. The strain 

showed less than 97 % 16S rRNA gene sequences similarity with known species. 

 

Discussion 

In order to clarify the phylogenetic, physiological and genetic characteristics of marine 

prokaryotes, it is essential to isolate strains from various phylogenetic groups. In this 

study, a total of 681 isolates were obtained from the 9 deep-seawater samples collected 

from the north-western Pacific Ocean using 3 kinds of media, NSLM (liquid medium), 

1/10 R2A agar and 1/5 MA agar. Based on 16S rRNA gene sequences, first, it was 

clarified that all the deep-sea isolates belonged to the domain Bacteria and none to 

Archaea. Second, over 50 % of the bacterial isolates belonged to the phylum 

Proteobacteria of the domain Bacteria. Other isolates were assigned to phyla 

Bacteroidetes, Actinobacteria, Verrucomicrobia and Lentisphaerae. Third, approximately, 

90 % of the identified isolates have phylogenetically close relatives from surface layer or 

other environments. Fourth, among three culture methods applied, there were some 

differences in phylogenetic groups isolated. For example, strains belonging to the phyla 

Verrucomicrobia and Lentisphaerae were isolated by only 1/10 R2A (Figures 2-4 and 2-

17). Also Nocardioides-like strains were retrieved from 1/10R2A (Figure 2-7). 

Hyphomonas-like strains were mainly isolated from 1/10R2A and NSLM (Table 2-8). 

NSLM enabled me to isolate Arenicella-like strains, which are the first isolates from the 

deep sea within the orders Arenicellales (Figure 2-3). Although no consistent difference 

was noticed among other phylogenetic groups, combination of different media 

simultaneously seems to be important to isolate wide groups of prokaryotes. Finally, at 

the station MR11-05-S1, there were some vertical differences in the phylogenetic groups. 
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The pattern is, however, not consistent among other stations.  

Except for mixed cultures, 617 bacterial strains were identified using 16S rRNA 

gene sequencing. More than 90 % of them (586 strains) showed > 99 % 16S rRNA gene 

similiarity with close relatives in surface layers or other environments (Tables 2-4 to 2-

12). This suggests that those groups are widely present as “cosmopolitan” groups, 

probably due to the mechanism of transportations. There may be two major factors, i.e., 

seawater circulations in the ocean (Kato and Nogi, 2003; Lauro et al., 2014) and the 

vertical flux on sinking particles. Prokaryotic cells inhabiting in surface may adsorb such 

particles and are transported to deeper layer (Sakiyama and Ohwada, 1998; Vanucci et 

al., 2001). The numbers of cells thus transported may be 1010–1012 cells m-2 y-1 (Turley 

and Mackie, 1994).  

Among the isolates, strains affiliated with genera Erythrobacter, Oceanibulbus 

and Sulfitobacter within Alphaproterobacteria, and Alcanivorax, Colwellia, Moritella 

within Gammaproterobacteria were often isolated from other diverse deep-sea 

environments (Radjasa et al., 2001; Ivars-Martínez et al., 2008; Eloe et al., 2010; Gärtner 

et al., 2011). On the other hand, some were the first isolates from the deep sea within their 

phylogenetic groups. Seven strains of the phylum Verrucomicrobia and 2 strains of the 

phylum Lentisphaerae were the first ones (Table 2-13) from the deep-sea. Also, strains 

affiliated with genera Arenicella, Methylophaga, Dasania, Kinoniella and Ilumatobacter 

were the first isolates in the orders Arenicellales, Thiotrichales, “Cellvibrionales” and 

Kiloniellales of the class Gammaproteobacteria, and Acidmicrobiales of the phylum 

Actinobacteria. Furthermore, strains of the genus Limnobacter within the family 

Burkhoderiaceae were obtained for the first time. Eloe and colleagues (2010) found the 

abundance of Limnobacter-like sequences from 6000 m in the Puerto Rico Trench. Also 
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some DNA segments retrieved from 3000 m depth in the Mediterranean matches 

Limnobacter related genomes (Martín-Cuadrado et al., 2010), confirming the presence of 

similar bacterial group. Considering that Betaproteobacteria has shown relatively limited 

abundance in marine environments, the high percentage of betaproteobacterial sequences 

in the deep sea is an interesting phenomenon.   

According to the current taxonomic rule (Stackebrandt and Goebel, 1994), the 

strains having 16S rRNA gene gene similarity lower than 97 % may be assigned to a 

novel species. Rubrivirga marina SAORIC-28T (Park et al., 2013), Aurantivirga profunda 

SAORIC-234T (Song et al., 2015), Lentisphaera profundi SAORIC-696T (Choi et al., 

2015) and Rubrivirga profundi SAORIC-476T (Song et al., 2016) were validated after 

taxonomical investigations and I proposed as novel deep-sea species (Figure 2-18).  

The success in cultivation of previously unknown strains is ascribed to the use of 

three newly-designed lower carbon media. Although I did not compare three media with 

MA and 1/2 MA, the use of the media with lower concentration of carbon contents seems 

to have some advantages. First, for those living in oligotrophic environments, these media 

give less stress due to sudden increase of organic concentration. Second, there is less 

chance that fast growers cover the agar surface and hide colonies of other potentially 

recoverable strains. The drawback is, however, it may take longer incubation time due to 

slow growth. For future investigation, the application of agar plate with even lower 

concentration of organic compounds and/or with different components of nutrients may 

be effective to isolate more uncultured bacteria. As for NSLM, my first intention was to 

isolate those in the SAR11 group. Unfortunately, I could not isolate a deep-sea strain 

within the SAR11 group by NSLM at this time. Some modification will be possible in 

future. Stingle and colleagues (2007) suggested that the use of Teflon plates cleaned with 



32 
 

metal-free HCl yield new SAR11 isolates. Song and colleagues (2009) suggested that 

long term incubation at low temperatures improve the culturability of the surface-sea 

SAR11 strains. In this study, the incubation was performed at 10℃ for 4 weeks in 

polystyrene microtiter plates. Considering in situ conditions, long term incubation at 4℃ 

may be effective to isolate the SAR11s or other unknown strains from the deep-sea.  

In conclusion, deep-sea bacteria from diverse phylogenetic groups were obtained 

from the north-western Pacific Ocean. 16S rRNA gene sequences of them revealed that 

most of them are regularly collected from various marine environments. On the other 

hand, a few of them were the first isolates that have never been cultured from the deep 

sea before. Among them, 4 strains were described and reported as new species. This result 

leads to arise some questions. First, what kind of general vertical distribution patterns do 

prokaryotes, including the groups isolated this time, show in the ocean? Second, what 

kind of physiological and genetic characteristics do deep-sea microorganisms have? Third, 

what kind of genetic similarities or dissimilarities do microorganisms have depending on 

their habitat depth? What kind of improvements of culture method leads to the isolation 

of more unknown microorganisms? In order to partly answer these questions, the culture 

independent molecular approach was taken to reveal vertical distribution of prokaryotes 

in the north-western Pacific Ocean (Chapter 3). Also, physiological and genetic 

investigations are accomplished by using these isolates in comparison with surface strains 

(Chapter 4, 5).  
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Table 2-1. Information of seawater samples and number of isolates.  

Sample Location Sampling date Depth (m) Temperature (℃ ) 
Total number of cells in 

seawater (cells/ml) 

Number of isolates 

1/5MA 1/10R2A NSLM 

KT10-12-S1-3 32°00' N, 138°13' E 3 July 2010 3000 2.0 1.2 x 105 6 11 61 

MR11-02-K2-2 47°00' N, 160°00' E February 2011 2000 2.0 1.6 x 105 2 10 - 

MR11-05-K2-1 47°00' N, 160°00' E May 2011 1000 2.5 1.8 x 105 8 10 - 

MR11-05-S1-1 32°00' N, 145°00' E May 2011 1000 3.8 1.7 x 105 52 30 17 

MR11-05-S1-2 32°00' N, 145°00' E May 2011 2000 2.0 1.2 x 105 20 44 49 

MR11-05-S1-3 32°00' N, 145°00' E May 2011 3000 1.6 0.6 x 105 10 10 - 

MR11-05-S1-4 32°00' N, 145°00' E May 2011 4000 1.5 0.7 x 105 33 44 25 

KT12-08-OT5 39°20' N, 142°20' E Oct 2012 1000 2.3 1.2 x 105 46 20 32 

KT12-08-ON8 38°25' N, 143°00' E May 2012 1700 2.2 1.8 x 105 39 48 54 

Total      216 227 238 
1/5MA, 1/5 strength marine agar 2216; 1/10 R2A, 1/10 strength R2A agar; NSLM, natural seawater lipid media. Incubation at 10℃ for 1 
month. -, not tested 
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Table 2-2. Number of deep-sea isolates within classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria and phylum 

Bacteroidetes.  

Sample (depth) 
Alphaproteobacteria Betaproteobacteria Gammaproteobacteria Bacteroidetes 
1/5 
MA 

1/10 
R2A 

NSLM 
1/5 
MA 

1/10 
R2A 

NSLM 
1/5 
MA 

1/10 
R2A 

NSLM 
1/5 
MA 

1/10 
R2A 

NSLM 

KT10-12-S1-3 (3000 m) 4 5 16 0 0 0 0 6 27 2 0 10 

MR11-02-K2-2 (2000 m) 0 0 - 0 0 - 1 4 - 1 0 - 

MR11-05-K2-1 (1000 m) 2 0 - 0 0 - 3 8 - 3 2 - 

MR11-05-S1-1 (1000 m) 23 10 6 0 0 0 27 16 5 2 2 2 

MR11-05-S1-2 (2000 m) 12 34 30 0 0 0 8 10 7 0 0 0 

MR11-05-S1-3 (3000 m) 2 2 - 0 1 - 6 3 - 2 1 - 

MR11-05-S1-4 (4000 m) 8 7 5 13 22 8 10 11 3 1 2 2 

KT12-08-OT5 (1000 m) 18 6 21 0 0 0 24 10 3 4 4 0 

KT12-08-ON8 (1700 m) 19 25 15 1 1 1 16 11 9 0 7 3 

Total 88 89 94 14 24 9 95 79 54 15 18 17 
-, not tested. 
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Table 2-3. Numbers of the deep-sea isolates within phyla Actinobacteria, Verrucomicrobia and Lentisphaerae, and mixed culture showing 

unclear 16S rRNA gene sequence. 

Sample (depth) 
Actinobacteria Verrucomicrobia Lentisphaerae Mixed culture 

1/5 
MA 

1/10 
R2A 

NSLM 
1/5 
MA 

1/10 
R2A 

NSLM 
1/5 
MA 

1/10 
R2A 

NSLM 
1/5 
MA 

1/10 
R2A 

NSLM 

KT10-12-S1-3 (3000 m) 0 0 0 0 0 0 0 0 0 0 0 8 

MR11-02-K2-2 (2000 m) 0 0 - 0 6 - 0 0 - 0 0 - 

MR11-05-K2-1 (1000 m) 0 0 - 0 0 - 0 0 - 0 0 - 

MR11-05-S1-1 (1000 m) 0 2 0 0 0 0 0 0 0 0 0 3 

MR11-05-S1-2 (2000 m) 0 0 0 0 0 0 0 0 0 0 0 12 

MR11-05-S1-3 (3000 m) 0 3 - 0 0 - 0 0 - 0 0 - 

MR11-05-S1-4 (4000 m) 2 2 0 0 0 0 0 0 0 0 0 6 

KT12-08-OT5 (1000 m) 0 0 0 0 0 0 0 0 0 0 0 8 

KT12-08-ON8 (1700 m) 3 1 0 0 1 0 0 2 0 0 0 26 

Total 5 8 0 0 7 0 0 2 0 0 0 63 
-, not tested. 
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Table 2-4. Bacterial isolates in each phylogenetic group from KT10-12-S1-3 sample (3000 m). 

Strains RFLP Phylum/class Closest surface strain Simila
rity 

Total isolates 

1/5MA 1/10R2A NSLM 
SAORIC-3000-1-C6, SAORIC-3000-1-D5, 
SAORIC-3000-1-D8, SAORIC-3000-1-F3, 
SAORIC-3000-4-F5, SAORIC-3000-7-B4, 
SAORIC-3000-8-B1 

0 Alphaproteobacteria Erythrobacter citreus RE35F/1 99 0 0 7 

SAORIC-10, SAORIC-32,  
SAORIC-3000-1-B7 

0  Erythrobacter sp. H209 99 0 2 1 

SAORIC-1, SAORIC-13, SAORIC-16 0  Sphingobium sp. 2F5-2 99 1 2 0 

SAORIC-3000-1-E4 0  Sphingpyxis baekryungensis SW-150 99 0 0 1 
SAORIC-3, SAORIC-4, 
SAORIC-3000-1-C2, SAORIC-3000-2-C4, 
SAORIC-3000-2-D6, SAORIC-3000-2-E5, 
SAORIC-3000-7-E2 

0  Ocenicola sp. LZB062 98 1 1 5 

SAORIC-3000-1-C4 0  Loktanella aestuariicola J-TF4 99 0 0 1 

SAORIC-25 0  Sagittula stellata E-37 99 1 0 0 

SAORIC-29 0  Aurantimonas coralicida DSM14790 99 1 0 0 

SAORIC-3000-6-B7 0  Uncultured Phenylobacterium EDW07B001 99 0 0 1 
SAORIC-17, SAORIC-3000-1-E2, 
SAORIC-3000-1-F1, SAORIC-3000-2-A7, 
SAORIC-3000-2-B6, SAORIC-3000-2-C6,  
SAORIC-3000-2-D2, SAORIC-3000-2-D5, 
SAORIC-3000-2-E2, SAORIC-3000-2-E4, 
SAORIC-3000-2-E2, SAORIC-3000-3-C3, 
SAORIC-3000-4-D2, SAORIC-3000-4-E4, 
SAORIC-3000-6-C7, SAORIC-3000-6-F8, 
SAORIC-3000-7-A6, SAORIC-3000-7-C6, 
SAORIC-3000-7-F2, SAORIC-3000-7-F6, 
SAORIC-3000-8-A6, SAORIC-3000-8-D3, 
SAORIC-3000-8-D4, SAORIC-3000-8-E3, 
SAORIC-3000-8-F2, 

0 Gammaproteobacteria Alcanivorax venustensis ISO4 99 0 1 24 

SAORIC-9, SAORIC-3000-1-E3 0  Alteromonas macleodii DSM 6062 99 0 1 1 

SAORIC-11, SAORIC-15 0  Marinobacter algicola DG893 99 0 2 0 

SAORIC-38 0  Colwellia asteriadis KMD002 97 0 1 0 

SAORIC-3000-1-E1 0  Pseudoalteromonas phenolica O-BC30 95 0 0 1 

SAORIC-30 0  Psychrobacter pacificensis IFO 16279 99 0 1 0 
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SAORIC-3000-2-C8 0  Acinetobacter junii CIP 64.5 97 0 0 1 
SAORIC-3000-2-A6, SAORIC-3000-2-F2, 
SAORIC-3000-7-F1 

7 Bacteroidetes Arenibacter palladensis VBW129 99 0 0 10 

SAORIC-26, SAORIC-28 0  Uncultured Rubricoccus EK CK570 96 2 0 0 

Total     6 11 52 

RFLP, numbers of strains showing same patterns in RFLP analysis 

 

Table 2-5. Bacterial isolates in each phylogenetic group from MR11-02-K2-2 sample (2000 m) 

Strains RFLP Phylum/class Closest surface strain 
Simila

rity 

Total isolates 

1/5 MA 1/10 R2A 

SAORIC-156, SAORIC-160 0 Gammaproteobacteria Pseudoalteromonas shioyasakiensis SE3 99 0 2 

SAORIC-154, SAORIC-155, SAORIC-157 0  Alteromonas macleodii ATCC 27126 99 1 2 

SAORIC-153 0 Bacteroidetes Aquimarina sp. RZW4-3-2 95 1 0 
SAORIC-159, SAORIC-161, SAORIC-162, 
SAORIC-163, SAORIC-165, SAORIC-168 

0 Verrucomicrobia Uncultured Rubritalea strain b36 99 0 6 

Total     2 10 
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Table 2-6. Bacterial isolates in each phylogenetic group from MR11-05-K2-1 sample (1000 m) 

Strains RFLP Phylum/class Closest surface strain 
Simila

rity 

Total isolates 

1/5 MA 1/10 R2A 

SAORIC-212 0 Alphaproteobacteria Loktanella sp. PAMC 27241 99 1 0 

SAORIC-220 0  Sulfitobacter sp. H24 99 1 0 
SAORIC-215, SAORIC-218, SAORIC-236, 
SAORIC-239 

0 Gammaproteobacteria Moritella viscosa NVI 88/478 99 2 2 

SAORIC-235, SAORIC-237 0  Colwellia sp. ANT9381 99 0 2 

SAORIC-219 0  Colwellia psychrerythraea 34H 99 1 0 

SAORIC-238 0  Shewanella canadensis HAW-EB2 99 0 1 

SAORIC-242 0  Pseudomonas fluorescens 9zhy 99 0 1 

SAORIC-232 0  Uncultured Arenicella strain B78-30 98 0 1 

SAORIC-241 0  Sinobacterium caligoides SCSWE24 99 0 1 

SAORIC-233, SAORIC-234  0 Bacteroidetes Uncultured Polaribacter strain K2S205 99 0 2 

SAORIC-211, SAORIC-222 0  Uncultured Dokdonia strain OA9-30d-027 99 2 0 

SAORIC-214 0  Aquimarina atlantica 22II-S11-z7 99 1 0 

Total     8 10 
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Table 2-7. Bacterial isolates in each phylogenetic group from MR11-05-S1-1 sample (1000 m) 

Strains RFLP Phylum/class Closest surface strain 
Simila

rity 

Total isolates 

1/5 MA 1/10 R2A NSLM 
SAORIC-246, SAORIC-247, SAORIC-263, 
SAORIC-278, SAORIC-301, SAORIC-319, 
SAORIC-332, SAORIC-335, SAORIC-341, 
SAORIC-348, SAORIC-360, SAORIC-362, 
SAORIC-1000-20-E1 

6 Alphaproteobacteria Oceanibulbus indolifex HEL-45 99 11 7 1 

SAORIC-245, SAORIC-258, SAORIC-284, 
SAORIC-290, SAORIC-1000-8-C5 

0  Sulfitobacter pontiacus ChLG-10 99 4 0 1 

SAORIC-248, SAORIC-252, SAORIC-266, 
SAORIC-285, SAORIC-337, SAORIC-347, 
SAORIC-359 

0 
 Erythrobacter citreus RE35F/1 99 4 3 0 

SAORIC-1000-8-D4, SAORIC-1000-10-C1, 
SAORIC-1000-11-C7, SAORIC-1000-11-
C1, SAORIC-1000-11-C3 

0  Erythrobacter pelagi UST081027-248 99 0 0 5 

SAORIC-276 0  Blastomonas sp. SSR2A-4-2 98 1 0 0 
SAORIC-316 1  Thalassospira permensis SMB34 99 2 0 0 
SAORIC-257 0  Phenylobacterium falsum AC-49 99 1 0 0 
SAORIC-250, SAORIC-260, SAORIC-273, 
SAORIC-283, SAORIC-295, SAORIC-298, 
SAORIC-313, SAORIC-345, SAORIC-356, 
SAORIC-1000-7-A8, SAORIC-1000-12-F8 

0 Gammaproteobacteria Alcanivorax borkumensis SK2 99 7 2 2 

SAORIC-251, SAORIC-331, 
SAORIC-1000-8-D2 

3  Alcanivorax venustensis ISO4 99 2 3 1 

SAORIC-254, SAORIC-255, SAORIC-256, 
SAORIC-269, SAORIC-304, SAORIC-307, 
SAORIC-308, SAORIC-333, SAORIC-338, 
SAORIC-350, SAORIC-352, 
SAORIC-1000-8-C4 

2  Marinobacter algicola CM19 99 8 5 1 

SAORIC-1000-8-B8 0  Pseudalteromonas shioyasakiensis SE3 99 0 0 1 
SAORIC-259, SAORIC-277, SAORIC-291, 
SAORIC-303, SAORIC-317, SAORIC-324, 
SAORIC-353, SAORIC-361 

2  Pseudomonas aestusnigri CCUG 64165 99 6 4 0 

SAORIC-265, SAORIC-261, SAORIC-270, 
SAORIC-342, SAORIC-334, SAORIC-344 

0  Methylophaga nitratireducenticrescens JAM1 99 4 2 0 

SAORIC-253, SAORIC-300, SAORIC-346, 
SAORIC-334, SAORIC-1000-12-C8, 
SAORIC-1000-12-B3 

0 Bacteroidetes Uncultured Gramella strain Y114 99 2 2 2 

SAORIC-349, SAORIC-354 0 Actinobacteria Nocardioides basaltis J112 99 0 2 0 
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Total     52 30 14 

 

Table 2-8. Bacterial isolates in each phylogenetic group from MR11-05-S1-2 sample (2000 m) 

Strains RFLP Phylum/class Closest surface strain 
Simila

rity 

Total isolates 

1/5 MA 1/10 R2A NSLM 
SAORIC-371, SAORIC-386, SAORIC-388, 
SAORIC-395, SAORIC-402, SAORIC-418, 
SAORIC-422, SAORIC-428, SAORIC-429, 
SAORIC-433, SAORIC-435, SAORIC-440, 
SAORIC-449, SAORIC-2000-19-B2, 
SAORIC-2000-19-D1, SAORIC-2000-19-E5,  
SAORIC-2000-19-F1, SAORIC-2000-21-A6, 
SAORIC-2000-21-B5, SAORIC-2000-21-D1,  
SAORIC-2000-21-F6, SAORIC-2000-21-F7, 
SAORIC-2000-22-D8, SAORIC-2000-22-E4, 
SAORIC-2000-22-F1, SAORIC-2000-23-A7, 
SAORIC-2000-23-B1, SAORIC-2000-23-B2,  
SAORIC-2000-23-B3, SAORIC-2000-23-E6,  

19 Alphaproteobacteria Sulfitobacter sp. MOLA 8 99 10 21 18 

SAORIC-398, SAORIC-399, SAORIC-441, 
SAORIC-2000-20-E1 

0  Uncultured Oceanibulbus strain SEM1D091 99 0 3 1 

SAORIC-374, SAORIC-396, SAORIC-427, 
SAORIC-430, SAORIC-453,  
SAORIC-2000-19-F6, SAORIC-2000-20-B5, 
SAORIC-2000-21-C5, SAORIC-2000-22-A4, 
SAORIC-2000-23-B8, SAORIC-2000-23-D3, 
SAORIC-2000-24-C5 

8  Hyphomonas sp. MCCC 1A05042 99 1 9 10 

SAORIC-377, SAORIC-438,  
SAORIC-2000-23-E5 

0  Erythrobacter citreus RE35F/1 99 1 1 1 

SAORIC-366, SAORIC-368, SAORIC-382, 
SAORIC-394 

4 Gammaproteobacteria Marinobacter sp. NBRC 101712 99 5 3 0 

SAORIC-375, SAORIC-393, 
SAORIC-2000-20-C1, SAORIC-2000-23-B7 

0  Uncultured Marinobacter strain C02-D-2 99 1 1 2 

SAORIC-365 0  Moritella sp. H130426 99 1 0 0 

SAORIC-370 0  Moritella sp. J28 99 1 0 0 
SAORIC-392, SAORIC-2000-19-B1,  
SAORIC-2000-20-B3, SAORIC-2000-22-E7, 
SAORIC-2000-23-F8, SAORIC-2000-24-A8 

3  Alcanivorax venustensis ISO4 99 0 4 5 

SAORIC-412, SAORIC-423 0  Methylophaga nitratireducenticrescens JAM1 99 0 2 0 
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Total     20 44 37 
 

 

 

Table 2-9. Bacterial isolates in each phylogenetic group from MR11-05-S1-3 sample (3000 m) 

Strains RFLP Phylum or class Closest surface strain 
Simil
arity 

Total isolates 

1/5 MA 1/10 R2A 

SAORIC-462 1 Alphaproteobacteria Oceanibulbus indolifex HEL-45 99 2 0 

SAORIC-483, SAORIC-487 0  Erythrobacter citreus RE35F/1 99 0 2 
SAORIC-460, SAORIC-465, SAORIC-467, 
SAORIC-468 

2 Gammaproteobacteria Alkanindiges sp. 5-0-9 99 4 2 

SAORIC-470 0  Pseudomonas koreensis Ps 9-14 99 1 0 

SAORIC-472, SAORIC-479 0  Pseudoalteromonas marina mano4 99 1 1 

SAORIC-486 0 Betaproteobacteria Limnobacter sp. SSW083 99 0 1 

SAORIC-464 SAORIC-466 0 Bacteoroidetes Pedobacter silvilitoris W-WS1 99 2 0 

SAORIC-476 0  Uncultured Rubricoccus EK_CK 570 97 0 1 

SAORIC-469 0 Actinobacteria Nocardioides furvisabuli 99 0 1 

SAORIC-461 0  Nocardioides sp. 70071 99 0 1 

SAORIC-484 0  Microbacterium sp. SMXB24 99 0 1 

Total     10 10 
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Table 2-10. Bacterial isolates in each phylogenetic group from MR11-05-S1-4 sample (4000 m) 

Strains RFLP Phylum or class Closest surface strain 
Simil
arity 

Total isolates 
1/5 MA 1/10 R2A NSLM 

SAORIC-498, SAORIC-575, SAORIC-561 0 Alphaproteobacteria Erythrobacter citreus RE35F/1 99 1 2 0 

SAORIC-519, SAORIC-536 0  Erythrobacter sp. CR-36 99 2 0 0 
SAORIC-565, SAORIC-4000-46-A3, 
SAORIC-4000-48-C6, SAORIC-4000-48-F1 

1  Erythrobacter pelagi UST081027-248 99 0 1 4 

SAORIC-510, SAORIC-527, SAORIC-589, 
SAORIC-590, SAORIC-4000-43-B7,  
SAORIC-4000-48-A4 

1  Sphingopyxis chilensis S37 99 2 3 2 

SAORIC-582, SAORIC-528 0  Brevundimonas vesicularis IHBB 11140 99 1 1 0 

SAORIC-496 0  Paracoccus oceanense JLT1679 99 1 0 0 

SAORIC-531 0  Sulfitobacter sp. D4005 99 1 0 0 
SAORIC-493, SAORIC-497, SAORIC-509, 
SAORIC-511, SAORIC-516, SAORIC-518, 
SAORIC-524, SAORIC-525, SAORIC-526, 
SAORIC-529, SAORIC-532, SAORIC-539, 
SAORIC-541, SAORIC-543, SAORIC-544, 
SAORIC-548, SAORIC-551, SAORIC-553, 
SAORIC-556, SAORIC-566, SAORIC-579, 
SAORIC-580, SAORIC-585, SAORIC-596, 
SAORIC-4000-43-C7, SAORIC-4000-44-A1, 
SAORIC-4000-44-D6, SAORIC-4000-44-E7, 
SAORIC-4000-45-B5, SAORIC-4000-45-D2, 
SAORIC-4000-48-B5, SAORIC-4000-48-C2 

9 Betaproteobacteria Limnobacter sp. Nb15RA-1 99 12 21 8 

SAORIC-557 0  Achromobacter spanius LMG 5911 99 0 1 0 
SAORIC-506, SAORIC-507, SAORIC-523, 
SAORIC-547, SAORIC-588, 
SAORIC-4000-45-D1 

6 Gammaproteobacteria Pseudomonas sp. SW-76 99 4 7 1 

SAORIC-491 0  Pseudomonas koreensis Ps 9-14 99 1 0 0 
SAORIC-495, SAORIC-530,  
SAORIC-4000-44-E8 

0  Pseudomonas rhodesiae CIP 104664 99 2 0 1 

SAORIC-490, SAORIC-558, SAORIC-587 0  Alkanindiges sp. F22 99 1 2 0 

SAORIC-515 0  Acinetobacter bouvetii 3-6 99 1 0 0 

SAORIC-581 0  Acinetobacter beijerinckii CIP 110307 99 0 1 0 

SAORIC-540 0  Halomonas sp. NT N8 99 0 1 0 

SAORIC-4000-48-A6 0  Alcanivorax venustensis ISO4 99 0 0 1 
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SAORIC-514, SAORIC-584, 
SAORIC-4000-45-A6 

0 Bacteroidetes Leeuwenhoekiella aequorea LMG 22550 99 1 1 1 

SAORIC-4000-45-C3 0  Zunongwangia sp. MAR 2010 57 99 0 0 1 

SAORIC-560 0  Flavobacterium ahnfeltiae KMM 6686  99 0 1 0 

SAORIC-583 0 Actinobacteria Rhodococcus fascians DSM 20669 99 0 1 0 

SAORIC-492, SAORIC-502, SAORIC-537 0  Microbacterium lacus A5E-52 99 3 0 0 

SAORIC-559 0  Brachybacterium muris C3H-21 99 0 1 0 

Total     33 44 19 
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Table 2-11. Bacterial isolates in each phylogenetic group from KT12-08-OT5 sample (1000 m) 

Strains RFLP Phylum or class Closest surface strain 
Simila

rity 

Total isolates 

1/5 MA 1/10 R2A NSLM 
SAORIC-753, SAORIC-767,  
SAORIC-1100-1-B1, SAORIC-1100-1-D7, 
SAORIC-1100-1-F5, SAORIC-1100-2-A3, 
SAORIC-1100-2-F4, SAORIC-1100-3-B4, 
SAORIC-1100-3-C6, SAORIC-1100-3-F4, 
SAORIC-1100-4-D4, SAORIC-1100-4-F1 

0 Alphaproteobacteria Aurantimonas coralicida DSM14790 99 2 0 10 

SAORIC-770, SAORIC-845 0  Erythrobacter sp. CR-36 99 1 1 0 

SAORIC-1100-4-1-C4 0  Erythrobacter citreus RE35F/1 99 0 0 1 
SAORIC-769, SAORIC-786 
SAORIC-1100-1-F2 

0  Erythrobacter pelagi UST081027-248 99 2 0 1 

SAORIC-854, SAORIC-855,  
SAORIC-1100-2-D3 

2  Sphingorhabdus sp. DG1642 99 0 1 4 

SAORIC-762, SAORIC-750, SAORIC-785 0  Sphingomonas paucimobilis ATCC 29837 99 3 0 0 

SAORIC-760, SAORIC-815 1  Sphingopyxis baekryungensis SW-150 99 1 2 0 
SAORIC-741,  
SAORIC-1100-1-A1, SAORIC-1100-4-B1, 

0  Sulfitobacter sp. BSi20563 99 1 0 2 

SAORIC-783, SAORIC-784 0  Roseobacter sp. ANT909 99 2 0 0 

SAORIC-754, SAORIC-777, SAORIC-794 0  Oceanicola sp. LZB062 98 3 0 0 
SAORIC-839 0  Loktanella sp. K4B-4 99 0 1 0 

SAORIC-768, SAORIC-779 0  Shimia sp. SK002 99 2 0 0 

SAORIC-787 0  Uncultured Octadecabacter OA8-30d-034 99 1 0 0 

SAORIC-844 0  Caulobacter sp. IW1-2CT 99 0 1 0 
SAORIC-1100-1-B8, SAORIC-1100-4-E3, 
SAORIC-1100-4-E8 

0  Phenylobacterium falsum AC-49 99 0 0 3 

SAORIC-732, SAORIC-736, SAORIC-747, 
SAORIC-752, SAORIC-781, SAORIC-810, 
SAORIC-817 

0 Gammaproteobacteria Uncultured Dasania strain OHKB7.46 99 5 2 0 

SAORIC-751, SAORIC-782, SAORIC-811, 
SAORIC-834, SAORIC-852, SAORIC-857, 
SAORIC-817 

0  Oceanicoccus sp. HTCC2143 99 2 4 0 

SAORIC-819 0  Uncultured Oceanicoccus strain EzlYy226 99 1 0 0 

SAORIC-788, SAORIC-789 0  Uncultured Haliea strain JSS SO4 96 2 0 0 

SAORIC-808 0  Haliea sp. Woods-Hole a5623 99 1 0 0 
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SAORIC-826, SAORIC-801 0  Colwellia sp. BSi20003 99 0 2 0 

SAORIC-764, SAORIC-841 0  Uncultured Colwellia strain E11D005E31 99 2 0 0 

SAORIC-780 0  Uncultured Colwellia strain OS3BD86 99 1 0 0 

SAORIC-748, SAORIC-794 0  Moritella sp. SC22 99 0 2 0 

SAORIC-793, SAORIC-765 0  Moritella sp. H130426 99 2 0 0 

SAORIC-833, SAORIC-807 0  Moritella sp. ODA02 99 2 0 0 

SAORIC-1100-2-A4 0  Uncultured Alkalimarinus strain S1-53 99 0 0 1 

SAORIC-776, SAORIC-791, SAORIC-800 0  Uncultured Psychromonas strain SHAN535 99 3 0 0 

SAORIC-795 1  Shewanella sediminis HAW-EB3 98 2 0 0 

SAORIC-1100-1-F8 1  Thalassolituus oleivorans MIL-1 99 0 0 2 

SAORIC-763 0  Photobacterium sp. QY26 98 1 0 0 

SAORIC-774, SAORIC-796 0 Bacteroidetes Algibacter sp. PAORIC-9 99 2 0 0 

SAORIC-834 0  Lutimonas sp. PAORIC-13 99 0 2 0 

SAORIC-756 0  Uncultured Ulvibacter strain s54 99 1 0 0 

SAORIC-837 0  Aquimarina sp. RZW4-3-2 96 0 1 0 

SAORIC-856 0  Uncultured Lewinella A6GH 97 0 1 0 

SAORIC-773 0  Winogradskyella sp. PAMC27136 99 1 0 0 

Total     45 21 24 
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Table 2-12. Bacterial isolates in each phylogenetic group from KT12-08-ON8 sample (1700 m) 

Strains RFLP Phylum or class Closest surface strain 
Simila

rity 

Total isolates 

1/5MA 1/10R2A NSLM 
SAORIC-618, SAORIC-619, SAORIC-633, 
SAORIC-653, SAORIC-645, SAORIC-654, 
SAORIC-714, SAORIC-644, SAORIC-717, 
SAORIC-688, SAORIC-694,  
SAORIC-1700-6-B1, SAORIC-1700-7-C2, 
SAORIC-1700-5-C5, SAORIC-1700-5-E4,  
SAORIC-1700-9-D7 

0 Alphaproteobacteria Erythrobacter sp. sw0106-20 99 7 4 5 

SAORIC-600, SAORIC-609, SAORIC-610, 
SAORIC-613, SAORIC-648, SAORIC-676, 
SAORIC-704, SAORIC-692, SAORIC-722, 
SAORIC-672, SAORIC-1700-4-C2, 
SAORIC-1700-6-A7, SAORIC-1700-9-B6 

0  Sphingomonas paucimobilis ATCC 29837 99 4 6 3 

SAORIC-710, SAORIC-703, SAORIC-693 0  Sphingobium sp. CO180 99 0 3 0 

SAORIC-657, SAORIC-1700-9-D5 0  Sphingopyxis baekryungensis 99 1 0 1 
SAORIC-601 0  Uncultured Sphingorhabdus strain Woods-

Hole a5939 
99 1 0 0 

SAORIC-662, SAORIC-689, SAORIC-700, 
SAORIC-713, SAORIC-1700-5-F6, 
SAORIC-1700-8-B6  

0  Aurantimonas coralicida DSM14790 99 0 4 2 

SAORIC-708 0  Jiella aquimaris LZB041 99 0 1 0 
SAORIC-682, SAORIC-720, SAORIC-705, 
SAORIC-679, SAORIC-1700-5-A1,  

1  Paracoccus oceanense JLT1679 99 0 4 2 

SAORIC-652, SAORIC-1700-4-B2 1  Oceanicola sp. DongtaiB-3030 96 2 0 1 

SAORIC-651, SAORIC-641 0  Roseobacter sp. ARK10222 99 2 0 0 

SAORIC-695 0  Planktotalea frisia SH6-1 99 0 1 0 

SAORIC-721, SAORIC-1700-4-E2 0  Sulfitobacter dubius KMM3554 99 0 1 1 

SAORIC-642 0  Loktanella sp. K4B-4 99 1 0 0 

SAORIC-659 0  Shimia sp. SK002 99 0 1 0 

SAORIC-614 0  Uncultured Kiloniella strain Woods-Hole 
a6457 

98 1 0 0 

SAORIC-643, SAORIC-690,  
SAORIC-1700-9-C4 0 Betaproteobacteria Limnobacter thiooxidans CS-K2 99 1 1 1 

SAORIC-602, SAORIC-630, SAORIC-631 0 Gammaproteobacteria Uncultured Colwellia strain E11D005E31 99 3 0 0 
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SAORIC-605, SAORIC-647, SAORIC-725, 
SAORIC-1700-4-E8 0  Colwellia sp. D7 99 2 1 1 

SAORIC-629, SAORIC-724 0  Colwellia sp. P1 50 97 1 1 0 

SAORIC-1700-8-A1 0  Uncultured Colwellia strain C146300053 99 0 0 1 
SAORIC-640, SAORIC-762, SAORIC-604, 
SAORIC-719, SAORIC-632 0  Moritella viscosa NVI 88/478 99 4 1 0 

SAORIC-603, SAORIC-663 0  Paraglaciecola psychrophilia 170 99 2 0 0 

SAORIC-711 0  Shewanella hanedai CIP103207 99 0 1 0 
SAORIC-664, SAORIC-655, 
SAORIC-1700-6-D6 0  Uncultured Psychromonas strain SHAN535 99 1 1 1 

SAORIC-637, SAORIC-639, SAORIC-660, 
SAORIC-669, SAORIC-670 0  Oceanospirillum sp. HTCC2178 99 1 4 0 

SAORIC-1700-4-D6, SAORIC-1700-6-B6, 1  Dasania sp. IMCC8910 99 0 0 3 

SAORIC-680 0  Sinobacterium norvegicum 2CH8 99 0 1 0 

SAORIC-671,  0  Oceanicoccus sp. HTCC2143 99 0 1 1 

SAORIC-1700-3-D5 0  Uncultured Oceanicoccus strain EzlYy226 98 1 0 0 

SAORIC-638 0  Halioglobus sp. FILTER11C211m 95 1 0 0 

SAORIC-1700-4-F8 0  Uncultured Arenicella sp. LO5SP1r 98 0 0 1 

SAORIC-1700-8-A5 0  Pseudomonas sp. K65 99 0 0 1 

SAORIC-712 0 Bacteroidetes Winogradsskyella sp. PAMC 27136 99 0 2 0 

SAORIC-665, SAORIC-678 0  Winogradsskyella sp. PAMC 27140 99 0 2 0 

SAORIC-687, SAORIC-1700-4-F1 0  Uncultured Algibacter strain D9 99 0 1 0 

SAORIC-1700-6-A1 0  Uncultured Ulvibacter strain S1B1S 10-106 96 0 0 1 

SAORIC-1700-4-F1 0  Uncultured Sabulilitoribacter CB51E04 99 0 0 1 

SAORIC-697 0  Polaribacter sp. HMF2268 99 0 1 0 

SAORIC-683 0  Psychroserpens sp. PAMC 27220 99 0 1 0 

SAORIC-1700-5-A6 0 Actinobacteria Reichenbachiella agariperforans KMM 3525 95 0 0 1 

SAORIC-649, SAORIC-650, SAORIC-656 0  Ilumatobacter fluminis YM22-133 99 2 1 0 

SAORIC-646 0  Rhodococcus cercidiphylli 05-Lb0410 99 1 0 0 

SAORIC-696, SAORIC-681 0 Lentisphaera Lentisphaera marina IMCC11369 98 0 2 0 
SAORIC-706 0 Verrucomicrobia Uncultured Coraliomargarita strain 

C114100277 
99 0 1 0 

Total     39 48 28 
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Table 2-13. Summary of the deep-sea isolates  

Taxonomic level 
Sample (depth; m) 

Number 
of isolates 

Characteristics 

Phylum or class Order Family Genus a b c 

Alphaproterobacteria Rhodobacterales Rhodobacteraceae Oceanibulbus MR11-05-S1-1 (1000) 20  ●  
   Sulfitobacter MR11-05-S1-2 (2000) 49  ●  
 Rhizobiales Aurantimonadaceae Aurantimonas KT12-08-OT5 (1000) 12  ●  
 Sphingomonadales Erythrobacteraceae Erythrobacter KT12-08-ON8 (1700) 14    
 Kiloniellales* Kiloniellaceae Kiloniella KT12-08-ON8 (1700) 1 ●  ● 

Betaproterobacteria Burkholderiales Burkholderiaceae* Limnobacter MR11-05-S1-3 (3000) 1 ●   
    MR11-05-S1-4 (4000) 42 ● ●  
    KT12-08-ON8 (1700) 3 ●   

Gammaproteobacteria Alteromonadales Moritellaceae Moritella MR11-05-K2-1 (1000) 4  ●  
 Arenicellales* Arenicellaceae Arenicella KT12-08-ON8 (1700 1 ●   
    KT12-08-ON8 (1700) 1 ●   
 Oceanospirillales Alcanivoracaeae Alcanivorax KT10-12-S1-3 (3000) 25  ●  
 Thiotrichales* Piscirickettsiaceae Methylophaga MR11-05-S1-1 (1000) 6 ●   
    MR11-05-S1-2 (2000) 2 ●   
 Pseudomonadales Moraxellaceae Alkanindiges MR11-05-S1-3 (3000) 6  ●  
 Cellvibrionales* Spongiibacteraceae Dasania KT12-08-OT5 (1000) 7 ●  ● 
    KT12-08-ON8 (1700) 4 ●  ● 
 Cellvibrionales* Spongiibacteraceae Oceanicoccus KT12-08-OT5 (1000) 7 ●  ● 
    KT12-08-ON8 (1700) 2 ●  ● 

Actinobacteria Acidimicrobiales* Acidimicrobiaceae Ilumatobacter KT12-08-ON8 (1700) 3 ●   
Lentisphaerae* Lentisphaerales Lentisphaeraceae Lentisphaera KT12-08-ON8 (1700) 2 ●   

Verrucomicrobia* Verrucomicrobiales Rubritaleaceae Rubritalea MR11-02-K2-2 (2000) 6 ● ● ● 
 Puniceicoccales Puniceicoccaceae Coraliomargarita KT12-08-ON8 (1700) 1 ●  ● 

*, the group containing the first deep-sea isolates; a, first deep-sea isolate in the group; b, predominant group in the sample; c, new species. 
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Table 2-14. Possible new species. 

*, 16S rRNA gene sequence similarit

Taxonomic level 
Strains  Sample (depth; m) Closest strain 

Simila
rity* Phylum or class Order Family 

Alphaproteobacteria Sphingomonadales Sphingomonadaceae SAORIC-276  MR11-05-K2-1 (1000) Novosphingobium hassiacum W-51T 95 

 Rhodobacterales Rhodobacteraceae SAORIC-783  KT12-08-OT5 (1000) Sulfitobacter brevis DSM 11443T 96 

 Kiloniellales Kiloniellaceae SAORIC-614  KT12-08-ON8 (1700) Aestuariispira insulae AH-MY2T 90 

Gammaproteobacteria Cellvibrionales Cellvibrionaceae SAORIC-637  KT12-08-ON8 (1700) Maricurvus nonylphenolicus KU41ET 89 

   SAORIC-638  KT12-08-ON8 (1700) Halioglobus pacificus S1-72T 88 

   SAORIC-740  MR11-05-S1-3 (3000) Oceanicoccus sagamiensis PZ-5T 95 

   SAORIC-788  KT12-08-OT5 (1000) Pseudohaliea rubra DSM 19751T 94 

   SAORIC-810  KT12-08-OT5 (1000) Dasania marina DSM 21967T 93 

 Altermonadales Colwelliaceae SAORIC-602  KT12-08-ON8 (1700) Colwellia psychrerythraea ACAM 550T 95 

 Sphingomonadales Sphingomonadaceae SAORIC-601  KT12-08-ON8 (1700) Altererythrobacter confluentis KEM-4T 94 

 Arenicellales Arenicellaceae SAORIC-1700-4-F8  KT12-08-ON8 (1700) Arenicella xantha KMM 3895T 96 

Bacteroidetes Flavobacteriales Flavobacteriaceae SAORIC-153  MR11-02-K2-2 (2000) Aquimarina spongiae A6T 95 

   SAORIC-665  KT12-08-ON8 (1700) 
Winogradsskyella echinorum KMM 

6211T 
95 

   SAORIC-211  MR11-05-K2-1 (1000) Dokdonia genika Cos-13T 95 

   SAORIC-234  MR11-05-K2-1 (1000) Tenacibaculum adriaticum B390T 94 

   SAORIC-774  MR11-05-S1-3 (3000) Algibacter agarivorans KYW560T 96 

   SAORIC-837  KT12-08-OT5 (1000) Aquimarina spongiae A6T 96 

 Rhodothermales Rubricoccaceae SAORIC-28  KT10-12-S1-3 (3000) Rubricoccus marinus SG-29T 92 

   SAORIC-476  MR11-05-S1-3 (3000) Rubrivirga marina SAORIC-28T 96 

 Sphingobacteriales Saprospiraceae SAORIC-856  KT12-08-OT5 (1000) Lewinella persica DSM 23188T 95 

Verrucomicrobia Verrucomicrobiales Rubritaleaceae SAORIC-165  MR11-02-K2-2 (2000) Rubritalea marina Pol012T 95 

 Puniceicoccales Puniceicoccaceae SAORIC-706  KT12-08-ON8 (1700) 
Coraliomargarita akajimensis DSM 

45221T 
93 
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Figure 2-1. Sampling location in the north-western Pacific Ocean. 
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Figure 2-2. Phylogenetic tree of KT10-12-S1-3 isolates in Alphaproterbacteria.  
Blue indicates strains retrieved from the deep sea.  
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Figure 2-3. Phylogenetic tree of KT10-12-S1-3 isolates in Gammaproterbacteria and 
Bacteroidetes.  
Blue indicates strains retrieved from the deep sea.  
NSLM indicates that strains were isolated from only NSLM 
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Figure 2-4. Phylogenetic tree of MR11-02-K2-2 isolates 

1/10R2A indicates that strains were isolated from only 1/10R2A. 
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Figure 2-5. Phylogenetic tree of MR11-05-K2-1 isolates. 
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Figure 2-6. Phylogenetic tree of MR11-05-S1-1 isolates in Alphaproterobacteria. 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-7. Phylogenetic tree of MR11-05-S1-1 isolates in Gammaproterobacteria, 
Actinobacteria and Bacteroidetes. 
Blue indicates strains retrieved from the deep sea.  
1/10R2A indicates that strains were isolated from only 1/10R2A. 
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Figure 2-8. Phylogenetic tree of MR11-05-S1-2 isolates 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-9. Phylogenetic tree of MR11-05-S1-3 isolates 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-10. Phylogenetic tree of MR11-05-S1-4 isolates in Alphaproterobacteria and 
Betaproteobacteria 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-11. Phylogenetic tree of MR11-05-S1-4 isolates in Gammaproteobacteria, 
Bacteroidetes and Actinobacteria. 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-12. Phylogenetic tree of KT12-08-OT5 isolates in Alphaproterobacteria 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-13. Phylogenetic tree of KT12-08-OT5 isolates in Gammaproterobacteria. 
Blue indicates strains retrieved from the deep sea.  



63 
 

 

Figure 2-14. Phylogenetic tree of KT12-08-OT5 isolates in Bacteroidetes 
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Figure 2-15. Phylogenetic tree of KT12-08-ON8 isolates in Alphaproterobacteria. 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-16. Phylogenetic tree of KT12-08-ON8 isolates in Gammaproterobacteria 
Blue indicates strains retrieved from the deep sea.  
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Figure 2-17. Phylogenetic tree of KT12-08-ON8 isolates in Betaproteobacteria, 
Bacteroidetes, Verrrucomicrobia, Lentisphaerae and Actinobacteria. 
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Figure 2-18. Phylogenetic position of validated and reported as novel deep-sea species 

novel deep-sea species 
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CHAPTER 3.  

 

Vertical distribution of bacterial community structures 

in the north-western Pacific Ocean 
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Introduction 

In the previous chapter, bacteria from diverse phylogenetic groups were obtained from 9 

deep seawater samples. Approximately 90 % of the total isolates were cosmopolitans, i.e., 

showing more than 99 % 16S rRNA gene sequence similarities to the strains that had been 

isolated from the surface. Some strains, however, were novel ones of which 16S rRNA 

gene sequences had never been reported and/or showed low similarities to any of previous 

isolates so far. For further examination of my isolates, it is important to know their 

possible distribution in marine environments, especially vertical distribution in the 

research area. For this purpose, it is necessary to apply culture independent approach. 

Recent development of molecular techniques, especially sequencing technologies 

enabled us to clarify the presence of numerous previously unknown sequences (Sogin et 

al., 2006; Martín-Cuadrado et al., 2007; Eloe et al., 2010; Zinger et al., 2011; Wang et 

al., 2011). Therefore, I tried to apply those sequencing technology to seawater samples 

in north-western Pacific Ocean.  

The findings described in the previous chapter may imply that some prokaryotic 

groups may be transported vertically due to circulation of seawater in the ocean. Although 

large scale circulation is known as Broecker’s belt conveyor (Broecke, 2010), there 

should be small scale vertical circulations that bring surface prokaryotic populations to 

deep layers as well. Another factor for vertical transportation is sinking particles 

(Sakiyama and Ohwada, 1998; Vanucci et al., 2001). Cells on the particles may sink 

together and distribute in deep environments. However, it is difficult to observe those 

groups because the collection of sinking particles is not easy. Currently, sediment trap is 

only the way, but while it is moored in the environment, particles are condensed and 

eventually degraded by associated prokaryotic cells. Alternatively, separation of particle-
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associated (PA) from free-living (FL) populations are often tried by using appropriate 

size filters (Delong et al., 1993; Rösel et al., 2012; Suzuki et al., 2016). Prokaryotic 

communities in FL or PA state have repeatedly been proven to differ in diversity and 

biomass (Kirchman and Mitchell, 1982; Turley and Mackie, 1994; Bidle and Fletcher, 

1995; Eloe et al., 2010, Suzuki et al., 2016). Considering the possible presence of 

populations on sinking particles, identification of deep-sea prokaryotes in FL or PA state 

may offer information. Currently, relatively little information is available on the 

difference between deep-sea prokaryotic communities in PA and FL state (Eloe et al., 

2010; Salazar et al., 2015; Tarn et al., 2016).  

This chapter aims to clarify the vertical community structures of bacteria in water 

columns both in PA and FL fractions. Seawater samples were collected at diverse depths 

(0, 300, 1000, 2000 and 5000 m) at two stations in the north-western Pacific Ocean, and 

size-fractionated by 3 and 0.22 μm filters. The community structures were profiled using 

454-pyroseqeucning. The prokaryotes collected on 3 and 0.22 μm filters refer to particle-

associated and free-living ones, respectively. Criterion to determine preference to PA or 

FL state was based on at least 2 fold differences in relative abundance (Suzuki et al., 

2016). The results will be discussed with the cultural data in the previous chapter. 
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Materials and methods 

Seawater sampling, genomic DNA extraction, polymerase chain reaction amplification 

and 454 sequencing were performed by Ryo Kaneko (Okayama University). 

Seawater sampling 

Seawater samples were obtained from from five depths (0, 300, 1000, 2000 and 5000 m) 

at 2 stations (K2 and S1) in the north-western Pacific Ocean during MR-11-05 research 

cruises shown in Table 3-1 and Figure 2-1. Two to 4 L of seawater from each depth were 

pre-filtered through a 3.0 μm pore size Nuclepore polycarbonate membrane filter 

(Whatman, Maidstone, UK), and microbial cells were collected onto a 0.22 μm Millipore 

Sterivex filter unit (EMD Millipore, Darmstadt, Germany). The filters were frozen 

immediately and stored at -80℃ for further analysis in the laboratory. 

Genomic DAN extraction 

Firstly, the 0.22 μm Sterivex filters were prepared from the cartridge using a sterilized 

pipe cutter. Genomic DNA was extracted according to the instructions provided with the 

Charge Switch Forensic DNA purification kit (Invitrogen, Carlsbad, CA, USA) with the 

following modifications. First, I used a sterile razor blade to cut two types of the filters 

(3.0 and 0.22 μm pore size) and resultant pieces of the filters were placed into a sterilized 

2.0 mL screw cap tube with zirconium beads (ZircoPrep Mini; Nippon Genetics Co. Ltd., 

Tokyo, Japan) containing Charge Switch Lysis Buffer (L13). Lysis of microbial cells was 

performed bead beating at 5000 rpm for 30 s using a bead-beater (Micro Smash MS-

100R; Tomy Seiko Co., Ltd., Tokyo, Japan) along with proteinase K incubation. After 

cell wall lysis, 1.0 mL of the supernatant was recovered after spin down at 2000×g for 1 

min, and the crude DNA in the supernatant was purified according to the manufacturer’s 

instructions. The cell lysis and DNA purification steps were repeated twice to extract 
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genomic DNA from each sample. The extracted DNA samples were kept at −20℃ until 

further analysis 

Polymerase chain reaction amplification and 454 sequencing 

Amplification of the V1–V3 hypervariable regions of bacterial 16S rRNA gene was 

performed with the bacteria-specific primer 27F (5′-CCATCTCATCCCTGCGTGTCTC 

CGACTCAGXXXXXXXXXXAGAGTTTGATCMTGGCTCAG-3′; where X’s 

represents the sample-specific multiplex identifier) and the universal primer 519R (5′ 

GWATTACCGCGGCKGCTG-3′). The forward primer contained the sequence of 454 

adapter A (5′-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3′) and the multiplex 

identifiers (MIDs), and the reverse primer contained the sequence of 454 adapter B (5′-

CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-3′). Polymerase chain reaction (PCR) 

amplifications were performed using 1X Ex TaKaRa Ex Taq® HS Polymerase (Takara 

Bio., Shiga, Japan) and the following sequence: denaturation at 94℃ for 3 min followed 

by 27 cycles at 98℃ for 10 s, primer annealing at 57℃ for 30 s and at 72℃ for 50 s, 

followed by a final extension at 72℃ for 7 min. In order to minimize the potential effect 

of PCR biases in single reactions (Polz and Cavanaugh 1998), ten independent PCR 

products were pooled. The pooled PCR product was purified using an Agencourt AMPure 

XP kit (Beckman Coulter, Brea, CA, USA), according to the manufacturer’s instructions. 

The purity and concentration of PCR products were confrimed using a 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA) and equal amounts of the PCR products 

from each samples were mixed. Pyrosequencing was performed using a Roche emPCR 

Lib-L kit (Roche Diagnostics, Branford, CT, USA) and was carried out using 454 GS-

FLX System with Titanium chemistry (Roche Diagnostics). 

The resultant high quality sequences were clustered into operational taxonomic 
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units (OTUs) at a 97 % identity in 16S rRNA gene sequence. Representative 16S rRNA 

gene sequences from each OTU were assigned to taxonomic categories in Mothur based 

on the SILVA database (v.119) (Pruesse et al. 2007).  

Comparison of isolated sequences with 454 pyrosequencing sequences 

The V1–V3 hypervariable regions of the 16S rRNA gene seqeucnes obatained from 454 

pyrosequencing were compared to the 16S rRNA gene sequences of deep-sea isolates 

from Chapter 2. The 454 pyrosequencing sequences were used as database. Comparison 

was performed using BLAST+ software version 2.2.23 (http://blast.ncbi.nlm.nih.gov/ 

Blast.cgi) on a local compter. Closest related sequences from 454 pyrosequcencing with 

> 95 % similarity, more than 150 bp, and at least from the same genus based on between 

the 454-pyrosequencing’s SILVA v119. 

 

Results 
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Table 3-1. Information of sweater samples. 

Cruise Location Sampling date Temperature (℃) Depth (m) 

MR11-05-K2 47°00' N, 160°00' E June, 2011 6.8 0 
   3.5 300 
   2.5 1000 
   1.8 2000 
   1.5 5000 

MR11-05-S1 32°00' N, 145°00' E July, 2011 26.5 0 
   17.0 300 
   3.8 1000 
   2.0 2000 
   1.5 5000 
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Table 3-2. Number of sequences collected from station K2. 

 

 

 

 

 Free living Particle associated 
 0 m 300 m 1000 m 2000 m 5000 m 0 m 300 m 1000 m 2000 m 5000 m 
Proteobacteria           

Alphaproteobacteria 4657 2793 4575 3989 2298 4141 629 1119 694 461 
Gammaproteobacteria 1350 2633 3152 3074 2282 311 1105 654 1303 1821 
Deltaproteobacteria 2 1769 3965 2792 2286 2 1454 947 3347 1957 
Betaproteobacteria 96 29 27 53 13 32 42 4 37 17 
Epsilonproteobacteria 0 0 0 0 53 1 1 0 4 211 
Unclassified  64 69 74 56 96 106 542 129 257 121 

Bacteroidetes 1921 544 413 314 1359 2206 2668 557 1124 1288 
Actinobacteria 78 249 395 287 335 60 68 109 72 46 
Planctomycetes 1 55 209 185 579 6 1923 895 3811 2835 
Chloroflexi 0 105 189 183 475 0 8 16 5 38 
Cyanobacteria 243 4 3 5 3 1349 36 15 10 19 
Deferribactere 21 1400 2660 2454 2305 0 121 226 105 45 
Gemmatimonadetes 0 28 23 35 105 0 4 6 1 14 
Nitrospirae 0 579 619 472 417 0 81 89 70 37 
Verrucomicrobia 178 90 110 133 52 115 160 39 234 67 
Lentisphaerae 0 8 12 17 38 0 291 58 155 197 
Candidate division TM6 0 0 3 0 1 0 0 0 3 4 
Firmicutes 0 0 0 1 3 0 0 13 15 14 
Unclassified 45 262 487 475 392 55 233 167 341 310 
Total 8656 10617 16916 14525 13092 8384 9366 5043 11588 9502 
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Table 3-3. Number of sequences collected from station S1. 

 
 

 

 

 Free living Particle associated 
 0 m 300 m 1000 m 2000 m 5000 m 0 m 300 m 1000 m 2000 m 5000 m 
           

 4787 3628 4274 4910 2889 7924 499 476 1100 1066 
 1085 1085 1319 1723 1956 1224 519 1089 813 1745 
 52 1180 2618 2564 2516 58 2631 3224 3074 4192 
 0 0 20 12 3 2 31 20 5 31 
 0 6 0 0 0 0 0 0 3 7 
 73 166 82 71 26 90 261 160 131 182 

 591 94 131 101 379 1277 428 279 435 1220 
 88 183 234 200 176 90 64 47 88 138 
 6 103 141 152 403 288 2038 2030 1950 3927 
 0 692 479 522 896 0 58 51 27 91 
 3547 0 43 3 4 2201 17 13 11 11 
 135 1411 1604 2303 2253 53 141 104 94 134 
 0 58 63 82 144 0 5 10 7 11 
 0 302 513 452 431 0 20 45 55 74 
 65 75 26 36 57 1070 41 20 12 53 
 0 14 36 30 28 1 39 166 132 146 
 0 0 0 0 0 0 0 19 54 12 
 0 0 1 1 1 0 0 5 38 15 
 36 1151 990 904 742 230 708 411 299 505 
 10465 10010 12574 14066 12904 14508 7500 8169 8328 13560 
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Table 3-4. Relative abundance of each group collected from station K2. Significant preference to states was marked in red. 

 

 Relative abundance (Free living) (%) Relative abundance (Particle associated) (%) 
 0 m 300 m 1000 m 2000 m 5000 m 0 m 300 m 1000 m 2000 m 5000 m 
           

           
 49.6 24.9 25.0 24.1 12.7 42.4 5.5 20.2 4.8 2.2 
 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.3 0.1 
 0.2 0.4 0.4 0.4 1.8 0.1 0.2 0.2 0.0 1.4 
 1.9 0.1 0.1 0.0 1.2 5.6 0.1 0.0 0.1 0.9 

           
 14.3 22.0 15.0 13.5 7.9 2.7 2.9 4.4 1.2 3.4 
 0.6 0.2 0.1 0.1 0.6 0.4 2.7 3.7 4.4 8.5 
 0.0 0.0 2.1 6.2 7.8 0.0 0.1 1.2 0.5 0.6 
 0.1 0.4 0.2 0.2 0.2 0.0 0.5 0.5 1.0 4.0 

           
 0.0 16.3 22.7 18.6 16.3 0.0 1.1 4.0 0.6 0.9 
 0.0 0.0 0.1 0.1 0.1 0.0 3.0 3.4 13.7 12.6 
 0.0 0.1 0.1 0.0 0.3 0.0 2.5 1.7 3.3 2.1 
 0.0 0.1 0.1 0.1 0.1 0.0 3.2 1.4 2.1 1.1 
 0.0 0.0 0.2 0.1 0.1 0.0 0.3 3.7 2.3 0.1 

           
 0.0 0.0 0.2 0.1 0.3 0.0 7.2 7.5 16.0 15.1 
 0.0 0.0 0.3 0.3 1.1 0.0 4.0 2.8 3.8 1.5 

           
 20.1 4.0 1.9 1.6 9.6 24.9 22.2 9.1 7.7 11.0 

 0.0 1.0 1.1 1.2 3.6 0.0 0.1 0.3 0.0 0.3 
 0.2 12.7 15.4 16.6 17.4 0.0 1.2 4.3 0.9 0.5 
 0.0 5.5 3.7 3.2 3.2 0.0 0.9 1.8 0.6 0.4 
           

 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.8 0.8 0.6 
 2.1 0.8 0.7 0.9 0.4 1.4 1.7 0.8 2.0 0.7 
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Table 3-5. Relative abundance of each group collected from station S1. Significant preference to state was marked in red. 

 

 Relative abundance (Free living) (%) Relative abundance (Particle associated) (%) 
 0 m 300 m 1000 m 2000 m 5000 m 0 m 300 m 1000 m 2000 m 5000 m 
           

           
 38.0 29.9 29.7 29.4 16.6 33.7 5.0 3.4 8.5 3.9 
 0.0 0.0 0.4 0.3 0.3 5.4 0.3 1.5 2.5 0.8 
 0.2 1.2 0.8 0.9 2.5 0.3 0.1 0.1 0.1 0.8 
 2.2 0.0 0.1 0.2 0.3 3.2 0.1 0.3 1.1 1.2 

           
 9.2 3.0 5.8 5.4 4.8 4.8 1.0 3.0 0.8 1.3 
 0.8 0.0 0.5 0.3 0.2 2.0 1.3 5.5 2.7 1.9 
 0.0 3.2 2.0 4.7 9.0 0.0 0.0 0.5 0.7 0.6 
 0.0 0.2 0.2 0.1 0.1 0.0 0.9 0.6 1.8 6.1 

           
 0.0 10.3 20.0 17.5 18.3 0.2 1.5 1.0 1.3 5.8 
 0.0 0.1 0.1 0.1 0.4 0.0 11.3 27.7 25.0 17.4 
 0.0 0.1 0.1 0.1 0.2 0.1 5.8 4.0 2.4 2.6 
 0.0 0.1 0.1 0.1 0.1 0.0 3.2 1.4 2.1 1.1 
 0.0 0.0 0.2 0.1 0.1 0.0 0.3 3.2 2.3 0.1 

           
 0.0 0.0 0.0 0.1 0.3 0.1 3.6 5.9 8.1 11.7 
 0.0 0.0 0.3 0.2 0.4 0.0 5.7 5.7 4.6 2.2 

           
 4.9 0.6 0.8 0.5 2.2 8.5 2.8 3.0 3.9 5.5 

 0.0 6.2 3.4 3.6 6.8 0.0 0.6 0.6 0.3 0.6 
 1.3 13.7 12.3 16.1 17.1 0.4 1.4 1.7 1.1 1.0 
 0.0 3.0 4.1 3.2 3.3 0.0 0.6 0.2 0.7 0.5 
           

 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.6 
 0.6 0.7 0.2 0.3 0.4 7.4 0.5 0.2 0.1 0.4 
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Table 3-6. Relative abundance of phylotypes including the isolates. 

Bold numbers indicate >0.5 % relative abundance 

 Free living K2-depths (%) Particle associated K2-depths (%) Free living S1-depths (%) Particle associated S1-depths (%) 

Phylotypes 0 300 1000 2000 5000 0 300 1000 2000 5000 0 300 1000 2000 5000 0 300 1000 2000 5000 

                     
 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.2 0.2 0.0 0.0 0.2 0.1 0.6 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.6 0.0 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 
 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.2 0.4 0.3 0.3 4.9 1.1 1.1 1.5 0.5 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.9 0.2 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                     
 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.5 0.2 4.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.5 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.1 0.6 0.4 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.2 0.0 0.0 0.9 0.3 2.3 0.0 0.0 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.1 1.7 2.0 0.1 0.2 
 0.1 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.1 0.3 1.1 
 0.0 0.2 0.0 0.0 0.0 0.0 0.0 2.2 3.6 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.7 0.3 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 
 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                     
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 0.0 0.0 0.0 0.1 
 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 0.0 0.0 0.0 0.0 0.0 0.5 13.9 1.2 1.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 0.2 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                     
 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 

                     
 0.0 0.2 0.0 0.0 0.0 0.0 1.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Figure 3-1. Bacterial composition at station K2 and S1 at phylum or class level.  
Pro-Alpha, Alphaproteobacteria; Pro-Gamma, Gammaproteobacteria; Pro-Beta, Betaproteobacteria; Pro-Delta; Deltaproteobacteria; 
Pro-Epsilon, Epsilonproteobacteria. 
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Figure 3-2. Relative abundance of Alphaproteobacteria at station K2 and S1 at order level.  
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Figure 3-3. Relative abundance of Gammproteobacteria at station K2 and S1 at order level.  
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Figure 3-4. Relative abundance of Deltaproteobacteria at station K2 and S1 at order level.  
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Figure 3-5. Relative abundance of Flavobacteriales of Bacteroidetes, SAR402 of Deferribactere and SAR202 of Chloroflexi at station 
K2 and S1. 
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Figure 3-6. Relative abundance of phylotypes including the isolates represented at station K2 and S1
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Physiological characteristics of deep-sea bacteria in 
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Introduction 

In the previous chapter, the vertical community structures of bacteria in two water 

columns were investigated by using culture independent approach. The results indicated 

the possible distribution patterns of the isolates which were described in Chapter 2. 

Although Erythrobacter phylotypes showed relatively even vertical distribution, other 

phylotypes of my isolates showed distribution more restricted to deeper layers. Then, are 

there any characteristics unique to those group thriving in deep-sea? Also, in the previous 

chapter, particle-associated (PA) or free-living (FL) state of natural populations were 

examined. It is expected that cells preferring PA state may have a tendency to attach 

particles, degrade polymeric substances and grow quickly. Again, are these possible 

characteristics really present and functioning among the isolates? Finally, most of my 

deep-sea isolates have phylogenetically close strains that had been isolated from surface 

layers. Does this simply mean, the deep-sea isolates and their surface relatives share most 

of functional characteristics or are there any genes unique to either deep-sea or surface 

strains? In order to answer these questions, further study for investigating the 

characterstics of the deep-sea isolates should be conducted.  

Deep-sea bacteria have been well characterised by several physiological 

characteristics unique to deep-sea conditions. Some of deep-sea bacteria show piezophilic 

and/or psychrophilic characteristics in response of high hydrostatic pressure and low 

water temperatures of the deep sea (Lauro and Bartlett, 2008). Therefore, influence of 

temperature and pressure on the growth is the basic characters to be examined first. 

Relevantly, the cell membrane composition of the deep-sea bacteria is a point of interest 

since cell membrane is the primary site affected by high hydrostatic pressure and low 

temperature (DeLong and Yayanos, 1985; Lauro et al. 2007; Grossi et al., 2010). It has 
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been regarded that deep-sea bacteria should maintain their membrane fluidity by tuning 

the composition, especially, fatty acids. However, so far, most of data on physiological 

characteristics of deep-sea bacteria are obtained for gammaproteobacterial groups. The 

information for my deep-sea isolates other than Gammaproteobacteria should extend our 

view on deep-sea bacteria. For instance, Sulfitobacter and Erythrobacter have been 

isolated from deep-sea environments but their physiological properties are little known. 

In the present chapter, I aimed to identify physiological characteristics of the new 

deep-sea isolates. The growth patterns of them were examined under a range of pressures, 

temperatures and NaCl concentration. Subsequently, cell membrane composition (polar 

lipids and fatty acids) and metabolic (hydrolytic enzyme activity) characteristics of the 

isolates were identified. Comparisons were made with their surface relatives and the 

characteristics of deep-sea isolates will be discussed.   

In order to identify physiological characteristics, several deep-sea strains from the 

isolates of Chapter 2 were sellected based on their taxonomical characteristics (Table 2-

13). Sellected strains are following; Rubritalea sp. SAORIC-165 (the first deep-sea 

isolate within the phylum Verrucomicrobia), Rubrivirga profunda SAORIC-234 (novel 

deep-sea species), Oceanibulbus sp. SAORIC-263 (predominant phylotypes in the 

isolates of MR11-05-S1), Sulfitobacter sp. SAORIC-395 (predominant phylotypes in the 

isolates of MR11-05-S2), Rubrivirga profundi SAORIC-476 (novel deep-sea species), 

Limnobacter sp. SAORIC-580 (predominant phylotypes in the isolates of MR11-05-S4 

and the first deep-sea isoaltes within the family Burkholderiaceae), Erythrobacter sp. 

SAORIC-644 (predominant phylotypes in the isolates of KT12-08-ON8) and 

Roseobacter sp. SAORIC-651 (putative novel deep-sea species). 
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Materials and methods 

Growth profile under high pressure 

The growth under different pressure were investigated for the isolates, Rubritalea sp. 

SAORIC-165, Rubrivirga profunda SAORIC-234, Oceanibulbus sp. SAORIC-263, 

Sulfitobacter sp. SAORIC-395, Rubrivirga profundi SAORIC-476, Limnobacter sp. 

SAORIC-580, Erythrobacter sp. SAORIC-644 and Roseobacter sp., SAORIC-651. In 

addition, piezophilic bacterial strain, Photobacterium profundum DSJ4T (Nogi et al., 

1998a) was also investigated for comparision. Cells in mid-log phase on agar plates were 

suspended into marine broth 2216 (MB; BD Difco, autoclaved and filtered through 0.22 

μm membrane filters) or marine R2A broth (BD Difco, autoclaved and filtered through 

0.22 μm membrane filters) with 104-105 cells/ml cell concentration. The broth was 

divided into 1.5 ml sterilized plastic tubes and sealed with parafilm. The tubes were then 

incubated under various pressures (0.1, 10, 20, 30, 40 MPa). After incubation for 1 week 

at 10 or 20℃, total cells of the cultures were counted. Cell counting was performed with 

an Easy-Cyte flow cytometer (Guava Technologies). A portion of 200 µl of samples was 

acquired on an Easy-Cyte flow cytometer (Guava Technologies) after 1 h of staining in 

1:2,000 diluted SYBR-Green I (Invitrogen).  

Growth rate determination 

Among the deep-sea isolates, Rubritalea sp. SAORIC-165, Rubrivirga profunda 

SAORIC-234, Oceanibulbus sp. SAORIC-263, Sulfitobacter sp. SAORIC-395, 

Limnobacter sp. SAORIC-580, Erythrobacter sp. SAORIC-644 and Roseobacter sp., 

SAORIC-651 were selected. For determination of growth rate, mid-log cultures on agar 

plates were suspended into marine broth 2216 (MA; BD Difco autoclaved and filtered 

through 0.22μm membrane filters) or marine R2A broth (MB; BD Difco) with 0.5 x 105 
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cells/ml cell concentration. The broth was incubated at various temperatures (10, 15, 20, 

25 and 30). Growth was monitored by measuring turbidity at a wavelength of 660 nm by 

spectrophotometer every 12 or 24 hours and counting cell numbers by Easy-Cyte flow 

cytometer (Guava Technologies). Subsequently, their growth rate at each temperature was 

calculated. 

Optimum NaCl concentration 

Oceanibulbus sp. SAORIC-263, Sulfitobacter sp. SAORIC-395, Limnobacter sp. 

SAORIC-580 and Erythrobacter sp. SAORIC-644 were selected. The NaCl 

concentration for growth was determined on NaCl-free medium based on MA formula. 

For the test, NaCl-free MB was prepared according to the formula of MB (BD Difco) 

devoid of NaCl (NaCl-free MB; 5.0g Peptone, 1.0 g Yeast extract, 1.0 g MgCl2·6H2O, 

4.0 g Na2SO4, 0.7 g KCl, 0.15 g CaCl2·2H2O, 0.5 g NH4Cl, 0.2 g NaHCO3, 0.1 g KBr, 

0.27 g KH2PO4, 0.04 g SrCl2·6H2O, 0.025 g H3BO3, 0.001 g NaF, 10 ml Tris-Cl (pH 8.0) 

per 1 L deionized water). NaCl concentration was adjust to 0-5 % (at intervals of 1 %). 

For inoculation, mid-log cultures on agar plates were suspended into the medium with 

104-105 cells/ml cell concentration. Suspensions was divided into 20 ml sterilized test 

tubes. After incubation for 1 week at 10 or 20℃, its turbidity was measured at a 

wavelength of 660 nm by spectrophotometer. 

Composition of polar lipids and fatty acids 

Rubritalea sp. SAORIC-165, Rubrivirga profunda SAORIC-234, Oceanibulbus sp. 

SAORIC-263, Sulfitobacter sp. SAORIC-395, Rubrivirga profundi SAORIC-476, 

Limnobacter sp. SAORIC-580 and SAORIC-690, Erythrobacter sp. SAORIC-644 and 

Roseobacter sp., SAORIC-651 were selected and analyzed along with their surface-sea 

relatives. Their surface-sea originated relatives were found to Rubritalea marina DSM 
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177716T (16S rRNA gene similarity; 95.9 % with SAORIC-165), Polaribacter porphyrae 

NBRC 108759T (94.9% with SAORIC-234), Sulfitobacter delicates KCTC12547T 

(99.4% with SAORIC-263), Sulfitobacter pontiacus JCM 21789T (99.7% identity with 

SAORIC-395), Rubricoccus marinus SG-29T (95.9 % with SAORIC-476), Limnobacter 

thiooxidans KCTC 12942T (99.5% with SAORIC-580), Erythrobacter citreus JCM 

21816T (99.7% with SAORIC-644) and Roseobacter litoralis Och149T (99.0 % with 

SAORIC-651). Deep-sea strains and their surface relatives were maintain at same 

temperature and under atmospheric pressure. 

Polar lipids were extracted according to the procedures described by Minnikin et al 

(1984). Lyophilized cells (50 mg) were put into a glass tube with a Teflon coated cap and 

2 ml of aqueous methanol (10 ml of 0.3 % aqueous NaCl added to 100 ml of methanol) 

and 2 ml of hexane were added and shaken for 15 min. The suspension was centrifuged 

at 500 rpm for 5 min and the upper layer was removed. Unless otherwise mentioned, 

centrifugation was performed at 500 rpm for 5 min. The under layer was hermetically 

boiled for 5 min and cooled at 37℃ in a water bath. An aliquot of 4.6 ml of 

chloroform:methanol:water (90:100:300) was added and shaked for 1 h. After 

centrifugation, the upper layer was transferred to another clean tube. Susequently, 1.5 ml 

of chloroform:methanol:water (90:100:300) was added into the clean tube and shaked for 

30 min. After centrifugation, the upper layer was transferred to another clean tube. The 

procedure of the extraction with 1.5 ml of chloroform:methanol:water (90:100:300) was 

repeated. An aliquot of 2.6 ml of respective chloroform and water was added to the upper 

layer which was collected. It was centrifuged and the upper layer was removed. The lower 

layer was dried with a flow of N2 gas and solved with 120 μl of chloroform:methanol 

(2:1) for two-dimensional TLC analyzing. The solution was spotted to the bottom of thin-
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layer plate coated with silica gel (silica gel 60, Merck, Darmstadt, Germany). First 

developing with chloroform:methanol:water (65:25:4, by vol.) and second developing 

with chloroform:acetic acid:methanol:water (80:18:12:5, by vol.) were performed. After 

development, polar lipids were identified by appropriate detection reagents (Minnikin et 

al., 1984; Komagata & Suzuki, 1987). Phospholipids were detected with the Zinzadze 

reagent of Dittmer & Lester (1964). Whole lipid profiles were detected by spraying with 

molybdatophosphoric acid (5 g molybdatophosphoric acid hydrate in 100 ml ethanol) 

followed by heating at 150℃ (Worliczek et al., 2007). 

As for fatty acids, fatty methyl esters were extracted and analyzed according to the 

Sherlock Microbial Identification Systems (MIDI). Each strains was cultured at optimum 

temperature in optimum media. The cells growing from the third quadrant streak on the 

plate were placed in a clean tube. The tube was boiled for 30 min after addition of 1 ml 

Sherlock Reagent 1 and vigorously vortex for 5-10 seconds. The cooled tubes was 

methylated with 2 ml Sherlock Reagent 2. The tubes was heated at 80℃ for 10 min then 

cooled rapidly. After adding 1.25 ml of Sherlock Reagent 3, to the cooled was gently 

tumblied on a rotator for about 10 min. After the aqueous (lower) phase was discarded, 

the remaining upper phase was washed with Sherlock Reagent 4. Then about 2/3 of the 

upper layer (around 300 μl) was transferred to a GC vial and the extracted fatty acid 

methyl esters were analyzed by a gas chromatograph (Hewlett Packard 5890 series II) 

equipped with an Ultra2 capillary column. Fatty acid methyl esters were identified 

according to the standard protocols provided by the MIDI/Hewlett Packard Microbial 

Identification system (Sasser, 1990) using TSBA 6.1 database.  

Hydrolase enzyme activity 

Hydrolytic enzyme activities were tested using API ZYM strips (bioMerieux). All 



103 
 

suspension media for the API test strips were supplemented with artificial seawater 

(ASW; 25 g NaCl, 1.0 g MgCl2·6H2O, 4.0 g Na2SO4, 0.7 g KCl, 0.15 g CaCl2·2H2O, 0.5 

g NH4Cl, 0.2 g NaHCO3, 0.1 g KBr, 0.27 g KH2PO4, 0.04 g SrCl2·6H2O, 0.025 g H3BO3, 

0.001 g NaF, 10 ml Tris-Cl (pH 8.0) per 1 L deionized water). Results of API ZYM was 

recorded by following the manufacturer’s instructions after 7 days of incubation. 

 

Results 

Growth pattern 

All of 8 strains showed less cells concentration at 10, 20, 30, 40 MPa than 0.1 MPa, 

whereas strain DSJ4 showed highest cell concentration at 10-20 MPa. In order to illustrate 

growth pattern under high pressure, I calculated the relative cell numbers which indicates 

a value as reference point to 0.1 MPa (cells at 10, 20, 30 and 40 MPa/ cells at 0.1 MPa) 

(Figure 4-1). As for temperature, Rubritalea sp. SAORIC-165, showed optimum growth 

at 10˚C and no growth above 20℃. Besides this strain, 6 strains showed optimum growth 

rate above 10℃ (Table 4-1). As for growth at different NaCl concentration, Oceanibulbus 

sp. SAORIC-263 and Sulfitobacter sp. SAORIC-395 showed optimum at 2 and 2-3 %, 

respectively (Figures 4-2 and 4-3). Limnobacter sp. SAORIC-580 and Erythrobacter sp. 

SAORIC-644 showed optimum at 0 and 1 %, respectively (Figures 4-4 and 4-5). 

Cell mamberane components 

Rubritalea sp. SAORIC-165 contained phosphatidylethanolamine (PE), 

diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), 3 unknown phospholipids and 

4 unknown polar lipids (Figure 4-6). The presence of PE, DPG, PG, unknown 

phospholipids and unknown lipids is common with its relative, but the number of 

unknown phospholipids and unknown polar lipids were different. Rubrivirga profunda 
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SAORIC-234 and its relative commonly contained PE, unknown phospholipids and 

unknown lipids but the number of unknown phospholipids and unknown polar lipids were 

different (Figure 4-7). Ocenibulbus sp. SAORIC-263 and its counterpart contained PE, 

DPG, PG, unknown phospholipids and unknown lipids but the number of unknown 

phospholipids and unknown polar lipids were different (Figure 4-8). Sulfitobacter sp. 

SAORIC-395 and its counterpart contained commonly PE, DPG, PG, unknown 

phospholipids and unknown lipids but the number of unknown phospholipids and 

unknown polar lipids were different (Figure 4-9). Rubrivirga profundi SAORIC-476 and 

its relative commonly contained PE, DPG, PG, unknown phospholipids and unknown 

lipids but the number of unknown phospholipids and unknown polar lipids were different 

(Figure 4-10). Limnobacter sp. SAORIC-580 and its counterpart contained PE, DPG, PG, 

unknown phospholipids and unknown lipids but the number of unknown phospholipids 

and unknown polar lipids were different (Figure 4-11). Erythrobacter sp. SAORIC-644 

and its counterpart contained PE, DPG, PG, unknown phospholipids and unknown lipids 

but the number of unknown phospholipids and unknown polar lipids were different 

(Figure 4-12). Roseobacter sp. SAORIC-651 and its counterpart contained PE, unknown 

phospholipids and unknown lipids but the number of unknown phospholipids and 

unknown polar lipids were different (Figure 4-13). 

The fatty acid compositions of Rubritalea sp. SAORIC-165 and Rubritalea marina 

DSM 177716T were generally similar, but the proportions of some fatty acids including 

C14:0, anteiso-C15:0, C16:0, iso-C16:0, anteiso-C17:0 and C17:1 ω8c were different (Table 4-2). 

Aurantivirga profunda SAORIC-234T and its counterpart showed generally similar fatty 

acid composition, but the proportions of some fatty acids including iso-C13:0, iso-C15:0 3-

OH and iso-C16:0 3-OH were different (Table 4-3). Ocenibulbus sp. SAORIC-263 and 
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Sulfitobacter sp. SAORIC-395 showed almost similar fatty acids composition with their 

counterparts (Tables 4-4 and 4-5). Rubrivirga profundi SAORIC-476 and its counterpart 

showed differences in the proportion of iso-C15:0, C17:0, C16:1 ω7c/ C16:1 ω6c, C16:1 ω9c, 

iso-C17:1, iso ω9c/ C16:0 10-methyl and C17:1 ω8c (Table 4-6). Limnobacter sp. SAORIC-

580 and its counterpart showed in differences in the proportion of C16:0, cyclo- C17:0, C16:1 

ω7c/ C16:1 ω6c and C19:1 ω7c/ C19:1 ω6c (Table 4-7). Erythrobacter sp., SAORIC-644 was 

differential with its counterpart in the proportions of C16:0 2-OH C16:1 ω7c/ C16:1 ω6c and 

C18:1 ω7c (Table 4-8). Roseobacter sp., SAORIC-651 was differential with its counterpart 

in the proportion of C18:1 ω7c and C18:1 ω7c 11-methyl were different (Table 4-9). 

Hydrolytic enzyme activitiy 

Summary of hydrolytic enzyme activity is shown in Table 4-10. Ocenibulbus sp. 

SAORIC-263 and Sulfitobacter sp. SAORIC-395 showed almost similar hydrolytic 

enzyme activities with their counterparts. Some strains showed enhanced activity in 

esterase and arylamidase compared to their surface-sea relatives. 

 

Discussion 

In order to clarify the physiological characteristics of the deep-sea bacteria, i.e., growth 

patterns under different pressure and NaCl concentration, cellular components and 

hydrolytic enzyme activities were made for eight deep-sea isolates and their relatives 

isolated from surface-sea or other environments. First, the growth of deep-sea isolates 

was depressed with increasing pressure, indicating that they are non-piezophiles. Second, 

Rubritalea sp. SARIC-165 showed optimum growth at 10℃ and no growth above 20℃, 

indicating that the strain is psychrophilic. Third, Erythrobacter sp. SAORIC-644 and 

Limnobacter sp. SAORIC-580 showed optimum NaCl concentration at 1 and 0 % 
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respectively. Finally, most of the deep-sea strains were distinguished by 1-2 more 

numbers of different types of phospholipids than their surface-sea relatives. 

During this thesis work, I could not obtain any piezophile. The major reason may 

be that I did all the sampling and incubation procedures at atmospheric pressure (0.1 MPa). 

As mentioned in general introduction, if one wishes to isolate more piezophiles, special 

sampling and incubation devices to maintain the ambient hydrostatic pressure may be 

required.  

Among 8 deep-sea strains tested, only Rubritalea sp. SARIC-165 was psychrophilic. 

Considering that Rubritalea-like phylotypes were exclusively recovered from 2000 m of 

station K2 in Chapter 3, Rubritalea may be a group adapted to deep-sea environments. 

As Rubritalea sp. SARIC-165 is non-piezophilic. This may suggest that the adaptation to 

high pressure is less critical compared with that to low temperature (Jannashch et al., 

1976; Sakiyama et al., 1998; Martín-Cuadrado et al., 2007). The strain is the first 

psychrophilic isolate within the phylum Verrucomicrobia, so it will provide insight into 

the psychrophilic life of bacteria. 

The optimum NaCl concentration for the growth of Erythrobacter sp. SAORIC-644 

and Limnobacter sp. SAORIC-580 were 1 and 0 %, respectively. Distribution of their 

relatives in low salninity environments have been reported (Cabaj et al., 2006; Du et al., 

2006; Spring et al., 2001). In particular, Erythrobacter sp. SAORIC-644 is close to the 

phylotypes that is ubiquitous in a water column and prefer PL state in the previous chapter. 

Taken together with the results, the strain might have been originated from the low salinity 

environments and further transferred to deep-sea environment. It may be associated with 

sinking particles, but further study is required to confirm it.   

As for cell membrane composition, phospholipid is an important component. The 
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experiment with a piezotolerant strain, Marinobacter sp. #5 within the class 

Gammaproteobacteria, showed that the total amount of phospholipids increased with 

hydrostatic pressure, suggesting the maintenance of membrane fluidity under high 

pressure (Grossi et al., 2010). Although the role of additional phospholipids of the deep-

sea strains was not identified from this study, they may be for the maintenance of 

membrane fluidity under high pressure and cold environment and help bacterial survival 

in such a harsh conditions.  

As for the composition of fatty acids, the deep-sea strains showed similar the 

composition of fatty acids with their surface-sea counterparts and common features in 

fatty acids composition were not identified. Fatty acids, which changes under high 

pressure and low temperatures, have been noted for deep-sea bacteria (DeLong and 

Yayanos, 1985). Further investigation under high pressure and low temperatures will 

contribute to specify the characteristics of the deep-sea strains in cellular membrane. In 

particular, Rubritalea sp. SAORIC-165 and Limnobacter sp. SAORIC-580 showed high 

differences in the composition of fatty acids, compared with their surface sea counterparts. 

Further research is needed to find out why. The differences in the composition of fatty 

acids may be relevant for their features such as psychrophilic attitude and isolation source.  

There was no apparently common features in hydrolytic enzyme activity among the 

deep-strains. In particular, Rubritalea sp. SAORIC-165 and Erythrobacter sp. SAORIC-

644 showed enhanced acid phosphatase and lipase activity, compared to the surface-sea 

relatives. These enzyme may facilitate obtaining phosphorous and lipid compounds from 

sinking particles. It is supported by high phosphatase activity (Koike and Nagata, 1997) 

and relatively high concentration of lipids (Aluwihare et al., 2002) in sinking particles 

collected from deep-sea environments.  
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Rubritalea sp. SAORIC-165 of the phylum Verrucomicrobia is psychrophilic one. 

Alghouth it is not clear when and where verrucomicrobial psychrophiles appear on the 

Earth, Rubritalea sp. SAORIC-165 probably have settled in the deep-sea for long time 

ago and adapted low temperature. Erythrobacter sp. SAORIC-644 and Limnobacter sp. 

SAORIC-580 is likely to originate in low salinity environment. Higher numbers of 

phospholipids of the deep sea strains, compared to their surface relatives, may allow the 

deep-sea strains to maintain the fluidity of cell membrane under high pressure. 

In conclusion, physiological characteristics of the deep-sea strains affiliated with 

genera Rubritalea, Sulfitobacter, Oceanibulbus, Erythrobacter, Limnobacter and 

Roseobacter were first described in comparison with their surface relatives in this study. 

Although there was no piezophile, Rubritalea sp. SAORIC-165 was psychrophilic one. 

To my knowledge, this is the first report on the psychrophile in the phylum 

Verrucomicrobia. I also found that the optimum NaCl concentration for the growth of 

Erythrobacter sp. SAORIC-644 and Limnobacter sp. SAORIC-580 were 1 and 0 %, 

respectively. Finally, the deep-sea strains commonly contain higher numbers of 

phospholipids, compared to their surface-relatives. These results suggests the 

physiological characteristics and origin of deep-sea bacteria. However, it is still difficult 

to gain the general view of deep-sea bacteria. For this purpose, it will be helpful if I obtain 

the whole genome information and compare with the sequences of surface relatives. In 

Chapter 5, I will try to analyze the whole genome data for my strains and some strains 

available for comparisons.   
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Table 4-1. Growth rate at different temperature. 

 10℃ 15℃ 20℃ 25℃ 30℃ 

Rubritalea sp. SAORIC-165 0.06 0.05 - - - 

Rubrivirga profunda SAORIC-234 0.02 0.04 0.04 - - 

Oceanibulbus sp. SAORIC-263 0.04 (0.07) 0.27 (0.36) - 

Sulfitobacter sp. SAORIC-395 0.06 (0.34) 0.46 (0.57) (0.16) 

Limnobacter sp. SAORIC-580 0.10 (0.25) 0.31 (0.33) (0.58) 

Erythrobacter sp. SAORIC-644 0.04 (0.04) 0.16 (0.16) - 

Roseobacter sp. SAORIC-651 0.04 0.08 0.1 0.07 - 

Numbers, growth rate (u/h); -, no growth;  

Parentheses, predicted growth rate from turbidity at a wavelength of 660 nm 

 

Table 4-2. Cellular fatty acid composition of Rubritalea sp. SAORIC-165T and 

Rubritalea marina DSM 177716T.  

Fatty acid SAORIC-165 DSM 177716 

C14:0 10.9 9.8 

C16:0 13.1 9.8 

iso-C14:0 23.0 29.3 

iso-C16:0 - 4.4 

iso-C14:0 3-OH - 2.9 

anteiso-C15:0 19.0 3.5 

C15:1 ω6c - 2.9 

C16:1 ω7c/ C16:1 ω6c 30.2 32.9 

C17:1 ω6c 3.9 - 
–, Not detected; tr, trace (less than 1.0 %) 
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Table 4-3. Cellular fatty acid composition of Aurantivirga profunda SAORIC-234T and 

Polaribacter porphyrae NBRC 108759T.  

Fatty acid SAORIC-234 NBRC 108759 
iso-C12:0  1.8 – 
iso-C13:0 3.0 11.6 
iso-C14:0  3.5 – 
iso-C15:0  29.6 27.0 
iso-C15:1 G 19.3 16.8 
iso-C16:2 G 3.0 – 
iso-C17:0 3-OH 8.0 9.8 
anteiso-C15:0  1.4 – 

C16:0 10-methyl 1.0 – 

iso-C16:2 G 3.0 – 

C15:1 ω6c 1.5 5.6 
C16:0 3-OH tr 1.8 
iso-C15:0 3-OH 7.2 12.8 
iso-C16:0 3-OH 8.7 1.9 
C16:1 ω6c and/or C16:1 ω7c 2.4 2.3 

–, Not detected; tr, trace (less than 1.0 %). 
 

Table 4-4. Cellular fatty acid composition of Oceanibulbus sp. SAORIC-263 and 
Sulfitobacter delicatus KCTC12547T.  
Fatty acid SAORIC-263 KCTC12547 

C10:0 3-OH 2.6 3.0 

C12:0  tr tr 

C14:0 – tr 

C15:0 anteiso 1.0 – 

C16:0 7.6 7.7 

C17:0 anteiso tr tr 

C18:0 3.1 2.3 

C18:0 iso 3.3 4.8 

C12:1 3-OH 2.2 2.1 

C16:1 ω7c/ C16:1 ω6c tr 1.3 

C18:1 ω7c 74.5 70.4 

C18:1 ω7c 11-methyl 2.7 4.3 

C18:2 ω6,9c  – – 
–, Not detected; tr, trace (less than 1.0 %) 
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Table 4-5. Cellular fatty acid composition of Sulfitobacter sp. SAORIC-395 and 

Sulfitobacter pontiacus JCM 21790T.  

Fatty acid SAORIC-395 JCM 21790 

C10:0 3-OH 4.7 4.7 

C12:0 - tr 

C12:0 3-OH 1.1 1.1 

C15:0 anteiso 1.0 1.0 

C16:0 9.6 9.6 

C17:0 anteiso 1.8 1.8 

C18:0 3.1 3.1 

C16:1 ω7c/ C16:1 ω6c – – 

C17:1 ω8c 2.1 2.1 

C18:1 ω7c 76.7 76.7 
–, Not detected; tr, trace (less than 1.0 %). 

 

Table 4-6. Cellular fatty acid composition of Rubrivirga profunda SAORIC-476T and 

Rubricoccus marinus SG-29T.  

Fatty acid SAORIC-476 SG-29 

C16:0 5.6 3.7 

C17:0 4.7 10 

iso-C15:0 12.0 2.1 

iso-C16:0 1.9 3.3 

iso-C17:0 15.1 9.8 

C15:1 ω6c 3.8 – 

C16:1 ω9c 4.4 – 

C17:1 ω6c 7.2 – 

C17:1 ω8c 12.7 27.6 

C16:1 ω7c and/or C16:1 ω6c 8.7 5.3 

iso-C17:1 ω9c and/or C16: 0 10-methyl 23.8 29 
–, Not detected; tr, trace (less than 1.0 %).  
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Table 4-7. Cellular fatty acid composition of strain SAORIC-580 and Limnobacter 

thiooxidans KCTC 12942T.  

Fatty acid SAORIC-580 KCTC 12942 

C10:0 3-OH 1.4 – 

C14:0 1.3 5.1 

C16:0 21.1 21.3 

C16:0 iso 1.6 – 

C17:0 cyclo 17.2 – 

C18:0 – 8.8 

C16:1 ω7c/ C16:1 ω6c 28.5 34.0 

C18:1 ω7c 16.2 19.5 

C18:1 ω9c  2.1 – 

C19:1 ω7c/ C19:1 ω6c 10.1 11.4 
–, Not detected; tr, trace (less than 1.0 %). 

 

Table 4-8. Cellular fatty acid composition of Erythrobacter sp. SAORIC-644 and 

Erythrobacter citreus JCM 21816T.  

Fatty acids SAORIC-644 JCM 21816 

C14:0 2-OH 3.9 2.6 

C16:0 13.6 15.6 

C16:0 2-OH 4.6 – 

C18:0 2.5 – 

C16:1 ω5c 1.0 – 

C16:1 2-OH – 5.7 

C16:1 ω7c/ C16:1 ω6c 13.8 4.0 

C17:1 ω6c tr 8.7 

C18:1 ω5c 1.2 – 

C18:1 ω7c 50.8 43.2 

C18:1 ω7c 11-methyl 4.9 – 
–, Not detected; tr, trace (less than 1.0 %). 
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Table 4-9. Cellular fatty acid composition of Roseobacter sp. SAORIC-651 and 

Roseobacter litoralis Och 149T.  

Fatty acids SAORIC-651 Och 149 

C10:0 3-OH 2.0 3.0 

C16:0 5.3 5.4 

C18:0 3.3 4.6 

C18:0 iso 24.2 22.5 

C18:1 ω9c 1.6 1.0 

C18:1 ω7c 59.8 63.0 

C18:1 ω7c 11-methyl 3.9 – 
–, Not detected; tr, trace (less than 1.0 %).
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Table 4-10. Hydrolytic enzyme activities.  

Enzymes 

Rubritalea Aurantivigra Oceanibulbus Sulfitobacter Rubrivirga Limonobacter Erythrobacter Roseobacter 

SA
O

R
IC

-1
65

 

D
S

M
 1

77
71

6*  

SA
O

R
IC

-2
34

 

N
B

R
C

 1
08

75
9*  

SA
O

R
IC

-2
63

 

K
C

T
C

 3
82

13
*  

SA
O

R
IC

-3
95

 

JC
M

 2
17

89
*  

SA
O

R
IC

-4
76

 

SG
-2

9*  

SA
O

R
IC

-5
80

 

K
A

C
C

 1
38

37
*  

SA
O

R
IC

-6
44

 

JC
M

 2
18

16
*  

SA
O

R
IC

-6
51

 

O
ch

14
9*  

Alkaline phosphatase + + + + + – + + + + + – + + + – 

Esterase (C4) + + + + + + + + + + + + + + – – 

Esterase lipase (C8) + + + + + – + + – + + + + + + – 

Lipase (C14) – – – – – – – – – – – – + – + + 

Leucine arylamidase + + + + + + + + – + + + + + + + 

Valine arylamidase – – – – + + + + – + – – + + + – 

Cystine arylamidase – – – – – – – – – + – – + − – – 

Trypsin – – – – – – – – – − − − + + − − 

α-chymotrypsin – – – – – – – – − − − − − − − − 

α-galactosidase – – – – – – – – − − − − − − − − 

β-galactosidase – – – – – – – – − − − − − − − − 

β-glucuronidase – – – – – – – – − − − − − − − − 

α-glucosidase – – – – – – – – − − − − − − − − 

β-glucosidase – – – – – – – – − − − − − − − − 

Acid phosphatase + – + – – – + + – − − − + + + + 
Naphthol-AS-BI- 
phosphohydrolase + + + – + + + – – + + + + + + + 

*, relatives derived from surface-sea or other environments; +, positive; −, negative. 
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Table 4-11. Summary of the physiological characteristics of the deep-sea strains and their relatives. 

 

Rubritalea Aurantivigra Oceanibulbus Sulfitobacter Rubrivirga Limonobacter Erythrobacter Roseobacter 

SA
O

R
IC

-1
65

 

D
S

M
 1

77
71

6*  

SA
O

R
IC

-2
34

 

N
B

R
C

 
10

87
59

*  

SA
O

R
IC

-2
63

 

K
C

T
C

 3
82

13
*  

SA
O

R
IC

-3
95

 

JC
M

 2
17

89
*  

SA
O

R
IC

-4
76

 

SG
-2

9*  

SA
O

R
IC

-5
80

 

K
A

C
C

 1
38

37
*  

SA
O

R
IC

-6
44

 

JC
M

 2
18

16
*  

SA
O

R
IC

-6
51

 

O
ch

14
9*  

Optimum growth                 
Pressure (MPa) 0.1 ND 0.1 ND 0.1 ND 0.1 ND 0.1 ND 0.1 ND 0.1 ND 0.1 ND 
Temperature (℃) 10 ND ND ND 30 ND 25 ND ND ND 30 ND 30 ND 20 ND 
NaCl (%) ND ND ND ND 1-2 ND 1-3 ND ND ND 0 ND 1 ND ND ND 

Polar lipid                 
Phospholipid 7 6 1 1 7 5 6 5 5 3 6 4 6 5 5 3 
Aminolipid 1 1 4 3 1 1 1 1 1 1 2 1 1 1 1 0 

Fatty acids (%)                 
C14:0 11 10 0 0 0 0 0 0 0 0 1 5 1 0 0 0 
anteiso-C15:0 19 4 1 0 0 0 1 1 0 0 0 0 0 0 0 0 
C17:0 cyclo 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 
C18:0 0 0 1 1 1 1 3 3 0 0 0 9 1 2 3 5 
C15:1 ω6c 7 0 2 8 0 0 0 0 4 0 0 0 0 0 0 0 
C16:1 ω7c/C16:1 ω6c 30 31 2 2 1 1 0 0 9 6 29 34 14 4 0 0 
C17:1 ω8c or ω6c 0 0 0 0 0 0 2 1 0 0 0 0 1 9 0 0 
C18:1 ω7c 4 0 0 0 86 89 77 77 0 0 16 20 51 43 60 63 
C18:1 ω7c 11-methyl 0 0 0 0 0 2 0 0 0 0 0 0 5 0 6 0 

Hydrolytic enzymes                  
Alkaline phosphatase + + + + + – + + + + + – + + + – 
Esterase lipase (C8) + + + + + – + + – + + + + + + – 
Lipase (C14) – – – – – – – – – – – – + – + + 

*, relatives derived from surface-sea or other environments; ND, no data; +, positive; −, negative. 
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Figure 4-1. Growth profile under high pressure
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Figure 4-2. Growth profile of Oceanibulbus sp. SAORIC-263 on 0, 1, 2, 3, 4 % NaCl 

concentration 

 

 

 

 

Figure 4-3. Growth profile of Sulfitobacter sp. SAORIC-395 on 0, 1, 2, 3, 4 % NaCl 

concentration 
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Figure 4-4. Growth profile of SAORIC-580 on 0, 1, 2, 3, 4 % NaCl concentration 

 

 

 

 

Figure 4-5. Growth profile of SAORIC-644 on 0, 1, 2, 3, 4 % NaCl concentration 
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Figure 4-6. Two-dimensional thin-layer chromatograph of total polar lipids of Rubritalea 
sp. SAORIC-165 and Rubritalea marina DSM 177716T. PE, phosphatidylethanolamine; 
DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PL1-4, unknown 
phospholipids; AL, unknown aminolipids; L1-2, unknown lipids. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7. Two-dimensional thin-layer chromatograph of total polar lipids of strain 
Aurantivirga profunda SAORIC-234T and Polaribacter porphyrae NBRC 108759T. PE, 
phosphatidylethanolamine; AL1-2, unknown aminolipids; L1–L3, unknown lipids (Song 
et al., 2015) 
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Figure 4-8. Two-dimensional thin-layer chromatograph of total polar lipids of 
Ocenibulbus sp. SAORIC-263 and Sulfitobacter delicatus KCTC 38213T. PE, 
phosphatidylethanolamine; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; AL, 
unknown amino lipid; PL1-PL3, unknown phospholipids; L1–L3, unknown lipids 
 

 

 

 

 

 

 

 

 

 

 

Figure 4-9. Two-dimensional thin-layer chromatograph of total polar lipids of strain 
Sulfitobacter sp. SAORIC-395T and Sulfitobacter pontiacus JCM 21789T. PE, 
phosphatidylethanolamine; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; 
PL1-2, unknown phospholipids; L1–L4, unknown lipids. 
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Figure 4-10. Two-dimensional thin-layer chromatograph of total polar lipids of 
Rubrivirga profundi SAORIC-476 and Rubricoccus marinus SG-29T. PE, 
phosphatidylethanolamine; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; 
PL1-3, unknown phospholipids; L1–L3, unknown lipids (Song et al., 2016) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11. Two-dimensional thin-layer chromatograph of total polar lipids of 
Limnobacter sp. SAORIC-580 and Limnobacter thiooxidans KCTC 12942T. PE, 
phosphatidylethanolamine; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PL, 
unknown phospholipids; L1–L4, unknown lipids. 
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Figure 4-12. Two-dimensional thin-layer chromatograph of total polar lipids of 
Erythrobacter sp. SAORIC-644 and Erythrobacter citreus JCM 21816T. PE, 
phosphatidylethanolamine; DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PL, 
unknown phospholipids; L1–L4, unknown lipid 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13. Two-dimensional thin-layer chromatograph of total polar lipids of strain 
SAORIC-651 and Roseobacter litoralis Och149T. PE, phosphatidylethanolamine; DPG, 
diphosphatidylglycerol; PG, phosphatidylglycerol; PL1-3, unknown phospholipids; L1–
L4, unknown lipid 
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Genetic characteristics of deep-sea bacteria in 
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Introduction 

In the previous chapter, some physiological characteristics were examined for several 

deep-sea isolates that were isolated for this research (Chapter 2). Such information is 

quite helpful to understand the characteristics of deep-sea bacteria, especially in 

comparison with those isolated from surface layers. For example, it was clarified that one 

particular strain, Rubritalea sp. SAORIC-165 is a psychrophilic strain. Because various 

cellular metabolic pathways and cell components are involved in exerting such character, 

elaborate growth observations under various conditions are required for this kind of 

findings. On the other hand, such a physiological approach may miss certain 

characteristics because it is practically impossible to cover all the metabolic processes or 

all cellular components.  

Recent development of molecular techniques have made it possible to obtain the 

whole genome information within short time. The data are accumulated into database and 

are available for researchers (e.g., NCBI). Those data give us information on diverse 

microbial processes which have been overlooked in the “traditional” physiological 

investigation (Simonate et al., 2006; Koeppel et al., 2007; Quaiser et al., 2011; López-

Pérez et al., 2013). The comparative genomics or comparisons of multiple genomes 

allowed us to elucidate presence or absence of particular genes, sequence variations and 

orders of genes. Such information help us to infer functional characteristics, evolutionary 

processes and possibly adaptive mechanisms to various environments (Math et al., 2012; 

López-Pérez et al., 2013). 

Genomic analysis of deep-sea prokaryotes clarified that deep-sea bacteria contain 

diverse peptidases, amino acid uptake systems for hydrolyzing and metabolizing organic 

substrates (Hou et al., 2004). For instance, deep-sea Idiomarina loihiensis contains 
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metallopeptidases which may be linked to the high concentations of heavy metals in 

organic substracts. Shewanella piezotolerans WP3 has a great number of genes involved 

in urea and glycan metabolic pathways, compared to its relative, strain MR-1 (Wang et 

al., 2008). It was also revealed that transposable elements, flagella synthesis, heavy metal 

resistance and signal transduction genes were abundantly present on the deep-sea 

bacterial genomes or populations compared with those of the surface-sea relativess 

(Simonato et al., 2006; Lauro et al., 2008; Ivars-Martinez et al., 2008; Qin et al., 2010; 

López-Pérez et al., 2013).  

In spite of the versatility of the genomic analysis, however, only about 50 genomes 

of deep-sea prokaryotes have been subjected at the time of writing. If I exclude those 

from hydrothermal vents, which are not common deep-sea habitat, those from deep-sea 

water or sediment are only 27 genomes. Furthermore, only several genomic comparisons 

of deep-sea and surface-sea relatives were carried out. These genomes were mainly 

assigned to the class Gammaproteobacteria. Therefore, more genomes from diverse 

phylogenetic groups should be sequenced in order to better understand deep-sea 

prokaryotes.  

In the present chapter, I aimed to analyze whole genome of deep-sea bacteria for 

clarifying characteristics of those strains. I also tried to clarify particular genes related to 

particle-association, and those possibly involved in the life style in the deep sea. Among 

the deep-sea isolate, 7 deep-sea strains, of which relatives have genomic data, were 

selected and belong to the class Alphaproteobacteria and Betaproteobacteria, and the 

phylum Verrucomicrobia. To my knowledge, this is the first case of whole genome 

analysis of the deep-sea isolates in genera Rubritalea, Oceanibulbus, Limnobacter and 
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Roseobacter. Subsequently, comparative genomics was performed using several 

bioinformatics tools.  

 

Materials and methods 

Bacterial strains  

Considering dominance and novelty of the deep-sea isoaltes, the following deep-sea 

strains were analyzed. Rubritalea sp. SAORIC-165, Oceanibulbus sp. SAORIC-263, 

Sulfitobacter sp. SAORIC-395, Limnobacter sp. SAORIC-580, SAORIC-690, 

Erythrobacter sp. SAORIC-644 and Roseobacter sp. SAORIC-651. 

DNA extraction 

Bacterial cells in MA or R2A agar culture medium in exponential phase were collected 

in 2 ml tubes. A portion of 500 μl lytic solution (Lysozyme 0 .75 in 1ml of 10 mM Tris-

HCl buffer, pH 8.0) was added to collected cells and mixed well. The mixture was 

incubated at 37℃ for least 3 hr. Two hundreds μl TES buffer (pH 8.0) and pre-warmed 

(60℃) 600 μl Tris-SDS solution (1M Tris-HCl+10% SDS) were added and gently mixed. 

After adding 10 μl proteinase K (10 mg/ml), the mixture was incubated at 55℃ overnight. 

An aliquot of 250 μl of cold phenol and chloroform were added and mixed well at 15 rpm 

using a mixer (Iwaki Glass Co., Japan) for 30 min. The mixture was centrifuged at 15,000 

rpm, 4℃ for 15 min. The supernatant was transferred into a new tube and this extraction 

process was repeated. The supernatant was then transferred into a new tube and extracted 

with 500 μl chloroform and mixed for 30 min. After centrifugation at 14,000 rpm for 10 

min, the supernatant was collected in 50 ml sterile centrifuge tube and 30 ml ice cooled 

99.5 % ethanol was added. The precipitated DNA was collected using a glass rod and 

washed again with the cooled 99.5 % ethanol. The DNA piled on the glass rod was 
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transferred into a 15 ml centrifuge tube containing 4.5 ml 0.1X SSC with the tube sealing 

by Parafilm and stored at 10℃ overnight after the obtained DNA was dried at room 

temperature. The 0.1XSSC solution was adjusted to 1XSSC after the DNA has dissolved. 

An aliquot of 20 μl RNase A (10 mg/ml) and 100 μl RNAse T1 (400 U/ml, pH 7.5) was 

added and incubate at 37℃ for 1 hour. A 20 μl proteinase K (10 mg /ml), was added and 

further incubated for 90 min at 37℃. After the enzyme treatment, the mixture was 

separated into 2 ml tubes and extracted with phenol and chloroform treatment as 

described before, supernatant were collected and mixed with 99.5 % ethanol then washed 

with 70 % and 99.5 % ethanol respectively. The extracted DNA was dissolved in 1ml TE 

buffer (pH 8.0) and stored at 4℃ after the precipitated DNA was vacuum dried 

Whole genome sequencing  

Genomic sequences were determined using the Illumina MiSeq sequencer in Macrogen 

(Macrogen, Inc., Korea). The assembly was achieved using the GS De Novo Assembler 

(v 3.0) which makes the resulting reads together into contiguous segments (contigs) based 

on overlapping regions between each reads. Genome annotation was accomplished by 

using the Integrated Microbial Genomes Expert Review (IMG-ER) (Markowitz et al., 

2009), KEGG pathway database (http://www.genome.jp/kegg) and RAST server 

(http://rast.nmpdr.org). The average nucleotide identity (ANI) was calculated in 

EzGenome server (http://www.ezbiocloud.net/ezgenome/ani). For comparative genomes, 

clustering protein based on sequence similarity was determined by 

GET_HOMOLOGUES program (Contreras-Moreira & Vinuesa, 2013). Clusters of 

orthologous groups (COGs) were analyzed by Integrated Microbial Genomes (IMG) 

database release 4.1 (Markowitz et al. 2012). Comparative genomic analysis with other 

bacterial lineages was also performed using IMG database. Orthologous proteins were 
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defined the reciprocal as best-hit proteins following to a minimum to 70 % of the length 

of either protein and of 50 % identity calculated by the BLAST algorithm.  

COG functional analyses 

In specific breakdown of numbers of the genes assigned to COG functional categories, I 

tried to screen particular genes for characterizing deep-sea bacteria using two criteria. 

First, a gene that deep-sea bacteria shows at least 1.5 folds more abundance in the 

numbers of the gene, compared to their surface relatives. Second, this is confirmed in at 

least 3 deep-sea strains.  

Metagenomic data comparison 

Screened genes were compared to comparative metagenomic data between a deep and 

surface layer (Konstantinidis et al., 2009). Based on the metagenomic dataset 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725473/bin/supp_75_16_5345__inde

x.html), abundance S/D (abundance in surface library/ abundance in deep library) of the 

screened genes were calculated. 

 

Results 
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Table 5-1. Genes of Rubritalea sp. SAORIC-165, Rubritalea marina DSM 177716 and 

Coraliomargarita akajimensis DSM 45221. 

strain Size (bp) GC content Contigs 
Protein coding genes 

 (CDSs) 
Proteins assigned 

to COG 

SAORIC-165 4.17 49.4 4 3844 1681 

DSM 177716 3.01 51.6 32 2670 1680 
DSM 45221 3.75 53.6 1 3126 2035 

  

 

Table 5-2. Genes of Oceanibulbus sp. SAORIC-263, Oceanibulbus indolifex HEL-45 and 

Sulfitobacter dubius DSM16472. 

Strain Size (bp) GC content Contigs 
Protein coding genes 

(CDSs) 
Proteins assigned to 

COG 

SAORIC-263 3.94 61.3 37 3085 2825 

HEL-45 3.54 60.3 15 3429 2603 
DSM16472 3.67 60.2 21 3558 2724 

 

 

Table 5-3. Genes of Sulfitobacter sp. SAORIC-395, Sulfitobacter sp. CB2047 and 

Sulfitobacter sp. EE-36. 

Strain Size (bp) GC content Contigs 
Protein coding genes 

(CDSs) 
Proteins assigned 

to COG 

SAORIC-395 3.72 60.5 36 2948 2683 

CB2047 3.77 60.3 12 2985 2698 

EE-36 3.23 60.3 15 2579 2493 
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Table 5-4. Genes of Limnobacter sp. SAORIC-580, Limnobacter sp. SAORIC-690 and 

Limnobacter sp. MED105. 

Strain Size (bp) GC content Contigs 
Protein coding genes 

(CDSs) 
Proteins assigned 

to COG 

SAORIC-580 3.29 52.5 10 2467 2219 

SAORIC-690 3.49 51.4 4 2649 2188 
MED105 3.39 52.2 46 3109 2411 

 

 

Table 5-5. Genes of Erythrobacter sp. SAORIC-644, Erythrobacter sp. SD-21 and 

Erythrobacter nanhaisediminis CGMCC 1.7715 

strain Size (bp) GC content Contigs 
Protein coding genes 

(CDSs) 
Proteins assigned 

to COG 

SAORIC-644 3.54 60.5 24 3386 2289 

SD-21 3.26 62.9 19 2916 1991 

CGMCC 1.7715 2.90 62.0 12 2846 1879 
 

 

Table 5-6. Genes of Roseobacter sp. SAORIC-651, Roseobacter litoralis Och 149 and 

Roseobacter denitrificans Och 119. 

Strain Size (bp) GC content Contigs 
Protein coding genes 

(CDSs) 
Proteins assigned 

to COG 

SAORIC-651 4.84 54.8 43 5007 3335 

Och 149 4.74 57.2 4 4862 3372 
Och 119 4.33 58.9 5 4276 3250 
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Table 5-7. Numbers of particular genes among Rubritalea sp. SAORIC-165 and the 

relatives, R. marina DSM 177716T and Coraliomargarita akajimensis DSM 45221T. 

COG Gene Function & reference 
Numbers of COG 

SAORIC-165 DSM 177716 DSM 45221 

C adhE Aldehydealchol dehydrogenase 5 1 2 
 fixC Dehydrogenase 3 1 1 
 cytC552 Cytochrome C 1 0 0 
 fdx Ferredoxin 1 0 0 
 nfnB Nitroreductase 4 3 3 
 nuoAM NADH:ubiquinone oxidoreductase 2 1 1 
 nuoJG NADH:ubiquinone oxidoreductase 1 0 0 
 hybA Fe-S-cluster-containing dehydrogenase 4 3 3 
 tctC Tripartite-type tricarboxylate transporter 1 0 0 

D sufI Multicopper oxidase 1 0 0 
E potE Ornithine transpoter 1 0 0 
 gdhA Glutamate dehydrogenase 3 2 1 
 tesA Acyl-CoA thioesterase 12 4 6 

 livFGHK 
Branched-chain amino acid transporter 

and metabolism 
2 1 1 

 sdaA L-serine dehydratase 2 0 0 
 appF ABC-type oligopeptide transport system 1 0 0 

F dcd Deoxycytidine triphosphate deaminase 1 0 0 
G araJ Major facilitator transporter 1 0 0 
 ppsA Phosphoenolpyruvate synthase 1 0 4 
 yliL Putative cytochrome C 13 5 3 
 gmd GDP-D-mannose dehydratase 2 0 1 

H apbE FMN transferase 5 1 3 

I ugpQ 
Glycerophosphoryl diester 

phosphodiesterase 
3 0 1 

 caiD Carnitinyl-CoA dehydratase 1 0 0 
 cls Cardiolipin synthase 4 3 3 
 aes Esterase/lipase 5 4 4 
 fabG Short-chain alcohol dehydrogenase 6 8 15 
 desA Fatty acid desaturase 1 0 0 
 betA Choline dehydrogenase 1 0 0 
J higAB mRNA-degrading endonuclease 3 0 0 
 trmJ Methyltransferase 1 0 0 
 sul1 Sulfate permease 3 0 0 
 rlmF Methylase 1 0 0 
 rluA Pseudouridylate synthase 5 3 2 
 cysS Cysteinyl-tRNA synthetase 2 1 1 
 thrs Threonyl-tRNA synthetase 2 1 1 

K acrR HTH-type transcriptional regulator 3 1 4 
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 COG3177 Cell division 4 0 0 
 SSL2 Superfamily II DNA or RNA helicase 1 0 0 
 tfoX Putative regulator of competence 1 0 0 
 hepA DEAD box RNA helicase 4 3 3 
 iscR DNA-binding transcriptional regulator 3 1 1 

L xerD Recombinase 5 4 4 
 uvrA Excinuclease 3 2 2 
 srmB RNA helicase 3 1 1 
 xerC Integrase 1 0 0 
 recC-Q DNA repair protein 1 0 0 
 sbcD Metallophosphoesterase 2 1 2 

M mscS Mechanosensitive channel 5 3 3 
 cpsB Tyrosine-protein phosphatase 2 1 1 
 gmd GDP-mannose 4,6-dehydratase 7 5 4 
 spoVK AAA+-type ATPase 1 0 0 
 ompA Outer membrane protein 2 1 0 

N nhaP Na+/H+ or K+/H+ antiporter 3 2 2 
 pulG Secretion system protein G 5 2 4 
 pulF Type II secretory pathway 4 3 3 
 pilEF Pilus assembly protein 6 4 6 
 bcsA Glycosyltransferase 4 1 2 
 cheR Methyl-accepting proteins 1 0 0 

O glpG Serine proteases 4 2 3 
 hflB Zinc metalloprotease 3 1 0 
 trxB Thioredoxin 2 1 1 
 dnaJ Molecular chaperone 2 1 1 

P fetB ABC-type iron transport system 2 1 1 
 mgtA Magnesium-transporting ATPase 1 0 0 
 pstA ABC-type phosphate transport system 1 0 0 

Q ybbAP ABC-type transport 1 0 0 
 cypX Cytochrome P450 1 0 0 

R FAS1 Cell adhesion 5 0 1 
 COG4262 Predicted spermidine synthase 2 0 1 
 AAA15 ATPase/GTPase 1 0 0 
 HEAT Heme-binding protein 2 1 1 
 mviM Predicted dehydrogenase 10 6 7 
 moxR ATPase 12 6 8 
 COG4674 uncharacterized transport system 2 1 0 
 skfB Radical SAM superfamily enzyme 2 1 0 
 qdoI Cupin domain protein 1 0 0 
 yzzA General stress protein 26 1 0 0 
 yejR GTPase 4 2 1 

S yydB Uncharacterized protein 1 0 0 
 COG5373 Uncharacterized membrane protein 1 0 0 
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 ydeI Uncharacterized conserved protein 1 0 0 
T SPS1 Serine/threonine phosphatase 12 9 11 
 mazF mRNA-degrading endonuclease 2 0 0 
 srkA Ser/Thr protein kinase 1 0 0 
 rsbU Serine phosphatase 4 3 2 
 TPR Sel1 repeat family protein 2 0 0 

V emrA Multidrug export protein 1 1 0 
X COG3744 Transposase 3 0 0 
 COG0610 DEAD box RNA helicases 2 1 1 
 relE plasmid stabilization 2 0 0 
 exbD Biopolymer transport protein 5 1 1 

Red indicates genes that showed the unique presence and more than 1.5 folds abundance 

in other two more strains, compared to their surface-derived relatives. 

Classification of the COGs by functional categories. One-letter abbreviations for the functional 
categories: J, translation, including ribosome structure and biogenesis; L, replication, 
recombination and repair; K, transcription; O, molecular chaperones and related functions; M, 
cell wall structure and biogenesis and outer membrane; N, secretion, motility and chemotaxis; T, 
signal transduction; P, inorganic ion transport and metabolism; C, energy production and 
conversion; G, carbohydrate metabolism and transport; E, amino acid metabolism and transport; 
F, nucleotide metabolism and transport; H, coenzyme metabolism; I, lipid metabolism; D, cell 
division and chromosome partitioning; R, general functional prediction only; S, no functional 
prediction; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; X, Mobilome: prophages, transposons; Q, Secondary metabolites biosynthesis, 
transport and catabolism. 
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Table 5-8. Numbers of particular genes among Oceanibulbus sp. SAORIC-263 and the 

relatives, Oceanibulbus indolifex HEL-45 and Sulfitobacter dubius DSM 16472.  

COG Gene Function & reference 
Number of COG 

SAORIC-263DSM16472 HEL-45 

C  Cytochrome c precursor 5 3 3 
  Cytochrome c biogenesis protein 4 3 3 

  
NADP-dependent 3-hydroxy acid 

dehydrogenase 
6 5 4 

D  Multicopper oxidase 2 1 3 
E  Ornithine cyclodeaminase 7 3 4 

  
Branched-chain amino acid transporter and 

metabolism 
10 6 7 

  Glutamine synthetase 6 5 4 
  Histidinol dehydrogenase 3 1 2 

G  
ABC-type polysaccharide/polyol phosphate 

transport 
2 1 1 

  Drug/metabolite transporter 4 3 2 
  Glycosyltransferase 6 5 4 
  Mannose-6-phosphate isomerase 19 15 8 
  Major facilitator transporter 11 15 14 

H  
Nicotinamide mononucleotide (NMN) 

deamidase 
2 1 1 

  Biotin synthase 1 0 0 
I  Cardiolipin synthase 4 2 3 
  Fatty acid beta-oxidation 16 13 15 
  Choline dehydrogenase 4 3 3 
  Long chain acyl CoA synthetase 3 1 2 
  Benzoate degradation 2 1 1 
  Sterol desaturase 1 0 0 
  Acetyl-CoA C-acetyltransferas 13 9 10 
  3-hydroxyacyl-CoA dehydrogenase 8 5 7 
  Esterase/lipase, acetyl esterase 4 3 1 
  Oxidoreductase 1 0 0 
J  tRNA nucleotidyltransferase 1 0 0 
  Ribosomal protein S21 1 0 0 

K  Transcriptional regulator 3 1 1 
  HTH-type transcriptional activator 2 0 0 
  Transcriptional regulator 6 4 3 
  DNA-binding transcriptional regulator 7 5 7 
  Transcriptional regulator 28 27 22 
  Transcriptional regulator 3 2 2 
  RNA polymerase sigma factor 3 5 4 

L  DNA repair protein 2 1 1 
  Recombinase 4 3 5 
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M  Capsule polysaccharide export protein 2 1 1 
  mechanosensitive channel 5 5 4 
  Tyrosine-protein phosphatase 1 0 1 
  NDP-sugar epimerase 2 1 1 
  Nucleoside-diphosphate-sugar epimerase 6 3 4 
  dTDP-glucose pyrophosphorylase 1 0 0 

N  Secretion system protein G 1 0 0 
  Type II secretory pathway 1 0 0 

O  Glutaredoxin 3 2 2 
  Glutathione S-transferase 19 11 15 
  zinc metalloprotease 1 1 1 
  ABC-type glutathione transport 9 5 5 
  Thioredoxin 7 2 5 
  Thioredoxin 1 3 2 
  Periplasmic serine protease 3 2 2 

P  Metal cation efflux protein 3 1 3 
  uncharacterized protein 2 0 0 
  DNA-binding ferritin-like protein 1 0 0 
  Fe3+ hydroxamate transport 3 2 0 
  alkaline phosphatase 1 0 0 
  Nitrate/nitrite transporter 2 1 0 

Q  glyoxalase 8 7 6 
  Thioesterase 1 0 0 
  benzoate:H+ symporter 2 0 0 

R  ABC-type uncharacterized transport system 1 0 0 
  alkaline phosphatase  1 0 0 
  Metal-dependent amidase 7 5 5 
  Metal-dependent hydrolase 1 0 0 
  Predicted acyl esterase 1 0 1 

S  Uncharacterized protein 3 0 0 
T  Signal transduction histidine kinase 3 1 1 
X  transposase 8 0 2 
  transposase 3 0 0 
  transposase 1 0 0 
  transposase 1 0 0 

 

 

 

 

 

 

 



152 
 

Table 5-9. Numbers of particular genes among Sulfitobacter sp. SAORIC-395 and the 

relatives, Sulfitobacter sp. CB2047 and EE-36. 

COG Gene Function & reference 
Number of COG 

SAORIC-395 CB2047 EE-36 

C  Acetyl-coA synthetase 2 0 0 
  NAD(P)H dehydrogenase 1 0 0 
  NADPH:quinone reductase 11 10 9 
  Sulfite dehydrogenase 3 2 2 

D  Multicopper oxidase 4 3 1 
E  Threonine and homoserine efflux system 4 3 2 
G  Major facilitator transporter 13 11 9 
H  Outer membrane cobalamin receptor protein 4 1 3 
  Aminotransferase 1 0 0 
  phosphotransacetylase 1 0 0 
  FMN transferase 1 1 0 
I  Acyl-CoA dehydrogenase 27 17 17 
  Acyl-CoA transferase 7 2 2 
  Carnitinyl-CoA dehydratase 21 17 20 
  short-chain alcohol dehydrogenase 21 22 21 
  acetyl-CoA C-acetyltransferase 13 9 10 
  Choline dehydrogenase 4 3 3 
  Acyl dehydratase 15 10 11 
  Acetyl-CoA carboxylase 6 2 2 
  Acetyl/propionyl-CoA carboxylase 5 2 2 

K  Transcriptional regulator 2 1 1 
  Transcriptional regulator 22 26 19 
  RNA polymerase sigma factor 6 4 5 

L  DNA replication protein 1 0 0 
M  NDP-sugar epimerase 2 1 1 
N  Outer membrane usher protein 3 0 0 
O  Glutaredoxin 4 3 2 
  Thioredoxin 4 2 2 
  Serine protease 4 0 3 
  Cytochrome oxidase Cu insertion factor 8 7 9 

P  Copper-ion-binding protein 5 4 7 
  Metal cation efflux protein 2 2 2 
  ATP-binding protein 3 1 2 

Q  glyoxalase 7 7 4 
  Acyl-coenzyme A thioesterase 11 7 7 

R  Glyoxylase 9 6 7 
  Uncharacterized protein 4 0 1 

T  Serine/threonine phosphatase 1 0 0 
  Universal stress protein 4 3 2 
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  Signal transduction histidine kinase 15 14 13 
X  Transposase 6 0 26 
  Transposase 2 0 1 
  Transposase 3 0 5 
  Transposase 1 0 0 
  Transposase 1 0 0 
  Transposase 2 0 0 

V  Multidrug export protein 3 2 2 
  Multidrug resistance efflux pump 7 6 6 

  Pilus assembly protein 4 1 3 
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Table 5-10. Numbers of particular genes among Limnobacter sp. SAORIC-580, 

Limnobacter sp. SAORIC-690 and Limnobacter sp. MED105 

COG Gene Function & reference 
Number of COG 

SAORIC- 
580 

SAORIC- 
690 

MED105 

C  Biotin sulfoxide reductase 2 2 1 
  Carbon monoxide dehydrogenase 1 1 0 
  Cytochrome c precursor 0 1 2 
  Tripartite-type tricarboxylate transporter 2 2 1 
  Pyruvate/2-oxoglutarate dehydrogenase 2 2 1 
  Sulfite dehydrogenase 1 3 0 

E  Ornithine cyclodeaminase 1 1 0 
  threonine and homoserine efflux system 4 3 1 
  Proline dehydrogenase 1 1 0 
  Glutamate dehydrogenase 1 1 0 

  
Delta 1-pyrroline-5-carboxylate 

dehydrogenase 
1 1 0 

G  drug/metabolite transporter 3 2 1 
  Quinoprotein glucose dehydrogenase 1 3 1 

H  Aminotransferase 3 3 2 
I  CoA transferase 1 1 0 
  Carnitinyl-CoA dehydratase 6 6 8 
J  Elongation factor G 1 1 0 
  30S ribosomal protein S12 1 1 0 
  30S ribosomal protein S19 1 1 0 
  30S ribosomal protein S21 1 1 0 

K  Cell division 3 2 0 
  Stress and Fatty acid regulation 23 23 18 
  antibiotic resistance protein 4 4 3 
  RNA polymerase sigma factor 8 10 8 

L  Replicative DNA helicase 2 3 1 
  DNA repair protein 1 2 0 

M  Uncharacterized protein 3 3 2 
  Outer membrane protein 2 3 1 
  Glycosyl transferase 8 8 7 

N  Secretion system protein G 2 2 1 
  Methyl-accepting chemotaxis protein 12 12 10 

O  Carbon monoxide dehydrogenase 1 2 0 
  Zn-dependent protease (Chaperone) 4 4 3 

Q  Acyl-coenzyme A thioesterase 6 6 4 
P  TonB-dependent receptor 11 11 9 
  Copper-ion-binding protein 4 3 2 
  Metal cation efflux protein 4 1 2 
  Sulfate transport permease 3 3 1 
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  Sulfate transport permease 1 1 0 
  Phosphonate uptake transporter 3 6 2 

P  TonB-dependent receptor 1 1 0 
  photosensitive iron binding agent 0 0 1 

R  Copper tolerance protein 3 5 1 
  Alpha/beta hydrolase 2 2 0 
  Uncharacterized protein 4 4 3 
  Uncharacterized membrane protein 2 2 1 

T  Phosphatidylinositol kinase 2 2 1 
  Sel1 repeat family protein 5 5 3 
  Signal transduction histidine kinase 15 14 13 
  Universal stress protein 2 2 0 

V  Multidrug export protein 2 1 1 
  Multidrug resistance efflux pump 8 8 7 
  DNA methyltransferase 2 2 1 
  DEAD box RNA helicases 2 3 1 

X  Transposase 1 2 0 
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Table 5-11. Numbers of particular genes among Erythrobacter sp. SAORIC-644 and the 

relatives, Erythrobacter sp. SD-21 and E. nanhaisediminis CGMCC 1.7715. 

COG Gene Function & reference 
Number of COG 

SAORIC-644 SD-21 
CGMCC 
1.7715 

C  Biotin sulfoxide reductase 1 0 0 
  Aldehyde-alcohol dehydrogenase 9 7 8 
  Na+/H+ antiporter 3 2 2 
  carbon monoxide dehydrogenase 3 2 2 
  NAD(P)H dehydrogenase 3 1 1 
  Dehydrogenase (flavoprotein) 3 1 2 

D  Multicopper oxidase 5 3 3 
E  Ornithine transpoter 5 3 3 
  Glutamate dehydrogenase 3 2 1 
  Carboxypeptidase C 1 0 0 
  Acetolactate synthase large subunit 5 2 3 
  Threonine dehydrogenase 2 1 1 

G  Broad specificity phosphatase 2 0 0 
  Major facilitator transporter 10 5 8 

  
ABC-type polysaccharide/polyol phosphate 

transport 
1 0 0 

  drug/metabolite transporter 3 0 1 
H  Outer membrane cobalamin receptor protein 4 1 3 
  Ubiquinone/menaquinone biosynthesis 4 2 3 
  Aminotransferase 1 0 0 
  phosphotransacetylase 1 0 0 
  FMN phosphatase 2 1 1 
I  Carboxylesterase 5 0 0 
  Acyl-CoA dehydrogenase 22 20 16 
  Acyl-CoA dehydrogenase 11 9 8 
  Cardiolipin synthase 5 1 2 
  short-chain alcohol dehydrogenase 20 19 18 
  acetyl-CoA C-acetyltransferas 8 6 6 
  3-hydroxyacyl-CoA dehydrogenase 2 1 1 
  Acyl carrier protein 3 1 2 
J  RNA processing exonuclease 2 1 1 
  Ribosomal protein S21 1 0 0 

K  LuxR family transcriptional regulator 4 0 2 
  HTH-type transcriptional activator 3 2 1 
  Transcriptional repressor 5 3 3 
  DNA-binding transcriptional regulator 3 1 1 
  DNA-binding transcriptional regulator 4 2 2 
  DNA-binding transcriptional regulator 6 2 2 
  DNA-binding transcriptional regulator 4 1 1 
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  DNA-binding transcriptional regulator 7 6 5 
  Negative regulator of flagellin synthesis 1 0 0 
  HTH-type transcriptional regulator 13 4 6 
  multidrug resistance pump 6 2 4 
  RNA polymerase sigma factor 5 7 4 

L  Site-specific DNA-cytosine methylase 3 1 0 
  DNA replication protein 1 0 0 
  DNA repair protein 3 0 1 
  Recombinase 14 7 7 
  Excinuclease 2 1 1 
  Uncharacterized protein 2 0 0 
  DNA repair protein 2 1 1 

M  Capsular polysaccharide export system 1 0 0 
  Periplasmic protein 3 2 1 
  Glycosyl transferase 18 7 15 
  Outer membrane protein 11 8 7 
  Outer membrane protein 1 0 0 
  mechanosensitive channel 9 6 4 
  Tyrosine-protein phosphatase 2 1 1 

N  Methyl-accepting chemotaxis protein 4 2 1 
  P pilus assembly protein 3 0 0 
  Na+/H+ or K+/H+ antiporter 4 3 2 

O  Glutaredoxin 4 2 3 
  Glutathione S-transferase 13 7 7 
  Small heat shock protein 3 1 2 
  Zn-dependent protease 1 0 0 

P  Arylsulfatase 5 0 0 
  Outer membrane receptor 4 0 0 
  TonB-dependent receptor 16 9 10 
  Metal cation efflux protein 4 1 2 
  Uncharacterized protein 2 0 0 
  NADPH-dependent ferric siderophore reductase 1 0 0 
  catalase 2 1 0 

  
ABC-type cobalamin/Fe3+-siderophores transport 

system 2 1 1 

  alkaline phosphatase 2 1 1 
  Outer membrane receptor for Fe3+-dicitrate 1 0 0 
  Copper-ion-binding protein 1 0 0 
  Chromate transport protein 1 0 0 
  Mn2+ and Fe2+ transporters 2 0 0 
  Kef-type K+ transport system 2 1 1 

Q  2-keto-4-pentenoate hydratase 2 1 1 
  glyoxalase 6 4 6 
  Acyl-coenzyme A thioesterase 8 6 7 

R  Nucleotidyltransferase 8 0 0 
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R  Glyoxylase 8 5 6 
  NAD(P)H-dependent flavin oxidoreductas 7 3 4 
   Glutamine amidotransferase 1 0 0 
  Alkaline phosphatase 1 0 0 

S  Spore coat protein U 5 0 0 
  Alkaline phosphatase 2 0 0 
  Uncharacterized membrane protein 2 0 0 
  Uncharacterized membrane protein 2 1 1 
  Peptidase 4 1 2 
  DUF736 family 3 0 0 
  DUF1330 family 1 0 0 

T  Serine/threonine phosphatase 1 0 0 
  GGDEF domain 8 5 1 
  Signal transduction histidine kinase 1 0 0 
  Universal stress protein 4 1 1 
  Serine/threonine protein phosphatase 1 0 0 
  Signal transduction histidine kinase 16 5 5 

V  Multidrug export protein 8 4 1 
  Osmotically inducible protein 4 2 2 
  DNA methyltransferase 3 0 2 
  Multidrug resistance efflux pump 4 2 0 

X  Transposase 1 0 0 
  Transposase 1 0 0 
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Table 5-12. Numbers of particular genes among Roseobacter sp. SAORIC-651 and the 

relatives, R. litoralis Och 149 and R. denitrificans Och 119. 

COG Gene Function & reference 
Number of COG 

SAORIC-651 Och 149 Och 119 

C  Aldehydealchol dehydrogenase 20 8 8 
  Nitroreductase 7 2 2 
  Cytochrome c precursor 3 1 2 
  Cytochrome c biogenesis protein 4 3 3 
  Tripartite-type tricarboxylate transporter 6 4 4 
  Pyruvate/2-oxoglutarate dehydrogenase 3 2 2 
  Sulfite dehydrogenase 2 1 1 
  NAD(P)H dehydrogenase 1 0 1 

E  
Branched-chain amino acid transporter and 

metabolism 
6 12 9 

  Ornithine transpoter 2 1 1 
  Ornithine cyclodeaminase 3 3 3 

F  Ribonucleotide monophosphatase 1 0 3 
G  Arabinose permease 11 7 7 
  Major facilitator transporter 9 8 7 
  Zn-dependent hydrolase 5 2 2 
  Periplasmic transporter 17 14 13 

H  ubiquinone biosynthesis 9 5 4 
  aminotransperase 5 3 2 
I  Esterase/lipase 5 0 0 
  Acyl-CoA transferase 6 3 2 
  Carnitinyl-CoA dehydratase 13 10 8 
  Cardiolipin synthase 3 2 2 
  Long chain acyl CoA synthetase 2 1 1 
  short-chain alcohol dehydrogenase 32 22 22 
  Acyl dehydratase 5 4 4 
  acetyl-CoA C-acetyltransferas 8 4 4 
  3-hydroxyacyl-CoA dehydrogenase 5 4 4 
  Thioesterase 5 4 4 

K  HTH-type transcriptional regulator 18 14 11 
  Transcriptional regulator 14 10 8 
  LuxR family transcriptional regulator 4 0 0 
  Transcriptional regulator 5 0 0 
  Transcriptional regulator 42 35 22 
  Transcriptional regulator 8 5 5 
  Transcriptional repressor 10 9 8 
  Transcriptional regulator 7 6 4 
  Cell division 2 1 0 
  multiple antibiotic resistance 16 10 6 
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  Anti sigma factor W 2 0 1 
  DNA binding transcriptional regulator 6 0 2 
  RNA polymerase sigma factor 5 6 7 

L  DNA polymerase 2 1 2 
  DNA repair protein 2 1 1 

M  Tyrosine-protein phosphatase 3 1 1 
  Capsule polysaccharide export protein 2 0 0 
  GDP-mannose 4,6-dehydratase 2 0 1 
  mechanosensitive channel 11 6 7 
  Glycosyltransferase  6 4 6 

N  Na+/H+ or K+/H+ antiporter 2 1 1 
  Secretion system protein G 5 2 4 
  Glycosyltransferase 2 1 1 

O  Small heat shock protein 3 2 2 
  molecular chaperone 2 1 1 
  Thioredoxin 7 2 4 
  Uncharacterized protein 4 3 2 
  Zinc metalloprotease 3 1 1 

P  Arylsulfatase 15 6 7 
  AAA domain protein 4 2 2 
  Transcriptional activator 11 5 2 
  Metal cation efflux protein 1 0 1 
  thiosulfate:cyanide sulfurtransferase 10 7 3 

R  Acetyltransferase 3 4 2 
S  Uncharacterized membrane protein 2 0 0 
T  Phosphohydrolase 3 5 2 
  Sel1 repeat family protein 9 2 1 
  Signal transduction histidine kinase 5 1 1 
  Universal stress protein 13 10 11 

V  Multidrug export protein 7 3 6 
X  DNA topoisomerase IV 1 0 0 
  Uncharacterized protein 17 1 1 
  transposase 2 0 1 
  transposase 1 0 0 
  Transposase 22 5 1 
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Table 5-13. Number of genes related with falagella, secretion system and adhersion proteins among deep-sea bacteria

 
Rubritalea 

SAORIC-165 
Erythrobacter 
SAORIC-644 

Oceanibulbus 
SAORIC-263 

Sulfitobacter 
SAORIC-395 

Limnobacter 
SAORIC-580 

Roseobacter
SAORIC

Type I secretion system       

Adhesion protein transport system 0 3 0 3 5 5 

Type II secretion system       

General secretion system 8 0 12 0 12 0 

Pilin secretion/fimbrial assembly  13 0 1 0 13 0 

Tad export apparatus 0 10 7 7 7 7 

MSHA pilus biogenesis protein 0 0 0 0 1 0 

Type III secretion system       

Flagellar export apparatus 0 10 9 9 11 0 

Type IV secretion system       

Conjugal DNA-protein transfer 0 14 11 29 1 0 

Trb secretion system protein 0 18 0 0 0 0 

Type VI secretion system 0 0 0  14 0 

Chaperone-usher system 0 3 0 0 0 0 

Outer membrane usher protein  0 3  0 0 0 

Flagellar assembly 0 26 26 25 35 7 

Fasciclin (FAS1) 5 3 1 0 0 0 

Von Willebrand A domain 1 1 0 0 0 0 

Predicted state in natural environment* PA PA unknown PA or FL unknown unknown
*; predicted lifestyle based on relative abundance in Chapter 3 
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Table 5-14. Genes more abundantly represent among deep-sea strains. 

COG catagory Gene Predicted roles  Abundance S/D* 

Energy production and conversion  Survival in low-oxygen  0.96 

  Anaerobic respiration in deep-sea 0.48 

  Sulfoxide reductase 0.94 

  Heavy metal resistance 0.46 

  Repiration 0.54 

Amino acid metabolism and transport  Ornithine transporter 0.54 

  Glutamate to α-ketoglutarate 0.67 

Carbohydrate metabolism and transport  Carbohydrates transporter 0.58 

  Cell wall synthesis 0.94 

  Multidrug resistance - 

Lipid metabolism  β-oxidation 0.65 

  β-oxidation  0.77 

  β-oxidation  0.66 

  Hydrolyzing lipids  0.65 

  phospholipids synthesis 0.22 

  Fatty acid synthesis 0.88 

  Fatty acid synthesis 0.90 
Translation, ribosomal structure and 

biogenesis 
 Translation 1.20 

Transcription  Transcriptional regulator 0.41 

  Transcriptional regulator 0.00 

  Transcriptional regulator 0.26 

  Transcriptional regulator 0.37 

  Transcriptional regulator 0.15 

  Transcriptional regulator 0.68 

  Multidrug resistance 0.46 
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Transcription  Cell division 0.36 

Replication, recombination and repair  DNA replication and DNA synthesis - 

  DNA repair 0.09 
Cell wall/membrane/envelope 

biogenesis 
 Osmotic regulatioin 0.59 

  Cell wall synthesis - 

  Cell wall synthesis 1.07 

Cell motility  Signal transduction 0.68 

  Sodium:proton antiporter 0.41 
Posttranslational modification, protein 

turnover, chaperones 
 Oxidative stress 1.65 

  Oxidative stress 1.94 

   heat shock protein 1.07 

Inorganic ion transport and metabolism  heavy metal resistance 0.20 

  Uptaking organic matter 1.19 

  Copper resistance 0.39 
Secondary metabolites biosynthesis, 

transport and catabolism 
 Detoxification of methylglyoxal 0.52 

  Aromatic compound degradation 1.17 

General functional prediction only  Hydrolyzing lipids 0.96 

  Stress response 0.36 

  Unknown - 

  Signal transduction 0.75 

  Signal transduction 0.69 

  Signal transduction 0.69 

Defense mechanisms  Multidrug resistance - 

  Multidrug resistance 0.54 

Mobilome: prophages, transposons  Transposase 0.02 

  Transposse  0.02 
*, data from Konstantinidis et al. (2009). 
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Figure 5-1. Venn diagram of shared and specific CDS genes, and Percentages of COG 
categories of Rubritalea sp. SAORIC-165, Rubritalea marina DSM 177716 and 
Coraliomargarita akajimensis DSM 45221. 
Classification of the COGs by functional categories. One-letter abbreviations for the functional 
categories: J, translation, including ribosome structure and biogenesis; L, replication, 
recombination and repair; K, transcription; O, molecular chaperones and related functions; M, 
cell wall structure and biogenesis and outer membrane; N, secretion, motility and chemotaxis; T, 
signal transduction; P, inorganic ion transport and metabolism; C, energy production and 
conversion; G, carbohydrate metabolism and transport; E, amino acid metabolism and transport; 
F, nucleotide metabolism and transport; H, coenzyme metabolism; I, lipid metabolism; D, cell 
division and chromosome partitioning; R, general functional prediction only; S, no functional 
prediction; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; X, Mobilome: prophages, transposons 
 
 
 

 

Figure 5-2. Venn diagram of shared and specific CDS genes, and Percentages of COG 
categories of Oceanibulbus sp. SAORIC-263, Oceanibulbus indolifex HEL-45 and 
Sulfitobacter sp. DSM 16472. 
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Figure 5-3. Venn diagram of shared and specific CDS genes, and Percentages of COG 

categories of Sulfitobacter sp. SAORIC-395, Sulfitobacter sp. EE-36 and Sulfitobacter 

sp. CB2047 

 

 

 

 

Figure 5-4. Venn diagram of shared and specific CDS genes, and Percentages of COG 

categories of Limnobacter sp. SAORIC-580, Limnobacter sp. SAORIC-690 and 

Limnobacter sp. MED105 
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Figure 5-5. Venn diagram of shared and specific CDS genes, and Percentages of COG 

categories of Erythrobacter sp. SAORIC-644, Erythrobacter sp. SD-21 and 

Erythrobacter sp. CGMCC 1.7715. 

 

 

 

 

Figure 5-6. Venn diagram of shared and specific CDS genes and percentages of COG 

categories of Roseobacter sp. SAORIC-651, Roseobacter litoralis Och 149 and 

Roseobacter denitrificans Och 119. 
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Figure 5-7. Cartoon depicting cellular processes related with transporters in deep-sea bacteria important for adaptation to the deep sea. 
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Figure 5-8. Cartoon depicting cellular processes related with stress and transcription in deep-sea bacteria important for adaptation to the 
deep sea.
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General discussion and conclusions 
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The deep sea has been regarded as an extreme environment due to high pressure, low 

temperature, low nutrients and no light. Nevertheless, even at the deepest part of the ocean, 

103 to 104 prokaryotic microorganisms are present in one mL of seawater. As for their life, 

many questions remains, e.g., what kind of microbial communities are formed, what kind 

of factors control their biomass and community structure, what kind of physiological 

characteristics they have, what kind of physiological mechanisms make them adapt to 

deep-sea environments, and so on. Currently, however, our knowledge is quite limited 

because of the following reasons; first, it is not easy to obtain deep-sea materials including 

seawater and sediment. Second, it is not easy to duplicate the environmental conditions 

in laboratory, especially the pressure. Therefore, the interpretation of any data obtained 

in “normal” laboratory conditions should be carefully made. Third, only a limited group 

of microorganisms are cultured by ordinary culture techniques. They cannot be the 

representatives of deep-sea microorganisms. The purpose of this thesis was to clarify the 

physiological and genetic characteristics of deep-sea bacteria. Those characteristics 

should be important to understand how deep-sea bacteria adapt to such harsh 

environmental conditions and how they grow or maintain their populations. In order to 

overcome the current limitation, I took a couple of new approach. First, I tried to isolate 

new strains that have never been recovered from the deep sea before. I applied low-

nutrient culture media to isolate broad phylogenetic groups. I also tried to describe some 

new species. Second, I took an approach to combine culture-dependent and culture-

independent methods. Third, I tried to see the difference in the distribution and 

characteristics between PA and FL. Findings in my research are described below. Fourth, 

I tried to compare the physiological and genetic characteristics between deep-sea isolates 

and their close relatives isolated from surface layers. For genetic analyses, whole genome 
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information was obtained for 7 deep-sea isolates. I believe that this is the most efficient 

approach currently available for characterization of deep-sea bacteria.  

Briefly, in chapter 2, I applied newly designed media, of which carbon content was 

lower than the conventionally used MA or 1/2 MA, to obtain deep-sea prokaryotes. First, 

my deep-sea isolates belonged to the domain Bacteria and none to the domain Archaea. 

Second, over 50 % of the bacterial isolates belonged to the phylum Proteobacteria of the 

domain Bacteria. Other isolates were assigned to phyla Bacteroidetes, Actinobacteria, 

Verrucomicrobia and Lentisphaerae. Rubrivirga marina SAORIC-28T, Rubrivirga 

profundi SAORIC-476T, Aurantivirga profunda SAORIC-234T, and Lentisphaera 

profundi SAORIC-696T were validated and reported as novel deep-sea species. Third, 

approximately 90 % of the identified isolates have phylogenetically close relatives from 

surface layer or other environments. Fourth, among three culture methods applied, there 

were differences in the phylogenetic groups of the isolates. Fifth, at the station MR11-05-

S1, there were some vertical differences in the phylogenetic groups. The pattern is, 

however, not consistent among other stations. 

In chapter 3, the vertical community structures of bacteria in two water columns 

were investigated using pyroseqeuncing technique for clarifying the vertical distribution 

of the prokaryotes and also for differentiating their particle associated (PA) and free living 

(FL) state. First, among the phylotypes affiliated with the deep-sea isolates, Erythrobacter 

phylotypes were detected in all depths. Sulfitobacter, Paracoccus, Sphinogomonas, 

Colwellia, Alcanivorax, Marinobacter, Alteromonas, Moritella and Rubritalea-like 

phylotypes were more retrieved from the deeper layers than the surface layer. Second, 

most of the phylotypes affiliated with the deep-sea isolates showed preference toward PA 

state. Finally, SAR11 and Sphingomonadales of Alphaproteobacteria, Oceanospirillales 
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and Alteromonadales of Gammaproteobacteria and Flavobacteriales of Bacteriodetes 

were found in all layers. Deltaproteobacteria, Deferribactere, Planctomycetes, 

Actinobacteria and Nitrospirae were specific to the deeper layers.  

In Chapter 4, physiological characteristics of several deep-sea isolates were 

investigated together with their close relatives. Growth characteristics, cellular membrane 

composition and hydrolytic enzymes of eight strains affiliated with phyla Proteobacteria, 

Verrucomicrobia and Bacteroidetes were tested. First, the growth of the deep-sea isolates 

decreased with increasing pressure, indicating that they are non-piezophiles. Second, 

Rubritalea sp. SARIC-165 within Verrucomicrobia showed optimum growth at 10˚C and 

no growth above 20˚C, indicating that the strain is psychrophilic. Third, Erythrobacter sp. 

SAORIC-644 within the class Alphaproteobacteria and Limnobacter sp. SAORIC-580 

within the class Betaproteobacteria showed optimum NaCl concentration at 1 and 0 %, 

respectively. Finally, the deep-sea strains were distinguished by 1-2 more numbers of 

different types of phospholipids than their surface relatives. 

In chapter 5, whole genome of 7 deep-sea strains within phyla Proteobacteria and 

Verrucomicrobia were sequenced and their genetic features were identified in comparison 

with those of close relatives obtained from surface layers. First, the deep-sea isolates, 

which prefer particle-associated state, contain either secretion systems and flagella, or 

adhesion proteins. Second, by selecting the genes appeared in more than 3 deep-sea 

strains, and more than 1.5 folds abundance compared to the genes of the close relatives, 

51 genes were listed. The genes were involved in respiration, stresses response, cellular 

structure, in- and organic substrates metabolism, replication, and transcription. Although 

the selection criteria were arbitral, these genes were generally in good agreements with 

those appeared in literatures and metagenomics database. Fourth, by this selection, some 
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genes that have never been reported before were listed.   

There are three methodological points to discuss. First, for the culture works, 1/5 

marine agar (MA), 1/10 R2A agar and natural seawater liquid media (NSLM) were used. 

I succeeded to obtain some new strains. Because I didn’t conduct intensive comparable 

examinations for the media, it is not clear to what extent my new media contributed to 

the isolation of novel strains. In spite of many new strains, it was failed to isolate some 

strains like SAR11, the dominant bacterium in the ocean, and Archaea. The diluted agar 

media (1/5 and 1/10) were chosen because of practical reason, i.e., the lower organic 

concentration. There were more chances to isolate previously unknown strains, however, 

the media are supposed to be inappropriate for most of deep-sea bacteria. As for NSLM, 

alghough the method by Connon & Giovannoni (2002) was slightly modified, there may 

be still possibilities to isolate more unknown strains by the modification of culture 

methods. In this study, the incubation was performed at 10˚C for 4 weeks in polystyrene 

microtiter plates. Stingl and colleagues (2007) suggested that the use of Teflon plates 

cleaned with metal-free HCl yield new SAR11 isolates. Song and colleagues (2009) 

suggested that long term incubation at low temperatures improve the culturability of the 

SAR11.  

   Second, as for genetic analyses, the criteria for comparative works (presence at 

least 3 genomes, 1.5 fold difference) is arbitral and the number of genomes treated was 

not enough as statistically reliable results. Furthermore, the genomes belonged to 

particular phylogenetic groups that make up a small portion of deep-sea bacterial 

populations. Therefore, the obtained genes that may be important for deep-sea life style 

should be regarded as preliminary. Nevertheless, the results showed good agreement with 

metagenomics data and former works for deep-sea bacteria (Konstantinidis et al., 2009; 
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Qin et al., 2010; Eloe et al., 2011a). In addition, this analysis revealed the possible 

functions of deep-sea bacteria such as ornithine to glutamate metabolism, 

detoxification of methylglyoxal and osmotic regulation. Further examinations of these 

newly recognized functions with other metagenomics database may confirm the presence 

of unique functional genes in deep-sea environments.  

     Third, for this thesis work, both culture-dependent (Chapter 2) and culture-

independent (Chapter 3) approaches were used. In addition, multiple genetic analyses, i.e, 

16S rRNA gene sequencing (Chapter 2), whole genome analyses, and comparision with 

metagenomics database (Chapter 5) were combined. These combinations made it possible 

to evaluate the distribution or ecological characteristics of my isolates. For instance, 

Erythrobacter and Limnobacter like deep-sea isolates commonly have relatives from 

surface layer or even terrestrial environments. These groups might be cosmopolitan 

and/or entered into the deep-sea environments rather “recently”. On the other hand, it 

seems difficult to find relatives of Rubritalea like deep-sea isolates in surface layers, 

suggesting that this group had adapted to the deep-sea, probably after spending long time 

there. Although further works are required, physiological (abundant phospholipids) and 

genetic (pili, flagella, adhesion proteins and abundant 51 genes) characteristics of the 

deep-sea isolates appear to support growth and survival in the-deep sea environment 

(Figure 6-1). 

 The findings in this thesis have two implications for studying the prokaryotes in 

deep-sea. First, this thesis reinforces that cultivation of prokaryotes from the deep sea is 

important for furthering our understanding of deep-sea prokaryotes. Once we get an 

isolate without any former record, we are now able to obtain whole genome information 

or any physiological characteristics rather easily. It expand our view on those 
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microorganisms in extreme environments. Although it is now possible to clarify the 

genomic information from one cell (Eloe et al., 2011a; Kaster et al., 2014), it does not 

necessarily tell us actual physiological characteristics. In this thesis work, psychrophilic 

strain of the phylum Verrucomicrobia was for the first time isolated from deep-sea. Also, 

the deep-sea isolates of the family Burkhoderiaceae, which sometimes accounts for 10-

15 % of deep-sea bacteria population, (Martín-Cuadrado et al., 2007; Eloe et al., 2010), 

were first obtained. Furthermore, 22 isolates are considered as novel deep-sea species and 

are waiting for to be described and reported. Deep-sea microbiology is at the stage of 

increasing our knowledge on their physiological characteristics and on the strategies to 

adapt to the deep-sea environments and to continue multiplications by increasing the 

cultures. Further efforts to improve the cultivation methods will be required.  

Second, to my knowledge, this doctoral thesis revealed ecological aspects of some 

deep-sea bacteria. By separately analyzing PA and FL populations, it was clarified that 

deep-sea isolates affiliated with genera Erythrobacter, Rubritalea, Moritella and 

Colwellia prefer PA state in the deep sea. On the other hand, Xanthomonadales and 

Chromatiales of Gammaproteobacteria and Deltaproteobacteria prefer to both PA and 

FL states. Although the method for the differentiation between PA and FL is rather simple 

and the results does not completely reflect the actual life style in the environments, it 

should be worth pointed out that the obtained results showed good agreement with genetic 

data. Further extension to ecological research may confirm the present results.  

The purpose of this doctoral thesis appears to be accomplished in that new 

information was obtained with newly isolated strains and combination of physiological 

and genetic investigations. Nevertheless, the research raised further questions and future 

research directions. There may be at least three scientific issues to be investigated. First, 
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the effort to culture more strains from deep-sea environments should be continued. In my 

research, SAR11 group of the domain Bacteria or members of the domain Achaea was 

not obtained. Because these two share the considerable part of deep-sea environments 

(Eloe et al., 2010), more efforts are definitely required. The improvements of the culture 

techniques is the key.  

The second way is more application of modern molecular techniques, like 

transcriptomics or proteomics. In this study, particular genes were found to be unique to 

deep-sea bacterial life. In order to confirm their actual functions, further transcriptomics 

and proteomics should be followed under the condition mimicing deep-sea conditions.  

The third way is through taxonomical study. Taxonomy is the basic research field 

of biology and has been the basis for any further works (Cho et al., 2004; Spring et al., 

2009; Tamaki et al., 2011). In Chapter 2, 22 putative novel deep-sea species were 

addressed. Among them, Rubrivirga marina SAORIC-28T (Park et al., 2013), Rubrivirga 

profundi SAORIC-476T (Song et al., 2015), Aurantivirga profunda SAORIC-234T (Song 

et al., 2015), and Lentisphaera profundi SAORIC-696T (Choi et al., 2015) were validated 

after taxonomical investigations and reported as novel deep-sea species. Further 

taxonomical study will allow the characterizing and validating of putative novel species 

and provide more opportunities to investigate bacterial speciation in the deep sea. 

In conclusion, diverse bacteria including new phylogenetic groups that had never 

been isolated were obtained from the deep sea. Some of them were investigated 

taxonomically, physiologically and genetically by recent molecular techniques. In 

addition, their preference to either PA or FL life style was investigated. Their 

physiological and genetic characteristics allowed to consider their ecology and 

evolutionary processes as well. Further investigation on the isolation and characterization 
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of more deep-sea bacteria will offer clues to better understand the nature of the deep-sea 

prokaryotes. 
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Figure 6-1. Conceptual diagram of factors that are controlling the deep-sea bacterial communities. 
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