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Abstract

The satisfiability (SAT) problem is a well-known NP-complete problem. Generally,

there are no polynomial-time solutions for NP-complete problems. In the last two decades,

substantial progress has been made on SAT algorithms; now, many application problem

instances from domains such as puzzles, circuit verification, and planning can be encoded

easily into SAT problems and solved using SAT solvers. Several elements, such as conflict-

driven clause learning (CDCL), restarts, propagation using a lazy data structure, and

conflict-based branching heuristics, have played a significant role in the dramatic progress

of SAT solvers. Furthermore, throughout the evolution of multicore hardware, many types

of parallel SAT solvers have been proposed. Combinatorial search with a parallel SAT

solver shares information among workers to diversify the search and avoid duplicate work.

However, when the number of workers or the size of a problem increases, the amount of

information increases exponentially. When the amount of information increases, the cost

of maintaining and utilizing information also increases. This can cause a problem of search

efficiency for massively parallel environments. In recent years, a portfolio-based approach

has become mainstream for parallel SAT solvers. In portfolio approaches, maintaining

the diversification and intensification tradeoff is very important.

In this paper, we propose several methods for achieving efficient SAT solvers by adjust-

ing search intensity and diversity. First, we propose breaking ties in branching heuristics.

Branching heuristics decide which variable to branch on next during a tree search. Many

of them have been proposed for search intensification of SAT solvers. We recognize the

existence of ties inherent in branching heuristics and propose a method for breaking ties

to enhance search intensification. Our approach is designed to intensify the interplay

between branching heuristics and clause learning schemes. Second, we propose a hybrid

model to secure search diversity and integrate different algorithms for building efficient

SAT solvers. Our objective here is to provide an efficient single solver that can be reused

for other research as a base solver. As a first step toward this, we applied a random forest

model to integrate several branching heuristics. This model works as preprocessing to

select an adequate branching heuristic for each SAT instance. All branching heuristics in

our model use the same data structure. Hence, they can be implemented easily in a single
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solver. Finally, we propose an approximate history map (AHM) to share information

among workers in a parallel SAT solver using only a small amount of memory. The AHM

concept can be applied to a multitude of scenarios to manage search intensity and diver-

sity. This map is applicable in massively parallel environments at low cost. To achieve an

AHM in parallel SAT solvers, we propose a Polarity Search Space Index (PSSI). After the

construction of an AHM with a PSSI, we propose a sparsely visited area walking on search

space (SaSS) heuristic as an application of the AHM. All of our proposals are evaluated

through the benchmarks from SAT Competitions.
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概要

充足可能性 (SAT、Satisfiability)問題は NP完全であると知られており、一般的に多項式

で解を求める方法は知られていない。ここ 20 年に渡って、SAT 問題を解くアルゴリズムは

飛躍的に発達しており、パズル、回路検証、プランニングなど様々なアプリケーション問題

を SAT 問題に変換し、SAT solver を用いて容易に解決出来るようになって来た。これに貢

献した要素技術としては、conflict-driven clause learning (CDCL)、リスタート、lazy data

structure を用いた propagation、conflict ベースの branching heuristic などが挙げられる。

さらに、multicoreなど計算資源の発達により並列 SAT solverも数多く提案されて来た。並

列 solverで combinatorial searchをする時は searchの多様性確保や中腹探索を避けるために

情報の共有を行う。しかし、ワーカーの数が増える、または問題のサイズが増加すると、情

報量は指数的に増えて行く。これは超並列環境での search の効率に問題を発生させる原因

と成り得る。近年、並列 solver の主流は portfolio-based approach が良く用いられている。

portfolioでは searchの diversificationと intensificationをバランス良くハンドルすることが

大事であると言える。

本研究では、集中性と多様性に着目し、その調整により効率的なソルバーを構築するた

めのいくつかの提案を行う。１つ目は、branching heuristics のための tie break である。

Branching heuristics は SAT ソルバーの tree search 中にどの変数を選択するかを決める

heuristics であり、多くのものは探索のソルバー集中性高めるために提案されている。我々

は branching heuristicsに内在している tieの頻繁な発生に着目し、さらに探索の集中性を高

めるための tie break の手法を提案する。このアプローチは branching heuristics と clause

learning schemeの相互作用を考慮して考案している。2つ目に、ソルバーの多様性を確保し、

複数のアルゴリズムを統合してソルバーの性能向上をするための hybrid model を提案を行

う。我々の目標は効率的かつ他の研究でベースソルバーとして用いられるような single ソル

バーを提供することである。その第一ステップとして、branching heuristicsを統合するため

に random forest model を適用する。得られたモデルはソルバーに問題が与えられたら適切

な branching heuristicを選択してくれる preprocessingの役割をする。モデル学習に用いら

れている branching heuristics すべては共通のデータ構造で実現出来るため簡単に single ソ

ルバーで纏めることが出来る。最後に、並列ソルバーのワーカ間でメモリを節約しながら情報

共有を行うために approximate history map (AHM)を提案する。AHMの概念はソルバーの

探索の集中性と多様性を調整する様々なシナリオーに適用可能なものであり、超並列環境に置
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いても低コストで用いることが出来ると期待される。AHMを SATソルバーの中で構築する

ために Polarity Search Space Index (PSSI)を提案する。PSSIをベースに AHMを構築し、

その１つの応用例として sparsely visited area walking on search space (SaSS) の提案を行

う。それぞれの提案は SAT Competitionsのベンチマークを通して評価を行う。
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Chapter 1

Introduction

In this chapter, we briefly describe SAT problems and their solvers and provide an overview

of our research.

1.1 Satisfiability

The satisfiability (SAT) problem, determining whether there exists any assignment of

variables that satisfies a given Boolean formula, is one of the most fundamental problems

in computer science. This problem was firstly proved to be an NP-complete problem [1],

thus all of the problems in the NP-complete class can be converted into the SAT problems

within a polynomial time. It is widely believed that there is no algorithm for solving

an NP-complete problem in a polynomial time, even though several theorists (including

Donald E. Knuth) believe that P = NP [2].

SAT formulas can be divided into three categories, random, application and crafted

formulas depending on their generations. Studies of random formulas aim to understand

the hardness of formulas, such as finding a satisfiability threshold based on rigorous math-

ematics [3][4]. Random 3-SAT problems are the most representative. All of the clauses in

a 3-SAT problem contain three variables. This is important, because all SAT problems

are reducible to 3-SAT problems. Application problems are generated from industrial

domains, such as planning [5], software and hardware verification [6], Bounded Model

Checking [7] and circuit verification [8]. Many researchers believe that application prob-

lems have biased hidden structures and devise practical algorithms differently from those

for random problems. Crafted problems are designed to be difficult to solve. Problems in
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(a) Application 1 (b) Application 2

(c) Crafted (d) Random

Fig. 1.1: Visualizations of community structures for several formulas from application,
crafted, and random categories using SatGraf.

this category are more challenging than those came from application areas, but efficient

algorithms for application problems can also be applied to solve these problems.

State-of-the-art SAT solvers have improved remarkably especially for application prob-

lems, and now many instances with hundreds of thousands of variables and millions of

clauses can be solved using SAT solvers. Figure 1.1 shows the internal structures of sev-

eral formulas came from different areas. These structures are generated using SatGraf [9],

which visualizes a SAT formula based on its communities through community detection

algorithms such as the Louvain method [10]. Each blue point in Figure 1.1 corresponds to

a variable in a SAT formula. There is an edge between two variables, if they are included

in the same clause. A distinct color is assigned for each community, and inter-community

edges within the same community have the same color. Intra-community edges are white.

Both application and crafted problems appear to have community structures in contrast
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Fig. 1.2: Importance of SAT solver - universal solver for application problems

with random problems.

Figure 1.2 illustrates the importance of SAT solvers for application problems. As shown

in the figure, we can create and optimize a solver for each problem, but that requires

substantial resources. The development of a universal solver is a necessary, and researchers

from many application domains are concentrating on improving the performance of SAT

solvers. The encoding and decoding portions in Figure 1.2 can be performed in polynomial

time, and thus increasing the speed of a SAT solver is directly connected to the solution

times for many application problems. Problems must be converted into conjunctive normal

form (CNF) to be solved using SAT solvers. Further information will be provided in

Chapter 2.

1.2 Research overview

In this paper, we discuss several approaches to the construction of efficient SAT solvers

for the industrial problems with consideration of diversification and intensification. We

first provide a general overview of the diversification and intensification in SAT research,
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and then provide an overview of our research.

1.2.1 Diversification and intensification

The SAT problem is NP-complete. Therefore, simply traversing a tree to find a solution

requires expenential time, in general. However, if there exists a particular structure in a

SAT problem, we might find a solution efficiently using methods such as pruning or prior-

itizing the areas in a search space. In contrast to the random instances, many application

instances are believed having hidden structures, as shown in Figure 1.1. Therefore, many

researchers are working to adjust the intensification and diversification of SAT solvers

adequately for searching efficiently.

When we begin solving an application problem, we do not know where a solution exists.

We cannot quantify the structure of a problem or find a relationship between a structure

and a distribution of solutions. However, we believe there exist hidden structures in a

problem, and that well-designed algorithms might find a solution efficiently using those

hidden structures. Consider a solver that is searching for a solution under some restric-

tions. A solver can search a solution more intensively if we add more restrictions. If we

remove some restrictions, a solver has opportunities to search at different areas. We must

determine whether to add or remove restrictions based on the current search status.

Let us say that we have an accurate measure showing the possibility of the existence

of a solution in a subspace. If the measure shows that there is no solution under the

current restrictions, a solver can move to a different subspace by removing and adding

restrictions. We can also make a solver move to a different subspace when a measure says

the possibility of solution is too low in the current subspace. The possibility of finding a

solution might become high, when we notice that there is no solution in most parts of the

current subspace and then add a suitable restriction to remove these parts. If we have

confidence that the current problem is unsatisfiable, then diversifying the search based

on a measure might not be good policy. All subspaces have a possibility of zero, when a

problem is unsatisfiable. For an unsatisfiability proof, a solver must obtain restrictions by

intentionally traversing a subspace without a solution. However, the scenarios we mention

here are difficult to deal with in that manner, because no accurate measure for subspaces

exists.
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Some scenarios require intensive search, and the others require search diversification.

This is domain, instance, and subspace dependent. We must design a SAT solver to

cover these scenarios efficiently as much as possible. Efforts to adjust diversification and

intensification efficiently work in many instances from application domains. Application

problems have biased structures, and these structures leave some subspaces without a

solution and other subspaces with many solutions. SAT solvers find a solution efficiently

using techniques such as prioritizing recently used variables for intensive search, restarting

a search by removing all restrictions, random selection of subspaces, divide-and-conquer

for a search space, configuration of portfolios for search diversification, and sharing of

information among workers. Techniques for search intensification and diversification can

be explained on a community structure of a SAT instance. A solver performs an intensive

search by assigning values to variables in the same community recursively. For example

in Figure 1.1 (a), a solver can perform an intensive search by focusing on the assignments

to purple variables. Search diversification can be obtained by changing the order of

communities for intensive search. For example in Figure 1.1 (a), a solver can perform

an intensive search on a purple community first, move to a green community and perform

intensive search in it, and then move to a blue community. If the solver cannot solve

a problem using this order, it can change the order of communities, such as (green →

purple → blue) or (blue → purple → green). Actually, adjusting intensification and

diversification of a search on a community structure is more difficult than what we describe

here. A community structure changes consistently through assignments, cancellations, and

additionally learned restrictions.

We considered that there is substantial room for improvement of SAT solvers by ad-

justing the intensification and diversification. Each technique is designed for an intention

to intensify or diversify search. We might strengthen the intentions by scrutinizing them.

When we dynamically adjust the intensification and diversification tradeoff, a measure,

indicator, or score is required for controls. Searches based on a measure might lead in

incorrect directions from time to time, becuase the measure might be unsuitable or uninfor-

mative, thereby randomly generating ties and breaks. Other approaches involve applying

or devising a method to obtain the intensity or diversity of SAT solvers. Each technique

has its variants, and the efficiencies of many of them are different. Their integration into
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Fig. 1.3: Research overview - our proposals, their relations, and related keywords

a single solver might diversify a SAT solver. SAT solvers acquire information during a

search, and retain it to avoid search redundancies. However, much of it is persistently

erased, because a solver cannot retain it all. If we can record snapshots during a search by

mapping and reducing the amount of information, then cumulative records might become

useful for adjusting the diversification and intensification of SAT searches.

1.2.2 Our research

Each of our proposals is designed to adjust either intensification or diversification or both,

and all of our approaches target a wide range of SAT solvers, not just specific solver. Our

approaches can be applied directly to a variety of representative modern SAT solvers, and

can also be used for ongoing research.

Figure 1.3 summarizes our research categories. The red boxes indicate our proposals,

and the yellow boxes indicate related keywords. Each of the red boxes is connected to

the sequential solver, the parallel solver, or both. We have several ideas for the light

red boxes, but they are not yet complete or are not yet implemented. Solvers with our

proposals can be submitted to the SAT Competition or evaluated through benchmarks

from previous SAT Competitions. Each of the yellow boxes is positioned at a relevant

point. Most of our proposals are related to at least one of diversification or intensification,

indicating that our proposals are deeply related to these elements.

The boxes labeled tie-breaking, Hybrid branching heuristic, and History map indicate
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Fig. 1.4: Relations between our research and phylogenetic tree of representative SAT
solvers

our principal proposals. We will discuss them shortly in the following sections. Details of

each will be described in Chapters 4, 5, and 6, respectively. The box labeled Shuffle vari-

ables will be discussed in Chapter 2. We included that chapter, becuase the experiments

in Chapter 2 encouraged us to proceed with our proposals.

We implemented several of our proposals in both sequential and parallel solvers and

submitted them to SAT Competition 2016. We earned three medals, Best Crafted Bench-

mark Solver in the Main Track, and second prize and third prize in the Agile Track [11].

Detailed information regarding SAT Competitions will be provided in Section 2.2.

Figure 1.4 shows a phylogenetic tree of representative modern SAT solvers. Many

modern solvers are generated from MiniSat and Glucose. Parallel solvers are generated

from several kinds of sequential solvers, with the result that it is difficult to construct a

tree using parallel solvers. All of our proposals can be applied widely within the rectangle

with a green dotted line. Improvements in sequential solvers are related to improvements

in parallel solvers, and a history map might be useful for solving a difficult instance with

a sequential solver. In this paper, we applied the hybrid branching heuristic only for

sequential solvers, but this model can be extended to parallel solvers when we consider a

scheduling problem using several branching heuristics or simply select a portfolio.
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1.3 New branching heuristic

Details about branching heuristics will be discussed in Section 2.5.

The branching heuristic is one of the most influential elements for improving the per-

formance of SAT solvers. Several incomplete SAT solvers based on stochastic local search

(SLS) do not require a branching heuristic. However, many complete SAT solvers use

a branching heuristic to select the area in the search space. Especially, many SAT

solvers with complete algorithms find a solution based on depth-first search (DFS). Davis-

Putnam-Logemann-Lovveland (DPLL) [12] is one of the most prominent DFS algorithms

with backtracking. DPLL SAT solvers select a variable to branch on next based on

branching heuristics. Generally, branching heuristics are designed for intensive search by

choosing a variable that became active recently.

Modern SAT solvers adopt conflict-driven clause learning (CDCL) [13] and are called

CDCL solvers. The variable state independent decaying sum (VSIDS) [14] is the most

representative branching heuristic for CDCL solvers and is widely used because of its

efficiency has been demonstrated using benchmarks over the years. There have been

many attempts to outcompete VSIDS, and several variants of VSIDS have been proposed.

However, VSIDS is still widely used because of its robustness. Firstly, we attempted to

improve VSIDS, because many modern SAT solvers are already using VSIDS as their

branching heuristic. Therefore, the improvement of VSIDS is expected to connect to

improved performance of many SAT solvers. We noted that ties occur in VSIDS and

actually measured their frequencies. As far as we are aware, no one has actually measured

tie occurrences in VSIDS or paid attention to breaking ties. We adopted the method of

tie-breaking, because our intention was to improve VSIDS, not to outcompete it. VSIDS

has already been proved its efficiency for a long time. If we propose a completely different

branching heuristic, there would be a tradeoff. A new branching heuristic might help find

a solution more rapidly for several instances, but also lose several instances as well.

The idea of breaking ties in branching heuristics was motivated from our preliminary

experiments involving shuffling indexes of variables, which encouraged us to propose a

hybrid branching heurisitic, as shown in Figure 1.3. During the shuffling experiments, we

noticed that small changes in a branching heuristic had a substantial effect on the running
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time of solvers. Therefore, we thought that if we can affect small changes persistently,

then the entire search efficiency would improve. Tie occurrences in branching heuristics

are proper parts that enable our idea. Our tie-breaking attempted to give additional scores

to variables that appeared to be more significant. We also considered the interplay among

the branching heuristic and other techniques in a SAT solver. Our effort is to achieve

more intensive search by applying tie-breaking. Details regarding our hybrid branching

heuristic are provided in a following section.

We applied tie-breaking method primarily to VSIDS, and calling this “tie-breaking of

VSIDS” (TBVSIDS). However, the tie-breaking concept can also be applied to many other

branching heuristics. We additionally applied tie-breaking to the conflict history-based

branching heuristic (CHB) [15], a recently proposed branching heuristic, and calling this

the “tie-breaking of CHB” (TBCHB). Our sequential solver with our tie-breaking method

was selected as the Best Crafted Benchmark Solver in the Main Track of SAT Competition

2016.

1.4 Hybrid branching heuristic

A SAT solver works as a universal solver to cover a variety of application categories.

However, a single solver cannot cover all instances in general. Therefore, several algorithm

selection studies [16][17] have been conducted to integrate different strategies in a single

solver. A variety of SAT solvers have been proposed, as shown in Figure 1.4, and the

differences among them enabled the learning of a model for algorithm selection. The

models work differently based on their types, such as a preprocessing, a portfolio for

parallel solvers, or a scheduling problem. The mainstream of these studies gathered N

different state-of-the-art solvers and classified instances into N classes. Thus, a model

selects a single SAT solver out of N SAT solvers on an instance basis. The performances

of these multi-solver approaches are quite strong, but there is a major weakness in these

approaches. They cannot serve as a base solver, such as Minisat or Glucose in Figure 1.4,

because they already include several solvers. This means that they cannot be used for

continuous research in spite of their outstanding performances.

Our objective here is to propose an efficient solver with a model of algorithm selection

that could become a base solver for continuous research. To achieve this, we considered
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that algorithm selection must be performed in a confined space. SAT solvers contain

many techniques consisting of many parts, and each solver chooses an algorithm and ad-

justs parameters for each part. Therefore, we considered that there are a large number of

candidates for the selection of the confined space. We selected branching heuristics as a

candidate in this paper, because we were proposing tie-breaking for branching heuristics.

Therefore, we can observe the validity of tie-breaking for algorithm selection. Further,

branching heuristics with tie-breaking do not require a new data structure, and can pre-

serve the readability of a SAT solver as a base solver for ongoing research. We applied the

random forest model for branching heuristics and proposed the hybrid branching heuristic,

as shown in Figure 1.3. Currently, our hybrid model is designed only for sequential solvers

choosing a branching heuristic as preprocessing. However, this model can be considered

for constructing the portfolio for parallel SAT solvers or applied to the scheduling problem

for dynamic switches of branching heuristics. We evaluate our hybrid model using differ-

ent SAT solvers, because our intention is to provide a widely applicable hybrid model for

a variety of SAT solvers.

1.5 History map

Parallel solvers share information for efficient search by handling the diversification and

intensification of the search. However, when the number of workers or the size of a

problem increases, the amount of information increases exponentially. It is difficult to

extract the most valuable information to share from a large amount of information. Even

if we extract important information successfully, it cannot be maintained indefinitely due

to memory limitations and the degree of solver efficiency. Therefore, we were motivated

to propose a scalable data structure for several reasons. First, the amount of shared

information must be more limited, when the number of workers increases. Second, a large

amount of information is erased periodically during the search. Third, we want to adjust

the diversification and intensification of the search, minimizing the burden on time and

resources.

To achieve these goals, we propose the approximate history map (AHM), wherein each

snapshot captures approximate calculations for each worker, and in which the snapshots

are accumulated to form a history map. The size of a map is fixed, and only a small space
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is required for this data architecture, regardless of the size of the problem or the number

of workers. The AHM represents an approximate distribution of the number of visits to

areas in the search space throughout the search. We predict which areas are sparsely

(frequently) visited based on this map.

A precondition for achieving the AHM concept is that information must be extremely

compressed. Our intuition is inspired by instruction prefetch research [18][19], because

an extremely small space is allowed to record past memory accesses for the prediction

of future memory accesses to improve efficiency. Access map pattern matching [19] uses

a memory access map and can reduce past records successfully by dividing the memory

address space into memory regions of a fixed size.

We propose using the AHM to handle diversification and intensification of a search. The

AHM concept could be broadly applicable to solvers for combinatorial searching. We apply

the AHM to a portfolio-based SAT solver in this paper, as shown in 1.3. We introduce a

heuristic utilizing the proposed AHM, which we refer to as“sparsely visited area walking

on search space” (SaSS). We show the effects of the SaSS heuristic experimentally.

1.6 Structure of this thesis

In this paper, we propose several methods for improving the performance of SAT solvers

with consideration of diversification and intensification, as shown in Section 1.3.

Background for understanding the structures of modern SAT solvers is provided in

Chapter 2. We explain the notion of SAT problem and provide a brief overview of SAT

solvers especially for application problems. Then, we briefly explain several important

elements that contribute substantially for improving the performance of SAT solvers. In

Chapter 3, we discuss some preliminary experiments involving the index shuffling of vari-

ables. The contents of that chapter are introduced, because we obtained several intuitions

and ideas from these experiments. Chapter 4 proposes a new branching heuristic with

tie-breaking. The principal experimental results are related to TBVSIDS, and its perfor-

mance is compared with those of VSIDS using SAT Competition benchmarks. In Chapter

5, we propose a hybrid branching heuristic as a first step of an algorithm selection research

for SAT solvers. We introduce existing methods, address an issue, propose our idea for

integration of SAT solvers, and explain the significance of our method. Chapter 6 pro-
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poses a history map. This concept can be expanded to general combinatorial search. We

explain the concept of our history map and propose a method for constructing a map in a

parallel SAT solver. As an example of AHM application, we propose a dynamic algorithm

for diversifying search, and we evaluate it using SAT Competition benchmarks. Chapter

7 addresses several ideas that might be useful for improving SAT solvers, but that re-

quire further development or have yet to be implemented. In Chapter 8, we conclude and

summarize several future work.
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Chapter 2

Backgrounds

In this Chapter, we introduce fundamentals about SAT problems and SAT solvers. We

show details about SAT problems first, explain basic search algorithm for SAT solvers

and give overviews of several elements those are essential for modern SAT solvers.

2.1 Satisfiability problem

The Satisfiability (SAT) problem determines whether satisfying assignment exists for a

given conjunctive normal form (CNF) formula. A CNF formula is a conjunction of clauses

where a clause is consisted of a disjunction of literals. We say a clause is unary, binary, or

ternary if it contains one, two, or three literals, respectively. Especially when a clause is

unary, it is called unit clause. These clauses are considered important in general because

they might be informative in many cases. A unit clause only contains a single variable

x or ¬x and forces x = TRUE or ¬x = TRUE (x = FALSE) to make itself satisfied. A

binary or ternary clause can derive a unit clause with high probability through the chain

of assignments. Each variable x corresponds to two literals: itself (x) and its negation

(¬x). Each literal can be assigned to either the value of TRUE or FALSE. Conversely,

two different literals correspond to a variable and an assignment of a literal determines a

value of its variable. Therefore Equation 2.1 satisfies for each variable xn.

xn = |¬xn| = |xn| (2.1)
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Examples of SAT formulas are given in Equation 2.2 and 2.3.

F = (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x3 ∨ ¬x4 ∨ ¬x1) ∧ (¬x4 ∨ x1 ∨ ¬x2)

∧(x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (x3 ∨ x4 ∨ x1)
(2.2)

G = F ∧ (x4 ∨ ¬x1 ∨ x2) (2.3)

A formula F is satisfied with an assignment of {x1, x2, x3, x4} = {TRUE, FALSE, FALSE,

FALSE}. However, when we construct a formula G by adding a clause shown in Equation

2.3, G is alway unsatisfied with any of assignments. Therfore, formulas F and G are

evaluted as satisfiable and unsatisfiable. In general, each terms of satisfiable and unsat-

isfiable are simply expressed SAT and UNSAT respectively. However in this paper, we

do not use these abbreviations to avoid misunderstandings. If we use these abbreviations

and address, for example, “SAT instances”, this can be interpreted as either “Satisfia-

bility instances” or “Satisfiable instances”. Therefore we write terms of satisfiable and

unsatisfiable as it is for explicitness of the paper.

Examples of F and G might explain that distinguishing satisfiable problems from un-

satisfiable problems is a very difficult task. Single additional clause changes a satisfiable

formula F into a unsatisfiable formula G. Conversely, if we remove a clause randomly from

G, then a formula changes into a satisfiable formula. A formula G is unsatisfiable because

it meets either of Equation 2.4 and 2.5, and a clause removal from G makes a formula

satisfiable because a removal makes these chains of implications be cut off.

x1 → ¬x2 → x4 → x3 → ¬x1 → x2 → ¬x4 → ¬x3 → x1 (2.4)

x1 → x2 → x3 → x4 → ¬x1 → ¬x2 → ¬x3 → ¬x4 → x1 (2.5)

In general, there exists satisfiability threshold for random SAT formula [4]. For example

for random 3-SAT, instances get very hard to solve when a clauses-to-variables ratio in a

formula is near 4.26, and when a ratio gets smaller or bigger, the probability of getting

satisfiable or unsatisfiable rapidly gets higher, respectively. Thresholds such as 4.26 are not

applied for application problems, because they contain biased hidden structures [20][21]

in contrast to random problems. Therefore, SAT researches in the application areas have



2.2 SAT solver 15

been improved in different ways compared with those of random areas. Our research in

this paper are related to instances generated from application areas.

2.2 SAT solver

A SAT solver returns a solution when a SAT formula F have a solution and prove un-

satisfiability if F is alway FALSE, i.e., F̄ is tautology. A SAT problem is a well-known

NP-complete problem and an unsatisfiability proof is a coNP-complete problem [22]. It

is believed that there is no theoretically efficient algorithm for solving SAT problems,

because the existence of a polynomial time algorithm would solve all the problems in a

NP-complete class rapidly.

Even though SAT problems are included in a NP-complete class, instances came from

application areas have biased structures, and modern SAT solvers can resolve many of

these instances quickly within a reasonable timeframe as a result of researches from many

different sorts of areas. Many researchers from several application areas are struggling

to improve the performance of SAT solvers, because problems included in a NP-complete

class can be reducible to SAT problems in polynomial time. Therefore, the improvement

of SAT solvers would benefit to a lot of application areas.

A propositional formula can be efficiently converted into a CNF formula through Tseitin

transformations [23]. For example, if we transform disjunctive normal form (DNF) (Equa-

tion 2.6) into CNF through De morgan’s distribution law, this would produce 2n clauses.

This is not practical when n grows. If we use one of Tseitin transformations (Equation

2.8) instead, a DNF (Equation 2.6) can be converted into CNF (Equation 2.7) with only

3× n + 1 clauses and new n variables.

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn) (2.6)

z1 ∨ z2 ∨ · · · ∨ zn, for each i, zi ↔ (xi ∧ yi) (2.7)

zi ↔ (xi ∧ yi)⇐⇒ (xi ∨ ¬zi) ∧ (yi ∨ ¬zi) ∧ (¬xi ∨ ¬yi ∨ zi) (2.8)

In the rest of this section, we address search algorithm and SAT Competitions through
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subsections repectively. Firstly, we describe the DPLL, the initial search algorithm for

SAT solvers. The design of DPLL is very simple, and the understanding of DPLL would

help to grasp the algorithms in modern SAT solvers. Modern SAT solvers improved their

algorithms based on DPLL with several technical elements such as propagation, clause

learning, and branching heuristics. Details of elements in modern SAT solvers would be

described in the following sections. Secondly, we mention about SAT Competitions which

is held biennially as an event in the SAT conferences. The existence of SAT Competitions

make SAT researchers collaborate and compete with each other, and researchers are able

to share their ideas and challenge newly updated benmark areas.

2.2.1 Search algorithm

Search algorithms are divided into two categories of incomplete and complete search.

Many of incomplete SAT solvers perform SLS algorithms. Initial approaches were at-

tempts to improve the random walk procedure by flipping assignments of variables. GSAT

[24] is a representative incomplete SAT solver and recursively generate random assign-

ments and flip the most influential assignment of variable which gives the largest increase

in the number of satisfied clauses. To improve efficiency of random walk, tabu search is

applied in SAT solvers [25]. These solvers cannot prove unsatisfiability for given formulas,

but they can find a solution for satisfiable formulas efficiently from several application

areas [26][27].

Complete SAT solvers correspond to both satisfiable and unsatisfiable formulas. Ini-

tially introduced search algorithm was DPLL algorithm. This algorithm performs back-

tracking search by traversing tree through depth-first search (DFS). Details of DPLL

procedure is displayed in Algorithm 1. For a SAT formula Γ, a SAT solver determines

whether this formula is satisfiable or unsatisfiable through a DPLL algorithm returning

a value of TRUE or FALSE respectively. The DPLL algorithm performs propagation

steps while there exist unit clauses (line 2-8), because unit clauses force assignments of

variables in them. Figure 2.1 shows an example of propagation. Propagation reduces a

formula by eliminating satisfied parts. We marked satisfied parts with a gray color. By

assigning TRUE to a variable x0, clauses including a literal x0 are satisfied and clauses

including a literal ¬x0 are shrinked. After this propagation, x1 is picked and TRUE value
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x0 � 1 

F = (x0 � x4) � (x0 � ¬x4) � (x0 � x1) � (x1 � ¬x2) � (¬x2 � x3) �

      (¬x0 � ¬x1 � ¬x2) � (¬x0 � ¬x2 � ¬x3) � (x2 � ¬x3) � (x2 � x3) 

F = (x0 � x4) � (x0 � ¬x4) � (x0 � x1) � (x1 � ¬x2) � (¬x2 � x3) �

      (¬x0 � ¬x1 � ¬x2) � (¬x0 � ¬x2 � ¬x3) � (x2 � ¬x3) � (x2 � x3) 

x0 � 1, x1 � 1 

F = (x0 � x4) � (x0 � ¬x4) � (x0 � x1) � (x1 � ¬x2) � (¬x2 � x3) �

      (¬x0 � ¬x1 � ¬x2) � (¬x0 � ¬x2 � ¬x3) � (x2 � ¬x3) � (x2 � x3) 

x0 � 1, x1 � 1, x2 � 0 

Fig. 2.1: Example of unit propagations

is assigned and propagated, and this selection induced a new unit clause (¬x2) and a

new propagation procedure is performed. When a solver picked x0 and x1 there were no

unit clause in a formula F. In this time, variables are selected arbitrarily, these decisions

can be performed through a branching heristic. When propagation steps are done in the

DPLL algorithm, a solver checks whether Γ is empty (line 9-10). Empty Γ means current

assignment satisfied initial SAT formula Γ. If Γ is not empty, a solver pick a literal for tree

search through a branching heuristic (line 12-13). Selecting a proper literal significantly

affects on the search efficiency. Figure 2.2 shows an example of two different search trees

for the same formula F. Red boxes correspond to the conflicts. For example, we assign x0

to FALSE, then x4 is forced to both TRUE and FALSE. This is a conflict. Therefore a

search backtracks to x0 and assigns TRUE for x0. When we compare search trees 1 and

2, tree 1 seems to look more efficient than tree 2. Actually tree 2 contains two forms of

tree 1. Choosing x4 makes search worse in this example. We may explain the different

of choices between x0 and x4 on a graph. Figure 2.2 describes a graph from a formula F.

Each node represents each variable, and we hypothesized its community structure. As a

purple community is constituted by only a variable, x4, we have to find a solution from

x0. On the other hand, x0 is connected to both communities. Therefore, we can read from

a graph that x0 might be the best selection to find a solution in F. However, selection

of variables through the analysis of a graph is not a good idea during searches. A graph

changes dynamically through the assingnments or addtion of clauses. A formula F can be

updated to F’ through clause learning by a resolution, details will be discussed following

sections. A graph is also changed through the addition of a clause (x1 ∨ x3).



18 Chapter 2 Backgrounds

Algorithm 1 DPLL algorithm.

Input: SAT formola Γ, literals L
Output: TRUE or FALSE

1: function DPLL(Γ, L)
2: loop
3: if A unit clause u exists in Γ then
4: (Γ, L) ← unitPropagation(Γ, L, u)
5: else
6: break
7: end if
8: end loop
9: if Γ is empty then

10: return TRUE
11: end if
12: Choose a literal l from L
13: L← L \ {l}
14: return DPLL(Γ ∪ {l}, L) or DPLL(Γ ∪ {¬l}, L)
15: end function

F = (x0 � x4) � (x0 � ¬x4) � (x0 � x1) � (x1 � ¬x2) � (¬x2 � x3) �

      (¬x0 � ¬x1 � ¬x2) � (¬x0 � ¬x2 � ¬x3) � (x2 � ¬x3) � (x2 � x3) 

Fig. 2.2: Diverse search trees and community structures through the changes of a formula
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To improve the initial DPLL approach, several techniques are proposed and improved.

Clause learning based on conflicts, efficient data structure for propagation and the agile

branching heuristic are representative ones, and details of them are described in the fol-

lowing sections. There are other technuques called restart and simplification. The restart

is discussed shortly in Section 2.7. We introduce simplification methods here.

We first introduce a resolution [28] technique. Equation 2.9 shows an example of a

resolution. C, D, C1, and D1 indicate a clause respectively. When a clause C includes a

literal x and D includes ¬x, a resolution of C and D is obtained by C1 ∨D1.

C = C1 ∨ x, D = D1 ∨ ¬x

C⊗xD = C1 ∨D1

(2.9)

A clause generated by two clauses containing complementary literals is called resolvant.

We expressed a reslovant of C and D against x using ⊗x. The notion of resolution is used

in other simplifications, and the chain of resolutions is used to learn new clauses in the

CDCL SAT solvers.

Representative simplification methods are bounded variable elimination (BVE), sub-

sumption elimination (SE), self-subsuming resolution (SSR) [29], and blocked clause elim-

ination (BCE) [30]. We give an equation of BVE at Equation 2.10 as an example. Fx

is a set of clauses including a literal x and F¬x is a set of clauses including a literal ¬x.

A variable x can be eliminated from a SAT formula, if a solver replace (Fx ∪ F¬x) to a

resolvant set of (Fx⊗xF¬x). This is variable elimination (VE) and we skip the proof of

this, but VE preserve the satisfiability. An equation 2.10 shows the condition to perform

BVE. The condition indicates that BVE is applied only when a total number of clauses

in a SAT formula can be reduced through this simplification.

If, |Fx⊗xF¬x| ≤ |Fx ∪ F¬x|, F → (F\(Fx ∪ F¬x)) ∪ (Fx⊗xF¬x) (2.10)

Generally simplification methods are performed as a preprocessing in the SAT solvers,

because they require a lot of calculation time and applying them does not ensure SAT

solvers to find a solution rapidly. Lingeling [31] applied these methods adequately not only

in preprocessing but during search, called inprocesssing, and is showing nice performances
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since SAT Competition 2014.

Our research in this paper is designed for the complete SAT solvers. However, we are

considering the stochastic local search approach can be useful for complete solvers. In

Chapter 6, we propose a history map, apply this to a complete SAT solver, and propose

a random walk method.

2.2.2 SAT Competitions

SAT Competitions are organized as a satellite event of International Conferences on The-

ory and Applications of Satisfiability Testing (SAT conferences). Competitions are held

annually from 2002 to 2005, biennially from 2007 to 2013, 2014 and 2016 [11]. Main

objectives of competitions are gathering new challenging benchmarks, sharing ideas, and

evaluating new approaches; thus SAT solvers are getting more efficient through the com-

petitions.

Details of competitions such as tracks or evaluation methods are consistently changing

over time. Categories of instances did not change, there are 3 types of instances those

are categorized by application, crafted and random throughout the competitions. Crafted

instances are intentionally designed hard to solve for SAT solvers. The name of this

category changes sometimes, and it is called such as hard-combinatorial or handmade.

We introduce detailed tracks in SAT Competition 2016.

• Agile Track: A newly introduced track from SAT Competition 2016. Solve each

benchmark within a short time T. T is set to 60 seconds.

• NoLimit Track: A newly introduced track from SAT Competition 2016. No obliga-

tion for submitting the source code or emitting an unsatisfiability proof. Portfolios

of existing solvers are allowed.

• Random Track: Solve randomly generated instances.

• Main Track: Solve 300 application instances and 200 crafted instances. Time limit

is 5,000 s. Emitting an unsatisfiable proof is required.

• Parallel Track: Using the same 500 benchmarks used in Main Track. Fourty-eight

CPU (hyper-threading) environment is provided with 64GB RAM. Time limit for

each instance is 5,000 s.

• Incremental Track: Solve application instances generated from four different cate-
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gories. Assess by averaging the ranks from each category.

• Glucose Hack Track: Modification of Glucose 3.0 less than 1000 characters.

There were limitations of number of submissions. Each participant can submit up to four

different sequential solvers, two different parallel solvers and one Glucose Hack solver.

We submitted four different sequential solvers based on Glucose 3.0 and two versions of

parallel solvers. We obtained silver medal and bronze medal in Agile Track and got the

best Crafted benchmark solver in Main Track. A Glucose 3.0 with tie-breaking showed its

efficiency in Agile Track, and a Glucose 3.0 with a hybrid branching heuristic using two

branching heuristics VSIDS [14], CHB [15] and tie-breaking method showed it efficiency

for the crafted benchmarks. Detailed results and downloading links of source codes are

available on SAT Competition 2016 web page [32].

2.3 Propagation

We already explained the notion of the propagation in Section 2.2.1. In this section, we

introduce the smart data structure for propagations which has largely contributed to the

performance of SAT solvers. The propagation, also called Boolean constraint propagation

(BCP), process accounts for 70-90% of the CPU time in the modern SAT solvers [33].

Therefore, even a minor improvement of propagation can speedup a SAT solver largely

when we consider Amdahl’s law.

Initial approaches for propagation was performed directly updating adjacent lists of

literals in clauses and lists of clauses related to a literal. Hiding satisfied clauses and

literals in clauses as we shown in Figure 2.1 was the initial approach. There were also

counter-based approaches [34][35] by counting satisfied and unsatisfied literals for each

clause. However, these approaches need exact updates of hiding, recovering and counting

in both assignments and backtracks. And the exact updates need to traverse all clauses

requiring a lot of time.

Traversing all the remained clauses for each propagation is too time-consuming, and

most of updates through propagations does not affect on the search directions because they

have more than two variables unassigned after the propagations. If we only concentrate on

the clauses those have a possibility to turn into a unit clause, a lot of time for traversing
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x1

Fig. 2.3: Example of Lazy data structures

clauses would be saved. Therefore, a lazy data structure was proposed in the SATO [36]

and Chaff [14]. These data structures monitor only two literals in each clause as references.

SATO uses the Head/Tail (HT) structure and Chaff proposes Watched Literals (WL).

The large difference between them is the existence of an order relation between the two

references. Figure 2.3 illustrates an example of HT and WL. There are six steps from

#1 to #6 in Figure 2.3. There is no update of references at #1 and #2, because they

prefer lazy updates. Updates are performed when only either of references is assigned. At

#3, a reference is assigned FALSE and it’s position is updated by finding and moving to

an unassigned literal. At #4, there is a difference between HT and WL. H is positioned

at the left side of T in HT. The order relation between two W does not exist in WL.

Therefore, H stop traversing a clause at X2 and W at X1 traverse all literals in a clause.

Unit propagation is performed in HT and WL respectively at #5, because they recognized

current clause is unit clause in #4. After a conflict, backtracks are performed at #6. In

HT, references have to be recovered at previous position to maintain the order relation.

However, WL does not need an update when backtracks performed.
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Modern SAT solvers use WL or its variants and they are often called watched literals

or two-literal watching. Binary and ternary clauses have a high probability to become

unit clauses, thus these clauses have a priority in propagation procedures to guide early

propagations [37]. There also exist researches with the consideration of data structures

to enhance a cache performance [33][38].

Modern SAT solvers use lazy data structures for propagation, but they do not update

enough information and this might limit the inprocessing performance based on rules of

inferring binary/unit clauses [39].

In this paper, we utilized watched literals in our initial approach of new branching

heuristic discussed in Chapter 4.

2.4 Clause learning

We discussed DPLL, the basic backtracking search algorithm and several simplification

methods in Section 2.2.1. Modern SAT solvers learn new clauses during search through

DPLL and some simplifications. They are called conflict-driven clause learning (CDCL)

[13] solvers. The main objective of clause learning is to avoid “duplicates” already explored

during the search by adding them to an original SAT formula working as new constraints

to prune redundant areas.

CDCL learns a new clause through the analysis of an implication graph when a conflict

occurs. Generally, an implication graph is well-used to solve a 2-SAT problem with a linear

time algorithm [40]. Each node in a graph corresponds to an assignment of a variable with

its decision level. A new node can be generated by decision or induced from the previous

decisions and propagations.

Figure 2.4 shows an example of clause learning. Consider a SAT formula consisted

of six clauses of C1 to C6. Each node in the implication graph has a variable and its

(value)@(decision level). If there is no unit clause in a SAT formula, a new variable is

picked and this is a decision process. The previous decisions are displayed with grey

color. In each decision level, a variable is selected and assigned, and propagations are

progressed. The current decision level in Figure 2.4 is a 4, and x3 is selected and assigned

by 0 (FALSE). Decision node at the current decision level is green-colored. After the

assignment of x3, the chain of propagations are performed. For example, x4 is forced to
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Fig. 2.4: Example of clause learning
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1 because x3 = 0 and x1 = 1 simplifying C1 = (x4). During propagations, a conflict is

found because C5 = (x7) and C6 = (¬x7). A solver can learn a clause from this conflict

to prevent repeating the same mistake. A new clause is obtained through a chain of

resolutions we introduced in Equation 2.9.

Different resolution steps generate learned clauses. Finding a proper cut for each res-

olution would be difficult work. Generally, the notion of unique implication point (UIP)

is used for cuts. A unique implication point (UIP) indicates a node in an implication

graph which is induced at the current decision level and all paths from the decision node

to the conflict node pass through it. There are two UIPs of UIP1 and UIP2 in Figure 2.4.

The order of UIPs are sorted by distances from conflict nodes by the ascending order.

Resolutions are performed from a conflict, and we call a UIP encounters for the first time

during a conflict analysis a first-UIP. A UIP1 is the first-UIP and a UIP2 is called the

last-UIP. A Figure also cantains the detailed resolution steps at UIPs. A UIP cut divides

an implication graph into two parts of the reason side and the conflict side. The right side

of a UIP cut is the conflict side and the left side and the UIP itself are included in the

reason side. Initially, the last-UIP [41] was used to learn clauses, but the first-UIP [42]

showed its efficiency based on experimental results, and now many modern SAT solvers

learn clauses through first-UIP cuts.

Once a learned clause is obtained, backtracks are performed, often called backjumping

procedure. A backtrack level is determined through the Equation 2.11.

backtrack level = arg max
x∈(C\C′)

level(x)

(C: learned clause, C ′: set of literals induced at current decision level)

(2.11)

Therefore, if a SAT solver uses first-UIP in Figure 2.4, it compares decision levels of x2

and x8, and backtracks are performed until it reaches decision level 3.

We explained the learning scheme of CDCL solvers. However, the number of potential

combinations of new clauses is n!×2n for a SAT formula with n variables and a new clause

is found on each conflict. If a SAT solver accumlates learned clauses persistently without

any restrictions, the increased size of learned clause database makes each propagation

time longer, a solver gets slower and slower, and finally reaches to the memory overflow

problem. Therefore, periodical reductions of a learned clause database are required. When
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we reduce the size of a database, we want to maintain more valuable clauses and remove

low-informative clauses. To achieve this, there exist several size-bounded approaches

[? ] and relevant-bounded approaches [41][43]. Size-bounded approach is extremely

simple. The i-size-bounded approach erases clauses consisted of more than i literals.

This approach is quite reasonable because when a clause get shorter, the probability of

unit propagation would get higher. However, sometimes long clauses are required for the

unsatisfiable proof of an SAT instance.

The i-relevant approach removes learned clauses when more than i literals in them

are satisfied or unassigned by current assignment. The idea is, if many literals in them

are already satisfied or unassigned, the probability of them to become a reason for other

conflicts in the near future would be very low. We give an example to support the idea

of relevant-bounded approach.

partial assignment P = { x1 = TRUE , x2 = TRUE , x3 = TRUE }

C1 = (x1 ∨ x2 ∨ x3)

C2 = (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5)

If we consider clauses C1 and C2 under assignment P, then C1 is always satisfied and C2

is a binary clause. Therefore, C2 would be more useful under P.

Recently, clauses are assessed using literal blocks distance (LBD) [44]. We introduce

LBD because LBD index is widely used in modern SAT solvers to assess clauses. Many

solvers use LBDs of learned clauses instead of their sizes or use a hybrid policy using both

LBDs and sizes.

Figure 2.5 shows several examples of LBD. A clause C1 is an example of a learned

clause we showed in Figure 2.4. LBD assesses learned clauses with the number of blocks.

Each variable have its decision level, and variables having the same decision level are

integrated in the same block. Variables in the same block have the same decision level

and this indicates they were induced from the same unit propagation. Therefore, LBD

idea considers that they might be propagated at the same decision level again in the future.

Especially, a clause with LBD = 2 is called glue clause and considered very important.

If we evaluate clauses using LBDs, clauses C1 and C2 are assessed as the same. Modern

solvers assess learned clauses LBD and also their sizes. LBD measure is also used for

clause sharing policies for parallel SAT solvers. Details are discussed in Section 2.6.
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Blocks

C1 = (x  V ¬x  V x8)    

         2        4     3

C2 = (x3 V x4 V ¬x6 V ¬x7 V x8 V ¬x9) 

         6      4       4        4      3       3

Blocks

size = 3, LBD = 3 size = 6, LBD = 3

C3 = (x1 V ¬x2 V x4 V ¬x5 V x8 V ¬x9) 

         5        2     2        2      2       2

Blocks

size = 6, LBD = 2 (Glue clause)

Decision level

Clause

Decision level

Clause

Fig. 2.5: Example of LBD

In this paper, we propose a new branching heuristic with consideration of interplay

between the clause learning scheme and the branching heuristic in a SAT solver. We

are considering a SAT solver works efficiently because of well-balanced combination of

heuristics. Therefore, when we improve a heuristic or design a solver, the interplay of

subparts should be considered deeply. An LBD index is utilized both in our sequential

and parallel solvers.

2.5 Branching heuristic

A SAT solver performs a tree search and pick a variable for the next branch from the

unassigned variables. Which path a solver chooses significantly affects the search efficiency.

Initial branching heuristics were concentrated on reducing the size of the search space,

when DPLL search algorithm was mainly used for SAT solvers.

Bohm’s heuristic [45] selects a literal with the maximal vector (H1(x), H2(x), ..., Hn(x))

under the lexicographic order. Each Hi(x) is computed by Equation 2.12, where hi(x) is

the number of unresolved clauses with i literals, which contain a literal x.

Hi(x) = α×max(hi(x), hi(¬x)) + β ×min(hi(x), hi(¬x)) (2.12)

Dynamic literal individual score (DLIS) [46] finds variables x and y, each of them
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maximizes Cx,p and Cx,n respectively, where Cx,p and Cx,n are the number of unresolved

clauses in which x appears positively and negatively respectively. If Cx,p > Cy,n assign x

to TRUE. Otherwise, FALSE value is assigned to y. There exist variants of DLIS [47][48].

Maximum occurences in clauses of minimum size (MOM) [49] gives preferences to the

unresolved smallest clauses. Each variable x is computed by Equation 2.13, where w(x)

is the number of unresolved clauses, which contain a variable x. several variants of MOM

were also proposed [50][51].

H(x) = (w(x) + w(¬x))× 2k + w(x)× w(¬x) (2.13)

Heuristics mentioned above are quite expensive because they have to traverse all the

unresolved clauses. Furthermore, the CDCL [13] technique with the lazy clause watching

techniques [36][14] makes these heuristics more expensive, because a solver with CDCL

learns new clauses, increased number of clauses makes a propagation time longer, and

the lazy clause watching techniques does not reflect all propagations. However, these

techniques are essential, because the propagation is the most expensive operation in SAT

solvers.

For the agile score updating for branching heuristics in CDCL solvers, the variable state

independent decaying sum (VSIDS) [14] is proposed. In the original VSIDS, each variable

has a counter, and variables in a learned clause are incremented by 1 when a conflict occurs

and conflict analysis is performed. At each decision, a variable with the highest counter

is selected. However VSIDS in modern SAT solvers increment all variables those are

related to obtain a learned clause through resolution steps [28]. Incremented counters are

decayed at regular intervals for intensive search by emphasizing recently learned clauses.

In original VSIDS, counters are divided by 2 on every 256 conflicts. However modern SAT

solvers decay scores more frequently. Many solvers decay scores on every conflicts. Thus

variables related to the most recent conflict are bumped [52], and the others are decayed.

Normalized VSIDS (NVSIDS) [53] uses a decay factor f (0 < f < 1). When a conflict

occurs, decay all variable first. Nextly, add 1− f to variables related to resolution steps.

Exponential VSIDS (EVSIDS) [53] bumps variables related to resolution steps to s+ gi

with a bump factor g (1.01 < g < 1.2), where i is a conflict index. A design for avoiding

overflow problems is required to achieve EVSIDS, because g grow fast. For example in
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MiniSat, when a score over 1100 is found, a rescoring is performed. As g = 1.05 as default,

the rescoring interval is around 4720 conflicts. The order of variables is maintained as the

same in both NVSIDS and EVSIDS, but, EVSIDS works faster than NVSIDS because it

does not need to update scores of all variables. EVSIDS is one of VSIDS variants, but

now this one is called VSIDS and utilized into many state-of-the-art solvers. In this paper

we call EVSIDS to VSIDS.

ACIDS [54] proposes a different bump factor, and author insists this factor reduces

overflow frequency, but decaying process will be slowed down.

Several researchs [55][56] gave the attempts to beat VSIDS, strictly speaking EVSIDS.

However, VSIDS showed its robustness and still widely used in modern SAT solvers.

Recently proposed braching heuristics [15][57] relatively work well compared to VSIDS.

Conflict history-based branching heuristic (CHB) [15] uses the concept of the reinforce-

ment learning and update scores based on rewards calculated by the conflict history.

Authors of CHB also proposed learning rate branching (LRB) [57], proposing a learning

rate between an assignment and an unassignment for an attempt to maximize the quantity

of learned clauses. These branching heuristics might replace VSIDS, if they show their

efficiencies continuously through new benchmarks.

When a branching heuristic chooses a variable, not a literal, we have choose a literal from

a variable itself and its negation for the assignment. A smart policy of TRUE/FALSE

assignment for each variable may improves the efficiency of a search. In MiniSat [58],

the negative assignment is chosen as the default. In ManySAT [59], each literal has the

number of occurrences in learned clauses, and after a selection of variable x in a decision

heuristic, a solver set x to TRUE, if the number of occurrences of x is larger than that of

¬x.

Phase saving [60] map saves the last TRUE/FALSE assignment for each variable. When

a conflict occurs at a decision level A, a SAT solver backjump to a decision level B to avoid

the same conflict. Then we cancel assignments of variables between A to B. However,

assignments before the cancelations might include useful information or partial solutions.

By saving last assignments, they can be reused in a branching heuristic.

This paper have several connections with branching heristics. In Chapter 3, we perform

several experiments related to VSIDS and obtain several knowledges about the relationship



30 Chapter 2 Backgrounds

between the diversification of branching heuristics and the performance variation of the

SAT solvers. In Chapter 4, we propose a new branching heuristic that can be utilized

to to intesify the search by enhancing the interplays between a branching heuristic and a

clause learning scheme. In Chapter 5, we combine several branching heuristics to diversify

a SAT solver. A phase saving technique is utilized in Chapter 6 for the construction of

history map in a parallel SAT solver.

2.6 Parallel SAT solver

For the last two decades, there were tremendous improvements in SAT solvers with sev-

eral techniques we discussed sections above. However, it has become hard to achieve a

remarkable improvement in sequential solvers. And at sort of the propitious moment mul-

ticore hardware and cloud computing have evolved drastically. Naturally researchers gave

attempts to design parallel SAT solvers for achieving notible improvements. There are

mainly two approaches to design a parallel SAT sover, which are the divide and conquer

and the portfolio. Divide and conquer approaches partition the search space into sub-

spaces and each worker searches each subspace which is completed seperated from other

subspaces. Portfolio approaches do not divide the search space and all workers find a solu-

tion in the entire search space with different policies. Divide and conquer approaches are

explained briefly, because our parallel approaches are aim for SAT solvers with portfolio

approaches.

Initial approaches were performed with the divide and conquer paradigm, and solvers

with this paradigm mainly utilized the guiding path concept [61]. Search space is divided

into subspaces and have to be managed among workers. Therefore, divide and conquer

solvers generally adopt the master-slave concept. If an idle worker (subspace search has

finished) appears, another subspace is allocated to it [62][63]. However, finding an efficient

load balancing strategy was difficult in their initial divide and conquer approaches.

A portfolio approach was the next to appear. Applying Economics for the hard combi-

natorial problems to reduce a risk were tried in the late 1990s [64][65]. Sharing of learned

clauses is very important in the portfolio-based parallel solvers, because they do not divide

the search space, and it is an undesirable situation that a worker searches in the areas

witch are already checked by other workers. As an effort to reduce the redundancies and
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diversify search, a portfolio is constituted by assigning different search policies for each

worker.

ManySAT [66] designed a portfolio for a parallel SAT solver with four workers and

obtained first rank in the parallel track of the 2008 SAT-Race. Since then, a portfolio ap-

proach have become a mainstream for designing the parallel SAT solvers. ManySAT 1.0 al-

located different strategies, the restart policy, branching heuristic including TRUE/FALSE

assignment policy, learning scheme and clause sharing policy, for each worker.

ManySAT 1.1 [67] dynamically adjusts the limitation policy of clause sharing using

their size through AIMD (Additive-Increase-Multiplicative-Decrease) feedback control-

based algorithm [68]. ManySAT 1.0 shared all clauses with a size of under eight among

workers. ManySAT 1.1 measures a quality of a learned clause between pairs of workers

when it is shared, and decrease/increase size limitation when the quality is bad/good,

respectively.

Glucose-syrup [69] does not share the learned clauses immediately. It prepares a space

called “probation” and keeps shared clauses in it and watches them. When a shared

clause in a probation is falsified during search, this is considered as useful and added to

the learned clauses database. This lazy clause sharing gives an attempt to reduce the

useless sharings of learned clauses which might deteriorate the propagation rate of a SAT

solver.

Penelope (parallel LBD psm solver) [70] uses a psm (progress saving based quality

measure) [71] indicator to adjust freezing and activating of learned clauses. The psm

measures intersection of literals in a clause and the current value assignment in a solver.

A clause with a low psm indicates that many literals in it satisfies itself. In this case,

freeze a clause because it might not be utilized for a unit propagation or a conflict in

the near future. On the other hand, if a psm of a clause is high, activate this. They

determined policies for exporting and importing clauses using a freezing concept.

There are several criticisms about the scalability problem about portfolio approaches

[72][73]. Many of divide and conquer approaches [74][75][76] are showing their scalablities.

On the other hand, there also exists a research showing the possibility of scalability for

portfolio SAT solvers [77]. However, what we can insist is that the current portfolio

solvers cannot scale. Portfolio solvers work efficiently, becuase they share learned clauses
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actively based on their different search policies. This cannot be performed for massively

parallel environments. In this paper, we propose a data structure that is applicable for

combinatorial search to adjust the diverficiation and intensification. We propose a history

map which requires only a small memory; thus can be applied for parallel SAT solvers in

the massively parallel environments.

2.7 Diversification and intensification

Branching heuristic, we mentioned in Section 2.5, is the most representative technique for

intensive search. A branching heuristic attempts to find a literal that seems to influence a

lot, such as highly reducing the size of a search space or inducing huge amounts of prop-

agation chains. Many of branching heuristics are also designed to prioritize the recently

utilized variables for further intensive search. Applying phase saving technique [60] also

strengthen the search intensification.

An intensive search sometimes make a SAT solver wanders into one of deserts containing

no solutions [78]. As a result, some instances have remarkable variabilities in the time

required to find a solution [79]. To escape from a desert, avoid heavy-tailed behavior [79],

and diversify search, several stochastic approachs have been proposed.

Restart [80] is one of the most representative techniques for search diversification. When

a SAT solver reaches a certain number of conflicts, it restarts the search by canceling all the

assignments and backtracking to the root of the search tree. A solver might escape from

a desert through restarts. As we abovementioned, they exist time variabilities for SAT

instance to be solved. Applying restart technique may reduce the extent of variabilities.

Several approaches have been proposed to achieve the efficient restart intervals. Luby

restart [81], nested restart [82], and others (geometric, arithmetic) [52][83] applied static

methods based on the number of conflicts in a SAT solver. Solvers with these restarts only

moniter the conflict numbers and do not consider other features such as recent conflict

rates, current decision level, and so on. An appropriate cutoff value for restart is not

exist. However, this is a difficult work, becuase we cannot measure the possibility of the

existence of a solution at the current search status. Generally, it is believed that hard

instances need slow restart and easy instances need rapid restart. However, when a solver

searches in a desert of a hard instance, rapid restart would be required. Constructing
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an efficient and general dynamic restart policies looks very difficult. Several researches

[53][84][85][86] gave the attempts to propose dynamic restarts. Measuring agility [53]

shows quite interesting ideas. They measured the agility of a SAT solver based on the

rate of recently flipped assignments by using phase saving [60] map. The idea of Glucose

restart [87] looks also good. They monitored the average LBDs [44] through recently

learned clauses and utilized this value for restart strategy. Their ideas is that the low

average of LBDs indicates the production of good clauses. Therefore, when LBDs get

higher, a solver restarts.

Random initial scoring for branching heuristics and random branching with fixed prob-

ability [58] had been adpoted as the default features to achieve search diversifications in

many solvers, but they are deprecated in modern SAT solvers because they seem to dete-

riorate a balance between the diversification and intensification resulting the performance

of SAT solvers worsen.

Adjusting between the diversification and intensification gets more difficult when we

discuss parallel SAT solvers. In parallel solvers, we should consider not only the balance

in a worker and also the balance among workers. We skip the divide and conquer solver and

concentrate on portfolio-based SAT solvers. They produce diversity by assigning different

policies for each worker such as a restart policy, clause learning scheme, a decaying ratio

of scores or random selection probability in branching heuristic, and so on. They perform

intensive search through clause sharing or designing a topology among workers.

ManySAT 1.5 [88] gave an attempt to find a good master-slave topology for diversifica-

tion and intensification. Figure 2.6 shows partial 3 topologies from 7 topologies ManySAT

1.5 attempted. Figure 2.6 (b) showed the best results based on their experiments. Clause

sharing affects on both diversification and intensification of the search, because by sharing

clauses they could avoid nogood areas and also could find new clauses by the aid of shared

clauses. Authors of ManySAT 1.5 divided workers into masters and slaves and let a slave

searches following the instructions from its master.

In the paper by Lagniez [89], a deterministic assignment selection was used, and each

pair of workers was compared by their current assignments through a hamming distance

at some control point. If a pair of workers seems to close, pick one of them and invert its

assignments.
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Fig. 2.6: Partial topologies for Diversification/Intensification in ManySAT 1.5

However, researches abovementioned only used the small number of workers, and they

proposed very expensive pairwise policies. Their methods cannot be applied in massively

parallel environments, because their calculations are not cheap.

Our proposals in this paper are deeply connected to the diversification and intensifica-

tion. In Chapter 3, we test index shuffling of variables to check whether a modern SAT

solver have enough diversity. In Chapter 4, we propose a new branching heuristic to break

ties. Our idea is an attempt to select a more valuable variable from ties or an considera-

tion of interplay between a branching heuristic and a clause learning scheme to intensify

the search. In Chapter 5, we propose a hybrid branching heuristic for integrating the per-

formance of SAT solvers. This is a first step of our algorithm selection framework. The

hybrid model does not diversify search dynamically during search. However, a solver with

a hybrid model have a diversify in a sence because it can choose an algorithm dynamically

based on an instance basis. In Chapter 6, we propose a approximate history map. This

map approximates distribution of visited areas in a search space. We may utilize this map

to several scenarios to adjust between the diversification and intensification of search.
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Chapter 3

Diversification of search

This chapter discribes our preliminary experiments as an effort to diversifying yet main-

taining intensity of search. Methods on this chapter are extremely simple yet gave us

knowledges and ideas to progress our researches. Firstly, We implement diversification

method in MiniSat 2.2 [58] and observe the variation of execution times. Secondly, we

hypothesize why this method produces diversity and verify our assumptions through the

experiments. Finally, we implement a parallel solver to check the verification of our di-

versification method on the parallel solvers.

3.1 Shuffling variables

It is a well known feature of CDCL SAT solvers, that the running times among solvers

can vary substantially due to small changes to the input files [90]. And in the early

days of the SAT Competitions, the organizers scrambled the benchmarks as a method to

compare the performance of SAT solvers [91][92]. However the application of shuffling

to produce search diversification is not general, because it is believed that modification

of an original formula seems to yield negative effects. We are considering this method

might be better than other random methods to diversify search, because shuffling does

not deform the hidden structure in its original formula. Experiments based on shuffling

gave us several insights and research directions by understanding modern SAT solvers.

Especially we shuffled indexs of variables and denote this with ISoV (Index Shuffling of

Variables). ISoV simply shuffles indexes of variables as illustrated in Figure 3.1.

Shuffling is performed through the Fisher-Yates shuffle [93]. After reordering of indexs,
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{x1, x2, x3, x4, x5, x6} {x3, x4, x2, x5, x6, x1}

(x1 V x2)

(x2 V x3 V ¬x5)

(¬x4 V x6)

(x3 V ¬x6)

(x3 V x4)

(x4 V x2 V ¬x6)

(¬x5 V x1)

(x2 V ¬x1)

Origin problem  After shuffling

(x3 V x4)

(x2 V x4 V ¬x6)

(x1 V ¬x5)

(¬x1 V x2)

 After sorting

Fig. 3.1: Example of ISoV

each clause is sorted by the index order of variables, and the shuffled clause is obtained.

The merit of this method is that the ISoV does not destroy the structure of the problem,

but the changed order of the variables would induce the different searches and the diverse

results. We are considering the ISoV might be useful to produce diversities in the parallel

SAT solvers. Maintaining different searches among workers gets difficult when the number

of workers increase. ISoV might help to obtain additional diversity among workers. If

we set the search policies of all workers identically and only apply different ISoV for each

worker, the implementation will become extremely simple. ISoV is a simple pre-processing

method, and can be easily applied to any of parallel SAT solvers.

Why does ISoV change execution time?

The changes of orders in the clauses would produce several butterflies, and several of them

might effect on the selections in a branching heuristic. When a solver chooses a variable

through the evaluation function in a branching heuristic, several of them would have the

same highest scores. If a solver breaks these ties randomly, the different variable selections

would lead different propagations, different conflicts would be encountered, and different

clauses would be obtain during search. Let’s consider scores of variables for a branching

heuristic are managed by the heap array. our assumption is that applying ISoV would

change the order of ties in heap array. Therefore, we considered bufferflies from ISoV

might very similar to the effect of random selection from ties in a branching heuristic.

Our another assumption here is ISoV does not lower the performance of SAT solvers,

because applying this does not deform the traits of the instances. To demonstrate thess

assumptions, we did experiments and analyzed them through several SAT instances. The

results are described in the next sectiion.
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3.2 Experimental results

We describe several experimental results in this section. Firstly, we show search diversi-

fication through ISoV. Secondly, we analyze why ISoV produces the diversity in a SAT

solver with assumptions by comparing this with the random tie-breaking and other ran-

dom methods. Finally, we apply this into a parallel SAT solver and verify its utility based

on experimental results.

We mainly employed two different execution environments for our experiments, i.e., a

physical workstation (WS, Xeon X5680 3.3 GHz CPU, 12 physical cores, 140 GB RAM),

and a VMware virtual machine (VM, Xeon E5-2650 2.60 GHz CPU, 16 physical cores,

128 GB RAM) on a cloud computing system provided by the University of Tokyo. We

simply express these two environments WS and VM throughout the paper.

3.2.1 ISoV results

We implemented ISoV in a MiniSat 2.2, a SAT solver. We used a MiniSat solver, because

this solver is the most representative sequential SAT solver. As MiniSat is a base solver

for many other SAT solvers [94][44][95], the experimental results in this section can also

be applied to many other solvers. Three hundred industrial instances from the SAT

Competition 2014 were chosen as benchmarks. The execution environment was WS.

Each instance was measured 12 times (1 MiniSat + ISoV 11 times). We can assume a

hypothetical parallel SAT solver with 12 workers by gathering bests from 12 results. The

limit time for each execution was set to 3600 s.

Figure 3.2 compares the results between MiniSat and ISoV on each instance. Each point

on X-axis corresponds each instance, and the Y-axis represents the execution time. Each y

value on the ISoV curve are gathering the best time for each instance from 11 ISoV results,

since we want to compare the execution time between the original MiniSat and ISoV. ISoV

performed better than MiniSat in many instances, but it also exhibited worse times in

several instances. As ISoV simply shuffles indexs of variables, it is reasonable to consider

12 cases are equivalent in their average performances. This assumption indicates that any

of the 12 cases could be the best solution in each instance. The curves in Figure 3.2 also



38 Chapter 3 Diversification of search

indicate that a solver is diversified by ISoV at the extent when we observe their variations

of execution times. Totally, a MiniSat solved 162 instances, and ISoV solved 183 problems

with an additional 21 problems which were unsolved by MiniSat. The solving time was

reduced in 105 instances, and 117 instances were remained unsolved. Table 3.1 shows the

list of additinally solved 21 instances. The third row indicates the solved numbers from 11

ISoV tests. This results indicates that ISoV can improve several categories of instances,

and is also applicable for both satisfiable and unsatisfiable problems, even though the

number of unsatisfiable problems was small.

Figure 3.3 compares the MiniSat and the best time from 12 results (MiniSat + ISoV).

This means each y value on the MiniSat + ISoV curve represents the time needed to solve

an instance if they were ran in parallel. Thus, this figure shows the performance gaps

between a MiniSat and a hypothetical parallel SAT solver with 12 workers. Therefore,

the time amount as indicated by the space between the 2 curves will be improved by

parallelizing a solver through ISoV.

In Figure 3.4, we compare the best, the worst, and the average time for each instance.

We sorted data in ascending order along the average time. When the average time is

infinity, the data is sorted in ascending order along how many times it reached the time-

out limit. Variance seems very high when comparing the difference between the best time

and worst time for each instance. In some instances, while the worst time reaches the time-

out limit, the best time takes only a few seconds. Figure 3.5 shows the detailed execution

times through ISoV for 2 instances. The execution times fluctuated dramatically between

40 seconds and the time limit in (a), and 2 seconds to 770 seconds in (b). At the very

least, we can assume the execution time would be extremely changed for some types of

SAT problems when we use ISoV.

Figure 3.6 shows a hypothetical parallel solver with ISoVs. For the curve named n

workers, we gather the best times for each problem from the results of original MiniSat

and ISoVs between seed value 1 and n - 1. A curve named 1 worker indicates the origi-

nal MiniSat. There would be the performance limitation about ISoV, however based on

our experiments ISoV showed its scalability at least up to 12 workers. To observe the

limitation, more experiments would be needed using other seed values. However, measur-

ing limitations through the scalability experiments might be unappropriate, because the



3.2 Experimental results 39

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  50  100  150  200  250  300

C
P

U
 ti

m
e(

s)

Instances

MiniSat 2.2
ISoV

Fig. 3.2: Comparison of MiniSat and ISoV

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  50  100  150  200  250  300

C
P

U
 ti

m
e(

s)

Instances (each line sorted by ascending order)

MiniSat 2.2
MiniSat 2.2 + ISoV

Fig. 3.3: Comparison of MiniSat and ISoV: Sorted by CPU time



40 Chapter 3 Diversification of search

Table 3.1: Instances unsolved by Minisat and solved by ISoV

Instance Best Time (s) Solved number answer
002-80-8 3182.34 1 satisfiable
004-22-144 657.237 6 satisfiable
004-80-8 193.707 3 satisfiable
006-22-144 887.628 6 satisfiable
006-22-160 39.844 6 satisfiable
007-80-8 357.032 5 satisfiable

sat dat.k30-30 rule 1656.43 1 satisfiable
UR-20-10p1 3018.72 1 satisfiable
UTI-20-10p1 2409.57 1 satisfiable

aaai10-planning-ipc5-pathways... 962.4 6 satisfiable
atco enc1 opt1 04 32 32.9141 5 satisfiable
atco enc1 opt2 10 16 1133.32 3 satisfiable
atco enc2 opt2 10 21 164.598 8 satisfiable

gss-20-s100 283.93 5 satisfiable
gss-22-s100 96.654 3 satisfiable
gss-23-s100 849.297 1 satisfiable

hwmcc10-timeframe-expansion-k50... 2113.87 4 unsatisfiable
korf-18 897.892 7 unsatisfiable

openstacks-sequencedstrips... 2548.5 1 unsatisfiable
stable-400-0.1-5-9876543214005 892.992 1 satisfiable
vmpc 32.renamed-as.sat05-1919 169.103 6 satisfiable
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Fig. 3.5: Execution time changes through the changes of ISoVs

convergence of curves doesn’t indicate the limitation of diversification. Clear thing we

can say here is that, ISoV can produce search diversification with many different ways,

because there exist var! number of different orders through ISoV, when var is the number

of variables in a SAT formula.

Figure 3.7 compares results with the different seed values. Best number for each seed

indicates the number of instances those are solved the fastest using this seed number

from 12 results. If we compare only the numbers, it seems to look that applying ISoV

deteriorates the search efficiency, and it is against our assumption. However, when we

compare their average running times, the differences between MiniSat and ISoV are not

that significant. The results imply that ISoV definitely gives some kind of bad effects

on search, however the extent is very small, and if we consider the extra diversifications

produced by ISoV, this method would be appropiate for parallel SAT solvers.

3.2.2 Comparison of ISoV and tie-breaking

We assumpted in Section 3.1 that the impact of ISoV might be similar to the impact of the

random selection from ties in the branching heuristics. For the comparison between ISoV

and random tie-breaking, we implemented the random tie-breaking in MiniSat 2.2. MiniSat

uses the VSIDS [14] as its branching heuristic, and the VSIDS in MinSat 2.2 is managed

through the heap array structure. We implemented very naive implementation for the

random tie-breaking by picking all the ties from the heap array, selecting one randomly,
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and pushing the rest of them into the heap array. We may be able to implement smarter

by traversing from the root to obtain the ties list, and updating an array partial under

the node of the randomly picked variable. However, our objective is the observation of

similarities between ISoV and tie-breaking. Smart implementation is not needed here.

Normally, VSIDS in MiniSat 2.2 works by picking a variable located at a root in the heap

array. When there exist ties, pick all the ties recursively from the root, select one from

them randomly, and insert the rest of them again in a heap array. This method needs time

of O (2 × ties number × log (heap size)) for each time we pick a variable in a branching

heuristic. We know this is not smart, but enough to compare the tendencies between

ISoV and tie-breaking.

We used the instance set of 21 industrial benchmarks shown in Table 3.1 which are

additionally solved by using ISoV 11 times, and unsolved in the orginal MiniSat. We

performed 10 ISoV tests and 10 tie-breaking tests for each instance. We performed ISoV

again through different random seeds, because these 21 problems were already solved

through the seeds value 1 to 11. Thus, using results of seed value 1 to 11 would be unfair

for tie-breaking. Figure 3.8 shows the comparison between ISoV and tie-breaking. Each

point indicates the best time from 10 tests. We calculated Pearson correlation coefficient.

The value was 0.627076. This indicates ISoV and tie-breaking might have a strongly

positive correlation at least w.r.t. the running time. We had only tested 10 times, and if

we increase the number of tests, the value of correlation coefficient would be increased. In

Figure 3.8, ISoV failed to solve 3 instances using random seed 10 times. This implies that

we additionally solved 21 instances using ISoV in Section 3.2.1, but other instances can

be additionally solved if we use different seeds. And this means ISoV would be a good

method for parallel solvers to diversify search.

3.2.3 Comparison of ISoV and other random methods

We compared ISoV with other random methods, because we assumpted ISoV is useful be-

cause it produces extra diversity while maintaining intensity of search and would show bet-

ter results compared with other random methods. We used 2 of existing options in MiniSat

2.2, those are opt random var freq and opt rnd init act. An option opt random var freq

indicates the frequency of the selections of random variables in the branching heuristic. In
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an initial version of Minisat 2, opt random var freq was set to 0.02, and a random variable

was chosen with a probability of 0.02. In Minisat 2.2, this option is not used because

developers of Minisat 2.2 considered a random selection make the search inefficient. An

option opt rnd init act randomizes the initial activity which is used for scores in a branch-

ing heuristic. Each score is initialized by d×0.00001 (0 ≤ d < 1). Thus, this option tries

to ramdomized the several initial selections of variables in a branching heuristic.

Figure 3.9 compares among the ISoV and 2 randomization options stated above. A

curve with a name ISoV 1 is the results from Section 3.2.1 with seed values from 1 to

11, and a curve of ISoV 2 is the results from Section 3.2.2 using random seeds, and

Randomized params indicates results with the activations of 2 randomization options.

We performed 10 tests for each instance. For each test numbered i (1≤ i ≤10), we set

opt random var freq to 0.01×i and set a different seed value to change the initialization of

activity. Each curve is sorted by their running time. Each point indicates the best time

from repeat tests. We can see that curves of ISoV 1 and ISoV 2 look very similar. This

indicates the ISoVs with different seed values are showing the similar performances. Gaps

between the curve of Randomized params and that of ISoVs are quite large. As we already

showed in Figure 3.7, ISoV almost does not deteriorate the search efficiency. Therefore,
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we can conclude that ISoV showed the better performances than randomization options,

and activation of these options largely deteriorated the search efficiencies by destroying

the intensive search.

3.2.4 Experiments with ISoV on a parallel solver

We tested ISoV on MiniSat 2.2 in sections above, and compared its performances with

random tie-breaking. For a while, we had tried to improve tie-breaking on MiniSat, and

details will be discussed in Chapter 4. Three-hundred instances from application track in

SAT Competition 2014 was too large for us to test repeatedly, because the performance

evaluations using 300 instances required a lot of time. Therefore, we had picked a 49

instances set of MED49, MED means medium level of difficulty. Each instance in MED49

was solved at least once, and was unsolved at least 2 times from experiments in Section

3.2.1. While improving, we had doubts about the impact of ISoV in parallel solvers.

Firstly, if we implement ISoV in a parallel solver, each worker have different index orders.

Sharing learned clauses among workers is the essential for parallel solvers to avoid dupli-

cate search and increase their performances. If we want to share learned clauses among
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(x2 V x3 V ¬x5)
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(x6 V x4 V ¬x1)

1  Learned clause found 4  Share learned clause

2  Restore 3  Shu�e

Fig. 3.10: An example of a learned clause sharing in a parallel SAT solver with ISoV.

workers and each worker uses ISoV, restoration and shuffling processes would be required.

Figure 3.10 shows an example of a learned clause sharing process. This example shows the

flow of a learned clause sharing from a Worker 1 to a Worker 2. Each worker have both

the shuffle table and the restore table respectively. Sharing process can be performed as

follows.

~n1 When a learned clause is found in a Worker 1, this one is already shuffled by a

shuffle table in a Worker 1.~n2 A Worker 2 does not know information of tables in a Worker 1, thus a clause should

be restored in a Worker 1 before the sharing.~n3 To use a clause in a Worker 2, this one should be converted through a shuffle table

in Worker 2.~n4 After shuffling, a clause can be added to the list of learned clauses in a Worker 2.

Thus, if we use ISoV in the parallel solvers, the process of clause sharings needs additional

restoration and shuffling sequences. This is why we actually implemented a parallel SAT

solver to check if ISoV deteriorate its performances.

Secondly, most of the state-of-the-art parallel SAT solvers are using well-considered

portfolios for efficient search. And as we mentioned above, they share learned clauses

among workers. This is our second concern. We cannot assure that ISoV works well

with clause sharings. We do not want to optimize different policies for different workers.

Optimizing them requires a lot of efforts, and optimal portfolios would be changed based
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Table 3.2: Experimental results of Glueminisat and ParaGluminisat. Columns except for
Glueminisat are results on ParaGluminisat with different options.

Solver Type
satisfiable unsatisfiable Time (s)

Solved Time (s) Solved Time (s)
Glueminisat 22 1096 9 535 2435

ISoV 26.6 1319 10 1146 2212
clause sharing 27.6 791 10 943 1798

ISoV + clause sharing 28.3 1105 10 876 1921
tie-breaking 26.6 1355 10 1253 2425

on the number of workers. Therefore, we adopted to used ISoV instead to generate search

diversification. However, we have to check its validity with clause sharings.

We implemented our parallel solver ParaGluminisat. Glueminisat [95] is used as the

base solver. Glueminisat is a solver based on MiniSat 2.2. It uses the LBD [44] measure

for evaluation of learned clauses. Details of ParaGluminisat will be discuessed in Chapter

6. We used Glueminisat as a base solver instead of MiniSat because this solver is not

a state-of-the-art solver anymore. Glueminisat is one of the best solvers, because it was

the winner of application track in the SAT Competition 2011, and this solver adopted a

fast restart policy based on the average of LBDs for recently learned clauses. Fast restart

policy may produce enough diversity, and the impact of ISoV would be reduced. This is

why we used Glueminisat, and if ISoV proves its diversity in ParaGluminisat, we might

say that ISoV can be used as an option for state-of-the-art SAT solvers.

We compared Glueminisat and ParaGluminisat with several options for MED49. Op-

tions we implemented are ISoV, clause sharing and tie-breaking. Table 3.2 shows the

summary of ParaGluminisat results. The number of workers was 12. Glueminisat is

tested 1 time, and tests of ParaGluminisat with diffrents options were performed 3 times

and averaged, because results of parallel SAT solvers have larger run time variations than

those of sequential solvers especially for satisfiable problems. We divided solved problems

into satisfiable and unsatisfiable instances and showed solved instances and the average

time respectively. Average times in column 3 and 5 are calculated only for solved instances.

Average times in column 6 are calculated by all instances. For unsolved instances we add

5,000 s which is the number for time limit. Solvers with clause sharing option shared

clauses within LBD = 2.
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All results with parallel solvers showed better performance than those of a sequential

solver Glueminisat. Results of ISoV and tie-breaking are very similar, but average time in

ISoV was faster than those of tie-breaking because as we abovementioned our tie-breaking

method here is implemented with a naive approach, thus it required a lot of time to pick

a tie. When we compare the average time we have to compare them considerately. If

we only compare the times of Glueminisat and clause-sharing for unsatisfiable instances,

Glueminisat looks faster than clause-sharing. However, this is because clause-sharing

additionally solved one instance than Glueminisat, and run time of that instance was over

4,000 s. Even though we consider the factor that additionally solved instances usually

take a lot of time, there exists trade-off when we apply ISoV and clause sharing. By

applying these options, we could solve hard problems compared to Glueminisat, but run

times for easy problems became longer.

When we compare the results between ISoV and ISoV + clause sharing, we can observe

clause sharing make search better by combining them. However, when we compare the

results between clause sharing and ISoV + clause sharing, it is difficult to determine which

one showed the better results. Even though ISoV + clause sharing solved slightly more

problems than clause sharing, the difference is too small, and average run time became

longer.

For the results of unsatisfiable instances, the number of solved instances are the same

regardless of their options. However, if we scuritiny details of them, list of them were

little bit different. Figure 3.11 shows the run times of 11 unsatisfiable problems. For

each option, we tested 3 times. Figure 3.11 (a), (b), and (c) show results of each ISoV,

clause sharing, and ISoV + clause sharing. These results indicate that the run times of

parallel SAT solver are quite stable when they solve the unsatisfiable problems. Figure

3.11 (d) compares these three options. Curves of ISoV and ISoV + clause sharing shows

that clause sharing option make search efficiency better when we use ISoV. If we compare

curves between ISoV + clause sharing and clause sharing, ISoV make search efficiency

worse in the most of instances. However, we want to focus on instances numbered 7 and

8. Instance 7, named “korf-18.cnf”, indicates a rectangle packing problem [96]. Instance

8, named “openstacks-sequencedstrips-nonadl-nonnegated-os-sequencedstrips-p30 1.025-

NOTKNOWN.cnf”, is included in planning category. We call an instance 7 to korf, and
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Fig. 3.11: Run time comparison of ParaGluminisat with different options.

call an instance 8 to openstacks. For korf, ISoV option worked well. For openstacks, a

solver with clause sharing option solved this at 4,319 s on average. Time limit was set to

5,000 s, and results with ISoV option reached at the time limit. When we compare per-

formances among different solvers penalized average runtime (PAR) [97] is widely used.

When we use PAR10 score, it gives penalty to unsolved problems 10 × T, when T is a

time limit. If we evaluate ISoV + clause sharing and clause sharing using PAR10 score,

clause sharing will be assessed a better solution. However, we considered that ISoV +

clause sharing might solve openstacks when we extend time limit a little bit. This is

because, in the most of cases, ISoV + clause sharing needed more of time than clause

sharing. On the other hands, we cannot assume how long clause sharing takes to solve

korf because when we look other instances clause sharing solved faster than ISoV, but
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aspect for korf is different. Thus, we extended time limit to 20,000 s and tested 10 times.

Figure 3.12 shows results of korf and openstacks. As we expected, ISoV + clause sharing

solved openstacks under 10,000 s all the time. However, clause sharing failed to solve korf

in 20,000 s all the time.

We only concentrated on two instances, but we comfirmed the effect of ISoV is not a

subset of those of clause sharing. Finally, we further extended time limit to 100,000 s to

solve korf. Then a solver with clause sharing solved korf and it took 77,757 s. This result

is 20 times slower than a solver with ISoV + clause sharing. Therefore we concluded

ISoV could make diversity to reduce falling into the desert, and we adopted this as one

of default features of our parallel SAT solver ParaGluminisat.
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Chapter 4

New branching heuristic

We have observed small changes in a branching heuristic may change the performance of

a SAT solver a lot in Chapter 3. In Section 3.2.2, we performed random tie-breaking in a

branching heuristic and learned several instances can be solved through the tie-breaking

method. These results represent the potential of tie-breaking to improve the performance

of branching heuristics.

In this chaper, we propose a method to break ties in the branching heuristics. We

evaluated tie-breaking through the two branching heuristics, VSIDS and CHB. We mainly

discuss about tie-breaking of VSIDS (TBVSIDS). The initial VSIDS was proposed in 2001

[14], and we call its modern version, EVSIDS, to VSIDS as forementioned in Chapter 2.

There were lots of efforts to outperform this branching heuristic, but VSIDS is widely

being used in a lot of SAT solvers for longer than 10 years because of its robustness. We

also discuss about tie-breaking of CHB (TBCHB) briefly. Two branching heuristics are

utilized to evaluate tie-breaking, but we consider this method is also applicable to many

other branching heuristics.

We briefly address the structure of this chapter. Firstly, we observe how frequently

ties occur in VSIDS. Secondly, we describe tie-breaking for VSIDS and CHB, respectively.

Several methods including initial approaches for TBVSIDS are introduced, and TBCHB

is described. Finally, we show the results of TBVSIDS and TBCHB, and we analyze the

performance of TBVSIDS by comparing several factor with those of VSIDS. All of our

methods are evaluated through the benchmarks from the SAT Competitions.
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4.1 Observation of tie occurrences

Our objective in this section is the observation of tie frequency in a branching heuristic.

We observe tie occurrences to ensure the necessity of efficient tie-breaking method. If

ties occur frequently, an appropriate tie-breaking method might lead the better search

efficiencies.

Our observation here is performed through Glucose 3.0. Glucose adopts VSIDS as its

branching heuristic, and many of modern SAT solvers also adopt VSIDS. Therefore, solvers

with the same branching heuristics may show the similar results described in this section.

Benchmarks chosen for the tie observations was 300 instances from SAT Competition 2014

application track. Time limitation was set 1,000 s for each instance. Figure 4.1 shows the

number of decisions, ties and tie/decision ratios for each instance. Results are sorted by

tie ratios in ascending order. Instances solved within 1,000 s were excluded, because they

are too short for the calculations of tie ratios. If an observation time is too short, the tie

ratio might be observed very high, because all scores of variables are initialized by zero

initially.

We observed each decision and checked whether ties exist in a branching heuristic. Ties

and decisions were shown using the logarithm scale for an object to display them in a

graph, because their values were ranged from 2 million to 200 million. We can observe

from this Figure that, ties occur very frequently for some instances. The median ratio

was 0.05, and the mean ratio was 0.19. Thus, ties occur once in five conflicts on average.

These results indicates that it might be worth designing a tie-breaking policy at least if

we use VSIDS as a branching heuristic.

We can presume with several hypotheses that why ties occur frequently in a branching

heuristic, especially in a VSIDS. If a conflict is induced from a lot of clauses, and the vari-

ables in them are dissimilar, then a lot of variables are incremented by 1 simultaneously.

If several clauses are used as reasons of conflicts continuously, variables in them would

obtain a lot of scores, and they may produce and maintain ties in a branching heuristic

in a while. We can also consider other scenarios. Consider the situation that the list of

variables related to a conflict changes a lot, i.e, the area of search space changes and search

diversify is very high. In this case, a lot of variables may obtain their scores and their
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Fig. 4.1: Tie occurrences of instances from SAT Competition 2014 application track.

scores would converge to several numbers. We can also hypothesize many other scenarios

for tie occurrences, but further scrutinization of ties in VSIDS or distributions of scores

in VSIDS might give informative intuitions [98] for improving their policies.

4.2 Details of tie-breaking

In this section, we describe details of tie-breaking on two branching heuristics, VSIDS and

CHB with their pseudo codes.

4.2.1 Initial approaches for TBVSIDS

We introduce our initial tie-breaking method here. Our initial approach is more compli-

cated than our later approaches. Although we are currently not using this version for

tie-breaking, we describe details here because parts of the initial approaches might be

handy for designing the efficient branching heuristic. Indeed, we adopted several parts

from the initial approaches into our latest version for tie-breaking. Therefore, we display

our initial approaches here and show the details of pseudo code in algorithm 2. Note that
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details of the implementation are little bit distant from the pseudo code described here.

We determined to admit and maintain the power of VSIDS as far as possible, because

VSIDS had been demonstrated its efficiency through the thousands of benchmarks for

more than ten years. As an attempt to keep the efficiency of VSIDS, we designed the

concept of tie-breaking. A variable with the highest VSIDS score is always selected on all

decisions.

To achieve tie-breaking from ties, we considered 2 indicators to differentiate them. We

describe a pseudo code in Algorithm 2. This one is designed to break ties in VSIDS. Scores

of variables in VSIDS are managed in activity array, and the order of them is managed

by the heap array. Firstly, we prepared another array and named it activityMini (line

3). The activityMini is updated when a clause is obtained from a conflict analysis or

removed from the clauses database (line 12 and 40). The dist(learned clause) indicates

the size of a learned clause, i.e., the number of literals in a clause (line 11). Secondly,

we considered a function w for the varables in ties (line 24). Each variable v corresponds

to 2 literals v and ¬v, and w(v) is obtained by the sum of watch lengthes of v and ¬v.

Each literal has a watch list, i.e., a list of clauses. The structure of them is related to

two-watched literals tequnique explained in Section 2.3. Each of learned clause has two

watched literals in it, and each of watched literals has a watches of clauses accordingly.

An example of watches can be described in Figure 2.3. For a clause (x1, x2, x3, x4, x5),

it has two watched literals of x1 and x5. This clause is included in watches of ¬x1 and

¬x5 initially, not x1 and x5 because we want to watch falsified points. Therefore, when

a FALSE value is assigned to x1, we update watches of ¬x1. As there is an update of a

watched literal in step 3, a clause is removed from watches of ¬x5 and added to watches

of ¬x2.

Initially, we designed a little complicated approach for assessing w(v). We wanted to

prioritize a variable if it is related to a lot of short clauses such as the binary/ternary

clauses. However, the two-watched literal technique maintains a lazy data structure and

there is no order relation between two-watched literals. Therefore, we attempted to tra-

verse all clauses related to the candidate variables, excluded satisfied clauses, and counted

the number of unassigned variables for not satisfied clauses. We considered this approach

might work, even though it traverses all clauses related to candidiate variables. For ex-
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Algorithm 2 Initial tie-breaking branching heuristic.

1: for v ∈ Vars do
2: activity[v] ← 0
3: activityMini[v] ← 0
4: end for
5: loop
6: if a conflict occurs then
7: for v ∈ variables resolved during conflict analysis do
8: activity[v] ← activity[v] + 1
9: end for

10: for v ∈ learned clause do
11: quality(learned clause) ← 1 / dist(learned clause)
12: activityMini[v] ← activityMini[v] + quality(learned clause)
13: end for
14: else
15: unassigned ← unassigned variables
16: actMax ← argmaxv∈unassignedactivity[v]
17: ties ← ∅
18: for v1 ∈ unassigned do
19: if activity[v1] == actMax then
20: ties ← ties ∪ {v1}
21: end if
22: end for
23: actMiniMax ← argmaxv′∈tiesactivityMini[v′]
24: watchMax ← argmaxv′∈tiesw(v

′)
25: candidates ← ∅
26: for t ∈ ties do
27: if actMiniMax × th1 < actMini[t] && watchMax × th2 < w(t) then
28: candidates ← candidates ∪ {t}
29: end if
30: end for
31: PF ← Pareto front from candidates
32: v∗ ← argmaxv1∈PFmaxP (v1)
33: return v∗

34: end if
35: if conflict number meets reduceDB condition then
36: for lc ∈ learned clauses do
37: if Erase lc then
38: for v ∈ lc do
39: quality(lc) ← 1 / dist(lc)
40: activityMini[v] ← activityMini[v] - quality(lc)
41: end for
42: end if
43: end for
44: end if
45: end loop
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ample, there are a hundred thousand variables and m clauses in a SAT formula, and we

can assume a hundred number of candidate variables in a branching heuristic, then only

0.001×m clauses would be traversed. However, we did not considered the decision rate.

Decisions are performed around 2 thousand to 200 thousand times per second and travers-

ing clauses on each decision is too costly. Therefore, the initial w made the propagation

rate of a solver too late, and we had to simplify w by only considering lengths of watchess.

We did not implemented in this time, but there might be a chance to speed up the initial

w model by adding and updating a counter for each clause which represents the number

of unassigned literals in a clause. Based on 2 indicators abovementioned, we calculated a

Pareto front [99] in each decision and choose an appropriate one from them (line 31).

We considered there might be several problems to adopt initial aproaches for a branching

heuristic. Firstly, an algorithm includes several of time consuming processes. A solver

have to calculate a Pareto front directly on each decision in a branching heuristic. As

the lengths of watchess through 2 watched literals change dynamically, a solver has to

calculate a number of unassigned variables exactly when it needs. Further, number of

ties turns quite big for sometimes, and considering all ties might require a lot of time

(line 20). Secondly, an algorithm has several dimensions for the optimization. We set the

limit number for ties (line 26) for avoiding the large amount of ties. A solver eliminates

variables with low activityMini scores or low lengthes of watches from the ties through

th1 and th2 (line 27). A solver picks a variable from a Pareto front (line 32), and currently

it is simply picked from the front.

Even though the exsistence of problems abovementioned, several ideas and approaches

in this algorithm showed quite promissing results which are remarked in Section 4.3.

4.2.2 New approaches for TBVSIDS

Experiments in our initial tie-breaking method using only activityMini showed the reason-

able results in Section 4.2.1. Therefore, we decided to adopt this idea. Score orders of

activity and activityMini are different. However, we can maintain variables by descending

order by prioritizing activity, and breaking ties of activitys using activityMini. A solver

does not need to compare all ties directly on each conflct by modifying the comparison

function of scores between two variables. Instead of activityMini, a solver updates activi-
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Fig. 4.2: Clause learing through conflict analysis.

tyQs at different place with different ways. To achieve the better or at least the equivalent

performance of a SAT solver, tie-breaking with activityQ has to select the better selections

than those in the original VSIDS, and the simple and agile calculation method would be

required for activityQ.

As forementioned in Chapter 2, VSIDS increments all scores of variables related to

resolution steps. All the previous scores are automatically decayed, because we add the

bumped scores for variables in resolution steps. By bumping and decaying, VSIDS em-

phasizes recent learnings for the intensive search. When we consider the objective of

branching heuristics for achieving intensive search, tie-breaking for strengthening search

intensification might improve the improvement of a SAT solver.

Figure 4.2 describes an example of the resolution steps. When a conflict occurs, res-

olution steps are performed from a conflict node for an object to learn a new clause.

VSIDS increments all variables related to resolution steps without duplication. Incre-

ments are performed only the variables appeared at the first time in the resolution steps

and displayed by blue circles in Figure 4.2.

We want to pay attention to variables in a learned clause displayed with red circles.

In VSIDS, variables x2, x3, x5, x6, x7 and, x8 are bumped as the same way. All of these

variables are related to occur the same conflict and considered equivalently in VSIDS.

Considering all variables in the resolution steps equivalent might be reasonable, because
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all of them could be included in a learned clause. When a solver learns a clause throught

a first-UIP cut, C = (¬x2 ∨ ¬x3 ∨ ¬x5) would be obtained. However, we may also learn

C = (¬x6 ∨ ¬x7) or C = (¬x2 ∨ ¬x5 ∨ ¬x7) instread.

However in our consideration, bumping all variables in a conflict side and a reason side

with the same amount would be unfair. Through the resolution steps, we actually learns

a cluase C. And C would be reused for the unit propagation or in a conflict analysis,

when two of three literals in it are falsified. If C is not reused during search, a conflict

analysis for C become a useless process. We considered we may reuse the learned clauses

more actively by giving bonus scores to variables in the learned clauses.

Algorithm 3 TBVSIDS1 branching heuristic.

1: for v ∈ Vars do
2: activity[v] ← 0
3: activityQ[v] ← 0
4: end for
5: loop
6: if a conflict occurs then
7: for v ∈ variables resolved during conflict analysis do
8: activity[v] ← activity[v] + 1
9: end for

10: for v ∈ learned clause do
11: quality(learned clause) ← 1 / dist(learned clause)
12: activityQ[v] ← activityQ[v] + quality(learned clause)
13: end for
14: else
15: unassigned ← unassigned variables
16: v′ ← argmaxv∈unassignedactivity[v]
17: if v′ in ties then
18: v∗ ← argmaxv∈tiesactivityQ[v]
19: else
20: v∗ ← v′

21: end if
22: return v∗

23: end if
24: end loop

Algorithm 3 shows the detailed pseudo code including our considerations abovemen-

tioned. We prepared activityQ, and this one works little bit different compared with

activityMini in algorithm 2. There was a update of activityMini when a learned clause is

attached or detached into the learned clauses database. However, activityQ is only up-

dated when a learned clause is obtained, and scores in it are decayed with the same way

for activity in VSIDS (line 12). This means we give bonus scores to variables in a learned
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clause, and the variables in a recently learned clause get bigger bonuses. Decision parts

(line 14 - 22) become quite a simple compared with the initial algorithm. First, we pick a

variable or variables with the highest activity, and break ties by picking a variable with

the highest activityQ if ties exist. We are expecting the number of ties would be reduced

by applying tie-breaking, but there can still occur when both activity and activityQ are

equal among variables.

Algorithm 4 TBVSIDS2 branching heuristic.

1: for v ∈ Vars do
2: activity[v] ← 0
3: end for
4: loop
5: if a conflict occurs then
6: for v ∈ variables resolved in conflict analysis do
7: activity[v] ← activity[v] + 1
8: end for
9: for v ∈ lc (lc: learned clause) do

10: quality(lc) ← 1 / (k × dist(lc))
11: activity[v] ← activity[v] + quality(lc)
12: end for
13: else
14: unassigned ← unassigned variables
15: v∗ ← argmaxv∈unassignedactivity[v]
16: return v∗

17: end if
18: end loop

Algorithm 4 describes another tie-breaking method. Algorithm 4 looks very similar

to Algorithm 3. However there exist the big differences between them. In TBVSIDS2,

a solver directly add bonuses to activity instread of preparing activityQ. This would

change the meaning of tie-breaking a lot. Firstly, we considered direct bonuses to activity

would change the performance of VSIDS more than TBVSIDS1. Persistent bonuses in

activity would diversify scores in acitivity, and accumulation of them might be more

influential than activityQ to break ties. Secondly, we considered activity does not consider

the possibility of unit propagation in learned clauses, as we explained above through an

example in Figure 4.2. If we give bonuses to activity directly but relatively smaller than

increments in VSIDS, a solver might break ties while minimizing deformation of direct

changes of VSIDS. There is a parameter k for quality calculation in Algorithm 4. When k

value is set too high, TBVSIDS2 works such as VSIDS. If k is set too low, scores obtained
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by resolutions would be ignored. Therefore, adjusting k for the proper scaling of qualitys

in TBVSIDS2 is very important. As we would like to admire the performance of VSIDS,

assigning a k value larger than 1 would be preferred.

About the quality of a learned clause, a solver uses either the size and the LBD indi-

cator. The selections between them are considered to strengthen the interplays between

a clause learning scheme and a branching heuristic. We discuss details about this at the

experimental results in this chapter.

4.2.3 Details for TBCHB

We describe details of TBCHB in this section. CHB heuristic updates activitys on each

decision, and VSIDS updates activitys on each conflict. Further, CHB updates activity

of each variable v based on its reward computed by the inverse distance between current

conflict number and the last conflict number that have a connection with v. Therefore,

a variable recently used in a conflict gets more score. Now, scores of variables updated

by a conflict are different on each variable basis. We attempted to apply Algorithm 4

to CHB, because we considered addtional scores for variables in a learned clause might

handy for any branching heuristic to strengthen the interplay between a learning scheme

and a branching heuristic. To achieve this, we need to adjust the tie-breaking method for

CHB with the different ways compared with methods in VSIDS.

Algorithm 4 describes details of TBCHB2 branching heuristic. A conflict occurs after

several decisions. We prepared a maxD to obtain the maximum increase among score

updates between the conflicts. This value is reset to zero, after a conflict occurs and

tie-breaking is applied (line 19). We uses maxD to adjust the scale of our qualitys (line

16 - 17). We attempted to maintain the original order in CHB by adding relatively small

scores through the calculation of maxD. Results of TBCHB is shown in the following

section.
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Algorithm 5 TBCHB2 branching heuristic.

1: for v ∈ Vars do
2: activity[v] ← 0
3: maxD ← 0
4: end for
5: loop
6: if a conflict occurs then
7: for v ∈ variables just propagated do
8: A ← activity[v]
9: activity[v] ← activity[v] × (1 - α) + reward × α

10: B ← activity[v]
11: if maxD < B - A then
12: maxD ← B - A
13: end if
14: end for
15: for v ∈ lc (lc: learned clause) do
16: quality(lc) ← maxD / (k × dist(lc))
17: activity[v] ← activity[v] + quality(lc)
18: end for
19: maxD ← 0
20: else
21: for v ∈ variables just propagated do
22: A ← activity[v]
23: activity[v] ← activity[v] × (1 - α) + reward × α
24: B ← activity[v]
25: if maxD < B - A then
26: maxD ← B - A
27: end if
28: end for
29: unassigned ← unassigned variables
30: v∗ ← argmaxv∈unassignedactivity[v]
31: return v∗

32: end if
33: end loop

4.3 Experimental results

4.3.1 Initial approach of TBVSIDS

We show results of our initial approach introduced in Section 4.2.1. We implemented

algorithm 2 into MiniSat 2.2. Time limit was set to 3,600 s and execution environments

was WS.

A MED49 benchmark set is used for evaluation. Results are shown in Table 4.1. To

observe the effectiveness of 2 indicators activityMini and w, we implemented each side
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respectively, performed each and combined 2 indicators. Applying only activityMini

worked well. However, activating only a function w did not increased solved instances.

However, when we consider the time consumption for calculating ties, we might insist w

lead search to good way. As results with combination of 2 indicators showed the best

performances, our tie-breaking method with a Pareto front showed its efficiency at least

for MED49. Further improvement would be done through algorithm configuration tools

such as paramILS [97] or SMAC [100]. Applying dynamic programming for function w

and proposing better policy to pick a variable from Pareto front would also improve this

algorithm.

Table 4.1: Experimental results of initial tie-breaking on MiniSat 2.2.

Branching heuristic Solved / Problems
VSIDS 28 / 49

VSIDS + activityMini 33 / 49
VSIDS + w 28 / 49

VSIDS + activityMini + w 35 / 49

4.3.2 Comparison among VSIDS and TBVSIDSs

We compare the performances among VSIDS and TBVSIDSs through benchmarks from

SAT Competitions.

In our initial algorithm in Section 4.2.1, we used the size of a learned clause to break

ties. First, we adopted this idea in the algorithms 3 and 4 and implemented TBVSIDSs

in MiniSat 2.2. For an algorithm 4, k is set to 1 as a default. Table 4.2 and Figure 4.3

describes results on MiniSat 2.2. Time limit was set 3,600 s and used benchmarks were

300 application instances from SAT Competitions 2014.

Table 4.2 shows both TBVSIDS1 and TBVSIDS2 solved more instances than VSIDS.

Table 4.2: Experimental results of VSIDS and TBVSIDSs on MiniSat 2.2.

VSIDS TBVSIDS1 TBVSIDS2

2014App

satisfiable 85 84 85
unsatisfiable 60 63 67
TOTAL 144 147 152
50th (s) 195 172 131
100th (s) 1193 1144 1060
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Fig. 4.3: Cactus plot of VSIDS and TBVSIDSs on MiniSat 2.2.

Cactus plot in Figure 4.3 compares performances among different branching heuristics.

We cannot insist clearly that TBVSIDS1 is better than VSIDS in this figure, but the curve

of TBVSIDS2 is definitely located at the right side of the other curves and showed better

performance than other branching heuristics. The number of benchmarks used were 300,

and solved instances by each branching heuristic were around 150. In this case, comparing

median time would be inappropriate. Therefore, We compared 50th and 100th times by

ascending order instread and showed their times in Table 4.2. Based on the comparisons of

50th and 100th data, TBVSIDS1 seem to be better than VSIDS. However, if we compare

their curves in Figure 4.3, their performances seem to quite similar. However, if we

consider the time for the additional calculation for breaking ties in TBVSIDS1, we might

assume that TBVSIDS1 performed more intensive search than VSIDS.

In the next step, we implemented TBVSIDSs in a modern solver Glucose 3.0. This

solver is widely used as a base solver for many of modern solvers. We applied the same

way as in Minisat 2.2 except for using a LBD indicator. A branching heuristic picks a

variable that would have a high potential to induce a chain of unit propagations so that a

new conflict occurs and learns a new clause. Therefore, we can consider that a branching

heuristic is deeply connected to a clause learning scheme, and a varible appears a lot in

short clauses might be preferred.
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Table 4.3: Comparison of solved instances between VSIDS and TBVSIDSs from 900
instances of SAT Competitions.
( C: crafted track, A: application track, S: satisfiable instances, U: unsatisfiable instances,
T: S + U )

Unmodified TBVSIDS1
(LBD)

TBVSIDS1
(length)

TBVSIDS2
(LBD)

TBVSIDS2
(length)

2014C
S 79 82 81 81 80
U 82 84 85 88 86
T 161 166 166 169 166

2014A
S 100 100 98 102 101
U 115 108 110 112 108
T 215 208 208 214 209

2015A
S 137 140 139 143 140
U 101 98 100 102 99
T 238 238 239 245 239

TOTAL
S 316 322 318 326 321
U 298 290 295 302 293
T 614 612 613 628 614

As a solver learns new clauses during search, the most important variable changes

dynamically. Therefore, we need to consider interplay between a branching heuristic

and a clause learning scheme. Minisat 2.2 assesses learned clauses through their sizes.

However, Glucose 3.0 uses LBD to assess learned clauses. Therefore, breaking ties using

LBD indexes might be the better idea than using their sizes in Glucose 3.0. If we succeed

to pick more influential variables in a branching heuristic, a solver performs more intensive

search and the efficient reuse of learned clauses increase the number of unit propagations.

We evaluated TBVSIDSs using three different tracks, total of 900 instances, from SAT

Competitions which are crafted track in SAT Competition 2014 and application track

in SAT Competition 2014 and SAT-Race 2015. Time limit was set 5,000 s. Benchmark

results are shown in Table 4.3 and Figure 4.4. If we only consider the number of solved

instances among different branching heuristics using Table 4.3, only TBVSIDS2 with LBD

indicator showed better results than those of VSIDS. We can observe the same results on

their running times. Each curve in Figure 4.4 is sorted through running times of instances.

In Figure 4.4.(a), we displayed results of all branching heuristics, but it was difficult to

compare them because their performances are quite similar except for those of TBVSIDS

with LBD. Therefore, we compared only VSIDS and TBVSIDS2 with LBD in Figure 4.4.

TBVSIDS2 showed better performances than VSIDS no matter how we set up time limit,
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Fig. 4.4: Cactus plot of VSIDS and TBVSIDSs on Glucose 3.0.
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Fig. 4.5: Cactus plot of VSIDS and TBVSIDS2s on Glucose 3.0.

because the TBVSIDS2 curve is always located at the right side of the VSIDS curve.

All the TBVSIDS2 results described above were performed with k = 1. We above-

mentioned adjusting k might be important in TBVSIDS2. Therefore, we adjusted the k

value and tested using 900 instances stated above. Results are described in Figure 4.5

and Table 4.4. Generally, evaluating SAT solvers requires a lot of time, because hundreds

of instances should be performed with the long time limitation. To reduce the burden, we

tested them on 15 parallels this time. Therefore, results were little bit worsen than those

in Figure 4.3. Solved instances in VSIDS and TBVSIDS2 default were reduced 24 and 26,

respectively. By adjusting k = 1000, we were able to solve more instances. Differences

between k = 1 and k = 1000 is slight, but entirely results of k = 1000 were better than

those of k = 1.

Finally, we compare branching heuristics based on the original VSIDS. We remark

EVSIDS as VSIDS throughout the paper except for this part. EVSIDS basically add

scores to variables related to resolutions, i.e., conflict analysis, and we broke ties by giving

bonuses to variables in a learned clause. However, the original VSIDS only add scores to

variables in a learned clause, and they are incremented by 1. We implemented VSIDSS
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Table 4.4: Solved instances of VSIDS and TBVSIDS2s from 900 instances of SAT Com-
petitions.
( C: crafted track, A: application track, S: satisfiable instances, U: unsatisfiable instances,
T: S + U )

VSIDS TBVSIDS2
(k = 1)

TBVSIDS2
(k = 1000)

2014C
S 77 79 82
U 78 84 86
T 155 163 168

2014A
S 98 100 98
U 107 103 109
T 205 203 207

2015A
S 132 138 137
U 98 98 99
T 230 236 236

TOTAL
S 307 317 317
U 283 285 294
T 590 602 611

and VSIDSL by incrementing variables in a learned clause with the size and LBD of a

clause, respectively. And we compared VSIDSS and VSIDSL with the original VSIDS to

ensure the importance of interplays between a branching heuristic and a clause learning

scheme. We also want to insist applying LBD to branching heuristics is an efficient

method, because the qualties of learned clauses are evaluated by a LBD indicator in the

state-of-the-art SAT solvers.

Table 4.5 and Figure 4.6 compares three branching heuristics abovementioned. Results

clearly show that considering the qualities of learned clauses performs better than pure

VSIDS. The performance gaps between VSIDS and the others are quite clear. We also

displayed the performance of EVSIDS, and the EVSIDS definitely outperforms the original

VSIDS and its variants. Because of its efficiency, EVSIDS is adopted in many modern

SAT solvers and called VSIDS instead of the original VSIDS, and we have succeeded to

improve EVSIDS by breaking ties with the consideration of interplay between a branching

heuristic and a clause learning scheme.

4.3.3 Comparison between CHB and TBCHB

Results of CHB and TBCHBs are described in Tables 4.6 and 4.7. To reduce the burden,

we tested them on 15 parallels in this section.
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Table 4.5: Comparison of solved instances between the original VSIDS and its variants
from 900 instances of SAT Competitions.
( C: crafted track, A: application track, S: satisfiable instances, U: unsatisfiable instances,
T: S + U )

VSIDS VSIDSS VSIDSL EVSIDS

2014C
S 69 69 69 79
U 56 65 64 82
T 125 134 133 161

2014A
S 83 81 81 100
U 86 93 96 115
T 169 173 178 215

2015A
S 112 111 114 137
U 84 87 91 101
T 196 198 205 238

TOTAL
S 264 261 264 316
U 226 242 252 298
T 490 505 516 614
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Fig. 4.6: Cactus plot of original VSIDS and its variants on Glucose 3.0.

First, we compared CHB and TBCHB with k = 1000. As k = 1000 showed the best

results in the TBVSIDS experiments, we adopted this value for the comparison between

CHB and TBCHB. Table 4.6 shows that results. VM is used for tests. TBCHB with k =

1000 performed better than CHB in our experiments. However, we might also try other

ks instead.
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Table 4.6: Solved instances of CHB and TBCHB from 900 instances of SAT Competitions.
( C: crafted track, A: application track, S: satisfiable instances, U: unsatisfiable instances,
T: S + U )

CHB TBCHB2
(k = 1000)

2014C
S 76 78
U 72 81
T 148 159

2014A
S 88 88
U 87 89
T 175 177

2015A
S 138 136
U 86 90
T 224 226

TOTAL
S 302 302
U 245 260
T 547 562

Table 4.7: Comparison of solved instances among TBCHBs from 900 instances of SAT
Competitions.
( C: crafted track, A: application track, S: satisfiable instances, U: unsatisfiable instances,
T: S + U )

TBCHB2
(k = 1)

TBCHB2
(k = 2)

TBCHB2
(k = 5)

TBCHB2
(k = 10)

TBCHB2
(k = 100)

TBCHB2
(k = 1000)

2014C
S 81 73 78 80 83 80
U 69 74 87 94 100 96
T 150 147 165 174 183 176

2014A
S 93 99 100 99 102 102
U 62 67 70 77 102 100
T 155 166 170 176 204 202

2015A
S 138 137 138 143 147 147
U 72 76 75 82 99 96
T 210 213 213 225 246 243

TOTAL
S 312 309 313 322 332 329
U 203 217 232 253 301 292
T 515 526 545 575 633 621

We tested with several ks, and results are described in Table 4.7. In this time, we used

WS for experiments, thus Table 4.6 and Table 4.7 is divided into two tables. Entirely,

results get worse when k becomes small under 100. However, k = 100 showed better

results than those of k = 1000. In this time, we did not compared CHB and TBCHB with

k = 100 directly, their performance gap would be larger than a gap between CHB and

TBCHB with k = 1000 based on our experiments. Further experiments at 10 < k < 1000
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might induce better results.

4.3.4 Analysis among branching heuristics

In Section 4.3.2, TBVSIDS2 with LBD index showed the better results than VSIDS. We

compare several indicators during search between VSIDS and TBVSIDS2 with LBD index

in this section.

Figure 4.7.(a) compares tie occurrences between VSIDS and TBVSIDS2 through a

scatter plot. Results are obtained using 900 benchmarks from SAT Competitions above-

mentioned in Table 4.3. Time limitation was set 1,000 s for each instance. Each instance

was performed 3 times using VSIDS and TBVSIDS2, respectively.

We only compared instances those were unsolved within 1,000 s, thus only 469 in-

stances were compared. We succeeded to reduce tie occurrences in 342 instances from 469

instances (72.9%). We were unable to reduce ties from all instances, because subspace

changes after tie-breaking and this will lead different search. Therefore, we cannot assure

ties would be reduced in all instances. It would be reasonable to compare the entire

tendencies of ties using hundreds of benchmarks.

Reduced ties does not indicate better search. Therefore, we measured unit propagation

rate for each instance from 469 instances in Figure 4.7. High propagation rate could

be a good indicator to measure search efficiency of SAT solver, because this represents

agility or productivity of a SAT solver. In Figure 4.7.(b), propagation counts for each

instance between VSIDS and TBVSIDS2 are compared. We can observe propagation

rates of TBVSIDS2 are higher that those of VSIDS entirely. Therefore, we can presume

tie-breaking methods succeeded to pick more influential variable from ties and performed

intensive search to induce frequent unit propagations.

To have confidence of our hypothesis, we measured distribution of learned clauses

through their sizes and LBDs and provided in Figure 4.8 and 4.9. Conditions are the

same we mentioned above, and distributions of clauses are measured for each instance

and summarized. Instances solved within time limit by either of VSIDS or TBVSIDS2

are excluded.

Therefore, each pair of green and red boxes positioned side by side compares the number

of learned clauses with size or LBD equals i, where 2 ≤ i ≤ 30. We only displayed clauses
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Fig. 4.7: Scatter plots for Comparisons of VSIDS and TBVSIDS2.

under 30 of size or LBD, because too long clauses have little possibility to become unit

clauses. In general, short clauses such as binary, ternary clauses and clauses of LBD =

2 are more informative than long clauses. Many short clauses are preserved, because

they have high potentials to induce unit propagations or conflicts. We considered simply

comparing the number of clauses with different sizes or LBDs would be unfair for short

clauses. Therefore, we normalized their numbers by multiplying 22−x, where x is size or

LBD.

Now we can clearly observe their distribution tendencies. If we look in Figure 4.9,

TBVSIDS2 found more learned clauses than VSIDS when their sizes or LBDs are small.

These results support our hypothesis. TBVSIDS2 demonstrated the better propagation

rates than VSIDS, even though VSIDS found more number of short clauses. Entirely, the

lengthes of learned clauses in VSIDS were shorter than those in TBVSIDS2. In general,

short clauses are considered important because of their high potentials for unit propa-

gations, and VSIDS found more of short clauses, but unit propagations were reduced in

VSIDS. Therefore, we might conclude that TBVSIDS2 found less clauses but it succeeded

to reuse learned clauses because of its intensive search.
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Chapter 5

Hybrid branching heuristic

In the previous chapter, we proposed to apply tie-breaking for branching heuristics. We

are considering tie-breaking might become a universal method for improving branching

heuristics. However, there is a certain limit to the range of instances a single branching

heuristic can solve. In this chapter, we propose a hybrid branching heuristic, as an effort

to overcome the limitations of single branching heuristics. This chapter describes our first

step of algorithm selection research for integrating the performances of SAT solvers. Our

midterm objective is to provide a widely applicable model of hybrid branching heuristic

instead of VSIDS. Our final goal is to integrate several hybrid models in a single-solver

for ongoing research.

This chapter consists of as follows. First, we provide previous works of algorithm selec-

tion for SAT solvers, address an issue of multi-solver approaches, describe our approach

for integrating the performance of SAT solvers, and emphasize the necessity of our pro-

posal. Second, we create a static model of hybrid branching heuristic using two branching

heuristics, and compare the performances among a hybrid branching heuristic and single

branching heuristics as a preliminary experiment. Third, we create a hybrid model using

eight branching heuristics. To achieve this, we adopted to use random forest, extracted 13

features from SAT formulas, and gathered experimental results for each branching heuris-

tic. Fourth, we propose a random sampling to reduce the time of extractions of several

features which are infeasible to extract for several large instances. Finally, we evaluate a

model by expanding the number of features to 23 and applying the random sampling, and

propose for applying a genetic algorithm to find an efficient model within a reasonable

timeframe.
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Fig. 5.1: Set covering problem between solvers and instances

5.1 Backgrounds - Algorithm selection in SAT research

The concept of algorithm selection problem [101] is proposed with the intention of con-

structing a model to obtain the high performance. There are several SAT related algorithm

selection studies, because SAT solvers handle NP-complete problems; thus, there are no

polynomial-time algorithms. Therefore, a single algorithm works well with some instances

and works bad in other instances.

We can adopt the ”winner-take-all” approach, i.e., select an algorithm having the best

performance. However, if we are able to select an appropriate algorithm for each instance,

this approach would be an ideal solution. We give an example in Figure 5.1 by considering

the algorithm selection problem as a set covering problem. If we pick three solvers greedily

based on their numbers of solved problems, solvers S2, S4, and S5 would be picked.

However, they can cover only 6 in 10 problems because they solve similar problems. If

we pick three solvers S1, S2, and S3 instead, we can cover all given problems. Therefore,

different solvers must have different performances and adequate features are required to

differentiate them.

The most representative solver is a multi-solver SATzilla [16]. It creates a ridge re-

gression model to predict a logarithmic runtime of a SAT instance for each solver. It

provides satisfiable and unsatisfiable models respectively and predicts the probability of

being satisfiable for a given instance to select an adequate model. As several features re-

quire a long time for extraction, there exists a 60 sec limit for extracting features per each

instance. If a solver reaches time limitation for feature extraction, it runs a backup solver.
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A backup solver is prepared greedily by ”winner-take-all” approach from benchmark re-

sults. SATzilla also prepare pre-solvers before feature extraction. Pre-solvers are run very

shortly (under 5 seconds) to maintain the agility of a solver. It selected 7 different solvers

manually from existing solvers. SATZilla demonstrated its efficiency in SAT Competition

2007.

Kadioglu et al. [102] proposed to utilize k-nearest neighbor classification for algorithm

selection. They extracted 48 features, which are the same in SATZilla, and calculated the

Euclidean distance between instances using [0, 1] normalized feature values. The value of

k is obtained by selecting the best performing k from iterations of random sub-sampling

validation. A solver with the best PAR10 score in k nearest instances is assigned when

an instance is given to its model. The k-NN model showed slightly better performance

than SATZilla, even though it does not require to learn any sophisticated model such

as a runtime prediction. Kadioglu et al. also proposed to bulid a solver schedule that

indicates a sequence of solvers with their time limits respectively to solve a problem.

They proposed this to increase the efficiency of a multi-solver, because an instance can

be solved in a short time by one solver when it cannot be solved by other solvers for

a long time. Clustering method using the Euclidean distances have some weaknesses.

If variances of unimportant/important features are big/small, they will deteriorate the

efficiency of clustering.

SATZilla 2011 [103] improved algorithm selection core while maintaining rest parts such

as a backup solver and pre-solvers. They applied pairwise cost-sensitive decision forests

instead of ridge regression. A Decision forest DF (i, j) were trained for each pair of solvers

(Si, Sj), and it votes for either of them. Cutoff time of feature extraction was set to 500

s for each instance.

Cost-sensitive hierarchical clustering (CSHC) [104] applied a single random forest to

costruct a model for a multi-sover. They compared performance of a model by changing

bootstrap aggregating policies, the number of clustering, adding combination features, and

merging of clusters. Their experiments of changing policies in a random forest provided

not a significant results, because there was no clear winner among policies or if there was a

slightly improved performance, the results were unstable. However, CSHC demonstrated

its efficiency, even though its training time is much faster than SATZilla 2011.
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A deep learning approach has also been attempted [17]. This approach converts a CNF

into a grayscale image and builds a classifier using a convolutional neural network. The

input layer is a converted grayscale image with a standard image scaling operator, and the

output layer provides probabilities of N solvers. They insisted extracting good features

is arduous work, and a CNN approach can be utilized genereally even for non-experts.

However, authors remarked this approach might have the robustness issue such as clause

re-ordering.

Researches stated above required several state-of-the-art solvers. They achieved higher

performances than single solvers, but they are unsuitable for acting as a base solver,

because they already include several base solvers.

Michail et al. [105] proposed a reinforcement learning approach to select one from

several branching heuristics based on each instance for #SAT. The #SAT solver counts

the number of satisfying assignments for a given SAT formula. They learned a value

function Q(s, a), where s and a are state and activity, respectively. A state is defined

by the number of variables in a formula, and an activity is the selection of a branching

heuristic. After learning, a solver switches among branching heuristics dynamically based

on subspaces. Authors in this paper addressed several limitations. They limited the

state-space only using a feature of the number of variables, because a state has to be

calculated rapidly. They anticipated a good state description may refine branching rules,

but extracting good features requires significant computational cost.

Oh [106] analyzed the differences between satisfiable and unsatisfiable instances. Roles

of learned clauses, restart policies, and decay factor in VSIDS are scrutinized in their

studies. It is well known factor that a slow Luby restart policy is superior to rapid restart

policies for satisfiable problems. The author simply designed a hybrid restart strategy by

switching two phases of Luby restart and glucose restart. We agree with this idea even

though the author remarked this is a very crude strategy.

Our objective is to create an efficient single-solver for ongoing researches. This solver

has several hybrid models and selects policies on an instance basis. We considered a

solver can improve its performance by combining several robust models. Each model

focuses on only a small part. Figure 5.2 illustrates our idea to build an efficient SAT

solver. Consider there are N and M numbers of different branching heuristics and restart
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Fig. 5.2: Approaches for integrating performance of SAT solvers

policies, respectively. We propose to find a model by focusing on only a small part such

as branching heuristics or restart policies. We can obtain final solvers S1, S2, and S3

in Figure 5.2. We can learn both S1 and S2 with O(N + M) policy space. However,

learning S3 requires O(NM) policy space, many experimental results are required, and

we concluded this is infeasible approach. We only illustrated two sorts of algorithms, but

the size of policy space would be too large to learn for S3 if we also consider other sorts

of algorithms. There might be an efficiency problem in S2, because it simply integrates

different models. However, if we might create more general models by evaluating each

model with several different solvers.

Here we remark our contributions in this Chapter. First, we propose a concept that

can be implemented in a single-solver. This is not a multi-solver but a single-solver with



5.2 Preliminary design - Static method with two branching heuristics 79

hybrid models. Therefore, a solver with our proposal has a potential to be a base solver

for continuous improvements. Second, we propose to apply a random sampling for feature

extraction of SAT formulas. Several features such as those in a variable graph require a

long time to extract and infeasible for large instances. We apply random sampling and

demonstrate its validity empirically. Third, we propose a genetic algorithm to obtain an

efficient model within a reasonable timeframe.

In the following sections, we first apply a static method using two branching heuristics

as a preliminary step to observe the performance of a hybrid branching heuristic. Next, we

briefly explain details of our model and a feature list. We construct a random forest model

using 13 features, which can be obtained in a relatively short time. Next, we propose a

random sampling to reduce the time for feature extraction. Finally, We expand a feature

space to 23 features and apply a genetic algorithm and a random sampling to lead better

result than those in 13 features.

5.2 Preliminary design - Static method with two branching

heuristics

In this section, we build a hybrid model using two heuristics, i.e., TBVSIDS and CHB.

Experiments in this section was aimed at observing the validity of a hybrid branching

heuristic. We chose TBVSIDS and CHB, because their algorithms are basically different,

thus integration of their performances might be much better than single of them. As they

also use the same data structure, it is easy to implement them in a solver.

Our hybrid branching heuristic works as a preprocessing method using a pre-trained

model for selecting a branching heuristic based on each SAT instance, because applying

a dynamic solution that switches among branching heurisitics is too high-demensional

to optimize. We manually compared performances of TBVSIDS and CHB using several

features of SAT instances and applied a simple model to enhance the performance of a

hybrid branching heuristic.
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5.2.1 Difference between TBVSIDS and CHB

We compared the performance between TBVSIDS and CHB using several features of SAT

formulas as an attempt to find a feature which is highly correlated with the performance

gaps between TBVSIDS and CHB.

We utilized the number of variables, clauses, and communities and combined them by

producing such as ratios, quotients, and products. We provide several results of them in

Figure 5.3, 5.5, and 5.4.

The speedups of CHB and TBVSIDS over VSIDS versus number of communities, ratio

of clauses/variables, and number of variables in the SAT formula are shown in Figure 5.3,

5.5, and 5.4, respectively. Panels (a) and (b) of these figures plot the performances of

satisfiable and unsatisfiable instances, respectively.

Instances were divided into satisfiable and unsatisfiable ones, because a variance of

performance time is very large in the satisfiable instances. Therefore, we considered

concentrating on observating the difference for only unsatisfiable instances might be better

idea. This does not express we do not consider the performance for satisfiable instances.

We can determine a policy using data of unsatisfiable instances, and if the performance

for satisfiable instances with this policy is deteriorated, we can reject this policy.

The results show that CHB and TBVSIDS2 are relatively distant from and close to

VSIDS, respectively. CHB shows its differences over VSIDS clearly when we observe

the results of unsatisfiable instances. It was difficult to observe the correlation between

the number of communities and speedup time in Figure 5.3.(b), but CHB apparently

performs well when the input formula has a small number of variables in Figure 5.4.(b).

Determining a policy using satisfiable results looks difficult at least on figure we provided.

5.2.2 Experimental results

We implemented CHB in Glucose 3.0 and selected a branching heuristic as a preprocessing

method. This method counts the number of variables, and selects CHB if the variables

are fewer than 9,000 (switch line in Figure 5.4.(b)); otherwise, it selects TBVSIDS as its

branching heuristic. The results are shown in Table 6.1 and Figure 5.6. Both TBVSIDS2

and CHB outperformed VSIDS, but the differences were not large. The results were
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Fig. 5.3: Speedup of CHB and TBVSIDS2 over VSIDS for the number of communities
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Table 5.1: Solved instances from 900 instances of SAT Competitions. Column U, T2,
C, and V denote unmodified original VSIDS, TBVSIDS2, CHB, and VBS, respectively.
Rows C and A denote Crafted Track and Application Track, respectively.

Solver U T2 C T2+C V

2014C
satisfiable 79 81 85 83 89

unsatisfiable 82 88 99 111 114
BOTH 161 169 184 194 203

2014A
satisfiable 100 102 102 103 108

unsatisfiable 115 112 102 115 123
BOTH 215 214 204 218 231

2015A
satisfiable 137 143 146 146 152

unsatisfiable 101 102 96 103 107
BOTH 238 245 242 249 259

TOTAL
satisfiable 316 326 333 332 349

unsatisfiable 298 302 297 329 344
BOTH 614 628 630 661 693

improved by applying a hybrid method with an extremely simple policy. In fact, the

results of the hybrid method exceeded our expectations. TBVSIDS2 and CHB solved

14 and 16 more instances than VSIDS, respectively. Therefore, we considered the gap

between VSIDS and hybrid heuristic would be 30 at most (the arithmetic sum of 14 and

16). The actual gap was 47, indicating that TBVSIDS2 and CHB are complementary

algorithms.

VBS in Figure 5.6 was constructed by a combination of CHB and TBVSIDS2. There

remains a performance gap between VBS and a hybrid branching heuristic. Actually, we

could create the better static model by simply combining switch line in Figure 5.4.(b)

and switch line 1 and 2 in Figure 5.5.(b). However, our objective here was to check the

validity of a hybrid branching heuristic and succeeded to improve the performance of a

SAT solver largely. We were able to improve the performance of a SAT solver by applying

a simple policy using only two branching heuristics.

VBS is an ideal solver and an actual solver cannot perform such as VBS. However, we

can improve VBS by additionally combining several branching heuristics with CHB and

TBVSIDS2. To integrate several branching heuristics, more complicated model would be

required. In the following section, we add several branching heuristics for the better VBS

and propose a random forest model to achive the better performance.
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5.3 Random forest model - Eight branching heuristics with

tie-breaking

In this section, we propose applying a random forest model to create a hybrid branching

heuristic. We are motivated to build a hybrid model, because a single branching heuristic

cannot cover all SAT instances. Let us consider the integration of N SAT solvers (S1,

S2, ... , SN ) with different strategies, such as restart, learning scheme, and learned clause

evaluation, into a solver I. We then optimize I. To improve I with a new policy P , we

must implement P in each Si and evaluate each case. In addition, after updating several

Sis with P , we must rebuild a model for I. Applying and evaluating a new method seem

to require much effort. Our final goal is to propose a base solver I with high performance

and base-solver capability for other solvers such as MiniSat [58] or Glucose [44]. Such a

base solver would allow continuous improvements of SAT solvers.

Existing algorithm selection strategies are only concentrated to improve their perfor-

mances. They cannot be a base solver for other solvers. We considered to improve the
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performance of a solver by focusing on only a small part and improving that part within

a reasonable timeframe. The improved solver can then be used as a base solver for other

solvers. We considered that branching heuristics is an appropriate candidate for this

purpose. Therefore, creating a hybrid branching heuristic is a first step to integrate the

performances of modern SAT solvers such as S1 shown in Figure 5.2.

Details of this section are as follows. First, we illustrate the list of branching heuristics,

extracted features, and the description of random forest. Second, we construct a random

forest model using 13 features that can be obtained within a reasonable timeframe. Third,

an experiment of random sampling for feature extraction is considered as an attempt to

reduce the extraction time for more complicated features. Finally, we expand features

from 13 to 23 by applying random sampling and adopted the genetic algorithm to find an

efficient model for two different SAT solvers.

5.3.1 Details for random forest

We first describe how a random forest model M works in a SAT solver. We prepare a set

of branching heuristics B as classes for M and learn M through several features F (π) in

a SAT formula π and the running times t(bi) by branching heuristics bi ∈ B for training

data. When a solver is requested to solve π′, M in a solver classifies π′ to assign a bi′ for

the branching heuristic based on F (π′). We do not prepare the default branching heuristic

or cutoff time for feature extraction as an effort to provide general method by eliminating

exceptions.

We arbitrarily determined details of random forest for constructing M because the

objective in this section is not aiming for optimizing M . Indeed, optimizing M is not

important in our concept. A model M should be required to combine with other M ′s

such as a random forest model for restart policies.

The random forest is constituted by 30 decision trees. Training data Π is given to

each decision tree dtj . Each dtj randomly selects and trains using half of Π. An index is

provided to M to enable/disable each feature. Max depth of a tree is set to 5, and the

minimum sample number for each node is two. At first, all training sample is in a node. If

a node satisfies at least one of the termination criteria, it become a leaf node and partition

process for this node is terminated. Terminiation is processed when samples in a node
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Fig. 5.7: Solved instances by each branching heuristic.

is below two, the height of a node reaches at five or impurity is zero. Misclassification

impurity is adopted, and gain is obtained using simple distance criteria. Each node have

a probability array for each class bi.

Bootstrap aggregating is adopted with a winner aggregation. When π is given to M ,

a model iterates processes for each decision tree. For each dtj , a bi having the largest

probability is chosen, and bk that was chosen most is labeled to π.

Total of eight different branching heuristics were used as classes, which are VSIDS, CHB,

TBVSIDSs, and TBCHBs. Figure 5.7 and 5.8 describe the performances and runtime

correlation coefficient matrix for pairs of branching heuristics.

Eight branching heuristics were implemented on Glucose 3.0 and tested using total of

1400 benchmarks from SAT Competitions. Instances of both the Crafted and Application

Tracks from 2014 to 2016 were used as benchmarks. Branching heuristics were generated

based on VSIDS, CHB, and tie-breaking. We applied tie-breaking into VSIDS and CHB

and generated TBVSIDSs and TBCHBs, respectively.

For TBVSIDS2 and TBCHB2, we assigned a different parameter for quality calculation,

yielding two different TBVSIDS2s and TBCHB2s, respectively. The numbers 1 and 1000
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Fig. 5.8: Correlation matrix of runtimes among branching heuristics

in TBVSIDS2s and TBCHB2s indicate the value of k at line 11 in Algorithm 4. We

improved TBCHB2 heuristic by adjusting the scale of quality in Algorithm 5, but exper-

iments here were performed before the improvements of TBCHB2 heuristic. Therefore,

maxD in Algorithm 5 was fixed 1 here.

Figure 5.7 compares the number of solved instances from 1400 benchmarks. Dark and

light purple boxes indicate several VBSs and results of eight branching heuristics, respec-

tively. Figure 5.8 illustrates correlations of each pair of branching heuristics. Between

VSIDS and TBVSIDS1 or CHB and TBCHB1 showed quite similar results, because TB-

VSIDS1 and TBCHB1 maintain the original variable scores and break ties directly with

another scores. In constrast to TBVSIDS2s, TBCHB2s deteriorated the performance of

CHB because scale part for quality is not optimized here as we abovementioned. There-

fore, correlations between (CHB, TBCHB1) and (TBCHB21, TBCHB21000) were rela-

tively smaller than others. Consequently a hypothetical solver VBSCHBs was better than

VBSV SIDSs. As there exists a performance gap between VBS and VBSV SIDS+CHB , it is

meaningful to construct a model using these eight branching heuristics.

We compare VBS with top solvers of SAT Competitions in a Table 5.2 to observe the
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Table 5.2: Comparison of performances between VBS and top solvers in SAT Competi-
tions. Rows C and A denote Crafted Track and Application Track, respectively. Each
solver in column 4 is a top solver at a SAT competition in column 1. CSS denotes a
combination of single solver by selecting a best solver for each tracks.

Solver Solved Best Solver Solved
2014C

VBS

214 glueSplit clasp 208
2014A 231 Lingeling ayu 231
2015A 261 abcdSAT 261
2016C 65 tc glucose 58
2016A 157 MapleCOMSPS LRB DRUP 154
TOTAL 928 CSS 912

potential of a hybrid branching heuristic. Results of VBS were generated from 8 branching

heuristics abovementioned and obtained by testing them on WS with time limit 5,000 s.

Results of best solvers were brought from results of SAT Competitions. Each solver in the

column of Best Solver is a winner in each competition. For example, the glueSplit clasp

and Lingeling ayu were winners in the Crafted and Application Tracks in SAT Competi-

tion 2014, respectively. We cannot exactly compare the performances between the VBS

and the best solvers, because they were not tested in the same execution environment.

However, our results have some penalties, because they were tested by running 15 solvers

simultaneously on WS which have 24 cores with hyperthreading (12 physical cores), to

reduce the experimental time, thus performance of solvers were deteriorated. Results in

Table 6.1 were performed on WS using only single core. When we compare results of

VSIDS, TBVSIDS2, and CHB between Table 6.1 and Figure 5.7, results in Figure 5.7

solved 65 more instances than those in Table 6.1. Despite of the deterioration, VBS from

branching heuristics outperforms CSS in Table 5.2. We are comparing performances of

VBS and CSS and both of them are virtual solvers. VBS outperforms CSS and we can

reach to VBS by including a hybrid branching heuristic in a solver. Further, this solver

is single-solver, thus it can be improved continuously.

Next, we provide list of features extracted from SAT instances for constructing a random

forest model here.

• Size:

– 1. Number of clauses: clauses

– 2. Number of variables: vars
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– 3. Ratio: vars/clauses

• Variable-Clause Graph:

– 4-8. Features of variable nodes degree: mean, variation coefficient, min,

max and entropy.

– 9-13. Features of clause nodes degree: mean, variation coefficient, min,

max and entropy.

• Variable Graph:

– 14-18. Features of nodes degree: mean, variation coefficient, min, max

and entropy.

– 19-23. Features of diameters: mean, variation coefficient, min, max and

entropy.

• F13: Features of Size and Variable-Clause Graph.

• F23: All features of abovementioned.

All features abovementioned can be extracted without a specific algorithm. We ex-

cluded algorithm-dependent features such as features after simplification methods or sev-

eral values obtained during five minutes of initial search. We considered using algorithm-

dependent features is not desirable, because these features might be useless when an

algorithm changed.

The variable-clause graph V CG = (V1, V2, E) is a bipatite graph, where V1 is a set

of variables, V2 is a set of clauses, and E is a set of edges. An edge between a varible

vi ∈ V1 and a clause Cj ∈ V2 exists only when vi ∈ Cj . The variable graph V G = (V,E)

is constructed based on each clause. Let Li is a list of clauses including a variable vi. An

edge between variables vi and vj exists only if Li ∩ Lj ̸= ϕ. Figure 5.9 shows an example

of V CG and V G. A number at upperright of each node in a VG indicates a diameter.

We defined two feature sets F13 and F23 those are used in our experiments. F13 can

be extracted in a reletively short timeframe for existing SAT benchmarks. F23, on the

other hand, cannot be applied to all instances. Several instances are too large to extract

F23. We will apply random sampling method for approximate extraction of F23.
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Fig. 5.9: An example of V CG and V G for a given SAT formula.

5.3.2 Experimental results - 13 features

In this section, we find the best hybrid model by activating subset of F13. Total feature

extraction time of F13 against 1400 benchmarks from SAT competitions was under 1,000

s. As our model in a SAT solver is used as a preprocessing before search, rapid feature

extraction is important.

There exist 8192 subsets of F13, and construcing each random forest model take about

10 s on WS. Therefore, constructing all possible combinations of 8192 models can be

performed in a day. This a not a short time, but we performed all 8192 models for the

analysis and comparison with results of F23.

Models are obtained based on features of SAT instances and running times for eight

branching heuristics on Glucose 3.0. Instances unsolved by any of branching heuristics



92 Chapter 5 Hybrid branching heuristic

were excluded. Each of solved instance was labeled with a branching heuristic that showed

the shortest running time. Partial results are illustrated in Tables 5.3, 5.4, and 5.5. Each

table shows the test results through several training data. Each number in parenthesis at

column 1 and row 1 indicates the number of training data and benchmarks, respectively.

For example, in Row 7 of each table, the model was trained on all benchmarks except for

benckmarks of Crafted Track in SAT Competition 2014, total of 697 instances and tested

by each track. The results in Table 5.3 were obtained using all features in F13. When the

performances of classifiers were evaluated by k-fold cross validation (Training data: ÂX |

ĈX, Test data: AX | CX, where X = 14 | 15 | 16), the classifier in Table 5.4 showed the

best performance, but surprisingly, used only one feature. The model in Table 5.5 was

selected by our objective function f stated below, where X is one of the test data (AX or

CX), and N(X,Y ) is the number of solved instances in test dataset Y when the model

was trained by dataset X.

minimize f (5.1)

f = A−B (5.2)

A =
∑

(N(X,X)− α×N(X̂,X)) (5.3)

B =
∑∑

(N(X̂, Y )) (5.4)

We explain the concept of our formulas. When the training data is used as the test data,

i.e.,N(X,X), the performance is high, but the performance of N(X̂,X) is low because

it is trained exactly without the test data. Therefore, we seek to mimimize the gap

between N(X,X) and N(X̂,X) to achieve a good model. We also desire to reduce the

gaps between the VBS results and the sum of N(X̂,X). Because the VBS results are

fixed, they are excluded from the formulas. To combine these two ideas, a parameter α is

added in Formula 5.3. Here we set α = 2.

We named the classifiers in Tables 5.3, 5.4, and 5.5 as all, k-fold, and f, respectively. Let

n be the number of solved instances when all instances were used as the training data and

evaluated on themselves. We calculated correlation coefficients using 8192 results. The

correlation coefficient of the performances between f and n was -0.59. Therefore, the per-
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Table 5.3: Test results with several training datasets using all 13 features. Columns:
Training data. Rows: Test data. C: Crafted Track and A: Application Track. ÂX = all -
AX. ĈX = all - CX, where X = 14 | 15 | 16.

C14 A14 A15 C16 A16 all
(300) (300) (300) (200) (300) (1400)

C14 (214) 204 198 244 29 137 812
A14 (231) 174 215 244 39 139 811
A15 (261) 159 212 251 42 137 801
C16 (65) 152 204 224 65 130 775
A16 (157) 169 206 240 35 151 801

Ĉ14 (714) 167 217 249 61 143 837

Â14 (697) 198 211 247 62 143 861

Â15 (667) 201 213 245 63 145 867

Ĉ16 (863) 204 214 246 38 142 844

Â16 (771) 201 213 249 63 139 865
all (928) 202 213 247 63 143 868

Table 5.4: Test results with several training datasets using only one feature in a variable-
clause graph (variable nodes: max)

C14 A14 A15 C16 A16 all
(300) (300) (300) (200) (300) (1400)

C14 197 201 234 23 133 788
A14 159 214 241 43 136 793
A15 194 214 249 36 138 831
C16 139 180 199 63 125 706
A16 182 207 236 36 140 801

Ĉ14 180 218 247 56 142 843

Â14 196 211 245 56 139 847

Â15 196 215 246 56 142 855

Ĉ16 202 216 247 51 142 858

Â16 193 215 248 56 137 849
all 196 214 244 56 139 849

formance of a single solver could be improved by minimizing f. The correlation coefficient

between k-fold and n was 0.11, too low to claim a relation between these performances.

We further considered the expandability of our model. If a model is trained by results

from a solver and show its efficiency in other solvers, we might insist a model is widely

applicable. To achive this, we trained our model using the benchmarks results on Glucose

and tested a model using another SAT solver, abcdSAT [107], which was the winner in

the Main Track of SAT-Race 2015. The performance differences between Glucose and

abcdSAT are proved quite different; out of 1400 instances, 169 instances were solved by
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Table 5.5: Test results with several training datasets using seven features in a variable-
clause graph (vars, clauses, vars/clauses, variable nodes: variation coefficient, min, max,
and entropy)

C14 A14 A15 C16 A16 all
(300) (300) (300) (200) (300) (1400)

C14 202 199 244 37 132 814
A14 174 217 251 38 134 814
A15 157 211 252 39 139 798
C16 160 199 214 65 116 754
A16 178 204 239 39 144 804

Ĉ14 177 216 251 62 140 846

Â14 203 212 251 63 141 870

Â15 202 214 249 59 141 865

Ĉ16 204 215 249 37 142 847

Â16 204 215 250 63 141 873
all 203 216 249 63 143 874

Table 5.6: Solved instances from SAT Competitions using abcdSAT. Row Average denotes
the expected average performance of abcdSAT when a branching heuristic is randomly
selected from 8 different branching heuristics.

Solver C14 A14 A15 C16 A16 all
VBS 180 237 267 46 153 883
VBSC 178.5 236.5 266.5 45 151.5 878
Average 162.9 221.3 254.5 37.8 141 817.5

all 168 228 256 37 143 832
k-fold 170 229 259 35 146 839

f 169 227 254 34 143 827
fr 169 231 266 41 146 853

one solver but not by the other. Thus, we can assess the expandability of our model by

applying it to abcdSAT.

Tables 5.6 and 5.7 compare the results of different models in abcdSAT and Glucose,

respectively. Our models were trained by the Glucose results and applied to both Glucose

and abcdSAT. All of our models were performed reasonably in abcdSAT, although the

improvements were smaller than those in Glucose. VBSs in Tables 5.6 and 5.7 were

obtained based on results of abcdSAT and Glucose, respectively. On the other hand,

VBSCs were obtained by considering both results of abcdSAT and Glucose. Let Ba and

BG are sets of branching heuristics that can solve a SAT instance. If Ba ∩BG ̸= ϕ, then

a branching heuristic bi ∈ (Ba ∩ BG) is selected in VBSCs. If Ba ∩ BG = ϕ and Ba = ϕ,

BG = ϕ, or Ba ̸= ϕ and BG ̸= ϕ then a branching heuristic bi ∈ BG, bi ∈ Ba, or bi ∈
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Table 5.7: Solved instances from SAT Competitions using Glucose.

Solver C14 A14 A15 C16 A16 all
VBS 214 231 261 65 157 928
VBSC 212.5 230.5 260.5 64 155.5 923
Average 158.4 196.4 227.1 41.4 128.9 752.2

all 202 213 249 63 143 870
k-fold 196 214 244 56 137 847

f 203 216 249 63 143 874
fr 205 215 249 62 139 870

(Ba ∪ BG) is selected, respectively. A model cannot satisfy both VBSs. VBSCs indicate

actual VBSs for a single model when we consider both solvers Glucose and abcdSAT. If

the differences between VBSs and VBSCs are large, we cannot find an efficient model for

both abcdSAT and Glucose. However, the gaps between them were quite small, thus we

can find an efficient model. We also demonstrated a hypothetical model fr which showed

the best results when we consider the performances of both solvers. At this time, fr was

found by a brute-force approach, namely, by traversing all 8192 models. Therefore, the

performances of fr are the best results when we limited a feature space in F13. In the

following sections, we propose a random sampling to extract more features in a short time,

and test on F23 to obtain better results than those of fr.

5.3.3 Random sampling

In previous section, we extracted F13 from each SAT formula, and they do not require

sampling method because of the fast calculations. However, when we attempt to extract

more complex features such as constructing and extracting features from a variable graph

or a clause graph, they are time-consuming processes and even infeasible when the numbers

of variables and clauses are very large. We considered that several features, such as

average and entropy, will be conserved even when the computations are reduced by random

sampling. As a preliminary, we tested the validity of random sampling in SAT formulas

using F13. We considered if random sampling is valid in F13, it would also be useful for

more complicated features. Therefore, experiments in this section assess the possibility of

random sampling for feature extractions in SAT formulas.

Figure 5.10 provides the correlation coefficients of feature extraction between the orig-
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Fig. 5.10: Correlation of features between original and sampled formulas

inal formula and a randomly sampled formula using F13. Three features (vars, clauses,

and vars/clauses) were excluded, because they do not require computational times. The

sampling ratio was fixed at 0.1; meaning that 90% of the variables are removed from the

original formula. If a clause includes several of the removed variables, then it shrinks, and

if all variables of a clause are removed, then the clause itself is removed. The sampling

method was applied when the formula included more than th variables, where th is a

pre-set threshold. The threshold was imposed to alleviate concerns that several formulas

are so small that sampling may hide their features. Each point was calculated 10 times

and averaged.

Most of the coefficients were very high. The exception was cvMin at th = 0, because

the average value of cvMin in the original formulas was very low (1.46). When applying

the sampling method to all formulas, all of the cvMin values become 1.0, so the coefficient

vanishes. The coefficients at vcMax became low sometimes because very few variables

are connected to a large number of clauses, and if these variables are removed by random

sampling, then the vcMax value becomes very small.

Overall, we concluded the performance of the sampling method was not bad, and it

is worth while applying random method for feature extractions. Further studies of this

approach might strengthen our intuition; in any case, the approach usefully reduces the

time of extracting extra features.
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5.3.4 Experimental results - 23 features

In this section, we expanded the feature set from F13 to F23 and applied the abovemen-

tioned random sampling method. The most time-consuming tasks were extracting the

diameters. For a SAT formula with V nodes and E edges, the extraction of diameters us-

ing BFS from a variable graph constructed by linked list requires O(V E) of runtime. From

the relation E = k×V derived from the variable graph, the time for extracting the diam-

eters is proportional to k × V 2. By extracting only dt diameters, where dt = N/(k × V 2)

and N = 1010, we were able to extract F23 for 1,400 benchmarks in under 7 hours. The

longest extraction time from all instances was 6 minutes, which is reasonable time for SAT

solvers. Generally, features from variable graphs cannot be computed within a reasonable

timeframe for several instances having a huge variable graph. When investing over 300

SAT formulas from the SAT Competition 2014 Application Track, 116 instances contained

over 105 variables, and 26 or them contained over 106 variables.

F23 extracted by random sampling must then be validated. For this purpose, we con-

structed random forest models using F23 extracted by random sampling and benchmark

results on Glucose. Figure 5.11 is a flow chart of the genetic algorithm which is designed

to find an efficient random forest model for both Glucose and abcdSAT SAT solvers within

a reasonable timeframe. Different F23s using different random seed numbers were used

for training and evaluation phases, respectively. Different seeding make each random

sampling select diffrent nodes from a variable graph producing different feature values.

Therefore, we can experimentally demonstrate the usefulness of random sampling on F23

through our tests.

We adopted to apply the genetic algorithm for creating a random forest model for

F23, because the search space of partial acvation of features can be represented by a

boolean expression of size 223. We cannot attempt all cases this time in contrast with F13

experements. Figure 5.11 describes a flow chart for genetic algorithm, and we evaluated

this with N = 10 and K = 3. The constructed random forest model is evaluated by a

function g. Here, g is the squared sum of the differences between VBS and the solved

instances in a model selected for Glucose and abcdSAT.

Within the feature space, we searched the optimum random forest model through the
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Fig. 5.11: Flow chart for generic algorithm for searching an efficient random forest model

above function g with the genetic algorithm (GA). We then tested the random search by

constructing a point randomly in the feature space. The results are illustrated in Figure

5.12. The two lines at Y = 853 and Y = 870 indicate the performances of fr in Tables

5.6 and 5.7. The GA outperformed the random search and stabilized after finding an

optimal model within 8,000 s. These results are superior to those of fr, confirming that

expanding the features and extracting them within a reasonable timeframe improves the

random forest model.

Finally, we summarize our results in Table 5.8. Numbers in a row Average indicate the

expected numbers when a solver selects a branching heuristics randomly from 8 branching

heuristics. VBS is generated by 8 branching heuristics. Each percentage with green color
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indicates a solved ratio between VBS and average. Results of F13 and F23 were quite

better than those in our static method descibed in Section 5.2. The best results were

obtained by using F23 with random sampling within 2 hours. There still remains a gap

between VBS and our results. However, we are considering that combining different

hybrid models is better idea than improving performance of a single hybrid model. In

other words, combining a hybrid branching heuristic and a hybrid restart might be better

direction to improve the performance of SAT solvers instead of finding a better hybrid

branching heuristic.
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Table 5.8: Summary of hybrid branching heuristic models.

Model

Branching
heuristics

CHB and
TBVSIDS

8 branching
heuristics

Average VBS
Features

Number
of

variables
F13

F23

(Random
sampling)

Solved
Glucose 3.0

798
(26.1%)

870
(67.0%)

875
(69.9%)

752.2
(0%)

928
(100%)

abcdSAT
823

(8.4%)
853

(54.2%)
856

(58.8%)
817.5
(0%)

883
(100%)

Learning time for
a model

- 1d 2h - -
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Chapter 6

History map

In this chapter, we propose a concept of history map that would be applicable for the mas-

sively parallel environments in a combinatorial search. Firstly, we address backgrounds in

a combinatorial search, raise problems in the current parallel SAT solvers, and explain the

necessity of history map. Secondly, we introduce an application of a history map for the

search diversification in a parallel SAT solver. Finally, we demonstrate our implimentation

and evaluate an application through the benchmarks from SAT Competitions.

6.1 Backgrounds

The search complexities of the combinatorial algorithms are high dimensional. As we

cannot traverse all the combinations to find a solution, solvers for constraint problems

utilize algorithms to prune or select the areas of search space with estimations.

CPLEX [108], the most representative CP solver, utilizes branch and bound, evolution-

ary algorithm and many other heuristics.

Hypervolume estimation [109] calculates an approximate hypervolume for thee multi-

objective optimization, because an accrate hypervolume calculation is time-consuming

process.

SAT solvers learn clauses from conflicts, utilize branching heuristics and restart poliecies

to prune, diversify and intensify searches.

The evolution of multicore hardware and cluster environments have effects on the

progress of parallel solvers. There are two approaches for search space partitioning.

Divide-and-conquer based parallel solvers allocate different subspace to each worker.
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Portfolio-based parallel solvers do not divide search spaces. Workers in a portfolio parallel

solver competitively and cooperatively find a solution. Hypothesize a solver can saves all

archives from the past and havs a brilliant data structure to scan rapidly. A solver then

can avoid duplicated search when it utilizes a portfolio approach. It would be able to

construct a well-balanced search by allocating subspaces to workers adequately. This is

an ideal hypothesis, but an efficient archive management would contribute improvements

of SAT solvers.

Parallel SAT solvers share the learned clauses among workers. Clause sharings support

to reduce duplicated works and induce unit propagations. However, finding an efficient

clause sharing policy is very difficult. We raise several reasons to explain its difficulties.

• Potential number of learned clauses is too large to maintain them all. When a SAT

formula have n variables, there exist nCk × 2k possible k-length learned clauses.

• If we set a static method to share learned clauses based on for example their sizes

of LBDs, the number of shared clauses fluctuate depending on SAT instances.

• We cannot estimate which learned clauses are useful in other workers. Shared

clauses those are not used in a conflict analysis or a unit propagation for a long

time increase the propagation time and lead inefficient search.

We explain more details for these three items.

Problems would be induced when a lot of short clauses are found. Figure 6.1 compares

the results of the “esawn uw3.debugged.cnf” instance from the SAT Competition 2014.

Each curves are sorted by their run times. Of the 35 sequential solvers, 23 solved this

instance within a specific time limit (most under 500 s); however, only four out of 15

parallel solvers were able to solve this instance. We are fairly certain that these results

were due to memory limits. The “esawn uw3.debugged.cnf” problem has over 10,000,000

variables and more than 50,000,000 clauses in its original SAT formula. We can learn

from these results that learned clauses must be shared carefully due to memory limits.

ManySAT [67] is a good example for a second item. It adjusts sharing ratios dynamically

but is too expensive, because it adjusts all pairwise ratios with an estimation of the quality

of each learned clause. Measuring the qualities of learned clauses is also difficult because

TRUE/FALSE allocation of each variable changes rapidly.
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Fig. 6.1: Results of “esawn uw3.debugged.cnf” for both sequential and parallel SAT solvers
in SAT Competition 2014

As we already explained in 4.3.4, extracting more number of short clauses does not

ensure the improvement of the solver efficiency. It indicates that a lot of learned clauses

with low sizes or LBDs found by a worker wi will not be used in wj . Therefore, sharing

them to another worker wj might deteriorate the efficiency of wj .

As abovementioned, there are a lot of potential learned clauses. Accumulated learned

clauses reduce available resources for calculation and penalize propagation efficiency of a

SAT solver. Therefore, the obtained clauses are periodically erased from learned clauses

database to acquire resources. To share information efficiently without decaying old in-

formation, we propose an approximate history map (AHM). Details are discussed in the

following section.

6.2 Concept of approximate history map (AHM)

Sharing information in a massively parallel environment must be done carefully. When a

parallel SAT solver obtains a lot of learned clause, clause sharing among workers would

require a large amount of memory even if only short clauses are shared. Importing clauses

as much as a worker can from other workers is not desirable method. If the amount
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Fig. 6.2: Snapshot images of distributions of workers and solutions in the search spaces.
Each search space is projected into the 10-cube space.

of information in a worker increases rapidly, a worker have to erase its learned clauses

frequently to maintain sufficient memory and solver productivity. This implies that we

have to restrict to share only clauses considered significant. However, determining which

clause is helpful is impossible. For example, let us consider a clause C is discovered from

a worker w1 and shared to w2. If C is used in a short time in w2, we may consider

clause sharing was useful. However, C might be not used for a long time, but eventually

this clause may have an important role later. Therefore, many of solvers are sharing

clauses with static methods such as their sizes or LBDs. When we use static methods, the

amount of information flunctuate and may have become large. Anyway, when a number

of workers increases, the sharing information would be increased and a woker have to

erase them actively to maintain the rapid unit propagations. We considered this to be

counterproductive; thus, we designed a method to reduce the amount of the information

extremely to maintain the productivity of a worker in a parallel SAT solver.

Figure 6.2 illustrates the snapshot images of a parallel SAT solver in the middle of the

search. Let us consider mapping of a search space of the n-variable SAT formula into a

n-dimensional hypercube. Hypercubes in Figure 6.2 shows 10-cubes, thus this illustrates

the hypothetical images of the projection of n-dimensional hypercube into 10-dimensional

hypercube. Each vertex on a 10-cube represents several areas of the search space. Each

circle with a red border represents the current position of each worker. Each circle with a
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Fig. 6.3: Concept of an approximate history map on 2-dimensional space.

blue border represents a subspace containing solutions. Therefore, if a worker is located

at a vertex without a blue circle, it cannot find a solution. Let us assume three 10-cubes

in Figure 6.2 are representing the same SAT instance, thus distributions of blue circles

in them are the same. We hypothesize workers are performing intensive search at (a)

and (c) and diverse search at (b) in Figure 6.2. Workers in (a) are required to diversify

search, because there is no solution around them. Intensive search near solutions such as

(c) would be one ideal situation for parallel SAT solvers.

To estimate the distribution of solutions for the SAT formulas, we propose to design a

density map integrated through the snapshots from each worker during searches. How-
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ever, we cannot build a density map for solutions, because if a solver find a solution,

search ends. This is nonsense. Therefore, we attempt to integrate no good areas instead.

Accumulations of no good areas may indirectly construct a density map of solutions.

Figure 6.3 describes a AHM concept. As a Search space for each SAT formula is too high-

dimensional, we illustrated this on a plain for the simple explanation. A Search space

is divided into several cells for the approximation. Therefore, each cell corresponds to

several areas and approximates a density of these areas. Data structure is designed for a

cell to access rapidly to its surrounding cells aimed for the dynamic migration into them.

A solver accumulates “no good” histories. Red points in each cell indicate cumulated

histories. AHM might be useful for several scenarios to diversify or intensify search. For

example, if a worker Wi is curretly searching at a cell squared with thick lines in Figure

6.3. If a solver puts importance on search diversification, a cell C3 would be a good candi-

date for the next search, because it has never been searched from any worker. Either C1

or C2 might be a good candidate, if a solver considers the balance between diversification

and intensification, because both C1 and C2 are close from a current cell of Wi, and their

densities look lower than those of their neighbors.

Th achive a AHM concept, we designed to reduce the amount of information of a history

map so as to be shared and stored in parallel SAT solvers. In the first step, we compress

the information to the extent possible. For a problem with n variables, we project a search

space of an n-dimensional cube onto a one-dimensional integer array, i.e., the proposed

AHM. Each integer value in the map corresponds to several areas in the search space.

Next, we have to choose which information to share using a AHM. A number of modern

SAT solvers are adopting the phase saving heuristic [60] for the search intensification. A

solver with the phase saving saves the last TRUE/FALSE assignment for each variable

in a phase saving array. Right after conflicts, this array indicates “no good” status.

Therefore, we convert this status into an integer, which we refer to as the poliarity search

space index (PSSI). Details are discussed in the following section. Calculating a PSSI

requires O(n), where n is the number of variables in a SAT formula. As an attempt to

reduce time cost for PSSI, a solver only calculates the PSSIs on every k conflicts. Then,

a point corresponding to a PSSI in a AHM is increased by 1.

Next, we define the density of a point in a map. Here the density of a point is the sum
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of the visited counts of the areas that correspond to that point. For example, consider a

point P in a history map, where P corresponds to 10 areas v1, v2, ..., v10. Let area set

A = {v3, v5, v13, v3, v6}. If a map is updated by A, then P is incremented four times,

excluding v13, which is not included in P . It is evident that the actually visited areas

are the three areas of v3, v5, and v6. Area v3 is counted twice. Determining the actual

density of a point would require significant time and map space. Thus, we approximate

the density by simply incrementing regardless of duplications. This is a key concept for

reducing the amount of information.

6.3 Conversion of current area into an index

In this section, we propose a method to convert the current area of the search space into

an index to reduce the amount of information. We accumulate converted indexes into a

history map, and share this map among workers to balance between diversification and

intensification of serach. We especially concentrate on areas right after conflicts, and share

these to other workers because revisiting this area in other workers is undesirable. If all

learned clauses are shared among workers and not erased, then a solver is able to avoid

revisits of nogood areas. However, a solver cannot share all clauses and clauses are erased

periodically for its productivity. Therefore, a method to extremely condense the amount

of information is required to share nogoods approximately.

6.3.1 Proposal of Polarities to Search Space Index (PSSI)

Many state-of-the-art solvers are using phase saving [60] array (PSA) to reuse its previous

phase for intensive search. The PSA contains last TRUE/FALSE assignments of variables

and is reused in decision heuristics to determine a polarity (TRUE/FALSE) of a selected

variable. Therefore, PSA determines search direction and contains a nogood assignment

shortly after conflicts. Phase saving worked efficiently in sequential solvers, because PSA

has a strong relationship with learned clauses found from the current worker. However,

parallel SAT solvers share learned clauses, and there are low relavances between a PSA

and clauses imported from other workers.

We can anticipate the effects accompanied by small changes in a PSA. They might de-
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teriorate the interplay between a PSA and learned clauses found from the current worker,

but a solver would obtain search diversity and might have an opportunity to use diverse

clauses exported. We adopt to share a PSA among workers to create a AHM in a parallel

SAT solver.

We explain details for converting the current PSA into a PSSI. First, divide a variable

set into k-blocks (B1, B2, ..., Bk). Second, calculate the ratio (r1, r2, ..., rk) of variables

currently allocated to TRUE, and divide the ratio into m sections uniformly, and each

section have a value between 0 on the far left to m - 1 on the far right. For each block

Bi, ratio is converted to integer bi. For Bi, bi = p if p/m ≤ ri < (p + 1)/m where

p ∈ {0, 1, ...,m − 1}. After calculating each bi, calculate a PSSI (Polarity Search Space

Index).

PSSI =
∑k

i=1 bi ×mi−1

Since the PSSI is now only an integer, we can then easily though roughly compare the

areas in the search space among the workers. Let’s explain this with a simple example.

Consider a problem with n variables x1, x2, x3 and xn. Solve this problem using the

parallel SAT solver with 2 workers w1 and w2. Let’s call pi the current PSA of wi. If

we simply calculate the hamming distance between pi and pj , it takes only O(n) time.

However, to compute the distance between workers, they have to be synchronized, and

this method would be unwieldy when the number of workers is increased.

If a conflict occurs at p1 = {0, 1, 1, ..., 0}, then all workers wi in a solver want to avoid

the p1 status in the future. However, memoization for this needs a lot of memory, thus

we reduce the amount of information with estimation.

In PSSI, for example, if we suppose k = 4 and m = 2, ratio(w1) = (0.3, 0.7, 0.0, 1.0)

and ratio(w2) = (0.6, 0.7, 1.0, 0.2), then we get PSSI1 = (0 ∗ 20 + 1 ∗ 2 + 0 ∗ 22 + 1 ∗ 23)

= 10 and PSSI2 = (1 ∗ 20 +1 ∗ 2+ 1 ∗ 22 +0 ∗ 23) = 7. We can compare their areas using

their PSSIs based on bitwise XOR. In this case (0101 ⊻ 1110) = 1011, and we count the

number of 1s and get distance = 3.

We can obtain distances among workers directly such as an example abovementioned,

but direct comparisons of them require synchronization. Therefore, we considered indirect

comparison of using history map would be an efficient method, because it also enable to

take into account past PSSIs.
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PSSIs have k-blocks, and this structure will help maintain intensification in search. We

can easily modify fractional changes by picking a block and inverting each polarity in

a PSA. Using this structure, a solver would change a PSA dynamically. Details of an

application will be described in Section 6.4.

Currently we are dividing k-blocks by simply using indexes of variables, which means

if there are kx variables in the original formula, we allocate 1 ∼ x to block 1, x + 1 ∼ 2x

to block 2, and so on. We adopted this policy to try to minimize sudden changes in the

current area. We discuss this in the following section.

6.3.2 Block division Policy

It is difficult to determine how to divide a variable set into the blocks optimally. Using a

community detection algorithm such as the Louvain method [10] would be a good idea,

because when we pick a block representing a community and change their assignments in

a PSA, these will have the fractional effects to entire search because a community might

have only sparse connections to other communities. However, a solver have to construct a

variable graph to build communities, and this requires a lot of time and sometimes infea-

sible for large instances. Therefore, we adopt a policy to divide blocks with their indexes

based on our experiments. We came up with this idea, because applcation instances are

hand-made and there exist biased structures based on the indexes of variables.

We performed 300 repeat tests for a benchmark to produce different solutions, and

observed their polarity trends. The benchmark chosen was 002-80-8.cnf from application

instances in the SAT competition 2014, because a solution for this benchmark can be

rapidly found most of the time. For each test we obtained a solution and checked its

final polarities. Figure 6.4 gives the polarity distribution counts for each variable from

300 repeated tests. Each point indicates the number of TRUEs assigned in the solutions.

Therefore, variables on the lines of y = 0 or y = 300 almost certainly are backbones

[110] in a SAT formula because they showed the same assignment in all 300 tests. Figure

6.4.(a) was performed through an original SAT formula. We considered there is a high

probability of having strong relations among proximate variables by index. For example, in

Figure 6.4.(a) variables having an index between 0 and 2,500 have similar TRUE assigned

numbers. We can also find a group of variables having under 30 TRUE assigned numbers at
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indexes between 9,500 to 13,300 relatively frequently. From this experiment, we suspected

there might exist some hidden structures based on the indexes of variables.

To ensure the polarity distiribution is not a solver-dependent but a structure-dependent,

we transformed an original formula and results of them are illustrated in Figure 6.4.(b),

(c) and (d). When a formula have n variables, we converted each literal li to ¬li, ln−i

and ¬ln−i in (b), (c) and (d), respectively. As shown in Figure 6.4.(b), (c) and (d), they

showed the same polarity distributions, even though we transformed a formula. Therefore,

we considered its distribution is a structure-dependent, and adopted to divide blocks using

the index order based on these experiments.

6.3.3 Representability of PSSI

To construct a history map through the PSSI indexs, we have to check how well PSSIs

represent the entire search space. If all the solutions found have the same PSSI value,

applying PSSI for a history map would be unsuitable.

We performed repeat tests for several benchmarks to observe their PSSI distribution.

We chose 4 satisfiable benchmarks from application instances in the SAT Competitions

2014 that can relatively easily find a solution in a reasonable time. The lists are 008-80-

8.cnf, 002-80-8.cnf, 004-80-8.cnf and 004-22-160.cnf. We did 20 repeat tests per benchmark

with a time limit of 3,600 s, totaling 80 repeat tests. Repeast tests were performed using

our parallel SAT solver ParaGluminisat. Normally, workers in parallel SAT solvers are

asynchronized in attempts to maximize their performances. Therefore, they do not ensure

a solution reproducibility, and produce a different solution for each execution.

For 10 tests a solver reached a time limit. For 70 tests solutions were obtained, and we

checked their PSSIs. A PSSI is calculated under the condition of k = 10 and m = 4, so

there exists 410 different PSSIs. There were 67 different PSSIs found in 70 solutions. Let

us assume the PSSI space is ideal that solutions are distributed uniformly on this space.

Then, the possibility of 67 kinds from 70 PSSIs is extremely low. Equation 6.1 describes

possibility of over 68 kinds from 70 PSSIs.

(
410

70

)
× 70! +

(
410

69

)
× 69!×

(
70
2

)
+
(
410

68

)
× (68!×

(
70
3

)
+ 66!×

(
70
2

)
×
(
68
2

)2
)

4700
≃ 0.9999999982

(6.1)
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Fig. 6.4: Polarity distributions of each variable from 300 repeat tests. Benchmark: 002-
80-8.cnf.

Therefore, we can assume that a PSSI space does not represent uniform distribution of

solutions. However, at least these results show us that solutions for a SAT formula might

be found in many different areas in the search space, and these areas might be distributed

in some extent through the PSSIs on a history map.
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6.4 Application of AHM - SaSS heuristic

We proposed the PSSI for constructing a AHM with reduction of the amount of informa-

tion. In this section, we propose an application of AHM as an attempt to diversify search

in parallel SAT solvers.

Many state-of-the-art parallel SAT solvers construct a portfolio to enhance their per-

formances. A diversified portfolio may increase search diversification of the solver, but

we concern its demerit. Details will be discussed in the following section. Several solvers

have tried to compare each pair of workers directly, but these might work inefficiently in

massively parallel environments.

We considered our AHM could be utilized to diversify the search. Our main idea is to

avoid the areas frequently visited, and to walk towards the sparsely visited areas. Each

cell in a AHM represents several areas and is indexed by its PSSI. A cell has a counter and

is incremented by one when a worker’s PSA corresponds to PSSI of this cell. Each cell

is able to access its neighbors with bitwise operations. Therefore, we considered a solver

can walk from the current area to the sparsely visited area dinamically with a AHM, and

we propose the SaSS (Sparsely visited area walking on Search Space) heuristic.

Algorithm 6 and 7 describe the pseudo-code of the SaSS, and we remark the target

area. We adjust partial assignments in a PSA to move to the sparsely visited area, but

a solver might fail to reach or stay there. For example, if a worker adjust a PSA by

force at decision level di, then a lot of assignments were already performed at decesion

level between 0 to di − 1. Therefore, several changes does not work immediately, and

early assignments before adjusting a PSA might prevent to reach sparsely visited area

by forcing different assignments. Therefore, we called the sparcely visited area chosen by

SaSS heuristic as the target areas.

Algorithm 6 SaSS heuristic: changeCurrentArea()

1: if conflicts % interval == 0 then
2: p := getCurrArea();
3: p′ := updateHistoryMap(p);
4: if p != p′ then
5: changeBlockPolarities(p, p′);
6: end if
7: end if
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Algorithm 7 SaSS heuristic: updateHistoryMap(p)

1: Input: PSSI p
2: Output: PSSI p′
3: p′ := p;
4: historyMap[p′]++;
5: if p′ < c-threshold × thread number then
6: return p′;
7: end if
8: p′ := checkNearestAreas(p, d);
9: return p′;

In Algorithm 6, after every interval conflicts (line 1), each worker calculates the current

PSA as PSSI (line 2), updates the history map of the PSSIs (shared for all workers) and

gets a target area as a PSSI (line 3). A worker do not perform this on every conflicts to

maintain its productivity. If the target area is different from the current area (line 4), it

changes polarities in a PSA to walk towards the target area (line 5). A block can be easily

calculated by the bitwise XOR of p and p′ for a PSA adjustment. If the selected block is

Bi, then each variable’s polarity is allocated to TRUE bi in m. In Algorithm 7, we get

a target area using a history map. It updates history map (line 4), but does not change

the area in the early stages to maintain intensive search (line 5-6). When the early stages

end, it searchs the target area based on the current area (line 8). It checks areas within

the hamming distance d from the current area, and the one with the minimal counter in

the history map is picked as the target area.

6.5 ParaGluminisat Implementation

We describe our parallel SAT solver ParaGluminisat in this section. This solver is also

used in Chapter 3. First we remark a solver used in Chapter 3. In the next, we explain

several options to enhance the solver performance.

We implemented ParaGluminisat based on Glueminisat [95]. Algorithm 8 describes

pseudo code of ParaGlueminisat. ParaGluminisat was parallelized with the OpenMP li-

brary. Each worker solves a SAT formula competitively, and they share information in

the shared memory class. We adopted data structure in ManySAT [66] for clause sharing.

A solver shares learned clauses with a two-dimensional array with head and tail pointer

to excess to the array exclusively without mutual exclusion process to achieve efficient
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clause sharing process. A clause c is exported to a share memory class, when its LBD

is under L (line 11). After exporting, a worker imports clauses (line 12). When import-

ing, propagations are performed through imported clauses. Therefore, a worker would

find a solution or prove unsatisfiability while importing clauses (line 13). We apply the

SaSS heuristic on every interval conflicts (line 10). The SaSS heuristic is performed with

pthread mutex lock and pthread mutex unlock for mutual exclusion. However, mutual

exclusion does not deteriorate the performance of the solver a lot, because the SaSS is

performed only once in interval conflicts, and the process between pthread mutex lock

and pthread mutex unlock is performed rapidly.

Algorithm 8 ParaGluminisat implementation.

1: omp set num threads(T);
2: #pragma omp parallel
3: {
4: int t = omp get thread num();
5: workers[t].solve();
6: }
7: ...
8: solve()
9: {

10: if (conflicts % interval == 0) SaSS();
11: if(LBD(c) ≤ L) exportClause(c);
12: int answer = importClauses();
13: if(answer != undefined) return answer;
14: ...
15: }

We utilized a ParaGluminisat without the SaSS in Chapter 3. Each worker shuffles

indexes of variables for search diversification.

In this chapter, we implemented several addtional ideas to enhance the performance of

ParaGluminisat. We applied these because we want to evaluate the SaSS on an efficient

solver. We considered, if a solver is inefficient, then many approaches easily improve it.

We divided workers into two groups. Their is an use minisat option in a Glueminsat.

Glueminisat’s base solver is MiniSat and the policies of MiniSat are easily applied with

this option. We activated this option in the halves of threads, and inactivated the rest of

them. We applied this because state-of-the-art solvers with a LBD measure with a rapid

restart policy show their efficiencies for unsatisfiable instances. However, MiniSat still

shows its efficiencies for satisfiable instances. To achieve intensive search, we only share
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learned clauses among workers with the same option. We set the halves of threads with

no activation of use minisat option to share clauses within LBD = 2. The other threads

shared only unit clauses, because we considered search diversification is very important

to solve the satisfiable instances and MiniSat solves them well. It is natural that we share

unit clauses. Therefore, if we separate this from sharing policies, we can assume workers

with no activation of the use minisat cooperate, and each worker using use minisat works

independently.

ParaGluminisat is designed for applying many number of workers, not for specific num-

ber of workers. In contrast to general portfolio-based parallel solver, ParaGluminisat does

not allocate different policies for each worker. Only a different seed value is allocated for

each worker to diversify the order of variables’ indexes, and workers are divided into two

groups by activating and inactivating a use minisat option, respectively. There are no

differences except for components mentioned here. If each solver has a different restart

interval, learning scheme and decision heuristic, diversity will arise. However, this might

lead too many learned clauses, and sharing these might deteriorate each worker’s intensity.

Further, optimizing the best portfolio for workers would be difficult when the number of

workers increased.

6.6 Experimental results

In this section, we present an experimental evaluation of the SaSS heuristic. SaSS is

implemented in our parallel solver ParaGluminisat and evaluated through the number of

solved instances and their runtimes for both satisfiable/unsatisfiable. Generally, parallel

SAT solvers are evaluated with 3 repeat test, because they are not deterministic but

opportunistic. Therefore, we evaluated the SaSS on two different environments WS and

VM for two different numbers of workers.

Parallel track benchmarks from SAT-Race 2015 were used for the evaluation. As a

default setting, each worker updates a history map in a shared memory using the PSSIs

on every 50,000 conflicts. PSSI is calculated under k = 10, m = 4, and this indicates we

have a total of 410 different PSSIs. SaSS only checks proximate areas having a hamming

distance of one from the current cell. In order to assess scalability, we tested the SaSS

using both 12 workers and 64 workers. We want to compare results between SaSS and
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non-SaSS, but also between 12 workers and 64 workers. For the comparison, we set the

CPU time limit to 3600× (number of workers) seconds. WS and VM only have 24 and

32 threads including hyper-threading, respectively. Therefore, the real time limitation is

around 3600 seconds for 12 workers, but for 64 workers, the time limitation is around

9,600 seconds in WS and 6,400 seconds in VM.

Figure 6.5 and Table 6.1 show the results of SaSS and non-SaSS. VM is based on

VMWare, and it’s results were worse than those of WS. Figure 6.5 compares the number

of solved instances on both 12 and 64 workers. Table 6.1 summarizes the solved instances

for each case. In summary, SaSS solved five more instances from the 100 instances on

average, most of which were satisfiable instances. When we compare results between SaSS

and non-SaSS with 4 different cases, the performances of SaSS were not better than those

of non-SaSS at WS with 12 workers. Results of SaSS were better than those of non-SaSS

in the rest of cases. This is why several repeat tests are required to evaluate parallel

SAT solvers. If we simply count the number of solved instances, we might insist SaSS

showed better performances than non-SaSS for satisfiable instances, but for unsatisfiable

instances, SaSS does not deteriorate results, but we cannot claim it brought better results.

To observe more details, we displayed the results using a scatter plot in Figure 6.6. We

divided regions to compare the speedup, and the outline of each region is described in

Figure 6.7. In addition, we counted the solved instances in each region, and the results are

shown in Table 6.3. R1, R3, and R5 represent regions in which non-SaSS surpasses SaSS.

R2, R4, and R6, on the other hand, represent regions in which SaSS surpasses non-SaSS.

R1 and R2 are divided by the y = x line. In regions R3 and R4, areas satisfying both

equations of y ≤ 1.3x and x ≤ 1.3y are excluded to observe speedup more strictly by

excluding the region where the difference ratio between SaSS and non-SaSS is less than

30%. Regions R5 and R6 compare speedup by counting instances solved by only one side.

In all cases, SaSS surpasses non-SaSS, as is shown in Table 6.3. We conclude the SaSS

heuristic using a history map showed its efficiency by avoiding frequently visited areas

and visiting sparsely visited areas. This approach could be applied for massively parallel

environments because sharing a history map among workers requires only tiny time and

space.

We obtained the best results on WS with 64 workers and 73 instances were solved. This
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Table 6.1: Solved instances with 100 benchmarks of SAT-Race 2015. S: satisfiable in-
stances, U: unsatisfiable instances.

Env, Method
WS VM

SaSS non-SaSS SaSS non-SaSS
Workers 12 64 12 64 12 64 12 64

S 42 49 42 44 39 41 33 37
U 22 24 22 23 22 19 18 19

Table 6.2: Solved instances with 100 benchmarks of SAT-Race 2015 on WS with 64
workers. S: satisfiable instances, U: unsatisfiable instances. AVT: average time (s)

U S AVT
non-SaSS, LBD = 2 23 44 1718
SaSS, LBD = 2 24 49 1691

non-SaSS, LBD = 8 30 44 1390
SaSS, LBD = 8 31 48 1310

is a tie-score with 2nd solver in a SAT-Race 2015, but a top solver solved 78 instances.

We considered our clause sharing policy is too limited compared with the policies in

other solvers. We shared clauses under LBD = 2 above, because sharing a lot of clauses

does not scale when the number of workers increases. However, only 64 workers are

required for the comparison, and we performed extra tests by expanding LBD = 8 for

clause sharing and results are shown in Table 6.2. Now we obtained better results than

a top solver in a SAT-Race 2015, and this is achived by applying a SaSS. Therefore, we

experimentally demonstrated the SaSS is a valid in a state-of-the-art parallel SAT solver.

As we abovementioned, sharing more clauses is important for unsatisfiable instances.

Several unsatisfiable instances were solved by sharing more clauses, but there were little

change for satisfiable instances. The SaSS heuristic mainly improved results for satisfiable

instances. It is well known factor that clause sharing is not important for solving satisfiable

instnaces, thus, we can conclude base on our experiments that SaSS is valid for solving

satisfiable instances efficiently regardless of the change of the clause sharing policy.
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Table 6.3: Solved instances at each region in Fig 6.6

satisfiable unsatisfiable

R1 : R2 82 : 99 40 : 46

R3 : R4 51 : 68 4 : 13

R5 : R6 14 : 26 1 : 5
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Fig. 6.7: Outline of each region in table 6.3.
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Chapter 7

Other proposals

This chapter provides several SAT related ideas for future works; however those are not

implemented or require some improvements.

7.1 Proposals for SaSS

In Section 6.4, we proposed the SaSS heuristic as an application for AHM. The motivation

of SaSS is to move to sparsely visited areas dynamically while avoiding frequently visited

areas, because we attempted to integrate nogood situations. Therefore, we can expect two

key advantages by applying SaSS. First, SaSS would lead search diversification. Second, a

solver might escape from areas having low probabilities for finding a model. We considered

that additional diversification of the search would lead to better results for satisfiable

instances, and we evaluated the proposed SaSS experimentally and obtained better results

than non-SaSS. We explained AHM is managed by cell structure in Figure 6.3. In SaSS,

a solver compares densities of cells, the current cell and its surroundings, using a history

map. Then, a solver selects a cell having the lowest density.

In the following sections, we suggest two approaches that might enhance the perfor-

mance of SaSS.

7.1.1 Biased random walk

SaSS selects a cell of areas with the lowest density as a target cell to move deterministi-

cally. We considered that if we select the target cell using a biased random walk, search

diversification of SaSS would be strengthen.
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Let Ci be a cell in a history map and d(Ci) be the value of cell Ci, i.e., the density of

the given point. Instead of selecting the cell with the lowest d(Ci), we propose to select

Ci with prob(Ci) calculated as follows.

S = A set of current cell and its surroundings (7.1)

r(Ci) =


1

d(Ci)
, ifd(Ci)! = 0

T (T > 1), otherwise

(7.2)

SUM =
∑
i∈S

r(Ci) (7.3)

prob(Ci) =
r(Ci)

SUM
(7.4)

We allocate the probability of each cell in proportion to the inverse number of its density,

except when its density is zero. Therefore, we add T , which is greater than one, to balance

the selection of a low-density area with high probability. For example, consider a cell C1

in a history map with surrounding cells C2, C3, and C4. If d(C1) = 1, d(C2) = 2, d(C3)

= 3, and d(C4) = 0, then C4 is selected deterministically via SaSS; however, in biased

random walk, each of the surrounding cells can be selected even though C4 would have

the highest probability.

7.1.2 Density evaluation

SaSS selects a cell of areas with the lowest density regardless of the density value. If a cell

in a history map represents k areas and the density is 0.01k, then we can consider most

areas in a cell are still not visited. In this situation, it would better to stay in the current

cell instead of moving to a cell with lower density.

Therefore, we considered several factors to evaluate a current cell more appropriately.

First, we considered the relationship between the size of the areas that a cell represents

and the density value. Here, we use the coupon collector’s problem [111] to evaluate

whether the density value is too low to change the areas. If all areas have the same

probability of a visit, and a cell corresponds to m areas, then the expected time T to visit
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all m areas is evaluated as follows.

E(T ) =
m∑
i=1

E(ti) =
m∑
i=1

m

(m− (i− 1))
= m×Hm (7.5)

Here, E(ti) is expected time of visiting a new area after i - 1 areas have been visited. H

is a harmonic number.

For example, consider the situation in which we do not want to change areas before we

visit approximately 80% of the areas. Then, the expected time T ′ to visit 80% of the

areas is evaluated as follows. We can allocate Threshold as follows.

k = ⌊0.2×m⌋ (7.6)

E(T ′) =

m−k∑
i=1

E(ti) = m× (Hm −Hk) (7.7)

Next, we set Threshold as follows.

Threshold = E(T ′)/n (7.8)

Here, we do not change areas if the density value is less than Threshold because we only

update a map every n conflicts; thus, it would be reasonable to divide E(T ′) by n. There

exists a problem for E(T ′) calculation, because H(m) ≃ m× ln 2, thus very large integer

would be required. Therefore, E(T ′) increases exponentially in proportion to the size of

search space. One possible way to avoid the curse of dimensionality is to pick several

representative variables in each block for observation, and ignore others.

We must also consider variables that have unique values, i.e., a variable must always be

TRUE or FALSE. In SaSS, we divide variables into blocks before the search; however, a

large part of a block might become unique shortly after the search begins. We observed the

ratios of unique variables after 100 and 500 s. Here, 300 benchmarks from the SAT-Race

2015 main track were used. Note that the instances solved within 500 s were removed.

Figure 7.1.(a) compares the ratios obtained for 100 and 500 s. For several instances, the

ratio was very high after only 100 s. We can easily resolve these problems by creating

blocks after simplification processing. However, for several instances, the ratio increased
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gradually, and the block size continued to change. Figure 7.1.(b) shows the differences of

unique variables ratio between 100 s and 500 s. Y-values here are illustrated by logarithm

scale, because most of them indicated zero, and most of non-zero values were also small.

Note that the difference of the unique variables ratio is not negligible in several instances.

Thus, we consider merging blocks dynamically. SaSS changes the cells by selecting a block

and changing the status of that block. If a large part of a block is occupied by unique

variables, the block size decreases. In this case, this block can be merged with another

block. When we merge blocks, the aforementioned Threshold for evaluating the density

must also be changed dynamically.

7.2 Resemble structures

Proposals and ideas in this section are based on several assumptions. In current status,

implementation of them might boost the performance of SAT solvers, but there remains a

correctness problem that a satisfiable instance is recognized by an unsatisfiable instance.

We may avoid this problem, but we are not sure this is more efficient than the current

modern SAT solvers.

We assumes that application problems might have repeated structures in them. When

a SAT solver find a solution of an application problem, it learns only one clause from each

conflict. If we can extract repeated structures in a problem, we might add several clauses

from a learned clause.

As a preliminary test, we observed an instance 002-80-8.cnf for binary connections, as

shown in Equations 7.9 and 7.10. Variables x and y are mutually connected, because an

assignment of one forces that of the other.

x↔ y or ¬x↔ ¬y ⇐⇒ (x ∨ ¬y) ∧ (¬x ∨ y) (7.9)

¬x↔ y or x↔ ¬y ⇐⇒ (x ∨ y) ∧ (¬x ∨ ¬y) (7.10)

The 002-80-8.cnf instance contains 13408 variables and 478484 clauses. We observed

478484 clauses and counted the number of pairs having a relation of either Equation 7.9

or 7.10. There were 41107 and 41214 relations for Equations 7.9 and 7.10, respectively.
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(a) Candidate pair (b) Excluded pair

Fig. 7.2: Example of assumption for candidate pair for resemble structures.

For example for Equation 7.9, we counted a relation between x and y, if 478484 clauses

include both clauses (x ∨ ¬y) and (¬x ∨ y). Therefore, many instance might have

Let us consider x and y are connected to other variables with exactly the same ways.

Then, a solver might add a clause (¬x ∨ y) when it learns a clause (x ∨ ¬y). However,

it seems to look time-consuming process for finding pairs of x and y. We can attempt

to find x and y with the approximations. We explain the concept of our approach with

Figure 7.2. As finding exact pairs is difficult, we can find candidate pairs first. To become

a candidate pair, two variables should have the same clause size distributions. Figure 7.2

shows the clause size distributions for x1 and x2. Each number in rows 2 or 3 indicates

the number of clauses x1 or x2 is included, respectively. As size distributions are the

same in Figure 7.2.(a), x1 and x2 can be a candidate pair. However in Figure 7.2.(b), a

pair of x1 and x2 can be excluded because of their differences. As size distributions are

not sufficient, we additionally consider the distance on a variable graph between variables

in a pair. Consider we have candidate pairs of (x1, x2) and (x3, x4), and their distance

are dist(x1, x3) = 4, dist(x1, x4) = 12, dist(x2, x3) = 4, and dist(x2, x4) = 7. Then,

dist(x1, x3) = dist(x2, x3), and we might add a clause (x2∨x3) if (x1∨x3) is learned. On

the other hand, we cannot add a clause (x2 ∨ x3) from a clause (x2, x4).
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As we abovementioned, adding wrong clauses might turn a satisfiable instance into an

unsatisfiable instance. Therefore, the more conditions we check the validity of a candidate

pair, the more wrong wrong pairs are eliminated, but more conditions require more of time.

Conditions mentioned above were not sufficient in our experiments. We designed several

conditions for the calculation of resemblance between two variables stated below.

resemblance(x, y) =
4∏

i=1

cdni(x, y) (7.11)

numCl(x, k): Number of clauses with a length k including a variable x (7.12)

nonZeroCl(x, k) =


1 if numCl(x, k)! = 0

0 otherwise

(7.13)

b(x, y, k) =


1 if numCl(x, k) = numCl(y, k)

0 otherwise

(7.14)

cdn1(x, y) =
10∏
i=1

b(x, y, i) (7.15)

cdn2(x, y) =


1 if

∑10
i=1 numCl(x, k) ≥ 100 &&

∑10
i=1 numCl(y, k) ≥ 100

0 otherwise

(7.16)

cdn3(x, y) =


1 if

∑10
i=1 nonZeroCl(x, k) ≥ 3 &&

∑10
i=1 nonZeroCl(y, k) ≥ 3

0 otherwise

(7.17)

surroundings(x, k): Number of variables within a distance k in a variable graph

(7.18)

resembleSurroundings(x, y, k) =


1 if surroundings(x, k) = surroundings(y, k)

0 otherwise

(7.19)

cdn4(x, y) =

10∏
i=1

resembleSurroundings(x, y, i) (7.20)
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Resemblances of pairs can be obtained as a preprocessing, because we are only inter-

ested in resemblances in the orginal SAT formula. Resemblance between x and y has

one when all four conditions are satisfied, as shown in Equation 7.11. Condition 1 com-

pares clause size distributions between x and y, as shown in Equation 7.15. Condition

2 is designed to elimiate pairs when they are connected only a few clauses, as shown in

Equation 7.16. Condition 3 is designed to elimiate pairs when variables in a pair are

only connected to several kinds of clause sizes, as shown in Equation 7.17. Condition 4

compares sizes of variable graphs of x and y with a diameter limitation when x and y

are a center of their graphs, respectively. In summary, we designed four conditions for an

attempt to reduce the comparison time and increase the accurary of resemblances. We

implemented these equations and performed them to several instances. When a clause

(x ∨ y) is learned, a solver adds clauses (x ∨ z) and (y ∨w), where resemblance(x, z) = 1

and resemblance(y, w) = 1, respectively. In our experiments, a solver with these condi-

tions does not changed a satisfiable instance into an unsatisfiable instance. However, its

efficiency was not good, because only 0.05n clauses are added by our method, when n

binary clauses are found. We might obtain better performances if we improve conditions

for the resemblance. Further design would be required, and further verification would also

required for applying resemble structures in a SAT solver.

7.3 Reshuffling

One of the most influential techniques for SAT solvers is a restart technique. Modern SAT

solvers restarts frequently for diversifying searches. However, a solver falls into deserts

from time to time. Additional diversification method would be required to escape from

deserts. Therefore, we designed recursive reshuffling option which performs ISoV recur-

sively stated in a Chapter 3. Applying recursive reshuffling to a sequential solver might

not a good idea, when we consider a balance between diversification and intensification.

This option might strengthen search diversificaion a lot. In our assumption, applying only

to several workers in a parallel SAT solver might be a good idea for search diversification.

Details for recursive reshuffling are as follows.

• MTL: Maximum time limit for recursive search
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• EN: Expected number of recursive searches in time MTL

• TM: Time margin to perform reshuffling process

• tr[i]: Time limit for recursive reshuffling (i) times

tr[i] = MTL−i×ET
i+1

• ti: Time limit of i-th worker for reshuffling

ti = tr[i%MN ]

We implemented this on ParaGluminisat and tested using 12 workers with MTL to

3600, MN to 30, and ET to 100. Therefore in our experiments, tr = {3600, 1750, 1133,

825, 640, 516, 428, 362, 311, 270} corresponding time limit for recursive search for each

worker respectively. Unfortunately, experiments with recursive reshuffling option showed

undesirable results, because this option is activated in all workers except for 0-worker.

However, we presume that this option might lead to better results, if the number of

workers is high and only a few workers active this. Extra experiments are required to

confirm this hypothesis.
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Chapter 8

Conclusions and future directions

In this chapter, we summarize our research in terms of results and methods. We also

discuss several future directions for improving our proposals.

8.1 Analysis of results

We proposed some approaches for adjusting the diversification and intensification to im-

prove the performance of SAT solvers.

First, we proposed a tie-breaking method that is applicable to many existing branching

heuristics. We generated TBVSIDS and TBCHB from VSIDS and CHB, respectively.

These were evaluated in terms of 900 application benchmarks from SAT Competitions.

We succeeded in improving branching heuristics by applying our tie-breaking method. The

CHB is a recently proposed branching heuristic, but VSIDS is widely being used in many

modern SAT solvers. Therefore, the improvement of VSIDS is significant for a wide range

of SAT solvers.

Secondly, we discussed a hybrid branching heuristic as an algorithm selection in SAT

research. We proposed a large framework for the integration of SAT solvers. As a first

step in achieving this, we constructed a hybrid branching heuristic model. As SAT solvers

are diverse, constructing a model targeted for a single solver is not desirable. Therefore,

we evaluated our model using different solvers. We constructed a model using random

forest, using 23 features. Ten of the 23 features were infeasible to extract for large in-

stances. Therefore, we used 13 features first, and applied random sampling for extracting

23 features. As the performance of random sampling was adequate, we were able to find
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a better model using 23 features than using 13 features.

Finally, we proposed the AHM, which is applicable to adjusting diversification and

intensification. To achieve the AHM in SAT solvers, we suggested the PSSI index by

mapping the current assignment into an integer. We proposed the SaSS heuristic as

an application for utilizing the AHM. The SaSS heuristic was evaluated using the 300

benchmarks from SAT-Race 2015 and showed improved results.

8.2 Analysis of methods

We analyze our proposals in terms of their methods.

First, tie-breaking in a branching heuristic is an attempt to select a more valuable vari-

able from ties. We noticed that ties occur frequently in VSIDS, a widely used branching

heuristic, and considered a smart tie-breaking method to improve the search efficiency.

Since we are attempting to pick a better one from good ones, it would be desirable to

extract it rapidly. We also considered the interplay between a branching heuristic and a

clause learning scheme for efficient search intensification.

Second, we primarily showed the results of a hybrid branching heuristic. We applied

random forest, because many features can be extracted from SAT instances, and distances

between instances in a feature space appear to be irrelevant. Previous studies of algorithm

selection for SAT solvers gathered a number of solvers and developed a model for assigning

an adequate solver for each instance. In contrast to these multi-solver approaches, we

proposed a single-solver with hybrid models. As long as a solver maintains a single-solver

form, it can be utilized for ongoing research as a base solver.

Finally, we evaluated our AHM in a parallel SAT solver. The construction of an AHM

for a SAT solver is an attempt to summarize the nogood signals and share among workers.

Several factors are considered for efficiency in the AHM design. First, we use a single

history map, rather than pairwise comparisons among pairs of workers. Second, the size

of a single history map is fixed, and it uses only a small amount of memory. Third, we

integrated information only after a conflict to gather nogoods. Therefore, the AHM is

applicable for massively parallel environments with low memory requirements and low

computational times.
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8.3 Suggestions for future directions

We address several ideas for future work that can improve or extend applicable areas.

First, we discuss about tie-breaking. We assessed the quality of each clause through an

inverse of its LBD. However, we can also consider its variants such as the inverse of LBD2

or the inverse of 2LBD. During our experiments, we noticed that the strengthening of the

interplay between a branching heuristic and a clause learning scheme is very important.

For example in the modern VSIDS, variables related to resolutions, i.e., conflict analysis,

are incremented by one. We can also consider adjusting their scores based on their dis-

tances from a conflict. A branching heuristic might be required to utilize learned clauses

efficiently. Therefore, additional ideas with consideration of interplays among components

in a SAT solver might improve its performance. We evaluated tie-breaking using VSIDS

and CHB. Application of tie-breaking into a LRB, a recently proposed new branching

heuristic, might generate a more efficient branching heuristic.

Second, we addressed and evaluated a hybrid branching heuristic model as a component

in our hybrid concept. Our model is evaluated using two solvers. A model might become

more general if we consider a third solver for evaluation. Random sampling is applied for

avoiding out-of-time exceptions for infeasible features. Additional analysis or design would

be required, because random sampling worked well in our experiments, but this might have

the potential of degrading a model when new instances are added. A dynamic method

such as stopping the extraction process when a feature value is stabilized might be useful.

Currently, we evaluated only a hybrid branching heuristic model. We might construct a

hybrid restart model or a hybrid clause learning model, and attempt to integrate these

models in a single solver.

Third, we introduced the AHM. An application of the SaSS heuristic using AHM was

experimentally evaluated, and our intuition tells us that the SaSS heuristic worked well

because of the search diversification. We suggested additional ideas for improving SaSS,

including biased random work and density evaluation. Further ideas might be required,

but their implementation and evaluation can be future work. The SaSS is one possi-

ble scenario for utilizing the AHM. We might evaluate the potential of the AHM using

other scenarios, such as dividing workers into several groups, intensifying workers in the
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same group, and diversifying among groups. Constructing an AHM in another research

category, such as an AHM for the MAX-SAT solver, can be considered as future work.
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[52] N. Eén and N. Sörensson, “An extensible sat-solver,” in International conference on

theory and applications of satisfiability testing, pp. 502–518, Springer, 2003.

[53] A. Biere, “Adaptive restart strategies for conflict driven sat solvers,” in International

Conference on Theory and Applications of Satisfiability Testing, pp. 28–33, Springer,

2008.
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