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論文の内容の要旨 

 

論文題目：Computational and chemical barriers for counting-dependent 

characterization of biomolecular networks 

      （計数に基づく生体分子ネットワークの特性評価における計算論

および化学論的困難） 
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In this dissertation we concern ourselves with the “hardness”, in the 

sense of both computational complexity theory as well as biochemistry or 

chemistry formal, of a few difficult counting problems that have direct 

relevance to the characterization of biochemical systems, and in particular, 

metabolic networks. Along the way we also prove a number of theories that 

may be of independent interest for computer scientists and graph theorists. 

In Chapter 2 we consider a number of complexity theoretic question 

broadly concerning the hardness of counting and approximating directed as 

well as undirected Hamiltonian cycles, Hamiltonian paths, and general 

cycles in graphs with a range of severe vertex degree, partiteness, vertex 

connectivity, and planarity constraints. Here, we are motivated by the direct 

correspondence of these complexity results to the problem of counting and 

approximately counting simple cycles in “reaction-centric graphs” of 

chemical or biochemical networks, where vertices correspond to “reaction 

centers” (e.g. enzyme proteins) and where directed (resp. undirected) edges 

correspond to irreversible (resp. reversible) flows of metabolites between 

these reaction centers. 

In Chapter 3 we extend the results of the previous chapter to show that 
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counting undirected simple cycles on (k ≥ 3)-regular (bipartite or planar) 

graphs, which in the context of the previous chapter can be interpreted as 

substrate cycles embedded on a (k ≥ 3)-regular reaction-centric graph at the 

limit where all reactions are reversible, remains #P -complete. We also prove 

that counting “circuits” (i.e. walks on graphs where edges are traversed at 

most once and vertices may be traversed an arbitrary number of times) on (k 

= {3, 4, 5})-regular (bipartite or planar) graphs is #P -complete, and show 

that this result can be extended to show that counting circuits on (k ≥ 

3)-regular (bipartite or planar) graphs is #P -complete if a polynomial-time 

formula for circuits on the complete bipartite graph and a complete bipartite 

graph with one missing edge can be found. However, as an important caveat 

here is that, as a consequence of our method of proof, we are unable to say 

anything meaningful regarding the existence or non-existence of 

approximation algorithms for counting cycles and circuits outside of the k = 3 

case. We also leave it as an open question to the biological community if 

there is value in counting or enumerating circuits on (k ≥ 3)-regular 

(bipartite or planar) graphs to consider metabolic networks. 

An additional point of biochemical motivation for this chapter comes 

from the field of protein folding. Here we abstract the polymer under 

consideration as a self-avoiding embedding of a cycle or path of vertices into 

a graph, and simply require such that each folding of the polymer 

corresponds to a Hamiltonian cycle or path on the graph. Therefore, our 

results in this chapter are relevant to the calculation of configurational 

entropy of protein folding models. We are potentially able to say something 

interesting in the sense that calculating configurational entropy fails to 

become easier in the limit of high vertex degrees, which typically correspond 

to coordination numbers in discrete models of protein folding. 

In Chapter 4 we prove a number of results concerning the computational 

complexity of counting and approximately counting Hamiltonian cycles and 

paths on highly restricted variants of cubic graphs. Perhaps most notably, we 
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prove that counting either Hamiltonian paths or cycles on cubic 3-connected 

bipartite planar graphs is #P -complete and polynomial-time inapproximable 

unless NP = RP. This is interesting in the sense that the Hamiltonicity of this 

family of graphs is a major open problem known as Barnette’s conjecture, 

and because it is known that deciding the existence of a Hamiltonian cycle on 

this family of graphs is NP -complete if and only if Barnette’s conjecture is 

false. Therefore, this is the first case we know of where a #P -completeness 

result has been achieved corresponding to a decision problem of unknown 

complexity. 

The immediate “biochemically relevant” application of this chapter is 

that it establishes the strongest case of the Chapter 2 Theorem 2 #P 

-completeness and inapproxibility result for counting substrate cycles or 

elementary fundamental modes, at the limit where all reactions are 

reversible, on cubic 3-connected bipartite planar graphs. In the manner of 

our “biochemically justification” for Chapter 3, the results in this chapter can 

also be understood to imply a hardness result for computing the 

configurational entropy of discrete state approximations of self-avoiding 

cyclical or linear polymers at the limit where the polymer is in a compact 

phase. We have that computing the configurational entropy of the polymer 

under such a model is #P -complete even on cubic 3-connected bipartite 

planar graphs and polynomial-time inapproximable on this family of graphs 

unless NP = RP.  

In Chapter 5 we attempt to strengthen the results of Chapter 2 and 

Chapter 4 by showing that the hardness of determining only the least 

significant bit (i.e. the parity) of the number of Hamiltonian cycles and 

simple cycles more generally on cubic weakly-3-connected bipartite planar 

digraphs and subcubic 2-connected bipartite planar undirected graphs, are 

complete for the class ⊕P, and are thus among the hardest known parity 

counting problems. While we leave it as an open question to the biochemical 

community as to whether these results have any direct physical significance, 
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we argue that they provide a strong clue as to the difficulty of efficiently 

extracting information about the number of cycles in even very topologically 

restricted classes of graphs. 

Finally, in Chapter 6 we attempt a different sort of “worst case” 

hardness analysis, and consider the physical barriers to counting 

ultra-dilute RNA species from the perspective of fundamental nucleic acid 

chemistry. Here, we focus on a series of ultra-high sensitivity assays for RNA 

and protein species in the cell or tissue sections, and in particular the 

photo-DEAN method of Yokomori et. al. for counting individual RNA species, 

and look carefully at the barriers at the limit of low RNA molecular 

concentrations. Specifically, we look at the difficulty of diffusion-based 

search in the low target copy number limit; we look at challenges presented 

by spontaneous decomposition of (deoxy)ribonucleic acid due to depurination 

or depyrimidination followed by intramolecular cleavage via β-elimination at 

abasic sites; we look at cytosine deamination via hydrolytic deamination; we 

look at spontaneous decomposition of RNA via transesterification; finally, we 

consider cyclobutane pyrimidine dimer formation and other undesired 

photochemistry as a result of UV irradiation for the photo-DEAN method. 


