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Abstract
This doctoral dissertation presents my work in the past three years as a PhD student. It

describes the motivation, objectives, methods, results and enlightenment of my research

about quantum approaches to the modeling of stock markets.

Physical modeling, as well as mathematical analysis, has become a indispensable

tool in financial studies. When the mathematical methods pay attention to the phe-

nomenological behaviors of historical economic data, the physical models shed more light

on the microscopic mechanics of the economic systems. The coin of the word “econo-

physics” in the mid-1990s started the official union of physics and economics. The major

tool for the modeling of financial markets in econophysics, including stock markets, is

stochastic processes from statistical physics. Although large number of differently devel-

oped stochastic models have succeeded in describing the market variables such as stock

price, return volatility and trading volume, the underlying mechanics was rarely discussed.

Agent-based models (ABMs) simulate the markets on the basis of some microscopic rules

predefined, has also become popular with the development of computational technology.

Both of these two methods are time-consuming due to thousands of steps of simulation.

On the other hand, quantum mechanics has been becoming a novel alternate for financial

study with the expectation to overcome the before mentioned defects. In this dissertation,

we propose quantum approaches to explain two of the most important stylized facts of

the stock markets: leptokurtic distributions of price return and volatility clustering, as

well as some discussions about another one - volume/volatility correlation.

In quantum models, the stock price is described wave functions instead of a se-

ries of numbers. The uncertainty in the stock price makes it possible to apply squared

wave function as the probability density function (PDF) of price return. The dynamics

of wave function is described by Schrodinger equation (SE), which can be reduced to

a time-independent version as the eigen equation of energy for the stationary markets

with invariant Hamiltonian. Different from the previous quantum studies that applied a

quantum harmonic oscillator potential directly, we proposed a financially interpretable

Hamiltonian of a harmonic or anharmonic oscillator for stationary market, by analyzing

the instantaneous order excess in the market. It is demonstrated that the introduction of
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a quartic term in the potential as a measurement of the risk aversion brought PDF with

sharper peak and heavier tails. The concept of energy levels can convincingly explain the

different shapes of PDFs for the data with different frequencies. In addition, the gener-

ality of the potential which is derived from the mechanics of the stock price makes the

model applicable to illiquid markets such as trend following dominant market (TFDM).

In order to verify the theoretical results of the quantum model for TFDM, we suggest a

simplified method to filter data for the moments when the the market is dominated by

trend followers. The statistics of the filtered data can be well modeled by the quantum

model.

In the study of the dynamics of stock price, we use expected time series of price

return and volatility to study the certainty in the stock. It is firstly confirmed that

the autocorrelation of volatility in price return is retained in the expected time series,

which makes the study of expected time series reasonable. Taking trading volume as a

measurement of the energy for stock price, we can successfully recover volatility clustering

by modeling the dynamics of energy level or potential respectively. GARCH model is

included as a special case in our quantum model. A quantitative correlation between

volatility and volume is obtained as a by-product.

The content of this dissertation is organized as follows. In Chapter 1, the background

including fundamental knowledge of stock markets and quantum mechanics is introduced,

followed by the objectives of this thesis. Chapter 2 proposes a stationary quantum os-

cillator model to describe the stock price with reasonable financial interpretation. It is

demonstrated that this model can recover the leptokurtic distributions of price return

without noise term that is indispensable in classical models. The parameters of the model

are adjusted to the real market data in Chapter 3, where an original data filtering method

is proposed for illiquid market that is unstable and rarely observed in reality. In Chapter

4, the stationary model is extended to a dynamical one, in order to study the stylized

facts - the zero autocorrelations of price return and the positive autocorrelation of volatil-

ity. Conclusions and future plans are addressed in Chapter 5. I hope this work can be a

contribution to the quantum modeling of stock markets.
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Chapter 1

Introduction

1.1 Econophysics

Financial market, as a consisting part of the modern financial system, is not only related

to the operations of the governments, organizations, companies, etc, but also concerned

to individuals. More and more individuals have began to take part into the financial

market in different kinds of ways. In order to make a profit or at least to prevent from

losing money, the market participants have been pursuing the patterns of the market, if

they are existed, for over a hundred years. However, the pursuit itself, as well as the

complex internal structure of the market, makes the market more complicated and more

indeterminate.

Although there is a lack of a general theory, a large number of well established meth-

ods have been applied to the study of financial markets for different purposes [Bachelier,

1964; Challet et al., 2005; Cont, 2001; Johnson et al., 2003; Francq and Zakoian, 2010].

Those methods can be briefly classified into two types - phenomenological modeling and

structural modeling. The phenomenological modeling focuses on the statistical behav-

iors of the financial variables such as stock price, return volatility and trading volume

[Gopikrishnan et al., 1999; Plerou et al., 1999; Liu et al., 1999; Preis et al., 2011]. The

historical time series of these variables provide all the information that is needed for the

1



2 Chapter 1. Introduction

study of past and the prediction of future. Based on the idea that the market is too

complex to be modeled precisely, the phenomenological analysis is practical in trading.

On the other hand, the structural modeling, specially meaning ABMs, concentrates itself

on the microscopic structures of the market [Challet and Zhang, 1997, 1998; Challet and

Marsili, 1999; Challet et al., 2001; Challet and Marsili, 2003]. It predefines the structure

and some trading rules of the market, leaving the rest things to the computer.

Mathematics has been the major tool in dealing with mass of financial data since

the 17th century. Statistical methods help the economists to describe the historical be-

haviors of financial variables, assist the government and financial organization to draft

economic plans, and help the investors to make decisions. Physical methods have become

another alternative for economic studies since the born of Econophysics in the mid-1990s

[Mantegna and Stanley, 1999, 1995]. Different from the statistical methods that devoted

themselves to the phenomenological behaviors of the economy, physical methods concerns

more about the mechanics of financial markets [Takayasu et al., 2006; Mizuno et al., 2007;

Huang, 2015]. In the past decades, econophysics has highly developed with continuous

emergence of inspiring works. Universal power law was quantitatively confirmed with in

different markets [Mantegna and Stanley, 1995; Ohnishi et al., 2004; Zhang et al., 2007].

Random walk models [Scalas, 2006], random matrix theory [Sharifi et al., 2004; Daly

et al., 2008] and path integral method [Linetsky, 1998; Cassagnes et al., 2014] that origi-

nated from physics have been applied to modeling economic systems. Novel experimental

methods were introduced by some econophysicists for market modeling [Huang, 2015].

Some of the physically modeling method have been successfully realized in practice, such

predicting the trend of market price [Takayasu et al., 2006; Mizuno et al., 2007; Takayasu

et al., 2007] and managing portfolios [Sharifi et al., 2004; Daly et al., 2008].

Although there is some criticism from traditional economists, it is acknowledged that

economy has benefited quite a lot from the works of the econophysicists [Buchanan, 2013].

Some of the contributions are listed below.

• Stylized facts [Farmer et al., 2005] of financial markets were quantitatively estab-
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lished.

• ABMs as visualized simulation demonstrated the internal mechanics in the forma-

tion of the heavy tails, and can even be realized by experiments [Huang, 2015].

• Similarity between the dynamics of markets and the behavior of other natural phe-

nomena such as earthquake was discovered [Lillo and Mantegna, 2003].

• The relationship of market efficiency and stability were deeply studied by the anal-

ysis of leverage [Thurner et al., 2010] and information completeness [Caccioli and

Marsili, 2010].

• Econophysicists tried to develop networks, which has been popular in modeling

complex systems, to uncover the mystery of the complex financial markets.

1.2 Quantum finance

1.2.1 Overview of quantum mechanics

Quantum mechanics, as one of the two greatest discoveries of physics in the 20th century, is

founded on the basis of a series of experimental and theoretical studies on the fundamental

particles. In 1900, Max Planck proposed a formula for the blackbody radiation, i.e.

Planck’s Law, which fitted the experimental results perfectly. However, this formula can

only be obtained under the assumption that the energy of light is quantized, which is

contradicted with our intuition and even our mastered physical logic. Inspired by the

idea of quantized energy, Albert Einstein successfully explained the photoelectric effect in

1905. Then in 1913, Niels Bohr discovered the quantized structure of hydrogen atom. The

unprecedented theory grew explosively in the first 30 years of the 20th century attributed

to the effort of dozens of genius physicists, such as Louis de Broglie and Erwin Schrodinger

as the founders of wave mechanics, Werner Heisenberg, Max Born and Pascual Jordan

who developed matrix mechanics.
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Quantum mechanics was started from the problem of blackbody radiation and photo-

electric effect. One of the fundamental hypotheses is thus introduced, i.e. the quantization

of the photon energy. The energy quantum is scaled by a constant, saying Planck’s con-

stant denoted as h ≈ 6.626 × 10−34J · s (reduced Planck’s constant is more widely used

as ~ = h/2π). This constant is the key in de Broglie’s hypothesis that all matter has a

wave-like nature with a wavelength as λ = h/p, where p is the momentum of the matter

and h is the Planck’s constant. The macroscopic matter seems no wavy because its mo-

mentum is quite large, which together with the small value of h makes the wavelength

much smaller than the size of the matter. However, the case is different for fundamental

particles such as electron. Electron behaves like a wave similarly to photon. Thus the

classical Newtonian description becomes useless in the atoms. We have to describe a mi-

croscopic matter in a wave frame. Schrodinger discovered the equation for the dynamics

of those waves (Schrodinger equation). But the physical nature of these waves is obvi-

ously different from the waves in ocean. Born interpreted this kind wave as probability

wave. More specifically, a wave function whose dynamics is described by SE is denoted

as wave function Ψ(x, t), and the probability to find the corresponding particle between x

and x+ dx at time t is |Ψ(x, t)|2dx. Based on these hypotheses, the building of quantum

physics was constructed in the last century.

Although the theory of quantum physics is still under development due to its com-

plexity and inscrutability, it has been playing an important role in not only various

physical studies but also different kinds of disciplines such as chemistry, biology and even

social science.

1.2.2 Application of quantum mechanics into finance

Statistical physics became the major resource for the methodologies of econophysics be-

cause that it deals with physical systems of high complexity which can be considered

similar to the economic systems. With the development of econophysics, physical theo-

ries other than statistical physics have attracted the attention of econophysicists in the
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past decades. Among those theories, quantum mechanics, born to study the microscopic

physical world, has attracted our attention due to its novel wave-particle consideration

of the world where the financial market is obviously included. For example, B. Baaquie

systematically explained the path integral method for option pricing in his book [Baaquie,

2004], while M. Schaden tried to use wave functions of cash and security to describe the

state of a financial market [Schaden, 2002].

The feasibility of applying quantum mechanics into finance and other social science

has been discussed a lot. One of the universally accepted argument is that we consider

all the complex systems no matter physical systems or social ones as just quantum-like

[Khrennikov, 2010; Haven and Khrennikov, 2013], which means their collective behaviors

can be described by quantum theory. It does not intend to debate on the nature of these

different kinds of problems, but just to apply the same set of mathematical formula to help

find out the truth underlying. This can not be blamed since not only quantum models but

also the classical ones have been developed on the basis of similar assumptions. However,

with the development of the quantum biology and quantum social science, it is recognized

that there may be some essential links between the social science and quantum mechanics.

Physicist Ettore Majorana coined similar idea in the early developing stage of quantum

mechanics [Mantegna, 2005], which was not uncovered until 1942 and have been rarely

mentioned since its publication. Based on the view that the statistical laws are shared

in physics and social science, Majorana considered philosophical aspects related to the

nature and value of deterministic and statistical laws in science. Here comes the thinking

that quantum mechanics may be more appropriate for social science than the classical

mechanics because the former two are naturally related.

1.3 Stylized facts of stock markets

A stock market, as well as other financial markets, provides a great number of information

every day. Besides, there exist different markets all around the world. Millions of shares
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for thousands of stocks are traded by different individuals, agents and companies. For

general analysis, market index is proposed for a global view of the market. A market index

is designed to reflect the main behavior of the corresponding market by synthesizing the

shares of prominent companies in the stock exchange market. For example, Nikkei 225

is a stock index based on the trading shares of the most important companies in Tokyo

Stock Exchange (TSE), and SSE Composite Index is for all stocks traded in Shanghai

Stock Exchange while S&P 500 is an American one.

1.3.1 Time series of stock price and price return

For global understanding, we focus on the universal stylized facts of the stock markets in

this dissertation.
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Figure 1.1: Daily series of Nikkei225, SSE Composite Index and S&P 500 respectively,
from the year of 1996 to 2016.
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Our studies are based on the numerous recorded data of stock markets, among which

the trading price is one of the most important and the most widely studied item. Figure

1.1 plots the time series of index price for Nikkei 225, SSE Composite Index and S&P

500 respectively. It seems that the moving patterns are completely different for the three

different indices. During the twenty years from 1996 to 2016, Nikkei 225 experienced two

distinct periods of rising and two periods of declining, SSE Composite Index has going

up gradually except for a hump around 2008, while S&P 500 behaves like waves. Further

observation indicates some similarity among those price series of different markets. It

is shown that the declining trends from 2000 to 2002 appears both in Nikkei 225 and

S&P 500, which can be attributed to the IT bubble. In addition, the American subprime

mortgage crisis caused the crashes in all the three markets around 2008.

In order to quantify this kind of similarities, price return (1.1) or log-return (1.2) is

defined for the analysis of stock or index price [Johnson et al., 2003],

r(t,∆t) =
p(t)− p(t−∆t)

p(t−∆t)
, (1.1)

z(t,∆t) = lg p(t)− lg p(t−∆t), (1.2)

where p(t) is the stock price at time t and ∆t is the time interval. Although log-return is

more frequently used in practice, the price return (1.1) will be applied in this dissertation

for the convenience of introducing the financial interpretation of our model.

The index price series in Figure 1.1 are transformed into return series and plotted in

Figure 1.2. It is shown that although the price series of Nikkei 225 and S&P 500 are much

different, the corresponding price return series share the similar pattern. Consistently with

the crashes in the price series, the price return fluctuates frequently from the year 2000

to 2002 and violently around 2008. On the other hand, the fluctuating pattern for SSE

Composite seems quite different from the other two. It seems that the Japanese and

American markets may have similar structure while the Chinese market is still in its early

age.
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Figure 1.2: Daily series of index return for Nikkei 225, SSE Composite Index and S&P
500 from 1996 to 2016 respectively. The fluctuations for Nikkei 225 and S&P 500 behave
similar while that for SSE Composite Index is of different pattern.
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1.3.2 Leptokurtic distributions of price return

Although the fluctuations of price return seem random for all the indices (and also single

stocks), the statistical results of the return series share the characters in common. Figure

1.3 shows the statistical probability densities of price return for different market indices.

Although there seems no general pattern in the time series of price return, their statistical

results can be described by a Gaussian-like distribution, which is the basis of the standard

random walk model. Moreover, all the cumulative probabilities exhibit power laws. The

leptokurtic distribution with sharper peak and heavier tails than Gaussian distribution

exists not only in the daily market indices, but also in single stocks and the data of

different frequencies, i.e. price return calculated from different time intervals such as

minute, day and month. As leptokurtic distributions can be observed regardless of the

markets or time windows, it is accounted as one of the stylized facts of stock markets

(and also financial markets).

1.3.3 Volatility clustering

Another important stylized fact which will be studied in this dissertation is volatility

clustering. The concrete meaning of the term volatility clustering is that “large changes

tend to be followed by large changes, of either sign, and small changes tend to be followed

by small changes” [Mandelbrot, 1963]. The average of price change, either positive or

negative, representing volatility here, is usually defined by the standard deviation as

σ =

√√√√ 1

T − 1

T∑
t=1

(r(t)− µ)2, (1.3)

where µ is the average price return over the time period T . It is common to consider

variance σ2 as a measurement of the volatility. As shown in Figure 1.3, the price series
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have mean return around µ = 0. Thus the variance can be reduced to

σ2 =
1

T − 1

T∑
t=1

|r(t)|2. (1.4)

And we usually study on the instant volatility of the price return as σ2
t = |r(t)|2.

This stylized fact can be quantitatively described as the fact that the autocorrelations

of the squared return (or absolute return) are positive and decaying slowly, while the

return itself is uncorrelated. The autocorrelations for time series of price return with

increasing time lag are shown in Figure 1.4, where the autocorrelation is calculated by

ρ [{x[t]}, {x[t−∆t]}] = ⟨(x[t]− x[t])(x[t−∆t]− x[t−∆t])⟩/σ2, (1.5)

where x[t] is the value of data sample such as the price return or squared return at time

t, σ2 is the variance of the whole data sample, and ⟨·⟩ represents calculation of average.
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Figure 1.4: Autocorrelation of returns and squared returns for Nikkei 225 in Figure 1.2
with different time lags.

It is found that the autocorrelations of price return are zero, which is the basis for
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the utilization of random walk models. The highly frequent data demonstrated that the

autocorrelation of asset return decays to insignificance with about 20 minutes [Cont, 2001]

- short memory that can be neglected for the study of daily data or data with larger time

scales. On the other hand, the autocorrelations of squared return (volatility) for daily

Nikkei 225 are positive and decay to insignificance until about 1 month. As we study the

index data with time scale of one day or longer, we can neglect the autocorrelation of

price return and have to take the positive autocorrelation of squared return into account.

There remain other stylized facts besides leptokurtic distributions and volatility clus-

tering, such as leverage effect, gain/loss asymmetry and asymmetry in time scales [Cont,

2001], which will not be discussed in this dissertation. But another facts concerning the

correlation of volume and volatility will be involved in the quantum modeling of volatility

clustering.

1.3.4 Volume/volatility correlation

Trading volume is another key reference for the participants to make decisions. Figure

1.5 shows the trading volume of Nikkei 225 from 2004 to 2017.
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Figure 1.5: Trading volume of Nikkei225 from June 2004 to June 2017.



12 Chapter 1. Introduction

It is shown that there are consistent fluctuations in the time series just like price

return. There are also some universal characters of its statistics, such as pow law in

its cumulative distribution and long memory of its series. These characters will not be

involved in this dissertation as we focus on price return.

However, the correlation between volume and volatility[Gallant et al., 1992; Cont,

2007] as another stylized fact of stock markets, will be discussed. This facts has been much

less discussed than leptokurtic distributions or volatility clustering because 1) available

data for trading volume is much less than the stock price, which makes the empirical

analysis difficult, and 2)there has been no reliable model for the study of volume. In

our study, as we will give a physical correspondence of trading volume, the correlation of

volume and volatility can be quantitatively modeled in the quantum model.

1.4 Motivation and objectives

It is known that the real markets tend to deviate from the standard random-walk paradigm.

The empirical deviations are called the stylized facts of stock markets (financial markets).

Two of the most fundamental stylized facts of stock market are the leptokurtosis of price

return distributions and volatility clustering, which are the main issues of this dissertation.

The leptokurtic distributions of the price return means that the although the prob-

ability distributions of price return can be scaled close to a general distribution, the

deviation of them from Gaussian distribution always exists and can not be neglected

sometimes.

Based on the previous works on quantum finance and the consideration that quantum

mechanics may be closer to the nature of financial markets, we intend to find out whether

the uncertainty included in quantum mechanics can be efficiently applied to stock markets

and hope to find some hints for the nature of finance.

We will take use of the concept of wave function as the fundamental tool to study

the stylized facts (leptokurtic distributions and volatility clustering) in the stock markets.
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This study is encouraged by some achievements of previous quantum modeling [Ye and

Huang, 2008; Zhang and Huang, 2010; Cotfas, 2013; Meng et al., 2015]. For instance, Ye

et al. proposed a quantum harmonic oscillator model in 2008 to explain the persistent

fluctuations in stock markets, where the squared modulus of ground state wave function

was used as a probability measure of the stock price in stationary market [Ye and Huang,

2008]. As the study focused on the dynamics of the stock price under sudden information,

no convincible financial interpretation of its Hamiltonian was addressed and one could

deplore a lack of comparison between the derived probability distributions and that of

the classical models. Zhang et al. explained the financial meaning of the wave function

and gave a financial form of the uncertainty principle in 2010 [Zhang and Huang, 2010],

and Cotfas proposed its discrete version [Cotfas, 2013]. Although they demonstrated the

feasibility of quantum model by proposing a cosine formed potential, the model did not

show any advantage over the quantum harmonic oscillator or the classical random walk.

Thus we list the main objectives of this dissertation.

• Propose a new financially interpretable quantum Hamiltonian for stationary market.

• Describe the stock price with the help of wave functions obtained from the above

proposed Hamiltonian and verify it with the analysis of historical time series.

• Extend the stationary model into a dynamical one to recover volatility clustering.

• Discuss the correlation between volume and volatility.



Chapter 2

A Quantum Oscillator Model for

Stationary Markets

We propose a quantum model for stationary markets that can be used for the study of

the probability distributions of stock price return. As the state of stock price is described

by the wave functions of quantum oscillator (both harmonic oscillator and anharmonic

one are discussed), we call it the quantum oscillator model for stock markets. This model

can be extended into a dynamical one for the study of volatility clustering whose details

will be demonstrated in Chapter 4.

In this chapter, we firstly give a overview of the classical modeling results. Then a

quantum description of stock price is introduced, followed by financial derivation of the

Hamiltonian for the stock price. Finally, the main theoretical results of the quantum

model are addressed and summarized.

2.1 Classical modeling of stock price

It is known that the Gaussian-like distribution of price return is a global stylized fact of the

stock markets (or financial markets). In addition with the fact that the price returns for

different times can be approximately considered uncorrelated, random walk was proposed

as the most simple but efficient model for the dynamics of price return. Then Gaussian

14
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distribution (normal distribution) was used to describe the probability distributions of

long time scale price series. However, it does not work well for the short time scale series

attributed to the leptokurtic characters of the data. Then more complicated models such

as Levy stable non-Gaussian model and Student’s t-distribution [Mantegna and Stanley,

1999] were developed to explains this phenomenon.

Making use of the probability theory of quantum mechanics, it is believed that the

probability distribution of stock price can be modeled without the time-consuming random

walks. As the wave function itself in quantum mechanics is something closely related to

probability, we analogize the motion of stock price to the dynamics of wave function of a

quantum particle.

2.2 Quantum description of stock price

2.2.1 Preliminaries of quantum mechanics

Heisenberg uncertainty principle tells us that the two variables represented by non-

commuting operators cannot be simultaneously measured. One of the most well known

uncertainty relations is that

∆x ·∆p ≥ ~
2
, (2.1)

which means that in the quantum frame, the position and momentum cannot be of the

precise values at the same time. This principle is guaranteed by the idea of wave-particle

duality, saying that everything must have a de Broglie wavelength as λ = h/p with Plank

constant h and momentum p.

The uncertainty is so insignificant in the macroscopic world that it can be just ne-

glected. Thus the determinate theory, Newtonian mechanics, is applicable and satisfying

until the day when the scientists go deep into the atomic world. But we must take the

uncertainty into account when referring to the microscopic world, where there is no precise

trajectory for the particle anymore. Erwin Schrodinger introduced a brand new mechan-
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ical equation to describe the dynamics of a microscopic object which is both particle and

wave

i~
∂

∂t
Ψ(r, t) = Ĥ(t)Ψ (r, t) , (2.2)

where Ĥ(t) is Hamiltonian representing the total energy, Ψ(r, t) is the wave function

describing the state of the microscopic object with the position vector r at time t, i

is imaginary unit, and ~ is the reduced Planck constant. Max Born interpreted the

wave function as probability amplitude, saying the squared modulus of wave function

ρ(r, t) = |Ψ(r, t)|2 is the probability density of the microscopic object.

For the 1-dimension (1D) situation, the Schrodinger equation can be put as

i~
∂

∂t
Ψ(x, t) =

(
− ~2

2m
∇2 + V̂ (x, t)

)
Ψ(x, t) , (2.3)

where ∇2 is Laplace operator and V̂ (x, t) is the potential operator. According to Born’s

probability wave theory, the probability of finding the object around position x among

the small volume element ε at time t is represented by

P
(
x− ε

2
∼ x+

ε

2

)
= ρ (x, t) · ε = |Ψ(x, t) |2 · ε. (2.4)

Given an initial state, the 1D partial differential Eq. (2.3) can fully determine the

dynamics of wave function. However, the partial differential equations are difficult to

be solved. A commonly used method is to reduce it into a time-independent form for

stationary Hamiltonian, where the potential operator is not time dependent explicitly.

Then the variables x and t can be separated in the wave function as

Ψ(x, t) = f(t)ψ(x), (2.5)

which can be substituted into Eq. (2.3) to obtain

i~
1

f(t)

df(t)

dt
=

1

ψ(x)

[
− ~2

2m
∇2 + V (x)

]
ψ(x) = E, (2.6)
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where E is a constant. The above equation can then be reduced into

[
− ~2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x), (2.7)

with

Ψ(x, t) = exp (−iEt/~)ψ(x). (2.8)

Eq. (2.7) is in fact the energy eigen equation of the quantum particle (system). The

corresponding solutions are eigen vectors {ψn(x)} with eigen values {En}. In quantum

mechanics, they are named eigen wave function and eigen energy respectively. It is proved

that the state of a quantum particle can be fully described by the set of eigen vectors

for energy, i.e. represented by the superposition of the eigen wave functions of different

energy levels:

Ψ(x, t) =
∑
n

cn(t)ψn(x), (2.9)

where cn(t) is a time dependent number representing the probability amplitude of nth

energy state.

Further more, in quantum mechanics, the observables are represented by operators,

such as position operator x̂, momentum operator p̂ and energy operator Ĥ. The mea-

surement of a observable can then be described by the corresponding operator acting on

a quantum state. For example, the measurement of the position of a particle in quantum

state Ψ(x, t) results in Ψ(x, t+ ε) = x̂Ψ(x, t).

2.2.2 Wave functions for stock price

Supposing the state of stock price can be analogically described by a wave function instead

of absolute price values, we can define a “wave function” for stock price as Ψ(r, t). Here,

r is the price return. The dynamics of Ψ(r, t) is similarly determined by SE as

i~
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t). (2.10)
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In order to obtain the wave functions for stock price, we must figure out the Hamil-

tonian Ĥ(r, t). Again we take use the Hamiltonian form from physics

Ĥ(r, t) = − ~2

2m
∇2 + V̂ (r, t), (2.11)

which can be regarded as the “energy operator” of stock price and consists of a kinetic

energy operator − ~2
2m

∇2 and potential energy operator V̂ (r, t). Here the price return r

can be considered a correspondence of position in physics. ~ can be regarded as the

uncertainty of irrational transaction and m represents the intrinsic properties of the stock

such as the capital [Zhang and Huang, 2010; Meng et al., 2015]. It is obviously these two

variables have different meanings from that in physics. For a stock in a certain market,

for example the stock issued by Mitsubishi Corporation at Tokyo Stock Exchange, ~ and

m can be considered constant. Without losing generality, we assume both ~ and m of

unit value in the following context.

Once the form of the Hamiltonian operator is known, the state of the stock price that

is fully described by the wave function can be acquired. According to the Hamiltonian

operator in Eq. (2.11), the potential part V̂ (r, t) is the only variable part in this model,

which describes the interaction between the stock and the corresponding markets and

even the external information. In our model, it is assumed that the changes of potential

is relatively small compared to the internal kinetic energy and the invariant part of the

potential when we concern long time horizons. Hence the first step and simplified model

is studying the stationary stock market with time-independent potential operator. Then

we only need to deal with the time-independent SE for stock price as

[
− ~2

2m

d2

dr2
+ V (r)

]
ψ(r) = Eψ(r), (2.12)

where E is a real number that can be interpreted as the “energy” of stock (price). The

time-dependent wave function is Ψ(r, t) = exp (−iEt)ψ(r).

In the stock market, before the stock price is measured, we do not know its value in
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the next time step even though we have its long history in hand. The classical models

have regarded the movement of stock price as stochastic processes. However, no process

could predict its movement precisely. An appropriate probability description based on

history data is quite satisfying. In our quantum description, the stock price is essentially

indeterminate until it is measured (the finish of a deal). Before the “measurement”, the

stock price return is described by a wave packet whose dynamics is described by SE. Al-

though the price value is uncertain, its probability density function (PDF) is determinate

as

ρ(r, t) = |Ψ(r, t)|2. (2.13)

For the stationary markets,

ρ(r, t) = |Ψ(r, t)|2 = |e(−iEt)ψ(r)|2 = |ψ(r)|2. (2.14)

It indicates that the probability distribution of price return for a stock in the stationary

market is time independent, which is consistent with the stable processes for classical

modeling.

2.3 Hamiltonian of stock price

Several pieces of work concerning the wave function for stock price have been achieved

[Ye and Huang, 2008; Ataullah et al., 2009; Zhang and Huang, 2010; Cotfas, 2013; Meng

et al., 2015]. Briefly speaking, three types of potentials, i.e. harmonic oscillator, finite

well and a cosine formed potential, were applied directly for the Hamiltonian of stock

price. However, none of them explained the financial meaning of the Hamiltonians. For

instance, Ye et al. considered the probability distributions of stock price as a Gaussian

wave packet to explain the persistent fluctuations in stock markets [Ye and Huang, 2008].

Moreover, the PDFs they obtained can go no further than Gaussian which itself is not

perfect enough for the stock price.
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In this section, we will propose a financially interpretable Hamiltonian for the stock

price. We analyze the microscopic dynamics of order excess and the macroscopic dynamics

of price return respectively. The combination of these two descriptions lead us to the

classical potential. It is assumed that the classical potential energy can be corresponded

to the quantum potential operator.

2.3.1 Microscopic dynamics of order excess

Order excess is the difference between the number of demand ϕ+ and supply ϕ− orders,

i.e. ∆ϕ = ϕ+ − ϕ−. The dependence of price return on order excess is widely utilized as

r = ∆ϕ/λ, (2.15)

where λ is the measurement of market depth [Bouchaud and Cont, 1998]. Although the

price return is discrete according to every deal, we can considered it as continuous since

we focus on the dynamics of stock price on a long time scales. Thus we will use instanta-

neous price return instead of the discrete one addressed in Chapter 1. The definition of

instantaneous price return is

r(t) =
1

p(t)

dp(t)

dt
, (2.16)

where p(t) has also been considered continuous approximately. Correspondingly, order

excess can be replaced by instantaneous order excess ∆ϕ(t).

It is obviously the order excess is determined by the behaviors of market participants.

When the participants place orders the number of demand or supply will change. In our

model, we consider a simplified market structure where the dynamics of order excess is

determined by three types of participants: market maker (MM), contrarian (CT) and

trend follower (TF), where the latter two can be put together as chartists. Figure 2.1

demonstrates the change of order excess caused by these market participants. MMs absorb

the existing orders by using their storage of stocks and money. They have contributions to

the decrease of instantaneous orders in the market. On the other hand, CTs and TFs place
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new orders based on their judgement of future price return. CTs will put supply orders

for anticipated positive return and put demand ones for anticipated negative return. TFs

behave conversely to CTs, i.e. demand for positive return and supply for negative return.

We assume their anticipation is based on historical return with the instantaneous memory,

which can thus approximated as instantaneous price return.

MM 
CT TF 

Figure 2.1: Change of order excess caused by the behavior of market makers (MMs),
contrarians (CTs) and trend followers (TFs). A red circle represents a unit of demand
order, and the green ones represent supply orders. MM can absorb the existing demand
and supply orders using the stocks and money they hold, respectively. CT and TF place
new orders as a result of their evaluation of the stock based on its history. In this figure,
the MMs absorbed 1/3 of the existing orders while 2 new units of demand and 3 new
units of supply orders were placed by CTs and TFs.

It is obvious that the market makers can do nothing when there is no instantaneous

orders, and they can work more efficiently when there is larger number of orders. In other

words, the decreasing of the orders caused by the market makers is positively related to

the number of instantaneous buy or sell orders, i.e.
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dϕ+

dt
|MM = −Γ(ϕ+, {u})ϕ+;

dϕ−

dt
|MM = −Γ(ϕ−, {u})ϕ−.

(2.17)

The minus sign indicates that the market makers’s operation decreases the number of or-

ders by clearing the market. Γ(ϕ±, {u}), which should be constrained positive, represents

the collective absorbing ability of MMs in the market. It is a function of the instantaneous

orders ϕ±, as well as other factors {u} such as the stocks and money hold by MMs. In

this dissertation, we neglect the heterogeneity among the MMs and assume the available

stocks and money for each MM are infinite, then Γ(ϕ±, {u}) can be reduced to Γ(ϕ±) with

the only variable ϕ±.

Taylor expansion of Γ(ϕ±) is

Γ(ϕ±) = γ± + γ
′

±ϕ± + γ
′′

±ϕ
2
± + . . . , (2.18)

where for most of the market the constant term γ± is the dominant factor, thus we have

Γ(ϕ±) = γ± (γ± > 0). (2.19)

Based on the approximately symmetric empirical probability distributions of price return,

we assume the MMs’ absorbing ability of demand and supply orders are the same, γ+ =

γ=γ. Substituting the above relations into Eq. (2.17), we obtain the change of order

excess in unit time caused by MMs:

d∆ϕ

dt
|MM = −γ∆ϕ, (2.20)

where γ is a positive parameter measuring their collective absorbing ability, which has

been assumed symmetric for demand and supply. For example, we have γ = 1/3 in Figure

2.1.
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At the same time, new orders will be placed by the contrarians and trend followers.

Both of them make their decisions based on the anticipated price return, approximated

as instantaneous price return in this dissertation.

When the stock price is increasing (positive instantaneous price return), the contrar-

ians are willing to sell their holdings (place supply orders) while trend followers will buy

(play demand orders):

dϕ−

dt
|CT = αCT

− (r, {u})r;

dϕ+

dt
|TF = αTF

+ (r, {u})r.
(2.21)

Here r ≥ 0, and αi
±(r, {u}) > 0 with {i = CT, TF} are positive coefficients reflecting

the influence of the instantaneous price return r and other factors {u} on the behavior of

chartists. We neglect the factors {u}, then αi
±(r, {u}) > 0 can be rewritten as αi

±(r) > 0

as a function of r alone.

Similarly when the stock price is decreasing (negative instantaneous price return),

the contrarians will place demand orders and trend followers will place supply orders,

which can be represented as:

dϕ−

dt
|TF = −αTF

− (r)r;

dϕ+

dt
|CT = −αCT

+ (r)r,

(2.22)

with r < 0. The minus signs are introduced to offset the negative sign, ensuring the

positivity of the right hand of the equations.

The combination of Eqs. (2.21) and (2.22) gives the dynamics of order excess for

CTs and TFs respectively as

d∆ϕ

dt
|CT = −dϕ−

dt
|CT = −αCT

− (r)r, (r ≥ 0)

d∆ϕ

dt
|CT =

dϕ+

dt
|CT = −αCT

+ (r)r; (r < 0)

(2.23)
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and

d∆ϕ

dt
|TF =

dϕ+

dt
|TF = αTF

+ (r)r, (r ≥ 0)

d∆ϕ

dt
|TF = −dϕ−

dt
|TF = αTF

− (r)r. (r < 0)

(2.24)

Assuming the behavior of chartists is symmetric for positive and negative returns,

i.e. αi
+(r) = αi

−(r) ≡ βi(r) with {i = CT, TF}, Eqs. (2.23) and (2.24) can be written as

d∆ϕ

dt
|TF = βTF (r)r;

d∆ϕ

dt
|CT = −βCT (r)r,

(2.25)

with βi(r) ≥ 0.

The chartists believe that high profit always followed by high risk, which can be

measured by the volatility of price return. Take the instantaneous squared price return r2

as the measurement of volatility, the function βi(r) = ai − bir
2 (i = TF,CT ) with {ai ≥

0, bi ≥ 0, βi ≥ 0} is a reasonable description of the risk averse behavior of the chartists.

In this function, ai is positive parameter representing the fundamental dependency of the

chartists’ behaviors on the anticipated price return, and −bir2 indicates that the chartists

are more hesitated to place orders when the volatility of the price return becomes larger.

Moreover, the risk aversion terms should not be too negative as to reverse the sign of

βi(r), therefore we request ai − bir
2 ≥ 0.

The change of order excess caused by contrarians and trend followers can then be

represented as

d∆ϕ

dt
|CT = −(aCT − bCT r

2)r;

d∆ϕ

dt
|TF = (aTF − bTF r

2)r,

(2.26)

with ai > 0, bi > 0 and ai − bir
2 ≥ 0. Figure 2.2 plots the dynamical function of

order excess caused by chartists. It is indicated that positive price return encourages

the demand for trend followers while negative price return encourages the demand for
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contrarians. The consideration of risk aversion makes the relation some different from a

simple linear one.
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Figure 2.2: The relation of change velocity of order excess and instantaneous price return
caused by chartists according to Eq. (2.26), where the parameters have been set as
ai = 1 and bi = 0, 10, 20 for the dotted, dashed and solid line respectively. The red lines
correspond to CTs and the blue ones for TFs.

It should be noted that ll the parameters reflect the collective behaviors of the market

participants, including the information of both the population and the activeness per

participant.

The combination of Eqs. (2.20) and (2.26) gives the full change of ∆ϕ over time with

r:
d∆ϕ

dt
= −γ∆ϕ− (aCT − bCT r

2)r + (aTF − bTF r
2)r. (2.27)

Taking the relation of ∆ϕ and r represented by Eq.(2.15) into account, the dynamics of
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instantaneous price return in the stock market can be expressed as

dr

dt
= −(γ +

aCT − aTF

λ
)r +

bCT − bTF

λ
r3. (2.28)

We consider the contrarians and trend followers evaluating the risk associated with volatil-

ity identically as bCT/aCT = bTF/aTF = k (k ≥ 0), then Eq.(2.28) is reduced to

dr

dt
= −(γ + c)r + kcr3, (2.29)

where c = (aCT − aTF )/λ, representing the competition between contrarians and trend-

followers without the concern of risk aversion (c > 0 means more orders placed by the

contrarians while c < 0 means more orders from the trend followers, which will be de-

scribed as stronger contrary trading and stronger trend following respectively in the fol-

lowing text); the risk aversion effect is assumed to be identical for the contrarians and the

trend followers, i.e. k = bTF/aTF = bCT/aCT with k ∈ [0, 1/r2]. The risk aversion effect

here is measured by the parameter k, which together with the instantaneous volatility r2

determines the shrinkage percentage of the new orders.

2.3.2 Macroscopic dynamics of price return

In microscopic analysis of order excess, we have simplified the market structure by ne-

glecting the heterogeneity among the same type of market participants and external in-

formation. Thus it is not reasonable to use Eq. (2.29) alone for the quantum potential

operator of our model. Instead, we will correspond the potential energy from the classical

mechanical model to quantum potential operator.

The macroscopic dynamics of price return in classical models can be described by a

Langevin equation:

mr
d2r

dt2
= −ηdr

dt
− dV (r)

dr
+ ξ(t), (2.30)

where mr is the mass of the fictitious particle of price return, η is the damping coeffi-
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cient, V (r) is a time-independent potential, and ξ(t) is a random force. Bouchaud et

al. [Bouchaud and Cont, 1998] considered the evolution of price return as a overdamped

viscous fictitious particle under potential V (r), where mr is ignorable and η = 1. Hence

we obtain the first order derivative of price return over time as a function of potential

dr

dt
= −dV (r)

dr
+ ξ(t). (2.31)

2.3.3 Classification of different market environments

From Eq. (2.29) and Eq. (2.31), we have

− dV (r)

dr
= −(γ + c)r + kcr3, (2.32)

which gives a financially interpretable potential as

V (r) =
γ + c

2
r2 − kc

4
r4. (2.33)

In this potential consisting of a quadratic and a quartic term, there are three parameters,

i.e. γ, c and k respectively. γ is a positive real number, measuring the effect of the market

makers’ behavior on the stock price; c represents the total effect of chartists regardless

of risk aversion (c > 0 corresponds to stronger contrary trading while c < 0 to stronger

trend following); k is a parameter measuring risk aversion effect, which has been assumed

identical for the contrarians and the trend followers with k ∈ [0, 1/r2].

It should be stated that the three types of participants are simplified ideal model

agents that cannot be mapped into real markets strictly. A trader in the real stock

market can behave sometimes as a contrarian and other times as a trend follower. The

role of market makers is usually played by organizations instead of individual investors.

Based on the assumptions for this modeled structure of stock market, the liquidity of the

markets is ensured by the efficiency. The we can classify the market environments into

three different types according to different dominant participants.
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Figure 2.3 shows the three market environments clearly. According to the relation of

γ and c, the market can be named as liquid market and illiquid market. As the liquidity

is evaluated by the effect of MMs, we say it is liquid when γ ≫ |c|. On the other hand,

when γ < |c|, it is illiquid. For the latter situation, we call it a contrarian dominant

market and trend follower dominant market for c > 0 and c < 0 respectively.

γ ≫ |c| 
 

c > 0 

c < 0 

γ < |c| 

Figure 2.3: The parameter settings for different market environments. The biggest light
blue square represents entire market environments which has no been fully covered by our
model. The dark blue pie represents MM dominant market, also named liquid market.
The yellow one is for CT dominant market and the orange one is for TF dominant market,
both of which are illiquid markets.

Figure 2.4 and Figure 2.5 plot the potential shapes with different parameter values.

It is shown that when the behaviors of CTs and TFs are balanced, the potential has a

form of harmonic oscillator (thick yellow line). Larger c indicating stronger contrarian

trading raises the potential uniformly, resulting in potential of an anharmonic oscillator.

And finally evolves to CT dominant market (red line). Smaller c (negative) indicating

stronger trend following pulls the potential down but with weaker effect near r = 0. Thus

finally for the TF dominant market (blue line), there is a small hump in the middle.

The existence of k can also change the harmonic oscillator into anharmonic, but slightly

attributed to the constrain that 0 ≤ k ≤ 1/r2. k has nothing to do with the classification

of market environments.
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Figure 2.4: Shapes of potential (2.33) according to different c values, where γ = 1 and
k = 25 have been assumed.
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Figure 2.5: Shapes of potential (2.33) according to different k values, where γ = 1 and
c = 0.2γ have been assumed.
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Adopting the financially deduced potential into the Hamiltonian of “quantum price

return”, we have to deal with the energy eigen equation for the modeling of stationary

markets: [
− ~2

2m

d2

dr2
+

(
γ + c

2
r2 − kc

4
r4
)]

ψ(r) = Eψ(r). (2.34)

2.4 Wave function and probability distribution

The potential proposed in the last section have been constrained, resulting in the poten-

tial form of oscillators, anharmonic for most of the situations and harmonic for special

situations that neglect risk aversion. Thus the model is named quantum oscillator model

in this dissertation. We will discuss the wave functions and probability distributions for

these two kinds of potential form respectively in this section.

2.4.1 Harmonic oscillator

The Hamiltonian for harmonic oscillator without consideration of risk aversion is

H(r) = − ~2

2m

d2

dr2
+
γ + c

2
r2. (2.35)

Its corresponding eigen energies and eigen vectors has been analytically calculated by

physicists as

En = (n+
1

2
)~ω, n = 0, 1, 2, . . . ;

ψn(r) = Nn exp(−1

2
α2r2)Hn(αr)

(2.36)

with normalization constant Nn = [α/(
√
π2nn!)]

1
2 , where Hn(αr) is Hermite polynomial

Hn(αr) and ω =
√

(γ + c)/m, α =
√
mω/~.

The wave functions and squared modulus of wave functions of the first several energy

levels are plotted in Figure 2.6 and Figure 2.7, respectively. It is shown that n is a good

quantum number for the 1D harmonic oscillator. The eigenstate of nth energy level can
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also be represented by |n⟩, which is the Dirac notation for ψn(r).
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Figure 2.6: Wave functions of the first six energy levels for the 1D harmonic oscillator.

It is shown that the wave function of a harmonic oscillator at the ground state with

n = 0 gives a rigorous Gaussian distribution for probability density function (PDF). The

PDF is consistent with the central limit theorem for stochastic processes in random walk

modeling [Mantegna and Stanley, 1999]. And it is the basis of those studies that applied

quantum harmonic oscillator for stock markets. For example, Ye et al. used the quantum

harmonic oscillator to explain the persistent fluctuations in stock markets [Ye and Huang,

2008], and Meng et al. extended it to a many-particle models by to study the relationship

between the volatility and trading volume [Meng et al., 2015].

Figure 2.8 plots the squared modulus of the ground state wave function of a quantum

harmonic oscillator, in comparison with that of a classical one. It is obvious that a classical

harmonic oscillator alone can not be used to model the dynamics of stock price, although

the potential form is introduced classically. In classical random walk models, in order

to produce a Gaussian distribution, a noise term must be considered to manifest the

unpredictability of the stock price. But in the quantum modeling, as the wave function,

in which the property of uncertainty for the stock price has been included, can itself

describe the price return perfectly without any time-consuming stochastic process. It is
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Figure 2.7: Squared modulus (PDF) of wave functions of the first six energy levels for the
1D harmonic oscillator. This figure together with Figure 2.6 is plotted from the numerical
solutions of the time-independent SE, where all the constants including ~, m and ω have
been assumed 1.

demonstrated, when studying the statistical properties such as PDF of price return, that

the quantum modeling is more convenient and faster than classical stochastic processes.

However, there are other problems have not been solved or explained clearly. One

of them is that as the quantum harmonic oscillator has different energy states, why only

the ground state is utilized. According to [Ye and Huang, 2008], we can explain it as

that the excited energy states for stock price are unstable, similarly to physical systems

such as hydrogen atom. Although the stock price can sometimes be excited to higher

energy states, it would return back to lower energy states and finally ground state in

short time. Thus it is satisfying to use the ground states for the analysis of low frequency

data. But how about high frequency data? We will discuss this problem in detail in the

next chapter.
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Figure 2.8: The probability density of quantum harmonic oscillator (ground state) and
that of a classic harmonic one. The classic harmonic oscillator is of the same energy with
the quantum one at the ground state.
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2.4.2 Anharmonic oscillator

The full Hamiltonian form including risk aversion term is

H(r) = − ~2

2m

d2

dr2
+
γ + c

2
r2 − kc

4
r4. (2.37)

As shown in Figure 2.4 and Figure 2.5 that the potential is deviated from harmonic

oscillators but not greatly due to the financial constrains of the parameters. We solve

the corresponding time-independent SE numerically with finite difference method (FDM)

[LeVeque, 2007; Press et al., 2007]. The details and Matlab codes can be found in Appendix

A at the end of this dissertation.

The main results, i.e. possible shapes of PDF, which are calculated from the wave

functions of the ground state, are shown in Figure 2.9. Corresponding to the left figure

which lists the different shapes of potential, the PDFs can generally be considered as

two types. The first one is Gaussian-like, i.e. a distribution with a peak in the middle

(blue lines). It is shown that when the negative c becomes smaller, the peak will be

lower, gradually lower than its neighbor, finally become a distribution with two peaks

symmetrically located to the center (red lines). The values of c in the figure corresponds

to trend follower dominant market. Although they are not plotted, it is not difficult to

understand that for the market maker dominant market (liquid market) and the contrarian

dominant one, the PDF is also Gaussian-like and with higher peak than the blue solid

line in Figure 2.9(b).

The distributions in red solid line are obviously rarely occur in the real markets. It is

reasonable because the real markets are efficient most of the time, ensuring the liquidity

of the markets. In our model, c measures the competition between contrarians and trend

followers, and that the difference between |c| and γ reflects the effect of the chartists

versus the market makers on the market. The efficiency of a market is always guaranteed

by the ability of the market makers, indicating that the new orders offered by the chartists

(contrarians and trend followers) are much less than that absorbed by the market makers,
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Figure 2.9: (a) The potentials and (b) the corresponding probability distributions of
ground states with different c values, where γ = 1 and k = 0.01 are assumed.

which is consistent with our assumption that |c| ≪ γ. We generally use the parameter

setting γ = 1 as it hardly affect the qualitative characters of the modeling results and it

can then be adjusted to sample data in the application to different markets.

One of the difference of this quantum model with previous ones is the existence of risk

aversion term in potential operator for liquid markets. Thus we compare the Gaussian-like

PDF obtained from anharmonic oscillators with that from harmonic oscillator (Gaussian

distribution). The PDFs with the value of parameter c around zero, when the market is

market maker dominant, are shown in Figure 2.10(a). In the figure, |c|/γ ∈ [−0.2, 0.2] is

assumed and k = 0.01 is used with r ∈ [−10, 10] in the numerical calculations. The PDFs

have been normalized to that with the unit variance. It is known that when c = 0, the

anharmonic oscillator reduces to a harmonic one. The distribution for c = 0 (solid black

line) is a rigorous Gaussian while the others are Gaussian-like. As the quartic part of the

potential is largely constrained, the probability distributions are almost the same.

However, the slight differences among the distributions are of significance. The

probability distributions with larger c values have sharper peaks and heavier tails. The

monotonously positive relation of c value with the corresponding kurtosis in Figure 2.10(b)

agrees with the distributions in Figure 2.10(a) that the modeling results of positive c are
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Figure 2.10: (a) The probability distributions (of ground states) for liquid market with
different c. The results have been normalized to that of the same volatility as σ2 = 1. The
distribution for c = 0 (black) is a rigorous Gaussian while the others are Gaussian-like.
(b) The corresponding kurtoses of the liquid market model with c ∈ [−0.2, 0.2].
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Figure 2.11: Relation of the kurtoses of modeled distributions and k value for liquid
market.
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closer to the statistic characters of real data as the price return in real stock market per-

forms a leptokurtic distribution [Johnson et al., 2003] with kurtosis larger than 3. It is

demonstrated that the introduction of a negative quartic perturbation improves the mod-

eling result. Thus we find that the risk aversion plays an important role for the stylized

facts of stock price.

Although the risk aversion term (quartic term) depends on both k and c, resulted

from the assumption for the symmetry of contrarians’ and trend followers’ “risk aversion

effect”, it is more reasonable to take −kc as a whole. Our before mentioned assumption of

the identical risk aversion effect for contrarians and trend followers (i.e. k = bTF/aTF =

bCT/aCT ) may confuse the analysis of the modeling results. In liquid market, −kc must

be negative to describe risk aversion because it should be opposite to the main behavior

- positive quadratic term. We can put positive c as a special case for negative quartic

term. We can also say that the leptokurtic distributions of price return may partially be

attributed to the weaker collective risk aversion of trend followers than that of contrarians

(and also that of market makers if it is considered).

We can further check the role of k as the only variable in the risk aversion term. k

is defined as the measurement of “risk aversion effect”, which together with the instanta-

neous price return r(t) determines the shrinkage percentage for the new orders expected

to be submitted regardless of risk aversion. k ≤ 1/r2 is requested by its financial defi-

nition. In the above assumed condition that {γ = 1, c/γ ∈ [−0.2, 0.2]}, the probability

approaches zero before r = 5, thus it is safe for us to choose k ≤ 0.04 to maintain the

financial constrain of k. The narrow range of k strictly constrained by its financial defini-

tion results in the seemingly insignificant difference in the final probability distribution.

Although the probability distributions modeled for liquid market perform similarly, the

kurtosis dependency of the distribution on k shown in Figure 2.11 indicates that kurtosis

increases with the increase of k for positive c while decreases for negative c. This is con-

sistent with the analysis of c in the last paragraph that 1) a negative quartic perturbation

with larger absolute values give better modeling results of the stock market, and 2) the
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negative perturbation is caused by the relatively weaker collective risk aversion (not the

ordering behavior itself) of trend followers than that of contrarians.

2.4.3 Error analysis of numerical solutions

In order to solve the time-independent SE, i.e. the eigen equation of energy, we apply

finite difference method (FDM) and obtain the eigen vectors from Matlab. According to

Appendix A, we calculate the eigen vectors of the matrix as

H =
~2

2m

1

∆x2



2 −1 0 · · · 0

−1 2 −1
. . . ...

0 −1 2
. . . 0

... . . . . . . . . . −1

0 · · · 0 −1 2


+



V1 0 · · · · · · 0

0 V2
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . 0

0 · · · · · · 0 VN


. (2.38)

In the numerical calculation, as the boundary is set zero, the space should be care-

fully chosen to guarantee the continuity at the boundary. The space step ∆x must be

small enough to ensure the accuracy of the results but not too small to waste computing

resource.

We test the Matlab code for harmonic oscillator since the corresponding exact solu-

tion is accessible. For the Hamiltonian with Vi =
1
2
mω2x2i , we have the exact probability

density of the ground state as

ρ(x)exact = |ψ0(x)|2 =
α√
π

exp(−α2x2) (2.39)

with α =
√
mω/~. We compare the numerical solutions with the exact one by defining

the maximum error as

||e|| = max
i=1,2,...,N

{|ρ(xi)numerical − ρ(xi)exact|}, (2.40)
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where N is the number of lattice, ρ(xi)numerical is the value of probability density at xi

from the numerical solution and ρ(xi)exact is from the exact solution.

It is shown in Table 2.1 and Table 2.2 that appropriate ∆x can save the calculation

time and guarantee the precision at the same time. For ω = 1, we can choose the value

of ∆x between 0.01 and 0.05 since ∆x < 0.01 becomes time consuming while ∆x > 0.05

brings larger numerical error. In our numerical calculations, we take ∆ = 0.005. In ad-

dition, for the same space lattice, the results for ω = 10 have larger errors than ω = 1.

This is because the former solutions are concentrated in a smaller space, resulting that

the space lattice must be shrunk to keep the precision.

Table 2.1: Some examples of numerical errors and the corresponding elapsed time for
ω = 1, x ∈ [−5, 5], where ~ = m = 1 has been assumed. The elapsed time represents
the time that need for Matlab to calculate the eigen systems with matrix size N , where
N = 10/∆x+ 1.

ω = 1, x ∈ [−5, 5]

∆x ||e|| Elapsed Time (s)
0.0005 1.113× 10−8 122.542
0.001 4.424× 10−8 16.655
0.005 1.102× 10−6 0.382
0.01 4.408× 10−6 0.075
0.05 1.103× 10−4 0.004

Table 2.2: Some examples of numerical errors and the corresponding elapsed time for
ω = 10, where the other parameter setting is the same with Table 2.1.

ω = 10, x ∈ [−5, 5]

∆x ||e|| Elapsed Time (s)
0.0005 3.484× 10−7 123.764
0.001 1.394× 10−6 16.780
0.005 3.485× 10−5 0.352
0.01 1.394× 10−4 0.072
0.05 3.507× 10−3 0.003



Chapter 3

Stationary Modeling Results

In this chapter, we make use of the quantum model proposed in Chapter 2 to fit real

data from stock market, by adjusting the values of parameters γ, c and k in the model

potential. We study the three market environments respectively. As the real markets are

always efficient, they are market maker dominant. We can use the data directly for the

modeling. However, there is no specific real market dominated by the trend followers. But

it is believed that for some time period, any real market may unfortunately dominated by

trend followers even though the period would be short. Thus we propose a data filtering

method to produce a artificial trend follower dominant market, followed by data analysis

with our quantum model.

3.1 Data

According to our model, the differences of the statistical behaviors of price return for

different markets can be modeled by the variable parameters in the potential. Adjusting

the parameters of the potential in the quantum model, we can reproduce the proba-

bility distributions of price return for different market data. Our study focus on the

general stylized facts in the stock markets. Without loss of generality, we study index

instead of a single stock. We downloaded the data from the website of Yahoo Finance

(https://finance.yahoo.com/). What we will use in the chapter and next chapter about

40
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volatility clustering modeling are daily data of Nikkei 225, SSE Composite Index and

S&P 500, as well as monthly data of Nikkei 225 for studying the effect of data frequency.

Nikkei 225, also called Nikkei index, or Nikkei Stock Average, is a stock market index for

the Tokyo Stock Exchange. It has been calculated daily by the Nihon Keizai Shimbun

newspaper since 1950. It is a price-weighted index with unit yen, and the components are

reviewed once a year. Currently, the Nikkei is the most widely quoted average of Japanese

equities. It began to be calculated on September 7, 1950, retroactively calculated back to

May 16, 1949. Since January 2010 the index is updated every 15 seconds during trading

sessions. SSE Composite Index is a stock market index of all stocks, including A shares

and B shares, that are traded at the Shanghai Stock Exchange in China. S&P 500 which

is an abbreviation of Standard & Poor’s 500 is an American stock market index based

on the market capitalizations of 500 large companies having common stock listed on the

NYSE or NASDAQ.

Table 3.1 lists the data that will be used in this study. The time periods of the data

for different markets are selected consistent because it can make the comparison of the

environments for different markets more reasonable and convenient. The data informa-

tion contains the date, the corresponding open price, the highest and lowest price, the

closing price, and the trading volume. In this dissertation, we take the closing price with

its data as the historical price series for the indices.

Table 3.1: The list of indices used in this study.

Frequency Period (MM/DD/YYYY) Number
Nikkei 225 Month 1/4/1996 - 6/6/2016 1061
Nikkei 225 Day 1/4/1996 - 6/1/2016 5026
SSE Composite Index Day 1/4/1996 - 6/1/2016 5184
S&P 500 Day 1/4/1996 - 6/1/2016 5138

For the time series of a market index with the time interval ∆t, such as one day for

daily data and one month for monthly data in this study, the index return of the jth tick,

rj = (pj − pj−1)/pj−1, can be regarded as the instantaneous price return of the quantum
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model with dt = 1 tick.

According to the description of our quantum model for the stock price, at each time

tick, the price return is essentially a wave packet than a single point. The historical data

comes from the measuring results, which can not be used directly for the verification

of the wave function obtained from the quantum model. We have to deal with large

numbers of data for a time period, compare their statistical characters with the wave

function, and adjust the parameters of the potential to evaluate the quantum model. Thus

two assumptions about the market should be stated: 1) the stock market environments

for sample data are stationary, and 2) the sample data can be used statistically as the

complete set of possible measuring values of the stock price.

3.2 Liquid markets

It has been mentioned that the real stock markets are liquid most of the time, thus the

statistical results of full sample data are supposed to be consistent with that of liquid

market environment in our model. As the effect of parameters c and k on the PDF is

small and has been discussed in Chapter 2 (see Figure 2.10 and 2.11 in Chapter 2), we

will keep them constant and study the dependency of different indices on parameter γ.

We adjust γ for the monthly and daily data of Nikkei 225 (Table 3.1) respectively in

Figure 3.1, using the ground states of the quantum oscillators. The parameter setting of

{c = 0.2γ and k = 1} has been assumed to declare a liquid market.

The monthly sample data can be well fitted by the wave function of ground state

with γ = 2.05× 104, where the standard deviation of the modeled PDF is guaranteed as

that of the data. Although the theoretical PDF is smooth, the statistical distribution of

sample data fluctuates along the Gaussian-like distribution. It can be attributed to the

fact that the potential of the market is not rigorously time independent since the data

sample covers a long period.

On the other hand, the daily data is fitted by the wave function of ground state with
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Figure 3.1: Fitting of the quantum anharmonic oscillator at ground state to the monthly
(January 4, 1996 - June 6, 2016) and daily (January 4, 1996 - June 1, 2016) Nikkei225
Index, by adjusting γ. Other parameters have been assumed as c = 0.2γ and k = 1.
The theoretical distributions are scaled to have the same standard deviations with the
corresponding sample data.
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γ = 3.75 × 106. But it is not difficult for us to find that the fitting result is not as good

as the monthly one since the PDF of data has sharper peak than the model. As the daily

data covers the same time period as the monthly one, the failure can not be attributed

to market differences. We then have to reconsider the feasibility of applying the ground

state alone. It is possible that more modes other than ground state are existed. We have

questioned the use of ground state alone in the last chapter, and stated the dominant

role of it in “quantum stock price” with the recognition of excited states although rarely

happen. Based on this idea, it is understandable that when the sample data is recorded

more frequently, the stock price would be more possibly to be measured at its excited

states. As the daily sample is of high frequency than the monthly one, larger portion of

the data may correspond to the states other than the ground one. It indicates that the

wave function of ground state alone is incapable of modeling the sample data with high

frequency, such as the daily data in this study.

As it is supposed that a portion of the data was recorded when the stock price is at

the excited states, we can define a mixed-state probability density function as

|Ψ(r)|2 = 1

Ω

N∑
n=0

ωn|ψn(r)|2, (3.1)

where n represents the energy level, ωn is the weight of the nth state proportional to

the time that the stock stays in the nth excited state, Ω =
∑N

n=0 ωn, and |ψn(r)|2 is the

probability density function of the nth energy level. Although it is not easy to precisely

determined the weights of different states for a given data sample, we can just screen the

weights to improve the modeling result. A fitting result with {ω0 = 1, ωn = 0.005 for

n = 1, 2, . . . , 10 and ωn = 0 for n > 10} is plotted by the solid purple line in Figure

3.2. The weight for the ground state is set much heavier than the other states due to the

assumption that the excited states are much unstable than the ground state, which means

most of the data is from n0. The adjusted γ equals 1.80 × 107. Although the weights of

the excited states are small, it is shown that the modeling can be improved considerably.
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Of course different weight settings can be tried and more excited stated can be taken into

account. More precise parameter settings need the extension of the stationary model to

a dynamical one, which will be discussed in Chapter 4.
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Figure 3.2: Fitting of the quantum anharmonic oscillator at mixed-state to the daily
Nikkei225 Index. The dashed black line is the probability distribution described by the
ground state of the quantum model (γ = 1.55×107); the solid purple line is a mixed-state
distribution of Eq. (3.1) with ω0 = 1 and ωn = 0.005, n = 1, 2, ..., 10 (γ = 1.80 × 107);
the solid blue line is the combination of two mixed-state distributions with the same
parameter settings except for γA = 4.55× 107 and γB = 5.20× 106 respectively.

Comparing the fitted values of γ for the monthly data (2.05 × 104) and daily data

(3.75 × 106 and 1.80 × 107), we can see that their potential strengths are quite different

although for the same time period in the same market. This difference comes from the

assumption that the potential describing the market environment is invariant. As the

real market environment should have changed with time, especially for the data covers

the period as long as 20 years, the fitted parameter is the average value. For the monthly
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data, a great number of detailed environment information that is related to strong external

force measured by γ was missed.

More precisely speaking, γ is of different values for different time. For a short time,

there is no enough data for us to do statistics and determine the values of parameters.

However, the modeling result can be further improved by the consideration of heteroge-

neous potentials. Although it is not easy to determine the parameter setting for each

small time period, we can predict that the parameter set {γi} can capture the statistical

characters of data sample more perfectly than a single γ. We use a simple case with two

γ, denoted γA and γB respectively. The weights of these two γ are set equal and for

each γ excited states are considered as Eq. (3.1). The multi-potential probability density

function can then be described as

|Ψ̃(r)|2 = 1

2ΩA

10∑
n=0

ωA
n |ψA

n (r)|2 +
1

2ΩB

10∑
n=0

ωB
n |ψB

n (r)|2, (3.2)

where n still labels the energy level, ωi
n is the weight for the nth energy state, Ωi =∑10

n=0 ω
i
n, and ψi

n(r) is the corresponding wave function with i = A(B) for γA = 4.55×107

and γB = 5.20 × 106. As the solid blue line shown in Figure 3.2, the multi-potential

probability distribution fits the data better than the mixed-state one.

In order to make sure that if the modeling methods are universally applicable, we

also use it to analyze to data from other markets, i.e. SSE Composite Index and S&P

500. The results are listed in Table 3.2 and 3.3 at the end of this chapter. It is shown

that the statistics of the fitted probability distributions agree with Nikkei 225 on the

relative appropriateness of the three modeling methods as: Multi-Potential Modeling >

Mixed-State Modeling > Ground-State Modeling.

In summary, we have demonstrated that the quantum oscillator model is applicable

to Nikkei 225. It uses wave function to describe the stock price instead of stochastic

processes in classical modeling. Different from the models with classical mechanics such

as Langevin equation, the noise term is not necessary for the fluctuation of stock price
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in equilibrium. The state of stock price is quantized and the ground state is much stable

than the excited states. Thus the stock price stays at the ground state most of the

time, which is the reason that the wave function of ground state alone can and has been

applied to describe the probability distributions of price return. This quantum model can

satisfyingly model index data with low frequency. Applying the mixed-state modeling

and multi-potential modeling method, the index data with high frequency can also be

well fitted.

3.3 Illiquid markets

The mechanics of the stock price in real markets can be modeled by the liquid market

with dominant market makers in our quantum oscillator model. According to the financial

interpretation of the model potential, however, there should exist situations even for a

short moment where the liquidity is not well maintained. In this section, we discussed the

illiquid markets, saying contrarian dominant and trend follower dominant markets. It is

the first piece of work that considers the overwhelming behaviors of contrarian trading or

trend following, which rarely but are existed in the real markets.

For the CT dominant market, we give a briefly theoretical discuss. For the TF

dominant market, we propose a data filtering method to produce a quasi-series of historical

prices, and adjust the parameters in our model to fit them.

3.3.1 Contrarian dominant markets

As |c| ≪ γ corresponds to liquid market, the illiquid markets request not only |c| > γ but

also |c| comparable to γ. Thus we calculate the PDFs of γ ≤ c ≤ 5γ for CT dominant

market, as shown in Figure 3.3.

It is found that the behaviors of contrarians have similar effect on the shape of PDF

as that of market makers. But the large c can relatively increase the risk aversion term,

which finally results in sharper peaks in the probability distribution. As shown in Figure
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Figure 3.3: The modeling PDFs for the contrarian dominant markets with c/γ =
1, 2, 3, 4, 5 respectively. γ = 3.75 × 106 and k = 1 is used according to the liquid market
modeling result for Nikkei 225.
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Figure 3.4: The relation of kurtosis and c/γ for contrarian dominant markets, where the
value 3, i.e. the kurtosis of Gaussian distribution, has been subtracted for the vertical
ordinate.
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3.4, although the kurtosis is larger than 3, the difference is not significant. Therefore, we

can not differentiate the environments of CT dominant market from the MM dominant

one by adjusting the parameters of this quantum model to real market data.

3.3.2 Trend follower dominant markets

Trend follower dominant market as the other type of illiquid market represents the situa-

tions when the effect of TFs’ behaviors is quite strong than the CTs’ and even comparable

to the MMs’.

−0.5 0 0.5
0

1

2

3

4

5

6

7

8

Price Return

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 
c/γ=−1
c/γ=−1.01
c/γ=−1.02
c/γ=−1.03
c/γ=−1.04

Figure 3.5: The PDFs calculated from the for trend following dominant markets with
c/γ = −1,−1.01,−1.02,−1.03,−1.04 respectively, where γ = 3.75× 106 and k = 1.

Figure 3.5 shows that around c/γ = −1, the shape of PDF of the price return is much

sensitive. When c becomes smaller than −1, causing the coefficient of the quadratic term

in model potential, (γ + c)/2 turns to negative, the peak of the unimodal distribution
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will collapse and two peaks locate symmetrically along the center instead. The well

acknowledged Gaussian-like distribution turns to a bimodal distribution, where the two

peaks mean the great possibility of the occurrence of crashes or bubbles.

In order to see if the bimodal PDF, which has not been studied in previous works,

exists in real market, we have to deal with historical stock prices for TF dominant markets.

Unfortunately, as the TF dominant environment rarely happened in the markets, there is

no corresponding raw data. Thus we propose a data filtering method to obtain quasi-series

of historical prices for TF dominant market.
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Figure 3.6: The time series of Nikkei225 daily data (from March 1, 1996 to February 29,
2016 with 4925 ticks, it is noted that only the first 500 ticks are showed in this figure
to help distinct the price and MA line), the corresponding 60day MA, and an example
of artificial price series obtained by shuffling the price returns of the original Nikkei 225
daily data where the initial price is set the same.

The key point of this method is moving average (MA), which has been used as a

simple efficient tool for timing buy and sell signals. Making use of price series and MAs,

the traders can figure out the beginning or the end of a trend in advance by following the

Granville’s rules [Granville, 1960]. There are 8 rules summarized for the prospective users.
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For example, it can be considered a buy signal when the stock price passes upward through

a flat or rising moving average line has been significantly declining, and conversely, if the

stock price is passing downward though a flat or declining moving average line after a

rising, it is a good time to sell (Figure 3.6). The other rules are more complicated and

more difficult to grasp, however all of they tell us that it is never too much to focus on

the crossovers of the moving average line and its corresponding stock prices.

Based on the consideration that the trend followers become extraordinarily active

around the crossovers, we use the price returns of the crossovers to draw a probability

distribution of trend following dominant market.
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Figure 3.7: The probability distributions of the price return for the trend following dom-
inant market extracted from the data in Figure 3.6 and the scaled model results with the
same volatility (σ = 0.0190). The Scaled parameters are: γ = 2.4× 1011, c = −1.00047γ,
k = 1. The kurtosis are 2.9378 and 1.4453 respectively.

Figure 3.7 shows that our quantum model can describe the trend following dominant
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market well. The scaled parameter c has the compatible absolute value with γ, which

means that the trend following is strong but not enough to overwhelm the market makers.

This is reasonable because we just coarsely consider the crossovers of 60 MA and price

line as the ticks when the trend followers are active, while in reality the traders use MA of

different lengths and the full Graville’s rules require further analysis more than the simple

crossovers. Thus the data sample we picked out inevitably contains some impurities and

of course there was some other data missed. The data analysis and the quantum model

consistently give us the result of a market with strong but not that strong trend following.

In order to make sure that the filtered price series maintained its original characters

different from artificial random series, we will apply the filtering method to some random

price series and compare the results with that for the real series. We randomly shuffled

the price returns of the original data represented solid blue line 100 times, producing 100

sets of artificial price series like the line solid red line in Figure 3.6. The PDFs of the full

series, no matter for the shuffled ones or the original data, is the same. Applying the data

filtering method to the original and the 100 shuffled price series respectively, we obtain

101 sets of quasi-series of price return for TF dominant market. Figure 3.8 shows the

statistical characters of quasi-series.

It can be seen that the standard deviations and kurtoses for the shuffled series are

clustered at a distance away from that for the original data. We can believe that there

exists some trends in the stock price that is different from random series.

Similar trends can also be observed in SSE Composite Index and S&P 500 as Figure

3.9 and Figure 3.10. The quasi-series produced from the data filtering method based on

Granville’s rules is demonstrated reliable.

Applying the data filtering method to SSE Composite Index and S&P500, similar

bimodal distributions can be obtained. We adjusted the parameters to fit the two sets of

quasi-series. It is shown that the overwhelming trend following would give rise to bubbles

or crashes.

In addition, we checked the distributions of filtered data using MA with different
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Figure 3.8: The standard deviations and kurtoses of the PDFs for TF dominant market
extracted from 100 shuffled price series and the original Nikkei225 daily data (from March
1, 1996 to February 29, 2016).
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Figure 3.9: The standard deviations and kurtoses of the PDFs for TF dominant market
extracted from 100 shuffled price series and the original SSE Composite Index, where
MA= 60 days has been used.
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Figure 3.10: The standard deviations and kurtoses of the PDFs for TF dominant market
extracted from 100 shuffled price series and the original S&P 500, where MA= 60 days
has been used.

lengths of MA term. As shown in Figure 3.13, short-term MAs (such as those with the

length of MA term shorter than 5 days) can not successfully help to acquire quasi-series

for TF dominant market. It indicates that short-term MAs are rarely utilized by the

chartists in market. In our calculation, MAs with term longer than 5 days are able to give

bimodal distributions. Moreover, there is no clear dependency of the PDF with lengths

of MA term for those long-term MAs.

The standard deviations of the filtered data with different lengths of MA term and

for different markets are listed in Figure 3.14. If we consider the standard deviation of

the filtered data as a measurement of the utilization frequency, the periodic changes of

the standard deviation for a certain market data can be take as the result of the chartists’

preference on the length of MA term. The blue squares, corresponding to Nikkei 225,

have the largest number around MA= 10, 100, 180, ... days. It indicates that these MAs

are more frequently referred by the participants in Nikkei 225. Similar preferences can

also be observed in SSE Composite Index and S&P 500. It is noted that there is no
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Figure 3.11: The histogram of price turn of SSE Composite Index for TF dominant
environment and the fitted model results, where the quasi-series is extracted from daily
SSE Composite Index, January 4, 1996 to June 1, 2016. The fitted parameters are:
γ = 1.4 × 1011, c = −1.00048γ with k = 1. The standard deviations and kurtoses are
0.0260 and 5.0947 for the data, while 0.0181 and 1.6451 for the model.
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Figure 3.12: The histogram of price turn of S&P 500 for TF dominant environment
and the fitted model results with the same volatility (σ = 0.0165). The quasi-series is
extracted from daily S&P 500, January 4, 1996 to June 1, 2016. The fitted parameters are:
γ = 4.9× 1011, c = −1.00036γ, k = 1. The kurtosis are 3.9351 and 1.4787 respectively.



56 Chapter 3. Stationary Modeling Results

linear relation of their preference and the length of MA. However, it can be seen from the

figure that long-term MAs are more preferable in Nikkei 225 and S&P 500 than in SSE

Composite Index.
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Figure 3.13: Probability distributions of filtered Nikkei 225 daily data according to dif-
ferent lengths of MA term.

The filtered data we obtain from 60day MA although can be used to represent the

TF dominant market, there must contains some impurity. But as it does not make any

qualitative difference in our study, we can just use the results with no more detailed

analysis.

3.4 Summary

In this chapter, stationary models with wave function description are analyzed for the

study of leptokurtic distributions of price return.

Based on the anharmonic oscillator with financial interpretation, we found that the

sharp peaks and heavy tails of the probability distributions can be attributed to the mixed

energy levels and multi-potentials of the stock. It can give satisfying modeling results of
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Figure 3.14: Standard deviations of the filtered data for Nikkei 225, SSE Composite Index
and S&P 500 respectively.

return distributions for the liquid markets. The quantum model is good at describing the

probability distributions because it can give a PDF directly without doing statistics on

simulated time series.

In addition, the model makes it possible to study the extreme markets such as trend

following dominant markets.
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Chapter 4

Dynamical Quantum Modeling

4.1 Expected time series of price return and volatility

It has been demonstrated that for any instant time, the state of a stock price can be

theoretically described by a wave function instead of a single observed value. However,

the stylized facts that we observed from the markets are based on the large number of time

series, which is in fact the measured values of stock prices but not the wave functions. Thus

in oder to guarantee the verifiability, it seems not appropriate to apply the wave function

itself to model the dynamics of stock price. In addition, reviews on quantum correlation

indicate that physicists concern more about the correlations between operators or wave

functions, which have nothing to do with the correlations of measurements. Fortunately,

the wave function, as a full description of quantum state, provides us the information

of theoretical expectations of all observables. If the stylized facts are maintained in the

expectations, i.e. the averaged time series, it becomes possible to recover the facts in

quantum models.

We firstly prove that the stylized facts, especially leptokurtic distributions and volatil-

ity clustering, are maintained in the averaged time series of price return. It is not possible

to acquire time series of price return from the “paralleled world” since we have not found

the way back in time. We can make use of the simulated time series instead of “paralleled

60
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ones”. The well studied GARCH (generalized autoregressive conditionally heteroscedas-

tic) models will be applied in this study. As we focus on the volatility clustering in this

chapter, it is sufficient to only work on the autocorrelations of return and volatility for

the averaged time series.

A GARCH(p,q) process can be expressed as [Francq and Zakoian, 2010]


ϵt = σtηt

σ2
t = ω +

∑q
i=1 αiϵ

2
t−i +

∑p
j=1 βjσ

2
t−j,

(4.1)

where {ηt} is an i.i.d sequence with distribution η. As we concern only leptokurtic dis-

tributions and qualitative description of volatility clustering, the specific version of the

processes as GARCH(1,1) is qualified in this study:


ϵt = σtηt

σ2
t = ω + αϵ2t−1 + βσ2

t−1,

(4.2)

where η is taken as normal distribution N (0, 1) with

⟨ηt⟩ = 0, ⟨ηtηt′⟩ = δtt′ ;

⟨η2t ⟩ = 1, ⟨η4t ⟩ = 3.

(4.3)

4.1.1 Artificial time series from GARCH

Three parameters ω, α and β need to be confirmed before GARCH(1,1) simulation. Es-

timating GARCH(1,1) with the daily Nikkei 225 from January 4, 1996 to June 22, 2017

including 5287 data, we obtain the parameters as

{ω = 4.95× 10−6, α = 0.112, β = 0.870.} (4.4)
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Making use of (4.4), we obtain a set of artificial time series of price return having similar

statistical characters and stylized facts with the data. The length of each time series

is the same with the real data, where the first 1000 time steps in the simulation have

been abandoned. The number of the set is M=5000, i.e. 5000 paralleled time series are

produced. Both the averaged time series of price return and volatility should be calculated

as

Eϵt =
1

N

M∑
m=1

ϵ
(m)
t ;

Eσ2
t =

1

N

M∑
m=1

ϵ
2(m)
t ,

(4.5)

where m denotes the number for the paralleled time series, M = 5000, and volatility has

been considered as instant squared return based on zero return.
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Figure 4.1: Averaged time series of price return and volatility produced from GARCH(1,1).
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The averaged time series of artificial price return and volatility we obtained are shown

in Figure 4.1. The averaged price return fluctuates around zero, and the averaged volatility

fluctuates around a positive value. This positive value can be theoretically obtained as

ϵ2t =ω + αϵ2t−1 + βσ2
t−1

=ω + (α + β)σ2
t−1

=
m−1∑
i=0

(α + β)iω + (α+ β)mσ2
t−m

=
1− γm

1− γ
ω + γmσ2

t−m,

(4.6)

with γ = α + β. The overline symbol � represents calculating the average of the

paralleled series for each time step. As GARCH models require α + β < 1, when m is

large enough, it is not difficult to obtain

ϵ2t →
ω

1− γ
. (4.7)

For the parameter setting (4.4), the theoretical value of volatility in equilibrium is 2.75×

10−4, which is consistent with the numerical results in Figure 4.1.

Calculating the autocorrelations for the averaged time series of both return and

volatility, it is found that the characters of the autocorrelations, i.e. zero autocorrelation

of return and slow decaying autocorrelation of volatility, are maintained. Figure 4.2 ex-

hibits the autocorrelations for randomly picked 5 time series and the averaged ones. The

differences among these autocorrelations are caused by the randomness of the stochastic

processes. It is not possible and necessary for us to quantify the exponents of the decays.

However, It can be easily seen that beginning with the real data, we can recover the

facts - no autocorrelation in return but slow decaying positive autocorrelation in volatil-

ity of return - with the artificial time series produced by the GARCH model and the

corresponding averaged one.

As shown in Table 4.1, the averaged series is not suitable to be considered as an
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Figure 4.2: Autocorrelations of return and volatility calculated from the GARCH simu-
lated time series and the corresponding averaged series in Figure 4.1. 5 of all the 5000
time series are randomly picked and plotted.

Table 4.1: The statistical characters of artificial time series of price return and the corre-
sponding averaged one, compared with the real data. The average values are calculated
from the averaged time series of return and volatility, not the average of the statistics.

Mean Variance Skewness Kurtosis
Simulation 1 −4.71× 10−5 2.05× 10−4 0.0640 4.76
Simulation 2 2.56× 10−4 2.31× 10−4 -0.137 5.54
Simulation 3 −5.30× 10−5 2.76× 10−4 -0.0823 5.63
Simulation 4 −3.52× 10−4 4.96× 10−4 -0.446 16.6
Simulation 5 −4.51× 10−5 2.43× 10−4 -0.0432 4.08
Averaged Return 5.08× 10−7 5.61× 10−8 0.0316 3.02
Averaged Volatility 2.76× 10−4 1.08× 10−10 0.501 3.88
Data 1.11× 10−4 2.32× 10−4 -0.134 8.51
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artificial time series of price return or volatility since the fluctuation of return itself has

been largely eliminated. In addition, the statistics of real data is not well fitted by that

of the artificial series. We can attribute it to the defect of GARCH models, especially the

simple GARCH(1,1) used here. The deviation of the autocorrelations for the averaged

series from that for real data (Figure 4.3) also indicates the incapability of GARCH

models. But as we only concern about volatility clustering in order to qualitatively prove

the maintainability of it in the average of time series, we can ignore the defects of GARCH

in this section.
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Figure 4.3: Autocorrelations of the price return and volatility for averaged GARCH sim-
ulations and real data.
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4.1.2 Theoretical analysis

The conclusion that the characters of autocorrelations are maintained in the averaged

GARCH series can also be proved theoretically. We use the formula of correlation function

in statistical mechanics

C(t+ τ, t) = ⟨X(t+ τ)X(t)⟩ − ⟨X(t+ τ)⟩⟨X(t)⟩. (4.8)

Firstly, it is not difficult to demonstrate that the autocorrelations of GARCH series

are zero and the autocorrelations of the second order variables are positive.

Autocorrelation of ϵt (price return)

With the help of the relation that


⟨σtηt+i⟩ = ⟨σt⟩⟨ηt+i⟩ = 0, i = 0, 1, 2, . . . ,

⟨ηt⟩ = 0,

(4.9)

we can obtain the autocorrelation of ϵt as

Cϵtϵt−n =⟨ϵtϵt−n⟩ − ⟨ϵt⟩⟨ϵt−n⟩

=⟨σtσt−nηt−n⟩⟨ηt⟩ − ⟨σt⟩⟨ηt⟩⟨σt−n⟩⟨ηt−n⟩

=0.

(4.10)

Autocorraltion of ϵ2t (volatility)

Similarly, based on the relations

⟨σl
tη

k
t+i⟩ = ⟨σl

t⟩⟨ηkt+i⟩, i = 0, 1, 2, . . . , l, k = 1, 2, 3, . . . , (4.11)

and

⟨ϵ2t ⟩ = ⟨σ2
t η

2
t ⟩ = ⟨σ2

t ⟩⟨η2t ⟩ = ⟨σ2
t ⟩, (4.12)
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together with Eq. (4.3), we obtain

⟨ϵ2t ϵ2t−n⟩ =⟨(σtηt)2 · (σt−nηt−n)
2⟩ = ⟨σ2

t σ
2
t−nη

2
t−n⟩

=⟨(ω + αϵ2t−1 + βσ2
t−1)σ

2
t−nη

2
t−n⟩

=ω⟨σ2
t−n⟩+ (α+ β)⟨σ2

t−1σ
2
t−nη

2
t−n⟩

= [1 + (α + β)]ω⟨σ2
t−n⟩+ (α + β)2⟨σ2

t−2σ
2
t−nη

2
t−n⟩

= · · ·

=
n−2∑
i=0

(α + β)iω⟨σ2
t−n⟩+ (α + β)n−1⟨ϵ2t−(n−1)ϵ

2
t−n⟩

=
n−1∑
i=0

(α + β)iω⟨σ2
t−n⟩+ (α + β)n−1 (3α + β) ⟨σ4

t−n⟩,

(4.13)

with

⟨ϵ2t ϵ2t−1⟩ =⟨σ2
t σ

2
t−1η

2
t−1⟩

=⟨(ω + αϵ2t−1 + βσ2
t−1)σ

2
t−1η

2
t−1⟩

=ω⟨σ2
t−1⟩+ (3α + β)⟨σ4

t−1⟩.

(4.14)

At the same time,

⟨ϵ2t ⟩⟨ϵ2t−n⟩ =⟨σ2
t ⟩⟨σ2

t−n⟩

=⟨ω + αϵ2t−1 + βσ2
t−1⟩⟨σ2

t−n⟩

=ω⟨σ2
t−n⟩+ (α + β)⟨σ2

t−1⟩⟨σ2
t−n⟩

= [1 + (α + β)]ω⟨σ2
t−n⟩+ (α + β)2⟨σ2

t−2⟩⟨σ2
t−n⟩

= · · ·

=
n−1∑
i=0

(α + β)iω⟨σ2
t−n⟩+ (α + β)n⟨σ2

t−n⟩2.

(4.15)
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Then the autocorrelation of ϵ2t can be easily to obtained as

Cϵ2t ϵ
2
t−n

=⟨ϵ2t ϵ2t−n⟩ − ⟨ϵ2t ⟩⟨ϵ2t−n⟩

=(α + β)n−1
[
(3α + β)⟨σ4

t−n⟩ − (α + β)⟨σ2
t−n⟩2

]
=(α + β)n−1

[
(α + β) · V ar(σ2

t−n) + 2α⟨σ4
t−n⟩

]
∝(α + β)n,

(4.16)

where V ar(σ2
t−n) = ⟨σ2

t−nσ
2
t−n⟩ − ⟨σ2

t−n⟩⟨σ2
t−n⟩ is the variance of {σ2

t−n}.

Autocorrelation of Eϵt (expected price return)

We denote Eϵt the sequence calculated from averaging a great number of independent

series ϵt with the same parameters. For any time t, Eϵt is the expected value of ϵt. If we

have M (M is large enough) time series, the mth one is represented by ϵ
(m)
t with m the

index numbered the time series. It is then known that the M numbers for the same time

step are independent, thus

Eϵt = ϵ
(m)
t = σ

(m)
t η

(m)
t = σ

(m)
t · η(m)

t = 0, (4.17)

where, � means calculating the average according to index m. The sequence Eϵt is in

fact constant 0. It is obvious that we have

CEϵtEϵt−n = ⟨Eϵt · Eϵt−n⟩ − ⟨Eϵt⟩⟨Eϵt−n⟩ = 0. (4.18)

Autocorrelation of Eϵ2t (expected volatility)

For time t, Eϵ2t denotes the average of ϵ2(m)
t according to index m:

Eϵ2t = ϵ
2(m)
t = σ

2(m)
t η

2(m)
t = σ

2(m)
t · η2(m)

t = σ
2(m)
t . (4.19)
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After calculations

⟨Eϵ2t · Eϵ2t−n⟩ =⟨σ2
t · σ2

t−n⟩

=ω⟨σ2
t−n⟩+ (α + β)⟨σ2

t−1 · σ2
t−n⟩

= [1 + (α + β)]ω⟨σ2
t−n⟩+ (α + β)2⟨σ2

t−2 · σ2
t−n⟩

= · · ·

=
n−1∑
i=0

(α+ β)iω⟨σ2
t−n⟩+ (α + β)n⟨(σ2

t−n)
2⟩,

(4.20)

and

⟨Eϵ2t ⟩⟨Eϵ2t−n⟩ =⟨σ2
t ⟩⟨σ2

t−n⟩

=ω⟨σ2
t−n⟩+ (α + β)⟨σ2

t−1⟩⟨σ2
t−n⟩

= [1 + (α + β)]ω⟨σ2
t−n⟩+ (α + β)2⟨σ2

t−2⟩⟨σ2
t−n⟩

= · · ·

=
n−1∑
i=0

(α+ β)iω⟨σ2
t−n⟩+ (α + β)n⟨σ2

t−n⟩2,

(4.21)

we have the autocorrelation of expected volatility

CEϵ2tEϵ2t−n
=⟨Eϵ2t · Eϵ2t−n⟩ − ⟨Eϵ2t ⟩⟨Eϵ2t−n⟩

=(α + β)n
{
⟨(σ2

t−n)
2⟩ − ⟨σ2

t−n⟩2
}

=(α + β)n · V ar(σ2
t−n)

∝(α + β)n.

(4.22)

The consistence of Eq. (4.22) with Eq. (4.16) indicates that the autocorrelations

are maintained in the expected (or averaged) time series. Thus it is demonstrated that

we can study volatility clustering in quantum description with “expected time series” of

squared return (volatility).
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4.2 Trading volume as a measurement of energy

As shown in the stationary modeling of the liquid markets in Chapter 3, although the

quartic term in the potential results in probability distributions of price return with

larger kurtosis, it is not the major attribution of the leptokurtic distributions of a long

time series of price return. In another way, the difference between the wave functions of a

harmonic oscillator and the corresponding anharmonic one (at the same energy level) can

be neglected in the dynamical modeling. Thus, in order to simplify the computation, we

apply the potential of harmonic oscillator to study the changes of probability distributions.

As the PDFs for all the energy levels are symmetric along x = 0, it is obvious that no

matter how the probability distribution changes, the expected return is constant zero.

This indicates that there is no autocorrelation of the return. Then we focus on the time

series of expected volatility in this chapter.

The changes of probability density function can be represented by the dynamics of

energy, since there is a correspondence between the PDF and energy. Moreover, the PDF

(or energy) is determined by two factors - the parameters of the potential and the energy

level at which the stock price stays, which will be discussed separately.

Then what is the financial correspondence of energy in the stock market? Meng et

al. suggested trading volume as a representation of energy for a single stock [Meng et al.,

2016]. Trading volume seems a prospective measurement of the “energy” for a stock.

Before dynamical modeling of energy, we need to study the statistical characters of the

trading volume and its relation to price return in advance.

We deal with the attainable data for Nikkei 225, which covers the daily close price and

recorded trading volume from March 17, 2003 to June 22, 2017. The date is not always

successive due to some missing of the corresponding trading volume. There includes data

for 3474 days. Figure 4.4 plots the time series of price return and the corresponding

trading volume. It is noted that trading volume is detrended for autocorrelation analysis

with the help of normalized trading volume:
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V̂t,k =
Vt − µV ;t,k

σV ;t,k

,

µV ;t,k =
1

k

k−1∑
i=0

Vt−i,

σV ;t,k =

√√√√1

k

k−1∑
i=0

(Vt−i − µV ;t,k)2.

(4.23)

The detrended trading volume can then be expressed as

Ṽt,k = σV V̂t,k + µV , (4.24)

where µV and σV are the mean and standard deviation of the full series of trading volume.
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Figure 4.4: The time series of price return and trading volume. The trading volume
has been detrended according to Eq. (4.23) and Eq. (4.24) with the detrending window
k = 300.
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Figure 4.5, the scatter figure of the normalized trading volume and price return, shows

that the data points clustered in obvious different pattern around low volumes and high

volumes. It is shown that for low volumes, the price return tends to fluctuate with small

volatility, while more data points would emerge far from zero return for high volumes.

Figure 4.6 gives the probability distributions of the price return for different volume

ranges, which together with the corresponding statistics shown in Table 4.2 indicates

that the probability distributions of price return for large volume tend to be more like

multimodal ones. It is consistent with our discussion in Chapter 3, where the PDFs for

excited states are multimodal and larger energy has more peaks.
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Figure 4.5: Scatter plot of the normalized trading volume and corresponding index return.

Thus it is reasonable for us to assume a linear relation between trading volume of

a stock and its energy in the quantum model. We can consider the trading volume as a

measurement of energy.
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Figure 4.6: Probability distributions of price return for different normalized trading vol-
ume ranges.

Table 4.2: Statistics of the price returns for different normalized trading volume ranges
as in Figure 4.6. The skewness and kurtosis are missing for V̂t ∈ [6, 8) because the data
sample is too few to be calculated.

V̂t Mean Std Skewness Kurtosis
[−4,−2) 0.00334 0.0103 -0.641 1.98
[−2, 0) 0.000146 0.0113 -0.109 4.64
[0, 2) 0.000516 0.0176 -0.117 9.65
[2, 4) 0.00106 0.0266 -0.251 5.86
[4, 6) 0.000128 0.0290 -0.775 3.25
[6, 8) -0.0509 0.0772 - -
Full Data 0.000307 0.0153 -0.278 10.9



74 Chapter 4. Dynamical Quantum Modeling

4.3 Dynamics of energy level

We firstly assume the external potential form is kept, which means the dynamics of

probability distribution is caused only by the changes of energy level.

4.3.1 Relation of trading volume and expected volatility

As shown in the last section, we use the dynamics of trading volume to represent the

dynamics of energy, which provides a corresponding time series of expected volatility.
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Figure 4.7: Linear relation between the eigen energies and corresponding variance. Har-
monic oscillator with unit ~, m and ω0 = 1 has been applied.

According to the wave functions of harmonic oscillator, there is a linear relation

between energy and variance, i.e. expected volatility, as shown in Figure 4.7. The relation

is calculated from

E(r2; t) = ⟨ψn(r; t)|r2|ψn(r; t)⟩;

En =
1

2
~ω0.

(4.25)
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In other words, the autocorrelation of the expected volatility would coincide with that

of the trading volume. This means in the energy level modeling, the autocorrelation

of volatility (squared return) is approximated by that of trading volume. It is partly

reasonable because the positive correlation between conditional volatility and volume has

been found [Gallant et al., 1992].

4.4 2-Level modeling

As the trading volume is approximately continuous while the energy level or corresponding

eigen energy is discrete, it is more reasonable not to use the volume directly for the

modeling of energy level. Moreover, in the real market, the autocorrelation of volume and

that of volatility is not the same, which is deviated from result of direct application of

trading volume as energy level discussed in the last section. Then we assume that maybe

classifying the volumes into several countable energy levels is more appropriate.

We can begin this kind of modeling from the simplest case, where only two different

energy levels are considered. As an example, we use V̂c = 2 as the critical normalized

volume to help divide the data into two groups. The price return with normalized volume

less than V̂c is at the lower level, while the price return with normalized volume more

than V̂c is at the higher level (refer to Figure 4.5).

Figure 4.8 shows the probability distributions of price return for Level 1 and Level

2 respectively. It can be seen from the figure that the PDF of Level 1 is more similar to

the squared modulus of wave function of ground state, while the PDF of Level 2 is mixed

with that of excited states (higher energy levels).

After labeling the energy level for each price return, we can obtain the corresponding

time series of energy level as Figure 4.9 from the original data. We can see that some

obvious clustering of energy level. Then it is not surprising to find that the autocorrelation

of energy level is positive and decays slowly. It is shown in Figure 4.10 that the memory of

the artificial energy level is shorter than the original volume and close to that of squared
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Figure 4.8: Probability distributions of daily Nikkei 225 return for the two different energy
levels respectively, where V̂c = 2 has been assumed.
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Figure 4.9: Time series of energy level obtained from trading volume history for Nikkei
225. V̂c = 2 has been used to label the level.
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return. It indicates that it may exists only few energy levels with different shapes of

PDF in the real market. The deviation of the autocorrelation of trading volume from the

volatility may be attributed to the neglect of potential change, which will be discussed in

the next section about dynamics of potential.
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Figure 4.10: Autocorrelations of squared return, trading volume and the energy level
series obtained from the trading volume.

In a summary, the dynamical modeling of energy level demonstrates that there ex-

ist excited energy levels with multimodal PDFs in the stock market. And these high

energy levels are scarcely observed. The positively linear relation of the energy (level)

and corresponding variance explains the positive correlation between volume and con-

ditional volatility [Gallant et al., 1992]. The deviation of the autocorrelation of volume

from volatility indicates that other dynamics such as the dynamics of potential should be

considered. In addition, the recovery of volatility clustering can be realized by modeling
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the dynamics of energy level.

4.5 Dynamics of potential

According to dynamical modeling of energy level in the last section, it is necessary for us

to discuss the contribution of the changing potential to the autocorrelation of volatility.

It is convenient for us to consider only ground states of harmonic oscillators, based on the

reasons that 1) it has been proved in the previous chapters that the stock markets stay

at the ground states most of the time, and 2) excited states are rare as stated in the last

section.

For a harmonic oscillator with potential

V (r) =
1

2
ω2
0r

2, (4.26)

the PDF for ground state is

p(ω0, r) = |ψ0(ω0, r)|2 =
√
ω0

π
exp (−ω0r

2), (4.27)

with eigen energy

E0 =
1

2
ω0, (4.28)

where m = 1 and ~ = 1 have been assumed, and ω2
0 corresponds to γ + c in the model

potential Eq. (2.33). It is found that Eq. (4.27) is a normal distribution N (µ, σ2) with

µ = 0, σ2 = 1/2ω0. (4.29)

4.5.1 GARCH-like modeling

Eq. (4.29) indicates that the dynamics of potential is mathematically the same thing

with the dynamics of conditional volatility, one of the best known model is GARCH.
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Thus GARCH can be considered a special case of our model. And similar models, which

can be named GARCH-like models can be proposed. One of the possible difference is

that the dependence on squared return is not necessary to be predefined. Moreover, as

the quantum models deal with expectation rather than random variables, we cannot and

need not to give simulated time series of price.

4.5.2 Trading volume modeling

It is known that estimation of GARCH models concerns only stock price, while another

quantity, trading volume we proposed in this quantum model is rarely considered. Then

here we will give a quantum modeling of the dynamics of potential with trading volume.
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Figure 4.11: Time series of expected volatility compared with the squared return of real
data. The data sample is from Nikkei 225 illustrated at the beginning of this chapter. In
order to make the expected volatility shares the same order with data, we have applied
σ2 = 100/E0.
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Making use of Eq. (4.28) and Eq. (4.29), we can analytically obtain the relation of

ground state energy and variance:

σ2 ∼ 1

E0

. (4.30)

From this relation and the time series of trading volume from the real market, we can

model the time series of expected volatility as Figure 4.11. The modeled time series agrees

with the theoretical results that the expected volatility would fluctuate around a positive

value. A deficiency of the modeled time series is that there may exist singularity with

negative value, which should not emerge. The expected volatility of the 67th time step in

the figure is the only one in our modeling. It is caused by the detrending process of the

volume. However, this kind of singularity would not affect the autocorrelation.
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Figure 4.12: Autocorrelations of squared return and the expected volatility modeled by
trading volume. The autocorrelation of volume itself is also displayed.
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Then the calculated autocorrelation of expected volatility is plotted in Figure 4.12.

It is shown that the autocorrelation of squared return can also be perfectly fitted in the

model involving changes of potential. In other words, for a certain energy level, the

dynamics of potential maybe the cause of volatility clustering in price return. The data

of trading volume can help us to recover the autocorrelation of squared return (volatility)

in our quantum model.

It is noted that a quantitative relation between trading volume and expected volatility

is firstly proposed as Eq. (4.30). It indicates that the autocorrelation of expected volatility

is no longer the same with that of volume. Instead, the reciprocal relation indicates to a

negative correlation of volume and volatility, which is contradict with the stylized fact -

positive volume/volatility correlation. This can be explained by the work done by Meng

et al. [Meng et al., 2015].

Figure 4.13: Volatility as a function of trading volume E. Data are extracted from the
daily lines of Ping An Bank Co., Ltd (No. 000001) in Shenzhen Stock Exchange from
Jan. 14 to Feb. 28, 2013. [Meng et al., 2015]

Figure 4.13 is the volatility/volume correlation they obtained from real single stock.

In their study, they found that although there is a positive correlation of volatility and
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energy band (energy level), the volatility and energy is negatively correlated in the band

(level). It is just consistent with our modeling if we combine the dynamics of energy level

and that of potential together.

4.6 Summary

In this chapter, we extended the stationary quantum model in Chapter 2 and 3 to a

dynamical one. As quantum models give up the random variables used in stochastic

modeling, we study the autocorrelation of expected volatility and return series.

We successfully recovered the autocorrelation of return volatility, i.e. volatility clus-

tering, by taking trading volume into account, which has rarely done in previous works.

The dynamics of volatility have been attributed to that of potential itself and energy level.

The existence of energy levels agrees with the data analysis in the stationary modeling

in Chapter 3. The modeling of energy level results in positive volume/volatility correla-

tion based on the assumption of discrete energy and multimodal distributions, while the

modeling of potential results in negative volume/volatility correlation based on contin-

uous energy and unimodal distributions. It is believed that a combination of these two

modeling method would be more reasonable. In addition, quantitative relations of volume

(energy level) and expected volatility are proposed, which contributes to robustness of

stylized fact - positive correlation between volatility and volume.



Chapter 5

Conclusions and Future Works

5.1 Conclusions

This dissertation is a presentation of the author’s Ph.D studies on the quantum approaches

to the modeling of stock markets. Although there have been numerous works on the

financial markets, quantum application to finance brings novel ideas into the fundamental

mechanics in markets. As the financial markets are driven by human whose behaviors

are unpredictable, the classical models that based on the determinate theories are in fact

not the best choice for the study of finance. Quantum finance is a young field but has

achieved significant results by applying different theories from quantum mechanics. With

the assumption that the dynamics of stock price is not like a motion of a classical particle

but more similar to a quantum “particle”, we use wave function instead of actual number

to describe the fluctuation of stock price.

A appropriate Hamiltonian, consisting of the intrinsic kinetic operator and a external

potential operator, is then the key for this kind of models. Some previous works applied

the potential of fundamental quantum physical systems, such as the square well [Ataullah

et al., 2009] and the harmonic oscillator [Ye and Huang, 2008; Zhang and Huang, 2010;

Cotfas, 2013; Meng et al., 2015], directly for the modeling of stock price. However, the

lack of financial interpretation of the potential results in the disability of looking into the

83
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microscopic structure of markets. In order to overcome this shortcoming, we proposed a

financially interpretable potential for the stock price based on the dynamics of excess order

in the market. We derived a oscillator potential, including a quartic term that measures

the risk averse behavior of the market participants, as well as a quadratic term which

describes an elastic force towards zero return. It is demonstrated that the probability

distributions of the price return for Nikkei 225, SSE Composite Index and S&P 500 can

be well modeled. The introduction of the risk aversion term can somehow help reproduce

the leptokurtic of the distribution. The main reason of the sharp peak and heavy tails

can be attributed to the existence of excited states of the stock price, whose PDFs are

of multimodal distributions. It is one of the most important contributions since there

had been no such kind of discussion before. The differences of the modeling results

for Nikkei 225, SSE Composite Index and S&P 500 are reflected by the parameters in

the Hamiltonian. The utilization of wave functions ensure the possibility to describe

probability without noise term which had been indispensable for classical modeling. The

quantum description shed some light on the nature of stock price. It means that the stock

price may be essentially indeterminate, since the microscopic structure and dynamics

of the market are controlled by the behavior of human who behave (make decisions)

probabilistically.

One more achievement of the stationary modeling is that our quantum model can be

applied not only to the efficient markets (liquid markets), but also to other extreme mar-

kets (illiquid markets) such as contrarian dominant markets and trend following dominant

markets. In order to verify the theoretical results of TFDM, we proposed a data filtering

method based on Granville’s rules to obtain object data. It is found that the probability

distributions of price return collapse in the center, and instead two peaks emerge at the

both sides of zero return symmetrically. It indicates the tendency to have crashes or

bubbles, caused by the trend following behavior of the traders. In addition, the study

of the data filtering method help us understand some universal behaving patterns of the

traders. For example, traders in SSE Composite Index pay more attentions to the short
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term MAs than those in Nikkei 225 and S&P 500.

In the modeling of volatility clustering, the quantum model was extended to a dy-

namic version. The positive autocorrelation of squared return is considered as a quantita-

tive representation of volatility clustering. As quantum models provide PDFs instead of

random variables, expected time series of price return and volatility were introduced for

the autocorrelation study. Based on previous studies and data analysis of Nikkei 225, we

proposed trading volume as a measurement of energy. Then the dynamics of volume can

be modeled by energy level or potential respectively. The positive and slow decaying au-

tocorrelation of volatility can be recovered by each type of the dynamical modeling. One

of the conclusions of stationary modeling that the excited energy levels exist but rarely

emerge is confirmed. Moreover, quantitative relations of volume and volatility were de-

rived for different modeling methods - positive volume/volatility correlation for energy

level modeling and negative volume/volatility correlation for potential modeling.

Our quantum modeling exhibits many characters and advantages. Compared to

the classical models, 1) The fluctuation of stock price is naturally existed in our model,

which can be explained without noise simulation; 2) The PDFs can be modeled without

producing time series; 3) Energy level as a new concept for the stock markets are applied.

Compared to previous quantum models, 1) Oscillator potentials are financially derived; 2)

A anharmonic term of the potential has been discussed; 3) The existence of high energy

levels (multimodal distributions) has been discussed; 4) The dynamics of energy (wave

function) including energy level and potential is studied to recover volatility clustering;

5) Volume/energy correspondence and volume/volatility are discussed.

5.2 Future works

Based on the results and conclusions of the quantum models we proposed, a large number

of studies can be taken into progress of my future research. According to the main two

parts of this thesis, the future works can be proceeded by:
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• Optimizing the dynamical models by combining the energy level modeling and po-

tential modeling together.

• Proposing a quantitative method to predict probability distributions of price return

by combining the stationary and dynamical modeling results.

• Further studying volume/volatility correlation and other stylized facts such as lever-

age effect with quantum models

• Trying quantum version of agent-based models.



Appendix A

Numerical Solutions for Schrodinger

Equation

It is known that Schrodinger equation (SE), which is essentially a linear partial differen-

tial equation and also a diffusion equation, fully describes the state of a quantum system.

However, the partial differential equation can only be analytically solved for several sys-

tems with simple Hamiltonians, such as free particle and harmonic oscillator. Fortunately,

nowadays we can theoretically obtain the solutions of much more equations with the help

of computer and numerical algorithm.

In order to model the dynamics of stock price, we have to deal with SEs for different

Hamiltonians. Thus we take use of Finite Difference Method (FDM) to numerically

solve the SE. Further more, the numerical solutions is convenient for further analysis and

comparison of real data. FDM is based on taylor series,

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x) +O(h3);

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +O(h3),

(A.1)

where f(x) is a real or complex-valued function and h is a real or complex number. If

h is small enough, the first order derivative and second order derivative of function f(x)
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can be approximated as

f ′(x) =
1

2h
[f(x+ h)− f(x− h)] +O(h2), (A.2)

and

f ′′(x) =
1

h2
[f(x− h)− 2f(x) + f(x+ h)] +O(h2), (A.3)

which is called centered difference.

A.1 Eigen equation of energy

In the stationary modeling, we need the wave functions of stock price with a time-

independent potential. The time-independent SE, i.e. eigen equation of energy

[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x) (A.4)

is satisfied by any point xi(i = 1, 2, 3,…, N), where x is divided into N continuous small

parts during the possible range. We use ψi and Vi to represent ψ(xi) and V (xi) in the

following text.

Taking use of Eq. (A.3), the second order derivative can be approximated as

ψ′′
i =

1

∆x2
(ψi−1 − 2ψi + ψi+1), (A.5)

where ∆x is the step size with the value of ∆x = xi+1 − xi = xi − xi−1. Eq. (A.4) for xi

can then be written in a numerical form as

− ~2

2m

1

∆x2
(ψi−1 + ψi+1) +

[
~2

2m

2

∆x2
+ Vi

]
ψi = Eψi. (A.6)

Denoting the vector form of the wave function as Ψ =

(
ψ1 ψ2 · · · ψN

)T

, the

numerical form Eq. (A.6) for all the positions xi(i = 1, 2, 3,…, N) can then be transformed
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into matrix representation

HΨ = EΨ, (A.7)

with

H = K + V

=
~2

2m

1

∆x2



2 −1 0 · · · 0

−1 2 −1
. . . ...

0 −1 2
. . . 0

... . . . . . . . . . −1

0 · · · 0 −1 2


+



V1 0 · · · · · · 0

0 V2
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . 0

0 · · · · · · 0 VN


(A.8)

i.e. {Hi,i =
~2
m

1
∆x2 +Vi,i, Hi,i±1 = − ~2

2m
1

∆x2 , Hi,j = 0 for other elements}. The eigenvectors

Ψn of the matrix equation are the wave functions corresponding to different energy levels

En.

The Matlab code is written as follows, where the constants can be adjusted when

necessary.

1 %% This piece of code is written to solve the time−independent Schrodinger equation with

finite difference method.

2 close all

3 clc

4 clear all

5

6 %% Assign constants and parameters

7 % The variable step_size is the distance between each position.

8 % The variable number_of_data_points gives the total number of data points in the system.

9 % The system spans from x = −step_size*(number_of_data_points−1)/2 to x = step_size*(

number_of_data_points−1)/2.

10 step_size = 0.005;

11 number_of_data_points = 2001;
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12 x_positions = linspace(−step_size*(number_of_data_points−1)/2,step_size*(

number_of_data_points−1)/2,number_of_data_points);

13

14 % The variable hbar and the mass of the electron are set to one by default (Hartree Units) .

15 % You can change them to their SI values, but you will have to adjust step_size accordingly.

16 % gamma, k and c are the parameters measure the potential of the

17 % Hamiltonian, which can be set as different values for different markets.

18 hbar = 1;

19 mass = 1;

20 gamma=1;

21 k=0.01;

22 c=0.2; % the values of gamma, k and c can be changed accroding to your model setting.

23

24 %% Calculate Hamiltonian Matrix

25 % This section uses the finite difference method to calculate the Hamiltonian matrix.

26

27 % Kinetic energy matrix

28 kinetic = zeros(number_of_data_points);

29 for i = 1:number_of_data_points

30 kinetic ( i , i ) = 2;

31 if i > 1

32 kinetic ( i , i−1) = −1;

33 kinetic ( i−1, i ) = −1;

34 end

35 end

36 kinetic_multiplier = hbar^2/(2*mass*step_size^2);

37 kinetic = kinetic * kinetic_multiplier ;

38

39 % Potential energy matrix

40 potential = zeros(number_of_data_points);
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41 for i = 1:number_of_data_points

42 potential ( i , i ) = gamma*(0.5*(1+c)*x_positions(i)^2−0.25*k*c*x_positions(i)^4);

43 end

44

45 % Hamiltonian matrix

46 hamiltonian = kinetic + potential ;

47

48 %% Calculate the eigenvectors and the corresponding probability distribution functions

49 [eigenvectors, eigenvalues] = eig(hamiltonian); % the eigensystems of the Hamiltonian

matrix

50

51 % The ground state

52 ground_state= eigenvectors(:,1).*eigenvectors(:,1) ;

53 ground_state_probability=ground_state/sum(ground_state*step_size); % normalization of

probability desity to ensure the total probability be 1

54

55 % The first four excited energy state. Of course you can obtain any state by similar lines .

56 first_state = eigenvectors(:,2) .*eigenvectors(:,2) ; % +eigenvalues(2,2)*ones(

number_of_data_points,1)

57 first_state_probability = first_state /sum(first_state*step_size);

58

59 second_state = eigenvectors(:,3).*eigenvectors(:,3) ;

60 second_state_probability=second_state/sum(second_state*step_size);

61

62 third_state = eigenvectors(:,4) .*eigenvectors(:,4) ;

63 third_state_probability =third_state /sum(third_state*step_size);

64

65 forth_state = eigenvectors(:,5) .*eigenvectors(:,5) ;

66 forth_state_probability =forth_state /sum(forth_state*step_size);

67
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68 fifth_state = eigenvectors(:,6) .*eigenvectors(:,6) ;

69 fifth_state_probability = fifth_state /sum(fifth_state*step_size);

70

71 %% Plot the probability distribution functions

72 % The probability distributions are plot around the corresponding energy

73 % levels for clear comparision. Theoretically you can have

74 % "number_of_data_points" eigenvectors, but you only interested in the

75 % first several ones. The PDF of the ground state which is Gaussian−like is

76 % the most important one.

77 figure ;

78 plot (x_positions, ground_state_probability + +eigenvalues(1,1)*ones(

number_of_data_points,1), 'b', 'LineWidth', 2);

79 hold on;

80 plot (x_positions, first_state_probability + eigenvalues(2,2)*ones(number_of_data_points

,1), 'g', 'LineWidth', 2);

81 hold on;

82 plot (x_positions, second_state_probability + eigenvalues(3,3)*ones(number_of_data_points

,1), 'r', ' LineWidth', 2);

83 hold on;

84 plot (x_positions, third_state_probability + eigenvalues(4,4)*ones(number_of_data_points

,1), 'c', 'LineWidth', 2);

85 hold on;

86 plot (x_positions, forth_state_probability + eigenvalues(5,5)*ones(number_of_data_points

,1), 'm', 'LineWidth', 2);

87 hold on;

88 plot (x_positions, fifth_state_probability + eigenvalues(6,6)*ones(number_of_data_points

,1), 'k', 'LineWidth', 2);

89 hold on;

90 plot (x_positions, diag( potential ) , '−−k');

91 ylim ([0,10]) ;
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92 legend('Ground␣State', ' First ␣Excited␣State' , 'Second␣Excited␣State', ' Third␣Excited␣State' ,

' Forth␣Excited␣State' , ' Fifth ␣Excited␣State' , ' Potential ' ) ;

93 xlabel( ' Position ' ) ;

94 ylabel( ' Probability ␣ distributions ␣around␣different ␣energy␣levels ' ) ;

A.2 Dynamics of wave function

1 % Model quantum harmonic oscillator with periodic perturbation

2 % (Crank−Nicolson)

3 close all

4 clc

5 clear all

6

7 % Initialize the numerical paramters

8 Nx = 1001; % number of grid points

9 delta_x=0.01; % grid size

10 x=−delta_x*(Nx−1)/2:delta_x:delta_x*(Nx−1)/2;

11 x=x';

12 j0=(Nx+1)/2; % the number order of the space center

13 delta_t=0.0001; % time step

14 Nt=100; % number of ticks

15 t=1:Nt;

16

17

18 % Initialize the physical parameters

19 hbar=1;

20 omega=1;

21 m=1;

22 alpha=sqrt(m*omega/hbar);
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23

24 % Set the initial wave function

25 psi0=sqrt(alpha)/( pi^(0.25))*exp(−1/2*(alpha^2)*x.^2);

26

27 % The Hamiltonian operator matrix

28 H = zeros(Nx);

29 coeff = −hbar^2/(2*m*delta_x^2);

30 v0=m*omega^2*x.^2;

31 for j =2:(Nx−1)

32 H(j , j−1) = coeff;

33 H(j , j ) = −2*coeff+v0(j);

34 H(j , j+1) = coeff ;

35 end

36 % First and last rows for periodic boundary conditions

37 H(1,Nx) = coeff; H(1,1) = −2*coeff+v0(1); H(1,2) = coeff ;

38 H(Nx,Nx−1) = coeff; H(Nx,Nx) = −2*coeff+v0(Nx); H(Nx,1) = coeff;

39

40 %% Compute the system with (periodic) perturbation

41 V=x.^2; % form of the perturbation

42 tic

43 CN = ( inv(eye(Nx) + 0.5i*delta_t /hbar*H) * (eye(Nx) − 0.5i*delta_t /hbar*H) );

44 equi = input( 'Enter␣number␣of␣time␣steps␣for ␣ the␣system␣to␣be␣stable: ' ) ;

45 for n=2:equi

46 psi0= exp(−1i*V/hbar).*(CN*psi0);

47 p0=conj(psi0).*psi0;

48 plot (x,p0);

49 drawnow;

50 end

51 psi (:,1) =psi0;

52 psi2 (:,1) =psi (:,1) .*conj(psi (:,1) ) ;
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53 p(1)=sum(conj(psi(:,1)) .* psi (:,1) )*delta_x;

54 p(1)=p(1)*conj(p(1)) ;

55 px(1)=sum(conj(psi(:,1)) .*x .^4.* psi (:,1) )*delta_x;

56 px(1)=px(1)*conj(px(1)) ;

57 px2(1)=sum(conj(psi(:,1)) .*x .^2.* psi (:,1) )*delta_x;

58 px2(1)=px2(1)*conj(px2(1));

59

60 tick=input( 'Enter␣the␣time␣steps␣ for ␣one␣tick : ' ) ;

61 for n=2:Nt

62 psi_temp=psi(:,n−1);

63 for count=1:tick

64 psi_temp=exp(−1i*V/hbar).*(CN*psi_temp);

65 end

66 psi (:, n)=psi_temp;

67 psi2 (:, n)=psi (:, n) .*conj(psi (:, n)) ;

68 p(n)=sum(conj(psi(:,1)) .* psi (:, n))*delta_x;

69 p(n)=p(n)*conj(p(n)) ;

70 px(n)=sum(conj(psi(:,1)) .*x .^4.* psi (:, n))*delta_x;

71 px(n)=px(n)*conj(px(n)) ;

72 px2(n)=sum(conj(psi(:,1)) .*x .^2.* psi (:, n))*delta_x;

73 px2(n)=px2(n)*conj(px2(n));

74 if rem(n,10)==0

75 toc

76 end

77 end

78

79 %%

80 % Check the unitary

81 A=delta_x*sum(psi2);

82
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83 figure (2) ;

84 subplot(211);

85 for n=1:Nt

86 % if rem(n,100)==0

87 plot (x,psi2 (:, n)) ;

88 hold on;

89 % end

90 end

91 % subplot(212);

92 % plot(x,psi2 (:,1) ,x,psi2 (:, tau−1),x,psi2 (:, tau+1),x,psi2 (:, Nt)) ;

93

94 for n=1:Nt

95 C(n)=sum(p(1:n))/n;

96 Cx(n)=sum(px(1:n))/n;

97 Cx2(n)=sum(px2(1:n))/n;

98 end

99 figure (3) ;

100 subplot(221);

101 plot ( t ,p);

102 xlabel( ' t ' ) ; ylabel( ' |<psi( t ) | psi(0)>|^2' ) ;

103 subplot(223);

104 loglog( t ,C);

105 xlabel( ' t ' ) ; ylabel( 'C(t) ' ) ;

106 title ( ' Correlation ␣ function ␣of ␣ time' ) ;

107 subplot(222);

108 loglog( t ,Cx/Cx(1));

109 xlabel( ' t ' ) ; ylabel( 'Cx(t) ' ) ;

110 title ( ' Correlation ␣ function ␣ for ␣x ' ) ;

111 subplot(224);

112 loglog( t ,Cx2/Cx2(1));
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113 xlabel( ' t ' ) ; ylabel( 'Cx2(t) ' ) ;

114 title ( ' Correlation ␣ function ␣ for ␣x^2') ;

115

116 figure (4) ;

117 subplot(311);

118 plot ( t ,p);

119 xlabel( ' t ' ) ; ylabel( ' |<psi( t ) | psi(0)>|^2' ) ;

120 subplot(312);

121 plot ( t ,px);

122 xlabel( ' t ' ) ; ylabel( ' px(t ) ' ) ;

123 subplot(313);

124 plot ( t ,px2);

125 xlabel( ' t ' ) ; ylabel( ' px2(t) ' ) ;

126

127 % check the kurtosis of final PDF

128 final_mean=sum(psi2(:,Nt).*x*delta_x);

129 final_var=sum(psi2(:,Nt) .*(x−final_mean).^2*delta_x);

130 final_std =sqrt( final_var ) ;

131 final_quar=sum(psi2(:,Nt) .*(x−final_mean).^4*delta_x);

132 final_kur=final_quar /( final_var )^2;

133

134 %

135 % figure(4) ;

136 % plot(x,V);



Appendix B

Probability Distribution for Classical

Oscillators

B.1 Harmonic oscillators

We consider a classical harmonic oscillator moving under a force which depends on the

oscillator’s position x and a constant k

F (x) = −kx (B.1)

V (x) =
1

2
kx2 (B.2)

where x = 0 is the equilibrium position at which the force is 0 and k > 0. Taking use of

Newton’s second law, the dynamical equation of the system is

ẍ+
k

m
x = 0 (B.3)

where m is the mass of the oscillator. The solution for the differential equation Eq. (B.3)

can be easily obtained as

x(t) = A cos(ωt+ ϕ) (B.4)

98
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where ω =
√
k/m and A, ϕ are constants. Eq. (B.4) tells us that the motion is periodic

with period T = 2π/ω, amplitude A and initial phase ϕ.

We put the oscillator in a black box. Then every time when we want to observe the

oscillator and check the position of its mass, we must open the box. If we observe the

oscillator enough times with the same time interval and count the numbers it is observed

for each position interval dx, a probability density distribution can be achieved. Denote

the probability density at position x as p(x), then it is reasonable to consider

P (x− ε

2
∼ x+

ε

2
) =

∫ x+ ε
2

x− ε
2

p(x)dx = 2 · ε/v(x)
T

(B.5)

where ε is infinitesimal, v(x) is the absolute velocity of the mass at position x. The

relationship of absolute velocity and position can be calculated from Eq. (B.4) as

v(t) =
dx(t)

dt
= Aω sin(ωt+ ϕ)

v2 + (ωx)2 = A2

v =
√
A2 − ω2x2

then

p(x) =
2

vT
=

1

π
√

(A/ω)2 − x2
(B.6)

We can also solve Eq. (B.3) numerically using finite difference schemes


ẋn+1 = vn+1 =

xn+1−xn

∆t

ẍn = v̇n = vn+1−vn
∆t

(B.7)

then Eq. (B.3) can be written into numerical form as

vn+1 − vn
∆t

+ ω2xn = 0

which gives the recursive equation for the value of positions xn with the same time step
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∆t: 
vn+1 = vn − ω2∆txn

xn+1 = xn + vn+1∆t

(B.8)

In the numerical calculation, in addition to the intrinsic parameter ω, the motion also

depends on the initial condition with known position x1 and velocity v1. Then taking use

of Eq. (B.8), we can easily calculate the corresponding position and velocity (xn and vn)

at any time with n time steps.

B.2 Anharmonic oscillators

In stead of the potential V (x) = 1
2
kx2 in harmonic oscillator, here we begin to study

anharmonic oscillators with potential

V (x) =
k1
2
x2 +

k2
4
x4 (B.9)

where k1 > 0. The corresponding Newton’s equation is

ẍ+
k1
m
x+

k2
m
x3 = 0 (B.10)

with m as the mass of the anharmonic oscillator.

We solve Eq.(B.10) numerically by using:


ẋn+1 = vn+1 =

xn+1−xn

∆t

ẍn = v̇n = vn+1−vn
∆t

⇒


vn+1 = vn − (k1

m
xn +

k2
m
x3n)∆t

xn+1 = xn + vn+1∆t

(B.11)

Eq. (B.11) shares similar form with Eq. (B.8) except for the second term in the velocity

recursion because of the different potential force.

We firstly consider the potentials with positive square term, i.e. k1 > 0. Figure B.1

shows the potentials and position functions for three potentials with the same k1 = 1, but
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different k2.
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Figure B.1: Position Functions for Potentials with Positive Square Term

In fact when k2 < 0 and the absolute value of k2 is large enough, the potential would

inverse at the two sides of the horizontal axis. However, in order to use this analysis in

our market model, where |k2| should not to be too large, so we constrain the energy of the

oscillator to keep it stay inside of the potential well. In our calculation, we set the initial

position of the oscillator is x1 = 1 while the initial velocity is v1 = 0. We can see from

Figure B.1 that a appropriate quartic term in addition to a positive square term potential

only affect the motion os the oscillator quantitively. Given a suitable initial energy to the

oscillator, its motion will always be periodic.

Figure B.2 gives the classical probability density for the above potentials according

to the probability density defined by Eq. (B.6).

What about if k1 < 0? Figure B.3 demonstrate three potentials with respectively no

quartic term, positive one and negative one. Similarly to the positive square discussion,

the absolute value of k1 is set equal to 1, i.e. k1 = −1. The black, blue and magenta line

in Figure B.3 represent the potential with k2 = 0, k2 = −0.5, k2 = 0.5 respectively. It

is obvious that a “oscillator” with negative square potential would run along either side

of the axis until it meets a wall (a excluded situation is staying still at x = 0). And
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Figure B.2: Classical Probability Distributions for Potentials with k1 > 0
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Figure B.3: Position Functions for Potentials with Negative Square Term
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a negative k2 would just accelerate the progress. A wall is needed for the probability

analysis, which is not included in our study.
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Figure B.4: Position Functions for Potentials with k1 < 0 and k2 > 0

However, when k2 > 0 (the magenta line), the position function becomes periodic

again. Given the form of potential, the motion will be determined by the initial condition.

Figure B.4 shows two results with different initial conditions, where the potential is the

same as the magenta line in Figure B.3. The initial velocity is the same 0, but the initial

position for the cyan is x1 = 0 while the blue one is x1 = 2.1.

We can see from the potential figure that the oscillating mode can be classified into

two kinds, where the specific conditions (x1 = 0 and x1 = ±2 is out of our consideration

when the “oscillator” would stay still at the equilibrium position x = 0). The oscillating

mode is similar to x1 = 1 (cyan) for x1 ∈ (−2, 0) ∪ (−2, 0) while like x1 = 2.1 (blue) for

(x1 < −2)∪ (x1 > 2). The “probability density” for these two modes is showed in Figure

B.5.

It can be seen from Figure B.5 that the first mode (cyan) is in fact the similar with

that of positive k1 because both of them are describing a particle in a parabolic or a

parabolic-like well. For the second mode, the “oscillator” moves through a potential bar-

rier from one well to another. So there exists a small hill in the middle of the “probability”
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Figure B.5: Classical Probability Distributions for Potentials with k1 < 0

density distribution.
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