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Abstract

The ability to process information in a flexible manner is crucial for an animal

to adapt to the ever-changing environment. Although intensive efforts have

been made to understand the neural mechanisms behind flexible information

processing, little is known about how this is achieved in the brain. In this the-

sis, we explore several neural mechanisms that may contribute to this ability,

through theoretical, as well as experimental studies.

Specifically, in the first study, we investigate the dynamics and stability of

associative memory, by incorporating sparse coding and nonlinear, short-term

synaptic dynamics. Using a mean field technique, we obtain the detailed bi-

furcation structure in stability and investigate how various dynamics depend

on the sparseness of memory patterns, the time constants of synaptic dynam-

ics and the strength of a negative feedback to the associative memory net-

work. When the memory patterns become sparse, the appearance of spurious

states is shown to hamper the performance of memory retrieval. However, we

demonstrate that this can be compensated by applying an appropriate nega-

tive feedback. Furthermore, the oscillatory states induced by the short-term

synaptic dynamics are found to depend on the sparseness of memory pattern-

s. These results suggest how the encoding and synaptic properties affect the

information storage in neural networks.

In the second study, we analyze the change of dynamics in random neural

networks under the framework of reservoir computing. In particular, we focus

on the influence of the statistical properties of external input. Using a mean

field model and numerical methods, we obtain the critical points where the

transition between the fixed-point state and the chaotic state occurs. In addi-

tion, we show that the statistical properties other than the first two moments

of the external input have only inferior effect on the dynamics. The results

can be used to design reservoirs in modeling and applications.

In the third study, we analyze data recorded from the prefrontal cortex of

monkeys during a working memory task. The task requires the monkey to
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perform logical computation which associates the outcome of each trial with

a visual cue in a flexible way depending on the implicitly given context. We

demonstrate that the information processing is underlain by a dynamical repre-

sentational switching from the context to the behavioral relevant information.

Based on our observations, we hypothesize that the prefrontal cortex actively

maintains and integrates task-relevant information by separated neural popu-

lations, and propose a neural network model in which the neural populations

are organized through feedforward, as well as recurrent structures. We show

that this model can qualitatively reproduce the results from recorded data

by using simulations with noisy integrate-and-fire neurons. Our results sug-

gest that the feedforward and recurrent structures in the prefrontal cortex are

crucial for the flexible information processing in the prefrontal cortex.

Collectively, our studies provide an insight into how various neural mechanisms

contribute to the flexible information processing in neural networks.
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Chapter 1

Introduction

An animal is exposed to extensive information in every single moment of its

life. How does the brain process such information in a flexible way is crucial

for the animal to adapt to the ever-changing environment. Past studies have

revealed a very important aspect of this processing, i.e. the large number of

neurons involved in it. Although a single neuron is complex enough to exhib-

it sophisticated behaviors depending on its anatomy and physiology, neural

networks provide a much richer repertoire of dynamics that enables cognitive

tasks such as pattern recognition and classification. Therefore possible neu-

ral mechanisms underlying information processing in neural networks are of

particular interest in neuroscience.

The processing of information depends critically on two aspects: transmis-

sion, and storage. On a cellular level, information is transmitted by action

potentials. The membrane of a neuron selectively allows ions to pass what

is known as ion channels through diffusion, trying to maintain a potential

difference called the reversal potential. On the other hand, the net charge

between the interior and exterior sides of the membrane, referred to as the

membrane potential, depends on the concentrations of various types of ions.

In the steady state, this potential balance the diffusion forces for each type

of ions. This homeostasis process, which allows the neuron to behave like an

electric battery, is first studied by Alan Hodgkin and Andrew Huxley (1952).

In their model, the total current I through the membrane is described as

I = Cm
dVm
dt

+ gK(Vm − VK) + gNa(Vm − VNa) + gL(Vm − VL), (1.1)

where Cm is the capacitance of the membrane, and Vm is the membrane po-

tential. VK and VNa are the reversal potentials of potassium and sodium ions,
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respectively, which are the two main types of ions in neural signaling. VL is the

reversal potential of the leakage current, whose conductance gL is a constant.

gK and gNa are the conductances of the currents induced by potassium and

sodium ions. These quantities are associated to the opening and closing of

corresponding ion channels, which in turn depend on the membrane potential.

In particular, typical values for VK and VNa are −80 mV and 58 mV. In the

steady (resting) state, the membrane potential is maintained near −70 mV,

the sodium ions have a higher concentration on the exterior side and the potas-

sium ions have a higher concentration on the interior side of the membrane

(Rojas, 1996). An action potential is produced when the membrane potential

is depolarized, resulting in the opening of sodium ion channels (increased value

for gNa) in a local area on the membrane. The influx of sodium ions causes an

explosive increase in the membrane potential, and is followed by the opening

of potassium ion channels (increased value for gK) which leads to the repolar-

ization and hyperpolarization of the membrane. This local process triggers the

opening of ion channels in its adjacent area, and therefore the action potential

(impulse) is transmitted along the axon. At the (chemical) synapse, the ac-

tion potential is converted into the release of neurotransmitters, which in turn

depolarize or polarize the membrane of the postsynaptic neuron by binding to

receptors on it (Figure 1.1). In contrast to this, how information is trans-

mitted on the network level is still not fully understood. In particular, what

code is adopted by the neurons remains controversial. A prominent feature

of neural activity is its irregularity. Because the duration of action potentials

is short compared to other neuronal events, they are often treated as point

events in time. The problem is, the spike train, which refers to the sequence of

action potentials of a neuron, often appears random, reminiscent of a Poisson

point process (Softky & Koch, 1993; Stein, 2005). So how does the neuron

transmit information when its activity is not reliable? A well-established view

is that the information is encoded by the number of action potentials emit-

ted in a short period of time, i.e. the firing rate. Although recent evidence

suggests that the timing of action potentials may be more reliable than has

been thought (Mainen and Sejnowski, 1995), and the temporal features of the

precise timing may also contribute to information transmission (O’Keefe and

Recce, 1993; Petersen et al., 2002), rate-based model is still an often-used, very

effective tool to understand the information processing in neural networks, s-

ince it describes the information transmission at single neurons with simple,
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smooth dynamics such as

dxi
dt

= −xi
τ

+
∑
j

Jijrj + hi, (1.2)

ri = f(xi), (1.3)

which is well-suited for analysis. In Eqs. (1.2) and (1.3), xi and ri denote the

membrane potential (activation) and firing rate of the ith neuron, respectively.

The second term and the third term on the right hand side of Eq. (1.2)

correspond to the recurrent and external synaptic input to the neuron, whose

function is to integrate the input into the firing rate through a nonlinear,

monotonic function f . The temporal scale of this dynamics is given by the

time constant τ .

Figure 1.1: Neural signaling at a chemical synapse. When an action potential (im-
pulse) arrives at the presynaptic axon terminal, neurotransmitters are released into the cleft
between the pre- and postsynaptic neurons. These chemicals then bind to certain receptors
on the postsynaptic membrane, and modulate the membrane potential of the postsynaptic
neuron.

On the other hand, the study of the storage of information begins when Donald

Hebb proposed his celebrated learning rule (Hebb, 1949). The theory explains

how information processing in neural networks is affected by experience in an

unsupervised way, and lies the foundation of associative learning. More im-

portantly, in support of Ramon y Cajal’s idea, it identifies synaptic efficacy,

and plasticity that modifies the synaptic efficacy as the key for information

storage. Later on, the theory is underpinned by the discovery of long-term po-

tentiation, long-term depression (Lømo, 1966; Bliss & Lømo, 1973) and spike

timing-dependent plasticity (Levy and Steward 1983; Debanne et al., 1994;

Markram et al., 1997). From the computational point of view, this rule of
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associative learning facilitated the development of attractor neural network-

s. In particular, the associative memory network proposed by Hopfield (1982)

provides a general explanation of how information could be stored in recurrent

neural networks. The storage of information is associated with stable states,

referred to as attractors, in the intrinsic dynamics of the network. Following

Hopfield’s work, a number of neural network models have explored such stable

states in various contexts. These models are of particular importance in the s-

tudy of a central concept in cognition, known as the working memory. Working

memory (WM) refers to the cognitive function that enables temporal holding

and manipulation of information (Barak et al., 2013), and is a crucial for more

complex cognitive functions such as planning, reasoning, and comprehension

(Baddeley and Hitch, 1974; Baddeley, 1986). In particular, neurophysiological

studies showed that after the removal of stimulus, neural activity in certain

brain areas still remain to be stimulus-specific, suggesting that this persistent

stimulus-selective activity might be the internal neural correlate of the stimu-

lus (Goldman-Rakic, 1987; Miyashita and Chang, 1988; Funahashi et al., 1989,

1990; Romo et al., 1999, 2002). In this context, the attractor neural networks

provide a well-suited mechanism to explain how such activity is sustained in

these areas. Specifically, when the stimulus information is of discrete nature,

the network is assumed to possess a discrete set of attractors in the paradigm

of Hopfield network (Hopfield, 1984; Amit & Brunel, 1997). When the the s-

timulus information is of continuous nature, the network is assumed to possess

a continuous set of attractors (Ben-Yishai et al., 1995; Seung, 1998; Hansel

and Sompolinsky, 1998; Compte et al., 2000). These models have led to fruit-

ful results on the way information is processed in the brain. In particular, a

theory based on continuous attractor neural networks has been successful in

explaining how the hippocampal-entorhinal system maintains a cognitive map

for path integration (Samsonovich & McNaughton, 1997; McNaughton et al.,

2006).

While the information processing based on attractor neural networks appears

natural and robust (Wang, 2008), this framework often predicts a stationary

dynamics due to the nature of the attractors (Barak et al., 2013). This con-

tradicts the intuition that the brain processes information in a distributed

way (Christophel et al., 2017), and the highly dynamic coding observed in

experiments (Brody et al., 2003; Shafi et al., 2007; Jun et al., 2010; Stokes et

al., 2013). In order to address these problems, a novel computational frame-

work has proposed recently, known as the reservoir computing (Jaeger, 2001;

Maass et al., 2002). This computational model suggests that the information

could be processed in a highly flexible way without stable states, by combining



5

the transmission and storage of information, and exploiting the rich intrinsic

dynamics in random neural networks to achieve real-time computation. In par-

ticular, the internal state of the random neural network which is referred to as

the reservoir, changes continuously as a result of the self-interaction through

recurrent connections, and the information processing under this framework

can be considered as the information conveyed by the external input super-

posed onto this internal state. However, due to the complex nature of the

dynamics in the reservoir, the interaction between the external input and the

intrinsic dynamics is not fully understood.

A common feature of these different frameworks is the nonlinear dynamics

involved in the information processing. In terms of the simplified, rate-based

model, nonlinearity arises originally from the transfer function f . Under the

framework of attractor neural networks, such simple, local dynamics allows for

the appearance of nontrivial stable states, as well as the interaction between

such states when coupled through structured synaptic connections. Under the

framework of reservoir computing, where the coupling is random, the non-

linearity may lead to disordered dynamics which explores a broad region in

the state space. On the other hand, the nonlinearity may also appear in the

synaptic dynamics. In either case, nonlinear dynamics plays a crucial part in

the flexible information processing by enriching the dynamics and allowing the

processing to depend on previous states of the network.

In the following chapters, we introduce three studies. Our aim, in the broadest

terms, is to explore neural mechanisms that contribute to flexible information

processing. In the first two studies, we use rate-based models to investigate

the dynamics of networks under the frameworks of associative memory net-

work and reservoir computing. We focus on how the dynamics is affected by

synaptic plasticity and external input. In the third study, we analyze the da-

ta recorded from monkey’s prefrontal cortex during a working memory task,

and construct a spiking neural network model which qualitatively reproduce

the result of our analysis. Specifically, in chapter 2, we analyze the stabil-

ity of associative memory in a network composed of stochastic neurons and

dynamic synapses. Using a mean field model and bifurcation analysis, we

describe the macroscopic dynamics in the stochastic model, and investigate

how the structure in the dynamics changes according to parameters specifying

the properties of associative memory patterns, short-term synaptic dynamics

and an activity control mechanism. In chapter 3, we analyze the transition

from a fixed-point state to a chaotic state in a random neural network consists

of two populations. Using a mean field technique, we specify the fixed-point

state, and numerically obtain the critical point of the transition. We focus on
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how the critical point, near which the best performance of reservoir comput-

ing is known to be achieved, depends on the statistics of the external input to

the network. In chapter 4, we first introduce the group reversal task which

requires the monkey to predict the outcome of each trial based on a visual

cue and the context that has to be inferred from previous trials. The data

recorded while the monkey is performing this task is analyzed using various

methods based on single neuron, as well as population responses. Then we

propose a spiking neural network model with both recurrent and hierarchical

structures, and demonstrate that the model can qualitatively reproduce the

results from the recorded data by numerical simulations. Finally, in chapter

5, we conclude our studies by discussing their implications and limitations, as

well as topics for future studies.



7

Chapter 2

Stability of Associative Memory

with Short-Term Synaptic

Dynamics

This part is omitted.
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Chapter 3

External Input-Forced Onset of

Chaos in Random Neural

Networks

3.1 Introduction

In this chapter we study the dynamics of neural networks under another frame-

work, i.e. the reservoir computing (Jaeger, 2001; Maass et al., 2002). Recent

experimental studies revealed that during cognitive tasks, neural representa-

tions of task-relevant information can be quite flexible. In particular, the

activity of a single neuron is tuned to multiple task-related aspects (Meyers et

al., 2008; Barak et al., 2010; Rigotti et al., 2013), and exhibits dynamic, rather

than static coding properties (Stokes et al., 2013). These characteristics are

difficult to be accounted for by classical models, but are well-captured under

the framework of reservoir computing. Specifically, reservoir computing often

assumes a random structure in the recurrent neural network which is referred

to as the reservoir. An external input to the reservoir interacts with the inter-

nal state of the network, and is transformed into a high dimensional response

through the reverberation between nonlinear neurons. This response can be

seen as a dynamic code of the external input. The computational benefit of

this framework is that a desired output signal, no matter how complicated,

can often be obtained by simple linear combinations trained to readout the

response, by virtue of the intrinsic dynamics in the reservoir.
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The performance of reservoir computing depends critically on the dynami-

cal regime it works in. Specifically, according to different properties of the

network, the dynamics expands a range from ordered to chaotic states. The

border between these different types of dynamics, known as the edge of chaos,

is found to enable complex computations with desirable features for sequential

data processing (Bertschinger & Natschläger). Intuitively, this can be under-

stood as follows. In order to effectively readout the information of the more

recent external input, spurious information about the initial states should be

washed out in the dynamics. In other words, trajectories of the network states

driven by the same external input should asymptotically converge. On the

other hand, for the computation to be useful, different external inputs must

be transformed into different states of the network. These two conditions,

referred to as the fading memory (Jaeger, 2001) and the separation property

(Maass, et al., 2002), are often met at the edge of chaos because, roughly s-

peaking, the former is guaranteed by the contractive dynamics in the ordered

state and the latter is guaranteed by the sensitivity to the input in the chaotic

state.

In a different context, the transition from fixed points to chaos has been s-

tudied by theoretical neuroscientists whose aim is to understand the origin of

the irregularity in neural firing patterns. Although neurons communicate with

each other in a noisy environment, the generation of a Poisson-like neural code

is not a trivial problem because the neuron integrates over a large number of

synaptic inputs, and such spatial average often results in regular dynamics

(Denve & Machens, 2016). A widely accepted theory addressing this problem

is based on the balance between excitatory and inhibitory inputs to individ-

ual neurons (Vreeswijk & Sompolinsky, 1996, 1998; Brunel, 2000). In these

spiking models, when excitatory and inhibitory neurons are connected through

random and sparse synapses, it is found that in certain parameter regimes the

excitation and inhibition dynamically cancel each other, leaving the activity

of the neuron to be driven by the stochastic fluctuations in the input, and

therefore generates Poisson-like spike trains. Furthermore, using a rate-based

model, Sompolinsky et al. (1988) proved that there is a sharp transition from

fixed points to chaos in large random neural networks, when the synaptic gain

exceeds a critical value. In a recent study, Kadmon and Sompolinsky (2015)

investigated the properties of dynamical systems near this transition, and dis-

cussed under what condition the dynamics in spiking models can be predicted

by that in rate-based models. Using dynamic mean field theory, the authors

analyzed how the transition occurs in neural networks with various architec-

tures. In particular, they focused on the effects of the synaptic gain and the
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shape of the transfer function. These results have direct implications for the

reservoir computing.

On the other hand, as a non-autonomous system, the dynamics in the reservoir

also depends critically on the external input to it (Manjunath & Jaeger, 2013).

For example, in the echo state network (Jaeger, 2001), which is an important

implementation of reservoir computing, the echo state property necessary for

the computation is defined with respect to the external input (Yildiz, et al.,

2012). Nonetheless, how external input affects the dynamics in the reservoir

is difficult to measure and is not fully understood. In this study, we focus on

the influence of the statistical properties of external input on the critical point

in a rate-based model. Using a mean field technique and numerical methods,

we investigate how the critical point is affected by the statistics of simple,

time-independent external inputs. Our results add to the study of Kadmon

and Sompolinsky (2015) by clearly showing the dependence of the dynamics

on external inputs, and may provide an insight to the designing of reservoir in

modeling and applications.

3.2 A Random Neural Network with Two Populations

We consider a neural network composed of two populations: an excitatory

population consists of NE neurons and an inhibitory population consists of

NI = 1
4NE neurons. The neurons are randomly connected, where each neu-

ron receives CE excitatory and CI inhibitory synapses from local recurrent

connections, and Cext excitatory synapses from other (remote) brain areas.

The synaptic efficacy of each synapse is chosen randomly from a Gaussian dis-

tribution, whose mean and standard deviation are both J for the excitatory

synapses, and are both g · J for the inhibitory synapses. It should be not-

ed that this assumption may actually violate the definition of excitatory and

inhibitory synapses, since the synaptic efficacy could take a negative value.

However, previous studies on large random systems revealed that when the

number of synapses on a single neuron (i.e. CE and CI) is large, the dynamics

of the network depends only on the first two moments of the connectivity ma-

trix (Mzard et al., 1987; Fischer and Hertz, 1991; Tao, 2012). Therefore the

network can be replaced by a randomly diluted network where the efficacies of

synapses are identical. Based on these assumptions, the mean and variance of

the synaptic efficacy are of the order O( 1
N ), where N = NE + NI is the total

number of neurons in the network.
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Let E and I denote the excitatory and inhibitory population. The state of

the ith neuron in the population k evolves according to

dxki
dt

= −x
k
i

τ
+

NE∑
j=1

JkE
ij rEj −

NI∑
l=1

JkI
il r

I
l + Cext · J · hki , (3.1)

rki = f(xki ), k ∈ {E, I}, (3.2)

where xki and rki represent the activation and firing rate of the neuron, and

τ is the time constant. JkE
ij and JkI

il are the synaptic efficacies from the jth

excitatory neuron and the lth inhibitory neuron, respectively. When there is no

synapse between the neurons, the corresponding synaptic efficacy is set to zero.

The time-independent external input hki is chosen from a given distribution,

whose mean and standard deviation are denoted by µext and σext. In order

to investigate the dependence of the dynamics on µext and σext separately, we

assume that the efficacies of non-local synapses are identical. In this study,

we adopt the often-used hyperbolic tangent transfer function f(x) = 1
2(1 +

tanh(x/T )), where T specifies the shape of the transfer function. As shown by

Kadmon and Sompolinsky (2015), when the transfer function arises sharply

near the threshold, i.e, when T is small, the transition to chaos disappear in

large networks.

In order to investigate the dynamics of the network, we simulate Eqs. (3.1)-

(3.2) using Runge-Kutta method with time step ∆t = 0.1. The parameter

values used in the simulations are given as follows. For the network, NE =

10000, NI = 2500, CE = Cext = 100, and CI = 200, and for the neurons and

synapses, J = 0.2, g = 5, τ = 10, and T = 10. Specifically, we are interested

in the limit NE , NI →∞ with other parameters fixed. For the external input,

we consider two different types of distribution: Gaussian distribution and

uniform distribution. However, as we will see, these two types of distribution

have essentially the same effects on the dynamics.

The two different types of dynamics are shown in Figure 3.1. When the

external input is small, the dynamics is described by the convergence to a

fixed-point state (Figure 3.1A), in which the firing rate of each neuron de-

pends on the implementation of synapses. However, the macroscopic statistics

of this state can be solved self-consistently (Figure 3.1B). As the external

input increases, chaotic fluctuation is forced onset (Figure 3.1C,3.1D). Us-

ing a dynamic mean field theory, the temporal correlation in this state can be

obtained (Sompolinsky et al., 1988; Kadmon & Sompolinsky, 2015). A further

increase of the external input will result in saturation.
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In order to characterize the fixed-point state, we first assume that the external

input hki subjects to Gaussian distribution. The Eq. (3.1) is rewritten as

dxki
dt

= −x
k
i

τ
+ ηki . (3.3)

Figure 3.1: Different types of dynamics of the network. (A) The fixed-point state
(µext = 0.010, σext = 0.010). Colored curves show the temporal evolution of firing rates
of 10 neurons. The temporal evolution of the mean firing rate in the network is indicated
by the dashed curve. (B) The distribution of activation in the state shown in (A). The
red curve indicates the Gaussian distribution fitted to the data. (C) The chaotic state
(µext = 0.200, σext = 0.200). The configuration is the same as in (A). Instead of converging
to fixed values, the firing rate of each neuron fluctuates chaotically. (D) Power spectrum
in the state shown in (C). The power spectrum is calculated for a sufficiently long time
sequence of the mean firing rate, and plotted in logarithm. The continuous power spectrum
is a signature of chaos.

In the limit of a large number of synaptic connections per neuron, ηki =∑
j J

kE
ij rEj −

∑
l J

kI
il r

I
l + Cext · J · hki can be described by a time-dependent

Gaussian field, which represents the recurrent synaptic inputs to a single neu-

ron (Sompolinsky et al., 1988). Therefore the activation xki , driven by the

Gaussian term, also obeys Gaussian statistics (Figure 3.1B). In particular,

since the inputs to excitatory neurons and inhibitory neurons are assumed to

be statistically equivalent in the current model, these two types of neurons

subject to the same distribution. Therefore in the following, we simply denote

the activation and firing rate by random variables x and r. In addition, the
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mean and standard deviation of these variables are denoted by µx and σx, and

µr and σr, respectively. The fixed-point state is described by these quantities.

The probability density function of r is given by

P (r) =
1√

2πσx
exp[−(f−1(r)− µx)2

2σ2x
] · [f−1(r)]′, (3.4)

where the prime denotes the derivative of the function.

The correlation between synaptic efficacy and the firing rate of presynaptic

neuron disappear when N → ∞. Therefore the statistics of x can be derived

as

µx = τJ [(CE − gCI)µr + Cextµext], (3.5)

σ2x = τ2J2[(CE + g2CI)(2σ2r + µ2r) + C2
extσ

2
ext], (3.6)

in the fixed-point state. Substituting Eqs. (3.5) and (3.6) into Eq. (3.4),

and integrating for the first two moments of the distribution of r result in the

following self-consistent equations for µr and σr:

µr =

∫ 1

0
rP (r, µr, σr)dr, (3.7)

µ2r + σ2r =

∫ 1

0
r2P (r, µr, σr)dr. (3.8)

Figure 3.2 shows the statistics of the firing rate as functions of the mean and

standard deviation of the external input. The solution is found to exist for

finite µext and σext, indicating the transition to chaos. In particular, the mean

firing rate depends linearly on the mean external input, as in the balanced

network with spiking neurons (Vreeswijk & Sompolinsky, 1996). The stability

of the fixed-point state is determined by the Jacobian matrix of the original

N dimensional system, which is given as follows:

J̃ = (Ĵijf
′(xj)−

1

τ
δij)ij

= Ĵ ·


f ′(x1) · · · 0

...
. . .

...

0 · · · f ′(xN )

− 1

τ
· I, (3.9)

where Ĵ is the N by N connectivity matrix whose first NE columns correspond



3.2 A Random Neural Network with Two Populations 15

to the synapses from excitatory neurons and last NI columns correspond to

the synapses from inhibitory neurons, and I denotes the identity matrix. The

neurons are aligned similarly: (x1, x2, ..., xN ) = (xE1 , ..., x
E
NE
, xI1, ..., x

I
NI

). In

general, the activation of neurons are determined by the connectivity matrix.

However, in the limit of large networks, the two random matrices in Eq. (3.9)

can be evaluated separately. Therefore for each value of µext and σext, we

first solve the statistics of the corresponding fixed-point state from Eqs. (3.7)-

(3.8), and then calculate the eigenvalue spectrum of the Jacobian matrix by

sampling a sufficiently large matrix based on these statistics.

Figure 3.2: Statistics in the fixed-point state. Statistics of the firing rate in the fixed-
point state are plotted as functions of statistics of the external input. Solid curves and
dashed curves indicate the stable and unstable fixed-point state, respectively. The eigenvalue
spectrums of the states indicated by the green, black, and red solid circles in (A) and (C),
and the states indicated by the cyan, purple, and pink solid circles in (B) and (D) are
illustrated in Figure 3.3. (A) The mean firing rate µr as a function of the mean external
input µext. (B) The mean firing rate µr as a function of the standard deviation of external
input σext. (C) The standard deviation of firing rate σr as a function of the mean external
input µext. (D) The standard deviation of firing rate σr as a function of the standard
deviation of external input σext.

Figure 3.3 illustrate how the eigenvalues of the Jacobian matrix change along

the curves in Figure 3.2. The statistical properties of the eigenvalues of large

random matrices are studied in the context of random matrix theory (Tao,

2012). In particular, eigenvalues of matrices whose entries are independent

random variables distribute uniformly in a disk (Girko, 1985). When correla-

tion is introduced among the entries, the disk becomes an ellipse (Sommer et
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al., 1988). Furthermore, in the matrices with two populations, corresponding

to the excitatory synapses and inhibitory synapses, the eigenvalue spectrum

shows a layered structure (Rajan et al., 2006). The stability of the fixed-

point state depends on the largest real part of the eigenvalues. In Figure

3.3A,3.3B, the eigenvalues stay away from the imaginary axis, and each has a

negative real part. Therefore the fixed-point state is stable. As the fixed-point

state approaches the critical point, the x-radius of the eigenvalue spectrum

increases. The eigenvalue spectrum becomes tangent to the imaginary axis at

the critical point, as illustrated in Figure 3.3C,3.3D. A further increase of

the x-radius of the eigenvalue spectrum occurs when one or several eigenvalues

cross the imaginary axis, resulting in the unstable fixed-point state shown in

Figure 3.3E,3.3F. Therefore calculating the eigenvalue spectrum allows us to

numerically identify the critical point. Specifically, critical points are found at

the fixed-point states with maximal µext and σext values, respectively Figure

3.2.

Figure 3.3: Eigenvalue spectrums of various states. Each dot denotes an eigen-
value. The eigenvalue spectrums are calculated using N = 25000 dimensional matri-
ces. (A) The green solid circle (µext = 0.0175, σext = 0.010) and (B) the cyan sol-
id circle (µext = 0.010, σext = 0.008) correspond to stable fixed-point states. (C)
The black solid circle (µext = 0.0334, σext = 0.010) and (D) the purple solid circle
(µext = 0.010, σext = 0.0165) correspond to critical fixed-point states. (E) The red solid
circle (µext = 0.0175, σext = 0.010) and (F) the pink solid circle (µext = 0.010, σext = 0.008)
correspond to unstable fixed-point states.
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To investigate how the critical point depends on the statistics of the external

input, we show in Figure 3.4 the value of σext at the critical points as a

function of the value of µext. This phase diagram indicates the position of

the edge of chaos, where the best performance for information processing is

expected to be achieved (Bertschinger & Natschläger, 2004). In particular, the

mean and the standard deviation of the external input demonstrate a negative

linear relationship on the edge of chaos. This result provides useful information

regarding the design of reservoirs in modeling and applications.

Figure 3.4: The edge of chaos. The critical value of the standard deviation of external
input σext as a function of the mean external input µext.

Finally, we examine the consistency between the model and simulation results,

as well as the effect of different types of external input. Figure 3.5 and Figure

3.6 show the results predicted by the model, and calculated in simulations

using Gaussian and uniform external input with the same mean and standard

deviation. In general, when the external input is not Gaussian, it is not obvious

that ηki in Eq. (3.3) still obeys Gaussian statistics. Nonetheless, the results for

these types of external inputs are essentially the same, indicating that statistics

other than the first two moments of the external input only play an inferior

role in determining the dynamics, consistent with previous knowledge of large

random systems (Mzard et al., 1987; Fischer and Hertz, 1991; Tao, 2012).

Furthermore, both results show good agreement with those predicted by the

model, despite that the fixed-point state usually exists in a larger parameter

region in finite networks, as indicated by the circles on the right hand side of

each panel.
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Figure 3.5: The distribution of firing rate. The red curves are plotted using Eq. (3.4).
(A) Gaussian external input, and (B) uniform external input with the same first two
moments are used in simulations (µext = 0.010, σext = 0.010).

Figure 3.6: Consistency between the model and simulation results. The bifurcation
diagrams are identical to those in Figure 3.2. Simulation results using Gaussian external
input and uniform external input are indicated by brown solid circles and yellow open
circles, respectively. In general, the results show good agreement to those predicted by the
model. However, the fixed-point state exists in a larger parameter region in finite networks,
as indicated by the simulation results with µext = 0.035 in (A) and (C), and those with
σext = 0.020 in (B) and (D).

3.3 Discussion

We investigated the dynamics in random neural networks by a rate-based

model. In particular, we studied the transition from fixed-points to chaos. A

similar model has been analyzed systematically in Kadmon and Sompolinsky
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(2015), where a network composed of several populations, each receiving a

homogeneous external input, is considered. In the current study, our focus

is on the effect of external input. To investigate how external input affects

the dynamics, we assumed that the external input can be described by a

time-independent distribution. Using a mean field technique and numerical

methods, we obtained the critical point and showed how it changes with respect

to statistics of the external input. In the context of reservoir computing,

computational performance depends on the combination of the state of the

reservoir and the external input (Yildiz, et al., 2012). In particular, because the

input weight matrix is often set randomly, the external input to the reservoir

at each time point can be described by some distribution. Furthermore, in a

benchmark problem of reservoir computing, known as NARMA10, the external

input is given by a random number sequence. Our result therefore provides

an insight into the dynamics in such reservoirs.

In this study, the critical point is identified based on numerical calculation

of the eigenvalue spectrum. Compared with the dynamic mean field model

(Sompolinsky et al., 1988; Kadmon & Sompolinsky, 2015), this approach can-

not obtain the scaling properties at the critical point or the temporal structure

in the chaotic state. However, it can still qualitatively provide an intuition on

how the bifurcation occurs. Specifically, in the system with infinite size, the

symmetry in the eigenvalue spectrum implies that the bifurcation occurs on

the real axis, corresponding to the saddle-node bifurcation in Figure 3.2. In

a finite system, the random fluctuation (quenched noise) in the connectivity

matrix allows the crossing of imaginary axis to occur off the real axis. In par-

ticular, oscillatory states may emerge through the hopf bifurcation (Figure

3.3D). As more and more eigenvalues cross the imaginary axis, the nonlinear

coupling between these oscillatory modes leads to the onset of chaos. However,

in either case the frequency of the oscillation near the bifurcation, determined

by the imaginary part of the eigenvalue crossing the imaginary axis, is expect-

ed to be small. This benefits the computation by allowing a relatively long

integration time.

From the information processing point of view, the framework of reservoir

computing contributes in two aspects. First, the intrinsic dynamics in the

reservoir provides a set of basis very effective for pattern generation. In the

simplest form of reservoir computing, the training of the readout weights on-

ly involves calculation of the inverse of a matrix, yet the intrinsic dynamics

in the reservoir (near the edge of chaos) allows it to approximate almost ar-

bitrarily complicated output signal. In this sense, the reservoir serves as a
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universal function approximator. Second, reservoir computing, when incorpo-

rated with learning (Sussillo & Abbott, 2009; Sussillo & Barak, 2013; Barak

et al., 2013; Mante et al., 2013; Sussillo et al., 2015; Rajan et al., 2016; Enel

et al., 2016; Miconi, 2017), provides a novel way to understand the dynamics

behind the highly dynamic, flexible neural responses observed in experiments.

In contrast to the framework based on attractor neural networks, this nov-

el approach captures the distributed nature of information processing in the

brain (Rigotti et al., 2013; Christophel et al., 2017), and requires less tuning

properties (Toyoizumi & Abbott, 2011). It is therefore an important issue to

reveal the dynamics in the reservoir with respect to various properties of the

computation.

3.4 Conclusion

Reservoir computing has been proposed recently as an alternative framework

for the information processing in the brain. Under this framework, we in-

vestigated the effect of external input to the transition from fixed-points to

chaos in random neural networks. Using a mean field technique and numerical

methods, we showed how the critical point changes according to the mean

and the standard deviation of the external input. In addition, we showed by

simulations that statistics other than the first two moments of the external

input have only inferior effect on the dynamics. Our results specified the re-

gion in which high computational performance of information processing can

be achieved, and may contribute to the design of reservoirs in modeling and

applications.
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Chapter 4

Logical Computation in

Monkey’s Prefrontal Cortex

This part is omitted.
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Chapter 5

Conclusion

In this thesis we explored various neural mechanisms that may contribute to

flexible information processing. In particular, the nonlinear dynamics in neural

networks plays an essential part in the information storage and transmission.

Under the framework based on attractor neural networks, the information s-

torage is associated with stable states (chapter 2) which arise from mutual

excitation between neurons. For these states to be nontrivial, the neuronal

dynamics is required to be nonlinear. Additionally, when organized through

synaptic connections, the stored information can be effectively transmitted

through neurons serving as nonlinear logical gates to establish proper mapping

between input and output, achieving flexible information processing (chapter

4). Furthermore, nonlinear synaptic processes may contribute to flexible in-

formation processing by largely enriching the dynamics on the network level

(chapter 2). However, as we discussed in chapter 4, neuronal stimulus se-

lectivity predicted by models based on attractor neural networks is often less

variable compared with recorded data. This is because that attractor neural

networks assume functionally equivalent neurons. Furthermore, such models

often display stereotyped dynamics due to the static nature of the attrac-

tors (Barak et al., 2013). In order to address these problems, an alternative

framework, i.e., reservoir computing has been proposed recently (Jaeger, 2001;

Maass et al., 2002), where the information storage and transmission are com-

bined in the rich, highly nonlinear dynamics of random neural networks near

the onset of chaos (Bertschinger & Natschläger, 2004). Under this framework,

we studied how the dynamics changes according to external input in chapter

3.

Meanwhile, flexible information processing depends on many other neural

mechanisms as well. The flexibility essentially arises from the ability of neural
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networks to maintain an internal state, in a way that is sensitive to changes in

the environment. Therefore any neural mechanism that has an effect on the in-

ternal state (e.g., homeostatic plasticity which contributes to the maintenance

of internal state) should also play a role in flexible information processing.

In particular, in order to maintain and modulate the internal state, feedback

loops on multiple scales have been established in the brain. Understanding the

neural mechanisms involved in the individual pathways and their coordination

may require simultaneous recording of a large number of neurons and multiple

brain regions. These problems are beginning to be addressed by experimental

studies (Harvey & Tank, 2012; Hamel et al., 2015; Rose et al., 2016). On

the other hand, recently developed learning techniques (Sussillo & Abbott,

2009; Vanbiervliet et al., 2009; Martens, 2010) have provided powerful tools to

reveal neural dynamics without imposing heavy assumptions on the network

structures. Specifically, an initially random neural network may well adapt to

perform certain cognitive tasks with structure adjusted by these techniques,

and the dynamics can then be understood by analyzing the resulting network

whose structure is already known (Sussillo & Barak, 2013). Theoretical s-

tudies have shown that this type of networks, lying between totally random

and highly specified structures, is readily available for a broad range of tasks

(Mante et al., 2013; Hennequin et al., 2014; Sussillo et al., 2015; Rajan et al.,

2016), while preserving several prominent features of neural computation, such

as mixed selectivity (Rigotti et al., 2013; Raposo et al., 2014) and dynamic

coding (Stokes et al., 2013). We believe that the investigation of physiologi-

cal counterparts of these learning techniques (i.e., plasticity mechanisms), as

well as the generalization of a network to a variety of tasks is of particular

importance for our understanding of flexible information processing in neural

networks.
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