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Abstract

Image captioning task has enticed an unprecedented amount of attention with the advent
of deep learning techniques. However, its objective has been limited to the generation of
factual description of the global event in the image. Yet, humans can provide far richer con-
tents than a factual description, including sentiments, inferences, etc. Furthermore, such
contents will widely vary depending on the narrator. We examine a novel task of image
narrative generation in which we attempt to overcome the limitations of image caption-
ing task. While the sole primary objective of image captioning task is the generation of
factual description of the image, image narrative is not restricted by such rigid objective,
and may discuss any aspect of the image as long as it can relate to the image, including,
but not limited to, further details, sentiments, or inferences about the image. It may even
creatively assign story-like characteristics to the image. If such is possible, the level of
interaction between vision and language will be elevated to a more eloquent stage with
stronger resemblance to human linguistic capability. In addition, we examine the task in
an interactive setting, so that each user’s distinct preference can be learned and applied to
image narrative generation. In this paper, we propose a series of models to examine each
prerequisite required to implement image narrative generation. First, in order to capture lo-
cal details that are difficult to obtain through generic CNN features from the entire image,
we employ spatial pyramid and vector of locally aggregated descriptors (VLAD) coding
of convolutional neural network (CNN) features. Then, we build a weakly-supervised sen-
timent dataset, from which we fine-tune a separate neural network that outputs sentiment
features, to capture the overall sentiment of the image. Unlike factual description, which
can be obtained directly by looking at the image, the elements of image narrative cannot be
obtained straightforwardly, and require a reasoning process, in which it first has to decide
what to discuss by asking questions first, and subsequently find answers to it, similarly to
how humans might perform such task. We exploit visual question generation (VQG) and
answering (VQA) techniques to implement such process. Finally, we engage the users with
the learning and generation process, thereby providing an interactive model to learn and re-
flect each user’s preference. We experimentally demonstrate that our proposed model for
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image narrative generation can generate a highly expressive image description with much
wider range of topic contents, which turns out to be difficult to realize via conventional
models.

Thesis Supervisor: Tatsuya Harada
Title: Professor
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Chapter 1

Introduction

In this chapter, we will briefly review the historical context of the current landscape of
artificial intelligence (AI), and how such context has enabled the advancements in image
captioning task in particular. We will then briefly discuss the limitations of current image
captioning task, which lays out the foundation for the objective of this thesis, namely image
narrative generation. The rest of the chapter will describe how this thesis is organized.

1.1 Background

Emerging after several decades of “AI winter,” deep learning techniques have revolution-
ized not only the field of artificial intelligence, but also a wide array of potential applica-
tions, and ever since have attracted an unprecedented amount of attention and exuberance
worldwide. Lying at the center of deep learning is the concept known as convolutional neu-
ral networks (CNN). While the technique has been around in theory for a few decades, it
has only recently been brought into practice with exponentially growing computing power
and the advent of internet, from which an unlimited amount of data became freely available.
CNN consists of multiple layers, each of which performs a convolution or pooling of given
filter size. Over multiple stages of iteration enabled by backpropagation, the parameters
“learn” to distinguish between different classes of images. As such, image classification
task became the first beneficiary of deep learning techniques.

The core benefit of CNN, however, is that it demonstrates high portability to other
tasks as well. Image captioning task has proven to be one of many such tasks where CNN
features boost the performance. Another deep learning technique that plays a central role
in image captioning task is recurrent neural networks (RNN), particularly long short-term
memory (LSTM) [34]. Conditioned on image features from CNN and previously generated
words, each LSTM unit learns to generate the next likely word, so that multiple stacks of
LSTM units generate a complete sentence describing the image. The combination of CNN
features and LSTM units has become a de-facto standard for image captioning task, and
nearly every recent work on the task has been a variation of such pipeline.

Image captioning task, while highly successful in its own objective, inevitably poses
new challenges for learning of vision and language. First, it is mostly limited to the events
occurring at the global scale of the image. However, humans may frequently pay attention
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to objects or events occurring at the local or secondary scale of the image. Representing and
reflecting local elements of the image can enrich the image description both qualitatively
and quantitatively.

Second, image captioning has primarily dealt with factual, objective components of the
image. Humans on the other hand are able to perceive beyond objective components from
the image (e.g., sentiments of the image or inferences about the image), and linguistically
express it. In other words, humans can see and express more than meets the eye.

Third, conventional image captioning task has assumed that there exists a single correct
“gold” description that is applicable to anyone. While this is true for factual description of
global event, different people may pay attention to different parts of the image, and yield
different interpretations. Such diversity in perspectives cannot be derived with conventional
image captioning task.

In this thesis, we introduce a novel task of image narrative generation, in which we
attempt to overcome the limitations discussed above. Each limitation necessitates a de-
sign of separate module, and these modules are eventually combined for interactive image
narrative generation task.

Primary contributions of the thesis can be summarized as following:

• Proposal of a model to represent images that better account for local elements of the
image

• Proposal of a model to represent images that reflect subjective elements of the image,
particularly sentiments present in the image

• Utilization of visual question generation (VQG) and visual question answering (VQA)
techniques to deal with inferential elements, and

• Examination of interactive environment to learn and reflect the user’s preference into
image narratives.

1.2 Objective
In this thesis, we develop an image narrative generation model, which generates not only
a single sentence factual description of the image, but an image narrative whose contents
encompass both factual and non-factual elements at global and local scales of the image,
enriching the image descriptions both in quality and quantity. Furthermore, we develop
such model in an interactive way, namely via Q&A module, which enables us to derive
image narratives with diversity, and further reflect the user’s preference into new images
by customizing. Figure 1-1 describes the overview of the system proposed and developed
throughout this thesis.

1.3 Structure of the Thesis
This thesis is organized as shown in Figure 1-2. We have just walked through a high-
level introduction of this thesis in Chapter 1. In Chapter 2, we will describe and define our
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The	color	of	the	dog	
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“A	dog	is	sitting	on	a	
bicycle.	

The	color	of	the	dog	
is	white.

It	seems	to	be	happy”

Image	Narrative

User	Interaction

Figure 1-1: System overview of the model developed in the thesis. Yellow arrows corre-
spond to the workflow of interactive image narrative generation for preference learning, and
blue arrows correspond to the workflow of automatic image narrative generation reflecting
user preference based on the preference learning module, without user interaction.

task more in details, especially in comparison to conventional image captioning task. We
discuss some of the limitations in the current research on the learning of vision and lan-
guage, and specify our objectives thereon, along with necessary modules to realize those
objectives. Chapter 3 deals with more specific background, from the classic works of each
field and recent related works, which highly correlate to the core methods, concepts, and
algorithms employed in this thesis. Chapter 4 deals with our attempt at better reflecting the
local elements of the image. Specifically, we apply vector of locally aggregated descriptors
(VLAD) coding to convolutional neural network (CNN) features extracted from the regions
proposed by selective search. In addition, such coding is performed on multiple grids using
spatial pyramid. In Chapter 5, we describe our attempt to deal with another key challenge,
namely learning of non-factual concepts, particularly sentiment of the image. We build a
weakly-supervised dataset, on top of which we fine-tune a separate convolutional neural
network to extract the “sentiment” features from the images, with the aid of simple multi-
label learning. In Chapter 6, we mainly discuss our proposed method for visual question
generation (VQG) and answering (VQA). In particular, our proposed method for VQA en-
abled us to win the 1st place in the international challenge of the corresponding task. VQG
and VQA tasks have high relevance to our objective, since they go a step further beyond
the conventional image captioning task by enabling the AI to both raise questions about
the image, and to answer those questions in natural language. Each of Chapter 4, 5, and 6
functions as a distinct module of the primary task to be examined in the later chapters of
this thesis. In Chapter 7, we introduce a novel task of single image narrative generation, in
which we attempt to generate multiple-sentences captions from single image that consist
of both visual and non-visual elements. We accomplish the goal by serializing a number
of modules, namely region extraction, image captioning, visual question answering, and
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Figure 1-2: Structure of this thesis

simple natural language processing techniques. In particular, individual modules described
through Chapter 4 to 6 will be brought into effect. Chapter 8 expands upon single image
narrative generation task to involve user interaction. Visual questions that allow for multi-
ple responses from the users are generated via a novel workflow utilizing VQG and VQA.
We show that, by collecting and training with user responses from such questions, we can
learn the user’s interest and apply it to unseen images to generate customized image de-
scriptions. Chapter 9 deals with the setting and results of the experiments for the primary
task of this thesis. We will evaluate the results both qualitatively and quantitatively using
a variety of evaluation metrics. Finally, we will conclude our thesis and discuss unsolved
problems and future work in Chapter 10.
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Chapter 2

Defining Image Narrative Generation

We briefly introduced the task of our interest in Chapter 1, but only at an abstract level. In
this chapter, we define the task more formally, differentiate it from previous task in multiple
aspects, and discuss its objective and key challenges in details.

2.1 Elements of Image Narrative

We first discuss the elements of image narrative, and how they can be categorized. While
there can be various ways of categorizing the elements, we focus here on the possibility of
varying interpretations. The contents of image narrative should inevitably be derived from,
or relate to, the image to which they are assigned. In this sense, an objective, straight-
forward description of the visual contents of the image qualify as the contents of image
narrative. For instance, a simple sentence in a form of subject-verb-object may have to
recognize and depict the main object (subject), action (verb), and secondary object (object)
occurring in the image. This type of objective contents whose interpretation is unambigu-
ous can be categorized into factual elements. In addition to global/local objects and action
taking place, it is also frequently possible to recognize and describe the setting of the im-
age, including place and time, to a fairly unambiguous degree. We may also approach the
factual elements from the 5W1H perspective. Each component of 5W1H, with the excep-
tion of ‘why’ corresponds to one of object, action, or setting, which constitute the factual
elements.

On the other hand, there also exist elements that permit a space for varying interpre-
tations, that cannot be visually verified in a straightforward manner, while clearly relating
to the image. From the 5W1H perspective discussed above, a question why would be an
example of such element, as it requires an inferential process beyond simple visual recogni-
tion. Sentiments of the image would be another such element, as it is subject to a relatively
wide range of interpretations and can frequently be ambiguous. Prediction of what would
happen after the event occurring in the image is another example, as it is also open to a wide
array of possibilities. We categorize the elements with these characteristics, namely the po-
tential for varying interpretations, as non-factual elements. Figure 2-1 shows the examples
for both factual and non-factual elements that together constitute an image narrative.
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Figure 2-2: Spectrum of various image description tasks

2.2 Comparison to Previous Tasks

It is necessary to draw clear distinctions between conventional image captioning task and
image narrative generation task, which is our primary concern in this thesis.

Image captioning task aims to describe the objective, factual components of the given
image. In particular, it is mostly concerned with the primary event occurring at the global
scale of the image. Thus, an image caption describing a local, secondary event of minor
importance in the image may be considered inappropriate in conventional image captioning
task, regardless of its correctness. An image caption with non-factual element that is open
to different interpretations and cannot be visually verified in a straightforward manner is
also considered inappropriate for conventional image captioning task. Image narrative on
the other hand is not restricted by such rigid objective, and may discuss any aspect of
the image as long as it can relate to the image. For example, a typical caption may say
“an elephant is standing on a field.” On the other hand, image narrative may choose to
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Table 2.1: Comparing image captioning task and image narrative generation task.
Image Captioning Image Narrative Generation

Length mostly single sentence multiple sentences

Contents
factual description of main event any image-relevant aspect

(objects, actions) (sentiments, inferences, etc.)

Primary Techniques
CNN, LSTM CNN, LSTM, VQA,

VQG, region extraction

discuss sentiments such as how the elephant might be feeling, or inferences such as why
the elephant is in such status, or even creatively assign a story-like characteristics such as
the name of the elephant, etc. While image narrative may also discuss factual description as
in image captions, it is not restricted by it. In other words, image caption in its conventional
sense is one of many components that constitute an image narrative.

In addition, image captioning task mostly produces a single sentence per image. This
is closely related to the task objective described above. Since the primary objective is to
describe the main event in the image, multiple sentences are likely redundant. Some works
attempt to produce multiple sentences of image captions. For example, DenseCap [43]
produces image caption for each region in the image, and Krause et al. [50] attempt to
generate a paragraph of image description. However, their purpose is still restricted by the
objective of describing factual components of the main event in the image. For example,
local image caption generated by DenseCap [43] for each region in the image will describe
the factual event or object in the corresponding region.

Table 2.1 outlines some of the key differences between image captioning task and image
narrative generation task. Table 2.2 shows examples of image captions and image narratives
for the same images.

As discussed in Section 2.1, factual elements and non-factual elements are elements of
a narrative. In light of the relative importance and saliency of the elements, we can also
group these elements into global and local elements. With these two criteria, we can further
clarify and define the image narrative generation task, especially in comparison to previous
tasks concerning image description (Figure 2-2). An image description that describes the
factual and global elements of an image would correspond to an image captioning task in
its conventionally understood sense. As was discussed in Section 2.2, this is inherently
so by definition, as the primary objective of image captioning task is to generate a factual
description of the main event occurring in the image.

There have also been attempts to describe the factual elements of the image that are
local or secondary, not limited to the primary event of the image, most notable work being
[43]. Such works on dense captioning enable the AI to have a more complete understanding
of the image. However, local descriptions in previous works are mostly limited to naming
the object in a phrase or sentence. As in image captioning task, this is also inherently
so since its goal is to describe the factual elements of local elements. Note that dense
captioning task involves the global elements of the image as well, but its novelty and focus
are on local elements, and we categorize it in this thesis as an image description containing
local and factual elements for convenience.

Some of the previous works have tackled the task of generating non-factual description
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of the images. Most of them were carried out in a form of assigning a story-like description
to the primary event in the image; that is, to the global elements of the image. This task
of generating non-factual, global description of the image has had less rigid boundary in
terms of format and contents. For example, [37] presents a dataset with story-like captions
assigned to the images, but requires that the images form a sequence. Thus, a single image
and its corresponding caption do not constitute a complete story themselves, but a part of
it.

Each task described so far occupies a portion of the spectrum of image description, as
shown in Figure 2-2 (a). On the other hand, Image narrative is posited to involve each of
the elements tackled by the previous image description tasks. That is, it attempts to account
for both factual and non-factual elements of the image at both global and local scales of the
image. Thus, an image narrative in principle corresponds to the region occupying the full
spectrum of image description, as shown in Figure 2-2 (b).

2.3 Task Definition
Taking into account the spectrum of image description, and the differences from previous
image description tasks as described in the previous section, we can define image narrative
as an image description passage that encompasses 1) both factual and non-factual elements
at 2) both global and local scales within the image. Thus, an image narrative encompasses
multiple aspects about the image beyond global, factual aspects, including, but not limited
to, sentiments, details, and inferences.

Considering that multiple aspects about the image can be discussed inevitably leads us
to question whether there can be multiple image narratives from a single image. In fact,
as we will see in depth in Chapter 8, different viewers may attend to different parts of the
image given a contextual trigger, leading to different interpretations. In order to examine
and expand upon this characteristics of image narrative, we also implement an interactive
image narrative generation task, in which image narrative generation process is not fully
automated, but involves an interaction with user. More specifically, we generate visual
questions that allow for multiple responses so that users can respond in their own unique
ways, influencing the outcome. We also examine whether we can learn the user’s interest
from their responses to the visual questions.

2.4 Key Challenges
Our task objectives as defined above necessitate a number of modules, each of which is a
challenging task itself.

First, by definition of the image narrative generation task, we need to generate multi-
ple sentences from a single image. One way to accomplish it would be to examine beam
search with different values of n, and output the results in an n-best manner. However, it
will mostly result in sentences that are in different wordings but nearly identical semanti-
cally. As such, it clearly deviates from our objective of conveying a variety of contents. It
follows that a more plausible approach would be to generate sentences from different parts
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They’re	promoting
Panasonic	TV!

Their	suits	
are	nice!

There	is	a	TV.
TV	is	brand	new.
It	is	for	promotion.

People	are	standing.
Their	suits	look	clean.
They	bought	it	recently.

Figure 2-3: Example of varying narratives from a single image depending on the viewer’s
attention.

of the image, by employing region proposal or attention mechanism. DenseCap [43] is
an example of a model that generates multiple captions from different regions of the same
image.

Once we can generate multiple sentences from a single image, subsequent challenges
will have to do with their contents. As described in previous sections, we would like to
account not only for the factual components of the main event occurring in the image,
but also for local, secondary components, or subjective components such as sentiment,
or even non-visual elements, such as inference or assignment of story-like characteristics.
Accounting for each of these elements is a major challenge for our task objective.

Incorporating local components into captions is difficult because convolutional neu-
ral network features are originally trained for single object classification. Although CNN
features are known for their flexible transferability for different tasks, images containing
multiples objects at varying scales inevitably affect the task’s viability. As such, previous
works on local captioning [43] required a construction of very costly dataset. In this thesis,
we propose a model to account for multiple local objects of varying scales without having
to rely on additional dataset. Our basic strategy is to “extract multiple CNN features at
varying scales,” since we are dealing with multiple objects at varying scales. More specifi-
cally, we extract CNN features from regions proposed by selective search, and apply vector
of locally aggregated descriptor (VLAD) coding to the regional features. We also show that
applying this pipeline to multiple grids employing spatial pyramid can further account for
local elements.

Another challenge is to incorporate subjective components, primarily sentiments present
in the images. This too is a difficult task, since multiple sentiment classes may be appli-
cable to the same image. It is also questionable whether neural networks can be trained to
distinguish between such abstract concepts that do not have concrete visual forms, not to
mention the lack of dataset specialized on the topic. We examine this challenge by building
a weakly-supervised sentiment dataset, from which we fine-tune a separate neural network
specialized for sentiment classification. Features extracted from this network are combined
with features for object classification, from which image captioning with sentiment terms
are generated.
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Unlike image captioning task, where the objective is clear and description can be de-
rived in a straightforward manner by looking at the entire image, image narrative has a
much wider range of potential topics, and thus has to first decide what to talk about, es-
pecially to include inferential elements as its contents. We implement such mechanism by
generating visual questions first, and then finding answers to the questions, similarly to
how a human may perform the same task. VQG and VQA techniques play the role for each
part.

While different viewers may have certain patterns or tendencies in their interests and
attentions upon viewing the images, it is yet uncertain whether such patterns are consistent
or explicit enough to learn. We tackle this problem mainly by two novel ideas. First, we
generate and ask a specific image-relevant question about each image, providing a context
to which the user can provide a meaningful response, rather than simply picking the most
conspicuous object. Second, we train a preference learning module, in which the system
is trained to predict the user’s response to a new image and new question, given the same
user’s previous choice on another image and a question.

Dataset and evaluation also pose challenges. To the best of our knowledge, there ex-
ists no dataset which perfectly fits our task of image narrative generation; that is, a dataset
with multiple captions for single image that describe various aspects of the image. As a
workaround, we take advantage of different characteristics of existing datasets, and com-
bine them in a novel way so that the datasets can be utilized for our task. In some cases, we
do construct a new dataset or complement an existing dataset for various purposes includ-
ing fine-tuning, data augmentation, or references. Lack of an existing dataset that alone fits
our task also causes a challenge for evaluation. Image captioning task in its conventional
sense can count on popular automatic evaluation metrics with reliability. VQA task alone
can also be evaluated by simple matching of generated answers and ground truth answers.
However, image narratives complicate the evaluation due to both its lengths and range of
topic contents. Ground truth image narratives are not provided, and even if they were,
it is hard to assert that simply resembling the ground truth image narratives more corre-
lates to better image narratives. We employ a number of evaluation metrics with different
characteristics to complement each metric’s drawback.

Each of these key challenges will be dealt with in greater details in the chapters to
follow.
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Table 2.2: Examples of image caption and image narrative for the same image. Image
narrative covers a wider range of contents, not limited to factual description, with longer
text.

Image

Image Caption Image Narrative
A brown bear is walking.(factual description)
He is living in Africa. (inference/imagination)

A brown bear is walking through logs. There are mountains shown behind. (local elements)
He seems to be sad. (sentiment)
He is headed to get some food. (inference/imagination)

Image

Image Caption Image Narrative
A girl is riding ski.(factual description)
She is wearing pink ski hat. (local elements)

A girl in a blue shirt is riding ski. She is visiting here during vacation. (inference/imagination)
She seems to be having fun. (sentiment)
The ground is slippery and she might slip. (inference/imagination)
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Chapter 3

Previous Works on Vision and Language

Image narrative generation task both directly and indirectly involves a number of different
tasks concerning vision and language, each of which is a highly competitive and challeng-
ing task. In this chapter, we introduce some of the core tasks and concepts that form the
basis for our primary task, and review the seminal works and models for each task. We will
first review the tasks concerning images only, especially how the images and the objects in
the images are classified, detected, and represented. We will then review the tasks involving
language,with focus on its how language has been put together with images. Representa-
tion and generation of text will be first described, and tasks involving both image and text
will be reviewed, with both technical aspects and current trends. Finally, we introduce
some of the important complementaries including datasets and evaluation metrics that are
frequently employed both in the field and in this thesis.

3.1 Visual Recognition & Representation

3.1.1 Object Classification

Prior to deep learning era, object classification task has relied heavily on hand-crafted fea-
tures, such as scale-invariant feature transform (SIFT) [61]. Since the emergence of deep
learning techniques, however, the task has been dominated by CNN features, nearly with-
out exception. Most of the recent milestones have in fact been achieved through making
variations of CNN architectures.

AlexNet [52] first appeared in ISLVRC 2012, and was the first model to demonstrate the
discriminative capacity of CNN, overwhelmingly outperforming other models and winning
the challenge. AlexNet consists of 8 layers; 5 conv, max-pooling, and dropout layers, and
3 fully-connected layers. VGG [86] introduced a deeper architecture with 19 layers. Filter
size is fixed to 3 × 3, adding simplicity. Due to its significant performance boost enabled
by deeper architecture, along with the simplicity of its internal components, VGG has been
one of the most popular network architectures in the deep learning era. 16-layer version
also exists but the difference in performance is fairly negligible.

GoogleNet [88] introduced inception module, where convolutions of multiple filter
sizes occur simultaneously in parallel, instead of sequentially. In particular, GoogleNet
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does not contain any full-connected layer, thus significantly reducing the number of over-
all parameters. ResNet [33] introduced an overwhelmingly deep network architecture of
152 layers, and is currently the deepest and best-performing network at the time of writ-
ing. While its internal structure is relatively simple, its uniqueness comes from identity
mapping, in which the input is passed on to the rectified linear unit (ReLU) along with the
transformed input that goes through convolution.

3.1.2 Region Proposal

Region proposal task is one of the most classical tasks in computer vision, and plays an
indispensable role, particularly for object detection task, which will be discuss later. Its
main objective is to propose regions that are most likely to contain objects, i.e., regions that
contribute to the overall semantics of the image.

Selective search [92] starts by superpixel segmentation, and proceeds with hierarchical
grouping of regions in a bottom-up manner, in which neighbouring regions are combined
iteratively. Different modes of selective search exist; in which HSV and Lab colorspaces
are employed, and other measures, such as size of region and similarity between neighbour-
ing regions, are also taken into consideration. EdgeBoxes [56] is based on the observation
that the number of edges and contours within the bounding boxes are highly indicative of
the probability of the box containing an object. While the performance gap is minor, it is
much faster than selective search.

While selective search and edge boxes are based on simple geometric features or hand-
crafted features, other region proposal methods employing deep features have also been
proposed. DeepProposal [25] extracts region candidates from the feature map of an im-
age, by applying linear SVM trained on annotation bounding boxes at multiple scales, and
applying non-maximal suppression. The region candidates then go through inverse cas-
cade from upper, fine layer to lower, coarser layers of CNN, in order to better-localize the
detected objects. DeepBox [54] uses 4-layer CNN in a bottom-up manner to rerank the
proposals. Their CNN architecture generalizes to unseen categories by directly learning
semantic notions of objectness.

3.1.3 Object Detection

While object classification task aims to simply classify the object in the image, object de-
tection task needs to specifically locate the objects in the image, frequently in multiplicity.
Such functionality is critical in image narrative generation, as our objective is not only to
describe the primary objects in the image, but local, secondary objects as well. It also plays
a central role in other modules employed in our model. For example, VQA task frequently
needs to answer questions that deal with local, secondary objects.

Deep learning techniques have enabled many important advancements in object detec-
tion task as well. R-CNN [27] extracts hundreds or thousands of region proposals using
selective search [92], and passes each region through CNN. Features for each region are
obtained, and can be classified. Fast R-CNN [26] also accepts region proposals from selec-
tive search as input along with the image. Features for each region proposal are obtained
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from the feature map of the entire image, instead of passing each region through convo-
lutional layers, thus significantly recudcing the processing time. Faster R-CNN [78] does
not rely on selective search or any other previous region proposal model, but instead has its
own region proposal network, which proposes regions from the convolutional feature map.
Mask R-CNN [32] further further extended Faster R-CNN by implementing object mask
prediction branch which runs in parallel with bounding box recognition.

3.1.4 Feature Coding

Coding methods Bag of Visual Words (BoVW) [87] builds a global histogram of the im-
age by finding the nearest visual vocabularies. Fisher Vector (FV) [72] produces each
local descriptor from Gaussian mixture model (GMM). It has an advantage of getting high-
dimensional features with relatively small size codebook, and can apply linear classifier to
feature vectors. However, computational cost is high as it has exponentially larger number
of parameters compared to bag of visual words. Vector of Locally Aggregated Descriptors
(VLAD) [40] is works with a simplification of Fisher kernel. It searches for the nearest
codeword, and computes the difference between local descriptor and nearest codeword de-
scriptor.

Spatial Pyramid [57] is not a feature coding scheme itself, but a mode on which a
feature coding techniques is applied. Its basic motivation is to add geometric invariability
to coding schemes. Its most elementary format is simple division of the image into evenly
distributed cells, n × n, n × 1, 1 × n, etc. Local descriptors for each cell are aggregated
into a single global feature. While simplistic, it has proven to be a powerful performance
booster for a wide array of tasks. Inevitably, its disadvantage is that feature dimensionality
gets multiplied in proportion to the number of cells. Also, cell division may not be optimal
for image contents. Discriminative Spatial Pyramid [31] makes up for such limitation of
spatial pyramid by assigning weights to each local descriptor upon aggregating them to a
global feature.

3.2 Vision and Language

3.2.1 Text Representation

Representing text in a format that is understandable to machines is as challenging as it
is central, since both structure and semantics must be preserved. For example, Bag-of-
Words [44] simply represents text as histogram of each word’s frequency. While useful
and convenient, it ignores and loses ordering and semantics, necessitating more eloquent
representations that retain semantics and context.

Word2Vec [67] extends conventional skip-gram model by sub-sampling frequent words
during training and applying a simplified version of noise contrastive estimation [30],
which results in better vector representations as well as convenient additive property and
extensibility to phrases. Similarly, sentence2Vec [58], in which an unsupervised algorithm
learns to predict surrounding words in contexts from paragraph, has also been developed.
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3.2.2 Text Generation
Rule-based or template-based text generation had been considered a norm for text gener-
ation for decades [75, 76], but this too has rapidly shifted towards data-based paradigm.
Success of statistical machine translation [49] has been a paragon of data-based approach
to text generation, and such approach is now prevalent in tasks beyond translation.

Long short-term memory (LSTM) [34] has been a pivotal milestone in text generation
task, and has become a dominant technique in a variety of relevant tasks, particularly in
image captioning task. An LSTM block contains a number of gates, and its distinct feature
is the inclusion of forget gate ft, which controls how long an information is supposed to
remain in the block, hence affecting dependency. Original equations for activation of each
gate as defined in [34, 24] were as following:

it = σg(Wxixt + Uiht−1 + bi)

ft = σg(Wxfxt + Ufht−1 + bf )

ot = σg(Wxoxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σt(ct)

(3.1)

where xt, ht, ct are input, output, and cell state at t, and ft, it, ot are vectors for forget gate,
input gate, and output gate respectively.

In image captioning task, LSTM usually takes in image features as its input, learns to
generate one word at a time, conditioned on the image features and previously generated
words, until the end token is predicted.

3.2.3 Image Captioning
Image captioning task has become one of the most competitive tasks empowered by deep
learning techniques. As such, it is now generally considered to have reached the level of
practical usage and have been incorporated into many products or services. Note that image
captioning task can be further categorized into multiple tasks; dense captioning, stylistic
captioning, etc. In this section, we will mostly review the seminal works in the general
image captioning task for single-sentence factual image description. Related works for
different categories of image captioning task will be discussed in the relevant chapters to
be followed later in the thesis.

First, some of the pioneering works from pre-deep-learning era deserve an honorable
mention. BabyTalk [53] used object detectors, attribute classifiers, and prepositional re-
lationship functions to extract information from the image, and constructed conditional
random field to predict labels and generate sentences. While this work did not rely on
any deep techniques in the way the task is normally handled today, it marked a significant
paradigm shift from simply retrieving most likely sentence to generating one. Ushiku et
al. [93] extracted key phrases from an input image using passive aggressive with average
pairwise loss, and generated caption by spinning those key phrases with an experimental
grammar model.

A majority of recent work on image captioning task have been dominated by the usage
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of convolutional and recurrent neural networks for feature extraction and caption gener-
ation respectively, although with substantial variations. Karpathy et al. [47] exploited
multimodal RNN to generate descriptions of image regions, aided by the alignment model
of CNN over image regions and bidirectional RNN over sentences, which are intermingled
via a multimodal embedding. Inspired by statistical machine translation, Vinyals et al. [95]
built a model in which the encoder RNN for source sentences is replaced by CNN features
of images. Long short-term memory (LSTM) was employed as a generative RNN of non-
linear function. Thus, given an input image I, a sentence S=(S0,...,SN) describing the image
is generated as follows:

x−1 = CNN(I)

xt = WeSt, t ∈ 0...N − 1

pt+1 = LSTM(xt), t ∈ 0...N − 1

(3.2)

Xu et al. [100] took a similar workflow, but introduced attention-based model, which
learns to update the saliency while generating corresponding words. Donahue et al. [19]
expanded the CNN-LSTM architecture to activity recognition and video recognition by
building long-term recurrent convolutional networks (LRCNs). Time-varying inputs are
processed by CNN whose outputs are fed to a stack of LSTMs. Fang et al. [21] took a
more linguistically inspired approach by training visual detectors for words with multiple
instance learning, which learns to extract nouns, verbs, and adjectives from regions in the
image. Maximum-entropy language model generates a set of candidates, which are re-
ranked by sentence-level features and deep multimodal similarity model.

3.2.4 Visual Question Answering
Visual question answering (VQA) has escalated the interaction of language and vision to a
new stage. In VQA, an image textitI and a question textitQi about the image are provided,
and the goal is to provide an appropriate answer to the question in natural language. It thus
requires understanding of semantics of the questions, and visual clues necessary to answer
those questions. It is noteworthy that the questions consist not only of objective, visu-
ally verifiable questions, but also of questions that require common-sense, inference, even
imagination. This characteristic enables us to obtain both visual and non-visual contents
about the image.

A number of different approaches have been proposed to tackle VQA task, but so far,
classification approach has been shown to outperform generative approach [1, 45]. [22]
proposed multimodal compact bilinear pooling (MCB) to combine multimodal features of
visual and text representations. This approach won the 1st place in 2016 VQA Challenge in
real images category. [79] proposed DualNet, in which both addition and multiplication of
the input features are performed, in order to fully take advantage of the discriminative fea-
tures in the data. This method won the 1st place in 2016 VQA Challenge in abstract scenes
category. [101] was one of the first to propose attention model for VQA. They proposed
stacked attention networks (SANs) that utilize question representations to search for most
relevant regions in the image. [70] also built an attention-based model, which optimizes
the network by minimizing the joint loss from all answering units. They further-proposed
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an early stopping strategy, in which overfitting units are disregarded in training. [62] ar-
gued that not only visual attention is important, but also question attention is important.
Co-attention model was thus proposed to jointly decide where to attend visually and lin-
guistically. [48] introduced multimodal residual network (MRN), which uses element-wise
multiplication for joint residual learning of attention models. [82] proposed an attention-
based model to select a region from the image based on text query. It is yet arguable as
of now whether visual attention is a must-have prerequisite for higher performance [45].
Finally, [97] introduced a model to extract information from general knowledge base to
answer image-based questions.

More advanced types of VQA task have also been proposed. Das et al. [16] proposed
Visual Dialog task which attempts to go a step further than a single round of visual question
answering by considering a dialog history H0,...,Ht-1 on top of the image (I) and a question
(Q).

3.2.5 Visual Question Generation
Visual Question Generation (VQG) task, as its name suggests, attempts to generate image-
relevant questions. Note that the generated questions may not always be answerable solely
by visual clues, and may necessitate common sense, inference, or imagination. For exam-
ple, it may ask the name of the famous person in the image, or what would happen after the
event depicted in the image.

VQG is still at its infancy at the point of this writing, and as such, has very few relevant
works, with [68] best exemplifying the effort. They attempted to generate visual ques-
tions that a human might naturally ask upon seeing the image, instead of visually verifiable
questions designed for AI as in VQA tasks. Such design objective enables a generation of
intriguing contents that cannot be captured by image captioning or VQA task. They com-
pared different models for the taks, and show that multimodal RNN outperforms maximum
entropy language model or machine translation model.

3.3 Complementaries

3.3.1 Dataset
ImageNet [17]: ImageNet was originally constructed to help develop the techniques for
object classification task, and ever since has become the criterion to test the effectiveness
of various models. While multiple versions of ImageNet exist, most of them consist of
1,000 object classes, each of which in turn contains 1,000 images of the class. Throughout
the paper, whenever we speak of CNN features, we assume that the corresponding CNN
architecture has been pre-trained on ImageNet, unless noted otherwise.

FlickrStyle [46]: While ImageNet consists of multiple classes of objects, FlickrStyle
comprises multiple stages of visual styles, ranging from Baroque and Rococo to Impres-
sionism. Note that, while the characteristics of style classification task deviate from those
of object classification, it is still visually grounded with fairly unambiguous boundaries
between different classes.
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Table 3.1: Examples of images and ground truth captions in MS COCO.

Image Captions

• a man holding a bag watches a baseball game unfold
• there is a baseball game going on
• a baseball player holding a bat on top of a field
• the baseball player is up to bat at the stadium full of players
• a man holding a baseball bat while waiting on a field

Image Captions

• a man holding a bag watches a baseball game unfold
• there is a baseball game going on
• a baseball player holding a bat on top of a field
• the baseball player is up to bat at the stadium full of players
• a man holding a baseball bat while waiting on a field

MS COCO [60]: Microsoft Common Objects in Context (MS COCO) has become a de
facto standard dataset for image captioning task. MS COCO consists of training, validation,
and test set, which contains roughly 80k, 40k, and 40k images respectively. Each image
contains 5 human-written ground truth captions. Flickr 30k [102] and Flickr 8k [35] are
also frequently used datasets for image captioning task.

MS SIND [37]: Microsoft Sequential Images Narrative Dataset (SIND) was collected
to tackle the visual storytelling task, and contains roughly 81k images that constitute 20k
sequences. In most cases, a sequence consists of 5 images that loosely compose a story.
Each image in a sequence is accompanied by a caption, but unlike captions in other datasets,
each caption takes part in the overall story of the sequence. In other words, each caption’s
primary objective is not to describe the respective image, but to assign the image a certain
role in the scheme of storytelling for the overall sequence. As such, it stylistically deviates
from usual image captions that describe a single image. Also, since each caption is part of
a story, it frequently contains contextual wordings, such as pronouns. As we will see later
on in this thesis, this results in a very low correlation between each image and its caption.

Visual Genome [51]: Visual Genome dataset presents a highly dense collection of
annotations in various types including attributes, relationships, descriptions, and question
answer pairs. Some of the works [43, 107] on image captioning and VQA have relied on
this dataset for training.

VQA [2]: Some of the other datasets on VQA task are worth mentioning. DAQUAR
[63]. COCOQA [77] was built by applying rule-based transformations to captions in MS
COCO. Visual7W [107] consists of crowd-sourced questions and answers, but questions
for each image are designed to observe the 7w-form, arguably restricting the spectrum of
contents. FSVQA [84] attempted to eliminate the ambiguity of the answer by making the
answers full sentences. VQA 2.0 [29] has also been released. It not only increased the
size of the dataset, but attempted to balance and diversify the answers depending on the
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questions, so that question alone cannot be the substantial clue for answering.
VQG [68]: While very few datasets were designed solely for VQG task [68], any

dataset for VQA task can be used for VQG task as well, since they inevitably contain
images and the associated visual questions. In this thesis, we utilize both [68] and [2] for
visual question generation.

3.3.2 Evaluation Metrics
Evaluation metrics for text data can be classified into two categories; automatic evaluation
and human evaluation. Popular automatic evaluation metrics have proven to be correlated
to human judgment to a moderate degree, and are considered to be indicative of the overall
quality of the text data to a plausible degree. Since most of them refer to provided ground
truth answers for comparison, however, they display highly task-specific characteristics,
and have low portability to novel tasks. On the other hand, human evaluation can be ap-
plied to nearly any type of text evaluation task, thus highly flexible to novel tasks. Yet,
participating subjects may have widely varying standards for evaluation, which requires
highly attentive setting for the evaluation requesters. It also necessitates financial cost,
which can easily skyrocket depending on the difficulty and size of the task.

We first review some of the most frequently used automatic evaluation metrics. BLEU
[71] was originally introduced as an evaluation metric for machine translation task, and has
since become one of the most popular evaluation metrics not only for machine translation
task, but also for image captioning task. Its principal focus is on the precision of n-gram,
hence there can be multiple versions of BLEU depending on the order of n, usually from
BLEU-1 to BLEU-4. Discriminative BLEU [23] has been proposed to incorporate qual-
itative weights into BLEU, where each reference sentence ri,j is assigned a weight wi,j in
[-1,+1].

ROGUE [59] is an evaluation metric originally designed for evaluating document sum-
marization tasks. As opposed to BLEU’s emphasis on precision, ROGUE is more shifted
towards recall.

METOER [18] is another n-gram based metric designed for evaluating machine trans-
lation task. Unlike BLEU or ROGUE, it mainly focuses on unigram matching, but also
takes recall into consideration. It also attempts to account for semantic matching by look-
ing up synonyms from WordNet.

While the evaluation metrics described above were originally designed for natural lan-
guage processing tasks, CIDEr [94] was designed specifically for evaluating image cap-
tioning task. Given an image Ii, Its evaluates a candidate caption ci by referring to the
consensus of a set of ground truth captions Si = si1,...,sim. Sentences are mapped to sets of
n-grams up to n=4, with each word converted to its root form. In order to discern which
n-grams are informative, it also employs tf-idf calculated from the entire dataset.

Evaluation metrics described above are all automatic evaluation metrics that produce
an overall score calculated from pre-defined equations or rules. On the other hand, hu-
man evaluation may be more appropriate for certain types of tasks. A number of crowd-
sourcing services exist, but Amazon Mechanical Turk is by far the most popular. The
overall procedures is as follows: a requester sets up a human intelligence task (HIT), such
as providing image descriptions, or evaluating them, for instance. The requester also sets
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up the financial reward to be given to the workers upon completion and approval of the HIT.
The requester also sets up the upper bound for the number of workers to participate in the
HIT. The workers complete the HIT by following the directions provided by the requester,
and the requester may approve or reject the completed work. It is also possible to filter
out the workers for quality insurance; for example, only the native speakers of a certain
language may be permitted to participate, or only the workers with approval rate over a
given threshold may participate.

Evaluation metric for VQA task has been solidified as the one provided by [2], which
is available on its evaluation server. It is basically a precision matching with the generated
answer and human-provided ground truth answers, as defined by the following equation:

min(
#humans that provided that answer

3
, 1)× 100 (3.3)

Thus, the generated answer is deemed correct if 3 or more of the 10 ground truth answers
match the generated answer.
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Chapter 4

Dense Image Representation for Locally
Robust Captioning

The workflow of extracting features from images using convolutional neural networks
(CNN) and generating captions with recurrent neural networks (RNN) has become a de-
facto standard for image captioning task. However, since CNN features are originally de-
signed for classification task, it is mostly concerned with the main conspicuous element
of the image, and often fails to correctly convey information on local, secondary elements.
We propose to incorporate coding with vector of locally aggregated descriptors (VLAD) on
spatial pyramid for CNN features of sub-regions in order to generate image representations
that better-reflect the local information of the images. Our results show that our method
of compact VLAD coding can achieve comparable performance to raw CNN features with
much lower dimensionality, and, when combined with spatial pyramid, it results in image
captions that more accurately take local elements into account.

4.1 Accounting for Local Details in Captioning

Image captioning task has gained unprecedented attention with successful application of
convolutional neural networks (CNN) and recurrent neural networks, especially long short-
term memory (LSTM) units [47, 95, 100]. Such pipeline of extracting features from images
using CNN, and mapping the representation to ground truth captions using RNN or LSTM
has become a de-facto standard, employed by most recent works on image captioning task.
With the current standard of CNN-LSTM pipeline, the novelty can come from either rep-
resentation part (CNN), or learning and generation part (LSTM). We tackle the former part
in this chapter. While CNN provides a powerful yet relatively compact representation of
the image, it is noteworthy that CNNs are originally trained for classification of objects,
with the goal of correctly identifying mostly a single, main object in the image. In image
captioning task, however, it is frequently necessary to account not only for main objects in
the image, but also for local, secondary objects. Although CNN mostly results in correct
captioning with regards to the main object, it frequently results in incorrect captioning for
local, secondary objects, as shown in Figure 1(a). This is natural in a sense that CNNs were
originally trained for classification of main objects in the image.
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Figure 4-1: a) Example of incorrectly captioned local objects using conventional approach,
b) Overall workflow of our model.
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Figure 4-2: Examples of object detections using RCNN. Although it works well for objects
classes present in the dataset (e.g. cat in the image on the left-hand side), it frequently fails
to detect objects that are not present in the dataset (e.g. toilet, bathtub, window in the image
on the right-hand side not detected).

In this chapter, we introduce a novel application of spatial pyramid VLAD coding to
CNN features at different sub-region levels, in order to generate more locally robust rep-
resentation, and more accurate captioning. VLAD has been popular coding method for
compactly representing images from a large-scale dataset. However, its drawback of dis-
carding spatial information has also been pointed out. In order to compensate for this
drawback while preserving compact representation of VLAD, spatial pyramid VLAD has
been suggested, and we apply it to CNN features.

In the conventional approach, CNN features are extracted from the image in its entirety
without explicitly dealing with local objects. On the other hand, in our model, CNN fea-
tures are extracted from a large number of bounding boxes from sub-regions proposed by
selective search, which are mostly oriented towards local objects. This way, features are
extracted not only from the entire image, but from each object or region whose importance
is likely to be neglected in the conventional way. We then cluster the CNN features into
a number of codewords, and perform VLAD coding using the codewords. Such coding
results in very compact representation of images, as little as 3% of the CNN features at its
minimum, and yet shows comparable performances. We then implement VLAD coding at
different regions of different levels, thus implementing spatial pyramid VLAD so that the
spatial information of the features can be preserved. By doing so, we generate captions
that more accurately and frequently account for local elements of the image that have been
overlooked. Figure 1(b) illustrates the overall workflow of our approach.

We optimize our method with various settings to investigate the influence of parameters
and to find the best-performing combination. We also compare our method to previous
works, as well as combining our method with conventional approach. Experimental results
show that our method can more accurately and frequently account for local objects than the
conventional approach, frequently providing details at the level of human-written ground
truth captions.

Our main contributions comprise 1) showing that VLAD coding of CNN features from
sub-regions can represent the images more compactly, 2) combining it with spatial pyramid
to account for spatial information, and 3) applying it to image captioning task to generate
more locally robust captions.
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4.2 Related Works for Dense Image Captioning
Most previous works have represented images with CNN features extracted from the whole
image, usually without paying explicit attention to local objects. In that regard, Johnson
et al. [43] show similar motivation to our work. They introduced DenseCap, which at-
tempts to localize the regions in the image and incorporate it into captioning. DenseCap
generates multiple captions from multiple regions, but is not fundamentally different from
previous works when it comes to the single caption from the entire image. Also, their
dense localization layer is trained on a dataset whose construction process is highly costly,
with manual box-setting and labelling on crowdsourcing. Our method does not involve any
manual labelling, and can work with any existing dataset.

Karpathy et al. [47] exploited multimodal RNN to generate descriptions of image re-
gions, using alignment model of CNN over image regions and bidirectional RNN over
sentences, which are intermingled via a multimodal embedding. This model relies on re-
gion convolutional neural network (RCNN) [27] to detect objects. However, since RCNN
model is fine-tuned on the limited number of classes (only 20 classes of objects on PAS-
CAL dataset [20], 80 classes on MS COCO [60], or 200 classes from ILSVRC 2012), it
frequently fails to detect objects not included in the object classes of the dataset. Figure 2
shows examples of success and failure in object detection using RCNN. Since our model
relies on selective search for object detection and region proposal, it is not limited by the
number of object classes in the dataset.

Vector of locally aggregated descriptors (VLAD) was introduced by Jegou et al. [40],
as a model to compactly represent images in a large-scale dataset, and has been a popular
coding method for images. They used the simple L2 normalization method for normaliz-
ing VLAD descriptors. Arandjelovic et al. [4] demonstrated that intra-normalization and
recording multiple VLADs for an image, along with vocabulary adaptation, can further
enhance the performance of VLAD. As a method to approximate global non-invariant ge-
ometric statistics, Lazebnik et al. [57] introduced spatial pyramid matching technique, a
simple extension of bag-of-features representation, in which histograms for local features
are aggregated in each sub-region. Although spatial pyramid can find useful global features
from each level, it has been reported to be weak at high geometric variability, necessitat-
ing a combination with invariant features. On the other hand, VLAD coding is usually
performed on locally invariable descriptors, such as SIFT, yet it does not preserve spatial
information. In order to compensate for these mutual weaknesses, Zhou et al. [106] intro-
duced spatial pyramid VLAD, which plays a central role in the method introduced in our
model.

Sanchez et al. [80] showed a far simpler approach for taking spatial information into
account, by simply incorporating the coordinate information into the feature vector and
augmenting it. We will also examine this approach and compare it to our model in Section
4.

Some previous works [28, 15] have applied similar methods to ours by extracting deep
activation features from local patches at multiple scales, and coding them with VLAD or
Fisher Vector. However, previous works mainly dealt with scene classification or object
classification, in which the necessity for explicitly dealing with local objects and spatial
information is less pronounced. On the contrary, image captioning task requires that local
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objects be very clearly reflected in the captions. To our knowledge, our work is the first to
apply such workflow to image captioning.

4.3 Proposed Model: SPVLAD of R-CNN Features

4.3.1 Region-Based Feature Extraction
We first obtain a set of region proposals from images with selective search [92]. Selec-
tive search starts by superpixel segmentation, and proceeds with hierarchical grouping of
regions in a bottom-up manner, in which neighbouring regions are combined iteratively.
We used the fast mode of selective search, in which HSV and Lab colorspaces are em-
ployed, and complementary similarity metrics, such as color, texture, and fittingness be-
tween neighbouring regions, are also taken into consideration. Although fast mode lacks
some of the features present in quality mode, such as intensity, it is roughly 5 times faster
than quality mode, while sacrifice in performance is relatively small (98% recall compared
to 99% on Pascal 2007 test set). As discussed in Section 2, the benefit of using selective
search is that it is not limited by the number of object classes, which was the case for object
detection using RCNN and other object detection methods based on datasets.

We then extract CNN features from all regions proposed by selective search. The ra-
tionale behind extracting CNN features from region proposals is that, since regions now
tightly encompass particular objects, CNN features from the regions will be highly repre-
sentative of that particular object. The motivation for feature extraction from all regions,
instead of running non-maximum suppression to reduce the number of regions, consists
of two reasons. First, CNN features will go through spatial coding, in which an insuffi-
cient amount of region samples can cause data sparsity problem. Second, it is intuitive that
conspicuous objects will have multiple proposals of different sizes, so that the influence of
such objects will remain strong even after coding, and are likely to be reflected in captions.

Region-based variations of CNN, such as Fast-RCNN [26], have made the idea of ex-
tracting CNN featrues from multiple regions feasible. Although Fast-RCNN was originally
designed for detection task, we took advantage of it to perform high-speed feature extrac-
tion. Instead of provided network models trained for detection task, we used VGG network
[86] trained for classification on ImageNet [17], and extracted 4096-dimensional features
from the second fully-connected (fc7) layer.

4.3.2 VLAD Coding
Since we eventually have to perform VLAD coding of the features separately on each grid
of spatial pyramid, 4096-dimensions will be too large and redundant. We thus performed
dimensionality reduction with principal component analysis (PCA) on CNN features ex-
tracted from the regions. We trained the PCA with features of 250k randomly sampled
regions, and separately performed reduction to 128, 256, 512, and 1024-dimensions.

We then performed codeword learning with K-means. The number of clusters included
1, 2, 4, 8, 64. Centroids were initialized with K-means++ [5], as random Gaussian initial-
ization resulted in skewed clustering. Based on the codewords learned using K-means, we
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chair,	coffee,	
newspaper

cell	phone,
chair,	arm

Figure 4-3: Dividing the images into multiple grids using spatial pyramid enables us to
focus on various local objects.

perform the VLAD coding on CNN features obtained after PCA, with signed square root-
ing normalization as in [73, 3, 39, 41]. Thus, given a set of d-dimensional PCA-applied
CNN features X = (x1,...,xn) from n region proposals, and a set of d-dimensional k code-
words C = (c1,...,ck) obtained using K-means++, CNN feature xi is mapped to its closest
codeword as follows:

xi 7→ cj where cj = argmin sqn(xi − c) for c ∈ C (4.1)
and sqn() indicates signed-square rooting normalization. Then, VLAD coding for each
centroid is performed by summing up the differences between the centroid ci and all CNN
features xj assigned to that centroid as follows:

Vi =
∑

xj − ci∀xj 7→ ci (4.2)
The final VLAD vector is obtained by concatenating the VLAD codings for each centroid:

V =
∑

Vi where |C| = i (4.3)
Dimensionality of the resulting vector at this point is the dimensionality of CNN features
after PCA times the number of clusters from K-means.

4.3.3 Spatial Pyramid

Although VLAD encoding is known to perform well on preserving locally invariant fea-
tures, it is at the cost of discarding spatial information. Previous works have thus proposed
Spatial Pyramid VLAD [106], in which VLAD coding is performed at multiple levels of
different sizes, going from coarse to fine sub-regions, inspired by spatial pyramid match-
ing. Spatial pyramid allows us to focus on local objects that would have been neglected in
the entire image. In Figure 4-3, for instance, local objects such as chair, coffee, cell phone,
and newspaper are placed in a relatively inconspicuous position at a small scale, and are
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likely to be neglected in the whole frame. By placing spatial pyramid, however, many of
them are now closer to the center of each grid at a larger scale, and are more likely to be
reflected in the feature extraction process.

In order to determine which grid a particular region belongs to, we simply locate the
center of the region. An alternative would be to assign a region to all overlapping grids.
However, our examination of the alternative resulted in grids not being much different from
each other, and thus not discriminative enough. This may be attributed to the fact that many
conspicuous elements in the images are frequently large in size, thus occupying multiple
grids, and consequently making the grids all similar. We thus resorted to the center of the
region for its grid assignment, as it is also more concurrent with our initial motivation of
preserving local information.

Since previous works [57] have reported that levels beyond three obtain only an in-
significant amount of improvement at the cost of enlarged dimensions, we also set our
spatial pyramid at three levels; 1× 1, 2× 2, and 3× 1 (left, middle, right). Thus, using up
to second level of the pyramid will result in representations of the image at 5 different sizes
or locations, and up to third level will have representations at 8 different sizes or locations
per image. Because the number of grids is fairly small in our case, we did not perform any
normalization for different levels or different grids.

4.3.4 Caption Generation

Since the motivation of this chapter is to tackle the representation part of the image cap-
tioning process, we generally follow the conventional approach for caption generation part,
applying LSTM to our representation of the images and ground truth annotations. We em-
ploy the “vanilla” architecture for LSTM as used in [95], which is a modified version of
the Equation (3.1). Gate functions are defined as following:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxgxt +Whght−1 + bg)

(4.4)

Word vectors were trained with random initialization, and sigmoid function is used for
non-linearity throughout all gates except along with hyperbolic tangent for memory cell
update. Training was performed for 100 epochs in all experiments, and beam size of 1 was
used.

4.4 Experiment

4.4.1 Setting

We apply our proposed model to MS COCO [60]. Train and validation split add up to
roughly 120,000 images, and running selective search on the entire dataset resulted in
45.9M region proposals, approximately 385 regions per image. From these regions, we
follow the procedures described in Section 3 to generate captions.
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Table 4.1: Performances on BLEU with varying dimensionalities of CNN features after
PCA (1 cluster, no spatial pyramid)

Dimension BLEU-1 BLEU-2 BLEU-3 BLEU-4
128 59.3 39.3 25.4 16.9
256 59.3 39.4 25.5 17.0
512 51.2 30.8 17.9 10.9
1024 48.0 25.4 13.2 7.8

Table 4.2: Performances on BLEU with varying number of clusters (256 dimension, no
spatial pyramid)

Clusters BLEU-1 BLEU-2 BLEU-3 BLEU-4
1 59.3 39.4 25.5 16.9
2 58.7 38.8 24.9 16.3
4 60.7 41.0 27.3 18.4
8 57.7 36.4 22.5 14.6
64 46.4 25.0 10.4 4.4

We compare the performance of our proposed model with baseline, in which 4096-
dimensional CNN features are extracted from the entire image, and inserted to LSTM as
input with no further preprocessing. Note that, since the evaluation server for test split
of MS COCO allows only a limited number of submissions, we split the validation split
into two splits for validation and test respectively. Parameter validation was performed on
the former split of the validation split, and the remaining experiments with comparison to
baseline models were carried out on the latter split from the validation split.

4.4.2 Parameter Validation

A number of factors can potentially contribute to a large increase in dimensionality of the
final representation; dimensionality of reduced CNN features, number of clusters, and level
of pyramid. Even if performance increases, excessively high dimensionality would be im-
practical. We would thus like to consider an appropriate trade-off between performance and
dimensionality, and performed a number of validations to set up appropriate parameters.

We first examined the influence of dimensionality of the CNN features after PCA. The
number of codewords was fixed to 1, and spatial pyramid was not employed. We varied the
dimensionality of CNN features as 128, 256, 512, and 1024, to which VLAD coding was
applied. The 4096-dimensionality CNN features prior to PCA were not employed since it
will cause the final vector to be impractically large, when combined with multiple clusters
and spatial pyramid.

Table 1 shows the performances of our model with various dimensionality of CNN fea-
tures after PCA, using BLEU [71] as evaluation metric. Surprisingly, lower dimensionality
outperforms higher ones by a considerable margin. This indicates that 4096-dimensional
CNN features are not optimal and contain redundant information. Inspection of our pipeline
provides another explanation. CNN features in our model are extracted from small regions
suggested by selective search, which mostly contain objects at a large proportion, as op-
posed to the “whole” images containing various objects and components at varying scales.
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Figure 4-4: Qualitative analysis of our model and baseline approach. Examples in the red
solid box demonstrate that our model of VLAD coding of CNN feature generates more
accurate captions with regards to local objects. Blue solid box corresponds to failure cases.

Thus, much fewer dimensionality is needed to correctly classify and represent the objects.
Furthermore, since clusters are obtained from these features, less compact representation
with high dimensionality is likely to result in noisy clusters, leading to noisy VLAD coding,
which negatively affects the accuracy of captions.

Notably, 256-dimensional coded representation, even with only one cluster and no
spatial pyramid, resulted in best performance, almost equal to the performance of 4096-
dimensional CNN features used in conventional image captioning task. Further-reducing
the dimensionality to 128 resulted in very slight decrease, but still comparable to 256-
dimension features and CNN features, despite being only 1/32 of its size. This demonstrates
that VLAD coding of CNN features from region proposals contains highly discriminative
ability, while being very compact.

Secondly, we examined the influence of the number of clusters. Dimensionality of the
CNN features was fixed to 256, which achieved the best performance in the first validation,
and spatial pyramid was not employed. We varied the number of clusters as 1, 2, 4, 8, and
64, with which VLAD coding was performed upon 256-dimensional CNN features. Table
2 shows the performances of our model with various numbers of clusters. The differences
in performance between low number of clusters are relatively small, while larger number
with 64 clusters noticeably degrades the performance. Similarly to the dimensionality case,
a large number of clusters results in sparse clustering, where many clusters end up with no
vector assigned to it. Increasing the number of iterations is likely to improve the perfor-
mance to similar levels as lower numbers of clusters, but it indicates that its convergence
is much slower. Although using only one or two clusters resulted in comparable perfor-
mances, it would not be much different from average pooling, and thus would not fully
utilize the benefit of VLAD coding. In the following experiments for comparison to previ-
ous works, we mostly proceed with the combination of 256-dimensional CNN features, 4
or 8 clusters, and spatial pyramid of level 2 or 3.
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Table 4.3: Performances of each model on BLEU.
Model Cluster SP Lev. Total Dim. BLEU-1 BLEU-2 BLEU-3 BLEU-4

CNN (whole) N/A N/A 4096 62.0 42.4 28.0 18.7

Ours

4
1 1024 60.7 41.0 27.3 18.4
2 5120 61.3 41.4 27.5 18.9
3 8192 61.1 40.8 26.9 18.8

8
1 2048 57.7 36.4 22.5 14.6
2 10240 58.5 37.4 23.7 15.5
3 16384 58.9 38.8 24.9 16.5

[80] 4 N/A 1036 56.5 35.9 21.9 13.9
Ours+CNN N/A N/A 9216 60.5 41.0 27.1 18.4

4.4.3 Additional Setup 1: Feature Augmentation

In object detection and classification literature, some alternatives to spatial pyramids have
been proposed. We examine one of such proposals in order to examine whether, and to
what extent, local information can be preserved without using spatial pyramids.

We examine a simple feature augmentation method proposed by Sanchez et al. [80],
where coordinate information is concatenated to the vector of descriptor. Specifically, given
2D-coordinates of a region patch mt = [mx,t,my,t]

T with a descriptor xt of size D, which
in our case corresponds to CNN features, and the patch scale σt, where the image is of
size H and W, we augment the dimension of the descriptor by 3, resulting in a new vector
x̂t ∈ RD+3 as follows:

x̂t =


xt

mx,t/W − 0.5
my,t/H − 0.5

log σt − log
√
WH

 (4.5)

Thus, it accounts for location information of each region implicitly in the feature vector,
rather than explicitly dividing regions and generating separate representations. The benefit
of this approach is the simplicity of its implementation. We implement this method to
the best-performing set of parameters in our model, except without spatial pyramid; 256-
dimension CNN features with 4 clusters. Features are thus augmented to 259-dimension,
and the resulting final representation becomes 259×4=1036 dimensions, roughly a quarter
of the dimensionality of conventional CNN features.

4.4.4 Additional Setup 2: Ours + CNN (Whole)

We examine a combination of our model with the conventional one, where CNN features
are extracted from the image in its entirety. We extracted activations from second fully-
connected (fc7) layer of 4096-dimension with VGG-19 network. For our model, 256-
dimensional features with 4 clusters and spatial pyramid up to level 2 were employed.
Combining the two adds up to 9216-dimensional vector per image.
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4.4.5 Evaluation

Table 3 summarizes the results from our model and previous works, with various combi-
nations of parameters, and BLEU as the primary evaluation metric. The scores for whole
CNN features are from our own experiment under the same condition for fair comparison.
Other papers have reported varying, sometimes higher results with their own methods, al-
though mostly in a close range. While enhancing the performance of LSTM is out of scope
of this chapter, it is an active research area, and replacing our vanilla LSTM with more
recent versions is likely to boost the overall performance of all models.

Most variations of our model achieve performances very close to CNN features, es-
pecially with the best-performing combination outperforming CNN features at BLEU-4.
Since BLEU-4 is computed from higher-order of n-grams than others, it is frequently em-
ployed as the primary source of evaluation metric [95, 81], as it better-indicates the overall
semantic similarity. It thus shows that accounting for local objects as in our model enhances
the overall semantic accuracy.

Overall, 256-dimensional CNN features with 4 clusters up to level 2 and 3 resulted in
the best performance. In all cases, models with spatial pyramids outperform those without,
which demonstrates that paying attention to local elements by dividing the images into
sub-regions is able to reflect more detailed aspects of the images. Patterns observed in
Section 4.2 mostly hold true, with compact dimensionality and a small number of clusters
performing better. Feature augmentation achieved reasonably high performance, but fell
short of our model. If there are multiple regions covering the same objects, those regions
have close feature vectors as well as close coordinates. Thus, when they are assigned
to clusters, the explicitness of coordinate information is likely to become subdued to an
insignificant extent. This again shows the importance of explicitly accounting for local
objects in image representation.

In order to examine how different our captions are from original CNN features, we
calculated BLEU score of our model with captions generated from CNN features as refer-
ences, which resulted in 59.4/47.9/40.2/35.3. The score indicates that both captions feature
similar contents, but also that they have considerable differences in their wordings and in
their dealing of details.

We also performed human evaluation to compensate for the limitations of automatic
evaluation metrics. We asked on Amazon Mechanical Turk which caption reflects the im-
ages in more details for 5,000 images. In addition, we also asked the workers to determine
whether each image contains local elements or not. Overall, our captions had a marginal
lead with roughly 37.5% of the responses preferring our captions as opposed to 34.2% of
CNN features, while both captions were considered to be at the same level in 28.2%, as
shown in Table 4. Our model shows clearer advantage when the image contains local ele-
ments. Of 3,022 images classified as containing local elements, ours model was preferred
in 39.0% of the responses as opposed to 28.2% of CNN features, while both models were
considered to be at the same level in 34.1%. On the other hand, it showed comparative
weakness when it comes to the images not containing any local elements. Our model was
preferred in 35.2% of the responses, while CNN features were preferred in 42.7%. Such
result is concurrent with the failure examples shown above, where the images cannot ben-
efit from spatial pyramid. Yet, the overall results demonstrate that our model did achieve
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Table 4.4: Number of votes for each model on human evaluation.
# images Ours Both CNN

All 5000 1876 1411 1713
with local elements 3022 1180 1032 868

without local elements 1978 696 379 845

our objective of better reflecting local elements.

4.4.6 Discussion

Figure 3 shows examples of images and captions generated by our model, CNN features,
and the combination of two, along with ground truth. Resulting captions show that our
model does capture local, secondary objects more correctly and frequently than CNN fea-
tures, frequently providing details at the level of human-written ground truth captions. It
verifies that our model has successfully learned to apply mapping between local objects
and their linguistic correspondences to unseen images, and that our motivation of capturing
spatial information with spatial pyramid has succeeded to a plausible extent.

There were indeed cases where our models performed more poorly than CNN features.
Such cases were mostly the ones in which it was hard to find any component other than
main object in the image. Our model often talks about non-existent secondary object,
or, in worse case, incorrectly describes the main object. As much as it can deal better
with particular local objects when they are present, it turns out to be less efficient when
there are no secondary objects so that segmenting the image into spatial pyramid becomes
unnecessary. Figure 4 shows examples of such failure cases.

Since our model better-deals with local objects, while original CNN features can han-
dle main objects well, it seems intuitive to combine the two and expect balanced results.
However, their performances were lower than respective models, presumably due to their
large dimensionality, which requires more training time to fully converge. The resulting
captions seem to display somewhat mixed characteristics, slightly leaning more towards
captions from CNN features in terms of contents.

Since applying PCA to our VLAD-coded CNN features from sub-regions not only
reduced the dimensionality but also enhanced the performance, one possible alternative
would be to apply dimensionality reduction to original CNN features as well, and see
whether it retains its discriminative strength. If successful, it will make the combination of
two models more compact and thus more practical.

We would also like to discuss why our proposed model is better at reflecting local
variations than using global CNN features only. In CNN, global pooling is performed at
each local patch. Whether it is maximum pooling or average pooling, local variations are
either discarded completely, or subdued. In our model, however, calculating vector distance
between the centroids and the extracted region features is performed evenly regardless of
the size of the region. Thus, local variations, even from small regions, are more likely to be
preserved and reflected in the final representation.
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4.5 Summary & Discussion
We introduced a method for image representation incorporating spatial pyramid VLAD to
CNN features of sub-regions suggested by selective search, in order to generate more lo-
cally robust image captions. Our VLAD coding of CNN features, both with and without
spatial pyramid, was able to achieve performance comparable to CNN features, while hav-
ing much lower dimensionality, as little as 3% of its size at its minimum. We optimized
our model via parameter validations, and learned that combination of low dimensionality
after PCA with appropriate number of clusters yields the best results. Combining spatial
pyramid turned out to enhance performance not only on evaluation metrics, but in resulting
captions dealing well with local objects.

Our model more accurately and frequently accounts for local objects than previous
methods, such as feature augmentation or conventional CNN representation for the whole
image. It frequently dealt with local objects at the level of human-written ground truth
captions. Our model did show weaknesses when there are no local elements so that spatial
pyramid is hardly necessary, but a more carefully crafted combination with conventional
CNN features is likely to complement mutual weaknesses of respective models.

A number of potential improvements can be made from each stage of our model. For
example, other region proposal methods, such as DeepProposal [25] may as well be em-
ployed, as long as they are not bound by a pre-determined set of object classes. Employing
intra-normalization for VLAD coding as in [4] can also potentially improve the perfor-
mance. Furthermore, since spatial pyramid has pre-determined division of cells that may
not always correspond to the ideal localization of objects in the image, it may be helpful
to build a spatial pyramid in which the size and location of the cells are determined by the
results of region proposals followed by non-maximum suppression. Discriminative spatial
pyramid [31] in this sense is a potential candidate for improving the performance, and will
be our immediate future work. Finally, since we exclusively dealt with the representation
part of the image captioning task, a novel approach to tackle the generation part of it would
naturally be of interest.

Figure 4-4 shows more examples of the generated captions from our model, conven-
tional CNN features from the entire image, ground truth, and additional setup where we
combined our model with conventional CNN features from the entire image.
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Figure 4-5: More examples.
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Chapter 5

Image Captioning with Sentiment Terms

Image captioning task has become a highly competitive research area with successful appli-
cation of convolutional and recurrent neural networks, especially with the advent of long
short-term memory (LSTM) architecture. However, its primary focus has been a factual
description of the images, including the objects, movements, and their relations. While
such focus has demonstrated competence, describing the images along with non-factual
elements, namely sentiments of the images expressed via adjectives, has mostly been ne-
glected. We attempt to address this issue by fine-tuning an additional convolutional neural
network solely devoted to sentiments, where dataset on sentiment is built from a data-
driven, multi-label approach. Our experimental results show that our method can generate
image captions with sentiment terms that are more compatible with the images than solely
relying on features devoted to object classification, while capable of preserving the seman-
tics.

5.1 Accounting for Sentiments in Captioning

Image captioning task bridges the gap between two of the most fundamental artificial intel-
ligence domains, namely language and vision. Recent surge of deep learning approaches
has escalated the task to an unprecedented stage, where generated captions can nearly rival
those by humans [12][19][21][47][95][100]. However, the objective of image captioning
task has revolved around the factual description of the images, such as the objects, their
motions, and their relations. On the contrary, non-factual components subject to viewers’
interpretation of the images, mostly appearing in a form of adjective or adverb, have been
missing. We define such subjective elements as the sentiment of the image, and modify-
ing terms describing it as sentiment terms. Such non-factual sentiment terms broaden the
expressibility, enrich the aesthetics of the language, and are more human-like.

The reason that research on image captioning with sentiment terms has stagnated is
partly due to lack of dataset specialized in sentiments, and the difficulty of building such
dataset, which inevitably poses several conundrums. First, there is no clear boundary be-
tween classes. An image labeled as ‘happy’ may also be labeled as ‘cute,’‘beautiful,’ etc.,
and the same holds true in the opposite sentiment polarity. One way to deal with this is-
sue may be to have a highly limited number of inclusive classes, as is often done in facial
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Figure 5-1: Overall workflow of our model. Our model extracts features from two convo-
lutional neural networks, one for object classification, and the other for sentiment classifi-
cation. Two sets of features are combined and input to LSTM, which generates the caption.
LSTM returns to the most likely state for sentiment term, reloads the output from previous
unit, and determines the term based on probability distribution from separate vocabulary
for sentiment terms.

expression classification task [7]. While this has an advantage that the distinction between
classes is comparatively clear, it is at the cost of losing the subtle nuances apparent within
the inclusive classes. For example, a non-negligible discrepancy lies in between ‘hilarious’
and ‘peaceful,’ both of which belong to the inclusive positive sentiment polarity. Also, it
is difficult to port such limited number of classes to the images of a broader domain, in
which the range of possible subject matters is extremely wide and humans are frequently
not present. Unlike facial expressions, sentiments from the images of general domain can
be interpreted with a great variety, often accompanying disagreements among the viewers.
Furthermore, certain images may permit labels from opposite polarities to be attached (e.g.,
‘friendly’ and ‘eerie’ for a smiling pierrot). In fact, the results from our human evaluation
in Section 2 testify that humans indeed find it very difficult to agree on a single label for
given images, even when the number of classes is relatively few. We thus conclude that the
sentiments should be represented with multiple labels, as there is no single ‘correct’ label,
but only an indefinite set of acceptable, appropriate labels.

Another practical issue has to do with the financial cost of building such dataset. If
we were to rely on crowd sourcing services to have 1 million images manually labeled, as
was the case for ImageNet [17], the cost would easily skyrocket up to tens of thousands of
dollars. Even so, due to the subjective nature of sentiments, it is not guaranteed that the
results will be reliable. As an alternative to manual labelling, we note that the viewers’
comments towards the images on social network frequently reflect the sentiments of the
images. Figure 2 shows examples of comments reflecting the sentiments associated with
the images. We exploit this characteristic of the comments in order to inexpensively label
the images. As we will see in Section 5.4, it requires attentive filtering processes and is
only weakly supervised, but is capable of building a fairly agreeable dataset at virtually
zero financial cost.

In this chapter, we tackle a novel problem of image captioning with sentiment terms.
We build sentiment dataset in a data-driven, multi-label setting, from which an additional
convolutional neural network (CNN) learns sentiment features. Since our work is fun-
damentally an incremental work built on top of conventional image captioning task, we
generally follow the approach of CNN-LSTM pipeline for the most part, except features
for object classification and sentiment classification are obtained separately, and the LSTM
unit with highest probability is revisited after sentence is complete, in order to produce the
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Beautiful flowers! Scary..	It	looks	straight	at	me

Figure 5-2: Actual examples of comments on social network services describing the senti-
ments of the images. Underlined words are the sentiment terms to be used as labels.

sentiment term. Figure 5-1 presents a diagram of the workflow of our model. Throughout
the chapter, we refer to ‘sentiment terms’ as the words whose positive or negative score
on SentiWordNet [6] is 0.5 or higher. Features for object classification are combined with
sentiment features and are fed into LSTM [34], which generates the caption in its conven-
tional way, except it returns to the state with highest probability, and reloads the output
from previous unit to determine the sentiment term.

Our main contributions can be summarized as following: 1) proposal of a novel task of
image captioning with sentiment terms, 2) utilization of multi-label learning to deal with
subjective nature of sentiments, and 3) introduction of a data-driven approach to inexpen-
sively build a dataset on sentiments and its public release.

5.2 Related Works for Image Captioning with Sentiment
Terms

Traditionally, sentiment classification of images has been carried out mostly with hand-
crafted features. For example, Siersdorfer et al. [61] suggested that SIFT combined with
global color histogram can be a good indicator of the sentiments of the images, although
dealing only with positive/negative binary classification. Borth et al. [9] represented images
with adjective-noun pairs collected from web mining and analyzing tags associated with the
images. More recently, Katayev et al. [46] demonstrated that neural networks can be fine-
tuned to distinguish between different styles and atmospheres, and that it outperforms other
hand-crafted features, such as GIST or color histogram. This led to an idea that we may
also be able to fine-tune neural networks to determine the appropriate sentiment of a given
image.

However, these works have mostly overlooked the inclusion of sentiment terms in their
captions. In this regard, most intimate to the nature of our work is by Mathews et al [66].
They proposed a switching RNN model, consisting of two parallel RNNs for factual and
sentiment description respectively. However, they built separate models for positive and
negative terms and applied it to the same set of images under premise that any image can
be interpreted from either sentiment polarity. While it is true for certain images as was
discussed in Section 5.1, there are a substantial amount of images that hardly permit an
interpretation from both sentiment polarities (for example, it is rare to see a description
with a negative term given a close-up of a toddler’s smiling face or a blooming flower). We
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thus believe that the polarity of the sentiment terms in the description should be determined
automatically, unaided by manual choice of polarity. It consequently follows that a single
RNN suffices for us, although we still need two CNNs for separate feature extractions.

5.3 Proposed Model: Fine-tuned Sentiment CNN

5.3.1 Multi-Label Learning

Note that, although we utilize multi-label setting, our objective deviates from that of tradi-
tional multi-label learning in that we do not necessarily aim to predict identical set of labels
as ground truths, as there exists no definitive set of labels. In fact, prediction of a single
appropriate label suffices since there is usually only one modifying term for an object at
a time. Thus, multi-label setting in our case is for representing the images and projecting
them in a sensible space, rather than replicating identical set of labels.

Multi-label classification itself is an active research area with a variety of approaches.
The bottom-line for us is that the approach should be implementable with ease in standard
deep learning frameworks, Caffe [42] in our case. One possibility is to utilize the approach
known as Binary Relevance [10][104] which decomposes the multi-label learning into a
set of independent binary classification problems. Thus, m training examples xi whose
associated labels form a set Y are viewed as following:

Dj = {(xi, φ(Yi, yj))|1 ≤ i ≤ m}

where φ(Yi, yj) =

{
1, if yj ∈ Yi
0, otherwise

(5.1)

In our case, xi corresponds to CNN features, extracted from 2nd fully-connected layer (fc7)
of VGG [86]. Then, the set of labels for unseen example is determined by the obtained
binary classifiers gj for q classes:

Y = {yj|gj(x) > 0, 1 ≤ j ≤ q} (5.2)
While simplistic, it has proven to generalize well in various domains, and has become a
foundation for more sophisticated multi-label learning techniques [104]. Another feasible
approach is Random k-Labelsets [91], in which every unique set of labels is considered
a distinct class. It has two obvious downsides that the number of classes exponentially
grows, and that there may be classes in test set that are unseen in training set. We thus opt
to proceed with the mechanism of binary relevance.

While multi-label setting can be implemented with slice layers in deep learning frame-
works, its setup can be highly tricky. A much simpler method that essentially performs the
same task is to simply duplicate the images and assign them different labels. The benefit
is its simplicity, while the downside is that the size of dataset grows, which in our case ap-
proximately doubled. Note that, since the predicted label for a given image will always be
the same, we limit the images in the test set to those containing only one label. Otherwise,
the accuracy will never be able to go beyond 100/(average number of labels)% at best.
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5.3.2 Caption Generation
Encouraged by its recent successes in image captioning task [19][47][66][95][100], we
employ LSTM [34] as our caption generator, and follow its conventional setting for the
most part. The input to LSTM are the features extracted from the second fully-connected
layer (fc7) of CNN, although our model necessitates additional CNN features as will be
discussed in Section 5.5. Word vectors are trained with random initialization, and sigmoid
function is used for non-linearity throughout all gates except along with hyperbolic tangent
for memory cell update as defined in equation (4.4) reprinted below for convenience:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxgxt +Whght−1 + bg)

(5.3)

The unique part of our LSTM is that we force it to contain at least one sentiment term
in its prediction. We hypothesize that sentiment terms are most likely to modify the nouns
most characteristic of the sentence, hence most characteristic of the image. We thus keep
track of the probability every time a noun is predicted, and once the prediction of the
entire sentence is complete, return to the LSTM unit which predicted the noun with highest
probability, and feed it again with the output from the previous LSTM unit. We keep
a separate vocabulary Vsenti consisting of sentiment terms only, which is a subset of V
consisting of all terms, and predict a word again at the LSTM unit we return to, but this time
only from Vsenti. Thus, we are essentially forcing an insertion of a modifying sentiment term
that may have been skipped in favour of the characteristic noun due to smaller likelihood.
In summary, sentiment term wsenti is the term in Vsenti which maximizes

ptreturn+1(wsenti) = LSTM(xtreturn)(wsenti), (5.4)
where xtreturn is the input at t = treturn determined by the learned parameters and word vectors
up to that state. Also, originally predicted word wtreturn+1 at this state, which is part of the
generated caption of length N , satisfies the following:

wtreturn+1 = argmax
w

ptreturn+1(w) , wtreturn+1 ∈ Vnoun,

treturn = argmax
t

maxLSTM(xt)(w) , 0 ≤ t ≤ N − 1
(5.5)

5.4 Weakly-Supervised Sentiment Dataset

5.4.1 Construction
We first collected 2.5M images and 28M comments associated with those images from im-
age hosting services, namely Flickr and DeviantArt. Although comments are of different
nature from captions, they have been reported to be highly indicative of the sentiment of the
images [13], and thus fit our purpose of representing visual sentiments. Sentiment terms
that frequently appear on ground truth descriptions of existing standard datasets were man-
ually chosen as queries to retrieve the images. From the collected comments, we count the
occurrences of sentiment terms, accompanied by a series of filtering processes as following:
• negation: sentiment terms that are negated are filtered out (e.g., “not very funny”)
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• spam: suspicious comments are ignored, and comments with URL are also ignored,
regardless of the contents

• color and motion terms: sentiment terms describing specific colors are filtered out.
Also, sentiment terms describing motions in the appearance of a gerund (e.g., “jump-
ing”) are filtered out with a few exceptions (e.g.,“smiling”).

• first-person subject: sentiment terms used to modify the first-person subject are fil-
tered out (e.g., “I’m serious”)

• inflection: adverbs and comparative forms of adjectives are inflected to their respec-
tive original adjective forms (e.g., “happily” or “happier” to “happy”) except they are
filtered when followed by an adjective (e.g., “simply” as in “simply beautiful”)

• dual part-of-speech: sentiment terms that have high frequency as a different part-of-
speech and require more sophisticated usage of parser are filtered (e.g., “mean”,“pretty”)

• general, non-visual terms: sentiment terms with unclear description criteria that pro-
vide no visual clue are manually filtered out from the final counts (e.g., “good,”“bad”)

After filtering and counting of the sentiment terms, we need to determine the appropri-
ate number of classes. We experimented with three different number of classes (20, 50, and
100) determined by the frequency of terms in the comments. According to the number of
classes, images without any comment that contains at least one label from the classes are
filtered out, and most frequent labels up to maximum of five that appear in the comments
for each image and exist in the classes are selected as the labels for the image. Sizes of the
resulting datasets and their performances on various evaluation methods are summarized in
Table 5.1. We refer to this dataset as Sentiment Dataset in the rest of the chapter.1

5.4.2 Validation
In order to approximate the reliability of the comment-generated labels, we performed a
human validation over a subset of our dataset, consisting of 10k images and 19,975 labels.
Two workers were assigned per image, and each worker was asked to select the labels that
do not seem appropriate given the image. We marked the labels inappropriate if two work-
ers agreed that the label is inappropriate, and 572 labels were agreed to be inappropriate,
which amount to 2.9% of the tested labels. While not entirely satisfactory, this yields a fair
bound for the reliability of a comment-generated label. Frequent sources of biases were
viewers commenting on the overall quality of the images rather than sentiments, or compli-
ments to the uploaders. More refined filtering process considering these biases will further
enhance the reliability. Figure 5-3 shows examples of comment-generated labels and the
labels that turned out to be inappropriate.

In order to comprehend the proximity of classification models’ performances to human
capability, we performed classifications by humans for each number of classes on Mechan-
ical Turk with a subset of dataset, consisting of 1,000 images respectively. Table 5.1 shows
the performances of neural networks and human classification on each dataset with vary-
ing number of classes. It is noteworthy that it is difficult even for humans to achieve high

1http://www.mi.t.u-tokyo.ac.jp/static/projects/sentidata/
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Table 5.1: Top-1 accuracy of classification by various models. Apart from human eval-
uation carried out on 1,000 sampled images, all other tests are performed on the entire
dataset.

Dataset Class Size SIFT+RGB [61] VGG [86] Human
ImageNet [17] 1000 1M - 71 85

FlickrStyle [46] 20 80k - 40.7 75.1

Sentiment
100 1.1M 6.8 11.3 16.1
50 .7M 14.2 20.5 25.8
20 .5M 19.4 28.7 40.1

• Cute
• Sexy

• Lovely
• Beautiful
• Gorgeous

• Simple
• Funny
• Lovely

• Ugly • Stunning
• GorgeousLabels

• Beautiful

• Unique
• Cute

• Crazy • Unique • Lovely
• Cute

• Funny
Labels

• Sad
• Unique
• Young

• Sexy
• Lovely

• Scary • Lovely
• Cute
• Creepy

• Cute • Beautiful
Labels

• Sad
• Gorgeous

Figure 5-3: Examples of comment-generated labels. Labels in red color indicate the labels
agreed to be inappropriate on Mechanical Turk.

accuracy due to the unique nature of sentiments in which subjectivity prevails. However,
since we are assuming a single label per image in the test instead of multi-label, the actual
accuracy is supposedly higher. Table 5.3 shows the final 20 classes, their sentiment scores
as defined on SentiWordNet [6], and the number of images in the dataset belonging to the
class.

Some of the traditional hand-crafted features have been known to correlate well in
sentiment classification. We applied SIFT and RGB color histogram features followed by a
linear SVM in a similar manner as [61] to our dataset, and compared the performances. The
results were not as competent as in binary classification, again confirming the complication
of multi-class sentiment classification of images and that hand-crafted features may not be
adequate for more elaborate classification tasks.
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Table 5.2: Size of vocabulary, parameters, dimensions for each dataset
Dataset V Vsenti Param Paramsenti Dimsenti
Flickr8k 4,448 104 3,855,968 4,186,208 1,290
Flickr30k 11,794 399 7,624,466 7,824,658 782
MSCOCO 14,141 512 8,828,990 9,260,350 1,685

Table 5.3: Sentiment score and number of images for each class.
Class POS NEG OBJ Images
angry 0 .875 .125 25,824

beautiful .750 0 .250 254,905
crazy .625 .500 - 37,810
creepy 0 .875 .125 28,830
cute .625 0 .375 325,606
dirty 0 .750 .250 16,417
funny .500 .500 - 85,590

gorgeous .750 0 .250 71,712
handsome .625 0 .375 28,404

hot .625 0 .375 48,486

Class POS NEG OBJ Images
lovely .625 0 .375 123,004

sad .125 .750 .125 75,263
scary 0 .750 .250 30,773
sexy .625 0 .375 72,186

simple .875 .500 - 46,874
stunning .750 .625 - 24,049

ugly 0 .750 .250 21,840
unique .500 0 .500 24,981
weird 0 .250 .750 51,072
young .625 .250 .125 39,612

5.5 Experiment

5.5.1 Setting
We chose VGG with 19 layers [86] as our network model. Presumably, the characteristics
of our sentiment dataset substantially deviate from datasets devoted to object classification
task, and we thus aim to adjust the network parameters slightly more aggressively. We
fine-tune the layers from the first fully-connected layer (fc6) and on, as opposed to the
conventional approach in which only the last fully-connected layer (fc8) is fine-tuned. The
initial hyper-parameter setting for fine-tuning is as follows; gaussian weights, initial learn-
ing rate of 0.001, step decay of 0.1 at every 20k iterations, etc. Features are extracted from
the images via fine-tuned network above using Caffe framework [42].

Since we are aiming to generate only one sentiment term in the caption, it is likely
redundant to have the same number of dimensions for sentiment features as the ImageNet
features, and we thus reduce the dimensionality of sentiment features using PCA, after
which they are concatenated to ImageNet features. The size of reduced dimensionality
varied depending on the dataset for experiment (Table 5.2) and was determined by Minka
et al.

We compare the performance of our proposed method with those of four baselines.
Note that sentiment terms are force-inserted in all models except for the first baseline. :
• ImageNet: ImageNet features with conventional LSTM caption generation without

sentiment term force-inserted

• ImageNet+: ImageNet features with conventional LSTM caption generation with
sentiment terms force-inserted by LSTM

• Bigram: ImageNet features with sentiment terms chosen by an external bigram cor-
pus, namely Google Web Trillion Word Corpus [11]. No additional features were
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A young man is 
sitting on a stool in 
front of a 
microphone

A poor man is 
sitting on a stool in 
front of a 
microphone

A poor man is 
standing on a 
ladder

A young man is 
standing on a 
ladder

A man in a lean
shirt is standing 
on a sidewalk

A man in a 
surgical shirt is 
sitting on a stool 
with microphone

A woman in a 
white shirt and a 
man are standing 
in front of a 
building

A woman in a 
lean shirt and 
man are standing 
in front of a 
building

A vibrant woman 
and a woman and 
a woman in a 
black dress

A dirty man and a 
woman are 
standing in the 
water

A man in a white
shirt is walking 
on a beach

A man in a 
colored shirt is 
walking on a 
beach

A dog is running 
through a field of 
salty water

A dog is running 
through a field of 
blindfolded
water

A dog is sitting 
on a rocky rock 
overlooking a 
lake

A group of 
people in a white
shirt are playing 
soccer

A group of 
people in a 
colored shirt are 
playing soccer

A group of 
people are 
playing protected
soccer

Bigram

ImNet+

Style

Ours
A homeless man 
is standing on a 
ladder

A confused man 
is sitting on a 
bench

A vibrant woman 
is holding a 
bouquet of 
flowers

A man is standing 
in the overlooked
water

A dog is jumping 
over a log in the 
shallow water

A group of 
people are 
playing musical
soccer

Figure 5-4: Examples of captions generated by each model with sentiment term. Words in
red color indicate the inserted sentiment term by each model. Failure case is also shown
in the right-hand side. Note that removing sentiment terms from captions by ImNet+ or
bigram models will be identical as the captions generated by original ImageNet model
without sentiment terms.

added, but most likely sentiment term was inserted according to the external bigram
corpus, regardless of the probability distribution determined by LSTM, and thus re-
gardless of the features from corresponding images.

• Flickr Style: ImageNet features combined with features from Flickr Style dataset
[46] that contains forced sentiment terms from LSTM in the same way as our model.
Caffe provides the CaffeNet model fine-tuned on Flickr Style dataset, which achieves
about 39.2% accuracy on its own test data. Using VGG 19-layers and fine-tuning
from fc6 as we did in our model slightly boosts up the accuracy to 40.7%, and we
refer to Flickr Style features as those extracted by this network.

Experiments are carried out on three standard datasets for image captioning task; Flickr
8k [35], Flickr 30k [102], and Microsoft COCO [60]. In each dataset, we build vocabulary
V consisting of the words that appear twice or more in the ground truth captions. Vocab-
ulary of sentiment terms Vsenti are also built in the same way for each dataset. Sizes of
the vocabularies and dimensionality of sentiment features for each dataset, along with the
number of learnable parameters, are shown in Table 5.2.

5.5.2 Evaluation & Discussion
Figure 5-5 shows some of the figures and captions with and without sentiment terms, along
with all sentiment terms generated by the models. For ImageNet+ and bigram models,
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sentiment terms are frequently distant from dominant sentiment of the image. Bigram
model results in terms that are commonplace, e.g., ‘hot dog’,‘punk rock,‘smart phone,’
yet frequently irrelevant to the image. Inspecting the captions generated by our model
demonstrates that, while the captions are frequently composed in different wording, the
contents of the descriptions are mostly identical to the captions from ImageNet model,
with only a few exceptions. This testifies to the modificative linguistic effect of our newly
added features, and yet shows that they can preserve the main semantics for most images.
Most of the incorrectly described concepts (for example, color turns out to be frequently
inaccurate) also prevailed in other models. Another noticeable phenomenon is that our
model occasionally has highest confidence on different subjects from ImageNet+ model,
inserting sentiment terms at different part of the caption, which is another intriguing effect
of the new features. See Figure 5-5 for more examples of the generated captions from the
baseline models and our model.

Table 5.4 shows the performances of our model and baselines on a number of automatic
evaluation metrics. First, note that BLEU scores [71] are seemingly impaired for all models
in which additional terms are inserted. This is inevitable since there are a plethora of
ground truth captions that do not contain any sentiment term, and insertion of sentiment
terms will inevitably lower the overall resemblance to those captions, especially as the size
of n-gram grows. Since the captions from ImageNet+ and bigram models are exact replica
of the original ImageNet model except for the sentiment term, their BLEU scores decrease
less than two other models. Since new features are added in the remaining two models
including our proposed model, their scores deviate slightly more from ImageNet model,
but our model’s scores are comparable to those of two fore-mentioned models, especially
as the size of dataset grows, and consistently outperform the scores by Flickr Style model.

The same can be argued for different metrics. For instance, since perplexity is com-
puted from the inverse probability of each predicted word, sentiment terms, which in gen-
eral have lower probability than non-sentiment terms in ground truth captions, are prone
to increase the perplexity. This reveals one of the unsettling aspects of currently popular
automatic evaluation metrics, particularly for rating image captions; while convenient to
use and indicative of the overall quality to a plausible extent, what most of them measure
is the resemblance of the generated captions to the ground truth captions (via n-grams or
alignment) or the probabilistic likeliness of the predicted caption, not the overall appropri-
ateness with regard to the attributes of the images. As such, higher scores on automatic
evaluation metrics occasionally do not necessarily imply better quality of the captions, and
more so when sentiment terms are concerned. Hence,

In order to compensate for limitations of evaluation metrics for dealing with sentiment
terms, we also resort to human evaluation, and interpret it as a complementary criterion of
evaluation. We performed two types of human evaluation tasks on Mechanical Turk. In
the first task, workers were given an image and one of the captions from four models with
sentiment terms, and were asked to determine whether the sentiment term is appropriate.
In the second task, workers were given an image and all four captions with sentiment
terms, and were asked to rank the captions in consideration of both semantic accuracy
and appropriateness of the sentiment terms. Two workers were assigned per image in the
second task. In both tasks, the same set of 2,000 images from MS COCO was used.

Our model was able to receive the highest appropriateness rating in the first task, which
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Table 5.4: Performances of the captions generated by each model on MS COCO determined
by automatic evaluation metrics. Note that no additional features were added in first three
models. ImNet refers to original ImageNet features from VGG with no sentiment term
inserted. ImNet+ indicates that sentiment terms are inserted to captions from ImNet model.
Our model is referred to as Sentiment. Results reflect that sentiment terms have become
noise and were put at disadvantage in evaluation.

Dataset Model BLEU1 BLEU2 BLEU3 BLEU4 METEOR [18] Cider [94]

MSCOCO

ImNet 62.0 42.4 28.0 18.7 12.1 62.3
ImNet+ 56.6 36.2 21.9 13.1 11.8 44.1
Bigram 56.7 36.2 22.0 13.3 11.7 44.1

Style [46] 55.5 34.8 20.7 12.4 11.3 38.2
Ours 56.5 35.9 21.7 13.0 11.6 43.0

Flickr8k

ImNet 51.1 33.0 20.1 12.6 11.4 39.4
ImNet+ 47.8 29.3 16.6 9.6 10.9 30.6
Bigram 48.2 29.4 16.7 9.7 10.9 30.5
Style 44.6 26.3 14.6 8.3 10.4 29.6
Ours 46.6 28.0 15.6 9.0 10.5 30.3

Flickr30k

ImNet 55.0 35.7 22.9 14.8 10.5 33.0
ImNet+ 51.6 31.9 19.2 11.6 10.4 25.9
Bigram 51.8 31.9 19.1 11.5 10.4 27.1
Style 49.3 30.1 17.9 10.8 9.9 22.0
Ours 51.1 31.0 18.5 11.1 10.1 23.0

demonstrates that our model was more frequently able to capture the dominant sentiment
in the image and generate appropriate terms. In other words, newly added features in our
model were more compatible with sentiment terms in the ground truth captions, and the
prevalent sentiment of the images. On the other hand, our model was below ImageNet+
model in the ranking task, although only by a close margin. A possible cause is that some
of the sentiment terms in ImageNet+ model’s captions were considered compatible with
the image, even when it is not a dominant sentiment in the image (e.g. “lean shirt,”“young
man”). It may also be a reason for its agreement score being lower. Table 5.5 summarizes
the results from human evaluation. Inter-rater agreement was calculated based on S metric
given by [8]:

S =
QPa − 1

Q− 1
(5.6)

where Q is the number of possible choices, and Pa is the probability of raters assigning the
same decision. All agreements fall into a range of ‘fair’ agreement according to [55].

Our final remark is that many sentiment terms in the generated captions, regardless of
the model, turned out to be irrelevant to emotions or aesthetics, which was dominant in our
choice of classes, reflecting different natures of online comments and ground truth captions.
In fact, sentiment terms in our classes appeared rather infrequently. If we were to shift our
focus more strictly towards emotions or aesthetics, building Vsenti more restrictively, for
example, by setting a higher threshold on SentiWordNet, may have done the job.
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Table 5.5: Performances of each model on human evaluation
Dataset % Appropriateness Avg. Rank Agreement
ImNet+ .404 2.17 .209
Bigram .383 2.66 .260

Style [46] .367 2.98 .301
Sentiment .448 2.25 .307

5.6 Summary
We tackled a novel problem of image captioning with sentiment terms. We introduced
a method to inexpensively build a dataset on sentiments, trained in a form of multi-label
learning, and exploited the learned features on long short-term memory to generate image
captions with sentiment terms. It was comparable on automatic evaluation metrics to con-
ventional models, and human evaluators found the captions from our model to be more
appropriate with regards to the sentiment of the image.
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A man is standing 
in excess front of a 
store

A man is standing 
in united front of a 
store

A woman is 
walking down 
the side street

A woman is 
walking down 
the littered street

A woman is 
walking down 
the cleared street

A group of lean
people are 
walking down a 
street

A man is skiing 
gone down a 
snowy hill

A man is skiing 
dirty down a 
snowy hill

A man riding 
skis down a 
snow covered 
protected slope

A little girl is 
jumping into a 
swimming 
overlooked pool

A girl defined in 
a pink shirt is 
playing with a 
toy

A girl shallow in 
a pink shirt is 
playing with a 
toy

A man in a 
leather jacket is 
walking through 
a forest

A man in a 
colored jacket is 
walking through 
a forest

A man in a blue 
shirt is walking 
down a snowy
hill

A dog is running 
through a 
magnetic field

A dog is running 
through a 
overlooked field

A dog is running 
through a 
protected field

Bigram

ImNet+

Style

A casual woman 
in a white shirt 
and a woman in 
a white dress

A man is 
standing in front 
of a hollywood
building

A man in a 
colored jacket is 
skiing down a 
hill

A young girl in a 
pink dress is 
playing with a toy

A man in a blue 
shirt is walking 
down a rocky
path

A dog is running 
through a clean
field

Ours

A zebra in a field 
with a tree in the 
touching
background

A zebra standing in 
a field with a tree 
in the ethnic
background

A truck bed with 
a blanket and a 
bed

A littered bed 
with a blanket 
and a bed

A man sitting on 
a cluttered bed 
with a dog

A dirty zebra 
standing in a 
field with a zebra

A man is 
jumping into the 
hot air

A man is 
jumping into the 
hot air

A young man is 
surfing on a 
wave

A man in a 
colored shirt is 
holding a 
baseball bat

A man holding a 
baseball (none)
bat in a field

A man holding a 
baseball smiling
bat

A hidden
bathroom with a 
toilet and a sink

A lacking
bathroom with a 
toilet and sink

A littered
bathroom with a 
toilet and a sink

A man in a 
kitchen preparing 
delicious food

A man in a 
kitchen preparing 
smiling food

A young man in 
a kitchen is 
holding a knife

A man sitting on 
a colored bed

A zebra in a field 
with a tree in the 
dirty background

A man is 
jumping into the 
drenched air

A man in a hat is 
holding a 
controlled
baseball bat

A bathroom with 
a plastic toilet 
and a sink

A man in a 
kitchen with a 
plate of hot food

Bigram

ImNet+

Style

Ours

Figure 5-5: More examples of captions with sentiment terms generated by each model.
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Chapter 6

Visual Question Generation (VQG) and
Answering (VQA)

Visual question answering (VQA) task not only bridges the gap between images and lan-
guage, but also requires that specific contents within the image are understood as indicated
by linguistic context of the question, in order to generate the accurate answers. Thus, it is
critical to build an efficient embedding of images and texts.

6.1 Motivation for Visual Question Generation and An-
swering

Recent rise of deep learning methods including convolutional neural networks (CNN) and
recurrent neural networks (RNN) has escalated a large number of artificial intelligence
tasks to an unprecedented stage, where the performance frequently rivals that of humans.
Tasks such as object classification, scene classification, and object detection demonstrated
the ability to correctly recognize and locate the images both holistically and regionally,
whereas tasks such as caption generation or object retrieval demonstrated that deep learning
methods can successfully bridge the gap between images and language. Visual question
answering (VQA) task further promotes the boundary of deep learning applicability and
complicates the problem by necessitating multiple prerequisites, potentially encompassing
all of the above-mentioned capabilities; as it needs to understand the question, locate or
classify the objects/scenes mentioned in the question, and generate appropriate answers.

6.2 Related Works for Visual Question Generation and
Answering

Visual Question Generation (VQG): While question answering task has been a classic
NLP task, visual question generation (VQG) task has hardly been tackled. [68] introduced
VQG dataset with crowd-sourced questions, but their goal was to generate questions that
humans might naturally ask, rather than questions designed for AI. In fact, it explicitly
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excluded questions that can be answered by visual cues. Since the paper’s goal was to
generate the questions only, their dataset does not contain the answers to them. In order
to examine and exploit the unique design characteristic of this dataset, we collected the
answers to the questions in this dataset, and used them as a part of our training data. Details
will be shown in Section 7.3.

The paper also shows that multimodal recurrent neural network outperforms other gen-
erative models including maximum entropy language model (MELM) [21] and machine
translation (MT) model [14]. We also generate questions with multimodal recurrent neural
network, except we replace the gated recurrent neural network (GRNN) with LSTM.

Visual Question Answering (VQA): Visual question answering (VQA) task itself has
been popularized with the advent of dataset provided by [2], consisting of 0.25M images,
0.76M questions, and 10M answers. They also report baseline results from methods with
multi-layer perceptron and LSTM [34].

VQA: Real Images Real images category is currently by far the more popular and
competitive task in VQA. [64] introduced Ask Your Neurons. Unlike the baseline provided
by [2], in which image features and question features are embedded to common space at the
last stage prior to classification, they built a system where image features are shared at each
LSTM unit for processing question features. They also performed comparison of different
operations for fusing input features, and concluded that summation performs better than
multiplication. In our work, however, both summation and multiplication are performed,
which demonstrates significant improvements.

Many recent papers reporting competitive results have relied heavily on various types
of attention mechanism. [101] introduced stacked attention networks (SANs), which relies
on semantic representation of each question to search for relavant regions in the image.
More specifically, they built multiple-layer attention mechanism, which locates the relevant
region multiple times so that more accurate region of interest can be retrieved. In a similar
manner, [82] attempts to locate relevant regions in the image. They map the textual queries
to features from different regions by embedding them to a common space and comparing
their relevance via inner product.

[98] proposed a number of improvements to dynamic memory network (DMN). Their
proposed DMN+ model introduced a novel input module based on a two-level encoder with
sentence reader and input fusion layer, and implemented memory based on gated recurrent
units (GRU). [38] proposed focused dynamic attention (FDA) model, which exploits an
object detector to determine regions of interest. LSTM is used to embed the region features
and global features into common space. [99] proposed spatial memory network in which
neuron activations of different spatial regions are stored in memory, and regions with high
relevance are chosen depending on the question. The latter step was made possible by their
novel spatial attention architecture designed to align words with patches.

Unlike most of the works mentioned above, our work does not employ any attention
mechanism, yet demonstrates superior performance by fully exploiting features provided
to the network.

VQA: Abstract Scenes Since drawings or illustrations possess fundamentally different
characteristics from real images, simply extracting CNN features for abstract scenes does
not result in performance as reliable as in real images. As such, relatively few results have
been reported on abstract scene categories compared to real images.
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[105] converted the questions to a tuple containing essential clues to the visual concept
of the images. Each tuple (P, R, S) consists of a primary object (P), secondary object
(S), and their relation (R). Mutual information was employed to determine which object
corresponds to primary object and secondary object. They also augmented the dataset using
crowd-sourcing in order to balance the biases in the dataset. Their visual features included
histogram-like vectors for primary and secondary objects, as well as absolute and relative
locations of the objects modeled by GMMs. We show that this model’s performance is
enhanced by addition of deep features, both holistically and regionally, and applying our
DualNet further improves the performance.

[90] proposed to represent the image as a scene graph with nodes corresponding to the
objects and edges representing their spatial relationship. Question is also parsed into words
with their syntactic relationships. This yields the state-of-the-art results on abstract scenes
category at the time of this writing.

6.3 Proposed Model: Question-Dependent Region Features

We first describe the overall workflow of our model, which won the first place in VQA
Challenge 2016 in the abstract scenes category.

On top of the features described in [105], we added features from the uppermost fully-
connected layer from ResNet with 152 layers, and fc7 layer of VGG with 19 layers for
holistic features. We alternate between two different setups for regional features as follow-
ing:

6.3.1 Average Softmax of Top Regions

We first extract 10 regions from each image using Deep Proposal [25], which proposes
regions based on objectness measure and applies non-maximum suppression to filter out
overlaps. We then extract the 201-dimensional features from softmax layer for each region,
where softmax function is defined as below:

fi(z) =
ezj∑
k e

zk
(6.1)

where fj refers to the j-th element in the probability distribution for all classes, and z∈R
is some real-valued probability distribution for all classes. Dimensionality of the features
correspond to 201 classes used in ILSVRC object detection task. In other words, we end
up having a probability distribution for all classes. We used Fast-RCNN [26] and VGG-16
trained for the task. Finally, we average the softmax probabilities of all 10 regions to obtain
a single 201-dimensional vector per image.

6.3.2 VLAD Coding of CNN with Coordinates

The general procedure is similar to the procedure employed in Section 4, except we do not
employ spatial pyramid. We run selective search for each image, which returns approxi-
mately 1,000 region proposals for each image. Using Fast-RCNN, we extract fc7 features
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from all regions. Dimensionality of fc7 features is reduced to 256 using PCA. We then
concatenate 8-dimensional coordinate vector:

fcoordinate = (xmin,ymin,xmax,ymax,xcenter,ycenter,W ,H) (6.2)
as in [36] so that each region yields a 264-dimenisonal vector. Finally, we apply VLAD
coding to all regions of an image with one cluster to obtain the final one 264-dimensional
vector for each image.

6.3.3 Discussion

It turns out that average softmax of top regions performs better on yes/no and number cat-
egories, while VLAD coding of CNN with coordinates performs better on others category.
Average softmax of top regions revolves around the most conspicuous regions only, and
the features are extracted from softmax layer instead of fully-connected layer. Thus, it has
more strong correspondence to classification of objects, and can yield better performances
for the questions on the existence of or the number of certain objects, such as “is there a
dog?” or “how many dogs are there?” which belong to yes/no and number categories. On
the other hand, VLAD coding of CNN features extracts features from fully-connected layer,
especially from hundreds of regions. It thus reflects more of the overall characteristics of
the image, with slightly less emphasis on particular conspicuous objects. Thus, while it
may be less efficient in yes/no and number categories, it turns out to be more efficient in
more general questions about the image.

6.4 Experiment for VQA

6.4.1 Setting

We apply our proposed VQA model to VQA dataset [2], with emphasis on abstract scenes
category. Each category consists of two sub-categories, namely multiple-choice category
and open-ended choice, depending on whether the choices for the answers are provided
or not. Taking advantage of each method’s strength as discussed in Section 6.3.3 , we al-
ternate between average softmax and VLAD coding, depending on the type of question,
which was predicted by key phrase extraction; e.g., ‘how many’ indicating number cate-
gory, etc. We had batch size of 400, and 500 possible answers, and set number of word
embeddings for questions as 1,000. LSTM with one hidden layer of 256 hidden units was
employed. Hyperbolic tangent was employed for non-linearity, as sigmoid and rectified
linear unit (ReLU) resulted in slightly inferior performances, and training was performed
for 100 epochs.

6.4.2 Evaluation

Evaluation was performed on the evaluation server provided by [2]. As discussed in 3.3.2,
evaluation metric is a precision matching to human-provided answers. Our model’s perfor-
mances in both categories are shown in Table 6.1 and 6.2, along with performances from

68



Table 6.1: Performances of each method on open-ended category
All Y/N Num Others

all “yes” 29.15 64.9 0.22 1.67
question alone 57.19 76.88 49.55 38.79

[48] 62.56 79.06 51.57 48.94
[2] 65.02 77.45 52.54 56.41

Ours 67.39 79.59 57.06 58.20

Table 6.2: Performances of each method on multiple-choice category.
All Y/N Num Others

all “yes” 29.15 64.9 0.22 1.67
question Alone 61.41 76.9 49.65 49.19

[48] 67.99 79.08 52.57 61.99
[2] 69.21 77.46 52.90 66.65

Ours 71.18 79.59 56.19 67.93

other models. Our model demonstrates a clear superiority over other models in both cate-
gories, and in all types of questions. Indeed, using our proposed model, we took the first
place in abstract scenes category, in both multiple-choice and open-ended categories, at
VQA Challenge held as CVPR 2016 workshop.
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(a) Q: Does this plane appear to be leaving
or arriving? A: leaving

(b) Q: What is she wearing on her eyes?
A: goggles

(c) Q: Are the animals of the same breed?
A: yes

(d) Q: Does the bear look happy or sad?
A: sad

(e) Q: What color is the chair in the corner?
A: yellow

(f) Q: What fruit is on top? A: cherry

(g) Q: How many pets are in the bed? A: 2 (h) Q: Where is he looking? A: camera

Figure 6-1: Examples of questions and generated answers in real images
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(a) Q: How many deer are there? A: 2 (b) Q: Where are the legos? A: floor

(c) Q: Is the man standing? A: no (d) Q: What is the sidewalk made of?
A: concrete

(e) Q: Are the girls twins? A: yes (f) Q: What type of animal is sitting next to
the chair that the girl is in? A: dog

(g) Q: What color is the man’s shirt?
A: blue

(h) Q: Is he playing video games? A: yes

Figure 6-2: Examples of questions and generated answers in abstract scenes
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Chapter 7

Single Image Narrative Generation

It has been taken for granted that a single sentence of factual description suffices for sin-
gle image. Yet, images frequently provide more contents than what can be described in a
sentence, whether it is visual (further details or sentiments), or non-visual (inference about
the image). Incorporating such elements can make image description more human-like.
While visual storytelling task aims to generate story-like text from the images, it requires
a sequence of images. Likewise, dense captioning generates multiple captions for single
image at region-level, but it is restricted to factual description of each region and involves
very expensive human annotation. We introduce a novel task of single image narrative
generation, in which we attempt to generate multiple-sentence description from a single
image that consists of both visual and non-visual elements. We note that visual question
answering (VQA) datasets cover a wider range of topics than caption datasets, and exploit
them by generating multiple questions about the image and collecting answers. Experi-
mental results demonstrate that our proposed model can generate image narratives that are
richer in contents and more human-like than the baseline models.

7.1 Motivation for Image Narrative Generation

Image captioning task has enticed a remarkable amount of research in recent years, thereby
continuously setting up new milestones, and has now achieved a comparable performance
to that of humans. However, the objective of image captioning task has almost invariably
been limited to the generation of factual description of the images in a single sentence. Yet,
images frequently encompass a wide variety of elements that may be difficult to capture
in a single sentence. Some of those elements are visual, as in further details, or sentiment
of the image. On the other hand, images may further stimulate the viewers to envision be-
yond what is visually present; for example, one may wonder why the event in the image is
happening, or conjecture what happens after the event described. One may even creatively
imagine and assign story-like elements to the image. Incorporating such non-visual ele-
ments can make the image description more human-like, and enables us to further examine
the creative aspects of visual language beyond conventional captioning.

In this chapter, we propose a novel task of single image narrative generation, where
we define image narrative as an image description 1) consisting of multiple sentences, and
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Input Image:�

Region 
Extraction�

“What are the kids doing?” 
“What is the name of the woman?” 
“What are they laughing about?”�

Regions:�

Questions:�

CNN + LSTM�

VQA�
Skiing 
Linda 
A joke�

Answers:�

NLP�

“The kids are skiing.  
The name of the woman is Linda.  
They are laughing about a joke.”�

Narrative:�

Figure 7-1: Overall workflow of our model for single image narrative generation. We gen-
erate region proposals, from which we generate questions. We then answer those questions
with VQA and apply elementary NLP techniques to obtain the image narrative.

2) describing both visual and non-visual aspects. Each of these two components in our
definition has been tackled individually. Recently introduced visual storytelling task [37]
is parallel to the objective of our task in that it strives to generate a story-like text, but it is
applied upon a sequence of images. Humans on the other hand can contemplate upon, or
even imagine things with regards to a single image, and linguistically express it. Likewise,
dense captioning [43] has provided a highly reliable model for obtaining descriptive details
from a single image. Yet, it is restricted to factual, visually observable components, and as
such, deviates from our objective of generating a narrative.

We develop a simple, yet highly competitive model to address both of the issues raised
above, generating multiple captions per image, involving both visual and non-visual con-
tents. We exploit a number of existing datasets and techniques, which are put together
in a novel way to tackle the task. Namely, we employ off-the-shelf image captioning
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Table 7.1: Examples of captions and questions for the same image. While captions essen-
tially describe the same contents, questions widely vary in terms of the topics.

Image

COCO Captions VQA Questions
• A group of people sitting on the back • Is this standard transportation in the
• Several people are taking a ride on elephants United States?
• Some people are riding elephants in the jungle • Are they on a paved roadway?
• The people are riding on the two elephants • How many people are riding elephants?
• People riding on elephants in the jungle

techniques, visual question answering (VQA), and elementary natural language process-
ing (NLP) techniques as integral components of the model, along with region proposal
algorithm.

In caption datasets, annotations for a single image are semantically identical in essence
since they aim to describe the objective components of the image. Thus, simply generating
multiple captions from single image will not lead to significant increase in contents diver-
sity, not to mention its inability to obtain non-visual contents. On the other hand, VQA task
and the relevant datasets were designed to deal not only with visually descriptive aspects,
but also with aspects that require common-sense, inference, or even imagination, since their
goal is to build an answering system that is robust to any type of image-relevant questions.
As such, VQA task permits a much wider range of topics than captions, as long as they are
image-relevant. An example of such discrepancy between caption dataset and VQA dataset
is illustrated in Table 9.1. We exploit this beneficial characteristics of VQA to retrieve both
visual and non-visual contents about the image.

Figure 7-1 illustrates the overall workflow of our model; we extract multiple region
proposals from an image, generate questions about the regions using image captioning
techniques, answer those questions with VQA, and put together the obtained contents by
rule-based conversions using elementary NLP techniques. Further implementation details
will be presented in Section 7.3.

Our main contributions can be summarized as following:
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• introduction of a novel task of single image narrative generation,
• development of a model to efficiently tackle the task, exploiting a wide range of

techniques and datasets,
• construction of auxiliary dataset and evaluation metrics that further help tackle the

task.

7.2 Related Works for Image Narrative Generation
Image Captioning: The workflow of extracting image features with convolutional neu-
ral network (CNN) and generating captions with long short-term memory (LSTM) [34]
has been consolidated as a standard for image captioning task. [96] presented a model
inspired by statistical machine translation, which maximizes the probability of target im-
age’s description. [21] took a more linguistically oriented approach, in which they train
visual detectors for words using multiple instance learning. It has also been shown that
implementing attention mechanism helps boost the performance [100].

Dense Captioning: [47] generated region-level descriptions by implementing align-
ment model of region-level CNN and bidirectional recurrent neural network (RNN). [43]
proposed DenseCap that generates multiple captions from an image at region-level. How-
ever, both works generate factual, descriptive captions at region-level, whose appearance
is hardly different from captioning from the entire image. Our model covers much wider
range of topics because we generate questions from datasets that were not necessarily in-
tended to be descriptive, and as a result, frequently deviate from merely descriptive con-
tents.

Stylistic Captioning: There have been a series of attempts at incorporating non-factual
elements into image captioning. [66] and [85] inserted adjectives into the caption by train-
ing a network to predict the appropriate sentiment of the image. Apart from the adjective,
however, the rest of the caption is identical as the usual image captioning, and does not
incorporate any non-visual element. [37] built SIND dataset whose image descriptions
display a more casual and natural tone, involving aspects that are not factual and visually
apparent. While this work resembles the motivation of our research, it is also restricted
by the premise of single-description-per-image, and require a sequence of images to fully
construct a narrative. We on the contrary build a multiple-sentence narrative from a single
image.

Visual Question Answering (VQA): Visual question answering (VQA) has escalated
the interaction of language and vision to a new stage, by enabling a machine to answer a
variety of questions about the image, not just describe certain aspects of the image. It is
noteworthy that the questions consist not only of objective, visually verifiable questions,
but also of questions that require common-sense, inference, even imagination. This char-
acteristic enables us to obtain both visual and non-visual contents about the image.

A number of VQA datasets are available; DAQUAR [63] was the first VQA dataset to
be introduced, followed by VQA dataset [2] and COCOQA [77]. VQA dataset constructed
the dataset by crowdsourcing the questions and answers, while COCOQA applied rule
transformations to MS COCO [60] captions. Visual7w [107], which is a subset of Visual
Genome project [51], also collected the questions and answers by crowdsourcing, enforcing
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questions to observe 7w-form.
A number of different approaches have been proposed to tackle VQA task, but so far,

classification approach has been shown to outperform generative approach [1, 45]. [22]
proposed multimodal compact bilinear pooling to compactly combine the visual and textual
features. This model is currently the state-of-the-art method at the time of this writing.
[82] proposed an attention-based model to select a region from the image based on text
query. It is yet arguable as of now whether visual attention is a must-have prerequisite
for higher performance [45]. [62] introduced co-attention model, which not only employs
visual attention, but also question attention. Finally, [97] introduced a model to extract
information from general knowledge base to answer image-based questions.

7.3 Proposed Model: Region-Oriented Self Q&A

7.3.1 Region Extraction
As described in Section 7.1, we obtain contents about the image first by generating ques-
tions about the image. Since our goal is eventually to generate narrative consisting of mul-
tiple contents, it is insufficient to generate a single question, which necessitates generation
of multiple questions. However, unlike in classification tasks where retrieving top k results
is straightforward, it is tricky to retrieve multiple best outputs in generative models that em-
ploy recurrent networks. We deal with this problem by generating questions from multiple
regions of the image. A straightforward approach to obtain regions would be to employ
sliding window or spatial pyramid. However, they inherently exhibit a drawback that they
generate regions without accounting for contents of the image. In order to generate regions
while also accounting for the contents of the image, we employ recently proposed region
extraction method.

Following [25], we first extract region candidates from the feature map of an image, by
applying linear SVM trained on annotation bounding boxes at multiple scales, and apply-
ing non-maximal suppression. The region candidates then go through inverse cascade from
upper, fine layer to lower, coarser layers of CNN, in order to better-localize the detected ob-
jects. This results in region proposals that are more contents-oriented than selective search
[92] or Edge Boxes [56]. We first extracted top 10 regions per image. Figure 7-2 shows an
example of the regions extracted in this way. See Supplemental Material for comparison
to other basic region extraction models. In the experiments to follow, we set the number of
region proposals K as 5, since the region proposals beyond top 5 tended to be less congru-
ent, thus generating less relevant questions. It also reflects the consideration of trade-off
between legibility and the amount of contents to provide; while we may indefinitely add up
new questions by increasing the number of region proposals, the incremental informative-
ness of additional contents decreases, as do the legibility and accuracy of the narrative.

7.3.2 Image Feature Generation
Conventional approach has been to extract the image features from the uppermost fully-
connected layer or pooling layer to train an image captioning module or VQA module.
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   What is the color of the fridge?

   Is the fridge open?

   What color is the wall?

   What is the green fruit?

   What is in the jar?

   What is on top of the refrigerator?

    What color is the child' hair?       

    Where is the baby sitting? 

   What is the boy doing?
    

   What is the baby holding?

    What color is the toothbrush?

    What color is the wall?

   Is this a selfie?

Figure 7-2: Example of regions extracted from the image, and the questions generated from
each region. The color of the question corresponds to that of boundary around each region,
from which the question was generated.

However, our efforts so far have been for including the elements that are difficult to capture
such conventional CNN features, and we have demonstrated our proposed models’ superior
performances in previous chapters. We thus substitute CNN features for our own proposed
image features by combining the models introduced in Chapter 4 and Chapter 5.

For object part, procedure in Chapter 4 with the best-performing combination of hyper-
parameters is chosen. More specifically, fc7 features from VGG [86] are extracted for
all region proposals suggested by selective search [92], and PCA is applied to reduce the
dimensionality from 4,096 to 256. Then, k-means++ [5] is applied to learn the codewords
with 4 as the number of clusters, from which VLAD coding [40] is applied. The same
procedure is applied to one 1 × 1 and 4 2 × 2 grids, summing up to 5,120-dimensional
vector per image.

For sentiment part, procedure in Chapter 5 is replicated. We extract fc7 features from
fine-tuned sentiment CNN, and apply PCA. Instead of 1,685-dimensional vector as de-
scribed in Chapter 5, we further reduce it to 1,024-dimensional vector to prevent it from
interfering with object features. We do not apply selective search, VLAD coding, or spatial
pyramid for sentiment features, since sentiment is generally present throughout the image,
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(a) Image captioning.
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(b) Visual question answering.
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(c) Visual question generation.

Figure 7-3: Illustration of the overall workflow for each task.

rather than being locally variant. Combining the object features and sentiment features, we
end up having 6,144-dimensional vector per image. For the rest of this thesis, we will refer
this to image features as our proposed image representation, unless otherwise noted.

7.3.3 Visual Question Generation

Key point in visual question generation is the ability to generate image-relevant questions.
The question should directly address the components of the image, whether the answer to
it is visually verifiable or not. We achieve this by utilizing existing techniques and datasets
in a novel way.

In image captioning task, it is conventional to train an LSTM with human-written cap-
tions as ground truth annotations. On the other hand, in VQA task, questions are frequently
inserted to LSTM in series with fixed image features, and the answers to the questions be-
come the ground truth labels to be classified. Instead, we replace the human-written cap-
tions with human-written questions, so that the LSTM is trained to predict the question,
rather than caption. See Figure 7-3 for the illustration of the workflow for each task.

Note that, while questions are generated from both the image in its entirety and the
region proposals from the previous step, the training procedure will proceed only with the
image in its entirety, under a premise that even the region-level questions pertain to the
whole image as long as they can relate. Thus, given an image I, a question Q = (q0,...qN),
the training proceeds as [96]:

x−1 = CNN(I)

xt = Weqt

pt+1 = LSTM(xt)

(7.1)

where We is a word embedding, xt is the input features to LSTM at t, and pt+1 is the resulting
probability distribution for the entire dictionary at t. In the actual generation of captions, it
will be performed over all region proposals r0,...,rN ∈ I:

x−1 = CNN(ri)

xt = Weqt−1

qt = argmaxq∈ppt+1

= argmaxLSTM(xt)

(7.2)
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for q0,...qN ∈ Qri . We implement an off-the-shelf LSTM in which each gate is computed as
in equation (4.4) reprinted below for convenience:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxgxt +Whght−1 + bg)

(7.3)

We trained LSTM for 50 epochs with batch size of 128. Our proposed image representation
as described above was employed as image features. Beam size of 2 was used to generate
questions. Figure 7-2 shows examples of questions generated from each region including
the question generated from the entire image. As shown in the figure, by focusing on
different regions and extracting different image features, we can generate multiple image-
relevant questions from single image. Generated questions, starting from the one generated
from the entire image and then in the order of their score, proceed to the next stage, except
duplicate questions are eliminated.

A question may arise as to why not to directly generate captions from the regions.
The answer to this question has to do with the range of contents generated. As discussed
in Section 7.1, most ground truth annotations in caption datasets were written with the
objective of depicting the factual components of the image, and it is thus hard to generate
anything beyond such characteristics. On the other hand, the human-written questions in
VQA datasets are not restricted by such rigid objective, as long as they are relevant to the
image. They greatly vary in terms of the topic even for the same image, whereas in captions
datasets all ground truth annotations per image essentially describe the identical contents.
Thus, a larger amount of flexibility in terms of contents can be expected. In fact, as we will
see in Chapter 9, generating image narrative by directly generating multiple captions from
region proposals results not only in less interesting narratives, but also in less accuracy.

Table 7.2: Statistics from the crowd-sourcing task.
# of answers collected 48,090
# of unique answers 15,469

# of workers participated 187
max. # assignments by worker 1609
avg. # assignments per worker 51.43

rewards per assignment $.10

10 most common answers

‘yes’,‘no’,‘tom’,
‘london’,‘mine’,

‘downtown’,‘john’,‘me’
‘halloween’,‘new york’

So far, we were concerned with generating “visual” questions. We now seek to generate
“non-visual” questions. As was described in Section 7.2, [68] generated questions that a
human may naturally ask and require common-sense and inference. We examine whether
we can train a network to ask multiple questions of such type by visual cues. If such is
possible, it would further enrich the contents of generated narrative. We thus replicated the
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Table 7.3: Examples of answers collected on VQG.
Question Answer

‘What is the name of the man?’ ‘Tom’
‘What is the score in the game?’ ‘0-0’

‘What kind of record is being played?’ ‘rap records’
‘How long until the bathroom is fixed?’ ‘1 week’

‘Why is he making weird face?’ ‘he’s drunk’
‘What’s the cat’s name?’ ‘Moni’

‘How much did that cost?’ ‘10 dollars’
‘What destroyed this town?’ ‘bomb’
‘Why are the trees lit up?’ ‘It’s Christmas time’

‘What are the ingredients?’ ‘fish,bread,broccoli’

image captioning process described above, with 10,000 images of MS COCO and Flickr
segments of VQG dataset, with 5 questions per image as the annotations. Examples of
questions generated by training the network solely with non-visual questions are shown in
Table 7.4. In Chapter 9, these non-visual questions will be put into effect in the form of
data augmentation.

7.3.4 Visual Question Answering

Since we generated questions from images, we should now answer those questions. We
train the question answering with VQA dataset [2]. So far, classification approach has
been shown to outperform generative approach in VQA task [45], and we also implement
our VQA network as a classification task. Question words are sequentially encoded by
LSTM as one-hot vector. Our proposed image representation has been employed for im-
age features. Hyperbolic tangent non-linearity activation was employed, and element-wise
multiplication was used to fuse the image and word features, from which softmax classifies
the final “label” as the answer for visual question. We set the number of answers to 1,250.
Alternatively, Visual7w dataset [107] can be used to train the network, but due to its rigid
design rule of enforcing 7-w questions, training with this dataset resulted in less diverse
and interesting questions of the form “what is X?” which is present for every image in the
dataset.

While some papers have reported performance boost with implementation of attention
mechanism, it is arguable to what extent it contributes [45], and some of the previous works
[79] have reported superior performance without using attention mechanism. Indeed, the
result from our model demonstrates that it can answer the questions dealing with regions
successfully without the help of attention mechanism. Yet, it is still a factor for poten-
tial future improvement of our model’s overall performance, which would remain as our
research interest.

As we augmented the training data to generate “visual” and “non-visual” questions, we
now also need to train the network to “answer” those non-visual answers. Since et al.[68]
was concerned with generating questions only, however, the dataset provides the questions
only. We thus collected the answers to these questions on Amazon Mechanical Turk. Since
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Q: What   is       the     man    eating?
     WP   VBZ    DT    NN    VBG  (pos tag)

               VP1          NP         VP2   (parse tree)
A: pizza

Rule:
     WP/WDT+VP1+NP+VP2?

     →NP+conjug(VP2,tense(VP1))+ans.

The man conjug(eating,tense(is)) pizza.

“The man is eating pizza.”

Figure 7-4: Example of question and answer converted to a declarative sentence by con-
version rule.

many of these questions cannot be answered without specific knowledge beyond what is
seen in the image (e.g. “what is the name of the dog?”), we encouraged the workers to
use their imagination, but required them to come up with answers that an average person
might also think of. For example, people answered to the question “what is the name of
the man?” with “John” or “Tom.” Such non-visual elements add vividness and story-like
characteristics to the narrative as long as they are compatible with the image, even if not
entirely verifiable. Table 7.2 shows the statistics for the crowd-sourcing task, and Table 7.3
shows examples from our collected answers. Dataset with the answers we collected is
publicly available.

7.3.5 Natural Language Processing

At this stage, we are given multiple pairs of questions and answers about the image. By
design of the VQA datasets, most of which comprise simple questions regarding only one
aspect and the answers mostly being single words, the grammatical structure of most ques-
tions and answers can be reduced to a manageable pool of patterns. Exploiting these design
characteristics, we can combine the obtained pairs of questions and answers to a declarative
sentence by application of rule-based transformations, as was performed in [77, 84].

To briefly illustrate the conversion process, we first rephrase the question to a declara-
tive sentence by switching the word positions, and then insert the answers to its appropriate
position, mostly replacing wh-words. For example, a question “What is the man holding?”
is first converted to a declarative statement “The man is holding what” and the correspond-
ing answer “frisbee” replaces “what” to make “The man is holding frisbee.” Part-of-speech
tags with limited usage of parse tree were used to guide the process, particularly conju-
gation according to tense and plurality. Figure 7-4 illustrates the workflow of converting
question and answer to a declarative sentence. See Table 7.5 for specific conversion rules.
Part-of-speech tag notation is as used in PennTree I Tags [65].

Alternatively, we may be able to perform preprocessing in the same way by converting
the training data of questions and answers into declarative sentences beforehand and gen-
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erating captions from regions, but it would require us to process the entire training dataset
beforehand. Another alternative would be to use full-sentence VQA datasets, such as [84],
but the overall performance is reported to decline, due to exponentially increased number
of labels.

Another advantage of performing sentence transformation later in the stage is that we
can utilize the beneficial property of VQA task. It is generally treated as a classification
problem, which turns out to be more reliable than generative approach [45]. Thus, although
the questions are generated, VQA can retrieve more accurate answers by performing clas-
sification, as long as the questions are relevant to the image.

7.4 Conclusion & Future Work
We introduced a novel task of single image narrative generation, and proposed a model to
effectively tackle the task, by utilizing region proposal, image captioning, visual question
answering, and natural language processing techniques, with mostly existing datasets and
some auxiliary dataset collected anew. Our model demonstrated superior performance to
baseline models. Since our model’s performance is contingent on the performance of image
captioning and VQA techniques, replacing each module with more advanced ones, instead
of off-the-shelf models as in our work, is highly likely to boost the overall performance of
our model.

We would finally like to outline three aspects that must be accompanied for further im-
provements in single image narrative generation task; namely, dataset, evaluation metric,
and causality. It must be admitted that applying natural language processing techniques
is a heuristic approach to overcome the current insufficiency of dataset comprising narra-
tives for single images. Building such dataset will be a part of our subsequent research.
Although we relied on human evaluation for its reliability, development of an automatic
evaluation metric to deal with the plausibility of the generated image narrative must also
follow. Lastly, our current narrative consists of contents that are not structurally organized.
Eventually, more structure-oriented narrative involving causality would be desirable, and
will be our subsequent research topic.
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Table 7.4: Examples of questions generated using non-visual questions in VQG dataset.

Image Generated Questions
•What is the name of the player?
•What is he speaking about?
•What is the score of the match?
• Is this costume for a race?
• Has he worked there?

• Do you think the boy can win the prize?
•Was this for a charity event?
• Did they have a child?
•What is she looking at?
•What are they waiting for?
•Who is that guy?
•What is he looking at?
• Is this a hotel room?
• Is that a picture of your house?
•Where did you get those pillows?
• Is this new tile?
•Was that clean there?
• How big is that room?

• Is the woman drunk?
• Is this a church?
• Is this structure in a museum?
•What city was this in?
• Are they protesting?

•What kind of pizza is that?
• Is it for dinner?
•What kind of topping is this on the pizza?
•What does the plate say?

•What is this bird staring at?
• How long will it be there?
• Is that a real bird?
•What sort of bird is that?
•What kind of flower is that?
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Table 7.5: Conversion rules for transforming question and answer pairs to declarative sen-
tences.

Type Rule (Q→A) Question Ans. Converted Ans.

yes/no

VB1+NP+VB2/JJ? – – –
→NP+conjug - -

(VB2/JJ,tense(VB1)) Did he get hurt? yes He got hurt.
or, NP -

+negate(conjug - -
(VB2/JJ,tense(VB1))) Is she happy? no She is not happy.

MD+ NP+VB? – – –
→NP+MD+VB or, Will the boy fall asleep? yes The boy will fall asleep.

NP+negate(MD)+VB May he cross the road? no He may not cross the road.

number

“How many”+NP+ - -
/is/are+EX? - -

→EX+is/are+ans+NP How many pens are there? 2 There are 2 pens.
“How many”+NP1(+MD) - -

+VB(+NP2)? – – –
→ans(+MD)+VB(+NP2) How many people are walking? 3 3 people are walking.

“How many”+NP1+ - -
VB1/MD+NP2+VB2? – – –

→NP2 - -
+(MD+VB2)/conjug - -
(VB2,tense(VB1)) - -

+ans+NP1 How many pens does he have? 4 He has 4 pens.

others

WP/WRB/WDT+ - -
“is/are”+NP? - -

→NP+“is/are”+ans. Who are they? students They are students.
WP+NP+VP?→ ans.+VP What food is on the table? apple Apple is on the table.

WDT+NP+VP(+NP2)? - -
→ans.(+NP)+VP(+NP2) Which hand is holding it? left Left hand is holding it.

WP/WDT+MD+VB? -
→ans.+MD+VB Who would like this? dog Dog would like this.

WP/WDT+MD+NP+VB? - -
→NP+MD+VB+ans. What would the man eat? apple The man would eat apple.
WP/WDT+VP(+NP)? - -
→ans.+VP(+NP) Who threw the ball? pitcher Pitcher threw the ball.

WP/WDT+VB1+NP+VB2? – – –
→NP+conjug - -

(VB2,tense(VB1))+ans. What is the man eating? apple The man is eating apple.
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Chapter 8

Interactive Image Narrative Generation

We now extend the image narrative generation task described in Chapter 7 to interactive
environment, in which users participate in the narrative generation process by answering
questions about the image, and the generated narrative varies depending on the provided
user input. We hypothesize that implementing such environment enables us to learn the
user’s respective interest, which can be utilized later for automatic reflection of specific
interests. We first discuss the motivation for interactive narrative generation, and proceed
to describe how to integrate it into our current pipeline of image narrative generation, par-
ticularly with focus on generating visual questions to be answered by the user.

8.1 Motivation for Interactive Narrative Generation

So far, we have taken a broad assumption that it suffices that an identical description be
derived from a single image. Such assumption would indeed be safe if holistic perspective
upon seeing the images is assumed [74]. That is, when we consider the image as a whole
in its entirety, there hardly remains any room for the viewer’s subjectivity or interpretation.
For example, annotations for classification of the image would hardly vary among differ-
ent viewers. As such, there would be little overall disagreement as to the contents of the
image description, except for minor details. On the other hand, humans can frequently pay
attention to different parts of the image depending on their interest or personal tendency.
For example, given an image of various types of fruits, one may be more interested in ap-
ples whereas another one may pay attention to watermelons. In order for such diversity to
exist, there should be a certain context as a catalyst that allows the user to pay attention
to different parts rather than the image as a whole. Figure 8-1 shows an example of how
attention varies depending on the context provided by the questions. Such context needs
not only to have a possibility for various attentions or interpretations, but also to be able to
reflect the user’s distinct interest. If such context is provided, it would be possible to learn
the user’s interest, or to which aspect the user tends to attend to. Learning of such personal
tendencies would further enable us to customize and optimize a variety of tasks, including
narrative generation, to meet the user’s specific interest. Throughout this chapter, we refer
to the user’s interest as a certain tendency that each user exhibits when confronted with the
image and the questions (that provide the context) that allow for multiple interpretations or
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What’s	in	the	sky?

What’s	in	the	ocean?

What’s	in	the	background?

Figure 8-1: Viewer’s attention varies depending on the context provided.

This	is	a	marketplace.
There	are	a	lot	of	fruits.
There	are	people	standing.
Apples	are	….
Oranges	are	...
Watermelons	are	...
Strawberries	are	...
Poatatoes	are	....
...
...

(a) before learning user’s interest

Watermelons	are	on	the	table.

There	are	3	watermelons.

They	seem	to	be	in	good	
condition.

(b) after learning user’s interest

Figure 8-2: Example of how learning of user’s interest can be applied..

answers, mostly by enabling attention to multiple regions within the image.
Under our current proposed pipeline of generating image narrative from single image

as described in Chapter 7, one of the most critical modules is to generate multiple visual
questions about the image, and to answer them. In the fully automated setting, the gen-
eration of visual question and answers was performed over multiple regions of the image,
so that contents diversity could be obtained. Selection of the region to discuss was auto-
matically determined based on objectness measure using region proposal algorithm. In an
interactive setting, however, we assign a portion of answering part to the users, so that the
region selection itself reflects the user’s choice, from which content diversity is derived.
Since different regions can be selected from different users, instead of automatic selection
of regions, we can now generate multiple image narratives from single images.

A question may arise as to why not to simply ask the users to select the region or part
of the image that stands out the most to them. In such case, there would be no need to
generate the questions for each image, as the question ‘what stands out the most?’ would
suffice for all images. This, however, would be equivalent to a simple saliency annotation
task, and would not allow for any meaningful customization or optimization per user. Thus,
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as discussed above, generating a question for each image is intended to provide a context
in which each user can apply their own specific interest.

Apart from simply generating diverse image narratives based on the user input, many
potential applications can be conceived of. For example, in cases where thorough de-
scription of an entire scene results in a redundant amount of information both quality and
quantity-wise, application of our model can be applied to describe just the aspect that meets
the user’s interest that was learned. In its overall mechanism and purpose, it can be said
to be roughly analogous to the automatic recommendation system in an online shopping
environment or automatic sub-topic extraction and summary from large text corpora. See
Figure 8-2 for an illustration of a potential application of our model.

8.2 Related Works for Interactive Narrative Generation
Most previous works on image description generation tasks focus on fully automated gener-
ation, and it is only recently at the point of writing this that tasks involving user interaction
started to appear. Most representative, and the closest to our work in its spirit, is Visual
Dialog [16], in that it actively involves user interaction, which in turn affects the responses
generated by the system. Its core mechanism, however, is technically an inversion of our
model, where the users ask the questions about the image, and the system answers them.
Thus, the focus is on extending the VQA system to a more context-dependent, robust, and
interactive direction. On the other hand, our model’s focus is on generating customized
image descriptions, and user interaction is employed to learn the user’s interest, whereas
Visual Dialog is not concerned about the users themselves, and the user interaction is purely
for the sake of providing questions to the system.

8.3 Proposed Model: Visual Question Generation for User
Interaction

8.3.1 Applying User Interaction within the Same Images
As discussed in the earlier part of this chapter, the key component of image narrative gen-
eration in an interactive setting is to generate a visual question that provides a context for
analytic perception of the image, and allows for attentions to various parts that reflect the
user’s interest. The foremost prerequisite for the interactive questions to perform that func-
tionality is the possibility of various answers or interpretations. In other words, a question
whose answer is so obvious that it can be answered in an identical way unanimously would
not be valid as an interactive question. In order to make sure that each generated question
allows for multiple possible answers, we internally utilize the VQA module. More specifi-
cally, the question generated by the VQG module is passed on to VQA module, where the
probability distribution pans for all candidate answers C is determined. If the most likely
candidate ci = argmax pans, where ci ∈ C, has a probability of being answer over a certain
threshold α, then the question is considered to have a single obvious answer, and is thus
considered ineligible. The next question generated by VQG is passed on to VQA to repeat
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Question	
Generation

Region	
Extraction

Feature	
Extraction

Narrative	
Generation

User	Input

“What	is	he	
speaking	about?”

“laptop”

He	is	speaking	about	
laptop.	He	is	an	expert.	
The	laptop	is	on.

Figure 8-3: Overall workflow of interactive image narrative generation.

Where	is	this?

What	is	the	weather	like?

Cloudy	(0.55)
Overcast	(0.29)
Sunny	(0.06)
Clod	(0.02)
Rainy	(0.01)

Outdoors	(0.12)
Train	station(0.08)

Forest	(0.06)
Countryside	(0.06)

X

O

VQG VQA

Figure 8-4: Examples of valid and invalid visual questions for interaction.

the same process until the the following requirement is met:

ci < α, ci = argmax pans (8.1)

In our experiments, we set α as 0.33. Figure 8-4 illustrates an example of a question
where the most likely answer had a probability distribution over the threshold (and is thus
ineligible), and another question whose probability distribution over the candidate answers
was more evenly distributed (and is thus eligible).

Once the visual question that allows for multiple responses is generated, a user inputs
his answer to the question, which is assumed to reflect his interest. We now need to extract
a region within the image that corresponds to the user’s response. We slightly modify the
attention networks introduced in [101] in order to obtain the coordinates of the region that
correspond to the user response. In [101], the question itself was fed into the network,
so that the region necessary to answer that question is “attended to.” On the other hand,
our task requires that we attend to the region indicated by the user’s response instead of
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the question. We make a very simple yet efficient modification, in which we replace the
wh- question terms (also including other frequent inquisitive terms such as “how many?”)
with the response provided by the user. For example, a question “what is on the table?”
with a user response “pizza” will be converted to a phrase “pizza is on the table,” which is
fed into attention network just as a question would. This is similar to the rule-based NLP
conversion as employed in Chapter 7, but much simpler. We obtain the coordinates of the
region from the second attention layer, by obtaining minimum and maximum values for
x-axis and y-axis in which the attention layer reacts to the input phrase.

Since the regions tightly contain objects at a large scale, they have a risk of being mis-
classified. We thus extract the regions allowing slightly larger space than indicated by the
coordinates. Specifically, a region ri,j,k of size (wr, hr) with coordinates x0, y0, xmax, ymax

for image i of size (W,H) with a question j answered by the user k is to be extracted as r′

with a magnifying factor 0 < α < 1, resulting in the following coordinates:

r′i,j,k = (max(0, x0 − wrα),max(0, y0 − hrα),
min(W,xmax + wrα),min(H, ymax + hrα))

(8.2)

where we set α as 0.25. After the region corresponding to the user input is extracted,
we now need to extract features from that region. Note that, since we are now given the
local regions that hardly encompass further sub-local elements, we follow the conventional
feature extraction of generic CNN features, instead of local features as described in Chapter
4. We also bypass the extraction of sentiment features for similar reason. We extracted
4096-dimensional fc7 layer features from VGG-19 [86] for each region extracted.

Given the region and its features, we can now apply the single image narrative gen-
eration process described in Chapter 7 with minor modifications in setting. Regions are
extracted, visual questions are generated and answered, and rule-based natural language
processing techniques are applied to organize them. Since now there are few local ele-
ments within the image, we reduce the number of regions K to be extracted to 3. Figure
8-3 shows an overall workflow of our model for interactive image narrative generation.

8.3.2 Applying User Interaction to New Images

Once we implemented interactive environment, and collected data of user choices, we can
now represent each instance of image, question, and user choice as a triplet consisting of
image feature, question feature, and the label vector for the user’s answer. In addition,
collecting multiple choices from identical users enables us to represent any two instances
by the same user as an order pair of triplets, assuming source-target relation. With these
pairs of triplets, we can train the system to predict a user’s choice on a new image and
a new question, given the same user’s choice on the previous image and its associated
question. Starting with the user’s previous choice, we obtain image feature ximgi via spatial
pyramid VLAD coding of CNN features (Chapter 4) and sentiment network (Chapter 5),
as described in Chapter 7. Question feature xqi for question qi is obtained via LSTM,

xqi = LSTM(w0, w1, w2, ..., w|qi|) (8.3)
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Image	Feature

Question	Feature

Plate

LSTM LSTM LSTM LSTM LSTM

What is on the table

…
dog				cat			apple		… plate		cup		tree

Answer	Feature

Choice	Vector

LSTM LSTM LSTM LSTM LSTM

What is on the table

Image	Feature

Question	Feature

Common
Embedding

Image1

Image2

Figure 8-5: Training with pair of choices made by the same user upon being asked specific
questions about the images. In the figure, given the choice vector for image 1 and new
image feature and question feature for image 2, it is trained to predict the answer for the
question on image 2.

where wi is a one-hot vector corresponding to each word in the question, and the user’s
choice xansi is also represented as one-hot vector where the size of the vector is equal to
the number of possible choices. We refer to the fused feature representation of this triplet
consisting of image, question, and the user’s choice as choice vector.

Now, we can represent the image feature ximgj and question feature xqj for the second
triplet in the same way as above, and project it onto the same embedding space as the
choice vector. We can now train a softmax classification task in which the feature from
the common embedding space predicts the user’s choice xansj . We set the batch size as
400 and hyperbolic tangent was employed as non-linearity. Figure 8-5 shows the overall
workflow for training.

Prediction can now be made with a new user’s choice. Suppose we are given a new
triplet xk = (ximgk , xqk , xansk) of image, question, and a choice from a new user, which
corresponds to our understanding of the user’s preference. Now, by projecting the choice
vector along with the image feature ximgl for a new image, and the question feature xql for
the new question for which we would like to predict an answer, we can predict what choice
the user (who made the choice as given in choice vector) would make, with our prediction
being the outcome label of the classification. In short, we postulate that the answer with
index u, which maximizes the probability calculated by LSTM, is to be chosen as xansl by
the user who chose xansk , upon seeing a tuple (ximgl , xql) of new image and new question:

u = argmax
v
P (v; ck, ximgl , xql) (8.4)

where P is a probability distribution determined by softmax over the space of possible
choices, and ck is the choice vector corresponding to (ximgk , xqk , xansk). This overall pro-
cedure and structure are essentially identical as in VQA task, except we augment the feature
space to include choice vector, on top of image feature and question feature.
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8.4 Conclusion & Future Work
We introduced a novel task of interactive image narrative generation task, where image nar-
rative generation is not fully automated, but works with the aid from use interaction, leading
to variations in outcomes. We proposed a parallel architecture of VQG and VQA that gen-
erates visual questions allowing for multiple responses. Such questions allow diversity in
user responses, and we extract regions corresponding to the user response by modifying
query vector to feed into attention network. Since we end up with different regions per
response, even with the same image and same question, we end up having different image
narratives from single images. As we will see in the following chapter, such interactive
environment not only leads to diversity in generated descriptions, but also enables us to
learn and customize to the users involved in the generation.
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Chapter 9

Experiments

9.1 Experiments for Single Image Narrative Generation
In this section, we first perform and evaluate our model for single image narrative genera-
tion as described in Chapter 7. Note that user interaction is not involved in the generation
process at this stage yet.

9.1.1 Setting
We applied the model described in Section 7.3 to 40,775 images in test 2014 split of MS
COCO [60]. We compare our proposed model to three baselines as following:

Baseline 1 (COCO): general captioning trained on MS COCO applied to both images
in their entireties and the region proposals

Baseline 2 (SIND): captions with model trained on MS SIND dataset [37], applied to
both images in their entireties and the region proposals

Baseline 3 (DenseCap): captions generated by DenseCap [43] at both the whole im-
ages and regions with top 5 scores using their own region extraction implementation.

For all baseline models, we added a constraint to prevent duplicate captions for the
same image for fair comparison. Note that, while baseline models used region proposals to
generate region-level captions, our model used region proposals only to generate questions,
and the answering stage was performed with the entire image, as is conventional in VQA
task. This again shows the comparative advantage of applying VQA to generate multiple
sentences; once presented with questions, it no longer has to look at regions to generate
multiple contents about the image. It generates multiple contents looking only at the en-
tire image, lessening the prospect of obtaining irrelevant descriptions, which frequently
happens with region-level captioning, as we will see in this section.

9.1.2 Evaluation
Automatic Evaluation

Although the dataset employed in this experiment [60] comes with ground truth captions
and ground truth answers for the questions, it does not contain ground truth annotations
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for image narratives. Even if it did, the difficulty of automatically evaluating image narra-
tives would still persist due to the unique characteristics of image narrative generation task.
In image captioning task, upon which automatic evaluation is usually performed, both the
length and semantics of the “correct” answers are generally in a highly fixed range, mostly
single sentence describing the main event in an objective way, thus making the automatic
evaluation convenient. Likewise, in machine translation task, the length of the translation
is generally proportional to the length of the source language, and the permissible range of
semantics is strictly limited. On the other hand, image narrative consists of multiple sen-
tences of much wider range of possible contents whose order of appearance mostly does
not have to be fixed. Thus, resembling human-written image narrative does not neces-
sarily imply itself that such image narrative is better than the one that does not resemble
human-written image narrative. In other words, reliability of the automatic evaluation is
diminished.

Even so, however, being able to take a look at human-written image narratives can
still provide us with important insights. Not only can we perform automatic evaluation for
reference, but we can also have a comprehension of what characteristics would be shown
in actual human-written image narratives. It also enables us to examine image narrative
generation via training with human-written image narratives, which can be a meaningful
comparison to our proposed model, as we will see later in this chapter. As such, we col-
lected image narratives for a subset of MS COCO dataset. We asked the workers to write
a 5-sentence narrative about the image in a story-like way. We made it clear that the de-
scription can involve not only factual description of the main event, but also local elements,
sentiments, inference, imagination, etc., provided that it can relate to the visual elements
shown in the image. Table 8.1 shows examples of actual human-written image narratives
collected. Table 8.2 shows statistics for collected human-written image narratives. Exam-
ining the actual human-written image narratives displays a number of intriguing remarks.
On top of the elements and styles we asked for, the participants actively employed many
other elements encompassing humor, question, suggestion, etc. in a highly creative way. It
is also clear by looking at the human-written image narratives that conventional captioning
alone will not be able to capture or mimic the semantic diversity present in them.

We performed automatic evaluation with popular metrics [71, 18, 94] on a subset of MS
COCO with collected image narratives as ground truth annotations. Table ?? shows the re-
sults. While resemblance to human-written image narratives may not necessarily guarantee
better qualities, our model, along with DenseCap, showed highest resemblance to human-
written image narratives. As we will see in human evaluation, these two models turn out to
be most reliable models, and such result is consistent here, suggesting that resemblance to
human-written image narratives may indeed provide a meaningful reference.

Human Evaluation

Although we collected human-written image narratives for a subset of the dataset and per-
formed automatic evaluations above, it is questionable whether more resemblance to the
human-written image narratives has direct correlation to higher integrity of the generated
image narrative, since image narratives deal with much longer texts with a much wider
range of possible contents as we discussed. Few previous works have attempted to tackle
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the task of narrative evaluation. [69] proposed Story Clonze Evaluator, which evaluates
vector representation beyond textual similarity and attempts to reflect context to predict
what should happen next. However, it works under a premise that the narrative is highly
structural with clear causality, which is yet to be present in our task. More importantly, it
does not take visual information into consideration. As such, we resort to crowd-sourcing
for evaluation of the models.

We asked the workers to rate each model’s narrative with 5 metrics that we find essential
in evaluating narratives; Diversity, Interestingness, Accuracy, Naturalness, and Expressiv-
ity (DIANE). Diversity deals with the coverage of diction and contents in the narrative,
roughly corresponding to recall. Interestingness measures the extent to which the con-
tents of the narrative grasp the user’s attention. Accuracy measures the degree to which
the description is relevant to the image, corresponding to precision. Contents that are not
visually verifiable are considered accurate only if they are compatible with salient parts of
the image. For example, a description with a name of a man is considered compatible if
there is a salient man in the image, but incompatible if there are no humans in the image,
or the salient agent is female, or there is a crowd of people with none of them standing out.
Naturalness refers to the narrative’s overall resemblance to human-written text or human-
spoken dialogue. Expressivity deals with the range of syntax and tones in the narrative.
Evaluation was performed for 5,000 images with 2 workers per image, and all metrics were
rated in the scale of 1 to 5 with 5 being the best performance in each metric. We asked each
worker to rate all 4 models for the image on all metrics.

Table 9.6 shows example narratives from each model. See Supplemental Material for
more examples. Table 9.4 shows the performance of each model on the evaluation metrics
with mean and standard deviation, along with the percentage of each model receiving the
highest score for a given image, including par with other models. Our model obtained
the highest score on Diversity, Interestingness and Expressivity, along with the highest
overall score and the highest percentage of receiving best scores. In all other metrics,
our model was the second highest, closely trailing the models with highest scores. Note
that standard deviation is high due to each worker rating with their own range. We thus
performed additional test to confirm the significance of the results. Table 9.5 shows our
model’s performance against each baseline model, in terms of the counts of wins, losses,
and pars. χ2 values on 2 degrees of freedom are evaluated against the null hypothesis that
all models are equally preferred. The rightmost column in Table 9.5 corresponds to the
one-sided p-values obtained from binomial probability against the same null hypothesis.
Both significance tests provide an evidence that our model is clearly preferred over others.

Closely inspecting the results on the evaluation reveals interesting characteristics of
each model. General image captioning trained on MS COCO shows weaknesses in ac-
curacy and expressivity. Lower score in accuracy is presumably due to quick diversion
from the image contents as it generates captions directly from regions. In fact, examples
in Table 9.6 show that the contents of the captions start to deviate in the later part of the
narrative. This reveals one of the limitations of general image captioning described in Sec-
tion 7.1. Since it is restricted by an objective of describing the entire image, it frequently
generates irrelevant description on images whose characteristics differ from typical COCO
images, such as regions within an image as in our case. On the contrary, VQA questions
provide a much wider range of acceptable topic contents, as long as they can be related to
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the image. For example, given a region of a sky with nothing else, our model finds it suffi-
cient to ask “what is the weather like?” whereas the captioning models struggle to generate
a full description with concrete subjects, frequently resulting in irrelevant captions as in “a
bathroom with a sink and a mirror.”

Story-like captioning trained on MS SIND obtained the lowest scores in all metrics.
In fact, examples in Table 9.6 also display that the narratives from this model are almost
completely irrelevant to the corresponding images, since the correlation between single
particular image and assigned caption is very low. DenseCap turns out to be the most
competitive among the baseline models. It demonstrates the highest accuracy among all
models, but shows weaknesses in interestingness and expressivity, due to their invariant
tone and design objective of factual description. Our model, highly ranked in all metrics,
demonstrates superiority in many indispensable aspects of narrative, while not sacrificing
the descriptive accuracy.

9.1.3 Additional Experiment
We also performed an experiment in which we generate image narratives by following
conventional image captioning procedure with human-written image narratives collected
on Amazon Mechanical Turk. In other words, we trained LSTM with CNN features of
images and human-written image narratives as ground truth captions. If such setting turns
out to be successful, our model would not have much comparative merit.

We trained an LSTM with collected image-narratives for training split of MS COCO.
We retained the experimental conditions identically as previous experiments, and trained
for 50 epochs. Table 9.10 shows example narratives generated. Not only does It utterly fail
to learn the structure of image narratives, but it hardly generates text over one sentence, and
even so, its descriptive accuracy is very poor. Since LSTM now has to adjust its memory
cells’ dependency on much longer text, it struggles to even form a complete sentence, not
to mention inaccurate description. This tells us that simply training with human-written
image narratives does not result in reliable outcomes.

9.2 Experiments for Interactive Image Narrative Genera-
tion

We now perform and evaluate the experiments for image narrative generation with user
interaction involved.

9.2.1 Experiment Setting
We first need to obtain data that reflect personal tendencies of different users. Thus, we not
only need to collect data from multiple users so that individual differences exist, but also to
collect multiple responses from each user so that individual tendency of each user can be
learned.

We generated 10,000 questions that allow for multiple responses following the proce-
dure described in Chapter 8. We grouped every 10 questions into one task, and allowed
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3 workers per task so that up to 3,000 workers can participate. Since multiple people are
participating for the same group of images, we end up obtaining different sets of responses
that reflect each individual’s tendency.

We have permutation of 10 choose 2, or P (10, 2) = 90 for each group. Note that we are
assuming a source-to-target relation within the pair, so the order within the pair does matter.
Since we have 3 workers assigned per group and there are 1,000 groups of 10 questions,
we end up having 270,000 pairs of training data. We randomly split these data into 250,000
and 20,000 for training and validation splits, and performed 5-fold validation with training
procedure described in Chapter 8. With 705 labels as possible choices, we had an average
of 68.72 accuracy in predicting the the choice on new image, given the previous choice by
the same user. Randomly matching the pairs with choices from different users seemingly
drops the average score down to 45.17, confirming that the consistency in user choices is a
key point in learning preference. As we will see later in this chapter, this result is consistent
with the results from human evaluation.

9.2.2 Evaluation

We performed 3 experiments, each of which is supposed to examine different aspects of
our proposed model; question generation, user-dependent image narrative generation, and
the learning of user’s interest.

Question Generation

For question generation, our interest is whether our model can generate questions that allow
for various responses, rather than single fixed response. We showed the workers on Amazon
Mechanical Turker whether the question can be answered in various ways or has multiple
answers, given an image. 1,000 questions generated using both VQG and VQA modules
following our proposed model, and another 1,000 questions generated using only the VQG
technique without following our model, were presented to the workers. The workers’ task
was simply to answer with yes or no with regards to whether the visual question can be
answered in multiple ways.

Table 9.11 shows the number of votes for each model. It is very clear that the ques-
tions generated from our proposed model of parallel VQG and VQA outperformed by far
the questions generated from VQG only. This is inevitable in a sense that VQG module
was trained with human-written questions that were intended to train the VQA module to
answer, i.e. with questions that mostly have clear answers. On the other hand, our model
deliberately chose the questions from VQG that have evenly distributed probabilities for
answer labels, thus permitting multiple possible responses. Table 9.12 shows examples of
visual questions generated from our model and VQG only respectively. In questions gen-
erated from our model, different responses are possible, whereas the questions generated
from VQG only are restricted to single obvious answer.
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Reflection of User’s Choice on the Same Image

Our next experiment is on the user-dependent image narrative generation. We presented the
workers with 3,000 images and associated questions, with 3 possible choices as a response
to each question. Each worker freely chooses one of the choices, and is asked to rate
the image narrative that corresponds to the answer they chose (i.e., the image narrative
was generated based on that choice), in consideration of how well it fits and reflects their
answer choices. Thus, even with the same image and the same question, workers may be
asked to rate different image narratives depending on their answer. As a baseline model
to compare, we also examine a model where the question is absent in the learning and
representation stages, so that only the image and the user input are provided. Rating was
performed over scale of 1 to 5, with 5 indicating that the image narrative is highly reflective
of their choice. Table 9.13 shows the result. Our model clearly has an advantage over using
image features only with a margin considerably over standard deviation. Agreement score
among the workers was calculated based on [8]. Agreement score for our model falls into
the range of ‘moderate’ agreement, whereas, for baseline model, it is at the lower range of
‘fair’ agreement, as defined by [55], demonstrating that the users more frequently agreed
upon the reliability of the image narratives for our model. Figure 9-1 shows examples
of images, generated questions, and image narratives generated depending on the choice
made for the question respectively.

Reflection of User’s Choice on New Images

Finally, we experiment with the learning of user’s interest. As in the previous experiment,
each worker is presented with an image and a question, with 3 possible choices as an
answer to the question. After they choose an answer, they are presented with a new image
and a new image narrative. Their task now is to determine whether the newly presented
image narrative reflects their choice and interest. As a baseline model to compare, we
again examined a model where the question is absent in the learning and representation
stages, as in the previous experiment on the reflection of user’s choice on the same image.
In addition, we performed an experiment in which we trained preference learning module
with randomly matched choices. In other words, each pair of choices in the training data
did not consist of the choices from the same user, but the choices that were randomly
matched. This is to examine whether there exists a consistency in user choices that enables
us to apply the learned preferences to new image narratives. While the number of training
samples by random matching can be very large, we restricted it to 270k as in our proposed
model. Rating was again performed over scale of 1 to 5, with 5 indicating that the image
narrative is highly reflective of their general preference or interest.

Table 9.14 shows the result. As in reflection of user’s choice on the same images, our
model clearly has an advantage over using image features only. Inter-rater agreement score
is also more stable for our model. Training preference learning module with randomly
matched pairs of choices resulted in a score below our proposed model, but above using
the image features only. This may imply that, even with randomly matched pairs, it is
better to train with actual choices made by the users with regards to specific questions,
rather than just with most conspicuous objects as in using image features only. However,
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its performance is still below that of our proposed model, confirming the importance of
training with choices made by the same user that have consistency. Overall, the result
again confirms that it is highly important to provide a context, in our case by generating
visual questions, for the system to learn and reflect the user’s specific preferences. It also
shows that it is important to train with consistent choices. Table 9.15 shows examples of
image narratives generated for new images, depending on the choice the users made for the
original image, given the respective questions.

Discussion

It was shown via the experiments above that there exists a certain consistency over the
choices made by the same user, and that it is thus beneficial to train with the choices
made by the same users. Yet, we also need to investigate whether such consistency ex-
ists throughout different categories of images. We ran Fast-RCNN on the images used in
our experiment, and assigned the classes with probability over 0.7 as the labels for each
image. We then define any two images to be in the same category if any of the assigned la-
bels overlaps. Of 3,000 pairs of images used in the experiment, 952 pairs had images with
at least one label overlapping. Our proposed model had average score of 4.35 for pairs
with overlapping labels and 2.98 for pairs without overlapping labels. Baseline model with
image features only had 2.57 for pairs with overlapping labels and 2.10 for pairs without
overlapping labels. Thus, it is shown that a large portion of the superior performance of
our model comes from the user’s consistency for the images of the same category, which is
an intuitively correct conclusion.

However, our model also has superiority over baseline model for pairs without over-
lapping labels. This may seem more difficult to explain intuitively, as it is hard to see any
explicit correlation between, for example, a car and an apple, other than saying that it is
somebody’s preference. We manually examined a set of such examples, and frequently
found a pattern in which the color of the objects of choices was identical; for example, a
red car and an apple. It is difficult to conclude whether such pattern was detected due to
our feature representation reflecting local variations, or by biases in the dataset, but in any
case, it is likely that there exists some degree of consistency in user choices over different
categories, although to a lesser extent than for images in the same category. Also, it is once
again confirmed that it is better to train with actual user choices made on specific questions,
rather than simply with most conspicuous objects.
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Generated	Question

“What	is	the	
man	riding?”

The	man	is	
riding	
skateboard.	The	
man	is	
skateboarding.	
The	color	of	the	
jacket	is	red.

The	man	is	
riding	
motorcycle.	It	is	
white.	The	
motorcycle	is	
honda.	It	is	not	
raining.

The	man	is	
riding	car.	This	is	
a	modern	car.	It	
is	a	black	and	
white	photo.

1.	Skateboard

2.	Motorcycle

3.	Car

Generated	NarrativeAnswers	&Regions

Generated	Question

“What	is	on	
the	table?”

Pizza	is	on	the	
table.	The	man	
is	eating	pizza.	
The	pizza	is	thin	
crust.

Pine	apple	is	on	
the	table.		The	
man	is	
vegetarian.

Plate	is	on	the	
table.	The	man	
is	eating.	The	
man	is	eating	
more	than	one	
person	would.

1.	Pizza

2.	Pine	Apple

3.	Plate

Generated	NarrativeAnswers	&Regions

Figure 9-1: Examples of region extracted and image narratives generated depending on the
answer to the question.
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Table 9.1: Examples of human-written image narratives collected on Amazon Mechanical
Turk.

Image Human-written Narrative
This cat is having fun.
She is very confused about the change in the carpet.
It is funny that this has interested her so much.
Cats are very picky and they do not like changes.
She is probably mad about this.

The pizza cook makes the pizza.
The couple looks forward to pizza.
The oven is very hot.
He is a master at making pizza.
He was born in italy.

The food truck looks good.
I bet they have good food.
Does everyone in a food truck have a beard?
I am so done with the beard thing.
Hope his beard does not get into the food.

Car is in very good shape for the age.
This is a prefect car for California.
I think i see that this is in Huntington beach.
This would attract a lot of attention.
Great way to pick up girls or guys.

A dad and his daughter are sitting on the couch.
They have just woken up.
They each have a cup of juice.
They use cups with lids so they don’t spill on the couch.

Tom is playing with a frisbee.
He is practicing new moves.
He jumped up in the air.
He is trying to catch it between his legs.
He was successful in his attempt.
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Table 9.2: Statistics for human-written image narratives collected on Amazon Mechanical
Turk.

# of answers collected 13,221
rewards per assignment $.20

minimum length of image narrative 10
maximum length of image narrative 83
average length of image narrative 31.629

Table 9.3: Performances of the image narratives generated by each model on a subset of MS
COCO determined by automatic evaluation metrics, with human-written image narratives
as ground truth references.

Model BLEU1 BLEU2 BLEU3 BLEU4
COCO 13.97 6.13 2.85 1.39
SIND 13.39 2.99 0.82 0.18

DenseCap 20.77 9.26 4.15 1.90
Ours 20.87 8.71 3.58 1.41

Table 9.4: Each model’s performance on DIANE.
Metric COCO SIND DenseCap Ours

Diversity 2.972 2.060 3.102 3.580
Interesting 2.875 2.100 3.336 3.489
Accuracy 2.812 2.105 3.188 3.132

Naturalness 2.754 2.059 3.146 3.374
Expressivity 2.819 2.141 3.257 3.381

Overall 2.846 2.093 3.201 3.391
Std. Dev ±0.93 ± 0.86 ±0.93 ±0.89

% of Win. .300 .195 .357 .400

Table 9.5: Our model’s performance against each model on χ2 with 2 degrees of freedom,
and one-sided p-value obtained from binomial probability (rightmost column). > refers to
the cases where our model was rated higher than vs. Model, and so on.

vs. Model > = < χ2 p-value
COCO 2,208 1,222 1,570 133.37 1.4e-25
SIND 2,970 538 1,492 812.93 1.1e-11

DenseCap 1,890 1,454 1,656 271.33 4.5e-05
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Table 9.6: Examples of narratives generated by each model (K=5). Each baseline is referred
to as COCO, SIND, and DenseCap, respectively.

Image COCO SIND DenseCap Ours
An elephant stand-
ing in a field of
grass. A large ele-
phant standing in
a field of grass.
A bathroom with a
sink and a mirror. A
large building with
a clock on it.

The dog was very
happy to see the an-
imals. We had a
great time. I went
to the museum to-
day. We went to
the city to see the
sights. We saw a
lot of old buildings.
The view from the
top was amazing.

An elephant stand-
ing in a field of
grass. A gray
elephant. Elephant
trunk is curled.
Elephant in the
photo. Trunk of an
elephant. Elephants
walking on the
road.

This is a baby ele-
phant. The ele-
phants are standing
on grass. They are
bored. The elephant
is sitting. This is
not a zoo.

A teddy bear sitting
on top of a wooden
table. A teddy bear
sitting on top of a
bed. A stuffed bear
is sitting on a bed.

The cake was deli-
cious. I had a great
time. The food was
delicious.

A teddy bear sitting
on top of a wooden
table. Teddy bear
on a table. A brown
teddy bear. A teddy
bear. A teddy bear
on a table. The head
of a teddy bear.

Bear is on the cake.
That stuffed animal
has a funny face. It
is mine. The bear
is wearing hat. The
cake is white.

A giraffe standing
in a field of grass.
A giraffe standing
in front of a build-
ing. A man and
a woman standing
next to a giraffe.
A giraffe stan ding
next to a wooden
fence. A giraffe is
standing in the mid-
dle of a forest.

We went to the city
to see the sights.
We had a great
time. I went to
the fair today. We
saw a lot of old
buildings.

A giraffe standing
in a field of grass.
A cloudy blue sky.
Two giraffes in a
zoo. Trees in the
background. A
giraffe behind the
fence. Two peop le
sitting in a chair.

There are 2 giraffes.
The giraffes love
each other. The gi-
raffe is eating. This
is a zoo.

A man is eating a
hot dog in a restau-
rant. A man hold-
ing a hot dog in his
hand. A man hold-
ing a hot dog in a
bun. A man in a suit
and tie standing in
front of a building.
A man in a hat is
holding a hot dog.

We had a great
time.

A man is eating
a hot dog in a
restaurant. Woman
holding a sand-
wich. Woman
has brown hair.
Woman in black
jacket. A sandwich
on a white plate.
A brown wooden
wall.

The girl is eating
sandwich. Her
name is mary. She
is hungry. She
eats a lot. She is
smiling.
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Image COCO SIND DenseCap Ours
A herd of zebras
grazing in a field. A
herd of zebra stand-
ing on top of a lush
green field. A bird
flying over a building
with a clock. A man
standing on a side-
walk next to a street
sign. A group of ze-
bras are standing in a
field.

We had a great time.
I went to the museum
today. We saw a lot
of interesting things.
We went to the city
to see the sights. We
saw many different
types of animals. We
went to the museum.

A herd of zebras
grazing in a field. A
field of grass. Two
zebras in a field. The
photo was taken in
the daytime. White
clouds in blue sky.
The grass is tall.

The zebras like each
other. These animals
are related. The ze-
bras are not in a zoo.
The animal is graz-
ing.

A close up of a pizza
on a plate. A close
up of a sandwich on
a plate. A cat sitting
on top of a window
sill. A bathroom with
a toilet and a sink. A
plate of food with a
sandwich and french
fries. A person hold-
ing a hot dog in a
bun.

The food was deli-
cious. We had a great
time. I went to the
museum today.

A close up of a pizza
on a plate. Pizza on
a plate. Pizza on a
table. The hand of
a person. A cup of
coffee. The pizza has
red sauce.

500 calories are in
the meal. This is a
pizza. This is not a
healthy meal. This is
not for vegetarian.

A street with cars
parked on the side
of it. A car parked
in front of a parking
meter. A street sign
on a pole on a street.
A car parked on the
side of a road. A
street sign that is on
a pole.

We went to the city
to see the sights. The
car was covered in
snow. I went to the
museum today. We
went to the museum.
We had a great time.
We went to the loca-
tion.

A street with cars
parked on the side
of it. A silver car
parked on the street.
A black car parked
on the street. A white
truck. Blue sky with
no clouds. A black
truck.

The car is gray. The
car is parked ille-
gally. Where the
car is is inappropri-
ate. That is pine tree
behind.

A teddy bear sitting
on a wooden bench.
A teddy bear sitting
on top of a tree. A
teddy bear is sitting
on the ground. A
train traveling down
tracks next to a for-
est. A teddy bear
is sitting on a tree
branch.

The kids had a great
time. The dog was
very happy to see me.
I had a great time.
The view was amaz-
ing. We had a great
time.

A teddy bear sitting
on a wooden bench.
A teddy bear in a red
hat. Red teddy bear.
A white teddy bear.
The nose of a sheep.
The teddy bear is s it-
ting on the ground.

These are stuffed an-
imals. That teddy
bear can be scary
when you see it at
night. The animals
are there for fun. The
bear is sleeping. This
is not a real bear.

Table 9.7: More examples of image narratives.
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Image COCO SIND DenseCap Ours
A red and white train
traveling down train
tracks. A red and
white train on a train
track. A white and
red train on a train
track. A street sig
n that is on a pole.
A train station with a
train on the tracks.

We had a great time.
The car was covered
in snow. I went to the
museum today.

A red and white train
traveling down train
tracks. Front of train
is yellow. Yellow
door on train. Trees
in the background.
Train tracks on the
ground. A train in the
photo.

The train is yellow.
The train is moving.
These locomotive are
likely expensive. The
man is driving.

A plate of food with
a fork and knife. A
pizza with a lot of
toppings on it. A
plate with a sandwich
and a salad. A close
up of a plate of food
with broccoli.

The food was deli-
cious.

A plate of food with a
fork and knife. Pizza
on a table. A pizza
on a plate. A slice of
pizza. The pizza has
red sauce. A slice of
tomato.

This is a vegetar-
ian pizza. This is
not a cheese pizza.
The green vegetable
is spinach. This is a
healthy meal.

A man and a woman
playing a game with
nintendo wii con-
trollers. A man and
a woman sitting on a
couch. A man and a
woman are playing a
video game. A vase
with flowers in it
sitting on a table.

The kids were having
a good time. We had
a great time. The dog
was very happy to see
me. I had a great
time.

A man and a woman
playing a game
with nintendo wii
controllers. Man
wearing a gray
shirt. Man sitting
on couch. Dog with
black and white fur.
A lamp on the table.
A black fireplace.

The dogs are eating.
They are celebrating
christmas. They are
talking about poli-
tics. The dog is sit-
ting. The man is
drinking beer.

A table topped with
a plate of food and a
glass of wine. A table
topped with a plate
of food. A glass of
wine sitting on a ta-
ble. A hot dog on a
bun with ketchup and
mustard. A kitchen
counter with a bunch
of food items.

We had a great time.
The food was deli-
cious. I had a great
time.

A table topped with
a plate of food and
a glass of wine. A
bottle of beer. Two
people sitting on a ta-
ble. Wine glasses on
the table. Wine glass
with wine. Red and
green apples.

The name of this
restaurant is jonn’s
bakery. This would
be a delicious gift.
The table is made of
wood. There are 3
glasses. This is a
healthy meal.

Table 9.8: More examples of image narratives.
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Image COCO SIND DenseCap Ours
A cat laying on top
of a bed next to a re-
mote control. A cat
laying on top of a bed
next to a laptop. A
cat laying on top of a
bed next to a window.
A person is holding a
piece of broccoli. A
large building with a
clock on it.

The dog was very
happy to see me. I
had a great time. We
saw a lot of old build-
ings. The view from
the top was amazing.

A cat laying on top
of a bed next to a re-
mote control. A cat
laying on a bed. The
head of a cat. Ear of a
cat. The cat is brown.
The ear of a cat.

There is 1 cat. This
cat looks lonely. The
cat is not sleeping.
The weather is sunny.

A dog that is sitting
on a bench. A street
sign on a pole in front
of a building. A
man riding a skate-
board down a street.
A dog is running with
a frisbee in its mouth.
A large building with
a clock on it.

The dog was very
happy to see me. We
had a great time. The
house was very nice.
I went to the museum
today.

A dog that is sitting
on a bench. A brown
dog. A brick side-
walk. Man walking
on sidewalk. Dog
walking on sidewalk.
A white line on the
ground.

There is a dog. The
dog is sad. The color
of the wall is white.
The color of the fire
hydrant is gray.

A man riding skis
down a snow covered
slope. A man in a red
jacket is snowboard-
ing. A man wear-
ing a hat and a tie.
A street light with a
building in the back-
ground. A group of
people standing on a
beach with a kite.

We had a great time.
I was so happy to see
me. We went to the
city to see the sights.
I was so excited to
see my friends. I
went to the city last
weekend.

A man riding skis
down a snow covered
slope. Man in red
jacket. Snow cov-
ered mountain. The
woman is wearing a
helmet. The man is
wearing black pants.
Black and white
jacket.

The person is skiing.
This is alps. This per-
son is having fun. He
won the competition.
The person is holding
ski poles.

A plate with a piece
of cake on it. A close
up of a pair of scis-
sors on a table. A
plate with a sandwich
and a salad on it. A
piece of cake on a
plate with a fork. A
close up of a plate of
food on a table.

The food was deli-
cious. The flowers
were so beautiful. I
had a great time.

A plate with a piece
of cake on it. A yel-
low piece of donut.
A red basket on the
table. A box of
donuts. A table with
a wooden table. A
donut with sprinkles.

There are 3 different
types of food. This is
not a healthy break-
fast. This cake looks
so fun. The orange
color is bread.

Table 9.9: More examples of image narratives.
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Table 9.10: Examples of image narratives generated by training with human-written image
narratives. It shows that simply training with human-written image narratives utterly fails
to generate reliable outcomes.

Image Generated Narrative

a man is sitting on a chair he is wearing a white shirt he seems to

a man is holding a hot dog he is wearing a white shirt he seems to

Table 9.11: Results from evaluation on Mechanical Turk on whether the generated ques-
tions allow for multiple responses.

Model # Overall # Yes # No
Ours 1,000 664 336
VQG 1,000 217 783

Overall 2,000 881 1119

Table 9.12: Examples of generated questions using our proposed model and VQG respec-
tively. Questions in bold fonts are from our proposed model.

Image Generated Question Image Generated Question

What is the color of the shirt? What is on the table?
How many children are there? What is the table made of?

What is the dog doing? What is the color of the car?
What is the color of the couch? What is the weather like?
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Table 9.13: Results from evaluation on Mechanical Turk on how well the generated image
narrative reflects the choices they made for the questions.

Model Avg. Score Agreement
Ours 3.851±1.12 .601

image only 2.636±1.01 .432

Table 9.14: Results from evaluation on Mechanical Turk on how well the generated image
narrative for the new image reflects their interest or attention.

Model Avg. Score Agreement
Ours 3.455±0.93 .527

random match 2.772±0.79 .489
image only 2.238±1.24 .428

Table 9.15: Examples of image narratives generated on new images, depending on the
choices made for the original input image.

Image & Question Choice New Image Narrative

giraffe
The giraffe is standing.
The weather is sunny.

zebra
Zebra is thinking.
It is not in a zoo.

rhino
2 animals are in the picture.

What animal is this? The sky is blue.

skateboard
No one is riding bicycle.
The man is standing.

motorcycle
The motorcycle is red.
No one is riding motorcycle.

car
This is not a modern building.

What is the man riding? The image is not in black and white.

dog
The horse is running.
The car is white.

sheep
The boy is wearing red shirt.
Tree is in the background.

person
The man is riding horse.

What kind of animal is that? The man is wearing hat.

white
The white object is bus.
The car is white.

green
The bus is green.
The train is headed to Washington.

yellow
The train is yellow.

What color is the car? The image is not in black and white.
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Chapter 10

Conclusion & Future Works

10.1 Conclusion
Generating image narrative requires not only factual description of the main components
in the image, but also an understanding of how to account for local elements, sentiments,
and non-visual elements present in the image. It also requires an efficient model to organize
such elements into a well-defined structure consisting of multiple sentences. Most previous
works on image description dealt with only a part of these many requirements, and thus fell
short of generating an image narrative. In this thesis, we developed a model in which we
generate an image narrative encompassing a variety of image-relevant components. In
order to accomplish our objective, we proposed and implemented a number of modules,
each of which plays an indispensable role within the model. We further developed our
model to reflect the users’ distinct preferences by implementing an interactive setting.

Dense Image Representation for Locally Robust Captioning
Previous works on image captioning have almost invariably dealt with main events occur-
ring in the image. This is inevitable in a sense that CNN features are originally designed for
classification of single object. In this chapter, we designed a model to generate dense image
features that are robust to local elements and can reflect them in image captioning. First,
we generated a large number of region proposals using selective search [92], extracted their
CNN features, and applied PCA to make the features more optimal and practical. We then
learned the codewords with k-means++, and coded the features with VLAD. This process
was performed on a number of grids using spatial pyramid. Quantitative and qualitative
evaluations demonstrate that our model can more accurately and frequently reflect local
elements that frequently may not be captured by CNN features alone.

Image Captioning with Sentiment Terms
Another aspect that has been overlooked in previous works is the sentiment of the image.
The difficulty lies in that sentiment can be ambiguous and is subject to multiple labels. For
this reason, a dataset specializing in sentiments has been considered very difficult to build.
We proposed to alleviate the ambiguity of sentiments by treating it as a multi-label problem.
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In addition, based on our remark that comments on the images from social photo-sharing
services frequently reflect the associated sentiments, we built a weakly-supervised senti-
ment dataset that is publicly available, with which we fine-tuned a separate CNN designed
to classify the sentiments of the image. While automatic evaluation is difficult to carry
out due to lack of ground truth captions involving sentiment terms, we performed human
evaluation, which indeed confirmed that our captions better-reflected the sentiments of the
image than compared models.

Visual Question Generation and Answering

Discussing a variety of elements from an image necessitates a decision of what to discuss,
unlike image captioning task where the goal is settled from the beginning. Visual ques-
tion generation is an efficient way to model the mapping between an image, or regions of
the image, to relevant topics that can be discussed. Subsequently, the generated questions
must now be answered in order to constitute an image narrative. Visual question answering
task is currently one of the most competitive techniques to achieve that goal of answering
visual questions, and we proposed a model to boost the performance of VQA. We alter-
nated between average softmax probabilities from top regions and VLAD coding of CNN
features for all region proposals, depending on the type of questions. Our proposed model
took the first place in abstract scenes category at an international competition on the task,
ascertaining its efficiency.

Single Image Narrative Generation

Each of the modules described so far is now organized to tackle the novel task of single im-
age narrative generation, which in essence is the principal task this thesis is concerned with.
Image features were generated by combining the spatial pyramid VLAD coding and fine-
tuned sentiment CNN described in previous chapters. Top regions were extracted based
on their objectness, from which visual questions were generated, and VQA technique was
applied to answer the generated visual questions. Finally, simple natural language process-
ing techniques were applied to connect the questions and answers into declarative formats,
completing an image narrative. We performed both human evaluation and automatic eval-
uation, with human-written image narratives as references.

Interactive Image Narrative Generation

Considering that different viewers may attend to different parts of the image given a con-
text, we tackled the task of interactive image narrative generation, under a premise that
user’s interest or attention can be learned to generate customized image narratives. In order
for the user interaction to reflect each user’s distinct tendency, we generated visual ques-
tions that can be answered in multiple ways, by making use of the probability distribution
over answer labels from VQA module. We employed word-based attention heatmap to ex-
tract appropriate regions corresponding to the user input, and applied our image narrative
generation model to the extracted regions to create user-dependent image narratives. We
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also showed that by collecting inputs from the users interactively, we can learn their inter-
est and attention tendency, and apply it to unseen images to customize the image narrative
even without explicitly involving the users.

10.2 Remaining Problems & Future Work
While our model for image narrative generation task proved superior to other existing mod-
els, many aspects still remain to be improved or implemented. Although we leave them as
future work in this thesis, it is worthwhile discussing those remaining problems, as it is
likely to be of immediate research interest for ourselves as well as the research community.

First of all, while our image narratives deal with multiple aspects about the image,
they are yet to have a strong structural orientation, including causality. Foremost difficulty
would be the lack of such dataset, but constructing image narrative with clear causality may
require a number of additional modules, such as correlation analysis between sentences, on
top of just building a dataset.

Second, our model as a whole is highly dependent on the performance of each com-
ponent module. For example, the state-of-the-art VQA module at the time of this writing
still achieves less than 70% accuracy in real images category of VQA dataset [2]. Classi-
fying and representing sentiments of the image with higher accuracy is also imperative for
better performance. Likewise, improvements in sub-modules within the component, such
as region extraction, are certain to improve the performance of the entire model as well.
More advanced learning of user’s interest in the interactive environment also remains an
important future work.

Finally, applying similar motivation to other visual domains, videos in particular, would
be another important challenge. Some of the previous works have attempted to generate
video captions of multiple sentences [83, 103]. Yet, as in image captioning, they are yet to
examine descriptions other than mere factual components of primary event, whose accuracy
still has a long way to go. Likewise, VQA task and dataset for videos have been introduced
[89], but have not been able to ignite an active research interest as yet. We briefly exam-
ined illustrations with VQA module in Chapter 6, but generating image narratives from
illustrations will also be an intriguing as well as significant challenge.
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