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Abstract

In a lot of real world robotic tasks, the perceptual incompleteness limits the effec-

tiveness of robot agent systems when encountering a complex world environment with

uncertainty. The appearance of powerful sensors and scene understanding approaches

greatly enhanced the robot perception from several levels in recent years. However,

the robot perception is still awkward because the perception hardware and software

are not flexible and customizable when handling different tasks.

This dissertation addresses this very prevalent issue on robotics research and pro-

posed our novel systems and approaches. There are basically two methodologies to

handle the incomplete perception problem, enhance the sensing ability and equip

reasoning ability. To improve the sensing flexibility, we design a tiny TOF laser line

sensor which can be flexibly installed on any part of the robot for multi-purpose ap-

plications. We also discover that by providing some prior of the real world knowledge

like functionality, geometry and physics, we can design a reasoning vision cognition

framework to make a guess of environment even without direct observation and then

verify the recognition results using our tiny sensor. The lightweight flexible, cus-

tomizable and robust features of the tiny laser line sensor are demonstrated in several

active local sensing based task-oriented robotic applications.

A novel lightweight tiny laser line range sensor system based on the Time-of-Flight

(TOF) principle is developed. Attribute to the delicate circuit design and optical

attachments, the sensor is as small as 35[mm]×27[mm]×30[mm] and less than 20[g]

while achieve 256 line effective pixels under a single measurement with a range of

0.05[m] ∼ 2[m]. A higher measurement rate(60 ∼ 100[Hz]) can be achieved in short

range application. We model the overall errors of the sensor and formulate calibration

methods, achieving repeatable accuracy and measurement bias both within 2[cm] with

our tested ambient lighting conditions and measurement ranges.

The active local verification with reasoning based vision approach is demonstrated

through the application of agricultural tomato harvesting task. The difficult lies in

detecting the pedicel of each tomato which is very small and cluttered. On the vision

side, we consider a simple fact that with respect to the gravity and interaction forces,

every tomato remains stable due to the physics rules. According to this assumption,

a probabilistic model is created and the picking order in the branch is assigned under

the evaluated geometrical structure. Given the guesses, we apply the tiny laser sensor

to verify and detect where the pedicel is through local sensing.

The task-oriented robotic applications of metallic tools grasping and multi-link

aerial robot manipulation using tiny laser line sensor are documented. We developed
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a reflectance guide local sensing framework using the customized tiny laser sensor

output to align the robot end-effector to the tools with metallic surface of high re-

flectance to achieve grasping. For aerial robot application, the multi-link aerial robot

whole-body object manipulation application using multiple tiny laser sensor system

is illustrated. The tiny size, lightweight and as well as multiple sensors operation

framework demonstrated the feasibility and effectiveness of this difficult robotic ap-

plication.
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Chapter 1

Introduction

Attribute to the evolutions of information technology science over the past half cen-

tury, tremendous impressive milestones have been achieved in robotics field. Nowa-

days robots have been used in different areas among traditional industrial assembly[4],

high labour-dense agriculture[5][6][7], high accurate medical surgery[8][9][10], au-

tonomous warehouse management[11][12], autonomous parcel delivery[13][14][15] and

senior care service applications[16][17][18], which accelerate the productivity of the

society.

In addition, for recent decades, researchers are focusing on the intelligent robot

systems. Compared to the traditional machine-like robots that just follow a certain

movement routine, the intelligent robot systems can handle tasks that contain more

environment uncertainty, request for more sensing and control accuracy or require

more system autonomy ascribe to the developments of robot perception, control and

machine learning technologies. The intelligent robotics system have several advan-

tages with respect to the real world environment:

Tolerance to the environment uncertainty: The real world is very compli-

cate and the environment can be very clattered for the robots. Thus being capable to

obtain a good perception of the surroundings by various sensors, generate an approx-

imate model of the environment through recognition and reasoning and achieve an

accurate execution by robust control are very important in real world robotics tasks.

Human beings are born with such ability to adapt to the environment uncertainty

since we have a very delicate sensing system and very complex brain cerebra cortex

to process, decide and control, which is under millions of years long evolution. With

these basic intelligent “abilities” that human beings conclude and put into robots,

the robots can handle common real world tasks more accurately.
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Sensing and control accuracy: The development of perception and control

technology make it possible for nowadays robots to attain a very accurate measure-

ment of environment through powerful sensing system and achieve a precise control

results by the advanced executors. As it is wide known that compared to human be-

ings, robots excel in handling repetitive and high-precision tasks due to the different

control framework. However, the perception sensors for robots were “big”, “fat” and

poor in resolution and accuracy before. Recent integrate sensors enable the robots

to have a higher perception rate and accurate perception data than human beings

and also sense some information that we can not percept. For example, 3D sensors

can give a “mm” level accuracy in 3D distance while human beings can only give a

approximate guess of the distance, and these sensors are becoming smaller and lighter

in size and weight.

System autonomy: Autonomy is becoming a considerable standard to evaluate

a robotics system. Almost all robot tasks requires a certain percentage of robotics

system autonomy. Especially for the unmanned and hazard tasks like disaster rescue,

nuclear leakage clean up, outer space operations, which within these tasks, human

beings can only teleoperate the robot while all the instant information and decision

must be processed immediately and properly by the robot itself. As well as in service

robotics area, system autonomy means to release human labour and reduce the labour

cost. Until now, although cobots[19] seems to be an acceptable and promising solu-

tions for service and industrial robots right now, increasing the autonomy percentage

of the intelligent robot systems and finally achieve fully autonomous still remains as

a life-long goals for robotics researchers.

More recently, there are some robotics challenges held by both government and

non-government organizations all over the world. Including the DARPA(Defense

Advanced Research Projects Agency) Grand Challenge and Urban Challenge for Au-

tonomous vehicles where teams from Stanford University[20] and CMU[21] won the

first place respectively, the DARPA Robotics Challenge for humanoid robots where

the SHAFT company robot[22][23] won the trial and the KAIST Hubo[24] won the

final and the most recent MBZIRC(Mohamed Bin Zayed International Robotics Chal-

lenge) for drones. Through these challenges, the whole society can learn the cutting

edge technologies in robotics field. Some of the technologies received investment from

the industry and turned into real business like autonomous driving cars which is a hot

topic for both research and industry. There are also some research projects related

to the intelligent robot systems conducting collaborations with industrial companies.

News and market evaluation reports also point out that there will be significant

2



growth in intelligent robot market as the news and reports themselves are growing

exponentially[25]. Thus we can infer that in the near future the intelligent robots will

become more and more common and popular in people’s daily life.

1.1 Robot Perception

The perception plays a very important role in intelligent robot systems. It is how

robot obtain the environment information, namely the bridge between the outside

environment and the robot. For human beings, we have five senses: vision, audition,

olfaction, somatosensation and gustation, where 83% of information come from the

sight, 11% from the hearing, 3.5% comes from the smell, only 1.5% and 1.0% from the

touch and taste respectively[26]. In robot sensing system, the researchers mainly use

camera and microphones to collect vision and audition information. Through decades

of sensing technology developments, recent sensors can achieve higher measurement

frequency and resolution than our sensory organs, but these sensors still lack the flex-

ibility since our biological structures are very exquisite. Meanwhile, how to correctly

and intelligently understand the collected data is still a unsolved problem in robotics.

Some researchers tried to solve the first problem by building the structure of hu-

man beings eyeball system using artificial muscles[27][28] while for more cases multi-

sensors system are applied to compensate for the flexibility like hand-eye[29], active

local sensing[30] and range sensing systems[31]. The development of range sensors

make it possible for robots to acquire a more precise 3D data than human beings,

which is a big advantage of robots compare to human beings because human’s vision

system is basically rough stereo vision and passive sensing which means human can

not tell the accurate range data. Considering all these advantages, we can predict

future importance and necessity of range sensing technology and the use of range data

in robotics applications.

For the second problem there are several methodologies[32] in robotics research.

The traditional pattern recognition(PR) method uses the pre-knowledge of the objec-

tive scene and utilize the filtering, clustering and signal processing based method to

perform the recognition. In addition, the range sensors provide one more dimension

information to the data and brings new approaches like manhattan restriction[33], 3D

features[34], and real world physical reasoning[35] and geometrical reasoning[36]. An-

other prevalent methodology is machine learning(ML)[37], which is either connected

or independent compared PR. In recent 5 years, attribute to the powerful computa-

tional ability of GPU and the huge amount of big data, the appearance and realization
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of deep neural network(Deep Learning)[38] significantly changes the whole informa-

tion technology field, including computer vision[39], natural language process[40] and

robotics control[41] and yielded less dependency on the traditional PR method.

The traditional PR method gives the reason why it work and why it does not work

so that researchers can always make improvements and evaluate the stability of the

method under certain environment condition. However, the PR method will become

super complex and hard to maintain if we want to make it widely applicable. On

the other hand, the machine learning method could provide very impressive results

and seems very robust as long as the model is good and the training data is “big” or

“appropriate”. However, researchers still can not give a “strict” proof to the system

stability or results convergence of the whole framework, which is why so far for a lot of

robotics applications, the traditional PR methods are widely used. Hopefully in the

coming future, with the “evolution” of the deep learning, researchers may come up

with a more common, powerful, robust and mathematical reasonable general method,

namely, the complete AI(Artificial Intelligence) for robotics.

1.2 Robot Active Range Sensing

Active range sensors emit their own energy source(mostly different kinds of waves).

The energy source hits objects echo from the objects is detected and measured by

the sensors. Most animals including human beings use passive range sensing, namely

stereo vision system to obtain the rough 3D distance data of the environment while

some animals possess active biosonar system like dolphins and bats so that they can

be the accurate predators. Range sensing also contributes to the precision of robotics

applications.

The mainstream of active range sensors are divided into two big types, the sound

wave based and the light wave based. The first type is called sonar sensor for a

lot of time and the basic principle is measuring the time between the sending pulse

and the echo as the travelling speed for the sound is constant in the same medium

and fast enough in ordinary measurement[42][43]. Sonar sensors are cheap, easy to

use and applicable in underwater tasks while the constrains are also obvious: short

measurement range, low measurement frequency and sensitive to noise. The other

very popular type is using light waves and there are several kinds of sensing prin-

ciples: direct triangular measurement, structure light measurement and the time of

flight(ToF) measurement[44].
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Laser triangulation principle is widely used in surveying and it is simple, intu-

itive and affordable[45][46]. However, there will be blind area with respect to the

length of the baseline and the size increases if the system demand longer measure-

ment range. Structure light technology is also based on triangulation principle, but

much more complex. In structure light range sensors, the laser emitter projects cer-

tain light patterns, due to the difference shape of the objects and different range

and as a consequence, the reflected pattern in receiver camera will get deformed in

structure and scale, by analysing these distortions compared to the original projected

patterns, depth information could be estimated[47][48]. The structured light sensors

are precise and high resolution while the challenges remain in high reflectance and

thin objects. The time of flight(ToF) principle is the most intuitive way. Like sonar

sensors, since the velocity of sound and light are almost constant, measuring the time

delay between the emit and receive the distance data can be obtained. ToF is a very

flexible range sensing method and the measurement ranges from centimetres to thou-

sands of kilometres[49][50][51]. For robotics, the Lidar(Light Detection And Ranging)

sensors are used decades before to do obstacle avoidance, SLAM. The appearance of

3D Lidar sensors make it possible for researchers to do 3D objects recognition, 3D

reconstruction and 3D SLAM. Recently, the commercial affordable ToF camera which

is mainly build for gaming, contributes to the robotics research since the accuracy,

frequency and measurement range get improved ascribe to the ToF good features.

Thus we can predict that similar kind of ToF sensors are potentially demanded in

some unconventional applications in robotics research.

1.3 Task-oriented 3D Visual Reasoning and Local

Sensing

Visual reasoning is a big and ultimate goal of visual intelligence. Researches are

working on the common approach that by providing captured data, based on the

pre-knowledge and extracted features, deduces the object affordances[52][53], scene

physical structure[54], movement causality[55], etc. Although recent 3D range sens-

ing technology brings new perspective in reasoning research, so far there are no ap-

proaches that can handle all the common tasks since it is almost impossible to define

all the pre-knowledges. As a matter of fact, these methods are applied in certain

scene and indeed helps improving the results that conducted by traditional pattern
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Figure 1.1: The tiny laser line sensor system(ruler unit: mm)

recognition method, while as high level vision approach in task-oriented robotics ap-

plications.

Local sensing is a general method to compensate for the sensing incompleteness

and the high level vision recognition errors due to the environment uncertainty and

complexity. The main features of local sensing are concluded as three aspects[56].

Firstly it is targeting at providing a set of relative information with respect to the

task, mostly low level information like target distance, reflectance and orientation.

Secondly the sensors for local sensing are mostly on-board sensors and as a conse-

quence the size of the sensors plays an important role in selection and evaluation.

Lastly, the corresponding related actions and motions are generally a “reflex” since

the data is also low level.

It is very necessary to apply reasoning based methods combined with the local

sensing strategy in intelligent robot tasks since it always happens that the sensors

can not obtain all the information for the robot to make decision and finish the

motion. The predefined knowledge will definitely help the robot to get a more robust

recognition results[57][58], and the local sensing will then return confirmation from

the low level data to the upper recognition to generate the final decision.
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1.4 Research Goals and Contributions

In this dissertation we are mainly conducting the system research and development

of intelligent robot perception which is considered as traditional but also of great

significance nowadays. We consider that at most of the time it is very difficult for

intelligent robot systems to obtain the adequate information directly from the sensors

to make decision in certain tasks. Addressing on this very common problem, we are

trying to both improve the sensing ability and vision intelligence and find a way to

combine them into the robot system. Targeting at achieving some of the very difficult

robot tasks that demand both sensing ability and vision intelligence, the research not

only proposes novel software approaches, but also develops the customized hardware

system.

We demonstrate our algorithm and hardware system in task-oriented robotics ap-

plications and show the feasibility and robustness of methodology. The contributions

of this dissertation includes the following:

Firstly a tiny laser line sensor based on ToF principle is developed. We designed

the hardware of both circuits and optical attachments and struggled to make it as

small as possible. To reduce the cost and size, the sensor logic is controlled by a

32-bits MCU(Micro Control Unit) that is the one of the newest and most advanced

commercial product. In order to handle the noise from the hardware side, we install

narrow band optical filter and power management circuits. Besides the hardware

part, we also develop a calibrate method for the sensor data at both hardware and

software side. The temporary version of sensor where we published in [1] is of an ultra-

tiny size of 35[mm]× 27[mm]× 30[mm] and weight of 20[g]. The sensor can provide

both reflectance information and distance information and based on our caliberation

algorithm, the sensor can achieve standard bias of less than 0.5% and a floating

measurement error of around 1.5% with respect to the measurement range. The sensor

can be adopted in a lot of robotics applications and its small size and lightweight make

it very suitable for local sensing.

Secondly, an active local verification with reasoning based vision recognition

framework and the harvesting humanoid robot system are proposed toward a very

difficult robot task, tomato harvesting[2]. Since tomatoes always gather together

in one branch and the stems that hold each tomato could be hardly detected, we

developed a algorithm that adopts the physical and geometrical reasoning methods

which simply bypassed the detection of the stems and deduce where the stems should

be from the input 3D information. Thus making it possible for a humanoid robot
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to harvest the tomatoes using scissors, namely selective harvesting exactly like what

human beings do. Our lightweight laser line sensor demonstrates its advantages in

detecting the stem as an active local verification process to compensate for the vision

recognition error and handle the environment uncertainty based on the optimized

features of our laser sensor. The recognition results, harvesting results and local

sensing results are showed and analysed, the vision algorithm feasibility and the

sensor system framework effectiveness are justified.

Thirdly, based on the flexibility of our laser sensor system, we demonstrate how our

sensor system can help in some difficult robotic applications. Such as in the robotic

challenge MBZIRC, the metallic tools manipulation task, combined with the laser

sensor intensity data, the robot systems[3] we developed can show the interesting

demonstrations of metallic tools grasping based on reflectance feedback. Another

example is the aerial robot object manipulation tasks. The lightweight, multi-sensor

applicable features of our tiny laser line sensor can contribute to the local sensing of

object manipulation, especially for the multi-link aerial robot which transforms and

holds to object. The experiments of our robot challenge task-oriented systems are

demonstrated and the analysis of the feasibility and the potential improvements are

discussed by the present results.

1.5 Dissertation Outline

The roadmap of this dissertation is illustrated in Figure 1.2. In the following of the

dissertation, the next part Chapter 2 describes the motivation of this research and the

state of art literatures in the related fields. Chapter 3 describes the development of the

lightweight tiny laser line sensor, which can be considered as the main contribution

in this dissertation. In this chapter, the details of how to develop the sensor in

both hardware and software are described. The advantages of our delicate hardware

design is emphasised inside this chapter and for the software part, we analysis the

systematic errors for the sensor and proposed our hardware and software calibration

methods which previous work has not addressed. Chapter 4 documents the tomato

harvesting robot system with reasoning based vision recognition and active local

sensing verification approaches. It is also demonstrated in this chapter that the

reasoning based vision recognition method can give a new perspective in handling

the issue of inadequate observation. In Chapter 5 we focus on the hardware and

software development of task-oriented robot systems for metallic tools grasping based

on the reflectance feedback of the metal surface. We demonstrate the effectiveness of
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how a flexible local sensing tiny sensor can help handling the difficulties in this task.

Chapter 6 documents the vision recognition and flexible local sensing applications

for aerial robot manipulation tasks, especially for the multi-link aerial robot, which

illustrates the considerable advantages of our sensor in this kind of applications. The

last part Chapter 7 concludes the whole dissertation.
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Figure 1.2: Roadmap of dissertation outline
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Chapter 2

Motivation and Related Works

In this chapter we first states the motivation of this research by discussing some of

the common exiting problems in robotics systems which have been concluded from

other literatures. We also model the mathematical expression of the problems and

claim several solution methodologies. Toward these methodologies, a general review

of the literatures and a discussion of the existing studies are then conducted in the

later sections of this chapter.

2.1 Incomplete Perception

“The world is its best model and the trick is to sense it appropriately and of-

ten.” [59][60] Disappointed with the performance of the first general-purpose mobile

robot Shakey [61] Rodney A. Brooks speaks out the very fundamental problem of

robot systems in his very famous article that criticizes the tradition symbolic repre-

sentation based AI approach. The sentences from the philosophers are always short

but significant, and lead to conjectures [62] that:

1. Conjecture 1: “If perception is complete, then an agent whose actions are

a function of percepts only (i.e. a purely reactive agent) can potentially be

effective in all environments.”

2. Conjecture 2: “An agent with incomplete perception must maintain internal

state information to remain effective”

However, the perception of an agent is only complete when all the relevant features

can be observed at any situation and time. Features are relevant when the evaluation

of the next action in a situation is depending upon those features. As a matter of

11



fact, it is impossible to observe all the relevant features of the world and even the

definition of the complete relevant features is obscure. [62] illustrated some of the

reasons for incompleteness of perception since it is ubiquitous for robot systems:

1. Sensor limitations: Limited FOV(field of view), distance and resolution lim-

itations, sensor error output.

2. Physical Obstructions: A very common problem.

3. Monetary cost of sensors: Price, size, weight, etc.

4. Computational costs: The more information, the more computational costs.

5. Mutually exclusive sensing: Destructive sensing.

As the issues above can not be reasonably overcome, thus a conclusion was drawn

that the perceptual incompleteness is a pervasive property of most autonomous robot

systems in most domains. However, perceptual incompleteness as the robot systems

are, by obtaining more relevant features to determine the next choice of movement,

the systems can achieve relatively effective results under the internal state(in Conjec-

ture 2) since the agents do attain a more appropriate senses.

Consider this, there are several methodologies that directly and indirectly make an

attempt to improve the effectiveness of perception incomplete agent systems in their

domains. To explicitly explain the philosophy, we paraphrase these obscure sentences

to intuitive mathematical expressions, note it as an optimization problem and the

objective function is the evaluation function F of the robot effectiveness that:

argmaxF (2.1)

denotes that for a continuous perceptions Pi ∈ P in the environment which imply

potential world features:

Pi |= Λi (2.2)

where Λi is the features produced by the perception Pi. Defines the set that contains

all the relevant features ΛR where (ΛR)C = Φ, the complete perception is when

Λi = ΛR, and the evaluation function F is based on the observed world features and

it should satisfy the following equations that:

∀Λ 6= ΛR
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F(Λ) < F(ΛR) (2.3)

∀Λi ⊆ Λj

F(Λi) ≤ F(Λj) (2.4)

Thus we obtain the model for the objective evaluation function F which in the

domain of perception P that:

argmax
Pi

F(Λi) (2.5)

s.t. Pi|= Λi.

∀Λ 6= ΛR, F(Λ)< F(ΛR).

∀Λi ⊂ Λj, F(Λi)≤ F(Λj).

The perceptual incompleteness here can be ascribed to two factors. First, as state

above, the sensors are trapped with their limitations that it is somehow impossible

to attain the complete data in the world, which is expressed as:

∀Pi ∈ P

Pi ⊂ PF (2.6)

where PF is the full observation. The second factor is that even a full observation

was to be achieved, the physical obstructions and computational costs can provide

constrains to the production of observed features in the world that:

@P |= ΛR (2.7)

Thus, the directly and indirectly methodologies that researcher are trying hard to

handle the perceptual incompleteness problem and improve the effectiveness of the

robot systems are basically dealing with the perception P and the interpret models

|= from P to Λ so that the intersection of Λ and ΛR can be maximized:

argmax
P,|=

(Λ
⋂

ΛR) (2.8)

where P |= Λ. To solve this, researchers have done enormous significant progresses

in recent decades.
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2.2 Active Range Sensing

The most intuitive solution is to improve the perception ability, namely the P in

Equation 2.8. To do so, the sensor systems need to be newly created or upgraded.

The development of 3D range sensing starts at 1980s [31][63] in laboratories and these

sensors become very popular in robotics applications after the 1990s. Thanks to the

early development of 3D sensory technologies[44], in the beginning of this century the

specifications of the range sensors have improved a lot like the accuracy, frequency

and resolution.

2.2.1 Lidar Sensor

Lidar is a general surveying method for range measuring. The very popular Laser

Range Finders (LRFs), a typical type of Lidar sensors such as the initial version

of Hokuyo LRF [49][50] and another well-known SICK LRFs [64], have been widely

used in a lot of robot systems. These LRFs have relatively long ranges of over 30[m]

with errors less than 2[cm], which makes them indispensable to measuring outdoor

distances. For example, the Stanford team [65] in the DARPA Urban Challenge used

a 3D lidar sensor named Velodyne to support autonomous vehicle driving.

These Lidar sensors share the same technical perspective of basic phase shift ToF

measurement. As Figure 2.1 shows, the illumination signal as note as si, which after

being reflected from the object and received by the APD(Avalanche Photo Diode)

sensor note as sr. Inside the sensor the si is also collected as reference signal for

synchronization and note as sref and sref can have multiple phases to help calculation.

Since the emit light travels a distance to the object and get reflected back, there will

be a time delay between sref and sr, which will results in the phase difference φ. The

distance can be expressed as since the si is a periodic signal:

L =
1

2
× cTφd

2π
=

cφ

4πf
(2.9)

where c is the speed of light in certain medium and the f is the signal frequency.

Since the reflected incident signal sr is correlated with the reference signal sref . The

general method yields the correlation function:

Corr(sr, sref ) =

∫ ∞
−∞

sr(t)sref (t+ τ) dt (2.10)

Then the φ can be obtained by processing the correlation function. According to

Equation 2.9, the higher the frequency of the periodic signal f is, the higher the
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Figure 2.1: Phase Shift ToF Measurement(The frequencies of emitted signals are
depending on the targeting measurement distance and system sampling rate.)
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distance resolution are. However, this will lead to a consequence that for longer dis-

tance, the reflected light signal may exceed one period if the frequency is too high.

To address the dilemma, signals with different frequency are emitted through the

laser diode alternately like in [50] used two signal waves of frequency 46.55[Mhz] and

53.2[Mhz]. The lidar sensors use spin motors to obtain 360 degree scans, which sacri-

fices the size of the sensors and makes them impossible for some smaller applications.

In addition, the cost of such sensors is prohibitive for common use with the minimum

cost being at least several thousand US dollars.

Researchers have been investigating cheaper and more accessible designs for lidar

sensors. Konolige et al. [45] proposed a laser range finder sensor using the triangle

measuring principle . This approach installs a point laser emitter and a line Charged-

Coupled Device (CCD) sensor with a fixed baseline, obtains full 360 degree 6[m]

range measurements with less than 3[cm] errors, and costs about $30. Despite of the

measurement range and frequency, this kind of solution seems promising for ordinary

commercial applications.

2.2.2 3D Camera

The development of CCD and CMOS technology make it possible to build a static

compact 3D camera sensor system rather than mechanically scanning measurement

while yield line and plane range measurement. There are basically two popular type

of measuring principles, the structured light and the ToF based measurement.

The structured light approach borrows the geometrical theory from the stereo

vision and tackles the very difficult matching problem by projecting the decoded pat-

terns. The very common methods use binary and gray coded fringe patterns [66][67].

Multiple frames are used so that the pattern matching can be realized for higher

resolution. As the structured light methods rely on triangulation principle, the mea-

surement occlusion of convex surface are dealt by install multiple projectors or mul-

tiple receiver cameras. Since 2010, Microsoft and PrimeSense published structured

light based RGB-D cameras, namely Kinect and PrimeSense, which initiated a huge

revolution in the indoor range sensing field. Thanks to the reverse engineered results

from the ROS community[68], the methodology details of these sensors are deduced

since there are no official documents from the manufacture. The high precision, small

size and affordable price of these sensors make them perfect for robot applications

and the skeleton detection SDKs from Microsoft and OPENNI accelerate the research

of SLAM [69], 3D reconstruction [70], human-robot interaction [71] and etc.

16



Most recently, Microsoft published the second version of Kinect [72], namely

Kinect v2, which is based on the TOF principle, improving the resolution and ac-

curacy of both RGB and depth images where the details of comparison from these

two versions of Kinect can be found [73]. The study of TOF range cameras began at

decades ago and there are mainly three approaches are currently employed.

The phase shift based principle which is also widely applied in LRFs is adopted

in Kinect v2. Consider equation 2.10, the reflected incident signal can be noted as

sri of the ith pixel incident signal. Thus the correlation function turns out to be a

vector or an image matrix in line [74] and 2D image [75] cases respectively. Since the

sinusoidal is widely used in this case and the reference signal and incident signal can

be expressed as:

sref (t) = cos(ωt) (2.11)

sri (t) = Aicos(ωt− φi) + C (2.12)

then the correlation function of the ith pixel is given as:

Ci(τ) = Corr(sri , s
ref ) =

Ai
2
cos(φi + τ) + C (2.13)

since the reference signal is well known and we choose the phase to be τ = nπ
2
, n =

0, 1, 2, 3, thus the phase and amplitude of the ith pixel can be noted as:

φi = arctan(
Ci(τ3)− Ci(τ1)

Ci(τ0)− Ci(τ2)
) (2.14)

Ai =
1

2

√
(Ci(τ3)− Ci(τ1))2 + (Ci(τ0)− Ci(τ2))2 (2.15)

The second approach is based on an optical shutter technology [76][77]. For the

shift based method, so many parameters need to be considered and the system is

relatively complex, which is suitable for measurement of more than 3 metres but

results in high expense. This approach makes it possible to make low-cost commercial

products with acceptable accuracy especially for local sensing applications. [51]

claimed that there are only a few of researches about this kind of approach and the

existing one just reveals little details.

Another principle is newly proposed in recent years [78][79][80]. It is basically a

CMOS time-of-flight (TOF) range image sensor using single-layer gates on field oxide

structure for photo conversion and charge transfer. The n-type buried layer enables

the high-speed charge transfer for the sensor thus by simply comparing the ratio
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of capture electrons between two charge drains. Since this approach only depends

on slightly improvement of CCD sensors, the cost can be reduced and more pixels

resolution can be easily achieved. Based on this measurement principle, we designed

the hardware circuits and calibration methods for this type of commercial sensors.

In the next chapter we will evaluate our intact sensor system and explain how we

address the problems which previous works did not consider and for the following

chapters we demonstrate how we customize and apply our flexible laser system in

various of difficult robotic applications and evaluate the effectiveness of our sensor in

these applications.

2.3 Reasoning and Local Sensing based Vision

Cognition

2.3.1 3D Visual Reasoning

Back to the equation 2.8, except directly improve the P , researchers also came up

with idea that by accumulating multiple observations and combining them together,

the agents are able to generate better world features to make decision of next action

since it is obvious that:

∀Pi |= Λi

Pn =
n⋃
i

Pi |= Λn (2.16)

∀Λi,∃Λi ⊂ Λn (2.17)

There are some researches [81][82][83] tackled in this methodology and the diffi-

culty is to solve the very tradition NBV(Next Best View) [84] problem so that the

observation can generate the most useful information toward to task.

Recently, another popular methodology attracts the interests of researcher since

the profuse 3D data provide a new perspective on 3D physical and geometrical vi-

sion reasoning. Reasoning-base vision recognition generally consists of four aspects:

Functionality, Physics, Intentionality and Causality[85, 86, 87, 88]. Research in this

area focuses on determining “what is where”, and trying to add the very fundamental

knowledge to the vision system to achieve reasonable results. The idea of utilizing

fundamental knowledge could help solving certain difficult object detection problems.

Grabner et al.[85] suggest that the detection of chairs and tables should not only con-
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centrate on the geometric features, but the functionality such as the definition of the

action of “sitting” by humans. In addition, Bo Zheng et al. [58] provided methods for

building a more “Reasonable” 3D pointcloud map in indoor environments that can

infer potential falling objects based on pointcloud physical relations and observation

of human daily actions.

Instead of directly handling the NBV problem to obtain more observations, This

approach makes guesses of the unobservable parts of the objectives according to the

prior knowledge of the scene. It can complete the 3D missing part of the object from

the unreasonable points from the sensors since all the detected voxels have to satisfy

the constraints of the physics and geometry [86]. It can also generate the stability

of the object by considering the geometrical stability of the object with respect to

he gravity[58]. The insight of this methodology is improving the features generation

model |= in equation 2.8, where:

∀Pi |= Λi

∃Pi |=reasoning Λi

⋃
Λr (2.18)

where Λr is the guess of features from reasoning model |=reasoning. According to

equation 2.4, obviously we have:

F(Λi) ≤ F(Λi

⋃
Λr) (2.19)

which demonstrates the importance of this approach to the effectiveness of robot

systems. However, since basically this method only gives a guess of the potential

world features, the generated features set Λr should contains probabilistic parts and

the final justification from other observation is required so that the validation and

accuracy can be guaranteed. Under this framework, this approach shares the same

perspective of NBV methodology while evaluation of the NBV for reasoning approach

is task-oriented. Local sensing is designed to handle with this problem.

2.3.2 Local Sensing

Local sensing is an essential complement to high level sensing and reasoning with

respect to the environment uncertainty and complexity. [56] concludes the three

main features of the local sensing: the low level relative output information, the size

and weight of sensors and the “reflex” like immediate response.

Local sensing is widely used in swarm robotics[89] since in swarm robotics an

individual robot is a simple behaviour agent that just takes actions according to the
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sensory data and internal memory [90]. Therefore, the global interpreting of the

perception data is not necessary.

A more general local sensing framework is applied in manipulation using prox-

imity sensors. Proximity sensors are designed to handle short-range for proximity

measurement so that these kind of sensors can only provide limited information in-

adequate for recognition and high level processing [30]. Proximity sensors are also

functionally different from tactile sensors [91] since the proximity sensors ensure the

effective grasp [92] or safety collision detection [93] and the tactile sensors provide

contact information.

The proximity sensors are often provides distance data by acoustic and optical

measurement. In a lot of applications, optical methods are appreciated since the

measuring frequency is much higher than using sound information. [94] proposed a

high speed net-structure proximity sensor using reflection of infrared light. Attribute

to their novel design and analog processing, the time consuming complex processing

in CPU is avoided and the system can response at 1khz. Therefore the demonstration

of robust grasping of robot hand can be shown in [95]. The size, weight, resolution

and real-time ability are the main features of a proximity sensor for local sensing.

The combination between reasoning based vision recognition and local sensing will

result in reasonable and reliable actions for the task-oriented robot systems. We will

demonstrate our framework in the later chapters.
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Chapter 3

Development of Lightweight Tiny

TOF Laser Line Sensor System

3.1 Introduction

For robotic sensing, depth sensing plays an important role because accurate range

measurements are helpful for reconstructing scene geometries, which is required by

tasks of manipulation, SLAM, and scene understanding. In terms of accuracy in these

applications, laser range sensors provide more accurate and dense distance measure-

ments compared to other kinds of sensors such as sonar and IR sensors.

There are several popular laser range sensors in commercial market and dramati-

cally accelerate the development of robot systems. Lidar(Light Detection And Range-

ing) systems are widely used in outdoor environment like autonomous driving [96][97],

field mobile robot SLAM [98] and drone [99]. Lidar systems are good at range sens-

ing from tens of centimetres to several tens of metres for both indoor and outdoor

applications and the error can be as less as several centimetres. However, most Lidar

systems equipped with motor executers so that the size, weight and power consump-

tions are less considered. Besides, the Lidar systems are not as affordable as other

type of sensors and the price is from thousands of US dollars to tens thousands of US

dollars. Another prevalent type is the RGB-D cameras, like the well-known Microsoft

Kinect. These sensors were supposed to be designed for gaming market, the good

performance and affordable price make them very popular in robotics research [69]

[70].

In Chapter 2 we mentioned that there are some limitations from the sensors in

robot systems. Especially for the monetary cost of sensors like the price, size and
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weight, are not well considered in most of the commercial products and researches.

These unconventional sensors are very necessary and can be applied in robot local

sensing for task-oriented robot systems like small mobile robot and drone due to the

small size and light weight.

In this chapter, we describe the design of a tiny line laser range sensor based on

the TOF principle [78][80] for unconventional applications with strict requirements on

size and weight. We also analyse the systematic errors and design efficient calibration

methods for the sensor. The sensor has the following specifications:

1) Lightweight and tiny with size of 35[mm]×27[mm]×30[mm] and weight

of 20[g].

2) Powered by a Single USB Power Supply.

3) Power Consumption: < 1[W ].

4) Measurable Range: 0.05[m] ∼ 3[m].

5) High Frequency Measurement: higher than 60[hz] within a shorter range.

6) Low Cost: less than $150 for a prototype.

3.2 Sensor Hardware Design

This section discusses the hardware architecture of the sensor. The following sub-

sections give details respectively on the hardware design of the circuits board, the

optical design, and the logic timing. For hardware details, please refer to our open-

source repository1

3.2.1 Architecture Overview

As Figure 3.2 shows, the sensor’s main components are a laser diode, a range sensor,

optical attachments, and a 32-bit Micro Control Unit (MCU) with powerful peripheral

circuits. The main parts of the system include:

Laser Emitter: The 905[nm] laser diode is programmed to emit pulsed light

with a constant pulse width of around 40[ns], and the pulse duty rate is adjustable

for laser eye-safety. The pulse signals are generated by the 4.608[Ghz] high resolution

timer and then the IC propagation delay and MOSFET delay can be accurately issued

by the hardware configuration.

Range Sensor Receiver: The range sensor receiver we use is recently released

by Hamamatsu Corp, which is equipped with Ghz level switches and a high speed

1https://github.com/cretaceous-creature/jsk_laser
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Figure 3.1: Hardware overview(The red PCB board is the top board and the blue is
the bottom one; The PCB boards have 4 layers and the inner 2 layers are the power
signals)
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Figure 3.2: Hardware architecture flowchart. (The meanings of the arrows. Red:
Power connections; Green: Data flows; Blue: Logic control signals. Illustration of the
details in section 3.2).

charge transfer pixel structure. We use the 4.608[Ghz] high resolution timer to control

the logic timing of the high speed switches. The output of the sensor is the voltage

reading of the inner capacitors. Through the amplifier buffers, the output signals

are collected by the ADCs and transferred to the memory by the DMA module.

The signal data is then transformed to distance measurements based on calibrated

parameters.

Optical Attachments: This sensor is attached to both a laser lens and a camera

lens. The laser emitter uses a line laser lens with emitting angle ranging from 30◦ ∼
120◦. The corresponding camera lens with similar field of view is attached to the

range sensor receiver. Without compromising the size, the aperture of the lens is

less than F2.0. To reduce influence from ambient lighting, we also equip an infra-red

narrowband filter on the camera lens. The measurable range can be customized by

selecting lenses with different fields of view.
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Figure 3.3: Illustration of sensor operation flow(The reset voltage and the saturation
voltage are constant when give a constant reset pixel power supply; The range of the
duty rate is constrained by the laser diode limitation and laser safety consideration).
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Micro Control Unit: The main controller we use is a 32-bits MCU integrated

with powerful peripheral circuits, including 12-bit Analog-Digital Converters (ADCs)

with 5 Mega Samples per Second (MSPS) converting rate and a high resolution timer

with up to 4.608[Ghz] frequency and approximately 217[ps] resolution. These periph-

erals make it possible to provide accurate calibration of the sensor timing sequences.

3.2.2 Logical Timing

According to the datasheet of the range sensor [100], there are two capacitors for

each pixel inside the sensor, both of which are connected to the photosensitive area

through a high speed switch. When the reflected light is received, the capacitor with

corresponding switch turned on will discharge until a saturation voltage is reached,

as Figure 3.2 shows.

The whole timing logic is shown in Figure 3.2 and Figure 3.6, which illustrate the

basic TOF measurement principle. In Figure 3.6, Q1, Q2 are the direct measurements

of the capacitors, T0 is the pre-set constant laser pulse width, and Td denotes the un-

known delay of the reflected light. Because the distance can be derived from Td using

the speed of light, we would like to infer Td from the direct capacitor measurements.

Assuming ideal situations when the power of the emitted light and the reflected light

are constant, note as the ideal waveform shown in Figure 3.6, by the characteristics

of the capacitors we have:
Q2

Q1 +Q2

=
Td
T0

. (3.1)

Under ideal conditions when the two capacitors of a pixel have the same charac-

teristics, we have:

Td =
T0V2

V1 + V2

, (3.2)

where V1, V2 are the voltage outputs, linear with respect to Q1, Q2, the measurements

of the range sensor. For all the 256 pixels, there is:

V =

[
V

(1)
2

V
(1)
1 +V

(1)
2

V
(2)
2

V
(2)
1 +V

(2)
2

· · · V
(256)
2

V
(256)
1 +V

(256)
2

]T
, (3.3)

where V
(n)

1 , V
(n)

2 are the outputs of the nth pixel. With delay Td ∈ [0, T0] and mea-

sured distance of the nth pixel L(n) ∈ [0, cT0
2

], n = 1, . . . , 256, we have:

L =
cT0

2
V , (3.4)
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Figure 3.4: Distance sensor pixel structure. (A)Switch VTX1 on, VTX2 off, capacitor
C1 discharges. (B)Switch VTX2 on, VTX1 off, capacitor C2 discharges.

where c is the speed of light of 3 × 108[m/s]. If we set T0 = 40[ns], the measurable

range is [0, 6] meters theoretically.

3.2.3 Laser Diode Charge and Drive

We applied the Osram SPL LL90-3 [101] hybrid pulse laser diode(PLD) emitter in

our hardware. To achieve the sudden high and dense power pulse energy within tens

of nano seconds, capacitors of about 100nf are placed near the laser diode and get

charged by the power supply as Figure 3.5 shows. The trigger signal connects with a

current limitation resistor to the gate of the MOSFET with a input capacitor of about

300pf . Since the rise time is a very important factor in our system, we need to charge

the MOSFET input capacitor as soon as possible. Thus a resistor of 5.1Ohm is used

and result in high charge current of about 1A with several nano seconds for trigger

signal. Therefore the trigger signal is generated by a high speed power MOSFET

driver which itself can be directly triggered by TTL-level IOs. The charge resistor R1

is related to the pulse frequency since to fully charge the capacitor C, about 3 ∼ 5
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Figure 3.5: Laser Drive Corresponding Circuits: The MOSFET, Laser Diode and
Charge Capacitor are included in the hybrid laser module SPL LL90-3; The value of
the resistors are carefully chosen to satisfy our system.

times constant RC where in this case R1×C is required. Reducing the R1 will lead

to the high current on R1 thus a bigger resistor package should be used. Considering

the maximum duty rate of pulse diode is 0.1% and the resistor size we choose the

200Ohm power resistor and could achieve the maximum pulse frequency of 10Khz.

3.2.4 Data Acquisition and Correction

According to Equation 3.1, distance information is derived from the quantity of elec-

trons discharged by the reflected light between the two capacitors. Before measuring,

each sensor pixel needs to be reset, namely, recharging the two capacitors of each

pixel. The voltages of a certain the two capacitors after reset are denoted as VR1, VR2.

Note that the measurements voltage V1, V2 are the offset voltages compared to the

reset voltage VR1, VR2.
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To acquire the data VR1, VR2, we follow the logic timing of the range sensor and

the output connection to the MCU’s two ADCs through the amplifier buffers. The

data is handled by the system DMA and directly moved to the memory or the serial

port (UART) for later processing. There is a saturation problem that requires careful

handling. The measurement is done by accumulating energy of the reflected light

in the capacitors. Within a frame of 256 pixels, some pixels will become saturated

earlier than other pixels due to different measurement ranges. In order to obtain

both short range and long range data without being saturated, we continuously read

out and store the data, and if the current data saturates, we approximate its current

value using the value from the last frame.

Because the two capacitors do not have exactly the same characteristics, we con-

sider sensitivity ratio, leakage voltage and other factors as indicated in the datasheet

of the camera sensor. The suggested distance estimation equation given by the man-

ufacturer is:

L = a
V2 − Vle

(V1Rsen − Vle) + (V2 − Vle)

cT0

2
−Dofs, (3.5)

where V1, V2 are the discharging amount of the capacitors and Rsen is the sensitivity

ratio between the two capacitors of each pixel, Vle is the leakage amount of the ca-

pacitors, and a,Dofs are the linear fitting coefficients of the equation. However, we

find this correction model fails to produce adequate results. In the next section, we

will analyze major errors and provide our method for calibration.

3.3 Calibration Analysis

As in the literature [78], the experiments use the linear model and only perform the

experiment by sending delay to the logic timing circuits and simulate the results of

changing the target distance. It is inevitable that some of the systematic errors are

ignored. Firstly, the light source effect may bring non-linearity part into the system.

When we have assumed that the emitted light and the reflected light have constant

power, the resulting expression is straightforward. However, the actual light power

is rarely constant, and it is more like a quadratic function [101] as Figure 3.6 shows.

Secondly, the dynamic measurement operation results should be considered since the

reflected light amount is no longer constant and it is necessary to consider the effects

of different reflected light amount. Lastly, as a system, it is better to consider what

kind of factors like the temperatures, reflectance of the objects and ambient light may
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Figure 3.6: Logic timing.(Demonstration of logic timing for one pulse, the sensor
may need to accumulate hundreds or even thousands of pulses to due to the measure
range)

introduce considerable effects to the measurement. In this section, we will explain

how we address the problems above based on our hardware system.

3.3.1 Hardware Pulse Delay Analysis

As Figure 3.6 shows, there is an unknown but constant time delay τ between the

pulse signal and emitted light. This is because the MOSFET driver has an input

capacitor and needs time to charge. This will not be a problem for ordinary usage,

but at nanosecond level, a 300[pf ] input capacitor requires several nanoseconds of

charge time at an input current of 1[A]. The MCU I/O interface cannot provide

such current, hence the MOSFET driver introduces almost 20[ns] delay. Thanks to

our 4.608[Ghz] high resolution timer, we can estimate and calibrate this delay. An

inaccurate estimate of the time delay τ̃ will cause the measurement Q1 to have a bias

of ∆Q and Q2 to have a bias of −∆Q. According to the ideal waveform of constant
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emitted and reflected light, there is a linear relation ∆Q ∝ τ̃ − τ . Plugging ∆Q into

Equation 3.1, the biased measurement T̃d is:

T̃d =
Q2 −∆Q

(Q1 + ∆Q) + (Q2 −∆Q)
T0 (3.6)

= Td −
∆Q

Q1 +Q2

T0

Therefore, the true Td can be obtained with:

Td = T̃d + kT0, k ∝ τ̃ − τ. (3.7)

Because T0 is a known constant, this shows that the bias in the estimation of the pulse

delay τ̃ − τ only results in a linear error and can be corrected by adding a constant

offset, which value is easy to obtain by using an oscilloscope. The 4.608[Ghz] high

resolution timer can handle this since our offset resolution is approximately 217[ps].

The use of the high resolution timer will help calibrate the data at hardware level

by slightly adjusting the logic timing of the circuits. As Figure 3.7 shows, we are

perfectly adjust the delay from the pulse signal to the PLD driver signal, namely, the

time when the laser emits the light attribute to the usage of high resolution timer in

our hardware system.

3.3.2 Errors from Non-constant Reflected Light

Considering the reflected light to be non-constant, Equation 3.1 fails and we have the

inequalities:
Q2

Q1 +Q2

≤ Td
T0

, Td ∈ [0, Tσ) (3.8)

Q2

Q1 +Q2

>
Td
T0

, Td ∈ (Tσ, T0] (3.9)

where Tσ is the peak of the reflected light power. First we need to prove the uniqueness

of the Td which corresponds to the voltage outputs. Without loss of generality we

assume the reflected power is f(x) and G(x) and satisfies G(0) = 0. We have:

Q1 = G(Td) =

∫ Td

0

f(x) dx (3.10)

Q1 +Q2 = G(T0) =

∫ T0

0

f(x) dx (3.11)
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Figure 3.7: Adjust the logic timing.(This figure shows the hardware signal using
oscilloscope; Signals pulse, VTX1 and VTX2 are controlled by the high resolution
timer; PLD(Pulsed Laser Diode) drive signal refers to position of hardware 3.5 g;
PLD energy capacitor voltage refers to the position of hardware 3.5 d, when the PLD
emits light and consume the power, potential in d drops.)

Because f(x) > 0 in its domain [0, T0], G(x) is monotonic continuous and have the

extrema at 0 and T0. Thus, we can prove that ∃!Td ∈ [0, T0] which satisfies:

1− Td
T0

=
Q1

Q1 +Q2

=
G(Td)

G(T0)
(3.12)

This means that the correspondence relationship between Td and Q1

Q1+Q2
exists and is

unique with respect to the reflected waveform because the pulse width T0 is a fixed

constant. Considering Equation 3.8, and Equation 3.9, the model can be rewritten

as:

Td =
Q2

Q1 +Q2

T0 + P (3.13)
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where intuitively, P is only dependant on Q2

Q1+Q2
given the reflected waveform from the

laser diode. However, the amplitude of the waveformQ1+Q2 varies from pulse to pulse

and depending on surface material, the coefficient of reflection is also different even

at the same distance. Thus P , accounting for these factors, introduces non-linearity

to the system. Considering this, we perform software calibration by collecting the

measured data to fit a calibration function.

3.3.3 Comprehensive Calibration

Directly fitting the data to an unknown model is not intuitive and difficult for review-

ing the error in the system when considering non-linearity. We first collect the data

with constant discharge amount for each measured distance so that a comparison can

be made by using different regression model.

We first record only one data point for each certain distance. The reflected light

intensity range is fixed by controlling the amount of pulses to be emitted. For sim-

plicity, here we only consider the calibration of the central one pixel. Assuming that

the distance data set is L(n) and

∀L(i), L(j) ∈ L(n)(i 6= j),

L(i) 6= L(j) (3.14)

For every element, note as L(i) ∈ L(n), the corresponding outputs of the sensor are

noted as V
(i)

1 , V
(i)

2 (Since the reset voltage VR1, VR2 are constant, here V
(i)

1 , V
(i)

2 stand

for the discharging voltage of the two capacitors). The model could be written as two

components:

L̃(i) = l̃inear(V
(i)

1 , V
(i)

2 ) + P (3.15)

where the linear part is the data correction model given in Equation 3.5:

l̃inear(V
(i)

1 , V
(i)

2 ) =
K(V

(i)
2 − Vle)

(V
(i)

1 Rsen − Vle) + (V
(i)

2 − Vle)
−Dofs (3.16)

The leakage voltage Vle is related to the pulse times, and could be obtained by

exposing the sensor under pitch-black environment and read the output without giving

and light pulses. According to [78], this offset is partially caused by the deep generated

electrons diffusing phenomenon. We obtain the sensitive ratio Rsen by exposing the

sensor under constant ambient light and then calculate the output voltage ratio of

the two capacitors. Then the problem to be solved could be transformed into an
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optimization problem:

argmin
l̃inear,P

1

n

n∑
i

(L(i) − L̃(i))2 (3.17)

s.t. L(i)∈ L(n).

According to our observation of the collected data, the relationship is more curved

than linear, hence a combined model is made using a polynomial curve:

L̃(i) = P̃(X (i)) (3.18)

where

X (i) =
(V

(i)
2 − Vle)

(V
(i)

1 Rsen − Vle) + (V
(i)

2 − Vle)

In the next step we collect the data with multiple pulses. We denote the distance

data set as L(n). For every distance data element L(i) ∈ L(n), the corresponding

calculated data from the sensor output are not unique, assume that N (i) data is

collected at L(i). Consider Equation 3.18, for ∀j ∈ N (i) we have:

L(i) = P̃(X (i)
j ) (3.19)

Estimating P̃(X ) is equivalent to solving the optimization problem:

argmin
P̃

1

n

n∑
i

Ki
N (i)

N(i)∑
j

(L(i) − P̃(X (i)
j )− σ)2 (3.20)

Where σ has an infinitesimal value that is used to ensure the single match since

when we collect the data, different distances can match to the same X due to the

leakage voltage, ambient light conditions. Ki is the weight vector that is related to

the measure distance which could adjust the calibration results for different measure

range.

3.3.4 Propagation Delay Caused by System Temperature

There is one more factor that introduces offset to the system measurement. The cal-

ibration methods we state above are based on a ideal condition that the temperature

remains constant so that the propagation delay from the MOSFET gate driver can

be ignored. It is common for MOSFET driver to have the propagation delay increase
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1 ∼ 2[ns] with respect to the increase of temperature of tens degrees, which will intro-

duce corresponding time offset to the measurement of Td. To address this problem,

we simply assume that the propagation delay is only related to the temperature since

the MOSFET supply voltage which is another factor that affects propagation delay

is constant. Thus the relationship between the Td and the system temperature can

be regressed by the collected data.

3.4 Software Configuration for Calibration

3.4.1 Sensor Firmware Configuration

Algorithm 1 Framework of Laser Sensor Firmware for Calibration

Hardware Initialization:
CPU Initialization: System Clock, NVIC, DMA and System Watchdog;
Peripheral Initialization: ADC, DAC, High Resolution Timer, Serial Communication
and GPIO.
Parameters:
High Resolution Timer channel delay buffer Dn: This buffer determines the accurate
time delay among laser pulse, VTX1, VTX2 and VTX3.
Interrupts Vector Vn: each Vi ∈ Vn represents an interrupt and each interrupt is
bound to a callback function.
Pulse Number P : The emission and accumulation amount of the sensor from host
computer calibration tool.

1: In the main loop, The CPU processes the laser operation(in 2) and waits for
interrupts in this mode, when the ADC callback is triggered, jump to 4, when
the serial receive callback is triggered, jump to 3;

2: If P > 0, P = P − 1, operate one pulse and accumulate logic timing according
to delay buffer Dn; if P = 0, P = P − 1, read the raw data from ADC-DMA and
send to host computer through serial-DMA; if P < 0, enable serial receive call
back;

3: Receive indications from host computer, renew the value of pulse number P , reset
the sensor and start a new frame;

4: ADC convert and ADC-DMA transmit completed, raw data are directly trans-
mitted to host computer through serial-DMA;

The laser sensor hardware firmware configurations are documented in 1. For

this mode, the firmware can be considered as a hardware translation for the data

request from host computer. The sensor system receive the indications from the

host computer through serial port of pulses to emit and accumulate and return the

raw data of voltages of the two capacitors inside the receive sensor. We collect the
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Figure 3.8: Calibration Software Tool(VRe and VSa are the pixel reset voltage and
saturation voltage; Blue and red lines are the voltage raw data for the two capacitors;
Green line is the distance data using stored calibrated parameters; To save transmis-
sion bandwidth, the first several data pixels of blue line are used to carry temperature
data since the first and last 8 pixels are invalid for distance information.)

calibration data using this firmware configuration as well as measure some of the

parameters like the voltage leakage rate by simply disable the laser emitter. This

mode can not be used in applications since it uses fixed pulses and does not consider

the saturation problem.

3.4.2 Laser Sensor Calibration Tool

We developed a calibration tool for our tiny laser sensor. It runs in host computer and

communicate with the sensor through USB. The UI configurations are based on Qt

opensource library [102]. As Figure 3.8 shows, the left part plots the raw data collected
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Figure 3.9: Data regression for fixed discharge data: Capacitors discharge≈ 40%, 20%
for data1 and data2 respectively. (Calibration condition: Center point measurement
of white paper; FOV = 30◦; Data range from 5cm ∼ 200cm, Indoor light condition)

from the sensor and the distance data calculated using the temporary parameters. By

simply dragging the scrollbar we can change the parameters to be send to the sensor

firmware like the pulse number. The predefined parameters like Sensitive Ratio(SR)

and voltage leakage rate are used when calculate the distance data. To collect the

calibration data, firstly a ground truth distance data is assigned by dragging the left

bottom scrollbar with respect to the distance from sensor to the calibrate surface.

The second step is to set the pulse number by dragging the corresponding scrollbar.

Changing the pulse number will lead to the change a discharge amount of the two

capacitors and results in the change of readout voltage Vout1 and Vout2 as red and

blue lines show. The VRe and VSa stand for the pixel reset voltage and saturation

voltage of the two capacitors respectively. In the next section we will introduce how

we collect the data and perform the calibration.
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Figure 3.10: 6 degree polynomial regression for various discharge data. (Same condi-
tion as Figure 3.9)

3.5 Experimental Results

First we fit the initial model formulated in Equation 3.16 based on the laser output

data we collected. As Figure 3.9 shows, using the collected data with 40% discharge

level and a range of 5[cm] ∼ 200[cm], the linear regression models, shown as black

lines, are not sufficient for acceptable calibration results, with variance of 29.3814

and standard deviation being more than 5[cm]. However, polynomial fitting methods

with degree of 3 and 6 can achieve [1.6863, 1.2986] and [0.7424, 0.8616] in variance

and standard deviation respectively. This is because the discharging amount Q1 +Q2

is not exactly the same for all the measurements, and the non-constant reflected light

which are noted in Eq .3.8 and Equation 3.9 also introduces non-linearity. Considering

this, the traditional linear models are abandoned and we choose the polynomial fitting

methods to solve the optimization problem in Equation 3.18.
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Figure 3.11: Sensor dynamic temperature calibration. (The measurement distance is
30[cm]; The calibration parameters for the distance data of this figure are obtained
by saturated temperature, namely around 48[◦C]; The two data points look similar
because the polynomial performs linear around the given domain)

In Figure 3.9 we also evaluate another dataset plotted in purple for comparison,

which is collected with capacitor discharge level of 20%. The degree of 6 polynomial

fitting error for data 2 is [1.442, 1.20], which is slightly higher than data 1. This is

consistent with the suggestions in the datasheet [100] that we should discharge the

capacitors for a longer time such that the noise is well accumulated and easier to

remove.

The results of multi-discharge data calibration Equation 3.20 are shown in Fig-

ure 3.10 with variance and standard deviation being [3.4618, 1.8606]. Note that the

weighting term K is temporarily set to an all-one vector such that solving Equa-

tion 3.20 is a pure polynomial regression.

The temperature offset is shown in Figure 3.11. We adopt the build-in temper-

ature sensor of our MCU processor and a dissipation silicone is used to connect the
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Figure 3.12: Sensor dynamic measurement noise. (Two errors are introduced, the
calibration error bias and the system dynamic variance; Same condition as Figure 3.9)

Table 3.1: Measurement noise

Ground Truth Mean Var SD Bias+SD (cm)

P1(20.5cm) 20.4628 0.1314 0.3625 −0.0372± 0.3625

P2(50cm) 50.1766 0.3800 0.6164 0.1766± 0.6164

P3(75cm) 75.2637 0.4077 0.6385 0.2637± 0.6385

P4(100cm) 100.6640 1.0982 1.0480 0.6640± 1.0480

P5(125cm) 125.4245 3.8388 1.9593 0.4245± 1.9593
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MCU to the MOSFET driver so that the temperature is the same. More than 1500

measurement data is collected at indoor environment of normal temperature situa-

tion. As the sensor begin to work, the temperature rises and the reaches saturation

of about 48[◦C]. We compared both the ratio of the discharge amount from the two

capacitor and the measurement distance with respect to the system temperature.

Since the calibration parameters are obtained at saturation temperature, the data

distance measurement increases and reaches the groundtruth distance of 30[cm] as

temperature increases. We applies linear regression to describe temperature offset

because the propagation delay is supposed to the proportion to the temperature as

the MOSFET driver datasheet [103] suggested.

Measurement noise is shown in Figure 3.12. We collect the dataset at 5 ground

truth target distances and for each distance 300 measurements are recorded. As

shown in the figure, with increasing target range, the data waveform becomes rugged.

This is because as the measurement range increases, the reflected light becomes weak,

and the capacitors inside discharge less than that in a shorter measure range. Under

such conditions, small noise from the circuits and ambient light will have a greater

effect on the results. Table 3.1 shows the bias and variances for each measurement

Figure 3.13: Demo of scanning fingers.(Y axis demonstrates the discharge amount of
capacitors(red and blue line, unit:∼ 8[mv]) and the measurement distance(green line,
unit:[cm]); X axis is number of sensor pixels. )
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Figure 3.14: Measurement result of different materials with different reflectance. (Cal-
ibration condition: FOV = 30◦; Fixed distance D = 30cm; 10 measurements for each
object; Indoor light condition)

are reduced to 1[cm] after calibration, and the standard deviation increases if longer

measurement distance is required.

Figure 3.13 gives an example of the data collected by the laser sensor. The x axis

is the pixel coordinate and the y-axis shows the distance (cm) in green and capacitors

voltage ADC units (bit) in blue and red.

The experiment result of multiple objects measurement is shown in Figure 3.14.

We tested the white paper, black cushion, metal pan without gloss, blue cloth bag,

blue Styrofoam, white towel, cardboard, metal wrench and IC foam. The measure-

ment bias, expectation, stand derivation and reflectance rate of each material are

listed in Table 3.2. For every kind of material, we perform 10 measurements of a

fixed measurement distance 30cm under indoor light condition and obtain the mean
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Table 3.2: Statistic measurement result of different Materials

Category Mean SD Bias+SD (cm) Reflectance
(mv/pulse)

White Paper 30.0705 0.4505 0.0705± 0.4505 6.92

Black Cushion 30.7909 0.3001 0.7909± 0.3001 4.6955

Metal Pan 28.4962 0.4358 −1.5038± 0.4358 25.0071

Cloth Bag 30.9971 0.3220 0.9971± 0.3220 5.1638

Styrofoam 30.9759 0.3283 0.9759± 0.3283 4.8961

White Towel 30.3708 0.5380 0.3708± 0.5380 5.6881

Cardboard 31.0308 0.5229 1.0308± 0.5229 4.7981

Metal Wrench 28.4895 0.4062 −1.5105± 0.4062 37.125

IC Foam 39.8339 0.9896 9.8339± 0.9896 0.5699

distance of the measurements, the standard derivation and the reflectance. The re-

flectance rate is calculated using the readout data of the discharged capacitor and

the pulsed numbers. Since the more pulses the laser emitted, the more the capac-

itor will discharge, simply divide these two data will obtain the relative reflectance

rate at a certain distance. According to the result, since we calibrate the sensor

using only white paper which has a constant reflectance, the objects with different

material surface result in a bias compared to the white paper. For high reflectance

material surface like metal, the proximity measurement range is limited since only

several pulses can lead to saturation of the capacitor. On the other hand, objects like

IC foam reflect little light and as a consequence, introduces imprecise measurement

results.

3.6 Summary

In this section we propose the design of a tiny line laser range sensor. We specify the

hardware architecture of the sensor and methods to calibrate the sensor to achieve

accurate results. The advantage of our design is that we keep the sensor tiny in

size and light in weight without sacrificing measurement accuracy. This is attributed

to the high performance circuit modules we use for calibration. We model errors

in the sensor system and propose an efficient and intuitive algorithm to calibrate
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Figure 3.15: Popular Range Sensors in Robotics.

the system. According to the experiments, our sensor achieves measurement biases

and repeatable accuracy of less than 2[cm], which is acceptable for a lot of range

sensing applications. The comparison of popular robotic range sensors are shown in

Figure 3.15 and Table 3.3. Our sensor system provides 2D range data and achieves

an acceptable accuracy and precision in its given measurable range and certain light

condition with a very small size and weight. The small size, low cost, and light

weight make this unconventional sensor a valuable tools for robotic applications that

have strong requirements on sensor size and cost, such as UAV safe landing, tiny

robot range sensing, and robot hand-eye configuration as well as tilt 3D scan as

Figure 3.16 3.17 shows. In the later chapter we will shown how our sensor contributes

to the a task-oriented robot system as a local sensing sensor.

This tiny laser line sensor system has several limitations respect to its hardware

design, measure principle and calibration approaches. Firstly, since we mount the

laser emitter and receive sensor collinear, the base-line and light diffraction effect

occur at the edge of the measure object. This effect will lead inaccurate range data at

the edge region. A filter can be applied to remove the these inaccurate region while

brings the data loss. Secondly, it can not handle the object with high reflectance
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Table 3.3: Comparison of Popular Range Sensors. (Some of the data are from [73][104]
and the accuracy and precision and under certain condition)

Categories Principle Data Type Size[mm]
Weight
(with
cable)

Accuracy
vs
Precision

Cost

Hokuyo
UTM-
30LX

ToF
2D Line
Scan

87× 60×
60

≈ 220g
< 30mm;
< 10mm

>$3000

Asus
Xtion

Structured
Light

3D Depth
Image

180×
50× 30

≈ 220g
≈ 2% ;
< 1mm

≈ $200

Microsoft
Kinect V2

ToF
3D Depth
Image

249×
67× 66

> 1000g
< 20mm;
< 1.5mm

≈ $200

Rplidar
Triangulat-

ion

2D Line
Scan

98.5×
60× 55

≈ 180g
≈ 2% ;
–

≈ $400

Lidar-Lite
V3

ToF 1D Point
48× 40×
20

≈ 25g
< 25mm ;
–

≈ $200

JSK Tiny ToF
2D Line
Image

37× 35×
30

≈ 25g
≈ 1% ;
< 20mm

≈ $150

surface because the range data becomes invalid when the corresponding pixel reach

saturation. Reducing the laser emission power can improve this problem but at the

same time limited the maximum measurable range. Thirdly, when multiple sensors

are used at the same time, the range data in the overlapping region is not correct

without synchronization. Lastly, as Table 3.2 shows, since we use white paper to

do the calibration, the range data accuracy differs from the reflectance of the object

surface. Although in a longer range the dynamic noise is larger than this bias offset,

it is theoretical possible to consider the object surface reflectance in the calibration

in the future work.
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Figure 3.16: Tilt laser scan of 90◦. (A dynamixel servo is applied for tilting; Every
frame contains 256 pixels of distance data and 50 frames are accumulated to get the
pointcloud; The different color indicates the different distances toward the laser; Grid
size is 1[m].)
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Figure 3.17: Applications: (a) Ground scanning for Drone, providing line distance
data. (b) Feasible range sensor for tiny robot Darwin. (c) Range sensing hand-eye
for humanoid robot HRP2.
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Chapter 4

Active Local Verification with

Reasoning-Based Vision

Recognition in Robot Tomato

Harvesting

4.1 Robot In Agriculture

Agricultural industrialization calls for autonomous and intelligent robot systems for

improving the harvesting efficiency with accuracy. This kind of systems will help

farm factories overcome the dilemma between human labour costs and product qual-

ity problems. Traditional mass harvesting solutions, which apply trunk shakers or

combine harvesters, have been elaborated in recent decades[105][106]. But as the use

of almost all of these mechanized harvesting apparatus leads to impact and damage

to the harvested crops, and is not suitable for soft and delicate crops like tomatoes,

strawberries and apples. Therefore, for application on crops like these, the use of se-

lective harvesting solutions, where crops are picked one-by-one carefully like a human

worker, is preferred.

The difficulties of selective harvesting ascribe to the requests of not only detecting

where the crop is, but also estimating the posture of the crop and the pedicel to

cut. In the real world environment, crops like tomatoes are densely gathered and

occluded by branches, which make it impossible to directly detect the pedicel. Thus

in our work we gain inspiration from the fact that, even when humans cannot directly
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Figure 4.1: Participation in tomato harvesting robot competition 2014. 2

observe the pedicel, we can guess where the pedicel is from what we see according to

the understanding of scene and laws of physics.

We make an effort to combine reasoning method with vision cognition for scene

understanding. We propose a novel approach for extracting geometric models of

tomatoes and estimating the pedicel direction of each tomato by physical reasoning,

based on observation and knowledge of the laws of physics governing the crops.

Our system consists of two main parts:

1) Agriculture-Support Humanoid Robot: As shown in Figure 4.1, we use

the upper body of HRP2(Humanoid Robotics Project 2) humanoid robot and a

VMAX omni-direction mobile moving base as our robot platform. The robot has

7 DOF in each hand and 2 DOF in head. Two RGB-D sensors are installed on the

head and hand of the robot to obtain better observations. Special scissors that can

both cut and hold the picked crop by its pedicel at the same time are installed on
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the robot’s grippers. We use this platform to participate in the Tomato Harversting

Robot Competition 2014 and won the champion2 .

2) Reasoning based Vision Cognition: In this work, we mainly focus on

handling crops like tomatoes which tend to be gathered together in one branch,

making it difficult to directly detect the pedicel for each individual crop. First, we

apply HSI color filter along with Euclidean cluster to the pointcloud and choose the

closest and feasible branch for picking. Second, the robot moves the hand RGBD

camera to obtain a better observation of the crop’s primitive model (in this case, a

2.5D semi-sphere pointcloud). Then, according to the geometric reasoning assumption

of each tomato, a ransac based sphere segmentation algorithm was performed to

get the 3D location and approximate radius of each primitive. After that, these

primitives are filtered and grouped into physically stable objects according to gravity

and interaction forces between contacting primitives. By assigning magnitudes to the

interaction forces, we can deduce the direction of each tomato’s pedicel and generate

a feasible path for the hand to harvest the tomato.

This section is related to two research fields in the literature.

4.1.1 Agriculture Harvesting Automation State of Art

Previous research studies on selective crop harvesting has made huge efforts on not

only crop detection, but also design of the end-effector and gripper. Systematic work

by Baeten.J et al.[107] proposed an autonomous apple harvester with a carefully

designed gripper and an image based vision detection system. Their robot can pick

apples on trees at a relatively high successful rate, but since the pose and the stem

of the apples are not considered, the gripper’s picking movement is sometimes not

predictable. Another impressing work proposed by Shigehiko et al.[108] introduced

a strawberry harvesting robot equipped with five light sources, which consisted of

120 light-emitting diodes (LED) each. In addition, three well aligned CCD cameras

are used to obtain the 3D position of the strawberry and peduncle location. With

a gripper that could cut and hold the peduncle at the same time, their harvesting

robot could achieve a successful picking rate of greater than 79%. There have also

been interesting works for harvesting clustered tomatoes based on binocular stereo

vision[109]. [110][111] introduced gripper designs and their manufacturing methods.

For example, [111] analyzed their scissors-like grippers that could be used to both cut

and hold the pedicel of tomatoes, which is also equipped by our humanoid robot.

2Tomato Harvesting Robot Competition Website: http://www.lsse.kyutech.ac.jp/

~sociorobo/tomato-robot
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In comparison to the above, our system is based on a humanoid robot which

application is robust and could be improved easily. Picking crops that gather together

in branches is a difficult task and our reasoning-based vision approach can provide a

distribution of estimated pedicel directions.

4.1.2 Vision Meets Cognition

Tomatoes trees possess a natural geometry structure that several tomatoes gather

together as a branch, which makes it difficult for vision detection and selective pick-

ing. However, a physical reasoning and geometrical reasoning based vision frame-

work [86][87] can help solving this difficult problem.

The focus of our reasoning method is on branches where tomatoes are densely

gathered, and we attempt to reconstruct the geometrical and physical relationships

of each crop within the branch using the primitive model according to a simple but

powerful fact that every model should comply with the laws of physics. Thus we

create a probabilistic model to describe the estimation of the pedicel direction. The

results could be used both for directly picking and provide initial guesses.

4.2 Harvesting Humanoid System

In this section, we introduce our humanoid platform including the robot specifications,

grippers and the calibration of sensors.

4.2.1 Robot Platform

Humanoid robots are designed to carry out a wide range of tasks. Recently, impressive

research studies have shown demonstrations such as cooking, cleaning, folding clothes,

handing over objects smoothly and carrying heavy objects[112, 113, 114, 115, 116],

namely, human daily life supporting tasks. In this work, we extend the application

of humanoid robot to agriculture supporting tasks.

Table 4.1 and Figure 4.2 show the basic specification of our robot HRP2W. Com-

pared to the original HRP2 humanoid robot which is equipped legs, using a VMAX

as the moving base is much more convenient and power saving in this application. In

addition, VMAX can be easily altered to cooperate with the popular rail-like system

that is widely used in green house factories.
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Figure 4.2: Humanoid HRP2W. (The axis demonstrate ROS TF(transform) of each
joint and camera of the hrp2 upper body)
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4.2.2 Harvesting Gripper Evaluation

We equipped our robot with a special scissors with two layers of blade, one for cutting

and one for holding. As shown in Figure 4.3, we designed attachments between end-

effector(robot finger) and scissors, and according to [111], the average pedicel cutting

force is about 137.27N . Despite of species differences, we set this as the reference,

|Fref |. Consider the geometric relations of a pair of scissors, the effort arm length

and force are given by Le, F e, and the resistance arm length and force are denote as

Lr, F r. A simplified lever model could be applied to the scissors:

F eLe = F rLr (4.1)

Assuming that the average pedicel diameter is approximately 3mm, we experi-

mentally determined that our mechanism can cut if Lr is within the range of

Lr ∈ [2.2, 5.1](Unit : cm)

Within this range of Lr, Le slides within the range of

Le ∈ [7.1, 9.9](Unit : cm)

Given the minimum amount of required cutting force Fref , assuming a linear

model between Le and Lr, by rearranging Equation 4.1 we obtain:

F e ≥ FrefL
r

−0.9655Lr + 12.0241
(4.2)

Since it could be easily proven that d F e

dLr > 0 under the domain, F e ≥ 98.6 N is

required. And the maximum finger joint torque of HRP2 robot is about 13.9 N ·M .

Table 4.1: Specification of HRP2W

Name DOF Sensors Global Property

HEAD 2 Xtion DOF 24

ARM 8× 2 Carmine Length×
Width×
Height

65cm×
65cm×
165cmCHEST 2 None

VMAX 4 Hokuyo
Laser

Weight 150kg

53



Figure 4.3: Illustration of gripper model. (a): Gripper closed, (b): Gripper opened,
(c): Gripper lever model

By designing an attachment with distance to the joint about 8.5cm, which provide

correspond effort force 163.53 N , our gripper is capable of cutting a general toughness

pedicel.

However, according to our tests, we still obtained approximately 10% failed at-

tempts. This may be attributed to the cutting angle, the smoothness of the blade

and also partial cutting of the pedicel. As claimed in [111], depending on the cutting

location and angle, the maximum pedicel cutting force sometimes could reach 245 N ,

which is beyond the limit of the robot’s finger joint. We solve this by changing the

cutting strategy and repeatedly making attempts.

4.2.3 Installation of Hand-Camera

Our robot is equipped with two RGBD sensors: Xtion and Carmine, which are fixed

at the head and the hand respectively. A hand-camera is crucial for detection when

tomatoes are densely gathered in branches with occlusions. In addition, hand-camera

is more flexible since the view could be changed at any time. However, in terms of

pointcloud data accuracy, both camera depth calibration and hand-camera to head-

camera calibration is indispensable.

54



Depth Camera Calibration

Although the devices are calibrated during manufacturing by their own algorithm

and are adequate for casual use, for our application, a more accurate depth calibra-

tion considering our application range is preferred. [117] summarised depth camera

calibration methods considering depth distortion. Suppose in disparity space, let d

be the distorted raw disparity data from camera sensors. The calibrated disparity is

given by:

dc = d+Dσ(u, v) · exp (a0 − a1d) (4.3)

where exp (a0 − a1d) is the scale weight describing distortion intensity. For our ap-

plication, since we are not going to cover the whole visible range of our camera, the

distortion intensity could be simplified to a linear model and independent of Dσ(u, v).

We calibrate the camera in z depth space with a simplified model:

zc = z + Zσ(u, v) + θ(z) (4.4)

where θ′(z) = C and C is a constant. We detect chessboard corners using calibrated

RGB camera data and used these points as the ground truth. By acquiring enough

points throughout our application range, in this case between 0.8 ∼ 1.5m for Xtion

and 0.35 ∼ 0.6m for Carmine, a quadratic model is fitted to Zσ(u, v) and linear model

to θ(z).

Calibration of Hand-Camera

To calibrate the hand-camera to the head-camera, for every timestamp we need to

calculate a rigid transformation, denote as T̃r, with:

xr = T̃rx = R̃rx+ t̃r (4.5)

where R̃r is the rotation and t̃r is the translation. Since the joint angle vector could

help solving the transformation between head-camera to the end joint where the

hand-camera was installed, T̃r consists of two transformations:

T̃r = T̃j · Tc (4.6)

and T̃j could be acquired from the robot’s mechanical parameters. Only the constant

transformation Tc needs to be calculated.
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Figure 4.4: Vision algorithm flow diagram. (A) Preprocessing of pointcloud, red
bounding box is the selected (closest) branch. (B) Tomato model segmentation, ac-
quiring primitive models. (C) Physical and geometric reasoning, force model, pedicel
direction estimation and selecting which to pick. (Arrows in C-(1) demonstrate the
direction of gravity, interaction forces and in C-(2,3) indicate the pedicel vector)
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We first make an initial guess of Tc and T̃r manually, noted as T ∗c and T̃ ∗r respec-

tively for the hand-camera joint and the head. For points observed by the hand-

camera xi ∈ Phand, we define the pointcloud after applying the transformation T̃ ∗r to

be

P T̃
∗
r

hand = {xj|xj = T̃ ∗r xi} (4.7)

and for the pointcloud observed by the head-camera, Phead, we could obtain Tc using

the registration method:

argmin
T ∗
c

Dist(Phead,P T̃
∗
r

hand) (4.8)

Simple ICP algorithm would lead to a good result for acquiring the transformation

Tc .

4.3 Reasoning based Vision Cognition

This section discusses reasoning-based vision recognition approach for detecting the

tomatoes on a branch and estimating the pose of each tomato from the pointcloud

data. This section elaborates three parts, tomato branch clustering, model segmen-

tation using Ransac and physics reasoning for pedicel. Figure 4.4 demonstrates the

pipeline of our approach.

4.3.1 Tomato Branch Clustering

Like human tomato harvesting, our algorithm first extracts and chooses one branch

to focus on, and then picks tomatoes one by one. In this part, an HSI filter is first

applied onto the raw pointcloud data to obtain tomato candidate points. Then we

use a euclidean clustering algorithm to group points and their neighbours into one

cluster. The robot will choose the feasible and closest branch to pick.

We choose the HSI parameters −15◦ ≤ H ≤ 15◦, 100 ≤ S ≤ 250, 25 ≤ I ≤ 180.

Admittedly, the change of lighting condition will affect the result of HSI filters with

offline parameters. However, our application focuses on indoor lighting condition

where the ambient light is constant, corresponding to harvesting in greenhouse in the

evening without natural light.

Next we apply euclidean clustering to the filtered pointcloud. Euclidean clustering

technique can organize points into clusters with respect to the distance feature. For
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∀pi, pj ∈ Phsi, clusters Oi = {pi ∈ Pi} and Oj = {pj ∈ Pj} are obtained by:

min||pi − pj|| ≥ dthrehold (4.9)

which means points are set to different clusters if the minimum distance is above

dthrehold. This method is effective if points are spatially continuous and there does

not exist gaps in a cluster. We set dthrehold = 6 cm and it works well for tomato

branch clustering, as shown in Figure 4.4.A.

4.3.2 Ransac-based Primitive Model Segmentation

Primitive shape of tomatoes, apples, oranges and cherries can be described as a

sphere in 3D. Generally speaking, our work is based on this assumption. To estimate

a sphere, two popular methods are introduced. An n −D sphere Sn is defined as a

sphere in n dimension space with points satisfy the following equation:

||(p− c)T (p− c)|| = r2 (4.10)

where c is the center of the sphere and r is the corresponding radius. For:

∀pi,j ∈ (Sn ∩ Rn)

we have:

||(pi − c)T (pi − c)|| = ||(pj − c)T (pj − c)|| = r2 (4.11)

Since every two distinct points provide one linear equation of n + 1 unknowns, it

requires n + 1 points to obtain the solution of the sphere model. In our case, n = 3,

which means at least 4 distinct points are necessary, and all the points should not be

aligned in the same plane.[118].

The other method is introduced in [119]. This method uses only 2 points for the

calculation of a sphere model in R3 space, but need to acquire the normal of each

point. Denote two distinct points p1, p2 ∈ R3 with corresponding normals ~n1, ~n2. The

line segment between two normals is defined as L. We can obtain the shortest line

segment Lmin between normals ~n1, ~n2:

argmin
L

Dist( ~n1, ~n2) (4.12)
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then the center c of the sphere is simply set to be the middle point of shortest line

segment Lmin, and the radius of the sphere is defined as (p1−c)+(p2−c)
2

.

For the effectiveness of sampling based fitting algorithms, we consider Pointcloud

P of size N within a primitive model Ψ consist of n points. If any k points can lead

to a model candidate ψ, the probability from one sampling procedure that ψ ⊆ Ψ:

P (k) =

(
n

k

)
/

(
N

k

)
(4.13)

consider that (n� k), P (k) could be note as:

P (k) =
n!(N − k)!

N !(n− k)!
≈ (

n

N
)k (4.14)

Thus, a successful model estimation probability after s times sampling failures is

given as:

P (k, s) = 1− (1− P (k))s (4.15)

The first method is intuitive and general, but sensitive to noise. The second

method’s robustness heavily depends on the normal estimation results. There are no

big difference in effectiveness since the estimation of normal also cost time. Point-

clouds that are acquired by RGBD camera can achieve a certain accuracy in certain

scale, but since the measurement method is based on structured light theory, the

detail of the object like textures and edges would sometimes introduce noises. There-

fore, it is necessary to smooth the surface of the pointcloud. Considering this, we take

advantage of the Moving Least Squares (MLS) [120] surface reconstruction method

for smoothing pointclouds with noise. MLS tries to recreate the missing parts of

the surface by higher order polynomial interpolations between the surrounding data

points and eliminate sharp convex and concave parts on the surface.

We obtain all the sphere models of tomatoes on the branch that satisfy the radius

constraint by iteratively sampling. Once the algorithm finds a candidate with accept-

able inlier points, the model will be stored and the inlier points would be removed

from the pointcloud, note that the semi-sphere models with sphere plane farther than

the centroid of the sphere will not be regard as a model in this process since it is obvi-

ous the camera could only see the front half of the sphere. The algorithm stops until

the remaining number of points are small enough. Figure 4.4.B briefly demonstrate

segmentation procedure.
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4.3.3 Physical and Geometric Reasoning

Unlike previous work [86] which was based on volumetric primitives, our reasoning

algorithm is designed to deal with higher level reasoning. Given the segmented prim-

itive sphere models which represent each tomato, denoted as Θ(c, r), where c is the

sphere center and r is the corresponding radius. For a branch where n spheres are

detected, we denote the branch:

B =
n⋃
i

Θ(ci, ri) (4.16)

where i ∈ N , i ∈ [1, n]. Then we assign a connected graph to B, noted as GB. Taking

every sphere Θ(c, r) as a node, and in terms of connectivity, any two distinct nodes

should satisfy:

∀Θ(ci, ri),Θ(cj, rj) ∈ B, (i 6= j)

| ||ci − cj|| − (ri + rj) |≤ de (4.17)

where ||ci − cj|| is the euclidean distance between two sphere centroids. An error of

de is imposed because tomatoes are not perfect spheres and there may also be errors

from the sensors and segmentation results.

Then we assign a physical correlation to each edge of GB. Accordingly, two at-

tached tomatoes should provide interaction force to each other which are equal and

opposite according to Newton’s Third Law:

ΣFΘ(ci,ri),Θ(cj ,rj) = −ΣFΘ(cj ,rj),Θ(ci,ri) (4.18)

The direction of the force could be simply calculated by the center of two models

and denoted as ~ecicj . However, the size of force could not be directly measured.

We consider assigning a distribution to the size of interaction forces. According to

statistics, we assigned a Gaussian distribution for the size of interaction forces with

respect to two parameters. One is the distribution weight ε, denote as:

ε ∼ N(µ, σ2), ε ∈ [0, 1) (4.19)

and according to our measurements, we set µ = 0.3 and σ2 = 0.25. The second aspect

is the weight of the “dominant” node which has the least number of edges connecting

to other nodes. Dominant nodes tend to locate peripherally on the branch. The

weight, caused by gravity is related to the radius of sphere, noted as θ · r, where θ is
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a constant coefficient. Therefore, the interaction force is given by:

~Fi,j = ε · θ · r · ~ecicj (4.20)

And we could easily deduce that F ∼ N(0.3θr, 0.25θ2r2), F ∈ [0, θ · r). As each edge

in the graph GB provides interaction force to connected nodes, the correlation for

every node in this graph is given by:

~̂
Fi =

n∑
j

~Fi,j (4.21)

Note that ~Fi,j = ~0 if i = j or nodes Θ(ci, ri),Θ(cj, rj) are not connected.

As each tomato on the branch is kept in balance with each other and does not

fall, this suggests a balance equation of:

~Gi +
~̂
Fi + ~Fi,p = 0 (4.22)

where ~Gi is the gravity of model and can be noted as θ · ri, where vector ~Fi,p is the

force from the pedicel that holds and keeps the crop from falling down. ~Fi,p is a

multivariate Gaussian distribution due to the edges of the node. Since every node

follows a same Gaussian distribution of force magnitude, we can easily calculate the

pedicel vector expectation ~F e
i,p. Figure 4.5 shows a demonstration of the estimation

of pedicel direction. We calculate and visualize the pedicel vector distribution on the

sphere (φ ∈ [−π, π], θ ∈ [0, π]). For a node with two edges ~−Fi,1, ~−Fi,2 which are

assigned with the same Gaussian distribution, combined with gravity-support vector
~−Gi, we could obtain the distribution of ~Fi,p. Blue color indicates low probability

and red indicates high probability.

Then we perform geometric reasoning and try to find which tomato to pick first.

Since the connected graph and the pedicel direction is obtained, the next task is to

determine which tomato is the easiest to pick. Experience tells us tomato become

ripen from the top to the bottom on the branch. This is because tomatoes located

at top of the branch is closer to the root. Therefore, we created a penalize function

to each primitive model considering the location, edges and the direction of pedicel:

Ci = ~σ · [−Epi, NΘ(ci,ri), <
~F e
i,p,− ~Gi >]T (4.23)
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Figure 4.5: Illustration of pedicel direction distribution. (The landscape of pedicel
distribution is obtained using Equation (4.22) over sphere angles φ and θ. Here
~̂
Fi = ~Fi,1 + ~Fi,2, and combine with ~Gi, probability of ~Fi,p rises from dark blue to red)

note that ~σ is a weight vector, Epi is the Gravitational potential energy, NΘ(ci,ri) is

number of edges of the node Θ(ci, ri) and < ~F e
i,p,− ~Gi > is the angle between the

expectation pedicel vector and gravity-support vector. As Figure 4.4.C shows, the

brightness of color demonstrates the picking order of each tomato in the geometric

reasoning output.

Since our algorithm provides a distribution of the pedicel direction, when means

a guess of the result, our picking motion should be designed to cover the potential

area as much as possible, which is given by:

argmax
D

∫∫
D

P ( ~Fi,p) · ~ei,pds (4.24)

s.t. Dist(D, ci)> ri,

D≤ Dmax.

where P ( ~Fi,p) is the probability function and ~ei,p is the unit vector, which means

moving the gripper to cover the areas where Fi,p draws a higher probability with

respect to the radius of the tomato ri and the gripper’s covering range Dmax. To

solve this, we simplified the problem by considering a constant probability of the
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gravity-support vector. Our robot will first move to cover the gravity-support vector

and then move towards the vector of pedicel expectation.

4.4 Local Sensing Based Picking Verification using

Tiny Laser Sensor

The limitation of the reasoning method is that basically we are based on the proba-

bility model and only gives a guess of the target, thus it is very necessary for robot to

obtain a real observation. According to our experiment of tomato harvesting, due to

the precision of recognition(segmentation, sensor error) and control offset, sometimes

the real pedicel will be slightly away from the scissor blades(around 2[cm] in one

tomato case). As the scissor opens only 2[cm], it can not hold the stem and cut it.

The pedicel can not be directly detected by our RGBD camera because it is too thin

and sometimes occluded, thus local sensing is very necessary for such task-oriented

system.

4.4.1 Tiny Laser Sensor Continuous Measurement Mode

In the robot applications, we have to make our tiny laser cover all the measurement

of objects with different distance and reflectance in the measurement range where

fixed pulse number is no more suitable. We propose our continuous measurement

mode of both raw data and distance data only configurations. Since the continuous

measurement mode is designed to address the problems of insufficient incident light

accumulation and accumulation saturation, a dynamic process methodology is neces-

sary. Under the condition of insufficient light accumulation, the objects with further

distance become undetectable and on the other hand the close objects will lead to

pixel saturation problem. Consider this, we increase the pulses from 0 to a given

pulse number to cover the target measurement range and readout the data under a

certain pulse interval. Therefore when the pixel is lead to saturation, the previous

readout data is used to calculate the distance.

The difference between raw data mode and distance data only mode is that the

distance calculation is embedded in the laser in distance data only mode while the raw

data mode requires host computer to do that and at the same time the raw data mode

can provide intensity information. The raw data mode provide more information but

at the same time requires computational resources from host computer and occupies

more transmission bandwidth thus the raw data mode is relatively slower than dis-
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tance data only mode. Algorithm 2 shows the distance data only measurement mode.

In every timer interrupt, the laser emit one pulse and accumulate the incident light,

when the timer counter reaches any of the value in predefined accumulation pulse

buffer Pn, a non-destructive readout is performed and the raw data will be processed

using the calibrated polynomial parameters in the main loop during the interval of

accumulation pulse buffer. The distance data is renewed when a new process request

comes and if any pixel arrives saturation, the previous data is reserved. After all the

readout finish, we call DMA to transmit the calculated distance data.

Algorithm 2 Framework of distance data continuous measurement mode

Hardware Initialization:
CPU Initialization: System Clock, NVIC, DMA and System Watchdog;
Peripheral Initialization: ADC, DAC, High Resolution Timer, Common Timer, Serial
Communication and GPIO.
Parameters:
High Resolution Timer channel delay buffer Dn: This buffer determines the accurate
time delay among laser pulse, VTX1, VTX2 and VTX3.
Timer counter T and Timer frequency f : emission and receive once during the timer
period;
Accumulation Pulse Buffer Pn: where at each Pi ∈ Pn, pulse accumulated to send
the raw capacitor data from ADC;
Calibration polynomial parameter vector K: calibrated polynomial coefficient.
Interrupts Vector Vn: each Vi ∈ Vn represents an interrupt and each interrupt is
bound to a callback function.

1: In the main loop, The CPU processes the raw data from ADC-DMA to get the
distance data using calibration parameter vector K and waits for interrupts in this
mode, when the timer callback is triggered, jump to 2, when the ADC callback is
triggered, jump to 3;

2: T = T + 1, open one shot high resolution timer under delay buffer Dn; if T = 1,
jump to 4, if T = Pi, jump to 5, if ∀Pi, T > Pi, jump to 6;

3: ADC convert and ADC-DMA transmit completed, raw data are stored in memory
and being processed in the main loop 1;

4: Initialize the receive sensor, trigger ADC to obtain the reset capacitor voltage;
5: Since T = Pi, the Pi pulses are accumulated, send distance renew calculation flag;
6: Transmit the calculated distance buffer through Serial-DMA and start a new

measurement by set T = 0.

4.4.2 Laser Data Real-time Clustering using DBSCAN

In a lot of applications, the purpose of local sensing is targeting at verify and adjust

the vision recognition results with precise and prompt response. The objective of
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Figure 4.6: Tiny laser sensor pedicel detection. (A and B demonstrate the detecting
of pedicels of simple and complex situations respectively. Blue line is the distance
raw data; White is the distance data after filtering. Purple line represents the final
clustering results where each ladder means one cluster.)
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local sensing in this application is to detect and relocate the position of the pedicel

near the scissor blade during the harvesting pose since the vision recognition and

reasoning results could introduce offset errors. Thus we equipped our system with

real time unsupervised clustering algorithm based on DBSCAN(Density-Based Spa-

tial Clustering of Applications with Noise) [121]. As the raw line data of the sensor

may contain distance information of other parts of the tomato branch, the cluster-

ing algorithm can separate the data points since the size of the pedicel is almost

fixed(around 0.6[cm]). The DBSCAN is an unsupervised clustering algorithm and

provide the number of clusters, the points belong to each cluster and the noise point.

It is very suitable for our sensor to remove the noises of the object edge caused by

the diffraction and neighbour pixel incident light. After obtaining the clusters, we

simply check the size of each cluster and find the one that fits the pedicel prior and

give the relative position to adjust the angle vector of the robot.

Figure 4.6 demonstrates the pedicel detect results using tiny laser sensor. Firstly,

according to the raw data, the sharp edges caused by the base-line effect is addressed

by applying a smooth filter. The base-line between the emitter and receiver causes the

reflected light unreachable to the receiver at the edge parts of the object. Combined

with the light diffraction phenomenon, it causes the inaccurate measurement at the

edge parts of the object. This effect becomes severe when the measure object is

small and close, which will lead to the object shape unrecognizable. Thus, a filtering

procedure is necessary for the initial processing.

According to the observation, the emitter side edge of the measure object have a

distance drag that up to tens of centimetres. If several objects gather together, only

the edges of the side object suffer from the severe distance drift. Therefore, we first

apply a DBSCAN clustering method with large epsilon value and bigger sample points

amount restriction to produce the initial clustering of big clusters. This process helps

in handling the situation where several objects gather together and the edges between

these objects can be maintained. Then a smooth filter is applied to each clusters,

removing the points near the edges which have large variances inside cluster first and

smooth the rest points. Lastly, a second time DBSCAN with a smaller eps is applied

to obtain the objects within the big clusters that produced by the first DBSCAN.

Figure 4.6 explains the algorithm that the blue line is the distance raw data and the

white is the distance data after filtering. Purple line represents the final clustering

results where each ladder means one cluster.
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4.5 Experimental Results

Our system is evaluated in terms of successful harvesting rate and detection rate for

both artificial tomatoes and real tomatoes on tomato trees with different geometric

complexity.

• Successful Harvesting Rate: A successful harvesting means that the robot picked

the tomato and put it into the tray-box without human intervention. But for

now in the experiment, humans need to send motion orders to the robot be-

cause our system is not completely autonomous yet, it requires humans to judge

whether one harvesting behaviour is successful or not since the system has not

equipped the corresponding functional modules. If a tomato harvesting pro-

cedure fails, we will perform the second try, and if both attempts failed, we

will perform human support, namely, manually add a little offset to the grip-

per(almost ≤ 2cm) or cut the pedicel again due to the gripper’s performance.

• Detection Rate: Here we assume the branch is detected successfully and this

rate corresponds to the percentage of tomatoes that are detected and assigned

as a sphere in the tar get ranch.

• Geometric Complexity: Branch complexity represents the difficulty of harvest-

ing since the geometrical poses varies dramatically and tomatoes may be oc-

cluded. Artificial tomatoes could better demonstrate this diversity.

The harvesting motion of our robot could be divided into four steps as shown

in Figure 4.7. First the robot will localize the target branch in robot coordinate

and generate the trajectory to move the hand-camera to a predetermined location

relative to the tomato. Only two camera views are used in our case (note that

both cameras are based on active sensing measurement, and depth data tends to be

unstable in overlapping areas). In the second step, our algorithm segments every

tomato and constructs the connecting relationships, then the tomato to pick and

the corresponding pedicel direction will be computed through physical and geometric

reasoning. In the third step, the robot will make an attempt to cut the pedicel.

Currently, in this process human interference is required if the robot fails to obtain

the correct position (according to our experiment, error less than 2cm) or fail to cut

the pedicel. We will provide a slight offset to the gripper or continue another cutting

process by remote control. The final step is placing the picked tomato to the tray

box, and then returning to the initial pose.
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Figure 4.7: Harvesting motion. (Motions 1-4 are sent to the robot sequentially. In step
3, human interferences are required in case of picking failure and picking verification
is applied using our tiny laser sensor.)
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Figure 4.8: Tomato branches of different geometric complexity. A: Simple situation
with 1 to 2 tomatoes, no occlusion. B: Normal situation with 3 to 4 tomatoes, slight
occlusion. C: Complex situation with more tomatoes, densely gathered and occluded.
(Arrows represent the pedicel vector and gravity-support vector, blue ones belong to
the first tomato to be picked)

Table 4.2: Harvesting experiment. 3

Categories Trials SD SP(1) SP(2) HS CF

Gripper Tests 71 - 63 3 - 5

4.8-A 36 36 26 4 3 3

4.8-B 57 49 30 10 11 6

4.8-C 43 33 17 9 13 4

Figure 4.8 illustrates the classification of branch by geometric complexity. We

grouped all the branches into three categories - simple, normal and complex - accord-

ing to our observation of real tomatoes in tomato trees, and harvesting results are

shown in Table 4.2. SP(1) and SP(2) indicate how many trials were successful by the

first or second attempt respectively3. Every trial represents task of harvesting the

detected tomato. In our test, since we also test on artificial tomatoes, the pedicel is

substituted by wires with similar hardness compared to the real pedicel. Meanwhile,

3 SD: Successful Detected
SP: Successful Picked
HS: Human Supported
CF: Cut Failure
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Figure 4.9: Detection and harvesting results. (a)Detection results: The percent-
age of detected tomatoes out of the total number of tomatoes on target branch.
(b)Harvesting results: Gripper tests are performed separately to cut the real tomato
pedicel. SP(1) indicates successful picking by first try, SP(2) indicates successful
picking by the second try, note successful picking is SP=SP(1)+SP(2).
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Table 4.3: Laser guide picking experiment

Categories Trials Successfully
Aligned

Wrong
Aligned

Out of
View

Random Offset Alignment 61 56 2 3

Recognition Error Alignment 39 26 11 2

we perform gripper tests separately just for testing the successful cutting rate of real

tomato pedicel. It can be inferred that multiple cutting attempts would contribute

towards increasing the successful harvesting rate.

The local sensing based picking verification using our customized tiny laser dis-

tance data can help dealing with the offset and recognition error. We randomly assign

a offset of less than 5cm to the recognition result and once the robot reaches the ob-

servation pose, the laser guide local sensing function is called in our algorithm and

the effectiveness of the offset alignment experiment is shown in Figure 4.10 (A) and

Table 4.3. We perform 61 offset alignment trials of above condition and 56 trials suc-

cessfully align the scissors to the pedicel while 2 cases mistaken the nearby pedicels

as target and 3 times the laser gets out of view. Note that it is more likely to miss

the pedicel in the view for one tomato because there is no nearby pedicels and even

the nearby pedicels can cause to wrong alignment, the algorithm seems capable of

finding the nearest pedicel for most of the time.

In addition, the local sensing framework can also deal with the recognition error

of the vision algorithm. Figure 4.10 (A) indicates the correct detection of all three

tomatoes thus the pedicel direction is correctly estimated. However in Figure 4.10

(B), because of the sampling based algorithm may sometimes fail to extract all the

possible candidates of tomatoes which lead to the incorrect detection, the vision

result contains the error of the pedicel direction and position. Based on the tiny

laser distance information, the robot can verify whether the picking attempt will

successfully have something to cut in the observation pose. If there is nothing detected

in the picking attempt area, the robot will enter laser guide mode to locate the nearby

pedicels to pick as Figure 4.10 (C) demonstrates. For this experiment, we tested 39

trials of recognition error alignment. Note that the recognition error are mainly like

Figure 4.10 shows that the target tomato is correctly detected but the pedicel position

and directly is inaccurate. In the experiment, applying the local verification method

we achieve 26 successful alignment. There are 11 wrong alignments that the nearby
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Figure 4.10: Laser Guide Picking. (In A all the tomatoes are detected; In B a offset
appears due to the recognition error; In C a laser guide motion compensation is
performed.) 72



pedicels are detected and the edge of tomatoes are recognized as pedicels. This is

because the direction of the pedicel is inaccurate which lead to the nearest pedicel

uncertain in the recognition error case.

4.6 Summary

In this chapter, a harvesting humanoid robot system is proposed and we presented a

novel vision cognition approach that enables the robot to harvest tomatoes gathered

in branches through physical and geometric reasoning to have an initial guess of the

pedicel of apply our light weight laser system to do perform the harvesting based

on local sensing. In the experiment we showed the feasibility and effectiveness of our

system framework of combining reasoning based high level vision and local verification

based laser sensor guiding picking motion. In addition, the effectiveness of our tiny

TOF laser line sensor system and its flexible usage are illustrated in this task-oriented

robotic application.
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Chapter 5

Development of Metallic Tools

Grasping Robot System Based on

Reflectance Feedback Using Tiny

Laser Sensor

5.1 Participation in MBZIRC and Metallic Tools

Grasping Task

The MBZIRC 4 is short for Mohamed Bin Zayed International Robotics Challenge,

which is held in Abu Dahabi, United Arab Emirates(UAE). The MBZIRC is a open

challenge for the world-wide robotics researchers and the selection of teams are eval-

uated by the submitted proposals by the organization committee.

There are four challenge tasks in MBZIRC, challenge 1 and 3 are focusing on

UAV(Unmanned Aerial Vehicle) robot, challenge 2 is aiming at UGV(Unmanned

Ground Vehicle) robot and the last one requires all the robots to work together. We

submitted our proposal [122] and obtained the qualification with a sponsorship of

350, 000 USD from the MBZIRC committee. Along our preparation for MBZIRC,

we also submitted two progress reports [123][124] to the committee according to the

obligations of the sponsored team. In the proposal and progress reports, the general

4 MBZIRC(Mohamed Bin Zayed International Robotics Challenge)
Website: http://www.mbzirc.com
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framework and methodology of our system, the solutions to the difficulties of each

challenge we have met and the preparation time-line are stated 5.

In this chapter, we introduce the robot systems we build for participation in the

MBZIRC challenge 2 of robot platform design, hardware development, task-oriented

vision approach and the results we achieved along the preparation. In addition,

we proposed a local sensing framework toward to wrench grasping task using the

customized tiny laser sensor we developed to obtain the reflectance of the wrench

surface. By providing both the range and intensity information, with both information

we can infer the reflectance of the object surface, we demonstrate the effectiveness of

the robot system in grasping the target wrench with a precise alignment of gripper

and wrench.

5.2 A Task-oriented High Power Field Robot Plat-

form For Robotic Challenge

In this section, we describe a task-oriented field robot platform with humanoid upper

body and mobile wheeled base. Our goal is design a robot platform that can handle

outdoor tasks rapidly and stably which requires the collaboration between the upper

body and mobile moving base. Therefore, we developed a powerful mobile base with

two 350W motors and can run at a speed of 4m/s. The payload of the mobile base

can up to more than 50kg. We modelled the kinematics of the mobile wheeled base

and created the control system of both hardware and software. Like ordinary HRP2

humanoid robot, we enable all the features of HRP2G upper body and also add the

geometry model of the mobile base into the euslisp simulation viewers. The two parts

are connected through ROS in software level which makes it much easier to maintain

the whole system. In the MBZIRC task-oriented experiment, we equipped this robot

with a multi-sense sensor and GPS sensor in the head, a velodyne laser on the base

and a customized gripper.

There are a lot of integrated robot system researches in recent decades. The

widely used wheeled robot Pioneer enable researchers to integrate a robot arm with

several DOFs[125] for manipulation and visual servo feedback grasping[126]. However

for now, Pioneer robot is a little bit small and the payload is only about 17kg which

is somehow not very adequate for some field tasks. More recently Clearpath com-

5 Progress Videos:
http://www.jsk.t.u-tokyo.ac.jp/~xychen/mbzirc/first_report_all.mp4

http://www.jsk.t.u-tokyo.ac.jp/~xychen/mbzirc/second_report_all.mp4
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Figure 5.1: HRP2G Robot Platform Practice in MBZIRC 4 Tasks.

Figure 5.2: HRP2G Robot System Pipeline
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pany has announced their powerful field robot Husky with a payload of 75kg which

enable it to carry a small industrial robot arm like UR5, and capable of more field

tasks[127][128].

The system integration research of humanoid robot with a mobile wheel base is not

a methodology as popular as a robot arm. However, the importance of this research

remains clear that people tend to have a higher acknowledgement of humanoid robot

because they looks like human and people also trust that the humanoid can handle

human’s tasks. In the previous works of our lab, we developed this kind of robot

platform named HRP2W mainly for indoor applications, like home-assistant(cooiking,

cleaning, moving objects)[129][130], also greenhouse agriculture harvesting[2]. But for

outdoor use, we need a stable and powerful mobile base with big and soft tyres to

work in the unpredictable field.

5.2.1 Hardware and Software Architectures

As Figure 5.1 shows, the humanoid platform HRP2G for MBZIRC consists of two

main parts, the HRP2 upper body and the mobile wheeled base. The normal HRP2

upper body has 20 DOFs and for the purpose of installing gripper, we remove the

finger joints of both hands and install the gripper we designed in right hand, the left

end effector is empty now and we plan to install a sensor in the left hand. The HRP2

upper body is no difference with the normal HRP2 robot both in hardware and

software. The development environment is under Euslisp 6 programming language

with ROS(Robot Operation System) and IRT interfaces.

Table 5.1: Specification of HRP2G

Name DOFs Sensors Global Property

HEAD 2 Multi-Sense DOF 21

ARM 7× 2 6-Axis Force
Sensor

Length×
Width×
Height

90× 60×
130(cm)

Gripper 1 Hand Eye

WAIST 2 None

Mobile Base 2 Velodyne
IMU

Total
Weight

≈ 80kg

6https://github.com/euslisp
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Figure 5.3: HRP2G Gripper for MBZIRC tasks

For the mobile wheeled base we install two 350W brush motor and high power

motor driver. We design a middle layer MCU(Micro Control Unit) board to control

the motors via the feedback of the encoders and IMU in the PCB board. The com-

munication of MCU board to the humanoid computer is modified to be completely

under ROS software architecture, the mobile base represents as a single node in the

ROS and continuously publish the state of the base and take action indications from

the motion planning layer.

As Table 5.1 shows, despite of the factory configured sensors of HRP2 and mobile

base, the robot equips several type of sensors. We install the Multi-sense stereo

camera on the head of HRP2, collaborating with the head and WAIST movement,

the visible range is more than 180 degree. A 32-line Velodyne laser range sensor is

installed on the mobile wheeled base with an adjustable height to cover 180 ∼ 360

degree of view. As for many field tasks, it requires robot to do accurate manipulations,

we also install hand-eye on the end effector of HRP2. A GPS is used for the outdoor

localization for the robot and a wireless E-STOP is integrated in the mobile wheeled

base.
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For the task-oriented application, we create a gripper that can pick the iron wrench

and fix it into the shaft. As Figure 5.3 shows, we put a Dynamixel servo motor at

the hand joint and design 3D-print models with magnets installed. The hand-eye is

fixed on the hand joint and we are using the data to align the gripper toward the

wrench. The Dynamixel servo motor is used for align the wrench and when the robot

is trying to fix the wrench to the shaft, Dynamxiel can also provide torque to turn

the shaft. At this moment the permanent magnets are used and we are planing to

use electronic-magnet later so that the robot can both pick and release the wrench.

We build a hardware middle layer circuits board to control the mobile wheeled base

and also communicate with the upper computer. A 32 bits MCU is used as the control

unit, we select the newly published STM32F7 series MCU with ARM cortex-M7 cpu

architecture. The MCU is very powerful and it can achieve 462 DMIPS computation

ability. We also installed 9-axis IMU sensor(MPU9250) in the board and attribute

to the high performance of MCU, we can obtain a pose estimation rate of 1khz. In

the PCB board we also add encoder counter circuits, power management circuits,

CAN bus interface, ADC(analog to digital converter) interface, motor control PPM

interface and serial to USB module. The encoder data and IMU data are collected

by the MCU as the control feedback and MCU controls the motor according to the

indications from the upper computer. A radio receiver is connected with the PCB

board and human can take over the control by simply press a button in the radio

controller that paired to the radio receiver.

5.2.2 Mobile Wheeled Base Kinematics and Optimized Feed-

back Control

As our mobile wheeled base uses only two motors, the front wheels and the corre-

sponding rear wheels are connected by the chain, the kinematics is the differential

drive model[131]. We applied the skid-steer drive model to describe the kinematics

of the mobile base.

Consider the control inputs of the system are only the velocity of the left wheel

and the right wheel, which could be noted as:

Minput =

[
Vl

Vr

]
(5.1)

where Vl, Vr are the corresponding velocity of left and right wheels.
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The output of the model is the state of vehicle, note as q, for simplicity we only

consider 2-D situation in our model. Then we have the model output:

Moutput = q =

 vx

vy

w

 = fm

[
Vl

Vr

]
(5.2)

where vx, vy are the linear speed of the vehicle in self coordinate, namely the lateral

velocity and the forward velocity respectively. w represents for the angular velocity

in 2-D situation, namely the yaw velocity.

Figure 5.4: Idea ICR Model

To get the vehicle kinematics model fm, we need to consider the ICR(Instantaneous

Center of Rotation) of the mobile wheeled base. [132] introduced the geometry of

the skid-steer model when considering ICR in the system. The correction factors are

introduced to present the mechanical matters, note as (al, ar), and the model fm is
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only related to the ICR coordinates and the correction factors:

fm =
a

Ix

 0

Ix

−1

0

Ix

1

 (5.3)

where Ix is the x lateral coordinate of the ICR point, and Equation 5.3 is under the

ideal situation for simplicity where ar = al, I
r
y = I ly = 0 and |Irx| = |I lx|.

In a lot of cases, the Ix can be noted as:

Ix ≈
Vr − Vl

2w
(5.4)

Since for most of the applications, only kinematics odometry wont achieve an ac-

ceptable result for localization, multi-odometer system is applied like GPS and visual

SLAM. In the skid-steer model, the lateral velocity vy become obvious when the ve-

hicle is turning and it is very difficult to accurately estimate the value in real world

environment where the terrain is always unknown.

We use the encoder and IMU data as feed back and control the velocity of each

wheel. Traditional PID approach could achieve a good result in most situations. As

PID law can be expressed as:

∆V (t) = Kpev(t) +Ki

∫ t

0

ev(τ)dτ +Kd
dev(t)

dt
(5.5)

where ev(t) is the difference between the aim speed and the measurement speed, V (t)

is the output duty rate to the motor driver. As we need the output to react as fast

as possible, we set the control rate to 1khz in respect to the encoder update rate.

As Equation 5.5 shows that a good estimation of the current speed and acceleration

is very necessary to the control system. Direct approach suffers from the encoder

resolution and quantization error. We choose the polynomial fitting method[133] to

estimate the parameters.

Consider:

P = (p1p2p3)T (5.6)

where P is the parameters vector, p1, p2, p3 are proportion to the current acceleration,

velocity and the encoder counter value respectively. Then we collect the encoder state
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with a certain frequency, then we have:

X = (x1x2...xn)T (5.7)

with time matrix:

H =



t21 t1 1

t22 t2 1

. . .

. . .

. . .

t2n tn 1


(5.8)

matrix X is the encoder value corresponds to the time matrix H. When n > 2, the

linear equation is given by:

HP = X (5.9)

to estimate the parameters, we apply Least Square method:

P = (HTH)−1HTX (5.10)

if we ignore the square part, the estimation turns out to be a average function of all

measurements. Taking real-time into consideration, we choose 5 time interval in the

estimation procedure.

5.2.3 Experimental Results of HRP2G in Test Field

In task 2 of MBZIRC, the robot HRP2G is requested to operate a valve stem using the

given wrench tools on a randomly placed panel in the challenge arena as Figure 5.1

shows. Firstly the robot must locate the panel in the arena and moving toward to it

and align the robot to the surface and the panel. Then the robot need to detect the

wrench tools and choose the appropriate tool to use because only one wrench will fit

the valve stem. Next we need to pick it up, and manipulate it to rotate the valve stem

one full circle (360 degrees) and a torque of approximately 5 Nm will be required for

the robot to operate the valve. The challenge is judged by three aspects: completion,

autonomous and effectiveness(time)7.

7MBZIRC TEAM-JSK First Report Video
http://www.jsk.t.u-tokyo.ac.jp/~mizohana/mbzirc/task2_1.mp4
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Figure 5.5: HRP2G Picking the Wrench 7
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The advantage of our HRP2G platform in the challenge is that attribute to the

high power of the mobile wheeled base, the robot can run at a very fast speed(≈
4m/s). We consider the maximum end effector load of HRP2 is about 4kg, we design

the gripper to pick the wrench and make sure the torque arm length is > 15cm which

results in < 3.4kg force requirement for the end effector and justified the feasibility

of our robot to operate the valve.

For now we already had a stable platform and hardware configurations and as

Figure 5.5 shows, we also developed a detection algorithm that only need minor

annotation from human. We accomplished the whole task by human remote control

in about 10 minutes and for the next we are mainly focusing on making the whole

system autonomous.

We perform the test as Figure 5.6 shows. The Figure 5.6(A) is the control result

of the linear move test, namely, forward and back-forward. The Figure 5.6(B) is the

control result of angular speed. The thick brown and pink line are the given orders of

angular and linear velocity respectively, within the same ROS topic /cmd vel. The

green, blue and red line are the feedback data collected by the sensors like IMU and

encoders. We can see that the linear velocity control is relatively smooth and the

angular velocity control is vibrating(within 0.2rad/s). This is because the type we

used now is not very flat and the wheelbase is a little bit short, also the chain drive

system made it difficult for the algorithm to control angular velocity while keeping the

linear velocity controlled. According to our experiments, we think the linear velocity

control is acceptable and we are going to reduce the vibration of angular velocity

control by changing the hardware and apply adjustable parameters control algorithm

to our system.

The gripper we made works perfectly both in the preparations and the final chal-

lenge. The magnet is strong enough to pick the wrench with about 5cm and the

gripper have a stem to lock and hold the ring part of the wrench so that even if the

gripper is not well aligned with the wrench, the wrench will adjust itself to fit into

the gripper. When the align error is too large, we use hand-eye sensing to adjust the

offset.

We also perform the experiment on practising the MBZIRC task in field ground.

Firstly the robot localizes the panel and approach the panel, then align itself and

move to pick the wrench. After the wrench is successful picked the robot move again

and align itself to the stem shaft and insert the wrench to rotate the stem for 360

degrees. In the experiment, we encountered several challenges. As the upper body

manipulation range is limited due to the inverse kinematics of the humanoid robot,
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Figure 5.6: Mobile Base Control Test: Figure A shows the control of the linear veloc-
ity. Figure B shows the control of the angular velocity. The /cmd vel topic contains
the aim angular and linear speed orders and the /odometry/raw topic records the
response data collected by the IMU and encoders(Note here we apply ROS coordinate
where the forward direction is x axis in robot coordinate). In the figure, the x-axis is
the time coordinate in second, y-axis is the speed in m/s and rad/s.

85



the mobile wheeled base must move accurately to approach the panel. If the error

is a little bit large, the IK can not be solved. Temporarily we judged the situation

by human beings and make decision to move the mobile base to align the robot itself

and in the future we will add a full body motion planning to the robot so that the

robot will move by itself when the IK can not be solved. Also in the testbed we tested

the highest velocity of the mobile wheeled base and we found out that because the

centroid is a little bit high, when the mobile base brake suddenly, it is very likely

the robot will fall down. Same things will happen if the mobile base moves a sharp

turn. To solve this we add some protection mechanism(also for large obstacles) and

set acceleration limitation to the mobile base control. Neither the linear acceleration

nor the angular speed in linear velocity situation is limited. However, the acceleration

limitation is hard programmed and only can ensure the safety of the robot.

In the preparation trial at test field we can finish the whole task in 10 minutes

with minor human remote control in the experiment. Half of time is speeded on

rotating the stem because it is very hard to fix the wrench into the stem, which is

also considered as the most difficult part in this task.

5.2.4 Discussion

In this section we described the high power field robot platform with humanoid upper

body and mobile wheeled base. We built both the hardware and the software of this

platform including the mechanism attachments, hardware PCB board, and software

driver bridge. The kinematics motion and control of the mobile wheeled base are

analysed and realized in the our system. Targeting at the challenge, we justified the

feasibility of a specific gripper to pick the wrench tools. In the experiment, we test

the control output of the mobile wheeled base in different terrain.

Although at the final challenge we decided not to take this robot platform and

instead we use a single arm robot AERO which is built through a collaboration

project between our lab and THK company due to the consideration of the portability,

maintainability and cost, we justified our high level system architecture toward this

task and demonstrate the feasibility of this approach. Note that most of the sensors,

algorithms and gripper are directly applied in the AERO robot and we successfully

picked the wrench autonomous at the final challenge and ranked 5 in the challenge.
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Figure 5.7: Experiment on MBZIRC task. Three steps: Approach to the panel; Pick
the wrench; Rotate the stem.

87



5.3 Robot Wrench Manipulation Based on Cus-

tomized Tiny Laser Sensor using Object Re-

flectance Information

For this challenge, the difficulties lie in the correctly detecting the wrenches. Since

in the challenge, the ground truth size, position and orientation of wrench holder

are given. All teams adopt the prior shape information of the panel since the panel

corners are very easy to be detected. These corner information will provides a plane

and the wrench hold position as well as the stem shaft position can be deduced. How-

ever, when facing the real world tasks, some of these information can not be always

provided. Besides, sometimes the target objects can not be directly detected using

the traditional sensors due the surface reflectance. In this section, we demonstrates

the application of manipulation using our ultra-tiny line laser sensor to detect the

metal wrench tools based on the intensity data.

As Figure 5.8 shows, the intensity data can provide the reflectance information

of the objects surface. Therefore for the situation which the distance between the

object and the background plane is indistinguishable 5.8 (B), the distance based

clustering approach fails while performs well in situation 5.8 (A). Thus the additional

information of the object surface reflectance can open a new perspective to detect the

objects with the indistinguishable distance problem.

5.3.1 Raw Intensity Data Continuous Measurement Mode

To obtain the intensity data, namely the raw capacitor charge data of the tiny laser

sensor, the raw(intensity) data continuous measurement mode is proposed. Algo-

rithm 3 indicates the how this measurement mode works.

The difference between the raw data mode and the distance measurement mode

which mentioned in the last chapter is that all the raw data are transferred to the host

computer and the distance calculation process is performed on the host computer.

The raw data are transmitted to the host computer at several accumulation pulse

numbers which note as accumulation pulse buffer Pn in Algorithm 3. The pulse

numbers in this buffer cover the whole measurement range from tens of laser pulses

to nearly thousand of laser pulses. The measurement frequency and maximum range

can be altered by change the Pn. In our experiment we set n = 5 and the minimum

Pi ∈ Pn is 20 and the maximum is 700. This mode requires larger communication
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Figure 5.8: Reflectance based clustering demonstration. (In A the distance of the
stick and the background is distinguishable thus both sensors can achieve correct
clustering only by distance using same DBSCAN parameter; In B the distance is
indistinguishable since the stick is too close to the background; C demonstrates the
clustering result using the reflectance information.)
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bandwidth between the sensor system and the host computer since all the nth raw

data need to be sent, thus the maximum measurement frequency is limited.

With the intensity data, we performed experiments on detecting the metallic ob-

jects using both intensity and distance information that provide the orientation and

position information of the target object respectively.

Algorithm 3 Framework of raw(intensity) data continuous measurement mode

Hardware Initialization:
CPU Initialization: System Clock, NVIC, DMA and System Watchdog;
Peripheral Initialization: ADC, DAC, High Resolution Timer, Common Timer, Serial
Communication and GPIO.
Parameters:
High Resolution Timer channel delay buffer Dn: This buffer determines the accurate
time delay among laser pulse, VTX1, VTX2 and VTX3.
Timer counter T and Timer frequency f : emission and receive once during the timer
period;
Accumulation Pulse Buffer Pn: where at each Pi ∈ Pn, pulse accumulated to send
the raw capacitor data from ADC;
Interrupts Vector Vn: each Vi ∈ Vn represents an interrupt and each interrupt is
bound to a callback function.

1: In the main loop, The CPU processes the raw data from ADC DMA and waits
for interrupts in this mode, when the timer callback is triggered, jump to 2, when
the ADC callback is triggered, jump to 3;

2: T = T + 1, open one shot high resolution timer under delay buffer Dn; if T = 1,
jump to 4, if T = Pi, jump to 5, if ∀Pi, T > Pi, jump to 6;

3: ADC convert and ADC-DMA transmit completed, raw data are stored in memory
and being processed in the main loop 1;

4: Initialize the receive sensor, trigger ADC to obtain the reset capacitor voltage;
5: Since T = Pi, the Pi pulses are accumulated, call Serial-DMA service to transmit

the processed data;
6: All transmission finished, start a new measurement, T = 0.

5.3.2 Experiments on Local Sensing based Wrench Picking

As Figure 5.9 shows, from the laser output data we can clearly recognize the wrench

position in figure 5.9(A). In figure 5.9(B), the robot slightly change the pitch of the

end effector to obtain the intensity data. When the reflectance of the target surface is

very high, the sensor is facing directly toward the wrench surface. Figure 5.9(C∼E)

demonstrate the wrench picking, stem shaft detecting and rotating movement.

To align the gripper to perpendicular to wrench, the intensity data are monitored.

The robot pitches the gripper with a small angle step and record all the intensity
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Figure 5.9: Wrench manipulation using on hand laser sensor by customized magnet
gripper.(A∼E presents the wrench recognition, intensity based direction alignment,
wrench picking, stem shaft detecting and stem shaft operating)
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information, after pitching the angle with maximum intensity is found, which indicates

the geometry perpendicular between the wrench surface and the laser sensor.

Figure 5.10 shows the experiment on wrench picking using general purpose robot

hand. Both experiments share the same algorithm framework but using the general

purpose robot hand is more challenging because the customized magnet gripper can

easily suck the metallic wrench to the gripper while the general purpose robot hand

need to align to the wrench accurately.

5.3.3 Discussion

It is a difficult problem to detect the metallic objects and obtain its range position

and orientation information through fast and effective measurement. The traditional

range sensors depend heavily on the incident angle to get the range information.

In additional, even the contact and accurate 3D pointcloud is obtained by the non-

active range sensing like stereo vision, it requires computation resources to obtain

the orientation and position of the target objects as well as resolving the occlusion

issue. Our proposed robot system with on hand tiny laser sensor demonstrates the

its feasibility and advantages in this kind of tasks, which shows the flexibility usage

of our tiny laser sensor system.

5.4 Summary

In this chapter the development of a challenge oriented robot system is introduced.

Targeting at the specific problem, we design both the hardware architectures and

the software algorithms. In the experiments, we demonstrate the feasibility of our

systems as well as the limitations. Since in the challenge provided a lot of prior

information for us to simplify the challenge, a more general problem can be addressed

by our local sensing framework using the tiny laser sensor we developed that was

customized to provide the intensity information. The experiments of this local sensing

framework show the effectiveness of our tiny laser sensor in this general robotic task

and demonstrate the customizable advantage of our sensor.
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Figure 5.10: Wrench manipulation using on hand laser sensor by general purpose
gripper.((A) is initial picking pose; (B) shows the robot pitches the gripper to find
the orthogonal angle to the wrench surface; In (C) robot picks the wrench; (D)
demonstrates the robot fit the wrench to the shaft stem.)
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Chapter 6

Vision Recognition and Local

Sensing Based Object

Manipulation for Aerial Robot

Systems

6.1 Target Detection and Picking with Vision-

Based Drone Systems

Except the challenge 2 of MBZIRC, we also participated in Challenge 3. The Chal-

lenge 3 of MBZIRC requires a team of 3 UAVs(Unmanned aerial vehicle), equipped

with magnetic, suction or other type of end effectors to search, find, pick and relo-

cate a group of static and moving objects. The challenge 3 is considered as the most

difficult challenge of MBZIRC since it requires multiple drones to work together and

the size of the objects to be picked are only circles of 10cm radius which brings both

complexity and precision requirements to the UAV systems.

In this section, the systems and approaches we apply in the challenge task 3 of

MBZIRC are described. First we introduce the drone platform systems we build spe-

cific for this task. Next we describe the system frameworks that consist of general

approaches toward this challenge. In the experiment the Gazebo [134] based soft-

ware simulation result is showed. In the simulation, we justified our target detection

algorithm and the whole task-oriented state-machine. These algorithms are then im-

plemented in the real platform. Combined with a electromagnet gripper we designed

for the drones as a end-effector to pick to object, the feasibility of the framework are
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Figure 6.1: Task 3 Platform: DJI M100

demonstrated in the experiment. In the last part of this section a discussion is made

to explain why our system fails in the challenge and the potential improvements.

6.1.1 Platforms

We developed two types of UAVs. We first used customized DJI M100 as our standard

platform (Figure 6.1). The UAV is equipped with Nvidia Jetson TX1 and TK1

based embedded computers to run control and vision algorithms. We adopt the DJI

ZENMUSE Z3 gimbal camera as our the vision sensor. The DJI M100 is accessible

through the provided on-board SDK with ROS support, we can not only obtain the

sensor data like GPS, IMU and barometer from the SDK, but also control the drone

by simply using the API functions from the SDK. The specifications of our M100 is

as Table shows.

The second type we built a multi-link based transformable aerial robot, which the

prototype has been introduced in [135]. We improved the transformable aerial robot
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Table 6.1: Specification of customized DJI M100 in MBZIRC Challenge 3

SPECS Value SPECS Value Sensors

Type Quadrotor Max Pay-
load

700(g)

Takeoff
Weight

≈ 4(kg) Gripper
Weight

180(g)
DJI ZENMUSE Z3
Camera, DJI
Guidance, GPS,
IMU, Barometer,
Gripper proximity
sensor

Height 350(mm) Propeller 650(mm)

Diagonal
Wheelbase

650(mm) Motor KV 350(kv)

Battery Lipo 6s Hovering
Time

≈ 20(min)

Figure 6.2: Task 3 Platform: Hydrus

called Hydrus (Figure 6.2) by changing the propellers to 14[inches], re-designing the

mechanical parts and building the distribution circuits boards with IMU sensor on

each link. Thus, the performances are improved compared to our recent work of

manipulating the objects [136].
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6.1.2 System Framework Design

Electromagnet Gripper design

We chose to use an electromagnet gripper based on its ease of control, and also because

the circuits can be readily designed and made by ourselves. Permanent magnets are

stronger but it also requires an extra mechanism to push on the object for releasing,

which will make the attachment more complex, and may also require an additional

motor. We also contemplated on the use of an air vacuum but the size of a vacuum

is too big for our drone.

Figure 6.3: Task 3 Gripper (8cm× 8cm, 180g)

We equipped 5 small electromagnets on a gripper of size 8cm × 8cm. Each elec-

tromagnet is capable of producing more than 20N of attractive force given a good

object thickness. The gripper shown in Figure 6.3 consisting of 5 electromagnets

can pick up an object made of iron weighing near 1kg with a thickness of more than

0.3mm. The gripper is also equipped with four touch sensors to detect object–gripper

contact state. In addition, these touch sensors are used to determine the position of

the gripper with respect to the object.

The design of the electromagnet circuits driver is simple since it can be simply re-

garded as a series connection of a inductor and a small resistor. Darlington Transistor

is suitable to drive an electromagnet as the current requirement is only 200ma. Be-

cause of the inductor effect, a protection diode is necessary in the circuits to prevent

backflow. We designed the circuits board with a 32 bits micro controller, a Darlington

driver IC and both serial, CAN(Control Area Network) communication interface in
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the gripper board. An on-board driver written as a ROS node collects the status of

the magnets and the touch sensors in the gripper and reports these information to

the embedded computers.

Target Detection Vision Approach

There are several limitations for drone vision processing. Firstly the sensors should

be as little as possible since the flying time will dramatically reduce if the weight

increase and meanwhile guarantee the quality of the images in outdoor environment.

Secondly, it is impossible to have very high performance processing ability for on-

board computer when considers the size and weight. Lastly the sensors that can be

steadily and easily installed are preferred. Thus we adopt mono-camera as the vision

sensor for our platform and use nvidia embedded on-board GPU computer TX1 and

TK1 as our main processors since it is required that all the vision algorithm need to

be running at real-time.

Since in our approach we decide take advantage of the global arena information,

the coordinate system is under world coordinate, which introduces the projection

matrix P that satisfy:  u

v

1

 = P


Xw

Yw

Zw

1

 (6.1)

where u, v are under the image pixel plane and Xw, Yw, Zw are the corresponding world

coordinate. According to the very basic computer vision geometry theory [137], the

projection matrix P consists of several parts and can be noted as:

P = KE = K[R| T ] (6.2)

where K is the camera intrinsic matrix and can be obtained by using a chess-

board [138]. The E is the extrinsic parameter matrix and is basically a 3D rigid

transformation from the camera coordinate system to the world coordinate system

and consists of two separate rigid transformations which can be obtained by the

gimbal control feedback and the global odometry of the drone. According to the

Equation 6.1, the corresponding world coordinate of each pixel from the image plane

can not be uniquely determined. We simply use the prior arena knowledge and set

the height of the object to a predefined value that Zw = C. Thus the 3D world

coordinate of any image pixels can be acquired.
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For the object detection, we tried several traditional algorithms like the shape-

based hough circle transform, color-based HSI filter with clustering and feature-based

edge detection. Considered the computation complexity and stability, we adopt sep-

arate HSI filters for each color of the objects and apply euclidean cluster among all

the points candidates after filtering. Note sets Pr, Pg, Pb, Py, Po are the image pixels

after HSI filter of red, green, blue, yellow and orange objects in the arena. Then all

the candidate pixels after filtering Pall is:

Pall = Pr
⋃

Pg
⋃

Pb
⋃

Py
⋃

Po (6.3)

then ∀pi, pj ∈ Pall, clusters Oi = {pi ∈ Pi} and Oj = {pj ∈ Pj} are obtained by:

min||pi − pj|| ≥ dthrehold (6.4)

the pixel distance threshold is proportional to the distance from the UAV to the

ground which can be found in the projection matrix P since the distance resolution

of two pixels increases when the camera is leaving from the ground. Thus by removing

some of the clusters with little pixels, we obtained the valid clusters
⋃
O. The centroid

of each clusters and the color domain are then computed that ∀Oi,

[Point(ui, vi), Ci] = F(Oi) (6.5)

where the 2D points in image plane can be projected into the 3D world coordinate

thus the global position and color domain Giof each detected object cluster Oi is

obtained:

Gi = [Point(Xi, Yi, Zi), Ci] (6.6)

where Zi is predefined with respect to the height of the objects. Then a filter is

assigned to all the Gi to remove the error detection and noise. The algorithm finally

assigns a rank to the Gi after filtering to find the most stable target and pass the

information to the motion executors.

State Machine

The state machine of this challenge is divided into 3 big states of searching, picking

and placing. Figure 6.4 briefly shows the flowchart of the state machine. Firstly

the searching areas are defined with respect to the UAVs we use. In each area the

predefined or random generated way points are created offline. After taking off each
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Figure 6.4: Task 3 State Machine. (Note that waypoints information, target infor-
mation and placing area information are under world coordinate and ct is the color
domain of the target)
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UAV follows the way points to search the whole searching area until the detection

algorithm detect and find a stable target, then the UAV turn into picking state.

The controller drives the UAV to approach to the target object and make attempt

for picking. If successfully picked by reading the state of the touch switches on the

gripper the UAV turn into the placing state. If it fails until certain times picking

trials, it will give up picking and return to searching state to search for a different

target object.

6.1.3 Experiments

GAZEBO Simulation

The real size arena ws created in GAZEBO simulation environment with objects of

different color. We adopted the hector quadroter ROS package [139] as our simulation

UAV agent and the physical interaction between the objects and UAV agent was

generated by our simulation plugin node. A RGB camera sensor plugin was also

created to obtain the real-time environment data in simulation. Then we implemented

the vision detection algorithm, state machine and PID controller in the simulation

and achieves results of about 10 static objects were successfully picked and placed

into the dropping box within 15 minutes full autonomously by single UAV. Figure 6.5

demonstrates the simulation framework.

Teleoperation Results

We performed experiments using the aforementioned hardware equipped onto the

UAVs through teleoperation to validate our platform. Approaching the object for

grasping is relatively difficult due to rapid visual changes. A more crucial problem

when approaching the object is the ground effect which results in unexpected be-

haviour and the UAV becomes unstable very quickly, which makes it very hard to

control when the UAV is near ground. Consider this, we suspended the magnet grip-

per with ropes and move the UAV to a certain height that can hover stably, then

once the target was locked, the UAV descend immediately to make picking attempt.

On average we can pick 5 static objects within 8 minutes by single UAV as Figure 6.6

shows.
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Figure 6.5: Challenge 3 GAZEBO Simulation. (The top part of each figure shows the
data of camera, projected 3D points and camera narrow view)
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Figure 6.6: Pick, Place and Search in Teleoperation
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6.1.4 Discussion

The simulation of task 3 was finished about half year before the challenge. The

hardware platform and UAV controller are big problems for our teams. We were

planning to apply multi-link UAV Hydrus in challenge 3 at the beginning but the

challenge rule finally changed and the objects turned out to be a very thin iron plate

which makes it impossible to use such methodology. For DJI M100 UAV, although

both the vision algorithm and the state machine works at the final challenge, the

successful picking rate can not be guaranteed due to several reasons. Firstly the DJI

API velocity control relies heavily on the sensor data accuracy from DJI guidance

and GPS, which are not precise enough for such accurate requirement. Secondly the

FOV(field of view) of our camera is not so wide as we realized in the final stage.

Lastly the unexpected wind and sensor data error brought bad luck to us in the final

challenge.

6.2 Multi-link Aerial Robot Whole-body Object

Manipulation Using Lightweight Tiny Laser

Line Sensor

As described in Chapter 5, challenge 3 requires a UAV to detect and pick several small

objects and then place them into a given box. We applied the tradition quadcopter

drone in the challenge based on vision approach. According to our experiments we

found out the biggest difficulty of this challenge is the control accuracy of the UAV

when the UAV is approaching to the target object due to the ground effect. Also

we consider that for some common aerial manipulation tasks, manipulating from

the top demands very accurate hover control ability or a very exquisite end effector

to compensate to the ground effect. Our recent work [136] shows another novel

perspective toward aerial manipulation. The use of multi-link transformable UAV can

manipulate the objects from side and can transform by changing links to adjust to the

shape of the objects, which avoids some of the mentioned problems that manipulating

from top.

For object detecting, we already proposed a vision based approach in Chapter 5

from top view. However, manipulation from side requires the side information of the

target objects so that the UAV can adjust itself to approach and hold the objects. It

is very important for the UAV to obtain the side shape information of the objects and
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Figure 6.7: Multi-link transformable aerial robot Hydus manipulation demonstration
using ultra-tiny line laser sensor. (A shows a manipulation of a rectangular object
and B refers to cylinder object, the data output is shown in Figure 6.8)
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Figure 6.8: Laser data plot of aerial manipulation task for different objects. (The
A and B figure correspond to the A and B pictures in Figure 6.7; The grid size
is 10[cm]; The colourful plot lines are the capacitor raw charge data with different
emitter pulses, the white line refers to the distance output;)
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also the corresponding distance of the objects. Thus local sensing is very necessary

for this task. The use of our ultra-tiny line laser sensor can provide dense line range

data accurate enough to recognize the shape of object and its small size, light weight

and low power consumption makes it very suitable for this approach.

Figure 6.7 illustrates the idea of installing tiny laser in multi-link UAV to realize

whole body manipulation. Figure 6.8 demonstrates the ultra-tiny line laser data

output of detecting different shape objects. In figure 6.8, the top plot is the raw data

output, including the discharge amount of two capacitors of different emit pulses. As

the pulses increase, the discharge amount rises and if the reflectance is very high or

the objects are very close, the discharge reaches saturation. The distance is calculated

by the ratio of the discharge amounts of the corresponding two capacitors at same

pulses.

6.2.1 Multi-Sensors Framework with Sequence Measurement

Mode

For the multi-link aerial robot, it is possible to mount several tiny laser sensor on dif-

ferent links to measurement the side information of the target manipulation objects.

However, since the basic theory of out tiny laser sensor is based on the accumulation

of the incident light with corresponding wavelength, interference happens when the

FOV intersects. To address this problem, sequence measurement and synchroniza-

tion of the sensors are necessary. Thus a new algorithm framework of our tiny laser

is developed. As Algorithm 4 shows, the multi-sensors sequence measurement mode

is very similar to the continuous measurement mode 3 except it receives indications

through serial port from the synchronizer in host computer, during the timer inter-

rupt 3, the operation of laser emitter switches between on and off according to the

received indications. However, this mode will lead to the measurement frequency to

reduce by n times when n laser sensors are used.

6.2.2 Sampling based Object Detection using Whole-body

Laser Sensing Data

Attribute to the multi-sensors sequence measurement mode, it becomes possible for

the multi-link aerial robot Hydrus to install multiple tiny lasers at the same altitude

so that the surface information of the manipulated objects can be obtained. Then,

according to the pre-defined or pre-detected model, the robot can fit the laser points
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Algorithm 4 Framework of multi-sensors sequence measurement mode

Hardware Initialization:
CPU Initialization: System Clock, NVIC, DMA and System Watchdog;
Peripheral Initialization: ADC, DAC, High Resolution Timer, Common Timer, Serial
Communication and GPIO.
Parameters:
High Resolution Timer channel delay buffer Dn: This buffer determines the accurate
time delay among laser pulse, VTX1, VTX2 and VTX3.
Timer counter T and Timer frequency f : emission and receive once during the timer
period;
Accumulation Pulse Buffer Pn: where at each Pi ∈ Pn, pulse accumulated to send
the raw capacitor data from ADC;
Interrupts Vector Vn: each Vi ∈ Vn represents an interrupt and each interrupt is
bound to a callback function.
Laser On/Off flag O: enable and disable the laser emitter to remove interference.

1: In the main loop, The CPU processes the raw data from ADC DMA and waits for
interrupts in this mode, when the timer callback is triggered, jump to 3, when the
ADC callback is triggered, jump to 4, when the serial receive callback is triggered,
jump to 2;

2: Read laser On/Off indication O from the host computer, if O = 0, disable timer
counter; if O = 1, enable timer counter and set T = 0;

3: T = T + 1, open one shot high resolution timer under delay buffer Dn; if T = 1,
jump to 5, if T = Pi, jump to 6, if ∀Pi, T > Pi, jump to 7;

4: ADC convert and ADC-DMA transmit completed, raw data are stored in memory
and being processed in the main loop 1;

5: Initialize the receive sensor, trigger ADC to obtain the reset capacitor voltage;
6: Since T = Pi, the Pi pulses are accumulated, call Serial-DMA service to transmit

the processed data;
7: All transmission finished, start a new measurement, T = 0.

to the defined model and align itself to manipulate the object. This local sensing

based framework overcomes the limitation of only use global vision sensor for all

range detection which inevitably fail when the robot need to manipulate the object

at a very close range. In addition, the real time data flow provided by our tiny

laser can provide indispensable information for the robot to manipulate the dynamic

objects and even some of the deformable objects in the future.

To fit the points to the given primitive models, the sampling based approach is

used. The algorithm depends on the primitive mathematical expressions like the

circle, rectangular, triangular and etc in 2D space, sphere, box, cylinder and etc in

3D space. In our application, we mount the laser at the same plane thus the laser

distance data can be regressed to 2D expressions.
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Figure 6.9: Demonstration of object local sensing using multiple laser sensor for
multi-link aerial robot manipulation. (The red and green cylinders are the ground
truth and estimated result by motion capture and local sensing respectively, note here
height is given; The white and blue laser range points on the side of the cylinder are
acquired by different laser sensors.)

We take cylinder object as an example in the manipulation task. The laser mea-

surement of the cylinder should be a number of points in S2 space with each points

satisfies the following circle equation:

||(p− c)T (p− c)|| = r2 (6.7)

where c is the center of the circle and r is the corresponding radius. Thus for the

points of the circle primitive:

∀pi,j ∈ (S2 ∩ R2)

we have:

||(pi − c)T (pi − c)|| = ||(pj − c)T (pj − c)|| = r2 (6.8)
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As mentioned in last section that every two distinct points provide one linear equation

of 3 unknowns in our case, it requires 3 points to obtain the center coordinate and

the radius [118].

6.2.3 Experiments

In the experiments, we demonstrate the laser configuration framework and the cylin-

der estimation result in Figure 6.9. Multiple tiny line laser sensors are installed at

different link of the robot and the range data of different laser sensors are shown in

different color. The ground truth of the object is the red cylinder which detected by

the indoor motion capture system. Green cylinder is the circle estimation result with

a given height. We also set a constrain filter to reduce the wrong estimation since

when the robot transforms, some of the range points may reach to the robot itself

and produce a primitive candidate. These points can be removed by considering the

model of the robot.

Figure 6.10 shows the aerial robot manipulation demonstration. Based on the

range data from multiple sensors, our algorithm provide the center and the radius pa-

rameters of the target cylinder object. The robot then adjusts its joints to manipulate

the objects according to the updating parameters. Figure 6.10 (A) shows the robot

open its links and approaches the cylinder object and Figure 6.10 (B) demonstrates

the robot closes its link to hold the objects.

In Figure 6.11, we demonstrate shows the local sensing based multi-link aerial

robot manipulation experiment. This experiment explain the whole framework of

multi-link aerial robot object manipulation. Firstly the initial coordinate is given

to the robot using vision sensor(here we give the approximate position by motion

capture) and then the robot take off and fly to the object 6.11 (A). Secondly the

robot transform to pretend the holding based on the multiple sensors installed on

the link 6.11 (B). Figure 6.11 (C) shows the estimation of the object and the robot

carrying the object to the dropping box. Lastly after dropping the robot check if the

object is successfully dropped by checking the tiny sensor data and return to the take

off position 6.11 (D).

6.2.4 Discussion

Applying the multi-link aerial robot to manipulate the object using whole-body con-

trol is a very challenging task. In our previous work [136] we only addressed the

control configuration of the robot while the information of the object is generated
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Figure 6.10: Manipulation demonstration. (From (A) to (B) the robot approaches
and holds the object; The white and blue laser range points on the side of the cylinder
are acquired by different laser sensors.)

by the accurate motion capture system which requires markers on the surface of the

object. However, in the real application, the complete sensing system is very neces-

sary for the multi-link aerial robot and local sensing are extremely important in our

case. The use of our tiny line laser perfectly satisfies the request and the multiple

sensor measurement configuration makes it possible for the Hydrus to realize the

whole-body manipulation tasks without any external vision systems.

6.3 Summary

In this chapter, we describe the vision recognition and local sensing based object

manipulation approaches for aerial robot systems. Firstly the global vision object de-

tection part is illustrated. The feasibility and effectiveness are demonstrated through

the Gazebo simulation and MBZIRC challenge 3 task using common UAV platform
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Figure 6.11: Whole-body aerial robot manipulation experiment. (From (A) to (D)
the robot take off, hold, carry and release the manipulated object; Note that in D the
ground truth of the cylinder object is the last frame when the object can be observed
by the motion capture system, namely the frame before being dropped in the box.)
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DJI M100. However, considering the control difficulties when the UAV approaches

the object near ground, we also design a multi-link aerial robot to manipulate the

object from side instead pick from top. As the side surface information are very im-

portant for the multi-link aerial robot when performing manipulation, a local sensing

based framework using out tiny laser line sensor is proposed. The result justifies the

unique effectiveness of the tiny laser for UAV tasks where the lightweight, flexibility

and customizable performance are primarily considered.
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Chapter 7

Conclusion and Perspectives

This dissertation addresses perceptual incompleteness issue which is considered as a

pervasive property of most autonomous robot systems. We develop our novel tiny

laser line sensor system with both hardware and software design which can be used as

a multi-purpose range sensor to improve the sensing flexibility of robot system with

respect to its small size and light weight. Next a reasoning based vision recognition

approach is proposed since we discover that with very common prior knowledge of the

world like the physics, geometry and functionality, it is possible for the robot to make

an approximate and reasonable guess of “what is where” from the incomplete sensory

data. We demonstrate this idea by handling the very difficult tomato harvesting

task and the effectiveness of combination of both methodologies to handle perceptual

incompleteness are also claimed when the laser perform as a proximity sensor to justify

the initial guess. By building the task-oriented robot systems for the international

robotics challenges, the effectiveness of local sensing applications using tiny laser line

sensor are evaluated.

Chapter 3 describes the development of the a lightweight tiny laser line sensor

with the details of both hardware and software. Several versions of circuits design,

hardware PCB and lens attachment are upgraded to achieve the temporary version.

We create a thorough model for the wholes system and proposed our hardware and

software calibration methods and addresses the unsolved problem of the laser sensor.

In Chapter 4 we document our reasoning and active local verification based vision

recognition approach in solving the very difficult tomato harvesting task. The idea

that using the common world prior knowledge to handle perceptual incompleteness is

illustrated and justified. Chapter 5 and 6 document how we build the task-oriented

robot systems based on flexible local sensing in robotic challenges and the advantages

of flexible local sensing in handling these real world tasks is explained. Thus the
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feasibility and effectiveness of our laser line sensor used as active local sensing purpose

in above task applications are illustrated.

7.1 A Low-cost Lightweight Tiny Laser Line Sen-

sor for Robotic Applications

The advantage of our design is that we keep the sensor tiny in size and light in weight

without sacrificing measurement accuracy. This is attributed to the high performance

circuit modules we use for calibration. We model errors in the sensor system and pro-

pose an efficient and intuitive algorithm to calibrate the system according to our new

calibration model that consider the light source effect. According to the experiments,

our sensor achieves measurement biases and repeatable accuracy of less than 2[cm]

under certain condition, which is acceptable for a lot of range sensing applications.

The small size, low cost, and low weight make this unconventional sensor a valuable

tools for robotic applications. The sensor is very suitable for robotic local sensing

applications which require the size, weight and flexibility of sensor.

7.2 Tomato Harvesting Robot System with Rea-

soning and Active Local Verification based Vi-

sion Approach

For the reasoning based vision part, the basic idea comes from the observation of the

natural laws of physics and is unique and novel since the robot compute reasonable

guesses, which resembles more of human behaviour. After obtain the guesses using

the reasoning method, we show how our tiny laser line sensor can be used in the

final approaching step of harvesting, which verifies and increases the certainty of the

results. In the experiment we showed the feasibility and effectiveness of our approach.

Our trials of applying humanoid robot for agriculture harvesting which targets at this

very difficult problem demonstrate the feasibility of our method by experiments and

shows another interesting way of robot harvesting. In addition, based on the laser

range data, a verification framework is applied to reduce the vision recognition and

reasoning error.
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7.3 Task-oriented Robotic System Applications

Based on Active Local Sensing Using Lightweight

Flexible Tiny Laser Line Sensor System

We demonstrate several task-oriented robotic applications that based on active local

sensing using our light weight tiny laser line sensor. we developed both the hardware

architectures and the software algorithms of the robot systems. While dealing with

the tasks like metallic tools grasping and multi-link aerial robot object manipulation,

we explain the difficulties and challenges of these tasks and how the robot system could

be altered handle them. In the experiment, attribute to the flexible and customizable

design of the sensor, it become possible to have an unconventional but effective sensor

solution to overcome such difficult challenges.

7.4 Contributions

This dissertation has presented several contributions: First, a low-cost lightweight

flexible tiny laser line sensor is developed. The hardware design and software calibra-

tion development make this sensor flexible and customizable for robotic applications.

Second, a reasoning and local sensing based vision recognition approach is proposed in

tomato harvesting robot system, Combine with the tiny sensor we develop as a active

local verification sensor, we show the feasibility of selective picking for tomato, which

has been considered as a very difficult robotic task. Third, the advantages of our tiny

laser line sensor as well as the development of these task-oriented robotic systems

toward robotic challenges are illustrated in several task-oriented robotic applications

including the metallic tools grasping for humanoid robot and multi-link aerial robot

object manipulation.

7.5 Future Work

There are several areas for improvement. For the tiny sensor development, the fre-

quency can be increased by installing more laser emitter since the main limitations

for this sensor now is the duty rate of the laser emitter. As all the PLDs(Pulse Laser

Diode) require enough time to cool down after incident, mounting multiple PLDs and

divide the emission by time so that the receiver accumulation time can be increased.

It is possible to increase the frequency to several hundred Hz while uses the similar
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hardware design and software configuration of our sensor, which will enable the robot

to handle tasks that requires high speed sensing rate. For the active local sensing

based task-oriented applications, we are trying to apply this tiny laser line sensor to a

lot of traditional tasks such as biped humanoid terrain real-time scanning, mechanical

prostheses slope detection and tiny mobile robot(Darwin) range sensing, etc.

117



Appendix A

Laser Sensor Design Details

A.1 Hardware Schematic

A.2 Calibration Objects

118



Figure A.1: Hardware Bottom PCB Schematic Page 1
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Figure A.2: Hardware Bottom PCB Schematic Page 2
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Figure A.3: Hardware Top PCB Schematic
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Figure A.4: Tested Objects
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Appendix B

Publications and Awards

B.1 First Author Publications

• Xiangyu Chen, Krishneel Chaudhary, Yoshimaru Tanaka , Kotaro Nagahama,

Hiroaki Yaguchi, Kei Okada, and Masayuki Inaba. Reasoning-based vision recogni-

tion for agricultural humanoid robot toward tomato harvesting. In Intelligent Robots

and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 2015. p.

6487-6494.

• Xiangyu Chen, Moju Zhao, Lingzhu Xiang, Fumihito Sugai, Hiroaki Yaguchi, Kei

Okada, and Masayuki Inaba. Development of a low-cost ultra-tiny line laser range

sensor. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International

Conference on. IEEE, 2016. p. 111-116.

• Xiangyu Chen, Kohei Kimura, Hiroto Mizohana, Moju Zhao, Fan Shi, Krish-

neel Chaudhary, Wesley P. Chan, Shunichi Nozawa, Yohei Kakiuchi, Kei Okada and

Masayuki Inaba. Development of task-oriented high power field robot platform with

humanoid upper body and mobile wheeled base. In System Integration (SII), 2016

IEEE/SICE International Symposium on. IEEE, 2016. p. 349-354.

B.2 Other Publications

• Moju Zhao, Koji Kawasaki, Xiangyu Chen, Yohei Kakiuchi, Kei Okada, and

Masayuki Inaba. Transformable Multirotor with Two-Dimensional Multilinks: Mod-

eling, Control, and Whole-Body Aerial Manipulation. In International Symposium

on Experimental Robotics. Springer, Cham, 2016. p. 515-524.
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• Moju Zhao, Koji Kawasaki, Xiangyu Chen, Shintaro Noda, Kei Okada, and

Masayuki Inaba. Whole-Body Aerial Manipulation by Transformable Multirotor with

Two-Dimensional Multilinks. In Robotics and Automation (ICRA), 2017 IEEE In-

ternational Conference on. IEEE, 2017. p. 5175-5182.

• Krishneel Chaudhary, Xiangyu Chen, Wesley P. Chan, Kei Okada, and Masayuki

Inaba. STAIR3D: Simultaneous Tracking And Incremental Registration For Model-

ing 3D Handheld Objects. In Advanced Intelligent Mechatronics (AIM), 2017 IEEE

International Conference on. IEEE, 2017. p. 185-192. Best Student Paper

Award

• Tomoki Anzai, Moju Zhao, Xiangyu Chen, Fan Shi, Koji Kawasaki, Kei Okada

and Masayuki Inaba. Multilinked Multirotor with Internal Communication System

for Multiple Objects Transportation based on Form Optimization Method. Accepted

In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International Conference

on. IEEE, 2017.

• Krishneel Chaudhary, Moju Zhao, Fan Shi, Xiangyu Chen, Kei Okada and

Masayuki Inaba. Robust Real-Time Visual Tracking Using Dual-Frame Deep Com-

parison Network Integrated with Correlation Filters. Accepted In Intelligent Robots

and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017.

• 溝花弘登, Chan Wesley, 木村航平, 陳相羽, 岡田慧, 稲葉雅幸: 移動台車型ヒュー

マノイドによる屋外環境での工具取得操作行動における環境と自己の陰影を考

慮する認識行動, in 第17回SICEシステムインテグレーション部門講演会講演概要

集, pp.2611–2616, 2016.

B.3 Awards

• Winner of the First Tomato Robot Harvesting Challenge Competition in 2014.

• Best Student Paper Award of IEEE International Conference on Advanced Intelli-

gent Mechatronics (AIM), 2017 IEEE
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