
❩ ❻ ✟⑩☎✠

Computational and chemical barriers for counting-dependent
characterization of biomolecular networks

(✟♣❦ ❡❖✤❙✝ ❮➹➮&'➥♥②✬❯→❦❏◗❿✟➋
❏❼.✖❢ ❸)

/0➹➲2 3/'➮ ➚❐➝7

Barish Robert Daniel

Dedicated to William Leo Barish

ii

Contents

Abstract . vii

1 Introduction 1
1.1 Preamble . 1
1.2 Substrate cycles, Elementary Flux Modes (EFMs), and Extreme

Pathways (EPs) in biochemical networks 2
1.3 Classification of functions according to their arguments and images 4
1.4 Complexity theoretic definitions and terminology 5
1.5 Graph theoretic definitions and terminology 11
1.6 Hamiltonian cycles, Hamiltonian paths, and decision problems

concerning their existence in undirected and directed graphs 16

2 Counting Substrate Cycles in Topologically Restricted Metabolic
Networks 17
2.1 Chapter abstract . 17
2.2 Introduction . 17
2.3 Hardness results for counting cycles on undirected graphs and digraphs 18
2.4 Chapter concluding remarks . 26

3 Counting Simple Cycles and Circuits on Undirected Planar or
Bipartite k-Regular Graphs 27
3.1 Chapter abstract . 27
3.2 Introduction . 27
3.3 Computational methods for counting simple cycles and circuits . . 29

3.3.1 Counting simple cycles . 29
3.3.2 Counting circuits . 29

3.4 Theorems and proofs . 30
3.5 Chapter concluding remarks . 37

4 Counting and Approximately Counting Hamiltonian Cycles
and Paths on a Class of Cubic Bipartite Polyhedral Graphs
Conjectured to be Hamiltonian 38
4.1 Chapter abstract . 38
4.2 Introduction . 39

4.2.1 A brief note concerning Barnette’s conjecture 41
4.3 Computational methods . 41
4.4 Theorems and proofs . 43
4.5 Chapter concluding remarks . 79

5 The Hardness of Deciding the Parity Bit for the Number of
Cycles on Subclasses of Directed Cubic and Undirected Subcubic
Bipartite Planar Graphs 80
5.1 Chapter abstract . 80
5.2 Introduction . 80

iii

5.3 Computational methods . 81
5.4 Theorems and proofs . 83

6 A Worst Case Analysis at the Level of Fundamental Nucleic
Acid Chemistry for a Photocrosslinking-Based Gene Expression
Profiling Method for the Quantitation of Ultradilute Ribonucleic
Acids 90
6.1 Introductory discussion for DigiTag, GEP-DEAN, and

photo-DEAN: embedding RNA expression into a library of
uniformly amplifiable deoxyribonucleic acid polymers 91

6.2 Time versus the number of Brownian “searcher” particles required
to find a small number of target molecules: the unavoidable
tradeoff between target dilution and the spontaneous generation of
false-positive signals . 94

6.3 An overview of photo-DEAN buffer conditions and reaction
temperatures up to and including the first round of PCR
amplification for probe DCN sequences 99

6.4 Spontaneous decomposition of DNA: rates and consequences
for (deoxy)ribonucleic acid depurination, depyrimidination, and
intramolecular cleavage via β-elimination at abasic sites 104

6.5 The rates and consequences of transition mutations due to
hydrolytic deamination . 113

6.6 RNA transesterification, other (pseudo)random cleavage processes,
and their consequences . 117

6.7 I just tried being a little blue: Cyclobutane Pyrimidine Photodimers
(CPDs) and other photochemical terrors at ≈ 254 nm 129

6.8 Special remarks (s*,h*,w* references) 131

7 Supplementary Information for Computational Methods 138
7.1 Brief overview of Mathematica, Combinatorica, SAGE, and the

’igraph’ R package . 138
7.2 Graph plotting in Mathematica 10.4.1 and SAGE 7.2 141
7.3 Export and import of graph6 (.g6) strings in Mathematica 10.4.1

and SAGE 7.2 . 143
7.4 Mathematica 10.4.1 scripts to convert Mathematica 10.4.1 graph

object edge lists to Combinatorica, SAGE 7.2, and ’igraph’ R
package graph object edge lists . 145

7.5 Specifying and interconverting Mathematica 10.4.1 and SAGE 7.2
graph object vertex coordinate lists 152

7.6 Computational methods for finding and enumerating Hamiltonian
cycles and paths with Mathematica 10.4.1, Combinatorica, SAGE
7.2, and the ’igraph’ R package . 154

7.7 A method of contracting (k ≤ 3)-edge-connected subgraphs to show
non-Hamiltonicity of large graph structures; the Mathematica 10.4.1
’SubgraphContract[]’ function . 167

7.8 Planarity testing with Mathematica 10.4.1, Combinatorica, and
SAGE 7.2 . 170

7.9 Determining the minimum vertex cut for a graph with
Combinatorica, SAGE 7.2, and the ’igraph’ R package 173

7.10 Determining the chromatic number χ(G) for a graph with
Mathematica 10.4.1, Combinatorica, and SAGE 7.2 176

7.11 Determining the girth for a graph with Combinatorica, SAGE 7.2,
and the ’igraph’ R package . 178

7.12 Determining the minimum genus γmin(G) and minimum genus
embedding of a graph with SAGE 7.2 181

iv

7.13 Introduction to Brendan McKay’s NAUTY and Plantri packages . 186
7.14 A Mathematica 10.4.1 script to trace the faces and return the dual

of an arbitrary 3-connected planar graph 189

8 Appendix: Gadget Properties, Edge Lists, and Embedding
Coordinates 192
8.1 (Figure 2.2) gadget (height (q = 1) instance) 193
8.2 (Figure 2.2) gadget (height (q = 2) instance) 196
8.3 (Figure 2.2) gadget (height (q = 3) instance) 199
8.4 (Figure 2.3) gadget (depth (q = 1) instance) 203
8.5 (Figure 2.3) gadget (depth (q = 2) instance) 206
8.6 (Figure 2.3) gadget (depth (q = 3) instance) 209
8.7 (Figure 3.1) gadget (depth (q = 1) instance) 212
8.8 (Figure 3.1) gadget (depth (q = 2) instance) 215
8.9 (Figure 3.1) gadget (depth (q = 3) instance) 218
8.10 (Figure 4.4.a gadget) (equivalent to the (Figure 4.9.a) gadget and

to the “Fig. 2.a” gadget from ref. [118]) 221
8.11 (Figure 4.4.b) gadget (equivalent to the (Figure 4.10.a) gadget and

to the “Fig. 3.e” gadget from ref. [118]) 225
8.12 (Figure 4.4.c) gadget (equivalent to the (Figure 4.11.a) gadget and

to the “single-literal clause” gadget shown in “Fig. 5” of ref. [118]) 228
8.13 (Figure 4.5.a) gadget (specifying (z = 1) blocks) 231
8.14 (Figure 4.5.a) gadget (specifying (z = 2) blocks) 234
8.15 (Figure 4.5.a) gadget (specifying (z = 3) blocks) 238
8.16 (Figure 4.5.b) gadget (specifying (z = 1) blocks) 242
8.17 (Figure 4.5.b) gadget (specifying (z = 2) blocks) 246
8.18 (Figure 4.5.b) gadget (specifying (z = 3) blocks) 250
8.19 (Figure 4.5.c) gadget (specifying (z = 1) blocks) 255
8.20 (Figure 4.5.c) gadget (specifying (z = 2) blocks) 258
8.21 (Figure 4.5.c) gadget (specifying (z = 3) blocks) 262
8.22 (Figure 4.8.a) gadget (specifying (z = 1) blocks) 266
8.23 (Figure 4.8.a) gadget (specifying (z = 2) blocks) 269
8.24 (Figure 4.8.a) gadget (specifying (z = 3) blocks) 272
8.25 (Figure 4.8.b) gadget (specifying (z = 1) blocks) 276
8.26 (Figure 4.8.b) gadget (specifying (z = 2) blocks) 280
8.27 (Figure 4.8.b) gadget (specifying (z = 3) blocks) 284
8.28 (Figure 4.8.c) gadget (specifying (z = 1) blocks) 288
8.29 (Figure 4.8.c) gadget (specifying (z = 2) blocks) 291
8.30 (Figure 4.8.c) gadget (specifying (z = 3) blocks) 294
8.31 (Figure 4.9.b) gadget (subgraph of the “Fig. 4” 54 vertex cubic

3-connected bipartite non-Hamiltonian graph from ref. [54]) 298
8.32 (Figure 4.9.c) gadget . 302
8.33 (Figure 4.9.d) gadget (nearly identical to the “Fig. 2.a” gadget from

ref. [67]) . 305
8.34 (Figure 4.9.e) gadget . 308
8.35 (Figure 4.10.b) gadget . 311
8.36 (Figure 4.10.c) gadget . 315
8.37 (Figure 4.10.d) gadget . 318
8.38 (Figure 4.10.e) gadget . 322
8.39 (Figure 4.11.b) gadget . 325
8.40 (Figure 4.11.c) gadget . 329
8.41 (Figure 4.11.d) gadget . 332
8.42 (Figure 4.11.e) gadget . 335
8.43 (Figure 4.13) gadget . 338
8.44 (Figure 4.14) gadget . 345

v

8.45 (Figure 4.15) gadget . 349
8.46 (Figure 5.3.a) gadget (equivalent to the “Fig. 4” gadget from ref. [146])353
8.47 (Figure 5.3.b) gadget (equivalent to the “Fig. 2” gadget from ref. [146])356
8.48 (Figure 5.3.c) gadget . 360
8.49 (Figure 5.4.a) gadget . 364
8.50 (Figure 5.4.b) gadget . 368
8.51 (Figure 5.4.c) gadget . 371
8.52 (Figure 5.4.d) gadget . 374
8.53 (Figure 5.4.e) gadget . 378
8.54 (Figure 5.4.f) gadget . 381

Acknowledgements 384

Bibliography 385

vi

Abstract

In this dissertation we concern ourselves with the “hardness”, in the sense of both
computational complexity theory as well as biochemistry or chemistry formal, of a
few difficult counting problems that have direct relevance to the characterization
of biochemical systems, and in particular, metabolic networks. Along the way we
also prove a number of theories that may be of independent interest for computer
scientists and graph theorists.

—————————————

In (Chapter 2) we consider a number of complexity theoretic question broadly
concerning the hardness of counting and approximating directed as well as
undirected Hamiltonian cycles, Hamiltonian paths, and general cycles in graphs
with a range of severe vertex degree, partiteness, vertex connectivity, and planarity
constraints. Here, we are motivated by the direct correspondence of these
complexity results to the problem of counting and approximately counting simple
cycles in “reaction-centric graphs” of chemical or biochemical networks, where
vertices correspond to “reaction centers” (e.g. proteins) and where directed (resp.
undirected) edges correspond to irreversible (resp. reversible) flows of metabolites
between these reaction centers.

—————————————

In (Chapter 3) we extend the results of the previous chapter to show that counting
undirected simple cycles on (k ≥ 3)-regular (bipartite or planar) graphs, which
in the context of the previous chapter can be interpreted as substrate cycles
embedded on a (k ≥ 3)-regular reaction-centric graph at the limit where all
reactions are reversible, remains #P -complete {∀(k ≥ 3) ∈ N}-regular (bipartite
or planar) graphs. We also prove that counting “circuits” (i.e. walks on
graphs where edges are traversed at most once and vertices may be traversed an
arbitrary number of times) on (k = {3, 4, 5})-regular (bipartite or planar) graphs
is #P -complete, and show that this result can be extended to show that counting
circuits is #P -complete {∀(k ≥ 3) ∈ N}-regular (bipartite or planar) graphs if a
polynomial-time formula for circuits on the complete bipartite graph, K(n,n), and
a complete bipartite graph with one missing edge, {K(n,n) − e}, can be found.
However, as an important caveat here is that, as a consequence of of our method
of proof, we are unable to say anything meaningful regarding the existence or
non-existence of approximation algorithms for counting cycles and circuits outside
of the k = 3 case. We also leave it as an open question to the biological community
if there is value in counting or enumerating circuits in metabolic networks.

An additional point of biochemical motivation for this chapter comes from the field
of protein folding where Hamiltonian paths and cycles arise in discretized models
of proteins on lattices and graphs. Consider, for example, the Hydrophobic-Polar
(HP) packing model originally proposed by Dill et. al. in circa 1985 [49], wherein
a polypeptide is treated as a self-avoiding embedding of a bipartite linear chain
of vertices (where vertex coloration indicates amino acid hydrophobicity) into a
two- or three-dimensional integer lattice. Here, based on the hypothesis that a
primary driver of protein folding was the “packing” of hydrophobic residues and
the exclusion of solvent from the core of a protein, Dill et. al. [49] abstracted
the Minimum Free Energy (MFE) protein folding problem - wherein one attempts
to minimize the free energy, ∆(G) = ∆(H) − T × ∆(S), of a given protein fold

vii

based on some scoring function - as a functional optimization problem of finding a
particular self-avoiding embedding that maximizes the number of pairwise adjacent
vertices of one color type. Since this time, there have been numerous variations
and extensions of the HP model, and of notable interest to us in light of our
(Chapter 2) results, what appears to be an increasing focus on self-avoiding
embeddings on cubic hexagonal (honeycomb) graphs to allow for better treatment
of the natural rotamer configurations of polypeptide chains (see for example (Jiang
& Zhu, 2005) [88]). Furthermore, the pairwise optimization problem proposed in
the original HP model is now known to be NP -hard in a variety of settings, and
refer the reader to the original (apparently simultaneous) proofs of this hardness
result by (Crescenzi et. al., 1998) [44] for Z2 lattices (Berger & Leighton, 1998) [19]
for Z3 lattices.

Our results in this chapter are relevant to the calculation of configurational entropy
of such models. Wherever we prove that counting or even approximately counting
cycles in graphs is difficult, the same can be said for counting embeddings of
self-avoiding polymers (e.g. cyclical polypeptide chains). With the results in this
chapter, we are potentially able to say something interesting in the sense that
calculating configurational entropy fails to become easier in the limit of high vertex
degrees which typically correspond to coordination numbers in discrete models of
protein folding, and there is evidence that greater coordination numbers for discrete
protein folding models imply higher modeling accuracy, albeit with diminishing
returns (see e.g. [141]).

—————————————

In (Chapter 4) we prove a number of results concerning the computational
complexity of counting and approximately counting Hamiltonian cycles and paths
on highly restricted variants of cubic graphs. Perhaps most notably, we prove that
counting either Hamiltonian paths or cycles on cubic 3-connected bipartite planar
graphs is #P -complete and polynomial-time inapproximable unless NP = RP .
This is interesting in the sense that the Hamiltonicity of this family of graphs
is a major open problem known as Barnette’s conjecture [77], and because it is
known that deciding the existence of a Hamiltonian cycle on this family of graphs
is NP -complete if and only if Barnette’s conjecture is false [56]. Therefore, while
it is famously the case that #P -complete counting problems can correspond to
easy decision problems like computing the 01-permanent [180] or counting linear
extensions in an arbitrary poset [31], this is the first case we know of where the a
#P -completeness result has been achieved corresponding to a decision problem of
unknown complexity.

The immediate “biochemically relevant” application of this chapter is that it
establishes the strongest case of the (Chapter 2) (Theorem 2) #P -completeness
and inapproxibility result for counting substrate cycles or Elementary Flux Modes
(EFMs), at the limit where all reactions are reversible, on cubic 3-connected
bipartite planar graphs. However, and in the manner of our “biochemically
justification” for (Chapter 3), the results in this chapter can also be understood
to imply a hardness result for computing the configurational entropy of discrete
state approximations of self-avoiding cyclical or linear polymers (e.g. polypeptide
chains or ribonucleic acid polymers) at the limit where the polymer is in a compact
phase. Here we abstract the polymer under consideration as a self-avoiding
embedding of a cycle or path of vertices R into a graph G, which serves as an
approximation for a confined volume, and we simply require that this embedding
is “covering” (i.e. that the mapping between vertex sets f : V (P) 7→ V (G) is a
bijection, or said differently, a 1-to-1 mapping) such that each mapping corresponds

viii

to a Hamiltonian cycle or path in G. We therefore have that computing the
configurational entropy of the polymer under such a model, is #P -complete even
on cubic 3-connected bipartite planar graphs and polynomial-time inapproximable
on this family of graphs unless NP = RP . We remark that there is precedence
for the successful use of such models in polymer physics (see e.g. [138] and [156]),
and that we might expect a polypeptide chain to approximate a compact phase
after encapsulation or some other manner of confinement by chaparone proteins
assisting its folding.

—————————————

In (Chapter 5) we attempt to strengthen the results of (Chapter 2) and
(Chapter 4) by showing that the hardness of determining only the least significant
bit (i.e. the parity) of the number of Hamiltonian cycles and simple cycles more
generally on cubic weakly-3-connected bipartite planar digraphs and subcubic
2-connected bipartite planar undirected graphs, are complete for the class ⊕P ,
and are thus among the hardest known parity counting problems. While we leave
it as an open question to the biochemical community as to whether these results
have any direct physical significance, we argue that they provide a strong clue as
to the difficulty of efficiently extracting information about the number of cycles in
even very topologically restricted classes of graphs.

—————————————

Finally, in (Chapter 6) we attempt a different sort of “worst case” hardness
analysis, and consider the physical barriers to counting ultradilute RNA species
from the perspective of fundamental nucleic acid chemistry.

To explain our motivation and to introduce this chapter, consider the challenge of
recording the phenotype of a cell or section of tissue in an organism as it exists
at some moment in time. Or alternatively, to make a näıve attempt at formality,
consider the challenge of determining the elements of some set S = Q ×M × V ,
where Q represents a set of labels for some appropriate subset of all RNA and
protein species in the cell or tissue section, and where M and Q correspond to
integer copy number counts (m1,m2, ...) ∈ Z and coordinate vectors (v1, v2, ...) ∈
R

3, respectively, for each of the elements (q1, q2, ...) ∈ Q. Conceptually as well
as practically speaking, this is essentially a problem of appropriately carving the
volume of the cell or tissue sample into some set of partitions H, and then counting
(or more accurately, approximately counting) the molecular species qi ∈ Q in each
partition hi ∈ H.

Here, we focus on a series of ultra-high sensitivity assays for the parameters Q
and M [74, 128, 129], and in particular the photo-DEAN method of Yokomori et.
al. [193–196], which can be used to identify the existence of RNA species and
determine their individual counts, and look carefully at the barriers at the limit
of low RNA molecular concentrations. Specifically, we look at the difficulty of
diffusion-based search in the low target copy number limit; we look at challenges
presented by spontaneous decomposition of (deoxy)ribonucleic acid (DNA) due
to depurination or depyrimidination followed by intramolecular cleavage via
β-elimination at abasic sites; we look at cytosine deamination via hydrolytic
deamination; we look at spontaneous decomposition of RNA via transesterification;
finally, we consider Cyclobutane Pyrimidine Dimer (CPD) formation and other
undesired photochemistry as a result of UV irradiation for the photo-DEAN
method [193–196].

ix

Chapter 1

Introduction

1.1 Preamble

We do our utmost to elaborate upon any special terms or concepts as they
arise in situ in the various parts of this dissertation. However, and while this
seems to work decently well for concepts arising in biochemistry - see if you
don’t agree after reading section (1.2), (Chapter 2), and (Chapter 6) - we
realize that more specialized concepts and terminology arising in computational
complexity theory and/or graph theory may require a more explicit approach.
We therefore include a broader, albeit less directly on topic, introduction to
both of these areas. Specifically, starting with formal definitions for a few
basic categorizations of functions (injections, surjections, and bijections) (1.3),
we then define complexity classes, various reductions among complexity classes,
randomized approximation schemes, elaborate to some extent on satisfiability
problems (in particular 3SAT and its variants), and briefly introduce the resource
bounded version of the Arithmetical Hierarchy (AH) known as the Polynomial
Hierarchy (PH) (1.4). We next introduce a few terms and concepts in graph
theory relevant to this dissertation (1.5), and finally put everything together to
introduce the Hamiltonian cycle and path decision problems and elaborate on their
importance in computational complexity theory (1.6).

We wish to stress that this is very much a “depth-first” explanation of only a
small subset of relevant terms and terminology from complexity theory and graph
theory. On the complexity theoretic side we certainly do not, for example, do
justice to the concept of Turing machines, Cook reductions, or the Polynomial
Hierarchy (PH). The same is likewise true on the graph theoretic side where we
by no means do justice to e.g. Menger’s theorem, Kuratowski’s theorem [105],
Wagner’s theorem [186], or Steinitz’s theorem [165]. Accordingly, we refer the
interested reader to Papadimitriou [139] for a introduction to complexity theory
(or to either Arora & Barak [9] or Sipser [160] for a slightly gentler introduction),
and for graph theory to either the texts of Bondy & Murty [25] or Bollobás [24],
and perhaps also Oxley’s Matroid Theory [136] (this latter recommendation being
for the reader with a particular interest in bridges between graph theory and other
areas of mathematics). Finally, we remark that our use of complexity theory is
very much focused on counting, approximately counting, or enumerating objects
embedded in graphs. We therefore strongly recommend to the reader Jerrum’s very
accessible Counting, Sampling, and Integrating: Algorithms and Complexity [87]
(based on a lecture series of his at ETH Zürich), as well as Welsh’s Complexity:
Knots, Colourings and Counting [188].

1

1.2 Substrate cycles, Elementary Flux Modes (EFMs), and
Extreme Pathways (EPs) in biochemical networks

In (Chapter 2) we take a careful look at the computational complexity of counting
objects known as “substrate cycles” in “reaction-centric graphs” of chemical or
biochemical networks under a combination of stringent topological restrictions.
Here, reaction-centric graphs are simply graph-based representations of the binary
relations composing these networks, wherein we represent metabolite reaction
centers as vertices and draw directed (resp. undirected) edges between reaction
centers to represent irreversible (resp. reversible) flows of metabolites. Thus, in
this context we can understand substrate cycles as simply being cycles embedded
in reaction-centric graphs.

We remark that, depending on the nature of the system under consideration,
substrate cycles may also correspond to objects of interest to biologists known
as “Elementary Flux Modes” or EFMs (Schuster & Hilgetag; 1994) [155], and if
all reactions are irreversible, to a subclass of these objects known as “extreme
pathways” (Schilling et. al.; 2000) [154], where the former are minimal sets of
reactions or enzymes that can maintain a particular steady-state reaction, and the
latter are the extreme rays of a “flux cone” representing a given biochemical or
metabolic network at steady state. We further remark that in a system where the
aforementioned correspondence between substrate cycles and either of these objects
exists, in particular in a “closed system” or subset of a network approximating a
“closed system” (e.g. a cell or organelle), a characterization of the hardness of
counting or approximating the number of substrate cycles will likewise correspond
to the hardness of counting or approximating the number elementary flux modes,
and in the case of directed graphs, to the hardness of counting or approximating
the number of extreme pathways.

To more formally introduce elementary flux modes and extreme pathways, we first
note that for a biochemical or metabolic network having only irreversible reactions,
their definitions coincide. Here, both elementary flux modes and extreme pathways
correspond to the generating vectors of an infinite pointed (containing the origin)
convex polyhedral “steady-state” flux cone K where we have that the volume
occupied by K on the positive orthant of Rn corresponds to linear combinations of
reaction rates. In other words, we have that K =

∑n
i=1(wi ∗ pi) = 1 where pi are

vectors encoding extreme pathways, which are equivalent to elementary flux modes
in this case, and each wi ∈ R+ corresponds to a strictly non-activity “weight” or
“activity level” for each pi.

However, for biochemical or metabolic networks where some reactions are
reversible, elementary flux modes take a bit more work to define. Here, consider
a “stoichiometry matrix” S for some chemical reaction network (e.g. a metabolic
network), where columns correspond to reactions, rows correspond to substrates,
and where we populate entries in the matrix with (typically integer) values
corresponding to how much of a substrate is used in a particular reaction. For
example, if we have some reaction R of the form ra + 2 ∗ rb −→ rc, the positions
in the stoichiometry matrix S on the column corresponding to the reaction R
and along the rows in the matrix corresponding to reactants ra, rb, and rc would
have values −1, −2, and 1, respectively. Here, an elementary mode is simply a
class of vectors vi of reaction rates (i.e. a class of “flux vectors”) that are: (1)
interconvertable via multiplication by a positive real-valued scalar; (2) “physical”
in the sense that the rate of an irreversible reaction in any flux vector vi must be
strictly non-negative; (3) satisfy the steady-state requirement that ∀vi we have
that Svi = 0 (i.e. we have that all vi are elements of the null space of the
stoichiometry matrix S); and (4) satisfy an “elementarity” criterion requiring that,

2

roughly speaking, no proper subset of the reactions in a the vector itself constitutes
an elementary mode. To elaborate on (4), this elementarity criterion implies that
for a flux vector to be an elementary mode, a submatrix of the stoichiometry matrix
S containing only the reactions with non-zero rates in the flux vector, must have
a nullspace of dimension one, or equivalently, must have rank equal to the number
of reactions it concerns minus one (Klamt et. al.; 2005) [101]. We can immediately
see from this definition of elementary flux modes that, outside of the special case
where all reactions in a system are reversible and unlike extreme pathways, nothing
prevents one elementary mode from being the sum of two other elementary flux
modes.

Finally, regarding precedence for our efforts in (Chapter 2), we wish to briefly
highlight (Acuña et. al.; 2009) [1] wherein the directed Hamiltonian cycle decision
problem was utilized as a means of proving the NP -completeness of deciding
if a particular subset of reactions in a biochemical network corresponds to an
elementary mode. Briefly the strategy in (Acuña et. al.; 2009) [1] is to reduce the
directed Hamiltonian cycle decision problem to the question of (“Does there exist
an elementary mode containing exactly the specified reaction set (r1, r2, ...) ∈ R?”)
was to take an arbitrary digraph G with vertex set VG and, in the case of no
double edges (corresponding to reversible reactions), create a new graph Q by:
(1) “splitting” every vertex vi ∈ VG into two vertices, {v(i,1), v(i,2)}, (2) adding
a directed edge between the split vertices oriented towards v(i,2); (3) redirecting
edges formerly oriented toward vi to be oriented toward v(i,1) and edges formerly
oriented away from vi to be oriented away from v(i,2). Here, if one simply calls
vertices in Q “reactants”, directed edges “reactions”, the set of directed edges
or “reactions” between split vertices R, and the {−1, 0, 1} incidence matrix for
Q a “stoichiometry matrix”, there is a 1-to-1 correspondence between directed
cycles in G and elementary flux modes in the reaction network corresponding to
Q. Therefore, we have that there exists a directed Hamiltonian cycle in G iff there
exists a elementary mode involving all of the reactions R corresponding to directed
edges between the “split” vertices in G.

3

1.3 Classification of functions according to their arguments and
images

Injections (also called injective functions / injective maps / one-to-one
functions / embeddings) :: A function f , defined on a set A and taking
values on a set B (f : A 7→ B), is an injection if it maps distinct elements to
distinct elements, i.e. if ∀(x, y) ∈ A we have that f(x) = f(y) iff x = y, and
correspondingly, that f(x) 6= f(y) iff x 6= y.

Surjections (also called surjective functions / surjective maps / onto
functions) :: A function f , defined on a set A and taking values on a set B
(f : A 7→ B), is a surjection if ∀bi ∈ B we have that there exists some ai ∈ A such
that f(ai) = bi.

Bijection (also called bijective functions / one-to-one and onto
functions) :: A function f , defined on a set A and taking values on a set B
(f : A 7→ B), is a bijection if it is both an injection (as defined above) and a
surjection (also as defined above); i.e. f is a bijection if ∀bi ∈ B we have that
there exists some unique ai ∈ A such that f(ai) = bi.

Out[126]=

Bijection

{Injective;

Surjective}

Injection

{Non-Surjection}

Surjection

{Non-Injection}

{Non-Injection;

Non-Surjection}

Set ASet A

: A B

Set A Set A

Set BSet B Set B Set B

4

1.4 Complexity theoretic definitions and terminology

Complexity classes :: While definitions for individual complexity classes broadly
vary, it is generally true that a complexity class will consist of a set of problems
having related time T (n) and/or space S(n) requirements or complexities on a
Turing machine with a write-only “input tape” of size n, a read-write “work tape”
of size S(n), and a write-only output tape.

Reductions in complexity theory :: A reduction is a formulation of an instance
of some problem R (e.g. 3SAT) in terms of different problem S (e.g. the existence
of a Hamiltonian cycle in some graph).

Polynomial time Turing (Cook) reductions :: Here a problem R is
polynomial-time Turing-reduced (this can be denoted as R ≤P

T S or simply
R ≤T S) to a problem S if R can be solved in polynomial time with multiple
and/or adaptive calls to an oracle for problem S (here “adaptive” means that
the nature of successive calls to an oracle can be influenced by the result(s) of
previous call(s)); this is considered a “more powerful” form of reduction than a
Karp many-one reduction.

Karp (polynomial-time many-one) reductions :: Here a problem R is Karp
many-one reduced to a problem S if one has a function f that maps instances
of some problem R to instances of S; i.e. for every instance x of problem R we
have that x ∈ R ↔ f(x) ∈ S (note: there are no requirements for f to be either
injective / surjective / bijective); Karp many-one reductions may be denoted as:
R ≤P

m S, though sometimes these reductions are simply denoted as e.g. R ≤p S
or R ≤m S, where the subscript in these two instances stands for polynomial
and mapping, respectively. We may intuitively distinguish polynomial-time Karp
many-one reductions from so-called “1-Turing” or “Cook[1]” reductions, which
are Turing reductions where only a single oracle call is permitted, by noting
that polynomial-time Karp many-one reductions require that an explicit method
is presented for translating the language of one type of problem instance into
another. We can moreover note that many function- and language-type complexity
classes known to be closed under Karp-type reductions may not be closed under
“Cook[1]”-type reductions (see e.g. the end of “Section 2” of ref. [137] for a
discussion concerning this latter point).

Karp (polynomial-time one-one) reductions :: Karp many-one reductions
are one-one reductions if the reduction function f is injective.

Oracles :: Generally speaking, oracles are just “black boxes” capable of
instantaneously yielding the answer to some predefined decision or function
problem; if a function f has access to an oracle for some problem R (which may
be complete for a given complexity class) this is typically written as fR.

The complexity class P :: Problems that can be solved in polynomial time (i.e.
time T (n) = O(nk) where n is a string encoding the problem specification) on a
deterministic Turing machine. Problems in this class are sometimes referred to as
being “efficiently solvable”, however this is misleading in the sense that the degree
of the polynomial, k, may be an arbitrarily large integer.

5

The complexity class NP :: The set of all decision problems (i.e. problems
with a “yes” or “no” answer in some formal system) with proofs verifiable in
polynomial time on a deterministic Turing machine; equivalently, the class of
problems where accepting instances can be accepted in polynomial time by a
non-deterministic Turing machine. The complement class coNP is defined with
regards to polynomial-time verifiable counterexamples.

Valiant’s counting class #P :: In 1979, Valiant defined a class #P [180,181] of
counting problems as the set of integer function problems of the form f : Σ∗ −→ N

where one is tasked with determining the number of accepting pathways f(xi) for a
nondeterministic Turing machineM running in polynomial time on all input strings
xi encoded over the alphabet Σ (where we typically have Σ = {0, 1}), and where
∀xi we have that |xi| = poly(|f(xi)|). We can equivalently define the class #P as
the set of function problems where one is tasked with determining the cardinality
f(xi) of the witness set of some instance xi of an NP set L, with respect to some
binary witnessing relation WL ⊆ Σ∗ × Σ∗ and some polynomial-time (sound and
complete) NP verifier.

The parity polynomial-time complexity class ⊕P :: The complexity class
⊕P [72, 140, 180, 181] consists of the set of decision problems solvable on a
nondeterministic Turing machineM running in polynomial time on binary encoded
input, where a language L is in ⊕P iff ∀r ∈ L, where r is a binary string encoding
an instance of the language, we have that M has an odd number of accepting
pathways. Alternatively, ⊕P can be said to constitute the set of decision problems
where, provided a string encoding a problem instance xi in a language L ∈ NP , one
is tasked with determining the value of the least significant bit for a binary encoding
of the cardinal number of the witness set for xi with respect to some witnessing
relation WL and some fixed polynomial-time NP -verifier for this relation. With
regards to completeness for the class ⊕P , this is typically defined in terms of a form
of polynomial-time many-one counting reductions [182]. Here, if f and h are two
problems in ⊕P , we can reduce f to h via by finding a polynomial time function
R1 : Σ∗ −→ Σ∗ where we have that R1(x) ∈ h iff x ∈ f and where, in addition, we
have that the parity of the number of accepting pathways is preserved.

Polynomial-time reductions among problems in the complexity class #P
:: If f : Σ∗ −→ N is a is #P -complete counting problem, h : Σ∗ −→ N is a
counting problem in the complexity class #P , and we wish to reduce f to h in some
manner to establish that h ∈ #P is also #P -complete, one generally chooses to
carry out either a polynomial-time Turing reduction or a weaker polynomial-time
Karp many-one counting reduction. Roughly speaking, the essential difference
between polynomial-time Turing and polynomial-time Karp many-one counting
reductions is that Turing reductions allow for multiple adaptive calls to an oracle
for h to solve f , while “weaker” polynomial-time Karp many-one reductions must
consist entirely of operations on strings over some (typically binary) alphabet
and do not involve oracle calls (and therefore may or may not be weaker than
“1-Turing” or “Cook[1]” reductions which are Turing reductions where only a
single oracle call is permitted). Therefore, it is generally speaking a stronger
result to achieve a polynomial-time Karp many-one counting reduction as opposed
to a polynomial-time Turing reduction, in particular one making use of multiple
adaptive oracle calls.

To elaborate on polynomial-time Karp many-one counting reductions (which are
sometimes referred to as weakly parsimonious reductions), here, when reducing
one integer function problem f to another integer function problem h, one has

6

two polynomial-time compatible functions R1 : Σ∗ −→ Σ∗ and R2 : N −→ N,
such that f(x) = R2(h(R1(x))). If R2 is the identity function we call the counting
reduction a parsimonious reduction, and as a further special case, if R2 is an integer

division operation by an exponent of two, i.e. if f(x) = ⌊
(

h(R1(x))

2R3(x)

)

⌋ where R3 :

Σ∗ −→ N>0, then we refer to the counting reduction as a right-bit-shift reduction
[118]. Completeness for Valiant’s #P counting class was originally defined in terms
of polynomial-time Turing reductions [180, 181], however progress is increasingly
being made to establish #P -completeness with respect to polynomial-time Karp
many-one counting reductions [34, 203].

{P, NP, #P, ⊕P ,etc.}-completeness :: When a problem is “complete” for
its complexity class, this implies that the problem is moreover reducible - via
e.g. Turing or many-one counting reductions - to any other problem in its class in
polynomial time. As an example, consider that the well-known P vs. NP problem,
originally posed in (Cook; 1971) [40], is fundamentally a question of whether a
polynomial-time algorithm can be found for any NP -complete problem, implying
the existence of a polynomial-time solution, or lack thereof, for all NP -complete
problems.

Randomized approximation schemes and Approximation Preserving
reductions (AP -reductions) :: Let f : Σ∗ −→ N be a counting problem in
the complexity class #P , let x ∈ Σ∗ be some appropriate input for f , and let
f(x) = N . Following Karp & Luby [93], we define a Randomized Approximation
Scheme (RAS) as a randomized algorithm which takes f and x as input and outputs

some value f̂(ǫ,δ) such that Pr

[(

|f̂(ǫ,δ)−f(x)|

f(x)

)

> ǫ

]

< δ, where we have some

error rate parameter 0 < ǫ < 1 and some accuracy parameter 0 < δ < 1. A
Fully Polynomial-time Randomized Approximation Scheme (FPRAS) is simply a
RAS that has a running time polynomially bounded by |x|, ǫ−1, and δ−1. Now
let {f, h} : Σ∗ −→ N be two counting problems in the complexity class #P .
An Approximation Preserving reduction (AP-reduction) from f to h (denoted
f ≤AP h), as originally defined by Dyer et. al. [51], is a probabilistic oracle Turing
machine M , taking as input a string x ∈ Σ∗ and error parameter 0 < ǫ < 1, and
satisfying the following three conditions: (1) letting x be an instance of h and
0 < δ < 1 (where δ−1 is polynomially bounded by |x| and ǫ−1), we have that all
calls to M specify an input of the form {x, ǫ}; (2) we have that M is a RAS for f
if it is a RAS for g; (3) the time complexity for M is polynomially bounded by |x|
and ǫ−1. Here, if f ≤AP h and h ≤AP f , we call f and h AP-interreducible and
write f ≡AP h.

Example of a Karp-type (and parsimonious-type) reduction :: There
exists a very simple reduction from the problem of detecting the existence of
a Hamiltonian path in a graph to the problem of detecting the existence of a
Hamiltonian cycle (i.e. a (Hamiltonian path) ≤m (Hamiltonian cycle) reduction).
Here, if G is some graph where one wishes to decide the existence of a Hamiltonian
path, one can construct a graph G∗ in polynomial time where all vertices in G are
connected to a “universal vertex”. We then have that there is a Hamiltonian path
in G iff there is a Hamiltonian cycle in G∗. We remark that this (Hamiltonian
path) ≤m (Hamiltonian cycle) reduction is also parsimonious, i.e. we have that
the number of Hamiltonian paths in G is equivalent to the number of Hamiltonian
cycles in G∗.

7

(Hamiltonian path) parsimonious (Hamiltonian cycle)

Reduction

G G
*

Universal Vertex

Conjunctive Normal Form (CNF) :: A CNF formula ΦCNF , which is a
special form of a Quantified Boolean Formula (QBF), consists of a conjugation of
AND ↔ ∧ operations of conjucts, and conjucts consist of an arbitrary number of
OR↔ ∨ operations between literals – e.g. (x1 ∨ x2)∧ x3 or (x1 ∨¬x2)∧ x3 are in
CNF form while e.g. neither (¬x1∨x2)∨¬x3 nor (¬x1∧x2)∧x3 nor (x1∧¬x2)∨x3

nor (x1 ∨ ¬x2 ∨ (x3 ∨ x4)) ∧ x5 are in proper CNF form. Importantly, we have
that every sentence in propositional logic can be expressed in CNF form.

3-Satisfiability (3SAT), Karp’s 11th NP-complete decision problem :: An
NP -complete Boolean satisfiability problem where one is asked to decide the truth
value for a kCNF expression (i.e. a CNF expression where conjucts uniformly
have k = 3 literals) of the form, e.g.: Φ3SAT = (¬x1 ∨ x2 ∨ ¬x876) ∧ (x4 ∨ x1 ∨
¬x3) ∧ ... ∧ (x943 ∨ ¬x2 ∨ x876).

Variants of 3SAT :: With the proliferation of NP -completeness and
NP -hardness as a metrics for defining the difficulty of solving problems arising in
mathematics and increasingly the physical sciences - (see e.g. (Barahona; 1982) [14]
regarding a proof of the NP -hardness of calculating the ground state of an Ising
model on Z

3 lattices or Z
2 lattices in the presence of an external field; (Istrail;

2000) [84] regarding a proof of the NP -hardness for finding the ground state of
Ising models on non-planar graphs) - there has been a concomitant effort to sharpen
and extend the set of 21 NP-complete problems introduced by Richard Karp in
1972 [92], as well as their derivatives, in order to show hardness results for more
restricted classes of inputs that might better correspond to “real world” instances
of the problems. Consider the instance of the SAT problem with at most three
literals per clause (3SAT), the 11th entry in Karp’s list [92], and how over the
years the NP -completeness for this decision problem was shown to hold in the
case of e.g. ::

“Not-All-Equal(NAE)-3SAT” An NP -complete variant of the 3SAT decision
problem where no satisfying instance of a of an NAE − 3SAT formula has a
clause with ≥ 2 “True” literals.

“Planar 3SAT” formula where, representing clauses and literals as vertices in two
distinct partite sets of a graph with edges indicating membership of literals in

8

clauses, the resulting bipartite graph can be embedded in the plane without edge
crossings (Lichtenstein; 1982) [111];

“Planar exactly 1-in-3SAT”, where in addition one requires exactly one literal in
each clause is true (Dyer & Frieze; 1986) [52];

The case of “rectilinear planar 3SAT” formula where all vertices corresponding to
literals are arranged in a line, all vertices corresponding to clauses are drawn as
rectangles parallel to this line of literal vertices, and all edges must be perpendicular
to the line of literal vertices (Knuth & Raghunathan; 1992) [103];

The case of “planar monotone exactly 1-in-3SAT” where one disallows clauses
having a mixture of positive and negative literals (Hunt et. al.; 1998) [82];

The case of “rectilinear planar monotone 3SAT” with the added constraint one
must position the rectangles corresponding to clause vertices above (below) the
line of vertices if all of the literals in a clause are positive (negative) (de Berg &
Khosravi; 2010) [48];

Finally, we remark that a few valleys in this landscape have also been found
where constraints imposed upon 3SAT are sufficient to make the problem
polynomial-time solvable. Consider for example the perhaps surprising proof that
“planar Not-All-Equal (NAE) 3SAT”, where all clauses must have either exactly
two “True” and one “False” literal or two “True” and one “False” literal, is in P
(Moret; 1988) [123].

Quantified Boolean Formula (QBF) :: A Quantified Boolean Formula (QBF)
is an expression of the form: ΦQBF = Q1x1Q2x2...Qnxnφ(x1, x2, ..., xn) where
xi ∈ {0, 1} and Qi ∈ {∃, ∀}. Here the example formula ΦQBF is written in “prenex
normal form” where one has a string of quantifiers called a “prefix” preceding a
quantifier free “matrix” specifying an unquantified Boolean formula). We note
that the individual xi can also represent finite sets, (b1, b2, ..., bm) ∈ xi, of Boolean
variables.

Polynomial Hierarchy (PH) :: The Polynomial Heirarchy PH, originally
introduced by Stockmeyer in 1976 [166], is can be understood as a “resource
bounded” variant of the Arithmetical Heirarchy (AH) from the field of
mathematical logic.

For some intuition and grounding, consider the question of whether a Quantified
Boolean Formula (QBF) is true, i.e. if some an expression of the form ΦQBF =
Q1x1Q2x2...Qnxnφ(x1, x2, ..., xn), where xi ∈ {0, 1} and Qi ∈ {∃, ∀}, is an
element in the language of True Quantified Boolean Formula (TQBF). For
some intuition and grounding, we briefly remark that the NP -complete problem
SAT – [Does there exist some {False, True} = {0, 1} assignment to the set of
variables xi in a Boolean formula φ such that φ evaluates to True?] - is equivalent
to: ∃x1∃x2...∃xnφ(x1, x2, ..., xn), and consider that the coNP -complete problem
Tautology – [Do all possible {False, True} = {0, 1} assignments for the variables
xi in given Boolean formula φ cause the formula to evaluate to the value True?] -
is equivalent to: ∀x1∀x2...∀xnφ(x1, x2, ..., xn).

TQBF is, in the general case, PSPACE-complete under polynomial time and
logarithmic space reductions (note that PSPACE = ∪k∈NSPACE(nk) where
SPACE(S(n)) is the set of decision problem solvable on a deterministic Turing
machine using a work tape of size O(S(n)), i.e. PSPACE, is the set of decision
problems solvable with a Turing machine having a polynomial bounded work tape
of size S(n) = poly(n) where n is the input problem size). However, if one bounds

9

the number of QBF quantifiers, Qi ∈ {∃, ∀}, i.e. bounds n in an expression of the
form Q1x1Q2x2...Qnxnφ(x1, x2, ..., xn), then one is dealing with problems on the
Polynomial Hierarchy (PH) =⇒ PH ⊆ PSPACE.

Concerning standard terminology for complexity classes in the Polynomial
Hierarchy (PH) (assuming PH doesn’t collapse), first we define σP

k=0 =
∑P

k=0 =
∆P

k=0 = P , where P is again the class of problems solvable in polynomial time (i.e.
time T (n) = O(nk)) on a deterministic Turing machine and the superscript P just
designates that we’re considering the Polynomial Hierarchy (PH) and not e.g. the
Arithmetic Heirarchy (AH)). Now, let

∑P
k (where

∑P
1 = NP) be a formula f of

the form: Q1x1Q2x2...Qnxnφ(x1, x2, ..., xn) = ∃x1∀x2∃x3...Qkxkφ(x1, x2, ..., xk),
where Qk = ∀ if k is even and Qk = ∃ if k is odd, and let

∏P
k (where

∏P
1 = coNP and ∀(k ≥ 0) where co −

∑p
k+1 =

∏p
k+1) be a formula f of

the form: Q1x1Q2x2...Qnxnφ(x1, x2, ..., xn) = ∀x1∃x2∀x3...Qkxkφ(x1, x2, ..., xk),
where Qk = ∃ if k is even and Qk = ∀ if k is odd. With these definitions
in hand we can now write: PH = ∪k∈N

∑P
k = ∪k∈N

∏P
k . Correspondingly,

in terms of oracle-based definitions, we have that ∀(k ≥ 0) ∆P
k+1 = P

∑P
k and

∑P
k+1 = NP

∑P
k .

We remark that the following is “probably true” unless the Polynomial Hierarchy
(PH) collapses, i.e. if we have

∑p
k =

∑P
k+1 ←→

∑p
k =

∏P
k , if there exists some

PH-complete problem, or if PH = PSPACE, etc.:

PH ⊆ P#P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

Finally, we note that Seinosuke Toda’s landmark 1991 paper [172] established
(among other things) that PH ⊆ P#SAT =⇒ any problem h ∈ PH is Cook
reducible to a polynomial-time function f ∈ P able to make a single call to an
oracle for the #P -complete problem #SAT (i.e. any problem h ∈ PH is Cook
reducible to #P); for this proof, Toda won the 1998 Gödel prize.

10

1.5 Graph theoretic definitions and terminology

Vertex degree; (vi) :: The number of edges incident to a vertex vi in a graph
G; the maximum vertex degree can be denoted as ∆(G) and the minimum vertex
degree as δ(G).

k-Regular graph :: A graph G is k-regular if all of its vertices vi ∈ V have
uniform degree ρ(vi) = k.

Cubic graph :: A graph is “cubic” if it is (k = 3)-regular.

Subcubic graph :: A graph is “subcubic” if the maximum vertex degree is
∆(G) = 3.

k-Vertex-connected graph :: A graph G is a k-vertex-connected graph if the
cardinality of the minimum vertex set whose removal disconnects G (i.e. minimum
vertex cut) is of size at least k.

k-Edge-connected graph :: A graph G is a k-edge-connected graph if the
cardinality of the minimum edge set whose removal disconnects G (i.e. minimum
edge cut) is of size at least k.

Essentially-k-(vertex or edge)-connected graph :: A graph G is an
essentially-k-vertex-connected graph (resp. essentially-k-edge-connected graph)
if the cardinality of the minimum vertex set (resp. edge set) whose removal
decomposes G into two connected components, each consisting of at least two
vertices, is of size at least k.

Cyclically-k-(vertex or edge)-connected graph :: A graph G is a
cyclically-k-vertex-connected graph (resp. cyclically-k-edge-connected graph) if
the cardinality of the minimum vertex set (resp. edge set) whose removal
decomposes G into two connected components, each containing at least one cycle,
is of size at least k.

Bipartite graph :: The family of graphs where χ(G) (i.e. all (k = 2)–colorable
graphs); every tree graph is bipartite, and every planar graph where all facial
boundaries are cycles of even length is bipartite.

Chromatic number; χ(G) :: The chromatic number of a graph G is the smallest
set of “colors”, or more generally, vertex labels necessary to paint the vertices of the
graph such that no two vertices of the same color share an edge. Said differently,
χ(G) = k implies the existence of a minimal k-coloring of G.

Chromatic polynomial; χG(z) (alternatively written as πG(z), P(G,z),
or C(G,z)) :: A polynomial and graph invariant which counts the number of
distinct k-colorings for a graph G for all k ≤ z, such that we have χ(G) =
min{z : χG(z) > 0} where χ(G) is the chromatic number of the graph G. Due
to (Stanley; 1973) [163] we know that χG(−1) computes the number of acyclic
orientations of G (note counting all acyclic orientations of an arbitrary simple

11

graph G is #P complete (Linial; 1986) [117]); the chromatic polynomial is a
special case of and to some extent the inspiration for the Tutte polynomial,
and we can write down the relationship between these two graph invariants as:
χG(z) = (−1)(n−c)zcTG(1 − z, 0) (see “Theorem 3.1” in (Las Vergnas; 1980)
[185]), where n is the cardinal number of the vertex set c is the number of
connected components for an arbitrary graph G (in (Las Vergnas; 1980) [185]
χG(−1) = TG(2, 0) is explicitly stated).

Planar graph :: Planarity implies that the graph is G −→ R
2 embeddable;

by Wagner’s theorem [186] a graph is planar iff it does not contain as minors
the K5 graph (i.e. the complete graph on (n = 5) vertices) or K(3,3) graph
(i.e. the complete bipartite graph where each partite set has (n = 3) vertices,
eq. the “utility” graph); we remark that Wagner’s theorem [186] is equivalent to
Kuratowski’s theorem [105] (see e.g. “Theorem 17” and “Theorem 18” and the
surrounding discussion on (pp. 24 – 25) of (Bollobás; 1998) [24]).

Plane graph :: An R
2 embedded planar graph; i.e. a graph where there exists

a mapping of all vertices to points on a plane, a mapping of all edges to disjoint
(except for their extreme points) curves on a plane, and where the extreme points of
two curves intersect iff they correspond to edges with a vertex in common.

Graph genus :: Minimum genus of a surface allowing for an embedding of a graph
G without edge crossings; a planar graph is defined as having genus 0.

Vertex induced subgraph (sometimes just called an induced subgraph) ::
Letting VG and EG be the set of vertices and edges, respectively, for an arbitrary
graph G, a subgraph H “induced” by the vertices in some subset R ⊆ VG has
vertex set R and an edge set consisting of all edges ei ∈ EG between arbitrary
vertices va and vb where we have that (va, vb) ∈ R.

k-Hop subgraph (sometimes called a k-neighborhood subgraph) :: A
vertex induced subgraph (as defined immediately above) in an arbitrary graph G,
here induced by the union of some selected vertex vi and all vertices within k
“edge-wise hops” of vi.

Edge contraction :: Letting (va, vb) ∈ V be a pair of vertices in an arbitrary
graph G connected by an edge e(va,vb) ∈ E, edge contraction is an “operation” on
G deletes the edge e(va,vb) and merges va and vb into a single vertex vk.

va

vb

vk

12

Edge subdivision :: Letting (va, vb) ∈ V be a pair of vertices in an arbitrary
graph G connected by an edge e(va,vb) ∈ E, edge subdivision is an “operation” on
G that deletes the edge e(va,vb) , and replaces it with two new edges, e(va,vk) and
e(vk,vb), connecting va and vb to a new vertex vk.

va

vb

va

vb

vk

Edge smoothing (i.e. deletion of a degree ρ(vi) = 2 vertex) :: In some
sense the opposite of the (previously defined) edge subdivision operation wherein
one has a vertex vk of degree ρ(vk) = 2 connected to some pair of vertices va and
vb by a pair of edges, e(va,vk) and e(vk,vb), and one deletes e(va,vk) and e(vk,vb) and
adds a single edge e(va,vb) between vertices va and vb.

va

vb

va

vb

vk

Graph minor :: A graph H is a minor of an arbitrary graph G if H can be
generated from G by deleting vertices and/or deleting edges and/or contracting
edges.

Isomorphic graphs :: Graphs G and H are isomorphic (denoted G ≃ H) if there
is an edge-preserving bijection of the vertices f : vi ∈ VG −→ vk ∈ VH for the two
graphs.

Homeomorphic graphs :: Graphs G and H are considered homeomorphic if
some number of distinct and/or identical edge subdivision operations (as defined
above) on G and H can generate an isomorphic pair of graphs; i.e. less rigorously,
G and H are homeomorphic if they have the same the same “topological structure”
(recall the coffee cup ←→ donut joke cited in classical topology).

13

Tree :: An undirected and connected graph where, for any pair of vertices, (va, vb),
there exists only a single path between va and vb.

Arborescence :: A directed graph (digraph) variant of a tree where all edges are
oriented to point away from some root vertex, vr, and where we again have for any
pair of vertices, (va, vb), there exists only a single path between va and vb.

Forest :: A graph where every connected component is a tree, i.e. a disjoint union
of one or more tree graphs (a forest may also be the empty graph).

Directed Acyclic Graph (DAG) :: A cycle-free directed graph
(digraph).

14

Dual graph :: Letting G be an arbitrary planar graph embedded in R
2 (illustrated

as the graph with dashed edges in the example below), we generate the geometric
dual graph (equivalently, the combinatoric dual) graph G∗ by positioning a vertex
somewhere in each region defined by G and joining two vertices if and when the
two regions defined by G share an edge (illustrated as the graph with solid edges
in the example below).

Line graph; LG :: Letting G be an arbitrary simple graph (i.e. a graph without
multiple edges and/or loops), we generate the line graph, LG, by placing a vertex
somewhere along every edge in G, connecting these vertices iff their respective
edges share a vertex in G, and deleting the original vertices in G.

e4

e8

e1

e7

e3

e12

e11

e9

e2

e5

e6

e10

Original Graph :: G Line Graph :: L(G)
e4

e7e8
e12

e2

e6e5
e10

e11 e3e1 e9

15

1.6 Hamiltonian cycles, Hamiltonian paths, and decision
problems concerning their existence in undirected and
directed graphs

If G is an undirected connected graph on n vertices, a Hamiltonian cycle (resp.
Hamiltonian path) “on”, or equivalently, “in” G corresponds to any connected
subgraph g′ of G on n vertices and n edges (resp. (n− 1) edges) such that g′ is an
undirected cycle graph (resp. undirected path graph). If G is instead a directed
graphs, or equivalently, a digraph, we have the additional requirement that g′ is
a directed cycle graph (resp. directed path graph) having vertex in-degrees and
out-degrees at most one. Alternatively, we can define Hamiltonian cycles and
paths as special cases of so-called spanning trees, where a spanning tree is a tree
subgraph of some undirected graph or digraph G containing all of the vertices in
G and having the minimum set of edges necessary to allow for reachability of all
vertices from at least one vertex via an edge-wise walk respecting the orientation
of any directed edges. Here, a Hamiltonian cycle (resp. Hamiltonian path) can be
thought of as any spanning tree T of G where one has the additional constraint
that every vertex in T has degree exactly two (resp. degree at most two).

Provided this context, we can now define the well-known Hamiltonian cycle (resp.
directed Hamiltonian cycle) and Hamiltonian path (resp. directed Hamiltonian
path) decision problems as problems where, provided some undirected graph (resp.
digraph) G as input, one is tasked with correctly returning the answer “Yes”
or “No” as to whether at least one copy of the relevant type of aforementioned
subgraphs exists in G. When the answer to whether or not there exists at least
one Hamiltonian cycle is “Yes” (resp. “No”) we call G “Hamiltonian” (resp.
“non-Hamiltonian”), and when the answer to whether or not there exists at least
one Hamiltonian path is “Yes” (resp. “No”) we refer to G as being “traceable”
(resp. “non-traceable”).

We note that both the concept of Hamiltonian cycles, and to some extent
the concept of deciding if a Hamiltonian cycle exists in a graph, was first
elaborated upon in a 1856 publication by Thomas Penyngton Kirkman concerning
classification of polyedra (Kirkman; 1856) [99] wherein Kirkman discusses and
possibility and impossibility, in certain cases, of “drawing” non-intersecting
polygons along the “summits” (i.e. vertices) of polyhedra. The adjective
“Hamiltonian” therefore postdates the graph theoretic concept to which it is
now affixed, and is apparently due to William Rowan Hamilton’s circa 1856
icosian game wherein one is challenged to complete a Hamiltonian cycle in on a
dodecahedron after an opponent specifies five consecutive vertices in the graph
(see e.g. (pg. 53) of (Bondy & Murty; 1976) [25]). We also note that,
despite the fact that Hamiltonian cycles and paths were conceptualized ≈ 160
odd years prior to the current date, these seemingly abstract graph theoretic
concepts have found a fundamental role in the field of computational complexity
theory, which is a field very much having its origins in the mid- to late-20th
century. Consider that the directed and undirected Hamiltonian cycle decision
problems were, respectively, the 9th and 10th entries in (Karp; 1972)’s [92] list
of 21 polynomial-time inter-reducible problems complete for the set NP . Karp
prognosticated, correctly it would seem, that his 21 NP -complete problems would
be useful extension of (Cook; 1971)’s [40] proof for the first known NP-complete
quantified Boolean Satisfiability (SAT) problem, and that these problems would
serve as a series of bridges or “layers of abstraction” between a variety of fields
spanning, quoting (pg. 86) of (Karp; 1972) [92]: “...mathematical programming,
graph theory, combinatorics, computational logic and switching theory...”.

16

Chapter 2

Counting Substrate Cycles in Topologically Restricted
Metabolic Networks

2.1 Chapter abstract

Substrate cycles in metabolic networks play a role in various forms of homeostatic
regulation, ranging from thermogenesis to the buffering and redistribution of
steady-state populations of metabolites. While the general problem of enumerating
these cycles is #P -hard, it is unclear if this result holds for realistic networks
where e.g. pathological vertex degree distributions or minors may not exist. We
attempt to address this gap by showing that the problem of counting directed
substrate cycles (#DirectedCycle) remains #P -complete (implying #P -hardness
for enumeration) for any superclass of cubic weakly-3-connected bipartite planar
digraphs, and at the limit where all reactions are reversible, that the problem
of counting undirected substrate cycles (#UndirectedCycle) is #P -complete for
any superclass of cubic 3-connected bipartite planar graphs where the problem
of counting Hamiltonian cycles is #P -complete. Lastly, we show that unless
NP = RP , no FPRAS can exist for either counting problem whenever the
Hamiltonian cycle decision problem is NP -complete.

2.2 Introduction

In graph theoretic terms, substrate cycles can be thought of as cycles in
reaction-centric graphs of metabolic networks, where vertices correspond to
enzymes and directed (resp. undirected) edges correspond to irreversible (resp.
reversible) flows of metabolite species between enzymes. Cycles in reaction-centric
graphs are also known as cyclical Elementary Flux Modes (EFMs) [155], and may
correspond to special cases of these objects denoted extreme pathways [154], where
the former are minimal sets of reactions or enzymes that can maintain a particular
steady-state reaction and the latter are the extreme rays of a flux cone for a given
biochemical or metabolic network at steady state.

Substrate cycles have been linked to thermogenesis in the flight muscles of bumble
bees [38] as well as in the brown adipose tissue of mammals [94,127], and have also
been shown to have an important role in buffering steady-state populations [79],
and in sensitizing regulatory mechanisms related to metabolism [3,127]. However,
despite their apparent importance to biochemists, the only hardness results we are
aware of for enumerating substrate cycles are an indirect consequence of proofs
regarding the NP -hardness of counting all simple (not necessarily induced) cycles

17

in digraphs (see e.g. (“Theorem 17.4”; pp. 343 - 344) of Arora & Barak [9])
via reduction from the NP -complete Hamiltonian cycle decision problem [92],
where digraphs can correspond to reaction-centric graphs where all reactions are
irreversible, and the recent proof due to Yamamoto [191] that the problem of
counting simple (not necessarily induced) cycles in arbitrary undirected graphs is
#P -complete as well as polynomial-time inapproximable unless NP = RP , where
undirected graphs can correspond to reaction-centric graphs where all reactions
are reversible. Moreover, the only complexity theoretic results we are aware of
for enumerating EFMs is that counting EFMs in substrate-centric graphs, where
metabolites are represented as vertices and reactions as edges, is #P -complete [1]
via reduction from the #P -complete problem of counting perfect matchings [180],
and that no polynomial total-time algorithm (see Johnson et. al. [89] for a definition
of this term) can exist for enumerating EFMs containing a specified reaction unless
P = NP [2].

However, a question arises as to the practical relevance of these hardness
results which were proven for general graphs. Consider substrate-centric graphs,
where both metabolites are encoded as vertices which are connected by edges
corresponding to enzymes. We can note that these graphs have been shown to
have e.g. bounded diameters and to exhibit P (k) ∝ k−γ power law scaling for
their vertex degree distributions in a range of archaea, bacteria, and eukaryotic
organisms [86]. It could therefore arguably be the case that the aforementioned
hardness results are simply the consequence of pathological families or classes of
graphs that have little relevance to actual metabolic networks.

Motivated by these concerns, we attempt to sharpen known hardness results
for enumerating substrate cycles to apply to some family of hypothetical
reaction-centric graphs, F , that is simultaneously more constrained than any
realistic large scale metabolic network and “physical” in the sense that one
would expect the constraints defining F to be satisfied individually by subgraphs
composed of some reasonable fraction of enzymes in any given metabolic pathway.
After examining the metabolic pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [90], we decided that some form of vertex degree
uniformity, vertex or edge connectivity, bipartiteness, and planarity constraints
would reasonably meet these dual criteria (see e.g. (Figure 2.1)). We then
proceeded to prove that the problem of counting substrate cycles remains
#P -complete (=⇒ enumeration is #P -hard) on reaction-centric graphs belonging
to any superclass of the highly restricted class of cubic weakly-3-connected bipartite
planar digraphs (Theorem 1), and on any superclass of cubic 3-connected bipartite
planar undirected graphs where the problem of counting Hamiltonian cycles is
#P -complete (Theorem 2).

2.3 Hardness results for counting cycles on undirected graphs
and digraphs

Theorem 1 The problem of counting directed simple (not necessarily induced)
cycles on cubic weakly-3-connected bipartite planar digraphs having vertex in-degree
and out-degree at most two, #DirectedCycle(C3BP :: In2Out2), is #P -complete
under many-one right-bit-shift reductions.

We note that (Theorem 1) is equivalent to the statement that counting substrate
cycles in reaction-centric graphs corresponding to cubic 3-connected bipartite
planar digraphs (=⇒ all reactions are irreversible) is #P -complete under
many-one right-bit-shift reductions.

18

(a)

(b) (c)

(d) (e)

H6PD (K13937)

PGD (K00033)

G6PD (K00036)

TKT (K00615)_1

TKT (K00615)_2

TALDO1 (K00616)

PFKL (K00850)

IDNK (K00851)

RBKS (K00852)

PRPS1L1 (K00948)

RGN (K01053)

PGLS (K01057)

FBP1 (K03841)

ALDOA (K01623)

DERA (K01619)

RPE (K01783)

RPIA (K01807)

GPI (K01810)_1

GPI (K01810)_2

TALDO1 (K00616)

PFKL (K00850)

FBP1 (K03841)

GPI (K01810)_1

TKT (K00615)_1

TKT (K00615)_2

TALDO1 (K00616)

PFKL (K00850)

RBKS (K00852)

PRPS1L1 (K00948)

FBP1 (K03841)

ALDOA (K01623)

DERA (K01619)

RPE (K01783)

RPIA (K01807)

GPI (K01810)_1

PGD (K00033)

G6PD (K00036)

IDNK (K00851)

PRPS1L1 (K00948)

RGN (K01053)

PGLS (K01057)

FBP1 (K03841)

ALDOA (K01623)

DERA (K01619)

RPE (K01783)

GPI (K01810)_1

GPI (K01810)_2

H6PD (K13937)

PGD (K00033)

G6PD (K00036)

TKT (K00615)_2

TALDO1 (K00616)

PFKL (K00850)

IDNK (K00851)

RBKS (K00852)

PRPS1L1 (K00948)

RGN (K01053)

PGLS (K01057)

FBP1 (K03841)

ALDOA (K01623)

DERA (K01619)

GPI (K01810)_1

GPI (K01810)_2

PGM1 (K01835)

PGM1 (K01835)

PGM1 (K01835) PGM1 (K01835)

Figure 2.1: In (a) we show a reaction-centric graph (20 enzymes), simplified by
not considering {ATP, NADP+, NADPH} or other cofactors, for the largest set of
Homo sapiens enzymes in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [90] (Release 81.0, January 1st, 2017) assigned to the pentose phosphate
pathway, carrying out distinct reactions, and allowing for a weakly-connected
reaction-centric graph. The names of enzymes are followed by their KEGG
Orthology (KO) numbers, and may have a ’ 1’ or ’ 2’ postfix to indicate
reactions involving distinct metabolite inputs. Edges that are directed (undirected)
correspond to irreversible (reversible) flows of metabolites. Undirected edges
constitute minimal substate cycles, e.g., the (dashed) undirected edge in (a)
corresponds to a substrate cycle for a pair of enzymes that, if unchecked and
provided a pool of ATP for to reduce to ADP, will continuously interconvert
fructose-6-phosphate and fructose-1,6-bisphosphate, releasing heat in the process.
In (a - e) we show maximal subgraphs (in terms of vertex / enzyme counts)
of the reaction-centric graph from (a), which are: (b) cubic (4 enzymes); (c)
weakly-3-vertex-connected (13 enzymes); (d) bipartite (13 enzymes); and (e)
planar (17 enzymes).

19

Pole 2 Pole 3DAG Tower

(Height = 1)

4x # Cycles Through (vi)

Pole 1

Pole 2 Pole 3DAG Tower

(Height = 2)

42=16x # Cycles Through (vi)

Pole 1

Pole 2 Pole 3

··
··
··
··

DAG Tower

(Height = q+2)

4 (q+2)x # Cycles Through (vi)

'q' Additional

DAG

Tower Layers ··
··
··
··

Pole 1
(2-In, 1-Out) Cubic Graph Vertex (vi)

Pole 2 Pole 3DAG Tower

(Height = 1)

()

Pole 1

Pole 2 Pole 3DAG Tower

(Height = 2)

()

Pole 1

Pole 2 Pole 3

··
··
··
··

DAG Tower

(Height = q+2)
() ()

'q' Additional

DAG

Tower Layers ··
··
··
··

Pole 1
(1-In, 2-Out) Cubic Graph Vertex (vi)

Figure 2.2: Scheme for generating a family of cubic 3-connected bipartite planar
Directed Acyclic Graph (DAG) vertex substitution gadgets where the height q of
the gadget can be specified as desired. If the appropriate (in terms of matching
in-degree and out-degree counts) height q gadget is substituted in place of all
vertices in some cubic 3-connected bipartite planar graph G, creating a new cubic
3-connected bipartite planar graph H, this will multiply the number of length L
cycles in G by the factor (4q)L.

20

Claim 1.1 #DirectedCycle(C3BP :: In2Out2) ∈ #P .

Consider a nondeterministic Turing machine that accepts an input string encoding
a cubic 3-connected bipartite planar digraph G and a directed edge-wise (or
vertex-wise) path P in G, and accepts this input if and only if P is a simple
directed cycle in G (i.e. a directed cycle which visits any given vertex at
most once). Here, we define #DirectedCycle(C3BP :: In2Out2) as an integer
function problem f : Σ∗ −→ N, where one is tasked with determining the
number of accepting branches f(x) for such a nondeterministic Turing machine
=⇒ #DirectedCycle(C3BP :: In2Out2) ∈ #P .

Claim 1.2 #DirectedCycle(C3BP :: In2Out2) is #P -hard.

We proceed with a strategy of creating some digraph H in polynomial time from
an arbitrary simple cubic 3-connected bipartite planar digraph having in-degree
and out-degree at most two, G, of order n, where via a gadget substitution scheme
we amplify the number of simple length L cycles in the graph by a factor (2m)L

allowing us to calculate the number of Hamiltonian cycles via a simple integer
division operation. However, in lieu of substituting this gadget in place of the
edges of G in the manner of the proof for (“Theorem 17.4”; pp. 343 - 344) in Arora
& Barak [9] and in the manner of Yamamoto [191], which precludes H from being
3-connected, we instead replace each of the n vertices in G with the gadget in such a
manner as to ensure that H is a cubic weakly-3-connected bipartite planar digraph
having in-degree and out-degree at most two iff G is cubic weakly-3-connected
bipartite planar digraph having in-degree and out-degree at most two. To do so
we define a surgery for cubic graphs which we denote tripole substitution wherein
a selected vertex vi in a cubic graph G is substituted with a target graph H
having three degree ρ(vi) = 1 pole vertices that are identified (via some bijection if
necessary) as the vertices connected to the vi vertex in G via an edge of identical
orientation.

In (Figure 2.2) we illustrate the scheme for our height (using this term to satisfy
the visual metaphor of a tower) q gadget used for tripole substitution at all
vertices of G to create H. We can now make the following two observations:
(1) that the gadget is a Directed Acyclic Graph (DAG), which implies that
there will be no gadget internal cycles; (2) that the substitution of a height
q gadget at every vertex in G to create H will amplify the number of simple
length L cycles in G by the factor (4q)L. We set q = ⌈n ∗ log4(n)⌉, which
implies a rate of growth for q of O(n ∗ ln(n)), and which correspondingly implies
that we can construct H in time polynomial in the number of vertices in G.
Next, we note there can be at most n(n−1) directed cycles of length at most
(n − 1) in a digraph as this term corresponds to the number of distinct length
(n − 1) strings that can be created from an alphabet Σ of size |Σ| = n. This
then implies that if the graph G is non-Hamiltonian we have an upperbound of

(4q)(n−1) ∗ n(n−1) = (4⌈(n∗log4(n))⌉)
(n−1) ∗ n(n−1) directed cycles. However, if the

graph G has at least one Hamiltonian cycle, H has at least (4q)n = (4⌈(n∗log4(n))⌉)
n

directed cycles. Here, if we remove the ceiling function in the expression for q, the
lowerbound number of cycles for Hamiltonian G is exactly a factor of n larger than
the upperbound R for the number of cycles for non-Hamiltonian G, and with the
ceiling function, at least a factor of n larger since ∀{n ∈ R>0, q ∈ R≥0} we have

that sgn
[

∂
∂q

(

(4q)n

(4q)(n−1)∗n(n−1)

)

= (4q ∗ n(1−n) ∗ ln(4))
]

= (+1).

Putting everything together, we have that the number of Hamiltonian cycles in

G is equal to ⌊
(

(# Directed Cycles in H)

(4⌈(n∗log4(n))⌉)
n

)

⌋ = ⌊
(

(# Directed Cycles in H)

2(2n∗⌈(n∗log4(n))⌉)

)

⌋. As this

closed-form expression is a polynomial-time computable integer division operation

21

consistent with the requirements for a right-bit-shift reduction [118], and as the
problem of counting Hamiltonian cycles on cubic 3-connected bipartite planar
digraphs is #P -complete under parsimonious reductions (though unremarked upon
by Plesńık, his construction in [146] is odd-cycle-free, and moreover becomes
a parsimonious counting reduction from a variant of #3SAT , and transitively
#SAT , if one reorients one edge in his “OR” gadget (see (Chapter 3))), we have
that #DirectedCycle(C3BP :: In2Out2) is #P -hard.

Claim 1.3 #DirectedCycle(C3BP :: In2Out2) is #P -complete under
right-bit-shift reductions.

As we have that the counting problem is in #P (Claim 1.1), is #P -hard (Claim
1.2), and because the reduction described in the proof argument for (Claim 1.2) is
a right-bit-shift reduction [118], by definition we have that the counting problem
is #P -complete under right-bit-shift reductions.

Claim 1.4 Unless we have that NP = RP , there does not exist a FPRAS for
#DirectedCycle(C3BP :: In2Out2).

Let G be an arbitrary cubic 3-connected bipartite planar digraph of order
n, let H be the gadget substituted graph constructed as described in (Claim
1.2), and let R represent an upperbound for the fraction of directed cycles
in H not corresponding to Hamiltonian cycles. Proceeding now in much the
same manner as Yamamoto [191], from the argument in (Claim 1.2) we have

that R = ((4
⌈(n∗log4(n))⌉)

(n−1)
∗n(n−1)

(4⌈(n∗log4(n))⌉)
n) ≤ 1

n
=⇒ ((# Directed Cycles in H)

(4⌈(n∗log4(n))⌉)
n) ≤

⌊((# Directed Cycles in H)

(4⌈(n∗log4(n))⌉)
n)⌋ + 1

4
for n ≥ 4. As the Hamiltonian cycle decision

problem is NP -complete for cubic 3-connected bipartite planar digraphs per
(Claim 1.2), by the argument at the end of “Theorem 3” in Dyer et. al. [51],
we have that #DirectedCycle(C3BP :: In2Out2) ≡AP #SAT . Finally, due to
Valiant and Vazirani [183], we have that no FPRAS can exist for approximating
#SAT unless NP = RP , and that this holds for all counting problems in #P that
are AP -interreducible in polynomial time. Therefore, there can be no FPRAS for
#DirectedCycle(C3BP :: In2Out2) unless NP = RP .

Theorem 2 The problem of counting undirected simple (not necessarily induced)
cycles on any superclass (superset) of cubic 3-connected bipartite planar graphs
where the problem of counting Hamiltonian cycles is #P -complete, which we denote
#UndirectedCycle(Superclass C3BP :: #HC = #P), is #P -complete under
many-one counting reductions.

We note that (Theorem 2) is equivalent to the statement that counting
substrate cycles in reaction-centric graphs corresponding to any superclass of
cubic 3-connected bipartite planar undirected graphs (=⇒ all reactions are
reversible) is #P -complete whenever the problem of counting all Hamiltonian
cycles is #P -complete under many-one counting reductions.

Claim 2.1 #UndirectedCycle(Superclass C3BP :: #HC = #P) ∈ #P .

This follows straightforwardly from the method of argument in (Claim 1.1).

Claim 2.2 #UndirectedCycle(Superclass C3BP :: #HC = #P) is
#P -hard.

22

v
(0)

Tripole

Substitution

(v(0) BW3) (v(1) BW3)

Gadget Depth

(q = 1)

v
(1) (v(2) BW3)

Gadget Depth

(q = 2)

v
(2)

v
(3)

Gadget Depth

(q = 3)

Pole 2 Pole 3

Pole 1

BW3 Tripole

Figure 2.3: Let a “BW 3 tripole” be a BW 3 graph modified to have pole vertices
{Pole 1, Pole 2, Pole 3} joined by an edge to the degree ρ(vi) = 2 vertices in
the original BW 3 graph. Here we show a recursive BW 3 tripole substitution
scheme for generating a family of undirected cubic 3-connected bipartite planar
vertex substitution gadgets where the depth q of the gadget can be specified as
desired. If a depth q gadget is substituted in place of all vertices in some undirected
cubic 3-connected bipartite planar graph G, creating a new cubic 3-connected
bipartite planar graph H, this will multiply the number of length L cycles in G by
ΨL = (1

2
(3 ∗ 5q − 1))

L
and generate n ∗ Φcycles = (n ∗ (1

4
(9 ∗ 5q − 8q − 9))) total

gadget internal undirected cycles.

23

Let G be an arbitrary simple undirected cubic 3-connected bipartite planar graph
of order n. In (Figure 2.3) we illustrate the scheme for our depth q gadget used
for tripole substitution at all vertices of G to create H. We can now make the
following three observations: (1) that H is an undirected cubic graph that is
3-connected iff G is 3-connected, bipartite iff G is bipartite, and planar iff G
is planar; (2) that n = |VG| depth q gadgets will imply the existence of some
number of undirected cycles internal to the set of gadgets; (3) that the substitution
of a height q gadget at every vertex in G to create H will amplify the number
of simple length L cycles in G by some gadget amplification factor denoted Ψ.
Specifically, for cycles traversing a depth q gadget, we have the recurrence relation
a(q+1) = 2 + 5 ∗ aq where a(1) = 7 =⇒ aq = Ψ = 1

2
(3 ∗ 5q − 1), and for the

number of cycles internal to a depth q gadget, we have the recurrence relation
b(q+1) = (1 + 3 ∗ 2 ∗ Ψ + bq) = (1 + 6 ∗ 1

2
(3 ∗ 5q − 1) + bq) where b(1) = 7 =⇒

bq = 1
4
(9 ∗ 5q − 8q − 9). We set q = ⌈log5(13 (1 + 2 ∗ nn))⌉, which implies a rate

of growth for q of O(ln(nn)) = O(n ∗ ln(n)), and which correspondingly implies
that we can construct H in time polynomial in the order of G. Noting as in
(Claim 1.3) that there can be at most n(n−1) cycles of length at most (n − 1) in
a graph, we have that if the graph G is non-Hamiltonian, post-amplification there

are at most ((1
2
(3 ∗ 5q − 1))

(n−1) ∗ n(n−1) + n ∗ (1
4
(9 ∗ 5q − 8q − 9))) undirected

cycles. However, if the graph G has at least one Hamiltonian cycle, H has at least
(1
2
(3 ∗ 5q − 1))

n
+ n ∗ (1

4
(9 ∗ 5q − 8q − 9)) undirected cycles. Here, if we remove

the ceiling function in the expression for q, the lowerbound number of cycles for
Hamiltonian G is exactly a factor of n larger than the upperbound R for the
number of cycles for non-Hamiltonian G, and with the ceiling function, at least a
factor of n larger since ∀{n ∈ R>0, q ∈ R≥0} we have that:

(Exp. 2.1)

sgn

[

∂

∂q

(

(1
2
(3 ∗ 5q − 1))

n
+ n ∗ (1

4
(9 ∗ 5q − 8q − 9))

(1
2
(3 ∗ 5q − 1))

(n−1) ∗ n(n−1) + n ∗ (1
4
(9 ∗ 5q − 8q − 9))

)]

=

sgn

[

∂

∂q

(

(1
2
(3 ∗ 5q − 1))

n

(1
2
(3 ∗ 5q − 1))

(n−1) ∗ n(n−1)

)

=

(

3

2
(5q ∗ n(1−n) ∗ ln(5))

)

]

= (+1)

Now, setting q ≥ log5(
1
3
(1+ 2 ∗nn)), letting n ∗Φcycles = (n ∗ (1

4
(9 ∗ 5q − 8q− 9)))

be the number of cycles internal to the vertex substution gadgets, and letting
Ω = (1

2
(3 ∗ 5q − 1))

n
be the number of undirected cycles in H per Hamiltonian

cycle in G, we can write the relation:

(Exp. 2.2)

(# Hamiltonian Cycles in G) = ⌊
(

(# Undirected Cycles in H)− n ∗ Φcycles

Ω

)

⌋ =

⌊
(

(# Undirected Cycles in H)− (3n(nn−1)
2

) + 2n ∗ log5(2n
n+1
3

)

(nn)n

)

⌋

As this closed-form expression is polynomial-time computable, we have that
#UndirectedCycle(Superclass C3BP :: #HC = #P) is #P -hard.

24

We briefly remark that, letting R represent an upperbound for the fraction of
undirected cycles in H that are not Hamiltonian cycles, and again setting
q ≥ log5(

1
3
(1 + 2 ∗ nn)), we have the bound:

(Exp. 2.3)

R =

(

(1
2
(3 ∗ 5q − 1))

(n−1) ∗ n(n−1) + n ∗ (1
4
(9 ∗ 5q − 8q − 9))

(1
2
(3 ∗ 5q − 1))

n)

)

=

(

((n
n)n

n
) + (3n

(n+1)

2
)− (3n

2
)− 2n ∗ log5(2n

n+1
3

)

(nn)n

)

≈
(

((n
n)n

n
)

(nn)n

)

=
1

n

Thus, letting ||x|| be the nearest-integer function, for n > 2 (which holds without
the approximation shown in (Exp. 2.3)) we have that the number of Hamiltonian

cycles in G is equal to ||
(

(# Undirected Cycles in H)
(nn)n

)

||.

Claim 2.3 #UndirectedCycle(Superclass C3BP :: #HC = #P) is #P -complete
under many-one counting reductions.

As we have that the counting problem is in #P (Claim 2.1) and is #P -hard (Claim
2.2), by definition we have that the counting problem is #P -complete.

Claim 2.4 Unless we have that NP = RP , there does not exist a FPRAS for
#UndirectedCycle(Superclass C3BP :: #HC = #P) whenever we have that the
Hamiltonian cycle decision problem is NP -complete.

This claim follows straightforwardly from (Exp. 2.2), (Exp. 2.3), and the method
of argument in (Claim 1.4).

Corollary 2.1 The problem of counting all undirected cycles on cubic 2-connected
planar graphs, #UndirectedCycle(C2P), is #P -complete.

This corollary follows from the proof argument for (Theorem 2) and the proof by
Lískiewicz, Ogihara, and Toda [118] that the problem of counting all Hamiltonian
cycles in an input graph is #P -complete under right-bit-shift reductions on cubic
2-connected planar graphs.

Corollary 2.2 The problem of counting all undirected cycles on cubic 3-connected
planar graphs (#UndirectedCycle(C3P)), and on cubic 2-connected bipartite
planar graphs (#UndirectedCycle(C2BP)), is NP -hard.

This corollary follows from the proof argument for (Theorem 2) and the
NP -completeness of the Hamiltonian cycle decision problem on cubic 3-connected
planar graphs [67], cubic 3-connected bipartite graphs [4], and cubic 2-connected
bipartite planar graphs [4].

25

2.4 Chapter concluding remarks

We note that substrate cycles in reaction-centric graphs corresponding to closed
systems (or, more appropriately, approximations thereof) such as individual cells,
organelles like the mitochondria, or assuming some appropriate generalization
to arbitrary chemical reaction networks, the upper atmospheres of gas giants,
are equivalent to EFMs (see for example the proof argument for “Theorem 6”
in Acuña et. al. [1]). Furthermore, if all reactions are irreversible, there is
also a bijective correspondence between substrate cycles and extreme pathways.
Therefore, we have that our hardness results concerning substrate cycles have the
same implications for counting and enumerating EFMs and, at the limit where
all reactions are irreversible, extreme pathways in metabolic networks with the
specified topological restrictions.

26

Chapter 3

Counting Simple Cycles and Circuits on Undirected Planar

or Bipartite k-Regular Graphs

This chapter is in submission to a peer-reviewed journal. It will be published in

the UT Repository after either the content of the chapter appears in a journal, or

at the latest, by October of 2022.

27

Chapter 4

Counting and Approximately Counting Hamiltonian Cycles

and Paths on a Class of Cubic Bipartite Polyhedral Graphs

Conjectured to be Hamiltonian

This chapter is in submission to a peer-reviewed journal. It will be published in

the UT Repository after either the content of the chapter appears in a journal, or

at the latest, by October of 2022.

38

Chapter 5

The Hardness of Deciding the Parity Bit for the Number

of Cycles on Subclasses of Directed Cubic and Undirected

Subcubic Bipartite Planar Graphs

This chapter is in submission to a peer-reviewed journal. It will be published in

the UT Repository after either the content of the chapter appears in a journal, or

at the latest, by October of 2022.

80

Chapter 6

A Worst Case Analysis at the Level of Fundamental
Nucleic Acid Chemistry for a Photocrosslinking-Based
Gene Expression Profiling Method for the Quantitation of
Ultradilute Ribonucleic Acids

90

6.1 Introductory discussion for DigiTag, GEP-DEAN, and
photo-DEAN: embedding RNA expression into a library of
uniformly amplifiable deoxyribonucleic acid polymers

At a sufficiently high level of abstraction, the DigiTag [128], DigiTag 2 [129], and
GEP-DEAN [74] (“GEP-DEAN” = Gene Expression Profiling by DCN Encoding
based Analysis, “DCN” = DNA Coded Numbers) assays are all variations on a
“molecular version” of an injective function f : S ֌ Z, where S is a multiset of
“signals” corresponding to polynucleotide strings of mRNA or cDNA (potentially
having lengths running into the tens of kilobases), and where f maps each RNA
signal to a specific integer label corresponding to a short deoxyribonucleic acid
(DNA) oligonucleotide denoted a DNA Coded Number (DCN) tag.

More specifically, in each of these assays f consists of a procedure wherein a set
of ≈ 15nt DNA probe pairs search for distinct ≈ 30nt target sequences on each
of the si ∈ S, where target sequences are carefully selected to optimize for having
optimal thermodynamic properties as well as uniqueness in a given mRNA or
cDNA population. If two probes in a pair find the same si ∈ S, the 5′ termini
(resp. 3′ termini) of the probe hybridized upstream (resp. downstream) of the
other can be joined together via the application of some ligase enzyme of choice.
Now, if the upstream probe is designed to encode a special DNA Coded Number
(DCN) sequence on its 3′ end, and the downstream probe encodes e.g. - a biotin
(in the case of the original DigiTag [128] assay), a primer to directly allow for PCR
amplification (in the case of the DigiTag 2 [129] assay), or a hybridizable capture
sequence (in the case of the GEP-DEAN [74] assay) - this allows one to selectively
isolate only the DCN “signal” sequences that participated in a successfully ligated
probe pair complexes. Thus, we have that the procedure f has “embedded” (and
we hasten to note that we use the term “embedded” in an informal sense) the
signals in the multiset S into a library of known and (with appropriate sequence
design) quantitatively amplifiable DCN oligonucleotides corresponding to a set of
integer labels having distinct values for each of the elements in S.

At a lower level of abstraction, we can note that the selection of the Taq NAD+

dependent DNA ligase (from Thermus aquaticus) for DigiTag [128] and DigiTag
2 [129] evidences the focus of these earlier studies on cDNA SNP detection
and quantification. Consider here that this family of polymerases can exhibit
on mismatch sensitivities, i.e. correct Watson-Crick hybridization stringencies,
around two orders of magnitude beyond the fidelity of T4 DNA ligase [173],[h1] (not
to discredit T4 DNA ligase’s mismatch discrimination abilities [71]). Moreover, we
have that the highest mismatch stringency for Taq is achieved if the mismatch
is on the 3′-OH side of the nick [15],[s7], and we can see that this is reflected in
the encoding of the SNP Watson-Crick complement on 3′ side of the nick between
the probe pairs for the DigiTag [128] and DigiTag 2 [129] assays. However, for
either DigiTag [128] or DigiTag 2 [129], an enzyme like Tth DNA ligase (from
Thermus thermophiles) may have provided the high sensitivity of this enzyme to
distal duplex fraying or mismatches, e.g. where mismatches 7 nts to 8 nts 5′ of a
nick region can mostly abrogate ligation [148]. The selection of the Taq enzyme
for GEP-DEAN, where cDNA quantification rather than SNP detection appeared
to be the focus of the study, can be understood from this context as arising from
a desire for consistency with earlier methods.

We now shift our focus to Yokomori et. al.’s photo-DEAN [193–196] platform,
which will be the primary focus for this chapter. Yokomori et. al.’s photo-DEAN
[193–196] is a novel variant of the DigiTag [128], DigiTag 2 [129], and GEP-DEAN
[74] DCN-based methods wherein Yokomori et. al. [193–196] attempts direct

91

detection and quantification of mRNA with DNA probes (as opposed to the
reverse transcribed cDNA used by photo-DEAN’s predecessors [74,128,129]), and
in place of enzymatic ligation with a Thermus family enzyme (e.g. Taq as used
in the aforementioned previous assays) [74, 128, 129], Yokomori et. al. [193–196]
employs Fujimoto et. al.’s 5-R-vinyluracil RVU photoligation chemistry (where
“R” = “CN”, “COOH”, etc.; “R” = “COOH” in the case of photo-DEAN
[62–64,121,126,131–135,193–196,199,200],[s1].

Following photo-ligation, a biotin microbead-based affinity capture step (similar
that used in the original DigiTag [128] and GEP-DEAN [74] methods) is
then used to isolate DCN sequences on photo-ligated probes, and these DCN
sequences are later amplified, fluorescently tagged, and annealed to a microarray
for quantification. Concerning the initial bead purification step for isolating
photoligated probe pairs, in light of Fujimoto et. al.’s demonstration of Ex Taq
polymerase PCR amplification of an oligonucleotide with LHS and RHS primers
joined by a CVU crosslink [133], there does not appear to be fundamental reason
for this choice. In other words, it may also have been possible for Yokomori et. al.
to directly PCR amplifying CVU photo-ligation products akin to the direct PCR
amplification of properly ligated DCN-carrying sequences in the DigiTag 2 [129]
assay.

On the one hand, the photo-DEAN [193–196] method of Yokomori et. al. appears
to sacrifice the enzymatic fidelity check offered by Thermus NAD+ dependent
DNA ligase enzymes like Taq [96] or Tth [148] in exchange for a CVU ligation
fidelity of ((ligation rate | WC hybridization) / (error rate)) ≈ 10− 100, which
can be contrasted with the ≈ 103 fidelities achieved with the Thermus AK16D
ligase [173]. Another sacrifice with this chemical ligation approach is that, beyond
consideration of hybridization thermodynamics, mismatch discrimination will only
occur in the immediate vicinity of a photo-ligation junction [63, 199, 200], which
can be contrasted with the ability to achieve similar ≈ 10−100 fidelities a distance
8 nts 5′ of the point of ligation with the Thermus DNA ligase Tth [148]. Quickly,
we arrived at our ≈ 10 − 100 value for CVU ligation fidelity by first noting that
the estimate seemed to correspond to the error rate for the CVU ligation of two
6-mers over an RNA template (see “Figure 4.6” in ref. [199]), and by taking
into consideration Fujimoto et. al.’s observation that CVU will crosslink to a
+1 cytidine in an overhang with a probability of ≈ 12% [63] (though this could
increase or decrease quite a bit depending on local stacking interactions at the
nick site). And while it’s true that almost negligible error rates were observed
in Fujimoto et. al.’s study on the detection of indica and japonica rice strain
SNPs [200], we point out that this is much more likely due to the fact that short
9-mer oligonucleotides were utilized as hybridization probes, making their ability
to discriminate mismatches more a function of thermodynamics than the chemistry
of the actual ligation method [h2].

On the other hand, Yokomori et. al.’s method [193–196] of CVU based photoligation
and mRNA quantification has a potential very significant implication. While it’s
certainly true that if GEP-DEAN sensitivities and timescales can be achieved,
photo-DEAN will allow for the detection and quantitation of cDNA, mRNA, or
genomic DNA with rather impressive ≈ 18 zMol sensitivity, implying that target
concentrations only amounting to NA ∗18∗10−21 ≈ 6.02214129∗1023mol−1×18∗
10−21 ≈ 1.1 ∗ 104 molecules will sit above the technique’s noise floor. However,
what is truly impressive about photo-DEAN is that it promises to allow us to do
detect and quantify nucleic acids with this sensitivity strictly where AND when
we shine UVA (≈ 366 nm to ≈ 405 nm) light. Regarding the proper aiming of a
diffraction limited beam of blue light, one can do with e.g. a laser spot illuminator
operating at ≈ 20 Hz [109] or (c.2) a Digital Micromirror Display (DMD) array

92

with 105 to 106 or so individually programmable mirrors that allow for massively
parallel spot illumination [109, 171]. Concerning uses for a DMD, one could, for
example, simultaneously light up the mitochondria or some other organelle / foci
/ etc. in hundreds of thousands of cells in a fixed tissue sample (or perhaps a
live tissue sample if photo-DEAN probes can be transfected into the cells via e.g.
liposomes) [h3].

To the best of our knowledge, there is no precedent whatsoever for this kind of
capability. For this reason, we focus our analysis in this chapter on Yokomori et.
al.’s novel photo-DEAN method.

93

6.2 Time versus the number of Brownian “searcher” particles
required to find a small number of target molecules:
the unavoidable tradeoff between target dilution and the
spontaneous generation of false-positive signals

For our analysis in this section, we primarily consider challenges associated with
matching the sensitivity of Gotoh et. al.’s GEP-DEAN [74] assay using Yokomori
et. al.’s photo-DEAN [193–196] method. And this is no modest objective as it
requires that one achieve an extremely impressive lowerbound assay detection limit
of ≈ 18 zmol or (18∗10−21∗NA) ≈ 10840 molecules (NA ≈ 6.02214129∗1023mol−1

being Avogadro’s constant), in a ≈ 29.5 µL reaction volume, which implies that
the target sequences are at a concentration of ≈ 0.61 femtoMolar (fM) [76].

To begin, we note that for any method of detecting and quantitating ultralow
nucleic acid target concentrations (e.g. a ≈ 0.61 fM concentration of target
molecules), there will always be a tradeoff between the concentration of Brownian
“searcher” particles (i.e. molecular probes) and the time one is willing to afford for
the detection step of the assay to reach a desired threshold degree of completion.
To understand this point, consider that the time it takes to find a molecular target
via diffusion is directly proportional to the number of molecules N searching for
the target via Brownian motion.

More specifically, we can cite Condamin et. al.’s [39] derivation of molecular
search time via simple diffusion in three-dimensions (more formally denoted the
three-dimensional Mean First Passage Time (MFPT)), which is as follows:

(Exp. 6.1)

〈τ3D〉 ≈ N−1

(

V

4πD(1
a
− 1

R
)

)

In the above expression: ‘N ’ is the number of Brownian “searcher” particles
(i.e. molecular probes); ‘V ’ is the volume of solution in which the “searcher”
particles diffuse (their targets are assumed to be immobilized in place); ‘D’ is the
approximate diffusion coefficient of the Brownian “searcher” particles, which is
assumed to be greater than or equal to that of their targets (allowing us to utilize
the aforementioned target immobilization approximation); ‘a’ is the radius of the
smallest sphere of sufficient size to, allowing arbitrary positioning of the sphere,
encompass the Brownian “searcher” particles or their targets (imagine ‘a’ as a
sort of one-dimensional analogue for the “barn” unit for area in classical nuclear
physics); and finally, ‘R’ is the approximate initial distance between the Brownian
“searcher” particle(s) and the target, i.e. the average molecular probe-to-target
distance.

To provide an example for the use of Condamin et. al.’s [39] expression (i.e. Exp.
1), the MFPT for a lone Alexa 350 molecule colliding with a point-like target in
a cell of volume V ≈ 4/3π(5 µm)3 ≈ 0.524 pL, can be estimated by noting: (1)
that Alexa 350 has dimensions of roughly (13.0A× 5.2A× 3.2A) [187], allowing us
to set a ≈ 5A; (2) that the diffusion coefficient for Alexa 350 in water at ≈ 25◦C
is D(Alexa350,H2O) ≈ 570 µm2/s [130] (or D(Alexa 350, XOcyto) ≈ 185 µm2/s in
Xenopus oocyte cytoplasm) [130]; and (3) that the mean distance between two
points placed randomly in the unit ball S2 is going be 36/35 (recall that this
value is 4/π in the more familiar S1 case) allowing us to set R ≈ 36/35(5 µm) ≈
(36/7) µm. These values yield estimated molecular search times at ≈ 25◦C of
≈ 146 s ≈ 2.44 min in water (or ≈ 450 s ≈ 7.51 min in Xenopus oocyte
cytoplasm) for Alexa 350 to find a point-like target in a volume approximately

94

≈ (4/3π(5 µm)3) / (13.0 Å × 5.2 Å × 3.2 Å) ≈ 1012 fold larger than that of its
own convex hull.

To write down some actual experimental parameters for molecular search processes
relevant to photo-DEAN [193–196], we note that Gotoh et. al. [74] added
≈ 10fM of each of his 5′ and 3′ Molecular Translation Table (MTT) probes to
an aforementioned ≈ 29.5 µL reaction volume (implying that each probe was at
≈ 339 pM concentration), to achieve the quoted ≈ 0.61 fM sensitivity value for
the GEP-DEAN [74] assay. To briefly clarify, here “MTT” sequences are just
the probes that hunt for a cDNA target and are ligated over this target to allow
for capture and amplification of a DCN [74, 128, 129, 193–196] sequence encoded
on one of the probes in the “MTT pair” [74]. Now, in terms of the required
time for the MTT probes to find their cDNA targets via Brownian motion, probe
hybridization was carried out by first raising the solution temperature to ≈ 95◦C
for ≈ 3 min ≈ 180s, then by ramping down the temperature at a rate of ≈ 0.1◦C
per second to ≈ 45◦C (giving a total anneal time ≈ 8.33 min ≈ 500 s) where
a ligation was finally performed for ≈ 1h using Taq ligase [76]. If we decide not
to consider the initial denaturation (≈ 3 min at ≈ 95◦C) and ligation (≈ 1 h at
≈ 45◦C) steps as part of the molecular “search time”, this implies that it took
≈ 8.33 min ≈ 500 s for a (10 fmol/ 18 zmol) ≈ 5.6 ∗ 105 fold excess of Brownian
“searcher” particles to find what we estimate to be > 50% of the N ≈ 10840
targets at a concentration of ≈ 0.61 fM.

To make our point regarding the aforementioned tradeoff between the Brownian
“searcher” particle concentration and reaction completion time, here assuming that
probe 〈〉 target hybridization is a strongly thermodynamically downhill process,
which is not precisely clear when one considers target secondary structure (of
particular concern if one hybridizes DNA probes to RNA targets ≈ 30(+) nts in
length), it would take (500 s) ∗ (10 fmol / 18 zmol) ≈ 8.8 yrs to achieve the same
detection rates if probes and their targets were incubated together at a 1-to-1
concentration ratio.

Another equally important point is that, no matter how one chooses to strike
a balance between the concentration of probes relative to their targets and the
time one affords an assay, if an assay requires probes to be chemically modified
upon finding their targets, e.g. to allow for their isolation and amplification, and
if the targets being hunted are at ultralow concentration, one needs to be sure
that this chemical process does not occur spontaneously at an unacceptably high
rate.

To understand this second point, imagine (perhaps quite reasonably) that the
target molecule catalyzed chemical modification step of choice has second-order
kinetics, and that the employed Brownian “searcher” particles or probes are
present in at least a ≈ 102 fold excess relative to their targets. This probe
excess conveniently allows us to use a pseudo first-order rate approximation for
the formation of target probe complexes, which yields an expression of the form
[147, 175]: [Target〈〉Probe] ≈ [Target0] × (1 − e(−[Probe0]kt)), where [Target0]
and [Probe0] correspond to the initial concentrations of the target and probe
molecules, respectively. As previously discussed, notice that increasing the probe
concentration relative to the target concentration by some factor k is roughly
equivalent to decreasing the assay hybridization step time by the same factor
k (and vice versa). We also imagine that the spontaneous occurrence of this
chemical modification step, i.e. the rate of false-positive generation, is either a
first-order process (e.g. spontaneous cleavage via depurination or depyrimidination
followed by β-elimination) or a pseudo first-order process that occurs at a low
enough rate as to not grossly perturb the probe concentrations (e.g. some form
of spontaneous ligation / dimerization / multimerization / etc.). Notice now that

95

multiplying the probe concentration, or equivalently the assay time, by some factor
k correspondingly multiplies the yield of spontaneously generated false-positive
signals via the presumed first-order or pseudo first-order reaction.

We pause for a moment to consider the question: why do false-positive signals
actually matter? Isn’t it true that one can simply run a control experiment with a
known amount of target species to quantitate the rate of false-positive generation,
then adjust the experimental data accordingly?

The answer to this question is of course that for any chemical reaction
with an exponentially probability of occurring (e.g. any first- or pseudo
first-order process like depurination, depyrimidination, or β-elimination) the actual
false-positive count will be Poisson distributed with some rate parameter λ =
(k(false positive rxn) ∗ t) = (k(f.p. rxn) ∗ t), e.g. where k(f.p. rxn) in expressed in
terms of the unit s−1, and t is the time in seconds over which the reaction takes
place. Thus, there will necessarily be a point where control experiments can no
longer help, which exists at the limit where the number of correct probe 〈〉 target
hybridization reporting signals is on-order the square root of the rate parameter,
i.e. (λ)1/2 = (k(f.p. rxn) ∗ t)1/2.
A good way to see this “danger limit” is to note that, in accordance with the
Central Limit Theorem (CLT), and in practice for λ ≥ 30 or so, the discrete
Probability Mass Function (PMF) of the Poisson distribution is actually well
approximated by a Gaussian distribution with mean µ ≈ λ and standard deviation
σ ≈ λ1/2. More specifically, the expression for the discrete Probability Mass
Function (PMF) of a Poisson distribution with rate parameter (λ) and support
(i.e. the set of points where the PMF has non-zero value) n ∈ N, can be written
as:

PoissonPMF (λ) =
λn

n!
× e−λ = PoissonPMF (krxn ∗ t)

=
(krxn ∗ t)n

n!
× e−(krxn∗t)

And the expression for the continuous Probability Distribution Function (PDF) of
a Gaussian distribution with mean (µ) and standard deviation (σ) can be written
as:

NormalPDF (x, µ, σ) =
1

σ(2π)1/2
× e

(−(x−µ))2

2σ2

At the limit where n −→ inf (implying n! ∝ n(n+1/2) ∗ e(−n) ∗ (2π)1/2 via Stirling’s
approximation) there will be a convergence of the Poisson distribution PMF and
the Gaussian distribution PDF.

Returning to our demonstration of the “danger limit”, let’s either remember the
68–95–99.7 rule of thumb or compute a simple integral (where “Erf” is the standard
Gauss error function):

∫ x=(µ+σ)

x=(µ−σ)

(
1

σ(2π)1/2
) × e

(−(x−µ))2

2σ2 dx = Erf(
1

21/2
) ≈ 0.682689

Thus, there is a ≈ 31.73% chance that the measured number of false-positives will
be off by a factor of λ1/2 with respect to the expected mean number of false-positive
events, λ = (k(f.p. rxn) ∗ t).

96

For a visual illustration of how the Gaussian distribution does a decent job
of approximating the Poisson distribution (setting λ ≥ 30) see (Figure 6.1)
immediately below.

Out[204]=

10 20 30 40 50 60
Events

0.02

0.04

0.06

Probability

Figure 6.1: (Circles) Samples from the discrete Probability Mass Function (PMF)
of a Poisson process with rate parameter λ = 30, where the PMF is given as
Pr[X = x] = (e(−λ)λx / x!). (Curve) Plot of the continuous Probability Density
Function (PDF) for a Normal distribution with mean µ and standard deviation

σ = (µ)1/2 = 301/2, where the PDF is given as Pr[X = x] = (e
(
(x−µ)2

2µ
)
/ (2πµ)1/2).

Regarding the argument that one can simply run the assay multiple times to
better approximate µ = λ, if you have the required amount of mRNA / cDNA
/ etc. targets to do this, or if you are willing to “blow up” (i.e. amplify) the
target population (incurring various biases during the amplification procedure),
what point does your ultrasensitive assay serve in the first place?

—————————————

A general conclusion one can draw is that there are going to be unavoidable
challenges in attempting to use probe molecules to find ultradilute targets via
Brownian motion. For any practical assay, large concentrations of Brownian
“searcher” particles (i.e. molecular probes) must be employed to find targets in an
expedient fashion. Therefore, one must carefully analyze any first-, pseudo first-,
or higher-order reactions that could yield products mimicking those produced by
proper probe 〈〉 target complexes to report their existence (i.e. one must be careful
of these processes generating false-positives).

Furthermore, in cases where the molecular target species one wishes to quantify
are not only ultradilute, but also at ultralow copy number in the available sample
volume (or sample volume that is practical to manipulate for the assay, e.g. the
GEP-DEAN [74] method uses ≈ 29.5 µL reaction volumes where a ≈ 1 fM
target concentration implies N ≈ 1.78 ∗ 104 target molecules), we note that one
must correspondingly exercise care in avoiding assay conditions that would further
deplete or destroy target molecules. The simple reason to worry about target copy
number depletion, even if controlled and quantifiable, is that provided the assay’s

97

sensitivity remains fixed, lower target copy numbers necessarily places one closer
to the assay noise floor.

It’s perhaps worth mentioning that there will always exist a fundamental noise
floor arising from a combination of limitations in tool precision (e.g. pipette
precision), instrument sensitivities, and (as just discussed) stochastic chemical
processes (e.g. molecular first passage time distributions are not “sharp” in the
sense that there is not a tight clustering of the first passage time distribution around
the MFPT [39]), and which cannot be eliminated through the use of careful control
experiments.

We note that processes which can depress target copy numbers include, however
are no limited to: mechanical filtration steps (e.g. with nitrocellulose membranes),
more generally processes that require repeated contact with hydrophobic surfaces
that absorb nucleic acids non-specifically [6, 18] (e.g. transfer to a new
polypropylene test tube will cause some percentage loss of nucleic acid molecules
via non-specific hydrophobic absorption to the tube walls [18]), or steps that
require temperatures of buffer conditions that degrade target molecules. For
example, if target molecules are composed of RNA, high concentrations of divalent
ions like Mg2+, high pH, and high temperatures should be avoided to attenuate
spontaneous polynucleotide backbone cleavage via transesterification. If the buffer
ionic strength is decreased during the assay and/or the buffer pH is depressed
causing base protonation [35, 206], the loss of nucleic acids via hydrophobic
interactions should be of particular concern even in lieu of mechanical filtration
or test tube transfer steps. Consider that low ionic strength buffer and base
protonation both cause local (and in extreme cases global) duplex melting,
exposing unstacked and/or poorly stacked hydrophobic nucleotide ring surfaces
that can mediate hydrophobic interactions with surfaces or solvated particle
contaminants [6].

—————————————

In the following sections we attempt to analyze a number of false-positive signal
generation pathways that are of particular concern for schemes where probes
are cleaved or deaminated upon finding their targets. We also briefly turn our
attention to identifying reasonable assay conditions, e.g. temperature ranges and
buffer pH levels that sufficiently attenuate spontaneous transesterification-based
decomposition (i.e. copy number depression) of RNA target molecules. Regarding
this latter point, we note again that the current focus of Yokomori et. al. [193]
appears to be the direct quantitation of mRNA via the photo-DEAN [193–196],
and that all earlier DigiTag [128], DigiTag2 [129], and GEP-DEAN [74] methods
have only been proven, thus far, to work for cDNA targets.

98

6.3 An overview of photo-DEAN buffer conditions and reaction
temperatures up to and including the first round of PCR
amplification for probe DCN sequences

We obtained an outline for the photo-DEAN [193–196] protocol from Yokomori
et. al. [193]. In this section we use this outline to describe the buffer conditions
and reaction temperatures employed, and the duration of time which they are
employed, up to and including the first round of PCR amplification of DCN [74,
128,129,193–196] sequences.

(s.1) The “encoding” step where probe pairs are hybridized to target
RNA molecules.

Buffer:

The stated buffer is ≈ 1x TE buffer: [0.01M TE, 0.02MDTT , 0.150M NaCl,
pH ≈ 8], which implies a [Na+] ≈ 0.150M monovalent ion concentration
and the absence of any divalent ions. Note that Invitrogen’s “RNaseOUT
Recombinant Ribonuclease Inhibitor” is also added to the reaction mixture,
however we do not expect the addition of this reagent to effect the aforementioned
buffer monovalent or divalent ionic strengths, or for that matter, noticeably
perturb the buffer pH. More specifically, we can note that the storage buffer
of “RNaseOUT” is: [0.020M Tris − HCl, 0.05M KCl, 0.0005M EDTA,
0.008M DTT , 50% glycerol, pH ≈ 8] (taken from Invitrogen’s website:
<http://tools.lifetechnologies.com/content/sfs/manuals/10777019.pdf>. Since
the volume of added “RNaseOUT” storage solution is ≤ 20% the total reaction
buffer, and because there is no divalent metal in the storage solution, we do not
expect the addition of this reagent to perturb the stated [Na+] ≈ 0.150M ionic
strength by more than ≈ 0.005M or so. We can also point out that this storage
buffer has the same pH (i.e. pH ≈ 8) as the ≈ 1x TE reaction buffer.

Reaction temperature(s) and times:

An anneal is performed by first holding the reaction volume at ≈ 95◦C for ≈ 180 s,
then linearly ramping the temperature down to ≈ 40◦C at a rate of ≈ 0.1◦C / s.
This implies a total annealing time of ≈ (180 s) + (95 − 40) ∗ (10 s) ≈ (180 s) +
(550 s) ≈ 730 s.

(s.2) The “UV photoligation” step where a probe carrying a DCN
[74, 128, 129, 193–196] sequence and a probe carrying a (5’) biotin
modification [128, 193–196] are photoligated together using Fujimoto
et. al.’s CVU chemistry [62–64,121,126,131–135,199,200],[s1].

Buffer:

It is our understanding that the buffer employed here is the same as that used for
the probe 〈〉 mRNA target hybridization step (i.e. step (s.1)).

Reaction temperature(s):

During the CVU [62–64, 121, 126, 131–135, 199, 200],[s1] photoligation reaction the
annealing reaction mixture from the probe 〈〉 mRNA target hybridization step (i.e.
step (s.1)) is held at ≈ 40◦C for ≈ 10 min ≈ 600 s while under irradiation by an

99

LED-based UV light source (Prizmatix Ltd.; EFICET 8332A UV Curing System)
emitting at a peak intensity of λmax ≈ 365 nm and having a power density of
≈ 2.3 W/cm2.

As a brief comment, in the context of photo-DEAN [193–196] where we’ve done
away with the use of Thermus enzymes for the ligation reaction (e.g. Taq as
used in the DigiTag [128], DigiTag2 [129], and GEP-DEAN [74] assays), the
justification for the ≈ 40◦C temperature used during this step is unclear to us.
Perhaps this temperature step admits higher rates of target mRNA hybridization
by DNA probes? We can also note here that we are unsure how temperature effects
CVU [62–64,121,126,131–135,199,200],[s1] photoligation kinetics. On the one hand,
lower temperatures will suppress duplex fraying / breathing, which could stabilize
the stacking interactions of the CVU [62–64, 121, 126, 131–135, 199, 200],[s1] vinyl
group. However, on the other hand, higher temperatures may allow for faster
molecular configuration search times for a (perhaps energetically unfavorable)
entry point to the desired [2 + 2] cycloaddition reaction. We have not been able
to find a treatment of this question in the literature.

(s.3) The λ 5′-exonuclease “breakdown” step used for cleanup of
unphotoligated DCN-encoding probe sequences with unprotected 5′

termini.

Special note:

This step is intended to minimize false-positives during “magtration” with
streptavidin coated magnetic beads, wherein one attempts to isolate properly
photoligated photo-DEAN [193–196] probe pairs possessing both a 5′ biotin a
3′ DCN-encoding tail. Here, Yokomori et. al. [193] noticed that the magnetic
beads employed for magtration had the side-effect of mediating hydrophobic
interaction-based carryover of unphotoligated DCN-encoding probes. Therefore, in
this step, Yokomori et. al. [193] is attempting to attenuate the magnitude of this
problem by using a 5′ exonuclease to digest the population the unphotoligated
DCN encoding probes using the fact that these false-positive signals lack an
“exonuclease shielding” 5′ biotin (or at least shielding for some DNA 5′ exonuclease
enzymes).

It is reported by Yokomori et. al. [193] that this step reduces false-positive signals,
in the form of unligated DCN probes, by a factor of ≈ 1/30. See supplementary
note (supp. note [s2]) for a brief discussion regarding the possibility of employing
poly(T) or poly(A) polynucleotides to competitively inhibit DCN probe binding
to magnetic bead surfaces and further reduce false-positive signals.

Buffer:

As this step involves a 0.5 : 100 dilution of the previous sample volume, we
assume that the buffer in this step corresponds to New English Biolabs (NEB)
λ exonuclease ≈ 1x reaction buffer [0.067M Glycine − KOH, 0.0025M MgCl2,
50 µg/ml BSA, pH ≈ 9.4 at ≈ 25◦C], implying a monovalent salt concentration
of [K+] ≈ 0.067M and a divalent salt concentration of [Mg2+] ≈ 0.0025M
[w1].

For the purpose of contrast with other 5′ −→ 3′ DNA exonucleases, we note that
the NEB T5 and T7 exonuclease ≈ 1x reaction buffers [0.05M Potassium Acetate,
0.02M Tris − acetate, 0.01M Magnesium Acetate, 0.001M DTT , pH ≈ 7.9 at
≈ 25◦C[have a monovalent ion concentration of [K+] ≈ 0.05M and a divalent
ion concentration of [Mg2+] 0.01M (see the links: [w2,w3]). As we can see from

100

these examples, while the NEB recommended reaction buffers for 5′ −→ 3′ DNA
exonucleases having roughly the same ionic strength as the ≈ 0.5 X TE buffer
(with [Na+] ≈ 0.075M) used for the photo-DEAN [193–196] annealing step [193],
they also have Mg2+ concentrations ranging from [Mg2+] ≈ 0.0025M for the λ
exonuclease to [Mg2+] ≈ 0.01M for the T5 and T7 exonucleases.

Reaction temperature(s) and times:

The aforementioned buffer is held at ≈ 37◦C for ≈ 30 min ≈ 1800 s, presumably
for the DNA 5′ exonuclease enzymatic digestion step. The temperature is then
raised to ≈ 95◦C for ≈ 3 min ≈ 180 s for the purpose of λ exonuclease
denaturation. Incidentally, we can note here that T5 exonuclease is poorly heat
inactivatible [w2] and may, for this reason, be inappropriate as a substitute for λ
exonuclease.

(s.4) Room temperature washing and NaOH-catalyzed RNA
degradation (via transesterification).

Buffer:

Ignoring the initial wash step, which presumably occurs in the buffer from step
(s.3) (where we guess monovalent and divalent ion concentrations of [Na+] or
[K+] ≈ 0.056M and [Mg2+] ≈ 0.0075M), the following alkaline treatment step
is stated to occur in a buffer with ≈ 0.1M NaOH (implying the buffer is at
pH ≈ 14 − (−log10(0.1)) ≈ 13), a monovalent ionic strength of [Na+] ≈ 0.05M ,
and presumably no divalent metal.

Reaction temperature(s) and times:

Regarding the wash steps preceding and following NaOH treatment, which we’ll
estimate occur ≈ 25◦C (to guess a slight upperbound value for what could be
considered “room temperature”), we unfortunately do not have an estimate for the
total time to perform these steps. However, we do have that the alkaline treatment
and wash step is performed for ≈ 2 min ≈ 120 s at ≈ 45◦C. Provided the
exponential dependence on temperature for most of the processes effecting nucleic
acid probes and target molecules that we will discuss in the following sections - e.g.
depurination, depyrimidination, β-elimination, RNA transesterification, cytosine
deamination, etc. reactions should all show straight lines on Arrhenius plots for
ln(krxn) vs. 1/(rxn temperature), and we have no reason to expect dominant
rate-limiting processes at high temperatures > 25◦C (obviously much below this
temperature the reaction buffer will begin to freeze and there will be problems) - we
will simply consider the entirety of this step to occur in ≈ 120 s at ≈ 45◦C.

Jumping briefly ahead (see section 6.6 and ref. [110]), we can calculate that the rate
of RNA dinucleotide cleavage under these conditions (pH ≈ 13, ≈ 45◦C) should
be k(RNA transesterification, (95◦C,pH≈8), no Mg2+) ≈ (1.02 ∗ 10−3 s−1), implying a
fraction of cleaved RNA dinucleotides after ≈ 2 min ≈ 120 s of
≈ (1− e(−(1.02∗10−3 s−1)∗120 s)) ≈ 0.115 ≈ 11.5%.

101

(s.5) The PCR amplification step (with KOD polymerase).

Buffer:

It’s not precisely clear what buffer conditions are employed for PCR, however we
do know that the KOD enzyme is used and ≈ 0.001M MgSO4 is present in the
final PCR reaction buffer (≈ 2 µL of MgSO4 at ≈ 0.025M is stated to be added
to a ≈ 50 µL PCR reaction solution) [193]. We note that the amount of MgSO4

added matches a recommendation from TOYOBO Life Sciences for their “KOD
Plus” enzyme [w4]. As such we might guess that the buffer used for PCR has
a divalent ion concentration of]Mg2+[≈ 0.001M . Unfortunately, the monovalent
ionic strength of the TOYOBO “KOD Plus” buffer appears to be either simply
unstated or is perhaps proprietary.

Reaction temperature(s) and times:

To the best of our knowledge, Yokomori et. al.’s PCR procedure [193] consists
an initial ≈ 2 min ≈ 120 s incubation at ≈ 95◦C (step 1), followed by 25 cycles
of steps 2 through 4. After these temperature cycling steps, our understanding is
that the reaction volume is incubated at a temperature of ≈ 4◦C until the PCR
amplified sample is collected:

(PCR temperature step 1): Hold at ≈ 94◦C (≈ 2 min ≈ 120 s);

for (iter = 1; iter <= 25; iter = iter + 1) {

(PCR temperature step 2): Hold at ≈ 94◦C (≈ 15 s);

(PCR temperature step 3): Hold at ≈ 64◦C (≈ 30 s);

(PCR temperature step 4): Hold at ≈ 68◦C (≈ 10 s);

};

(PCR temperature step 5): Hold at ≈ 4◦C (forever);

Considering the exponential amplification of target oligonucleotide sequences from
PCR (specifically DCN sequences in the case of photo-DEAN [193–196]) we
concern ourselves here only with the first cycle of PCR for our analysis of
false-positives and false-negatives arising from fundamental chemical processes
acting on oligonucleotide probes. Regarding any RNA in solution, as a consequence
of (s.4), which involves pH ≈ 13 buffer conditions, “most” RNA polynucleotides
should now be decomposed via OH− facilitated transesterification (we earlier gave
an estimate of ≈ 11.5% RNA dinucleotide cleavage for step (s.4), however please
see section 6.6 for details).

So what can we conclude based on the previous brief descriptions (due to Yokomori
et. al. [193]) of buffer conditions, reaction temperature(s), and reaction times up
to and including the first photo-DEAN [193–196] PCR cycle?

Well, perhaps most importantly, it’s clear that we spend a decent amount of time
at ≈ 95◦C. Specifically, we spend ≈ 180 s at ≈ 95◦C in (s.1), another ≈ 180 s at

102

≈ 95◦C for the 5′ −→ 3′ DNA exonuclease denaturation step in (s.3), and finally,
≈ 135 s at ≈ 95◦C in the first round of PCR amplification during step (s.5),
implying a total time at ≈ 95◦C of τ95◦C ≈ 495 s. We also need to consider the
(s.1) thermal anneal, which ramps from ≈ 95◦C to ≈ 40◦C at a constant rate of
≈ 0.1◦C / s (for a total time of ≈ 550 s).

We note that it’s largely pointless to consider an “average temperature” during
the thermal anneal (which is ≈ 67.5◦C discounting the ≈ 3 min ≈ 180 s at
≈ 95◦C) since reaction kinetics for the processes we care about here (as discussed
in (s.4)) scale exponentially rather than linearly with temperature. We suggest
that the right thing to do to account for the thermal anneal, and something we
can conveniently get away with because of the flat temperature ramp rate of ≈
0.1◦C / s (again discounting the ≈ 180 s spent at ≈ 95◦C prior to the thermal
ramping process), is to compute an integral of the form:

(Exp. 6.2)

krxn(mean rxn rate, T ∈ [t0, t1]) ≈
1

(t1 − t0)

∫ t1

t0

(at T (◦C)) dT

Other than these high temperature incubation and annealing steps, there isn’t
much else of concern for these photo-DEAN [193–196] steps ((s.1) to (s.5)) prior to
exponential blowup of DCN sequences. While the addition of pseudo-physiological
levels of magnesium ([Mg2+] ≈ 0.0025M in (s.3) and [Mg2+] ≈ 0.001M in (s.5))
would be cause for concern if the probes were composed of RNA, photo-DEAN
[193–196] employs DNA probes and by step (s.3), the first time where divalent
ions appear, the RNA targets have already served their purpose. This is likewise
true for step (s.4) where the buffer pH is raised to ≈ 13 via the addition of
≈ 0.1M NaOH. While this very high pH will certainly melt any nucleic acid
duplexes and deprotonate the 2′-OH group on RNA polynucleotides, catalyzing
rapid transesterification-based decomposition, DNA probes missing the 2′ hydroxyl
group on their base sugars should be considerably more resilient to covalent
alteration or breakdown at pH ≈ 11 to pH ≈ 13 or so. Regarding this last
point, and once again jumping briefly ahead, under physiological ionic strength
conditions (e.g. something like [Na+] ≈ 0.1M , [Mg2+] ≈ 0.01M, pH ≈ 7.4) we
note that DNA is approximately ≈ 105 fold more stable to hydrolysis than RNA
(see ref. [149]).

103

6.4 Spontaneous decomposition of DNA: rates and consequences
for (deoxy)ribonucleic acid depurination, depyrimidination,
and intramolecular cleavage via β-elimination at abasic
sites

We now attempt to analyze the chemical stability of the single-stranded
(deoxy)ribonucleic acid (DNA) probes, which, in the context of photo-DEAN
[193–196], DigiTag [128], DigiTag2 [129], and GEP-DEAN [74] schemes, serve
as Brownian “searcher” particles (i.e. molecules probes) for ultradilute cDNA
or mRNA targets. We suggest that, with regards to the current version of
photo-DEAN [193–196], this analysis may be of importance for quantification
of false-negatives, i.e. the decay of signals produced when probes successfully
interact with their targets. In particular, we note that the stability of the ≈ 102

nucleotide DCN [74, 128, 129, 193–196] signal sequences, encoded on at least a
subset of the probes, may be of concern prior to PCR or (hypothetically speaking)
rolling circle amplification steps. Furthermore, we note that if the probe chemical
modification step to report target discovery involves a ligation process, e.g. of a
biotin modified oligonucleotide to allow for affinity purification as in the current
photo-DEAN [193–196] scheme as well as the previous DigiTag [128] (though not
DigiTag2 [129]) and GEP-DEAN [74] schemes, it may also make sense to quantitate
the stability of the linkage between the aforementioned DCN [74,128,129,193–196]
signals and this covalently attached label. And of course when probe 〈〉 target
complexes can potentially have ultra-low N ≈ 103 to ≈ 104 copy numbers, every
molecule matters in terms of rising above the inevitable assay noise floor.

We also suggest that this analysis is also of particular importance if alternative
“cleavage-based” methods are utilized for chemically modifying probes to indicate
target discovery or hybridization. Spontaneous probe cleavage can, in this case,
directly imply the generation of false-positive signals.

-

To begin our analysis, we note that the primary means of chemical degradation
of DNA is via depurination (primarily) or depyrimidination (secondarily, at a
≈ 20-fold reduced rate relative to depurination according to (Lindahl, 1993) [112])
followed by a fast abasic site cleaving (DNA backbone cutting) β-elimination
process [12, 13, 167]. We can therefore say that, in and around pH ≈ 7, at least
in the absence of extremely high concentrations of divalent metal (e.g. ≫ 0.01M
“physiological levels” of [Mg2+]) [12,13,112,115,167], DNA should spontaneously
cleave at a rate given by:

(Exp. 6.3)

k(DNA spontaneous cleavage, T◦C)

≈ (((Num. purine bases) ∗ k(depurination, T◦C)) +

((Num. pyrimidine bases) ∗ k(depyrimidination, T◦C)))

∗ k(β−elimination, T◦C)

We note that for the following sections we will repeatedly reference two buffers
from (Lindahl & Nyberg, 1972) [115]:

“Lindahl Buffer A” [115]: [0.1M NaCl, 0.01M sodium phosphate,
0.01M sodium citrate, pH ≈ 7.4 at ≈ 80◦C]. As noted in (Lindahl & Nyberg,

104

1972) [115], the pH and ionic strength of this buffer is only minimally perturbed
by changes in temperature.

“Lindahl Buffer B” [115]: [0.1M KCl, 0.05M N − 2− hydroxyethylpiperazine−
N ′ − 2 − ethanesulfonicacid(Hepes) − KOH, 0.01M MgCl2, 0.001M EDTA,
pH ≈ 7.4 ± 0.15 at ≈ 80◦C]. As noted in (Lindahl & Nyberg, 1972) [115], the
pH of this buffer is more sensitive to changes in temperature than “Lindahl Buffer
A” [115], and is only suggested for use in a temperature range of around ≈ 70◦C
to ≈ 80◦C [115].

We focus our analysis (below) on rates in “Lindahl Buffer A” [115] which appears
to closely mimic the ≈ 1x TE buffer: [0.01M TE, 0.02M DTT , 0.150M NaCl,
pH ≈ 8] used during the photo-DEAN [193–196] initial target “search process”
or hybridization step (i.e. step (s.1), with the anneal, described in section
6.3). Consider that the monovalent ionic strength of the photo-DEAN [193–196]
≈ 1x TE buffer is roughly [Na+] ≈ 0.150M (see section 6.3), which is fairly
close to the estimated “Lindahl Buffer A” [115] monovalent ionic strength of
[Na+] ≈ 0.12M , and consider that neither of the two buffers contain any divalent
metal. Regarding steps (s.3) and (s.5) where considerable time is also spent at
high temperatures, for (s.3) we have a buffer with a monovalent salt concentration
of [K+] ≈ 0.067M and a divalent salt concentration of [Mg2+] ≈ 0.0025M
and for (s.5) the buffer is unknown though we are able to guess a divalent ion
concentration of [Mg2+] ≈ 0.001M . Therefore, and while the unknown monovalent
ion concentration in (s.5) is troubling, the roughly similar monovalent ion
concentration in (s.1) and (s.3) and the presence of low [Mg2+] ≤ 0.0025M Mg2+

concentrations in (s.3) and (s.5) should make the assumption of “Lindahl Buffer
A” [115] a reasonable one [12,13, 112,115,167].

Regarding the rate of depurination for ssDNA: observing the linear trend in the
(Lindahl & Nyberg, 1972) [115] Arrhenius plots for DNA depurination (see “Figure
8” in ref. [115]), i.e. plots of ln(k(depurination, T (◦C)) vs. 1/T , and noting their
estimate of Ea(depurination) ≈ 31 ± 2 kcal/mol [115] for the activation energy
of depurination measured in “Lindahl Buffer A” [115], we can take a ratio of
Boltzmann factors to calculate the rate k(depurination,T (◦C)) for any temperature
T (◦C) with the general expression:

(Exp. 6.4.1)

k(rxn, T◦C) ≈ k(rxn, Tref (◦C))

× e

((

Ea(rxn)
R×(273.15+Tref (◦C))

)

−

(

Ea(rxn)
R×(273.15+T (◦C))

))

Where:

R = Universal Gas Constant ≈ kβ ∗ NA ≈ 1.9872041 ∗ 10−3

(

kcal

mol ∗K

)

And for reference:

kB = Boltzmann′s Constant ≈ 3.29983 ∗ 10−27 (kcal/K)

105

NA = Avogadro′s Constant ≈ 6.02214129 ∗ 1023 mol−1

Here, (Lindahl & Nyberg, 1972) [115] report a reference “Lindahl Buffer A” [115]
value for native dsDNA depurination rates at ≈ 70◦C of:

k(depurination, Tref (70◦C) ≈ (4 ∗ 10−9 ∗ 3.3)/(0.7)s−1 ≈ (1.9 ∗ 10−8s−1)

Now, using (Exp. 6.3) and the experimentally measured value of
Ea(depurination) ≈ 31 ± 2 kcal/mol [115], we can calculate a ≈ 95◦C rate of
k(depurination, 95◦C) ≈ (4.2 ∗ 10−7s−1). We can also use (Exp. 6.2) and (Exp.
6.4.1) together to calculate an average rate of depurination over the temperature
range ≈ 40◦C to ≈ 95◦C (which would presumably match the average rate of
depurination for the photo-DEAN [193–196] annealing reaction, i.e. step (s.1) in
section 6.3).

The calculation for this average rate of depurination over this interval is:

k(depurination, mean::T∈[40◦C, 95◦C])

≈ (
1

95− 40
)

∫ T=95

T=40

k(depurination, T (◦C))dT ≈ (6.3 ∗ 10−8 s−1)

A direct value for k(depurination, Tref (70◦C)) is only provided by (Lindahl & Nyberg,
1992) [115] for native DNA in “Lindahl Buffer B” [115], and as such, we resorted
to estimating our “Lindahl Buffer A” [115] value by noting two statements in
the paper (i.e. ref. [115]): (1) that the rate of depurination in “Lindahl Buffer
B” [115] is ≈ 70% the rate of depurination in “Lindahl Buffer A” [115], and (2)
that denaturing the DNA prior to the experiment yields a ≈ 3.3 fold increase in
the rate of depurination. We also note that the ≈ 3.3 fold increase in the rate of
depurination for denatured vs. native DNA appears to be largely invariant in the
(Lindahl & Nyberg, 1972) [115] (“Figure 8” in ref. [115]) Arrhenius plots, with
data points taken in “Lindahl Buffer A” [115] up to a temperature of ≈ 80◦C.
Above ≈ 80◦C, the “native DNA” primarily linear trend line expectedly converges
on the “denatured DNA” primarily linear trend line [115].

Of course, the k(depurination, Tref (70◦C)) ≈ (4 ∗ 10−9 ∗ 3.3)/(0.7) s−1 ≈ (1.9 ∗
10−8 s−1) estimate may be unsound for the reason that denaturation of DNA
may alter the magnitude of the effects of magnesium on the depurination rate. On
the other hand, the suggested adjustments for single-stranded DNA in Mg2+-free
buffer does not change the rate of depurination by more than an order of
magnitude. Thus, we might argue that the worst-case consequences of this
potentially unsafe assumption should be tolerable.

-

Regarding the rate of depyrimidination for ssDNA: (Lindahl & Karlstrom, 1973)
[114] employed the aforementioned “Lindahl Buffer A” [115] to find reference
measurements for the rate of thymine and cytosine depyrimidination at ≈ 95◦C
of ≈ 2.3 ∗ 10−8 s−1 for (deoxy)thymine and ≈ 1.8 ∗ 10−8 s−1 for (deoxy)cytosine,
allowing us to estimate k(depyrimidination, Tref (95◦C)) ≈ 2.1 ∗ 10−8 s−1. Note that

106

this value almost exactly corresponds to the estimate, cited in (Lindahl, 1993) [112],
of ≈ 20-fold slower rates of depyrimidination relative to depurination, thus perhaps
justifying the dsDNA −→ ssDNA and [Mg2+] ≈ 0.01M −→ [Mg2+] ≈ 0M
adjustments we made to estimate the rate of depurination of ssDNA in “Lindahl
Buffer A” [115] from a measurement on dsDNA in “Lindahl Buffer B” [115] (unless,
of course, this is exactly how Lindahl made the estimate in ref. [112]).

Interestingly, (Lindahl & Karlstrom, 1973) [114] note that the addition of ≈
0.01M [Mg2+] via the use of “Lindahl Buffer B” [115] does not perturb the
depyrimidination reaction rate within experimental error. However, we also note
that this latter “Lindahl Buffer B” [115] measurement by (Lindahl & Karlstrom,
1973) [114] was taken at ≈ 95◦C despite the warning by (Lindahl & Nyberg,
1972) [115] not to use their “Lindahl Buffer B” [115] outside of a ≈ 70◦C to ≈ 80◦C
temperature range (due temperature-induced buffer pH changes), so perhaps some
small contribution of Mg2+ is being disguised by a weak buffer pH dependence on
temperature.

Finally, while (Lindahl & Karlstrom, 1973) [114] do not report activation
energies for the depyrimidination of thymine and cytosine, we can find values
of Ea(depyrimidination) ≈ 31 kcal/mol to ≈ 34 kcal/mol elsewhere in the literature
[68, 157]. Using the value of ≈ 31 kcal/mol to yield upperbound kinetics for
depyrimidination, we can calculate average rate of depyrimidination over the
temperature range ≈ 40◦C to ≈ 95◦C in the same manner as for the depurination
reaction, which yields the value k(depyrimidination, mean::T∈[40◦C, 95◦C]) ≈ (3.2 ∗
10−9 s−1).

Regarding the rate of β-elimination at abasic sites in ssDNA: We note that
(Sugiyama et. al., 1994) [167] found a rate for β-elimination of a centrally
abasic site in an ssDNA trimer, at pH ≈ 7 and a temperature of ≈ 90◦C in a
buffer with about a [Na+] ≈ 0.05M monovalent ion strength (and no divalent
metal), of k(β−elimination, 90◦C) ≈ 4.5 ∗ 10−4 s−1. To elaborate, this is the rate of
β-elimination for (Sugiyama et. al., 1994)’s [167] “COMPOUND 10”, 5′-T(abasic
site)T-3′, which was generated by heating the trinucleotide d(5′-TAT-3′) at ≈ 90◦C
for ≈ 5 min in ≈ 0.1M (≈ 0.1N) HCl (pH ≈ Log10(0.1) ≈ 1). After neutralizing
this solution, (Sugiyama et. al., 1994) [167] then heated the depurinated product
d(5′-T T-3′) at (pH ≈ 7, ≈ 90◦C), and collected data points via HPLC at
{10, 20, 30, 45, 60, 90} min time intervals (see “Figure 4” in (Sugiyama et. al.,
1994) [167] for these data points).

For an activation energy for chain breakage at abasic sites, we turn to (Eigner et.
al., 1961) [53], where Ea(β−elimination, ssDNA) ≈ 25 ± 2 kcal/mol was found. We
note that this activation energy for ssDNA β-elimination is actually rather close
to the value for dsDNA, Ea(β−elimination, dsDNA) ≈ 24.5± 1.5 kcal/mol found by
(Lindahl & Andersson, 1972) [113].

Provided the closeness of these activation energies, we can test our ability to use
(Exp. 6.4.1) and (Sugiyama et. al., 1994)’s [167] reference measurement of
ssDNA β-elimination rates at pH ≈ 7 and ≈ 90◦C, k(β−elimination, 90◦C) ≈ 4.5 ∗
10−4 s−1, to predict the results of experimental measurements for β-elimination in
dsDNA at low temperatures (we were unable to find any similar measurements with
ssDNA substrates having abasic sites). This works surprisingly well. According
to (Laurence et. al., 1963) [107] and (Lawley et. al., 1969) [108], the half-life
of a single abasic site internal to a dsDNA duplex is ≈ 2000 h at ≈ 37◦C in
pH ≈ 7 phosphate buffer without divalent metal, implying a rate of β-elimination
under these conditions of ≈ (ln(2)/((2000 ∗ 602 s))) ≈ 9.63 ∗ 10−8 s−1. Using
(Sugiyama et. al., 1994)’s [167] measurement, (Eigner et. al., 1961)’s [53] estimate
of a ≈ 25 kcal/mol activation energy for abasic site cleavage in ssDNA, and (Exp.

107

6.4.1), we predict a value of k(β−elimination, 37◦C) ≈ 1.21 ∗ 10−6 s−1, which is
only a factor of ≈ (1.21 ∗ 10−6 s−1)/(9.63 ∗ 10−8 s−1) ≈ 12.6 faster than the rate
extrapolated from the experimental measurements of (Laurence et. al., 1963) [107]
and (Lawley et. al., 1969) [108]. We feel that this is very reasonable considering
the substrate change from ssDNA to dsDNA.

Regarding (Lindahl & Andersson, 1972)’s [113] measurement of ≈ 1.01 ∗ 10−6 s−1

for the rate of β-elimination in the context of dsDNA at pH ≈ 7 and ≈ 37◦C, we
caution that, although this value seems more in line with our predicted estimate
of k(β−elimination, 37◦C) ≈ 1.21 ∗ 10−6 s−1, this is likely an artifact of their use
of “Lindahl Buffer B” [115], which has a divalent ion concentration of [Mg2+] ≈
0.01M . As (Lindahl & Andersson, 1972) [113] note, and at least in the case
of dsDNA, the presence of Mg2+ appears to speed up β-elimination at abasic
sites (the effects of Mg2+ on ssDNA β-elimination rates remains unclear). We
do however note that (Lindahl & Andersson, 1972)’s [113] one data point in a
variant of “Lindahl Buffer B” [115] without Mg2+, where a β-elimination rate
of ≈ 2.4 ∗ 10−5 s−1 was observed, actually comes quite close to a value we can
predict at ≈ 70◦C of k(β−elimination, 70◦C) ≈ 6.0 ∗ 10−5 s−1. Thus, it may be
case that the protection a native DNA duplex offers an abasic site diminishes at
higher temperatures, yielding only a ≈ 2.5 fold slowdown relative to our abasic
site β-elimination rates in ssDNA at ≈ 70◦C.

For consistency with the previous discussions on ssDNA depurination and
depyrimidination rates, let’s calculate a rate of β-elimination at pH ≈ 7 and
≈ 95◦C of: k(β−elimination, 95◦C) ≈ 7.2 ∗ 10−4 s−1. Using (Exp. 6.2) and
(Exp. 6.4.1) we can also calculate an average rate of β-elimination during the
photo-DEAN [193–196] step (s.1) anneal from ≈ 95◦C to ≈ 40◦C at a rate of ≈
0.1◦C/s (see (II.3)) of: k(deamination, mean::T∈[40◦C, 95◦C]) ≈ 1.3∗10−4 s−1.

-

Putting all of this together, at ≈ 95◦C in “Lindahl Buffer A” [115] we have rates
for ssDNA depurination, depyrimidination, and polynucleotide chain-breaking
β-elimination at abasic sites, of:

k(depurination, 95◦C) ≈ 4.2 ∗ 10−7 s−1

k(depyrimidination, 95◦C) ≈ 2.1 ∗ 10−8 s−1

k(β−elimination, 95◦C) ≈ 7.2 ∗ 10−4 s−1

Which implies:

k(ssDNA chain breakage per pyrimidine, 95◦C) ≈ 1.5 ∗ 10−11 s−1

k(ssDNA chain breakage per purine, 95◦C) ≈ 3.0 ∗ 10−10 s−1

k(ssDNA chain breakage per base (ave), 95◦C) ≈ 1.6 ∗ 10−10 s−1

At ≈ 37◦C in “Lindahl Buffer A” [115] we have rates for ssDNA depurination,
depyrimidination, and polynucleotide chain-breaking β-elimination at abasic sites,
of:

k(depurination, 37◦C) ≈ 1.5 ∗ 10−10 s−1

108

k(depyrimidination, 37◦C) ≈ 7.6 ∗ 10−12 s−1

k(β−elimination, 37◦C) ≈ 1.2 ∗ 10−6 s(− 1)

Which implies:

k(ssDNA chain breakage per pyrimidine, 37◦C) ≈ 1.8 ∗ 10−16 s−1

k(ssDNA chain breakage per purine, 37◦C) ≈ 9.1 ∗ 10−18 s−1

k(ssDNA chain breakage per base (ave), 37◦C) ≈ 9.5 ∗ 10−17 s−1

And for a flat temperature ramp anneal from ≈ 95◦C to ≈ 40◦C in “Lindahl Buffer
A” [115], we have rates of:

k(depurination, mean::T∈[40◦C, 95◦C]) ≈ 6.3 ∗ 10−8 s(− 1)

k(depyrimidination, mean::T∈[40◦C, 95◦C]) ≈ 3.2 ∗ 10−9 s−1

k(β−elimination, mean::T∈[40◦C, 95◦C]) ≈ 1.3 ∗ 10−4 s−1

Which implies:

k(ssDNA chain breakage per pyrimidine, mean::T∈[40◦C, 95◦C]) ≈ 4.2 ∗ 10−13 s−1

k(ssDNA chain breakage per purine, mean::T∈[40◦C, 95◦C]) ≈ 8.2 ∗ 10−12 s−1

k(ssDNA chain breakage per base (ave), mean::T∈[40◦C, 95◦C]) ≈ 4.3 ∗ 10−12 s−1

We can also state the experimental activation energies for these processes as
(assuming a ≈ 31 kcal/mol value for the activation energy of depyrimidination
to yield an upperbound rate for the kinetics of this process and to match the
estimated activation energy of depurination):

Ea(depurination) ≈ 31± 2 kcal/mol

Ea(depyrimidination) ≈ 31 kcal/mol to ≈ 34 kcal/mol

Ea(β−elimination, ssDNA) ≈ 25± 2 kcal/mol

Using (Exp. 6.4.1), the above activation energies can be used to calculate rates of
ssDNA depurination, depyrimidination, and β-elimination in at any temperature
in “Lindahl Buffer A” [115] (or buffers with a similar monovalent ionic strength of
[Na+] ≈ 0.12M and no divalent metal).

-

109

Here, if we assume an upperbound probe length of L = 100 nts where
(Num. purine bases) ≈ 50 and (Num. pyrimidine bases) ≈ 50, approximating a
DNA oligonucleotide with “well mixed” {A, T,G,C} sequence composition, we
find k(ssDNA chain breakage, 95◦C) ≈ 1.6 ∗ 10−8 s−1. This implies that for the
τ95◦C ≈ 495 s spent at ≈ 95◦C up to and including the first round of PCR for the
photo-DEAN [193–196] process (see steps (s.1), (s.3), and (s.5) in section 6.3;
note that we count the ≈ 94◦C (PCR temperature step 2) from (s.5) in the total
for time spent at ≈ 95◦C) we can expect that the fraction of cleaved probes will
be:

frac[spontaneously cleaved well mixed ≈ 100−mer DNA | (≈ 95◦C, pH ≈ 8) |
τ95◦C ≈ 495 s] = (1− e(−k(ssDNA chain breakage,95◦C)∗t))

≈ (1− e(−(1.6∗10−8 s−1∗495 s)) ≈ 7.9 ∗ 10−6

Likewise, for the step (s.1) (again, see section 6.3) anneal from ≈ 95◦C down to
≈ 40◦C at a constant ≈ 0.1◦C/s ramp rate, which takes τ(95◦C to 40◦C,0.1◦C/s) ≈
550 s, we have:

k(well mixed 100−mer ssDNA chain breakage,mean::T∈[40◦C,95◦C])

≈ (4.3 ∗ 10−10 s−1)

Which implies:

frac[spontaneously cleaved well mixed ≈ 100−mer DNA | (≈ 95◦C, pH ≈ 8) |
τ(95◦C to 40◦C,0.1◦C/s) ≈ 550 s]

= (1− e(−k(ssDNA chain breakage,mean::T∈[40◦C,95◦C])∗t))

≈ (1− e(−(4.3∗10−10 s−1∗550 s)) ≈ 2.4 ∗ 10−7

—————————————

We draw the following conclusions from these calculations for the rate of ssDNA
depurination, depyrimidination, and abasic site cleavage via β-elimination in a
buffer similar to “Lindahl Buffer A” [115] ([[Na]+] ≈ 0.12 M and no divalent
metal; pH ≈ 7.4):

(Conclusion 1): Regarding the existing photo-DEAN [193–196] method,
spontaneous cleavage of DNA probes appears to be of little consequence, even
at the limit of single copy numbers of target species and arbitrary concentrations
of probes.

For the photo-DEAN [193–196] steps up to and including the first round of PCR, as
discussed above, we would expect a fraction: ≈ (1−(1−7.9∗10−6)(1−2.4∗10−7)) ≈
8.1∗10−6 of, for example, well-mixed ≈ 102 nucleotide long DCN [74,128,129,193–
196] sequences to spontaneous cleave. This fraction should likewise hold (within an
order-of-magnitude) for the specific population of probes that found their targets

110

and were successfully photoligated or otherwise chemically modified to indicate
this event. The only conceivable danger from spontaneous probe degradation, via
depurination or depyrimidination followed by β-elimination, would be in the limit
where one is attempting to quantitate a large concentration of target molecules
([target species] ≫ 8.1 ∗ 106) with a precision of greater than ≈ 1 in ≈ 8.1 ∗ 106
or so.

The more subtle danger, of course, is that probes with uncleaved abasic sites may
not exhibit the same amplification kinetics during initial rounds of PCR. Consider
that abasic site generation will almost always precede DNA intramolecular
cleavage, and will occur at a (1/k(β−elimination) ≈ 103 to 104) fold faster rate.
For example, we would expect, after τ95◦C ≈ 495 s at ≈ 95◦C, under the
aforementioned buffer conditions, that ≈ 1% (i.e. a ≈ 0.01 fraction) of well mixed
≈ 102 nucleotide DCN sequences will have a single abasic site. The influence of
a signal abasic site would also be enormously compounded, for obvious reason, if
rolling circle amplification is employed in place of a traditional PCR.

Thus, if one wishes to quantitate a population of target molecules at a sensitivity
of ≈ 1 in ≈ 100 molecules or greater, any high temperature incubation steps or
thermal anneals should be strictly avoided.

(Conclusion 2): In light of the previous comments, where we noted that ≈ 1%
(i.e. a ≈ 0.01 fraction) of ≈ 102 nucleotide DCN [74, 128, 129, 193–196] sequences
with well mixed sequence composition will have a single abasic site, care should
be taken in deciding whether or not to expose pre-amplified photo-DEAN [193–
196] probes to abasic site cleaving repair enzymes (e.g. endonuclease III (Nth),
endonuclease VIII, FPG, etc.). On the one hand, this could lead to probe 〈〉 target
signal loss (i.e. false-negatives). On the other hand, repair enzyme treatment of
this sort could minimize variance in assay results by eliminating sequences that
may amplify in an abnormal fashion, and if amplifiable, lead to the generation of
products that exhibit abnormal microarray hybridization during the photo-DEAN
[193–196] “decoding” step. However, we consider this latter possibility unlikely
in light of the likely minimal thermodynamic contribution of one or two Single
Nucleotide Polymorphisms (SNPs) in the context of a ≈ 102 nucleotide DCN
[74,128,129,193–196] sequence.

A similar point can be made regarding exposure to Uracil DeGlycosylase (UDG)
enzymes and derivatives in the next section (i.e. section 6.5), where we will work
out that cytosine deamination to uracil (leading to a C −→ U transition mutation)
has roughly the same kinetics as ssDNA depurination.

(Conclusion 3): For methods where probe site-specific cleavage is used to
indicating probe 〈〉 target complex formation or hybridization, there is a real
danger of false-positive signal general via spontaneous cleavage, as this may be
fatal at the level of GEP-DEAN [74] excess concentrations of probes with respect
to their targets.

More specifically, in the context of the GEP-DEAN [74] approach where a
((10 fmol)/(18 zmol)) ≈ 5.6 ∗ 105 fold excess of probes is used relative to
a population of cDNA targets at a ≈ 0.61 fM concentration, the number of
false-positive signals arising from spontaneous cleavage after τ95◦C ≈ 495 s at
≈ 95◦C and τ(95◦C to 40◦C,0.1◦C/s) ≈ 550 s spent during step (s.1) anneal from
≈ 95◦C to ≈ 40◦C at a rate of ≈ 0.1◦C/s (see section 6.3) can be calculated
as:

111

frac[probes transformed into false positive signals] ≈
#(signal nucleotides) ∗ (1− e(−(k(ssDNA chain breakage per base (ave),95◦C))∗495 s)

∗ e(−(k(ssDNA chain breakage per base (ave),mean::T∈[40◦C,95◦C]))∗550 s)

≈ #(signal nucleotides) ∗ (1− e(−(1.6∗10−10 s−1)∗495 s) ∗ e(−(4.3∗10−12 s−1)∗550 s))

≈ #(signal nucleotides) ∗ (8.2 ∗ 10−8)

Thus, if we set ≈ #(signal nucleotides) to ≈ 102, which is about the length of a
typical DCN [74,128,129,193–196] sequence, we find:

frac[probes transformed into false positive signals] ≈ 8.2 ∗ 10−6

Multiplying this be the excess of probes relative to cDNA, mRNA, etc. targets,
we can calculate:

fold excess of false positives relative to proper signals

≈ (8.2 ∗ 10−6) ∗ (5.6 ∗ 105) ≈ 4.6

As we found in section 6.2, this fold excess of false-positives is a serious problem
since it places us at the limit where the number of correct probe 〈〉 target
hybridization reporting signals is on-order the square root of the rate parameter
for false-positive signal generation:

√
λ =

√

k(f.p.rxn) ∗ t ≈
√
4.6 ≈ 2.1

The problem obviously becomes much more severe if an abasic site cleavage step
needs to be considered, where we would have to multiply the aforementioned
average rate of false-positive generation at ≈ 95◦C by (k(β−elimination,95◦C))

−1 ≈
(7.2 ∗ 10−4 s−1)−1 ≈ 1.4 ∗ 103 s and the aforementioned rate of false-positive
generation during the anneal by (k(β−elimination,mean::T∈[40◦C,95◦C]))

−1 ≈ (1.3 ∗
10−4 s−1)−1 ≈ 7.7 ∗ 103 s.

112

6.5 The rates and consequences of transition mutations due to
hydrolytic deamination

From (Lindahl & Nyberg, 1974) [116] we find a ≈ 95◦C “Lindahl Buffer A” [115]
rate of cytosine deamination of k(deamination,95◦C) ≈ (2.0 ∗ 10−7 s−1), which is
very close to our previous estimated value of k(depurination,95◦C) ≈ (4.2∗10−7 s−1)
in section 6.4. We note that (Lindahl & Nyberg, 1974) [116] also approximate
an activation energy for ssDNA cytosine deamination of Ea ≈ 29kcal/mol. Using
(Exp. 6.4.1) we can therefore estimate a general formula for cytosine deamination
as a function of temperature in “Lindahl Buffer A” [115] as:

(Exp. 6.4.2)

k(deamination,T (◦C),ssDNA) ≈ (2.0 ∗ 10−7 s−1)

∗ e
((

29kcal/mol
R∗(273.15+95◦C

)

−
(

29kcal/mol
R∗(273.15+T (◦C))

))

≈ 3.28358 ∗ 1010 ∗ e(−14593.4273.15+T (◦C)) s−1

(Importantly, one should only trust the output of the above expression to the
≈ 2 significant figures of the experimentally measured reference kinetic rate of
≈ (2.0 ∗ 10−7 s(− 1)) at ≈ 95◦C.)

For experimental measurement of depyrimidination at lower temperatures,
allowing up to test a reaction rate extrapolation via the use of (Exp. 6.4.1),
(Frederico et. al., 1990) [57] performed direct measurements of cytosine
deamination at ≈ 37◦C and pH ≈ 7.4, in the context of “Lindahl Buffer
B” [115], and found rates of k(deamination,37◦C,ssDNA) ≈ (1 ∗ 10−10 s−1) and
k(deamination,37◦C,dsDNA) ≈ (7 ∗ 10−13 s−1) for ssDNA and dsDNA, respectively.
Here, as (Lindahl & Nyberg, 1974) [116] discovered, “Lindahl Buffer B” [115]
only shifts k(deamination,95◦C,ssDNA) by +0.2 units and the absence of the
standard ≈ 0.01 M MgCl2 in “Lindahl Buffer B” [115] does not appear to
effect the deamination reaction rate. Therefore, it seems reasonable to use
(Frederico et. al., 1990)’s [57] values to validate the usage of (Exp. 6.4.2).
Shockingly, using (Exp. 6.4.2) we find a rate constant for the deamination
of ssDNA of PREDICTED

[

k(deamination,37◦C,ssDNA) ≈ (1.2 ∗ 10−10 s−1)
]

,
which almost exactly matches the experimental value of
PREDICTED

[

k(deamination,37◦C,ssDNA) ≈ (1 ∗ 10−10 s−1)
]

found by (Frederico
et. al., 1990) [57]. Regarding the ≈ 143 fold slowdown (Frederico et. al.,
1990) [57] observed for cytosine deamination in dsDNA vs. ssDNA at ≈ 37◦C and
pH ≈ 7.4, this is perhaps unsurprising considering that, when stacked with other
bases in the context of duplex DNA, the nucleophilicity of cytosine’s C4 carbon
and/or accessibility of the nucleobase’s C5=C6 bond should be considerably
reduced.

So what do these results imply? Perhaps a few things:

First, let’s consider the fraction of deaminated cytosine bases, i.e. C −→
U transition mutations, after completion of all photo-DEAN [193–196]
pre-amplification steps and the first round of DCN [74, 128, 129, 193–196] PCR
(described in section 6.3). Here, after spending τ(95◦C) ≈ 495 s at ≈ 95◦C where
the rate of cytosine deamination was again experimentally measured by (Lindahl &

113

Nyberg, 1974) [116] to be k(deamination,95◦C) ≈ (2.0 ∗ 10−7 s−1), we find a fraction
cytosine deamination of:

frac[cytosine deamination; 1 cytosine base | (pH ≈ 7.4) | τ95◦C ≈ 495 s]

= 1− e(−k(deamination, 95◦C)∗t) = 1− e(−(2.0∗10−7 s−1)∗495 s) ≈ 9.9 ∗ 10−5

And after the annealing step where the temperature is ramped from ≈ 95◦C to
≈ 40◦C at a rate of ≈ 0.1◦C/s (implying a total annealing time of ≈ (180 s)+(95−
39)∗ (10 s) ≈ (95−40)∗ (10 s) ≈ (180 s)+(550 s) ≈ 730 s, we can use (Exp. 6.2)
and (Exp. 6.4.2) to calculate the average rate of cytosine deamination of:

k(deamination, mean::T∈[40◦C, 95◦C])

≈ (
1

95− 40
)

∫ T=95

T=40

(3.28358 ∗ 1010 ∗ e(
−14593.4
273.15+T

) s−1)dT ≈ 3.2 ∗ 10−8 s−1

And then calculate a fraction cytosine deamination due to the anneal:

frac[cytosine deamination; 1 cytosine base | (pH ≈ 7.4) |
τ(95◦C to 40◦C, 0.1◦C/s) ≈ 550 s] = 1− e(−k(deamination, mean::T∈[40◦C, 95◦C])∗t)

1− e(−(3.2∗10−8 s−1)∗550 s) ≈ 1.8 ∗ 10−5

Putting this together, after photo-DEAN [193–196] step (s.1), the fraction of
deaminated cytosine bases will only be ≈ 1− (1− 9.9 ∗ 10−5) ∗ (1− 1.8 ∗ 10−5) ≈
1.2 ∗ 10−4. So, even if we had a 102 nucleotide fully poly(C) DCN sequence
[74, 128, 129, 193–196] on a photo-DEAN [193–196] probe, only ≈ 1% would have
any C −→ U transition mutations (which is again, on order the same value we
found for the generation of abasic sites in 6.4). Thus, because uracil is a “coding”
base that should not block polymerase procession, and minor thermodynamic
penalties to gene chip / etc. hybridization of DCN [74,128,129,193–196] sequences
during the eventual photo-DEAN [193–196] “decoding” steps aside, cytosine
deamination should not be of significant concern for the current photo-DEAN
[193–196] protocol.

However, spontaneous deamination should be of enormous concern for alternative
strategies where target deamination represents a critical component of chemically
modifying a probe to indicate discovery / hybridization to a target and no
affinity purification methods are employed. Consider that in the context of the
GEP-DEAN [74], a (10 fmol)/(18 zmol) ≈ 5.6 ∗ 105 fold excess of “searcher”
molecules is used to find what we estimate to be > 50% of the N ≈ 10840
targets, and thus, that after photo-DEAN [193–196] step (s.1) we’ll have a
≈ (1.2 ∗ 10−4) ∗ (5.6 ∗ 105) ≈ 67 fold excess of false-positives relative to target
signals will be generated. This clearly places us in the “danger limit” (discussed in
section 6.2) where the number of correct probe 〈〉 target hybridization reporting
signals is on-order the square root of the fold excess of false-positive signals:
σ = λ1/2 = (k(f.p.rxn) ∗ t)1/2 ≈ 671/2 ≈ 8.2.

Now, the only methods we are aware of for “targeted” deamination are those of
Fujimoto et. al. [61,63,121], where either CVU [63,121] or CNVK [61] is used to form
a (reversible) photoadduct via [2+ 2] cycloaddition to a cytosine nucleobase. This

114

cycloaddition process directly saturates the pyrimidine base’s C5=C6 double bond
and presumably enhances the nucleophilicity of its C4 carbon [76,106] hosting the
primary amine group (NH2) group that differentiates cytosine from uracil (which
has a double-bonded oxygen on its C4 carbon). Here, whether or not one uses
CVU [63, 121] or CNVK [61] to catalyze cytosine deamination, the half-life of the
cytosine C4 primary amine group is stated to be around ≈ 40 min ≈ 2.4 ∗ 103 s to
≈ 50 min ≈ 3.0∗103 s at ≈ 90◦C in pH ≈ 7 buffer [61,63] (though a more specific
half-life estimate of ≈ 42 min ≈ 2.52∗103 s is provided for the CVU case, implying
a rate constant of k(CV U−cat.cyt.deamination, 90◦C) ≈ 2.8 ∗ 10−4 s−1 [63].

However, in contrast to the CVU or CNVK facilitated process, the rate of
spontaneous cytosine deamination after ≈ 40 min ≈ 2.4 ∗ 103 s at ≈ 90◦C can be
calculated as:

k(deamination,90◦C) ≈ (3.28358 ∗ 1010 × e(
−14593.4
273.15+T

) s−1) ≈ (1.2 ∗ 10−7 s−1)

frac
[

cytosine deamination; 1 cytosine base | (pH ≈ 7) | τ90◦C ≈ 2.4 ∗ 103 s
]

=

(1− e(−k(deamination,90◦C))∗t)) ≈ (1− e(−(1.2∗10−7 s−1)∗(2.4∗103) s)) ≈ 2.9 ∗ 10−4

In the context of the GEP-DEAN [74] approach, where up to a (10 fmol
18 zmol

) ≈ 5.6∗105
fold excess of probes is used relative to a population of cDNA targets, this is
bad news as it implies that, after the above “cooking procedure” for targeted
deamination, and concerning ourselves with a particular cytosine base on each
probe, even without photocrosslinking to CVU or CNVK the said cytosine will be
deaminated on ≈ (5.6∗105)∗(2.9∗10−4) ≈ 160 fold the number of probes as target
molecules. Once again we find that we are in the “danger limit” (again, discussed
in section 6.2) where in this case we have: σ =

√
λ =

√

k(f.p.rxn) ∗ t ≈
√
160 ≈

12.6.

This may also be bad news specifically regarding the use of CVU [63, 121]
or CNVK [61] as a genomic editing tool to (with reasonable kinetics) induce
site-directed C −→ U transition mutations (where “U” codes as a “T” in the
context of deoxyribonucleic acid). Specifically, if the procedure of heating for
≈ 1 h ≈ 3600 sat ≈ 90◦C is employed (see ref. [63] for CV U , ref. [61] for CNVK),
this would imply that we would have a fraction of off-target or spontaneous cytosine
deamination events of:

frac[uncatalyzed cyt. deamination (ssDNA); 1 cytosine base | (pH ≈ 7) |
τ90◦C ≈ 3.6 ∗ 103 s]

≈ (1− e(−k(deamination,90◦C)∗t)) ≈ (1− e(−(1.2∗10−7 s−1)∗(3.6∗103) s))

≈ 4.3 ∗ 10−4

This means that for a ≈ 10kb genomic fragment, and after ≈ 3600 s ≈ 1 h
of heating at ≈ 90◦C in pH ≈ 7 buffer, on average ≈ 4.3 C −→ U transition
mutations will spontaneously occur while the CVU or CNVK targeted cytosine is
being deaminated.

However, some hope comes from Luyen et. al.’s [121] result where it was apparently
demonstrated that a≈ 5% yield of targeted cytosine deamination could be achieved
using CV U at ≈ 37◦C in pH ≈ 7 buffer after ≈ 48 h ≈ 1.728∗105 s, implying a rate
constant: k(CV U−cat.cyc.deamination,37◦C) ≈ 3.0 ∗ 10−7 s−1 and a half-life for the

115

process of ≈ 2.3∗106 s ≈ 27 days. Taking the value for spontaneous deamination of
dsDNA at ≈ 37◦C in “Lindahl Buffer B” [115] at pH ≈ 7.4 measured by (Frederico
et. al., 1990) [57], k(deamination,37◦C,dsDNA) ≈ (7 ∗ 10−13 s−1), the corresponding
rate of cytosine deamination over this time interval of ≈ 2.3 ∗ 106 s ≈ 27 days can
be calculated as:

frac[uncatalyzed cyt. deamination (ssDNA); 1 cytosine base | (pH ≈ 7) |
τ37◦C ≈ 2.3 ∗ 106 s] ≈ (1− e(−k(deamination,37◦C)∗t))

≈ (1− e(−(7∗10−13 s−1)∗(2.3∗106) s)) ≈ 1.6 ∗ 10−6

In any case, this means that, after ≈ 2.3 ∗ 106 s ≈ 27 days of heating at ≈ 37◦C in
pH ≈ 7 buffer to match the calculated half-life for the CV U catalyzed targeted
cytosine deamination process, we’ll only have on average ≈ 1.6 spontaneous
cytosine deamination events per ≈ 1Mb (i.e. ≈ 1 megabase) of genomic DNA.
Importantly, the rest of the genomic DNA should remain double-stranded (i.e.
in native form) as (Frederico et. al., 1990) [57] also found a rate for spontaneous
deamination in ssDNA of k(deamination,37◦C,ssDNA) ≈ 1∗10−10 s−1, which is ≈ 143
fold faster than the rate for dsDNA.

While this kind of a rate for the spontaneous deamination process seems reasonable
for an (arbitrarily parallelizable) means of targeting genomic C −→ U transition
mutations in genomic DNA, the ≈ 1month long reaction half-life is less reasonable,
and in particular, seems to mostly rule out the suggestion by Luyen et. al. [121]
that CV U catalyzed cytosine deamination can serve as a reasonable mRNA editing
platform. However, we do note that targeted deamination appears to proceed at
a ≈ 2 fold higher rate for RNA relative to DNA [121].

116

6.6 RNA transesterification, other (pseudo)random cleavage
processes, and their consequences

At the temperatures and buffer pH ranges employed for the DigiTag
[128], DigiTag2 [129], GEP-DEAN [74], and photo-DEAN [193–196] assays,
transesterification should serve as the primary mechanism for RNA decay
(deoxyribonucleic acid exhibits ≈ 105 fold enhanced stability to hydrolysis relative
to ribonucleic acid under physiological conditions) [149].

Of enormous convenience, Li & Breaker [110] provide a general formula for
calculating the rate of ssRNA transesterification (assuming well-mixed sequence
composition) under a variety of ionic strength and temperature conditions, which
tends to agree with experimental measured kinetic data within a factor of ≈ 3.5 or
less (see “Table 1” in Li & Breaker [110]) for monovalent and divalent molar ion
concentrations in the range 0.03 M ≤

[

K+
]

≤ 3.16 M and 0.005 M ≤
[

Mg2+
]

≤
0.05 M , respectively. With some minor modifications (e.g. to account for ssRNA
polynucleotide length, to yield a rate in s−1 as opposed to min−1, and to account
for the case where

[

Mg2+
]

≈ 0) the relevant equation, i.e. Li & Breaker’s [110]
“equation e”, is as follows:

If
[

Mg2+
]

≈ 0 (Exp. 5.1):

k(RNA transesterification) ≈ (L− 1)× kref × 10(0.983∗(pH−6))

× 10(−0.24∗(3.16−[K+])) × 10(0.07∗(T1−23))

If
[

Mg2+
]

> 0 (Exp. 5.2):

k(RNA transesterification) ≈ (L− 1)× kref × 10(0.983∗(pH−6))

× 10(−0.24∗(3.16−[K+])) × 69.3 ∗
[

Mg2+
]0.80 × 3.57 ∗

[

K2+]× 10(0.07∗(T1−23))

Where kref ≈ 2.17 ∗ 10−11 s−1 :: measurement conditions ≈ {T0 ≈ 23◦C; pH ≈
6;
[

K+
]

≈ 3.16 M ;
[

Mg2+
]

≈ 0 M} [110]; L is the length in nucleotides of the
ssRNA species of interest (we subtract one from this value in the above expression
to avoid the fence-post error); and values for {T1(

◦C); pH;
[

K+
]

;
[

Mg2+
]

} can be
specified as desired (being mindful of the aforementioned suggested ionic strength
ranges) to predict k(RNA transesterification) for buffer and temperature conditions
of interest. Note that, while it should be safe to assume that

[

K+
]

and
[

Na+
]

are
roughly interchangeable as the monovalent ion species, we suggest that more care
should be taken if divalent ions other than

[

Mg2+
]

are present in a given reaction
buffer.

Concerning ourselves with step (s.1) (described in (II.3)) we analyze the expect
fraction of ssRNA transesterification after the photo-DEAN [193–196] reaction
volume is held at ≈ 95◦C for ≈ 180 s, and then after the probe 〈〉 RNA target
annealing step where the temperature is ramped from ≈ 95◦C to ≈ 40◦C at a rate
of ≈ 0.1◦C/s (implying a total annealing time of ≈ 180 s + (95 − 39) ∗ 10 s ≈
(95− 40) ∗ 10 s ≈ 180 s+ 550 s ≈ 730 s).

First, for the ≈ 180 s at ≈ 95◦C in ≈ 1x TE buffer:
[0.01 M TE, 0.02 M DTT, 0.150 M NaCl, pH ≈ 8], which implies a
[

Na+
]

≈ 0.150 M monovalent ion concentration and the absence of any divalent
ions, from (Exp. 6.5.1) we find an RNA dinucleotide transesterification rate of:
k(RNA transesterification,(95◦C,pH≈8),no Mg2+) ≈ 4.17 ∗ 10−5 s−1.

117

This tells us that after ≈ 180 s at ≈ 95◦C we should have a fraction ssRNA
dinucleotide cleavage of:

frac[transesterification; 2nt RNA | (pH ≈ 8) | τ95◦C ≈ 180 s]

≈ (1− e
(−k

(RNA transesterification,(95◦C,pH≈8), no Mg2+))
∗t)

)

≈ (1− e(−(6.2∗10−9 s−1)∗180 s) ≈ 7.48 ∗ 10−3

This further implies that a ≈ 1 kb tract of ssRNA (and any secondary structure
will be mostly denatured at ≈ 95◦C) will be cleaved ≈ 7.48 times. To
understanding the contribution of divalent metal to the RNA transesterification
rate, note that if only ≈ 0.005 M of Mg2+ ions are added to the reaction
buffer the rate of cleavage increases by approximately an order of magnitude to:
k(RNA transesterification,(95◦C,pH≈8), 0.005 M Mg2+)) ≈ 3.30 ∗ 10−4 s−1

This yields a fraction cleavage of ssRNA dinucleotides of ≈ 7.31 ∗ 10−2 and
implying ≈ 57.7 cleavage events along the length of the same ≈ 1kb ssRNA
transcript.

Next, for the anneal in ≈ 1x TE buffer from ≈ 95◦C to ≈ 40◦C at a flat rate of
≈ 0.1◦C/s, we can calculate an average rate of transesterification of:

k(RNA transesterification,mean::T∈[40◦C,95◦C])

≈
(

1

95− 40

)∫ T=95

T=40

[(Exp.6.5.1)] dT ≈ 4.70 ∗ 10−6 s−1

This implies that the anneal leads to a fraction cleavage of ssRNA dinucleotides
of:

frac[transesterification; 2nt RNA | (pH ≈ 8) | τ(40◦C to 95◦C, 0.1◦C/s) ≈ 550 s]

≈ (1− e(k(RNA transesterification, mean::T∈[40◦C to 95◦C]))∗t))

≈ (1− e(−4.70∗(10−6 s−1)∗550 s)) ≈ 2.58 ∗ 10−3

Thus, the aforementioned anneal should statistically lead to ≈ 2.58
transesterification cleavage events along a ≈ 1 kb tract of ssRNA, which is within
the same order of magnitude as the ≈ 7.48 cuts we expect for holding at ≈ 95◦C
for ≈ 180 s.

We quickly note that the rate of transesterification will increase or decrease
by ≈ 1 order of magnitude for an increase or decrease of one buffer pH unit,
respectively (regardless of the divalent metal concentration). Thus, we suggest
that one can use buffer pH as an effective means of tuning the rate of RNA
transesterification.

—————————————

118

So what do the previous derivations for expected RNA transesterification rates tell
us?

To begin to answer this question, consider that after photo-DEAN [193–196] step
(s.1), which employs a ≈ 95◦C incubation (for ≈ 3 min ≈ 180 s) and anneal
from ≈ 95◦C to ≈ 40◦C (for ≈ 550 s), we’re going to cut a ≈ 1 kb tract of
ssRNA around ≈ 103 ∗ (1 − (1 − 7.48 ∗ 10−3) ∗ (1 − 2.58 ∗ 10−3)) ≈ 10.0 times,
which we argue is non-negligible. If we estimate the “target region” on an mRNA
transcript to be a contiguous stretch of ≈ 30 nts, we can correspondingly estimate
that a single target will survive step (s.1) with a probability of only around (1−
7.48 ∗ 10−3)29 ∗ (1− 2.58 ∗ 10−3)29 ≈ 74.6%. In order words, we’re cutting up and
destroying ≈ 25.4% of our targets via the process meant to assist molecular probe
hybridization to their targets.

Regarding the ability to compensate for this false-negative rate with proper control
experiments, we need to note that the number of cleaved target sequences is going
to be approximately Poisson distributed (as discussed in section 6.2), and as such
that the inherent variance associated with a Poisson distribution should serve as
a fundamental source of noise for the assay measurement. Here, let N be the
number of “target sites” (i.e. photo-DEAN [193–196] molecular probe targets),
where µ ≈ 0.254 ∗ N gives the number of cleaved or destroyed targets in the
previous example. The Poisson distribution for the number of destroyed targets
via transesterification implies, for example, that there is a ≈ 31.73% chance for a
divergence from the expected mean by more than σ =

√
µ ≈

√
0.254 ∗N .

First, let;s call σ =
√
µ ≈

√
0.254 ∗N small relative to N , which is just another

way of saying that N is “sufficiently large”. To pick a good example, we can
set N ≈ 10, 840, such that N corresponds to the number of target molecules
at the lowerbound sensitivity range of the GEP-DEAN [74] assay. This yields
σ =

√
µ ≈

√
0.254 ∗ 10840 ≈ 52.5 target molecules, which is certainly a reasonably

small standard deviation to accept as a negligible contribution to the false-negative
rate. Even if we set N = 10, we would only expect a Poisson distribution standard
deviation of σ =

√
µ ≈

√
0.254 ∗ 10 ≈ 1.59 target molecules.

Thus, with the use of proper control experiments, the unavoidable variance in the
number of randomly cleaved RNA target sequences should minimally contributed
to the photo-DEAN [193–196] / etc. assay noise floor. Be aware though that
the target copy number depression may bring the final number of uncleaved
targets within the same order-of-magnitude as the standard deviation for other
false-negative (e.g. nucleic acids sticking to the walls of a polypropylene test
tube [18]) or potentially false-positive generating reactions. Target copy number
depression is always a “bad thing” and should be appropriately attenuated.

A further point of concern is that we cannot necessarily assume that RNA
transesterification is “sufficiently” (pseudo)random. In particular, consider that
RNA secondary structure can significantly perturb transesterification rates [110],
and as mentioned previously, even in the context of ssRNA some dinucleotide
pairs will deviate up to ≈ 3.5 fold from the average rate of transesterification
predicted by Li & Breaker’s [110] “equation e” (i.e. our (Exp. 6.5.1) and (Exp.
6.5.2)). Care should therefore be taken to account for the (pseudo)randomness of
spontaneous transesterification.

Finally, it’s important to note that the fragment lengths produced by Q ∗
p(RNA transesterification) cleavage events along long tracts of RNA (e.g. ≈ 1 kb
tracts of mRNA) with mixed sequence composition should not be assumed to
have a simple exponential distribution. Here, due to the correlation between

119

secondary structure and RNA length, one needs to carefully analyze how this
effects assay-to-assay variability at the limit of low target copy numbers. For an
intuitive probabilistic model for the expected counts of each RNA fragment length
(following some amount of backbone cleavage events via transesterification) by
transforming the problem from its current form into one of calculating the number
of expected “streaks” after some number of sequential flips of a biased coin.

Specifically, following earlier discussions on spontaneous RNA cleavage via
transesterification, notice that the “survival probability” of an RNA internucleotide
linkage can be written as:

p = Prob[Intact RNA internucleotide linkage]

≈ 1− Prob[RNA internucleotide linkage transesterification]

≈ e(−k(RNA transesterification,T◦C)∗τ(RNA transesterification))

We can therefore model the fragmentation of an RNA polynucleotide after
some time τ(RNA transesterification), under conditions to yield some rate of
transesterification k(RNA transesterification,T◦C), by flipping a biased coin for each
RNA internucleotide linkage with a probability p = Prob[Intact RNA linkage] of
yielding “heads”, where we allow the internucleotide linkage to remain intact, and a
1−p probability of yielding “tails”, where we cut the internucleotide linkage.

-

Here’s our proposed probabilistic model for the fragment length counts after an
RNA polymer is subject to conditions conducive to transesterification:

Take a biased coin, with probability p of yielding “heads” (i.e. H) and probability
1−p of yielding “tails” (i.e. T), and toss it n+2 times. Write down each result (H
or T) as sequential elements in a one-dimensional array (or a string), and regardless
of the actual result for the first and last coin toss, write down the outcome in either
case as tails (i.e. T). For example, if we toss the biased coin (n+2) = (5+ 2) = 7
times, we might have the result: {T, T,H, T,H,H,H}, and after transforming the
first and last coin toss to give the outcome of tails (i.e. T), we would write this
result down as: {T, T,H, T,H,H, T}.
We now define a “streak” of length k where k ∈ {1, 2, 3, ..., n} as an instance where
we have a subarray (or substring) of length k + 2 of the form: {T, ..., T}, where
“...” represents k sequential H characters in a row (e.g. a k = 3 streak implies
the existence of the subarray or substring {T,H,H,H, T}). However, we need to
define a length k = 0 streak in a special way as the total count of (potentially
overlapping) instances where the coin lands “tails up” twice in a row (i.e. where
we see the subarray or substring {T, T}). For example, if we toss our biased
coin once again (n + 2) = (5 + 2) = 7 times, we might see a result that looks
like {T,H, T, T, T,H, T}, where the first and last toss must be recorded as “tails”
(i.e. T). Here, there are two (overlapping) instances where subarray or substring
{T, T} appears, and so we would have two runs of length k = 0. Provided this
set up, we can now ask: what are the expected counts {c0, c1, c2, ..., cn} ∈ C for
non-overlapping streaks of “heads” (i.e. sequential H characters) of length k for
k ∈ {0, 1, 2, ..., n}?

120

So how do we map the answer to the above question back to the original
problem of looking for counts of the various RNA fragment lengths after some
time τ(RNA transesterification), during which transesterification occurs at some rate
k(RNA transesterification,T◦C) along the linkages of a larger RNA polymer?

First notice that a streak of k heads (i.e. sequential H characters in the array
or string where we record coin tosses) corresponds to an RNA fragment of length
L = (k + 1) nucleotides held together by k intact internucleotide linkages. Notice
that the matter of recording the first and last coin toss as “tails” (i.e. T) is just to
allow for proper treatment of the ends of the RNA polymer, where the first and last
nucleotides can be (conceptually) thought of as being immediately upstream and
downstream of a cleaved internucleotide linkage. Finally, notice that our somewhat
contrived definition for a streak of length k = 0 corresponds to a situation where
RNA transesterification cuts both immediately upstream and downstream of a
single nucleotide base, liberating it from the polymer. Thus, we have that the
counts {c0, c1, c2, ..., cn} ∈ C for streaks of length k ∈ {0, 1, 2, ..., n} as counts for
RNA fragments of length L ∈ {0, 1, 2, ..., n + 1} nucleotides when one assigns a
transesterification survival probability of p to each internucleotide linkage.

We provide a Mathematica (v10.4.1.0) script (below), which employs the
described probabilistic model, and will approximate expected counts for RNA
fragments of length {0, 1, 2, ..., Q} nucleotides, generated via assigning a uniform
probability of transesterification based cleavage to each internucleotide linkage in
an original length Q nucleotide RNA polymer. For this script, the probability of
transesterification-based cleavage per internucleotide linkage is set via specification
of the variable “pTransesterification” and the value Q for the length in nucleotides
of the original RNA polynucleotide can be set by specifying the value of the
parameter “mRNALength”. One must also specify the number of simulation
iterations with parameter “numTestIterations”. Here, for convenience, simulation
progress (in terms of the number of iterations thus far) can also be reported at
desired intervals by specifying the parameter “progressUpdateInterval”.

This script will output: (1) count weighted mean (µ) and median (x̃) fragment
lengths, as well as the standard deviation (σ) for fragment lengths (all parameters
are computed from simulation data); (2) an output list of expectation values
for fragments of length [1, Q] (i.e. all possible fragment lengths) where each
element {L, count} indicates the number of counts for a particular length L
fragment; and (3) plots of the fragment length distribution with linearly scaling
and logarithmically scaling y-axis tick-mark values.

(∗ SCRIPT START ∗)

mRNALength=10ˆ3;
pT r an s e s t e r i f i c a t i o n =(9.61∗10ˆ(−3)) ;
numTestIterat ions =10ˆ5;
p rog re s sUpdate In te rva l =10ˆ2;
numberOfCoinTosses=(mRNALength−1);
pTa i l s=pT r an s e s t e r i f i c a t i o n ;
pHeads=1−pTai l s ;
streakCountArray=Array [{#−1,0}&,numberOfCoinTosses +1] ;

For [t e s t I t e r a t i o n s =1, t e s t I t e r a t i o n s<=numTestIterat ions ,
t e s t I t e r a t i o n s++,

t e s t S t r i n g=St r ingJo in [Join [{”0”} ,
RandomChoice [{ pTai ls , pHeads}−>{”0” ,”1”} ,

121

numberOfCoinTosses] , { ” 0 ” }]] ;

streakCountArray [[1 , 2]]+= StringCount [t e s t S t r i n g ,
”00” , Overlaps−>Al l] ;

For [i =1, i<=Str ingLength [t e s t S t r i n g]−2 , i++,
streakCountArray [[i +1 ,2]]+=
StringCount [t e s t S t r i n g , S t r i ngJo in [{”0”} ,
Table [{”1”} ,{b , 1 , i }] , { ” 0 ” }]] ;

] ;

I f [Mod[t e s t I t e r a t i o n s , p rog re s sUpdate In te rva l]==0,
Pr int [” I t e r a t i o n s thus f a r : ” , t e s t I t e r a t i o n s]

] ;

] ;

streakCountArray = {#[[1]] ,# [[2]] / (t e s t I t e r a t i o n s −1)}
&/@streakCountArray ;

rnaFragmentLengthArray=#+{1,0}&/@streakCountArray ;

weightedFragmentLengthData=
WeightedData [rnaFragmentLengthArray [[All , 1]] ,
rnaFragmentLengthArray [[All , 2]]] ;

Pr int []
Pr int [”Mean fragment l ength (\ [Mu]) : ” ,
N[Mean [weightedFragmentLengthData] , 1 2]]
Pr int [”Median fragment l ength (” ,
Over sc r ip t [” x” , ” ˜ ”] , ”) : ” ,
N[Median [weightedFragmentLengthData] , 1 2]]
Pr int [” Standard dev i a t i on o f fragment l eng th s
(\ [Sigma]) : ” ,
N[StandardDeviat ion [weightedFragmentLengthData] , 1 2]]
Pr int []
Pr int [” Pred ic ted counts f o r a l l mRNA fragment
l eng th s . ”]
Pr int [” Format : : { fragment l ength (nts) ,
expected count }”]

rnaFragmentLengthArray
L i s tP l o t [rnaFragmentLengthArray , P lotSty l e−>
PointS i ze [0 . 0 2] , PlotRange−>Al l]
L i s tLogPlot [rnaFragmentLengthArray , P lotSty l e−>
PointS i ze [0 . 0 2] , PlotRange−>Al l]

(∗ SCRIPT END ∗)

For the above script, please note that we have pre-specified a value for
“mRNALength” of Q = 1 kb (i.e. Q = 103 nucleotides) for the length of the RNA
polynucleotide undergoing transesterification, implying that this polymer will, by
default, have 103 − 1 = 999 internucleotide linkages. We have also assigned a
default value to the variable “pTransesterification”, i.e. the probability of RNA
internucleotide cleavage, of p ≈ (1−(1−7.16∗10−3)∗(1−2.47∗10−3)) ≈ 9.61∗10−3,

122

which is meant to correspond to expected fraction of RNA transesterification after
photo-DEAN [193–196] step (s.1) (see section 6.3 and our earlier discussion in
this current section). Please also note that the number of simulation iterations
“numTestIterations” has a default value of 105.

Now, putting the (above) script to use - specifying R = 105 trials, a 1 kb RNA
transcript with 103 − 1 = 999 internucleotide linkages, and setting the expected
probability of internucleotide survival or cleavage of p =

(

1
2

)

(i.e. where we are
tossing a fair coin in our probabilistic model) - we find the following expected
counts for fragment lengths:

Dataformat−−− cL(k = simulation streak length, L)

c0(k = 0, L = 1) : 250.486650000

c1(k = 1, L = 2) : 100.121320000

c2(k = 2, L = 3) : 55.6006900000

c3(k = 3, L = 4) : 29.3849800000

c4(k = 4, L = 5) : 15.1302900000

c5(k = 5, L = 6) : 7.65834000000

c6(k = 6, L = 7) : 3.85638000000

c7(k = 7, L = 8) : 1.93903000000

c8(k = 8, L = 9) : 0.967610000000

c9(k = 9, L = 10) : 0.487570000000

c10(k = 10, L = 11) : 0.242780000000

c11(k = 11, L = 12) : 0.121020000000

c12(k = 12, L = 13) : 0.0602100000000

c13(k = 13, L = 14) : 0.0303400000000

c14(k = 14, L = 15) : 0.0153200000000

c15(k = 15, L = 16) : 0.00756000000000

c16(k = 16, L = 17) : 0.00411000000000

c17(k = 17, L = 18) : 0.00197000000000

c18(k = 18, L = 19) : 0.000950000000000

c19(k = 19, L = 20) : 0.000510000000000

c20(k = 20, L = 21) : 0.000220000000000

c21(k = 21, L = 22) : 0.000100000000000

c22(k = 22, L = 23) : 0.0000700000000000

c23(k = 23, L = 24) : 0.0000500000000000

c24(k = 24, L = 25) : 0

c25(k = 25, L = 26) : 0

c26(k = 26, L = 27) : 0

c27(k = 27, L = 28) : 0

c28(k = 28, L = 29) : 0.0000100000000000

As might be obvious from the non-zero data point at c28(k = 28, L = 29), and
perhaps fitting with intuition, for (n+2) = 1001 coin tosses (albeit where the first

123

and last coin tosses are rigged to yield tails), this simulation has a long convergence
time. If not for lack of computational resources, the number of random simulation
trials, R, should have been a few orders of magnitude larger than the current value
of R = 105.

Without consideration of the outlier point at c28(k = 28, L = 29), we find a
reasonable fit to the simulation data with the expression:

#(fragments of length L) ≈ e(6.101249−0.683838∗L)

Furthermore, from the data (including the outlier point at c28(k = 28, L = 29))
we find:

µ(fragment length)(mean fragment length) ≈ 1.9707204
x̃(fragment length)(median fragment length) ≈ 1.000000
σ(fragment length)(standard deviation of fragment lengths) ≈ 1.8014077

We can plot our simulation data for the “fair coin” results and allow the
reader to notice the clearly Gamma or exponential distribution of the expected
RNA fragment counts as a function of fragment length L (measured in
nucleotides):

Out[401]=

0 5 10 15 20 25

0

50

100

150

200

250

(fragment length, L)

#
(f
ra
g
m
e
n
ts
o
f
le
n
g
th
L
)

124

Out[402]=

0 5 10 15 20 25

10-6

0.001

1

1000

(fragment length, L)

#
(f
ra
g
m
e
n
ts
o
f
le
n
g
th
L
)

Out[403]=

0 5 10 15 20 25

-20

-10

0

10

(fragment length, L)

F
IT
R
E
S
ID
U
A
L
S
-
#
(f
ra
g
m
e
n
ts
o
f
le
n
g
th
L
)

For convenience, in Mathematica notation (where each element {L, count}
indicates the number of counts for a particular length L fragment), we can write
these simulation results as:

{{1 ,5009733/20000} ,
{2 ,2503033/25000} ,
{3 ,5560069/100000} ,
{4 ,1469249/50000} ,
{5 ,1513029/100000} ,
{6 ,382917/50000} ,
{7 ,192819/50000} ,
{8 ,193903/100000} ,
{9 ,96761/100000} ,
{10 ,48757/100000} ,

125

{11 ,12139/50000} ,
{12 ,6051/50000} ,
{13 ,6021/100000} ,
{14 ,1517/50000} ,
{15 ,383/25000} ,
{16 ,189/25000} ,
{17 ,411/100000} ,
{18 ,197/100000} ,
{19 ,19/20000} ,
{20 ,51/100000} ,
{21 ,11/50000} ,
{22 ,1/10000} ,
{23 ,7/100000} ,
{24 ,1/20000} ,
{25 ,0} ,
{26 ,0} ,
{27 ,0} ,
{28 ,0} ,
{29 ,1/100000}} ;

Now, setting an expected probability of internucleotide survival or cleavage of
p ≈ (1−(1−7.16∗10−3∗(1−2.47∗10−3)) ≈ (9.61∗10−3), corresponding to expected
fraction of RNA transesterification after photo-DEAN [193–196] step (s.1) (see
section 6.3), here we have a far greater distribution of product fragment sizes as
well as almost perfect convergence (after R = 105 trials) to a fitted exponential
decay function of the same form as the one previously used to fit the “fair coin”
simulation results.

Without needing to discard any points as outliers, we find a reasonable fit to the
simulation data with the expression:

µ(fragment length)(mean fragment length) ≈ 94.598602
x̃(fragment length)(median fragment length) ≈ 66.000000
σ(fragment length)(standard deviation of fragment lengths) ≈ 93.222862

We can now plot our simulation data for these “biased coin” results and allow the
reader to notice the clearly Gamma or exponential distribution of the fragment
counts as a function of length L in nucleotides:

126

Out[336]=

0 200 400 600 800 1000

0.00

0.02

0.04

0.06

0.08

0.10

(fragment length, L)

#
(f
ra
g
m
e
n
ts
o
f
le
n
g
th
L
)

Out[337]=

0 200 400 600 800 1000

10-6

10-5

10-4

0.001

0.010

0.100

(fragment length, L)

#
(f
ra
g
m
e
n
ts
o
f
le
n
g
th
L
)

127

Out[338]=

0 200 400 600 800 1000

-0.002

-0.001

0.000

0.001

0.002

0.003

(fragment length, L)

F
IT
R
E
S
ID
U
A
L
S
-
#
(f
ra
g
m
e
n
ts
o
f
le
n
g
th
L
)

There is, however, an important caveat regarding these simulation results.
Consider a situation where we have a linear RNA polymer of some length L
nucleotides, and we randomly cleave this polymer at some number of points by (as
previously discussed) assigning each of the (Q− 1) internucleotide linkages in the
polymer some approximately constant probability of transesterification. Consider a
contiguous sequence of S nucleotides composing a photo-DEAN [193–196] “target”.
In this section (i.e. section 6.6) we have already discussed the survival probability
for this contiguous target sequence. However, conditioned on the survival of the
target sequence, what probability will a particular length L ≤ Q RNA fragment
(generated via the aforementioned transesterification process) have of encoding the
target sequence, and how does this scale as a function of the fragment’s length L?
The näıve answer is that that probability p(L nts,target encoding) will be non-zero
only for fragments of length L ≥ S, and will then scale linearly will L as:

p(L nts,target encoding) =

(

L− S + 1

ΣQ
i≥S(i− S + 1)

)

=

(

2 ∗ (L− S + 1)

(Q− S + 1)(Q− S + 2)

)

The argument is simply that, walking from 5′ to 3′ along a particular fragment,
each of the fragment’s {1, 2, ..., (L − S + 1)} nucleotides should have the same
probability of being the first nucleotide in the target sequence.

Thus, it’s perhaps worth keeping in mind the obvious point that target sequences
will have a bias to appear on longer RNA fragments. We suggest that this will,
in turn, have consequences for how many times one needs to cut the original Q
nucleotide RNA polymer in order to sufficiently drive down the secondary structure
around target sequence(s) to allow for kinetically and thermodynamically favorable
photo-DEAN [193–196] probe hybridization. The reader should remember here
that increasing the specified mean number of cuts will mean a corresponding
increase in the probability of undesired target cleavage events (i.e. false-negative
events).

128

6.7 I just tried being a little blue: Cyclobutane Pyrimidine
Photodimers (CPDs) and other photochemical terrors at
≈ 254 nm

If the reader would be so kind as to take a bright flashlight (perhaps one of those
new LED ones), press it into the palm of their hand, and turn it on, he or she will
notice a faint red glow emanating from the backside of their hand. This simple
experiment yield a rather strong clue that “red” light penetrates more deeply
into biological tissue than “blue” light, and importantly for our purposes in this
chapter, that the higher energy photons further along towards the “blue” or “UV”
end of the spectrum (which made the initial flashlight beam “white”) are being
absorbed by some set of proteins, lipids, nucleic acids, or other biomolecules. We
can further notice that even a single 500 nm photon of “green” light corresponds
to ≈ 2.48 eV of energy, which is the same order of magnitude as the energy of
hydrogen or covalent bonds.

To now arrive at the point, the irradiation photo-crosslinking step (s.2) in
Yokomori et. al.’s photo-DEAN [193–196] scheme (see section 6.3) is not
necessarily benign. Specifically, the cyclobutane products formed in the RVU
(where “R” = “CN”, “COOH”, etc.; “R” = “COOH” in the case of photo-DEAN
[193–196]) [62–64, 121, 126, 131–135, 199, 200],[s1], or roughly similar p-CVp,
VZA, or CNVK catalyzed [2 + 2] photocycloaddition reactions also readily occur
in unmodified nucleic acids after absorption of UVB and UVC band [h8]
radiation, where ≈ 254 nm seems to be one most repeatedly cited “culprit”
wavelength. Cyclobutane Pyrimidine Photodimers (CPD)s, particularly the
cis-syn diastereoisomer variants of these dimers, are in fact some of the most
common (UVB, UVC)-induced lesions in nucleic acids [20, 36, 142, 145, 150, 192,
204],[h4], and purine-pyrimidine cyclobutane photoadducts, e.g. the d(TpA)
photodimer [27–29, 47, 104, 205] where [2 + 2] cycloaddition takes place over the
C5=C6 bonds of thymine and adenine, have also been noted to occur albeit
at much reduced yield [70],[h5]. Like the reactions between VZA or CNVK and
their pyrimidine targets, many [2 + 2] photocycloaddition dimers involving the
C5=C6 double bond in thymine are reversible via irradiation at ≈ 254 nm,
though pyrimidine-purine adducts like d(TpA) appear to occur irreversibly [28].
It has been argued that the irreversibility of these latter adducts arises due to
ring opening or other secondary reactions [47,205], perhaps catalyzed by the high
≈ 26.3 kcal/mol cyclobutane ring strain (see “Figure 2.15” of ref. [8]).

From this natural precedent for internucleotide photoadduct formation, we can
understand the importance that photocrosslinking chemistries suggested for use in
the context of nucleic acids (e.g. p-CVp, VZA, or CNVK, etc.) have high quantum
yields in the UVA regime [h6], and for the corresponding photosplitting reactions
to occur as far to the “red tail” of the UVB spectrum as possible. To further
emphasize the importance of high quantum efficiencies at “redder” wavelengths, we
refer the reader to Kladwang et. al.’s surprising 2012 report [100] that 254 nm UV
shadowing of ≈ 200-mer RNA for only ≈ 20 s caused damage to ≈ 16%−27% of the
molecules (unfortunately we were unable to determine a power density to attach to
these numbers). Consider also that irradiation at UVA ≈ 365 nm wavelengths can
still catalyze DNA photodamage, where CPD formation followed by pyrimidine
oxidation are the primary mutagenesis routes [50, 70, 124]. However, we can also
note a ≈ 105 fold decrease in the efficiency of photoadduct formation for UVA
irradiation relative to UVC irradiation at ≈ 254 nm [144,179].

Putting everything together, while the 10 min ≈ 600 s irradiation at λmax =
365 nm (at a power density of≈ 2.3W/cm2; see section 6.3) step (s.2) in Yokomori

129

et. al.’s photo-DEAN [193–196] scheme is certainly something that should be
optimized, it seems unlikely that irradiation will have a meaningful influence on
false-positive or false-negative rates.

Finally, we remark there have been rather remarkable advances in the synthesis of
nucleic acid photocrosslinkers with high UVA quantum efficiencies. Perhaps most
notably, in circa 2008, Yoshimura & Fujimoto [66] coupled 3-Iodo-9H-carbazole
with acrylonitrile via the palladium-catalyzed Mizoroki-Heck reaction, then reacted
the carbazole secondary nitrogen with chlorosugar to yield a 3-cyanovinylcarbazole
nucleoside analogue. They denoted the synthesized product CNVK [59, 60, 65, 66,
158,201,202],[h7] and soon took notice of the compound’s extraordinary quantum
efficiency at ≈ 366 nm (Φ366 ≈ 0.251, ǫ366 ≈ 6 ∗ 103M−1cm−1). Upon absorption
of a UVA ≈ 366 nm photon [h8], and in a matter of seconds at a power density of ≈
1.6 W/cm2, CNVK was shown to be capable of mediating [2+2] photocycloaddition
to a pyrimidine base at the +1 position of a Watson-Crick hybridized strand
[59, 60, 65, 66, 158, 201, 202],[h7]. Moreover, the reaction was shown to be
reversible with ≈ 312 nm UVB irradiation [59, 60, 65, 66, 158, 201, 202],[h7],[h8].
Unfortunately, Fujimoto et. al. does not appear to report explicit power densities
for photosplitting reaction [59,60, 65,66, 158,201,202],[h7].

The synthesis and characterization of CNVK appears to have been a watershed
moment in Fujimoto’s effort to significantly increase the photocrosslinking
quantum yield of previous 5-R-vinyluracil (RV U) (e.g. “R” = “CN”, “COOH”,
etc.) [62–64,121,126,131–135,199,200],[h9] and p-carbamoylvinyl phenol nucleoside
(p-CVp) [7, 197, 198] chemistries (we note the two distinct variants of p-CVp)
[197, 198],[h10]. To the best of our knowledge, all tested RVU and p-CVp
derivatives required tens of minutes to hours of irradiation time at ≈ 366 nm
for efficient photocrosslinking, though unfortunately, due to the lack of
reported power densities, we are unable to make a comparison between the
photocrosslinking or UVB photosplitting quantum efficiencies of CNVK and
7-carboxyvinyl-7-deaza-2′-deoxyadenosine (VZA) [151] (a purine variant of RVU).
Also, we note that the reversibility of the p-CVp crosslink appears to be either
uncharacterized or unpublished [7, 197,198].

In conclusion, can understand Yoshimura & Fujimoto’s CNVK not just as an
“ultrafast” photocrosslinker [66], but also as the gentlest non-enzymatic nucleic
acid photocrosslinking chemistry known, we therefore recommend that this
chemistry be adapted for use with the photo-DEAN scheme [66, 198–200] scheme
in the place of RVU (where again we have that “R” = “COOH”).

130

6.8 Special remarks (s*,h*,w* references)

Supplementary Note s1 :: In ref. [126], regarding 5-vinyldeoxyuridine
(V U) and 5-carboxyvinyldeoxyuridine (CVU) photosplitting reaction conditions,
there appears to be an error in the reported power output of the referenced
≈ 312 nm transilluminator. Quoting from “Section 3.1” of ref. [126]:
“Irradiation was performed by UV-LED (OMRON, ZUV, 366 nm, 1.6 W/cm2)
or 2 W transilluminator (FUNAKOSHI, TR-312R/J, 312 nm).” However, the
FUNAKOSHI TR-312R/J transilluminator has a power density of 15 W rather
than the stated 2 W [w5]. Provided that the correct 15 W power output for
this transilluminator is explicitly stated in later publications by Fujimoto et. al.,
e.g. in the materials section of ref. [202], we argue that it is more likely that
there was a typographical error for the power output than for the name of the
transilluminator. Finally, while no power density is explicitly reported for this
transilluminator, provided the filter size of (15.2 cm× 35.6 cm) we can estimate a
power density of: 15 W/(15.2 cm× 35.6 cm) ≈ 27.7 mW/cm2.

*

Supplementary Note s2 :: We suggest that it may be possible to
competitively inhibit or attenuate non-specific hydrophobic interaction mediated
carryover of DCN [74, 128, 129, 193–196] encoding photo-DEAN [193–196] probes
during “magtration” by pre-incubating (or co-incubating during magtration) the
employed streptavidin coated magnetic beads in a very high concentration solution
(≈ 1 mM or so) of poly(T), poly(A), etc. DNA oligonucleotides (of some currently
undetermined optimal length). Consider that if the rate of non-specific binding
can be dropped by an order of magnitude, this would increase the sensitivity of
GEP-DEAN [74] and very likely photo-DEAN [193–196] to a sufficient extent to
allow for < 1 zmol sensitivities (≈ 602 molecules, or a ≈ 33.9 attomolar (aM)
concentration of molecules in GEP-DEAN’s [74] ≈ 29.5 µL reaction volume). We
readily admit that, even if the method works, this is a “substance over style”
approach to the problem of attenuating false-positives.

—————————————

[h1] :: According to the mass spectrometry results of Kim et. al. [96], the
mismatch stringency of Taq DNA ligase arises during the nick closure reaction
as opposed to the preliminary 5′-phosphate adenylation step. Thus, as an
aside, this seems like an interesting way to inexpensively prepare 5′-adenylated
substrates for use with adenylation-incompetent ligases (e.g. truncated variants
of T4 RNA Ligase 2), ribozymes, or deoxyribozymes. However, we’re certain a
proper literature review will show that this hypothetical 5′-adenylation strategy
has already been exploited.

*

[h2] :: In short, one will generally achieve superior thermodynamic discrimination
of SNPs and/or mismatches with short oligonucleotides. The simple explanation is
that, just as lima→∞(a

a+n
) = 1, the following ratios converge to ≈ 1 as the length,

L, of an oligonucleotide increases:

131

r∆H =

(

∆H(hybridization | mismatch)

∆H(hybridization | no mismatch)

)

≈ 1(as L→∞)

r∆S =

(

∆S(hybridization | mismatch)

∆S(hybridization | no mismatch)

)

≈ 1(as L→∞)

And, therefore, the ratio of the free energies of the mismatched vs. perfectly paired
duplex should converge to ≈ 1 in the same manner:

r∆G =

(

∆G(hybridization | mismatch)

∆G(hybridization | no mismatch)

)

=

(

∆H(hybridization | mismatch)− T ∗∆S(hybridization | mismatch)

∆H(hybridization | no mismatch)− T ∗∆S(hybridization | no mismatch)

)

≈ 1(as L→∞)

With regard to looking at duplex melting temperature Tm (◦C) depression to detect
a mismatch, consider that the melting temperature of a perfectly Watson-Crick
duplex is approximately [26, 58]:

...assuming non-self-complementarity and letting CT be the sum of the
concentrations of the two hybridizing oligonucleotides:

TM (◦C) ≈





∆H

∆S ∗R ∗ ln
(

CT
4

)



− 273.15◦C

...assuming self-complementary where CT is the oligonucleotide
concentration:

TM (◦C, self − complementary) ≈
(

∆H

∆S ∗R ∗ ln(CT)

)

− 273.15◦C

Where:

R = Universal Gas Constant ≈ kB ∗NA ≈ 1.9872041 ∗ 10−3

(

kcal

mol ∗K

)

Here ∆S needs to be adjusted according to the ionic strength of the buffer e.g. via
SantaLucia’s empirical monovalent salt correction [152]:

∆S

(

salt correction, units :
kcal

K ∗mol

)

≈ ∆S

(

1M NaCl;units :
kcal

K ∗mol

)

+

(0.368 ∗ 10−3) ∗
(

1

2

)

(# duplex phosphates) ∗ ln(Na+)

(Note that unmodified oligonucleotides synthesized via phosphoramidite
solid-phase methods will have 5′-hydroxyl termini.)

132

Considering that Tm(◦C) ∝ DeltaH
DeltaS

(assuming fixed concentrations of
oligonucleotide hybridization partners) and understanding a duplex mismatch as a
constant penalty to the overall {∆H,∆S} - on order two stacking interactions if the
mismatch is internal (i.e. ≈ 2 ∗∆Gstack) - it should therefore be the case that the
melting temperatures of a perfectly paired duplex, and a duplex with a mismatch,
should converge as L increases. This will, in turn, make it increasingly difficult
to detect the mismatch looking at the fraction of hybridized versus dissociated
oligonucleotides at any temperature.

Let’s make this argument a bit more rigorous by statistically sampling (with
replacement) from the set of individual melting temperatures for oligonucleotides
of length L = 7 to 100 to observe the convergence in Tm for oligonucleotides of
length L and L+1 (or L and L+2 to be truer to the penalty for an internal duplex
mismatch). Regarding the set up for our calculation, each base is chosen uniformly
over the alphabet Σ = {A, T,G,C}, we make the simplifying assumptions of
non-self-complementary and lack of secondary structure, we set the concentration
of each oligonucleotide and its Watson-Crick complement to 0.1 µM , and we
assume a solution with an [Na+] = 0.1 M concentration of monovalent ions (note
that under these conditions L ≥ 7 =⇒ Tm > 0). Regarding the number of
sampling with replacement events for each length L, we set this value to N = 106

in order to insure reasonable convergence to true mean and median Tm values,
balancing this desire against the fact that this calculation already takes on order
≈ 1 day to perform. Finally, for each calculated (median) melting temperature,
Tm, we compute the value for the mean and median base stack free energy, ∆Gstack,
based on SantaLucia’s nearest-neighbor stacking parameters [152].

The result of the calculations for mean (solid triangle) and median (hollow circle)
oligonucleotide Tm values as a function of oligonucleotide length (measured in
nucleotides) is presented below:

Out[430]=

20 40 60 80 100
Length (

-2.0

-1.5

-1.0

-0.5

Gstack (
kcal

mol
)

We find a very reasonable fit to the mean and median Tm values with the
expression:

133

Tm(0.1 µM oligo, 0.1µM complement, 0.1 M NaCl) ≈
(

∆H ∗ L+ c1
∆S ∗ L+ c2

)

(◦C)

≈
(

185.481 ∗ L− 1227.88

2.13297 ∗ L+ 0.791078

)

(◦C)

We can also use the median Tm result to calculate mean (solid triangle) and median
(hollow circle) average ∆Gstack (units: kcal/mol) energies at an oligonucleotides
melting temperature as a function of oligo length (taking the mean or median over
SantaLucia’s ∆H and ∆S terms for each base stack [152]):

Out[442]=

20 40 60 80 100
Length (

20

40

60

80

Gstack (
kcal

mol
)

While a discussion of the full implications of the above graph is beyond the scope
of this note, consider that as the length and thus the Tm of an oligonucleotide
rises, the mean and median free energy of each individual stacking interaction
will correspondingly decrease. Thus, holding constant the amount of time one is
willing to spend to conduct an assay, methods of mismatch discrimination that
look specifically at dissociation kinetics, i.e. an oligonucleotide’s koff parameter,
will necessarily become less sensitive as a function of oligonucleotide length.

*

[h3] :: Considering that the 5-carboxyvinyl or 5-vinyl groups on VU and CVU [62–
64, 121, 126, 131–135, 199, 200],[h9] are not much bulkier than a thymine 5-methyl
group, we speculate that it may also be possible to have photo-DEAN probes
expressed endogenously in live cells. Perhaps this could be done using vectors
encoding Benner et. al.’s [168] enzymatically incorporable 6-amino-2-ketopurine
(isoG) :: 2-amino-4-ketopyrimidine (isoC) bases, or Kimoto et. al.’s [97] more
recent modified nucleotides, where in either case these modified nucleotides are
used to direct the insertion of a CVU-like free NTP or dNTP? We are also intrigued
by the possibility of biosynthesis of CVU-like derivatives. Consider, for example,
that the 7-cyano-7-deazaguanine (preQ0 base) precursor to the hypermodified
RNA queuosine nucleoside [102] is structurally similar to a guanosine variant

134

of 7-carboxyvinyl-7-deaza-2′-deoxyadenosine (VZA) [151], with a alkyne group
replacing the usual alkene vinyl derivative on Fujimoto et. al.’s [2 + 2]
photocycloaddition nucleotide derivatives [7, 59, 60, 62–66, 121, 126, 132–135, 151,
158,197–202],[h7],[h9].

*

[h4] :: A mimic of the cis-syn thymine dimer is commercially available as a
phosphoramidite from Glen Research [w6].

*

[h5] :: In general, pyrimidine nucleobases tend to be more reactive than their
purine counterparts, likely due to the presence or greater accessibility of Conical
Intersections (CI)’s allowing for high InterSystem Crossing (ISC) triplet yields
[70]. One can perhaps argue that slow electronic excited state decay processes,
e.g. phosphorescence, can allow additional configuration search time for favorable
transition state entry for e.g. [2 + 2] photocycloaddition.

*

[h6] :: An important question to consider is whether there exists an optimal
wavelength for CNVk crosslinking “red” of ≈ 366 nm that minimizes cyclobutane
pyrimidine dimer (CPD) formation, the formation of oxidized bases, and other
undesired photoproduct formation at the expense of requiring longer irradiation
times. We suspect this will all depend on the existence of strong non-linearities in
unmodified pyrimidine and/or purine absorbance at these longer wavelengths, and
that it will likely not prove fruitful to consider wavelengths significantly red-shifted
beyond ≈ 405 nm.

*

[h7] :: This is the SMILES string for 3-cyanovinylcarbazole-1′-β-deoxyriboside, i.e.
Yoshimura and Fujimoto product “4” (see “Figure 1” in their paper) [66]:

N#C\C=C\ c2cc3c1ccccc1n (c3cc2)C4CC(O)C(CO)O4

Note that product “4” is the precursor the final phosphoramidite product
“5” of the reaction reported by Yoshimura and Fujimoto [66], which
is generated via the coupling of (4, 4′-Dimethoxytrityl) and (2-cyanoethyl
N,N,N’,N’-tetraisopropylphosphorodiamidite) protection groups to the 5′ and 3′

hydroxyls of compound “4”.

*

[h8] :: We remark here that “UVA” is meant to refer to ultraviolet wavelengths
in the range of ≈ 400− 320 nm, “UVB” is meant to refer to the wavelength range
of ≈ 320 − 280 nm, and “UVC” is meant to refer to the wavelength range of ≈
280−100 nm. Though there appear to be discrepancies in the literature regarding

135

the partitioning of the UV spectrum, we note that these differing partitionings
tend to agree within ≈ 5− 10 nm.

*

[h9] :: In ref. [201], regarding 5-vinyldeoxyuridine (VU) and
5-carboxyvinyldeoxyuridine (CVU) photosplitting reaction conditions, there
appears to be an error in the reported power output of the referenced ≈ 312 nm
transilluminator. Quoting from “Section 3.1” of ref. [201]: “Irradiation
was performed by UV-LED (OMRON, ZUV, 366 nm, 1.6 W/cm2) or
2 W transilluminator (FUNAKOSHI, TR-312R/J, 312 nm).” However, the
FUNAKOSHI TR-312R/J transilluminator has a power density of ≈ 15 W rather
than the stated ≈ 2 W [w5]. Provided that the correct ≈ 15 W power output
for this transilluminator is explicitly stated in later publications by Fujimoto
et. al., e.g. in the materials section of ref. [59], we argue that it is more likely
there was a typographical error for the power output than for the name of the
transilluminator. Finally, while no power density is explicitly reported for this
transilluminator, provided the filter size of ≈ (15.2 cm× 35.6 cm) we can estimate
a power density of: 15 W/((15.2 cm× 35.6 cm)) ≈ 27.7 mW/cm2.

*

[h10] :: In ref. [197], p-CVP has the SMILES descriptor:

NC(=O)/C=C/ c1cc (ccc1)OC2CC(O)C(CO)O2

Whereas in ref. [7, 198], and p-CVP has the SMILES descriptor:

NC(=O)/C=C/ c2ccc (OC1CC(O)C(CO)O1) cc2

Generally, speaking the vinyl group is attached to the meta position of the benzene
group in ref. [197] and the para position of the benzene group in ref. [7, 198].
Interestingly, the latter para-conjugated system appears to have a much higher
photocrosslinking quantum efficiency. Though we do not have power densities to
work with, forcing us to assume equivalent conditions to make any statements, we
can guess that roughly equivalent power densities were employed in both studies,
and then note that a≈ 5 h irradiation period of p-CVP (meta) at≈ 366 nm resulted
in a ≈ 71% photocrosslinking yield [197], whereas only a ≈ 30 min irradiation
period of p-CVP (para) resulted in a much higher ≈ 96% photocrosslinking
yield [198]. While meta and para-substituted benzene rings will certainly exhibit
differences in their electronic structure, we do not have a theoretical explanation for
the higher quantum efficiency of p-CVP (para) vs. p-CVP (meta). The difference in
crosslinking efficiency for these two p-CVP variants could also certainly be based on
differing stacking kinetics with the target C5=C6 pyrimidine double bond.

—————————————

Website Links

[w1] :: https://www.neb.com/products/m0262-lambda-exonuclease

[w2] :: https://www.neb.com/products/m0363-t5-exonuclease

136

[w3] :: https://www.neb.com/products/m0263-t7-exonuclease

[w4] :: http://www.toyobo-global.com/seihin/xr/lifescience/products/
pcr 001.html

[w5] :: http://www.funakoshi.co.jp/download/catalog/FUN4916.pdf

[w6] :: http://www.glenresearch.com/ProductFiles/11-1330.html

137

Chapter 7

Supplementary Information for Computational
Methods

7.1 Brief overview of Mathematica, Combinatorica, SAGE, and
the ’igraph’ R package

138

Mathematica [190]:

Mathematica is a (proprietary / closed source) commercial Computer Algebra System
(CAS) and one of the primary software products of Wolfram Research, a private company
founded by Stephen Wolfram in 1987 and located in Champaign, Illinois. It is written
in C++ as well as its own language, which was recently denoted the Wolfram Language.
The original version of Mathematica (v1) was originally released in June 1988, the
(v9) version was initially released in November 2012, and the newest version (v10) of
the software was released in July 2014. Between version releases, Wolfram Research
typically rolls out various updates (e.g. v5.2 or v10.3) for the purpose of adding
features or fixing bugs.

For additional details, we refer the reader to ---

Wolfram Research’s page for Mathematica:
<http://www.wolfram.com/mathematica/>

Wolfram Research’s page on Mathematica’s revision history:
<http://www.wolfram.com/mathematica/quick-revision-history.html>

Mathematica’s Wikipedia page:
<https://en.wikipedia.org/wiki/Mathematica>

Combinatorica [143,190]:

Combinatorica is an open source (however, written in the proprietary Mathematica

language) add-on for Mathematica that introduced a wide range of functions ()
relevant to combinatorics and graph theory. The package was originally developed by
Steven S. Skiena, currently a professor of computer science at SUNY Stony Brook:
<http://www3.cs.stonybrook.edu/~skiena/>, and after revisions by Sriram V. Pemmaraju,
currently a professor of computer science at the University of Iowa:
<http://homepage.cs.uiowa.edu/~sriram/>, was eventually bundled with Mathematica 4.2
(released in June 2002).

For additional details, we refer the reader to ---

Steven S. Skiena’s page for Combinatorica:
<http://www3.cs.stonybrook.edu/~skiena/combinatorica/>

The source code for the latest version of Combinatorica (v2.0.0):
<http://homepage.cs.uiowa.edu/~sriram/Combinatorica/NewCombinatorica.m>

The textbook guide to Combinatorica (written by Pemmaraju and Skiena):
[Pemmaraju, S. V., Skiena, S. S. Computational discrete mathematics: combinatorics and
graph theory with Mathematica. Cambridge University Press: New York, NY (2003).] [143]

System for Algebra and Geometry Experimentation (SAGE) [164]:

System for Algebra and Geometry Experimentation (SAGE), also known as Sage or
SageMath, is an open source software package licensed under the GPL (GNU Public
License), and developed by collaboration with a stated mission of (quoting from:
<http://www.sagemath.org/>): “Creating a viable free open source alternative to Magma,
Maple, Mathematica and Matlab.” SAGE was initially conceived of by William A. Stein,
currently a professor of mathematics at the University of Washington, who also served
as its lead developer, and was first released on February 24th, 2005. We note that
there is now a platform for executing SAGE scripts online (in the “cloud” so to
speak): <https://cloud.sagemath.com/>.

139

For additional details, we refer the reader to ---

The homepage for SAGE:
<http://www.sagemath.org/>

A tutorial for programming in SAGE’s “Python-like” language:
<http://doc.sagemath.org/html/en/thematic_tutorials/tutorial-programming-python.html>

The Wikipedia page for SAGE:
<https://en.wikipedia.org/wiki/SageMath>

Finally, if the reader is previously familiar with Mathematica and/or Combinatorica,
he or she may find the following links helpful:

<https://wiki.sagemath.org/sage_mathematica>
<https://wiki.sagemath.org/CombinatoricaCompare>

The ‘igraph’ package (for C, R, and Python) [45]:

The ‘igraph’ package is an open source software package written in C and licensed
under the GPL (GNU Public License) with a primary focus on the implementation of
algorithms for network analysis on large graph objects. We note that ‘igraph’
packages exist for the R and Python languages, and for this work, we make use of the
‘igraph’ R package. The ‘igraph’ package was developed by Gábor Csárdi and Támas
Nepusz, was initially released in 2006, and its current version (which we make use of)
is v1.0.0 (released on June 29th, 2015).

For additional details, we refer the reader to ---

Gábor Csárdi and Tamas Nepusz’s published manuscript introducing and detailing the
‘igraph’ package:
[Csárdi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems (manuscript no. 1695), pp. 1 - 9 (2006)] [45]

The homepage for the ‘igraph’ R package:
<http://igraph.org/r/>

The GitHub page for the ‘igraph’ package:
<https://github.com/igraph/igraph>

Documentation for the latest release (v1.0.0) of the ‘igraph’ package for the R
language:
<http://igraph.org/r/doc/igraph.pdf>

The Wikipedia page for the ‘igraph’ package:
<https://en.wikipedia.org/wiki/Igraph>

140

7.2 Graph plotting in Mathematica 10.4.1 and SAGE 7.2

141

How to plot graphs in Mathematica 10.4.1
(see:
<https://reference.wolfram.com/language/ref/Graph.html> for additional documentation
and options.) ::

Procedure:
graph6EncodingString="SPECIFY_GRAPH6_STRING";

mmaCoordinateList=SPECIFY_MATHEMATICAv9_FORMAT_VERTEX_COORDINATES;

mmaTargetGraph=ImportString[graph6EncodingString,"graph6"];

mmaTargetGraphPlot=SetProperty[mmaTargetGraph,{VertexCoordinates-
>mmaCoordinateList,VertexSize->SPECIFY_VERTEX_SIZE,VertexStyle-
>SPECIFY_VERTEX_COLOR,ImageSize->{SPECIFY_PLOT_DIM_X,SPECIFY_PLOT_DIM_Y}}];

mmaTargetGraphPlot

--

Note: One may specify a graph directly via an edge list in the following manner:
‘mmaTargetGraph=Graph[SPECIFY_GRAPH_EDGE_LIST]’.

How to plot graphs in SAGE 7.2
(see: <http://doc.sagemath.org/html/en/reference/plotting/sage/graphs/graph_plot.html>
for additional documentation and options.) ::

Procedure:
graph6EncodingString='SPECIFY_GRAPH6_STRING'

sageCoordinateList=SPECIFY_SAGE_FORMAT_VERTEX_COORDINATES

sageTargetGraph=Graph(graph6EncodingString)

sageTargetGraphPlot=sageTargetGraph.graphplot(pos=sageCoordinateList,vertex_shape="SPE
CIFY_VERTEX_SHAPE",vertex_size=SPECIFY_VERTEX_SIZE,vertex_colors='SPECIFY_VERTEX_COLOR
')

sageTargetGraphPlot.show(figsize=[SPECIFY_PLOT_DIM_X,SPECIFY_PLOT_DIM_Y])

--

Note 1: One may specify a graph directly via an edge list in the following manner:
‘sageTargetGraph=Graph(SPECIFY_GRAPH_EDGE_LIST)’.

Note 2: Possible values for ‘vertex_shape’ appear to correspond to Matplotlib markers
(for a list of these markers, see the Matplotlib API documentation:
<http://matplotlib.org/api/markers_api.html>).

142

7.3 Export and import of graph6 (.g6) strings in Mathematica
10.4.1 and SAGE 7.2

143

(Graph6.MMA) To obtain graph6 (.g6) string encoding a Mathematica 10.4.1 graph
object, we can make use of Mathematica’s ‘ExportString’ and/or ‘Export’. To transform
a graph6 (.g6) string into a Mathematica 10.4.1 graph object, we can use Mathematica’s
‘ImportString[]’ function.

Usage (exporting a graph6 (.g6) string): Letting ‘mmaTargetGraph’ be a Mathematica
10.4.1 object encoding a simple undirected and connected graph, we can generate a
graph6 (.g6) string encoding ‘mmaTargetGraph’ with the command:
‘ExportString[mmaTargetGraph,”graph6”]’. We can also export the graph6 (.g6) string
to a file as follows: ‘Export["PATH\\targetFile.g6", mmaTargetGraph]’.

Usage (importing a graph6 (.g6) string): Letting ‘s’ be a graph6 (.g6) string, we can
create a Mathematica 10.4.1 graph object from this string via the command:
‘mmaTargetGraph=ImportString[s,”graph6”]’.

(Graph6.SAGE.Out) To obtain graph6 (.g6) string encoding a SAGE 7.2 graph object we
can use SAGE’s ‘graph6_string()’ function.

Usage: Letting ‘sageTargetGraph’ be a SAGE 7.2 object encoding a simple undirected and
connected graph, we can generate a graph6 (.g6) string encoding this graph with the
command: ‘sageTargetGraph.graph6_string()’. We can also export the graph6 (.g6)
string to a file with the following three lines: f = file(' ~/targetFile.txt','w') //
f.write(str(sageTargetGraph.graph6_string()+'\n'))// f.close(). To transform a graph6
(.g6) string into a SAGE 7.2 graph object, we can write the SAGE 7.2 command:
‘sageTargetGraph=Graph(s)’.

144

7.4 Mathematica 10.4.1 scripts to convert Mathematica 10.4.1
graph object edge lists to Combinatorica, SAGE 7.2, and
’igraph’ R package graph object edge lists

145

(Mathematica 10.4.1 à Combinatorica) The below Mathematica 10.4.1 script will
transform a Mathematica 10.4.1 graph object edge list into a Combinatorica graph
object edge list:

Undirected Graphs ::

Input: Some MMA 10.4.1 parsible edge list (with integer labeled vertices) for an
undirected graph, denoted here as (e.g.) ‘mmaEdgeList = {1<->2,1<->3, … }’.

(Note :: See the posting by ‘Szabolcs Horvat’ at this link ---
<http://community.wolfram.com/groups/-/m/t/880870?p_p_auth=S7lctraj> --- regarding a
solution (which we make use of) for employing ‘Block[]’ to allow usage of
Combinatorica functions without adding Combinatorica to ‘$ContextPath’.)

Script (Method 1):
Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
combinatoricaTargetGraph=Combinatorica`FromUnorderedPairs[mmaEdgeList]
Combinatorica`Edges[combinatoricaTargetGraph]

Script (Method 2):
Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
targetGraphAM=Normal[AdjacencyMatrix[Graph[mmaEdgeList]]];
combinatoricaTargetGraph=Combinatorica`FromAdjacencyMatrix[targetGraphAM];
combinatoricaEdgeList=Combinatorica`Edges[combinatoricaTargetGraph]

Output (from either method): (1) a Mathematica 10.4.1 object
‘combinatoricaTargetGraph’ encoding a Combinatorica undirected graph object; (2) a
Mathematica 10.4.1 object ‘combinatoricaEdgeList’ encoding the edge list for the
aforementioned Combinatorica undirected graph object.

-

Digraphs ::

Input: Some MMA 10.4.1 parsible edge list (with integer labeled vertices) for a
digraph, denoted here as (e.g.) ‘mmaEdgeList = {1\[DirectedEdge]2,1\[DirectedEdge]3,
… }’.

(Note :: See the posting by ‘Szabolcs Horvat’ at this link ---
<http://community.wolfram.com/groups/-/m/t/880870?p_p_auth=S7lctraj> --- regarding a
solution (which we make use of) for employing ‘Block[]’ to allow usage of
Combinatorica functions without adding Combinatorica to ‘$ContextPath’.)

Script:
Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
combinatoricaTargetGraph=Combinatorica`FromOrderedPairs[mmaEdgeList]
Combinatorica`Edges[combinatoricaTargetGraph]

Output: (1) a Mathematica 10.4.1 object ‘combinatoricaTargetGraph’ encoding a
Combinatorica digraph object; (2) a Mathematica 10.4.1 object ‘combinatoricaEdgeList’
encoding the edge list for the aforementioned Combinatorica digraph object.

146

(Mathematica 10.4.1 à SAGE 7.2) The below Mathematica 10.4.1 script will transform a
Mathematica 10.4.1 graph object edge list into a SAGE 7.2 graph object edge list:

Undirected Graphs ::

Input: Some MMA 10.4.1 parsible edge list (with integer labeled vertices) for an
undirected graph, denoted here as (e.g.) ‘mmaEdgeList = {1<->2,1<->3, … }’.

Script:
sageEdgeListString=StringReplace[ToString[Table[StringJoin["(",ToString[mmaEdgeList[[i
,1]]-1],",",ToString[mmaEdgeList[[i,2]]-1],")"],{i,1,Length[mmaEdgeList]}]],{" "-
>"","{"->"[","}"->"]"}]

Output: A string ‘sageEdgeListString’ encoding a SAGE 7.2 format edge list for some
undirected graph object (e.g. "{(1,2),(1,3), … }"). Note that we needed to account

for the 1 à 0 vertex index origin change moving from MMA 10.4.1 to SAGE 7.2.

-

Digraphs ::

Input: Some MMA 10.4.1 parsible edge list (with integer labeled vertices) for a
digraph, denoted here as (e.g.) ‘mmaEdgeList = {1\[DirectedEdge]2,1\[DirectedEdge]3,
… }’.

Script:
mmaEdgeList={1\[DirectedEdge]2,2\[DirectedEdge]3,3\[DirectedEdge]4,4\[DirectedEdge]1};
mmaTargetGraph=Graph[mmaEdgeList];
sageEdgeListString=StringReplace[StringJoin["sageDirectedTargetGraph=DiGraph({",Table[
StringJoin[ToString[VertexList[mmaTargetGraph][[i]]-
1],":[",StringReplace[ToString[Map[If[MemberQ[EdgeList[mmaTargetGraph],VertexList[mmaT
argetGraph][[i]]\[DirectedEdge]#]==True,#-
1,Nothing]&,AdjacencyList[mmaTargetGraph,VertexList[mmaTargetGraph][[i]]]]],{" "-
>"","{"->"","}"->""}],"],"],{i,1,Length[VertexList[mmaTargetGraph]]}],"})"],{",}"-
>"}"}]

Output: A string ‘sageEdgeListString’ encoding a SAGE 7.2 format edge list for some
digraph object (e.g. "{(1,2),(1,3), … }"). Note that we needed to account for the 1 à
0 vertex index origin change moving from MMA 10.4.1 to SAGE 7.2. Please note also
that we created a Mathematica 10.4.1 graph object ‘mmaTargetGraph’ in the above
script.

(SAGE 7.2 à Mathematica 10.4.1) The below Mathematica 10.4.1 script will transform a
SAGE 7.2 graph object edge list into a Mathematica 10.4.1 graph object edge list:

Undirected Graphs ::

Input: A string representing some SAGE 7.2 parsible edge list (with integer labeled
vertices) for an undirected graph (e.g. we might have ‘sageEdgeListString =
"[(0,1),(0,2), …]"’).

Script:
mmaEdgeList=Flatten[Map[{#[[1]]+1\[UndirectedEdge]#[[2]]+1}&,ToExpression[StringReplac
e[sageEdgeListString,{"("->"{",")"->"}"}]]],1]

Output: A MMA 10.4.1 parsible edge list for some undirected graph object (e.g. ‘{1<-
>2,1<->23, … }’). Note that we needed to account for the 0 à 1 vertex index origin
change moving from SAGE 7.2 to MMA 10.4.1.

147

-

Digraphs ::

Input: A string representing some SAGE 7.2 parsible edge list (with integer labeled
vertices) for a digraph (e.g. we might have ‘sageEdgeListString =
"{0:[1],1:[2],2:[3],3:[0]}"’).

Script:
mmaEdgeList=Flatten[Map[Table[#[[1]]\[DirectedEdge]#[[2,i]],{i,1,Length[#[[2]]]}]&,Par
tition[ToExpression[StringReplace[sageEdgeListString,{":"->",","["->"{","]"-
>"}"}]],2]]]

Output: A MMA 10.4.1 parsible edge list for some digraph object (e.g.
‘{1\[DirectedEdge]2,1\[DirectedEdge]3, … }’). Note that we needed to account for the

0 à 1 vertex index origin change moving from SAGE 7.2 to MMA 10.4.1.

(Mathematica 10.4.1 <or> SAGE 7.2 à ‘igraph’ R package) The below Mathematica 10.4.1
script will transform a string representation of either a SAGE 7.2 or Mathematica
10.4.1 graph object edge list into an ‘igraph’ R-package graph object:

Undirected Graphs ::

Input: There are two inputs: (Input 1) A string representing some SAGE 7.2 or
Mathematica 10.4.1 parsible edge list (with integer labeled vertices) for an
undirected graph (e.g. we might have a string in the SAGE 7.2 format like
‘[(0,1),(0,2), …]’, or a string in the Mathematica 10.4.1 format like
‘{1\[UndirectedEdge]2,1\[UndirectedEdge]3, … }’); the script will automatically detect
and correct 0/1-indexing as necessary. (Input 2) An integer for the variable
‘maximumNumberOfEdgesPerPartition’, which specifies the maximum number of edges per
line in the R script that will be output to specify an ‘igraph’ graph object. This is
important for users of R editors like RStudio (see:
<https://en.wikipedia.org/wiki/RStudio>), where we observed that there appears to be a
maximum number of characters per line that can be recognized for read-in. In our
hands, for graphs with at most 3-character names, a value of
‘maximumNumberOfEdgesPerPartition = 100’ creates an RStudio parsible output script (we
specify ‘100’ as an example value for this input).

Script:
(* SPECIFY INPUT VALUES HERE for 'mmaOrSageEdgeListString' and
'maximumNumberOfEdgesPerPartition'. *)
mmaOrSageEdgeListString="";
maximumNumberOfEdgesPerPartition=100;
(* SCRIPT START *)
mmaOrSageFlattenedEdgeList=ToExpression[StringReplace[mmaOrSageEdgeListString,{"["-
>"{","]"->"}","("->"",")"->"","<->"->",","\[UndirectedEdge]"->","}]];
If[Min[mmaOrSageFlattenedEdgeList]==0,
mmaOrSageFlattenedEdgeList =Map[#+1&, mmaOrSageFlattenedEdgeList];
];

Print["igraphTargetGraph <- make_empty_graph(directed=FALSE) %>%"]
Print[StringJoin["add_vertices(",ToString[Length[DeleteDuplicates[mmaOrSageFlattenedEd
geList]]],") %>%"]]

igraphPreProcessedEdgeList=Flatten[Sort[Partition[mmaOrSageFlattenedEdgeList,2]]];
edgeListPartitions=Map[Flatten[#]&,Partition[Partition[igraphPreProcessedEdgeList,2],m
aximumNumberOfEdgesPerPartition,maximumNumberOfEdgesPerPartition,{1,1},{}]];
igraphProcessedEdgeListStrings={};

For[k=1,k<=Length[edgeListPartitions],k++,

148

igraphProcessedEdgeListStrings=Append[igraphProcessedEdgeListStrings,{"add_edges(c("}]
;
igraphProcessedEdgeListStrings[[k]]=StringJoin[igraphProcessedEdgeListStrings[[k]],Tab
le[{ToString[edgeListPartitions[[k,i]]],",",ToString[edgeListPartitions[[k,i+1]]],",
"},{i,1,Length[edgeListPartitions[[k]]],2}]];

igraphProcessedEdgeListStrings[[k]]=StringDrop[igraphProcessedEdgeListStrings[[k]],-
2];
If[k!=Length[edgeListPartitions],
igraphProcessedEdgeListStrings[[k]]=StringJoin[igraphProcessedEdgeListStrings[[k]],"))
 %>%"];
,
igraphProcessedEdgeListStrings[[k]]=StringJoin[igraphProcessedEdgeListStrings[[k]],"))
"];
];
Print[igraphProcessedEdgeListStrings[[k]]];
];
(* SCRIPT END; Copy-paste and run output as an R script. *)

Output: The output here is a script that, when run in R with the ‘igraph’ package
installed (via the command: ‘install.packages("igraph")’) and loaded (via the command:
‘library(igraph)’) will generate an ‘igraph’ graph object ‘igraphTargetGraph’
corresponding to the input edge list. As mentioned in the ‘Input’ section, the
maximum number of edges specified per line in the output script will be bounded by the
integer input value ‘maximumNumberOfEdgesPerPartition’ (‘100’ is a reasonable value
for this parameter).

As an example, we can output an ‘igraph’ R-package script to generate a 3-cube,
allowing for only four edges per line to be specified in the R script, as follows:

mmaOrSageEdgeListString="{1\[UndirectedEdge]2,1\[UndirectedEdge]3,1\[UndirectedEdge]4,
2\[UndirectedEdge]5,2\[UndirectedEdge]6,3\[UndirectedEdge]5,3\[UndirectedEdge]8,4\[Und
irectedEdge]6,4\[UndirectedEdge]8,5\[UndirectedEdge]7,6\[UndirectedEdge]7,7\[Undirecte
dEdge]8}";
maximumNumberOfEdgesPerPartition=4;

Here, the output for the script will be:

igraphTargetGraph <- make_empty_graph(directed=FALSE) %>%
add_vertices(8) %>%
add_edges(c(1,2, 1,3, 1,4, 2,5)) %>%
add_edges(c(2,6, 3,5, 3,8, 4,6)) %>%
add_edges(c(4,8, 5,7, 6,7, 7,8))

We can now execute the command ‘plot(igraphTargetGraph)’ in R to generate an image of
an undirected graph corresponding to the 3-cube.

(Warning: The ‘igraph’ package may fail to parse graph edge lists if the specified

vertex labels, which must be integers, only constitute a subset of some domain

where is the maximum integer value for a vertex label. To ensure that there are not
errors, we recommend “resetting” the vertex labels for the graph by e.g. exporting and
re-importing the graph as a ‘graph6’ string like so:
‘EdgeList[ImportString[ExportString[mmaTargetGraph,"graph6"],"graph6"]]’. We note
that the Mathematica 10.4.1 command ‘FindGraphIsomorphism[]’ can allow one to
determine the mapping between the original vertex labels and the “reset” vertex
labels.)

149

-

Digraphs ::

Input: There are two inputs: (Input 1) A string representing some SAGE 7.2 or
Mathematica 10.4.1 parsible edge list (with integer labeled vertices) for a digraph
(e.g. we might have a string in the SAGE 7.2 format like ‘{0:[1],1:[2],2:[3],3:[0]}’,
or a string in the Mathematica 10.4.1 format like
‘{1\[UndirectedEdge]2,1\[UndirectedEdge]3, … }’); the script will automatically detect
and correct 0/1-indexing as necessary. (Input 2) An integer for the variable
‘maximumNumberOfEdgesPerPartition’, which specifies the maximum number of edges per
line in the R script that will be output to specify an ‘igraph’ graph object. This is
important for users of R editors like RStudio (see:
<https://en.wikipedia.org/wiki/RStudio>), where we observed that there appears to be a
maximum number of characters per line that can be recognized for read-in. In our
hands, for graphs with at most 3-character names, a value of
‘maximumNumberOfEdgesPerPartition = 100’ creates an RStudio parsible output script (we
specify ‘100’ as an example value for this input).

Script:
(* SPECIFY INPUT VALUES HERE for 'mmaOrSageEdgeListString' and
'maximumNumberOfEdgesPerPartition'. *)
mmaOrSageEdgeListString="";
maximumNumberOfEdgesPerPartition=100;
(* SCRIPT START *)
If[StringContainsQ[mmaOrSageEdgeListString,"\[DirectedEdge]"]==False&&StringContainsQ[
mmaOrSageEdgeListString,"->"]==False,
mmaOrSageEdgeListString=ToString[Flatten[Map[Table[#[[1]]\[DirectedEdge]#[[2,i]],{i,1,
Length[#[[2]]]}]&,Partition[ToExpression[StringReplace[mmaOrSageEdgeListString,{":"-
>",","["->"{","]"->"}"}]],2]]]];
];
mmaOrSageFlattenedEdgeList=ToExpression[StringReplace[mmaOrSageEdgeListString,{"["-
>"{","]"->"}","("->"",")"->"","<->"->",","\[DirectedEdge]"->","}]];
If[Min[mmaOrSageFlattenedEdgeList]==0,mmaOrSageFlattenedEdgeList=Map[#+1&,mmaOrSageFla
ttenedEdgeList];];

Print["igraphDirectedTargetGraph <- make_empty_graph(directed=TRUE) %>%"];
Print[StringJoin["add_vertices(",ToString[Length[DeleteDuplicates[mmaOrSageFlattenedEd
geList]]],") %>%"]];

igraphPreProcessedEdgeList=Flatten[Sort[Partition[mmaOrSageFlattenedEdgeList,2]]];
edgeListPartitions=Map[Flatten[#]&,Partition[Partition[igraphPreProcessedEdgeList,2],m
aximumNumberOfEdgesPerPartition,maximumNumberOfEdgesPerPartition,{1,1},{}]];
igraphProcessedEdgeListStrings={};

For[k=1,k<=Length[edgeListPartitions],k++,igraphProcessedEdgeListStrings=Append[igraph
ProcessedEdgeListStrings,{"add_edges(c("}];
igraphProcessedEdgeListStrings[[k]]=StringJoin[igraphProcessedEdgeListStrings[[k]],Tab
le[{ToString[edgeListPartitions[[k,i]]],",",ToString[edgeListPartitions[[k,i+1]]],",
"},{i,1,Length[edgeListPartitions[[k]]],2}]];
igraphProcessedEdgeListStrings[[k]]=StringDrop[igraphProcessedEdgeListStrings[[k]],-
2];
If[k!=Length[edgeListPartitions],igraphProcessedEdgeListStrings[[k]]=StringJoin[igraph
ProcessedEdgeListStrings[[k]],")) %>%"];,igraphProcessedEdgeListStrings[[k]]=StringJoi
n[igraphProcessedEdgeListStrings[[k]],"))"];
];
Print[igraphProcessedEdgeListStrings[[k]]
];
];
(* SCRIPT END; Copy-paste and run output as an R script. *)

150

Output: The output here is a script that, when run in R with the ‘igraph’ package
installed (via the command: ‘install.packages("igraph")’) and loaded (via the command:
‘library(igraph)’) will generate an ‘igraph’ digraph object ‘igraphTargetGraph’
corresponding to the input edge list. As mentioned in the ‘Input’ section, the
maximum number of edges specified per line in the output script will be bounded by the
integer input value ‘maximumNumberOfEdgesPerPartition’ (‘100’ is a reasonable value
for this parameter).

As an example, we can output an ‘igraph’ R-package script to generate a digraph
corresponding to the 3-cube with oriented edges (specifically where edges are oriented

to point from vertex whenever the integer label corresponding to vertex is

greater than the integer label corresponding to vertex), allowing for only four
edges per line to be specified in the R script, as follows:

mmaOrSageEdgeListString="{1\[DirectedEdge]2,1\[DirectedEdge]3,1\[DirectedEdge]4,2\[Dir
ectedEdge]5,2\[DirectedEdge]6,3\[DirectedEdge]5,3\[DirectedEdge]8,4\[DirectedEdge]6,4\
[DirectedEdge]8,5\[DirectedEdge]7,6\[DirectedEdge]7,7\[DirectedEdge]8}";
maximumNumberOfEdgesPerPartition=4;

Here, the output for the script will be:

igraphDirectedTargetGraph <- make_empty_graph(directed=TRUE) %>%
add_vertices(8) %>%
add_edges(c(1,2, 1,3, 1,4, 2,5)) %>%
add_edges(c(2,6, 3,5, 3,8, 4,6)) %>%
add_edges(c(4,8, 5,7, 6,7, 7,8))

We can now execute the command ‘plot(igraphDirectedTargetGraph)’ in R to generate an
image of an digraph corresponding to the oriented 3-cube.

(Warning: The ‘igraph’ package may fail to parse graph edge lists if the specified

vertex labels, which must be integers, only constitute a subset of some domain

where is the maximum integer value for a vertex label. To ensure that there are not
errors, we recommend “resetting” the vertex labels for the graph by e.g. exporting and
re-importing the graph as a ‘graph6’ string like so:
‘EdgeList[ImportString[ExportString[mmaTargetGraph,"graph6"],"graph6"]]’. We note
that the Mathematica 10.4.1 command ‘FindGraphIsomorphism[]’ can allow one to
determine the mapping between the original vertex labels and the “reset” vertex
labels.)

151

7.5 Specifying and interconverting Mathematica 10.4.1 and
SAGE 7.2 graph object vertex coordinate lists

152

The below procedure will transform a Mathematica 10.4.1 vertex coordinate list into a
SAGE 7.2 vertex coordinate list:

Input: Some MMA 10.4.1 parsible coordinate list for a graph (e.g. we might have
‘mmaCoordinateList = {1 -> {x1, y1}, 2 -> {x2, y2}, … }’).

Procedure:
sageCoordinateListString=StringReplace[ToString[Table[StringJoin[ToString[mmaCoordinat
eList[[i,1]]-
1],":[",ToString[N[mmaCoordinateList[[i,2,1]]]],",",ToString[N[mmaCoordinateList[[i,2,
2]]]],"]"],{i,1,Length[mmaCoordinateList]}]]," "->""]

Output: A string ‘sageCoordinateListString’ encoding a SAGE 7.2 format coordinate list
for some graph object (e.g. ‘{0:[x1, y1], 1:[x2, y2], … }’). Note that we needed to

account for the 1 à 0 index origin change moving from MMA 10.4.1 to SAGE 7.2.

The below procedure will transform a SAGE 7.2 vertex coordinate list into a
Mathematica 10.4.1 vertex coordinate list:

Input: A string representing some SAGE 7.2 parsible coordinate list for a graph (e.g.
we might have ‘sageCoordinateListString = {0:[x1, y1], 1:[x2, y2], … }’).

Procedure:
mmaCoordinateList=Flatten[Map[{#[[1]]+1-
>#[[2]]}&,ToExpression[StringReplace[sageCoordinateListString,{":"->"->","["->"{","]"-
>"}"}]]],1]

Output: A MMA 10.4.1 parsible coordinate list for some graph object (e.g. ‘{1 -> {x1,
y1}, 2 -> {x2, y2}, … }’). Note that we needed to account for the 0 à 1 index origin
change moving from SAGE 7.2 to MMA 10.4.1.

153

7.6 Computational methods for finding and enumerating
Hamiltonian cycles and paths with Mathematica 10.4.1,
Combinatorica, SAGE 7.2, and the ’igraph’ R package

154

Using the software packages Mathematica (version 10.4.1), SAGE 7.2, and the ‘igraph’
(version 1.0.0) R language (version 3.2.3) package, we have employed four (three)
redundant methods to count Hamiltonian cycle as well as Hamiltonian path flows through
the gadgets corresponding to undirected (directed) graphs described in this document.
Wherever it is possible for us to count Hamiltonian path flows through a gadget, it is
always possible for us to check this calculation by counting Hamiltonian cycle flows
through a slightly modified version of the gadget.

We note that one may also enumerate Hamiltonian cycles and paths by e.g. generating
all simple paths (or an appropriate subset of all simple graph) in a simple undirected
graph via a Breadth-First-Search (BFS) or Depth-First-Search (DFS), and then simply
scan and test path to determine whether it is a Hamiltonian cycle or path. However,
in our hands, naïve versions of such approaches do not approach scale well for graph

objects (specifically of interest to this work) composed of more than about to

 vertices.

For Hamiltonian cycles, we make use of the following ::

(HC.1) // (HC_digraph.1) Mathematica’s (version 10.4.1) ‘FindHamiltonianCycle[]’
function:

Usage (Undirected Graphs): Letting ‘mmaTargetGraph’ be a Mathematica 10.4.1 object
encoding a simple connected undirected graph, the function call
‘FindHamiltonianCycle[mmaTargetGraph, All]’ will return all Hamiltonian cycles in
‘mmaTargetGraph’ and ‘Length[FindHamiltonianCycle[mmaTargetGraph, All]]’ will return
the count for all Hamiltonian cycles.

-

Usage (Digraphs): Equivalent to the above method for undirected graphs (under the same
assumptions that the graph is simple as well as connected).

--

(Undirected Graphs) Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

mmaTargetGraph=ImportString["GsXOXc","graph6"];
Length[FindHamiltonianCycle[mmaTargetGraph,All]]

Output: ‘6’ (Output is correct, see e.g. <http://oeis.org/A066037>)

-

(Digraphs) Example with a directed cycle on vertices:

mmaDirectedTargetGraph=Graph[{1->2,2->3,3->4,4->5,5->6,6->1}];
Length[FindHamiltonianCycle[mmaDirectedTargetGraph,All]]

Output: ‘1’

(HC.2) Combinatorica’s ‘HamiltonianCycle[]’ function:

Usage (Undirected Graphs): Letting ‘combinatoricaTargetGraph’ be a Combinatorica
object encoding a simple connected undirected graph, the function call
‘(1/2)*Length[HamiltonianCycle[combinatoricaTargetGraph,All]]’ will return the number

155

of Hamiltonian cycles in ‘combinatoricaTargetGraph’ (we divide by two to account for
the reversals of each Hamiltonian cycle).

(Note :: See the posting by ‘Szabolcs Horvat’ at this link ---
<http://community.wolfram.com/groups/-/m/t/880870?p_p_auth=S7lctraj> --- regarding a
solution (which we make use of) for employing ‘Block[]’ to allow usage of
Combinatorica functions without adding Combinatorica to ‘$ContextPath’.)

(Warning :: Loading the Graph Utilities package along with Combinatorica may interfere
with the ‘HamiltonianCycle[]’ function.)

-

Usage (Digraphs): The Combinatorica package does not appear to include a method for
counting Hamiltonian cycles in digraphs.

--

(Undirected Graphs) Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
targetGraphAdjacencyMatrix = Normal[AdjacencyMatrix[ImportString["GsXOXc","graph6"]]];
combinatoricaTargetGraph=
Combinatorica`FromAdjacencyMatrix[targetGraphAdjacencyMatrix];
(1/2)*Length[Combinatorica`HamiltonianCycle[combinatoricaTargetGraph,All]]

Output: ‘6’ (Output is correct, see e.g. <http://oeis.org/A066037>)

156

(HC.3) // (HC_digraph.3) SAGE 7.2’s ‘SubgraphSearch()’ function:

Usage (Undirected Graphs): Let ‘sageTargetGraph’ be a SAGE 7.2 object encoding a
simple connected undirected graph. Here, we first need to generate a simple cycle
graph isomorphic to any Hamiltonian cycle in ‘sageTargetGraph’ (should one or more
exist), which can be done via the command:
‘cycleGraph=graphs.CycleGraph(len(sageTargetGraph))’. We can then import
‘SubgraphSearch()’ via the command: ‘from sage.graphs.generic_graph_pyx import
SubgraphSearch’, and immediately following this, call ‘SubgraphSearch(sageTargetGraph,
cycleGraph)’, to return the set of all labeled subgraphs in ‘sageTargetGraph’
isomorphic to ‘cycleGraph’ corresponding to Hamiltonian cycles and cycles and their
‘(2*len(cycleGraph))’ automorphisms.

Putting everything together, we can ask for the total Hamiltonian cycle count in
‘sageTargetGraph’ via the line:
‘SubgraphSearch(sageTargetGraph, cycleGraph).cardinality() / (2*len(cycleGraph))’.

We note that Nathann Cohen (<http://www.steinertriples.fr/ncohen/tut/Graphs/>) is the
primary author for ‘SubgraphSearch’, and that the ‘generic_graph_pyx’ Cython package
of Cython functions for graphs it was incorporated into was originally authored by
Robert L. Miller.

For additional documentation please see:
<http://www.sagemath.org/documentation/html/en/reference/graphs/sage/graphs/generic_gr
aph_pyx.html>.

For the source code please see: <http://www.sagenb.org/src/graphs/generic_graph.py>.

-

Usage (Digraphs): The method of using SAGE 7.2 to count Hamiltonian cycles in digraphs
is nearly the same as the above method for counting Hamiltonian cycles in undirected
graphs, save for following three minor changes:

(1) The target graph, ‘sageTargetGraph’, referred to hereafter as
‘sageDirectedTargetGraph’, must be specified properly as a digraph (see the example
provided below as well as the SAGE documentation for digraphs:
<http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/digraph.html>);

(2) We must specify a directed cycle as the subgraph corresponding to Hamiltonian
cycles in the digraph. This can easily be done via the line
‘directedCycleGraph=DiGraph([[1..len(sageDirectedTargetGraph)], lambda a,b:
b==mod(a+1,len(sageDirectedTargetGraph))])’;

(3) We remove a factor of ‘2’ from the automorphism count for cycles in undirected
graphs (i.e. ‘(2*len(cycleGraph))’ becomes ‘len(directedCycleGraph)’).

--

(Undirected Graphs) Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

from sage.graphs.generic_graph_pyx import SubgraphSearch
sageTargetGraph=Graph('GsXOXc')
cycleGraph=graphs.CycleGraph(len(sageTargetGraph))
SubgraphSearch(sageTargetGraph, cycleGraph).cardinality() / (2*len(cycleGraph))

Output: ‘6’ (Output is correct, see e.g. <http://oeis.org/A066037>)

157

-

(Digraphs) Example with a directed cycle on vertices:

from sage.graphs.generic_graph_pyx import SubgraphSearch
sageDirectedTargetGraph=DiGraph({1:[2],2:[3],3:[4],4:[5],5:[6],6:[1]})

directedCycleGraph=DiGraph([[1..len(sageDirectedTargetGraph)], lambda a,b:
b==mod(a+1,len(sageDirectedTargetGraph))])

SubgraphSearch(sageDirectedTargetGraph, directedCycleGraph).cardinality() /
len(directedCycleGraph)

Output: ‘1’

158

(HC.4.1) // (HC_digraph.4.1) & (HC.4.2) // (HC_digraph.4.2) The ‘igraph’ (version
1.0.0) R language (version 3.2.3) package ‘count_subgraph_isomorphisms()’ function:

Usage (Undirected Graphs): Let ‘igraphTargetGraph’ be an ‘igraph’ R package object
encoding a simple connected undirected graph. Here, we first need to generate a
simple cycle graph isomorphic to any Hamiltonian cycle in ‘igraphTargetGraph’ (should
one or more exist), which can be done via the R language command: ‘cycleGraph <-
make_ring(vcount(igraphTargetGraph), directed = FALSE, mutual = FALSE, circular =
TRUE)’. One can then call ‘count_subgraph_isomorphisms(cycleGraph, igraphTargetGraph,
method = [SELECT “lad" OR “vf2”])’, to return the set of all labeled subgraphs in
‘igraphTargetGraph’ isomorphic to ‘cycleGraph’ corresponding to Hamiltonian cycles and
cycles and their ‘(2*vcount(igraphTargetGraph)’ automorphisms.

Putting everything together, we can ask for the total Hamiltonian cycle count in
‘igraphTargetGraph’ via the line:
‘count_subgraph_isomorphisms(cycleGraph, igraphTargetGraph, method = [SELECT “lad" OR
“vf2”]) / (2*vcount(igraphTargetGraph))’

We note that there are two algorithms one can select to enumerate subgraphs via the
‘count_subgraph_isomorphisms()’ function: “vf2” or “lad”. The choice “lad”
corresponds to the algorithm detailed in: [Solnon, C.: AllDifferent-based filtering
for subgraph isomorphism. Artificial Intelligence 174(12-13), pp. 850 - 864 (2010)]
[162]; the choice “vf2” corresponds to the algorithm detailed in: [Cordella, L. P.,
Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching
large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), pp. 1367 – 1372 (2004)]
[42] (see also the earlier conference paper [41]). We denote the choice of the “lad”
method as (HC.4.1) and the choice of the “vf2” method (HC.4.2).

Regarding the documentation for ‘count_subgraph_isomorphisms()’ and ‘make_ring()’
functions, see the ‘igraph’ R package documentation:
<http://igraph.org/r/doc/igraph.pdf>.

SUPPLEMENTARY NOTE: While this feature is poorly documented, the command
‘graph.subisomorphic.lad(cycleGraph,igraphTargetGraph)’ will return a SINGLE explicit
mapping of ‘cycleGraph’ to ‘igraphTargetGraph’ (i.e. a single Hamiltonian cycle).
This function is of use because, in our hands, we were unable to find a way to have
‘subgraph_isomorphisms(cycleGraph, igraphTargetGraph, method = [SELECT “lad" OR
“vf2”])’ return some subset of all such mappings (eq. Hamiltonian cycles), and this is
of course problematic if ‘igraphTargetGraph’ has a very large number of possible
Hamiltonian cycles.

-

Usage (Digraphs): The method of using the ‘igraph’ R package to count Hamiltonian
cycles in digraphs is nearly the same as the above method for counting Hamiltonian
cycles in undirected graphs, save for following three minor changes:

(1) The target graph, ‘igraphTargetGraph’, referred to hereafter as
‘igraphDirectedTargetGraph’, must be specified properly as a digraph (see the example
provided below as well as the ‘igraph’ R package documentation:
<http://igraph.org/r/doc/igraph.pdf> --- all that’s required here is to toggle all of
the ‘directed = FALSE’ flags in the undirected example to ‘directed = TRUE’ and when
adding edges ‘add_edges(c(1,2, 2,3, 3,4, …’ to note that the first item in each pair,
e.g. ‘1,2,’ corresponds to a vertex with a directed edge pointing at the second item
in the pair);

(2) We must specify a directed cycle as the subgraph corresponding to Hamiltonian
cycles in the digraph. This can easily be done via the line ‘directedCycleGraph <-
make_ring(vcount(igraphDirectedTargetGraph), directed = TRUE, mutual = FALSE, circular
= TRUE)’;

159

(3) We remove a factor of ‘2’ from the automorphism count for cycles in undirected
graphs (i.e. ‘(2*vcount(igraphTargetGraph))’ becomes ‘vcount(igraphTargetGraph)’).

--

(Undirected Graphs) Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”)
via method (HC.4.1):

library(igraph)
igraphTargetGraph <- make_empty_graph(directed=FALSE) %>%
add_vertices(8) %>%
add_edges(c(1,2, 1,3, 1,4, 2,5)) %>%
add_edges(c(2,6, 3,5, 3,8, 4,6)) %>%
add_edges(c(4,8, 5,7, 6,7, 7,8))
cycleGraph <- make_ring(vcount(igraphTargetGraph), directed = FALSE, mutual = FALSE,
circular = TRUE)

count_subgraph_isomorphisms(cycleGraph, igraphTargetGraph, method = "lad") /
(2*vcount(igraphTargetGraph))

Output: ‘6’ (Output is correct, see e.g. <http://oeis.org/A066037>)

-

(Digraphs) Example with a directed cycle on vertices via method (HC.4.1):

library(igraph)
igraphDirectedTargetGraph <- make_empty_graph(directed=TRUE) %>%
add_vertices(6) %>%
add_edges(c(1,2, 2,3, 3,4, 4,5, 5,6, 6,1))
directedCycleGraph <- make_ring(vcount(igraphDirectedTargetGraph), directed = TRUE,
mutual = FALSE, circular = TRUE)

count_subgraph_isomorphisms(directedCycleGraph, igraphDirectedTargetGraph, method =
"lad") / vcount(igraphDirectedTargetGraph)

Output: ‘1’

160

For Hamiltonian paths, we make use of the following ::

(HP.1) // (HP_digraph.1) Mathematica’s (version 10.4.1) ‘FindHamiltonianCycle[]’
function with the simple Hamiltonian cycle to Hamiltonian path reduction method of
connecting all vertices in the MMA target graph to a single vertex (denoted
‘globalVertex’):

Usage (Undirected Graphs): Letting ‘mmaTargetGraph’ be a Mathematica 10.4.1 object
encoding a simple connected undirected graph, the function call
‘FindHamiltonianCycle[EdgeAdd[mmaTargetGraph,Table["globalVertex"<-
>VertexList[mmaTargetGraph][[i]],{i,1,Length[VertexList[mmaTargetGraph]]}]],All]’ will
return all Hamiltonian paths in ‘mmaTargetGraph’ and
‘Length[FindHamiltonianCycle[EdgeAdd[mmaTargetGraph,Table["globalVertex"<-
>VertexList[mmaTargetGraph][[i]],{i,1,Length[VertexList[mmaTargetGraph]]}]],All]]’
will return the count for all Hamiltonian cycles.

-

Usage (Digraphs): For digraphs the method is nearly equivalent to the above method for
undirected graphs (under the same assumptions that the graph is simple as well as
connected), however, we need to add two edges (one pointing in either direction)
between each vertex in the original graph and the ‘globalVertex’.

--

(Undirected Graphs) Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

mmaTargetGraph=ImportString["GsXOXc","graph6"];
Length[FindHamiltonianCycle[EdgeAdd[mmaTargetGraph,Table["globalVertex"<-
>VertexList[mmaTargetGraph][[i]],{i,1,Length[VertexList[mmaTargetGraph]]}]],All]]

Output: ‘72’ (Output is correct; this value appropriately corresponds to 1/2 the
number of (directed) Hamiltonian paths in the (n=3)-cube graph: <

https://oeis.org/A091299>).

-

(Digraphs) Example with a directed cycle on vertices:

mmaDirectedTargetGraph=Graph[{1->2,2->3,3->4,4->5,5->6,6->1}];
Length[FindHamiltonianCycle[EdgeAdd[mmaDirectedTargetGraph,Flatten[Table[{"globalVerte
x"->VertexList[mmaDirectedTargetGraph][[i]], VertexList[mmaDirectedTargetGraph][[i]]->
"globalVertex"},{i,1,Length[VertexList[mmaDirectedTargetGraph]]}]]],All]]

Output: ‘6’

-

Regarding the enumeration of Hamiltonian paths in either the case of (Undirected
Graphs) or (Digraphs):

To return a list of all Hamiltonian paths rather than a count (via the above method),
replace the ‘Length[…]’ wrapper for ‘FindHamiltonianCycle[…]’ with the following ---

Map[Take[RotateLeft[#,SortBy[Position[#,"globalVertex"],Last][[1, 1]]],{1,-3}]&,
FindHamiltonianCycle[…]]

161

(HP.2) // (HP_digraph.2) Combinatorica’s ‘HamiltonianPath[]’ function:

Usage (Undirected Graphs): Letting ‘combinatoricaTargetGraph’ be a Combinatorica
object encoding a simple connected undirected graph, the function call
‘(1/2)*Length[HamiltonianPath[combinatoricaTargetGraph,All]]’ will return all
Hamiltonian paths in ‘combinatoricaTargetGraph’ (we divide by two to account for the
reversals of each Hamiltonian path).

(Note :: See the posting by ‘Szabolcs Horvat’ at this link ---
<http://community.wolfram.com/groups/-/m/t/880870?p_p_auth=S7lctraj> --- regarding a
solution (which we make use of) for employing ‘Block[]’ to allow usage of
Combinatorica functions without adding Combinatorica to ‘$ContextPath’.)

(Warning :: Loading the Graph Utilities package along with Combinatorica can interfere
with the ‘HamiltonianPath’ function. E.g. for the (n=3)-cube graph
‘Length[HamiltonianPath[combinatoricaTargetGraph,All]]’ returns ‘126’ instead of the
appropriate value of ‘144’ for the total number of (directed) Hamiltonian paths in the
graph: <https://oeis.org/A091299>.)

-

Usage (Digraphs): The Combinatorica package does not appear to include a method for
counting Hamiltonian cycles in digraphs.

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
targetGraphAdjacencyMatrix=Normal[AdjacencyMatrix[ImportString["GsXOXc","graph6"]]];
combinatoricaTargetGraph=
Combinatorica`FromAdjacencyMatrix[targetGraphAdjacencyMatrix];
(1/2)*Length[Combinatorica`HamiltonianPath[combinatoricaTargetGraph,All]]

Output: ‘72’ (Output is correct; this value appropriately corresponds to 1/2 the
number of (directed) Hamiltonian paths in the (n=3)-cube graph: <

https://oeis.org/A091299>).

162

(HP.3) // (HP_digraph.3) SAGE 7.2’s ‘SubgraphSearch()’ function:

Usage (Undirected Graphs): Let ‘sageTargetGraph’ by a SAGE 7.2 object encoding a
simple connected undirected graph. Here, we first need to generate a simple path
graph (i.e. linear chain of vertices) isomorphic to any Hamiltonian path in
‘sageTargetGraph’ (should one or more exist), which can be done via the command:
‘pathGraph=graphs.PathGraph(len(sageTargetGraph))’. We can then import
‘SubgraphSearch()’ via the command: the command ‘from sage.graphs.generic_graph_pyx
import SubgraphSearch’, and call ‘SubgraphSearch(sageTargetGraph, pathGraph)’, to
return the set of all labeled subgraphs in ‘sageTargetGraph’ isomorphic to ‘pathGraph’
corresponding to Hamiltonian paths and their reversals / automorphisms.

Putting all of this together, we can ask for the total Hamiltonian path count in
‘sageTargetGraph’ via the line:
‘SubgraphSearch(sageTargetGraph, pathGraph).cardinality() / 2’.

We note that Nathann Cohen (<http://www.steinertriples.fr/ncohen/tut/Graphs/>) is the
primary author for ‘SubgraphSearch’, and that the ‘generic_graph_pyx’ Cython package
of Cython functions for graphs it was incorporated into was originally authored by
Robert L. Miller.

For additional documentation please see:
<http://www.sagemath.org/documentation/html/en/reference/graphs/sage/graphs/generic_gr
aph_pyx.html>.

For the source code please see: <http://www.sagenb.org/src/graphs/generic_graph.py>.

-

Usage (Digraphs): The method of using SAGE 7.2 to count Hamiltonian paths in digraphs
is nearly the same as the above method for counting Hamiltonian cycles in undirected
graphs, save for following three minor changes:

(1) The target graph, ‘sageTargetGraph’, referred to hereafter as
‘sageDirectedTargetGraph’, must be specified properly as a digraph (see the example
provided below as well as the SAGE documentation for digraphs:
<http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/digraph.html>);

(2) We must specify a directed path as the subgraph corresponding to Hamiltonian path
in the digraph. This can easily be done via the line
‘directedPathGraph=DiGraph([[1..len(sageDirectedTargetGraph)], lambda a,b: b==a+1])’;

(3) We remove a factor of ‘2’ from the automorphism count for paths in undirected
graphs (i.e. we no longer divide the output of ‘SubgraphSearch()’ by ‘2’).

--

(Undirected Graphs) Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

from sage.graphs.generic_graph_pyx import SubgraphSearch
sageTargetGraph=Graph('GsXOXc')
pathGraph=graphs.PathGraph(len(sageTargetGraph))
SubgraphSearch(sageTargetGraph, pathGraph).cardinality() / 2

Output: ‘72’ (Output is correct; this value appropriately corresponds to 1/2 the
number of (directed) Hamiltonian paths in the (n=3)-cube graph:
<https://oeis.org/A091299>).

163

-

(Digraphs) Example with a directed cycle on vertices:

from sage.graphs.generic_graph_pyx import SubgraphSearch
sageDirectedTargetGraph=DiGraph({1:[2],2:[3],3:[4],4:[5],5:[6],6:[1]})
directedPathGraph=DiGraph([[1..len(sageDirectedTargetGraph)], lambda a,b: b==a+1])
SubgraphSearch(sageDirectedTargetGraph, directedCycleGraph).cardinality()

Output: ‘6’

164

(HP.4.1) // (HP_digraph.4.1) & (HP.4.2) // (HP_digraph.4.2) The ‘igraph’ (version
1.0.0) R language (version 3.2.3) package ‘count_subgraph_isomorphisms()’ function:

Usage (Undirected Graphs): Let ‘igraphTargetGraph’ be an ‘igraph’ R package object
encoding a simple connected undirected graph. Here, we first need to generate a
simple path graph (i.e. a linear chain of vertices) isomorphic to any Hamiltonian path
in ‘igraphTargetGraph’ (should one or more exist), which can be done via the R
language command: ‘pathGraph <- make_ring(vcount(igraphTargetGraph), directed = FALSE,
mutual = FALSE, circular = FALSE)’. One can then call
‘count_subgraph_isomorphisms(pathGraph, igraphTargetGraph, method = [SELECT “lad" OR
“vf2”])’, to return the set of all labeled subgraphs in ‘igraphTargetGraph’ isomorphic
to ‘pathGraph’ corresponding to Hamiltonian paths and their reversals / automorphisms.

Putting everything together, we can ask for the total Hamiltonian path count in
‘igraphTargetGraph’ via the line:
‘count_subgraph_isomorphisms(pathGraph, igraphTargetGraph, method = [SELECT “lad" OR
“vf2”]) / 2’

We note as in the prior section that there are two algorithms one can select to
enumerate subgraphs via the ‘count_subgraph_isomorphisms()’ function: “vf2” or “lad”.
The choice “lad” corresponds to the algorithm detailed in: [Solnon, C.: AllDifferent-
based filtering for subgraph isomorphism. Artificial Intelligence 174(12-13), pp. 850
- 864 (2010)] [162]; the choice “vf2” corresponds to the algorithm detailed in:
[Cordella, L. P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
pp. 1367 – 1372 (2004)] [42] (see also the earlier conference paper [41]). We denote
the choice of the “lad” method as (HP.4.1) and the choice of the “vf2” method
(HP.4.2).

Regarding the documentation for ‘count_subgraph_isomorphisms()’ and ‘make_ring()’
functions, see the ‘igraph’ R package documentation:
<http://igraph.org/r/doc/igraph.pdf>.

SUPPLEMENTARY NOTE: While this feature is poorly documented, the command
‘graph.subisomorphic.lad(pathGraph,igraphTargetGraph)’ will return a SINGLE explicit
mapping of ‘pathGraph’ to ‘igraphTargetGraph’ (i.e. a single Hamiltonian path). This
function is of use because, in our hands, we were unable to find a way to have
‘subgraph_isomorphisms(pathGraph, igraphTargetGraph, method = [SELECT “lad" OR
“vf2”])’ return some subset of all such mappings (eq. Hamiltonian path), and this is
of course problematic for obvious reason if ‘igraphTargetGraph’ has a very large
number of possible Hamiltonian paths.

-

Usage (Digraphs): The method of using the ‘igraph’ R package to count Hamiltonian
paths in digraphs is nearly the same as the above method for counting Hamiltonian
paths in undirected graphs, save for following three minor changes:

(1) The target graph, ‘igraphTargetGraph’, referred to hereafter as
‘igraphDirectedTargetGraph’, must be specified properly as a digraph (see the example
provided below as well as the ‘igraph’ R package documentation:
<http://igraph.org/r/doc/igraph.pdf> --- all that’s required here is to toggle all of
the ‘directed = FALSE’ flags in the undirected example to ‘directed = TRUE’ and when
adding edges ‘add_edges(c(1,2, 2,3, 3,4, …’ to note that the first item in each pair,
e.g. ‘1,2,’ corresponds to a vertex with a directed edge pointing at the second item
in the pair);

(2) We must specify a directed path as the subgraph corresponding to Hamiltonian paths
in the digraph. This can easily be done via the line ‘directedPathGraph <-
make_ring(vcount(igraphDirectedTargetGraph), directed = TRUE, mutual = FALSE, circular
= FALSE)’;

165

(3) We remove a factor of ‘2’ from the automorphism count for paths in undirected
graphs (i.e. we no longer divide the output of ‘count_subgraph_isomorphisms()’ by
‘2’).

--

(Undirected Graphs) Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”)
via method (HP.4.1):

igraphTargetGraph <- make_empty_graph(directed=FALSE) %>%
add_vertices(8) %>%
add_edges(c(1,2, 1,3, 1,4, 2,5)) %>%
add_edges(c(2,6, 3,5, 3,8, 4,6)) %>%
add_edges(c(4,8, 5,7, 6,7, 7,8))
pathGraph <- make_ring(vcount(igraphTargetGraph), directed = FALSE, mutual = FALSE,
circular = FALSE)

count_subgraph_isomorphisms(pathGraph, igraphTargetGraph, method = "lad") / 2

Output: ‘72’ (Output is correct; this value appropriately corresponds to 1/2 the
number of (directed) Hamiltonian paths in the (n=3)-cube graph:
<https://oeis.org/A091299>).

-

(Digraphs) Example with a directed cycle on vertices via method (HC.4.1):

library(igraph)
igraphDirectedTargetGraph <- make_empty_graph(directed=TRUE) %>%
add_vertices(6) %>%
add_edges(c(1,2, 2,3, 3,4, 4,5, 5,6, 6,1))
directedPathGraph <- make_ring(vcount(igraphDirectedTargetGraph), directed = TRUE,
mutual = FALSE, circular = FALSE)

count_subgraph_isomorphisms(directedPathGraph, igraphDirectedTargetGraph, method =
"lad")

Output: ‘6’

166

7.7 A method of contracting (k ≤ 3)-edge-connected subgraphs
to show non-Hamiltonicity of large graph structures; the
Mathematica 10.4.1 ’SubgraphContract[]’ function

167

If one wishes to show that some undirected graph is non-Hamiltonian, and the size of

the vertex and/or edge set for frustrates direct application of e.g. the
backtracking algorithms discusse in section (7.6), one manner of proceeding is to

attempt to establish the non-Hamiltonicity of a special minor of and to somehow

show that this establishes the non-Hamiltonicity of .

Specifically, we observe the following lemma:

Lemma :: If is a minor of an undirected graph , generated via the contraction of

one or more disjoint -edge-connected subgraphs (or equivalently, one or more

disjoint subgraphs that can only be entered once by any Hamiltonian cycle in), then

if is non-Hamiltonian we have that is non-Hamiltonian.

Proof: Let be a -edge-connected subgraph of , i.e. a subgraph that may be

disconnected from via removal of (where) edges from the set of edges

with strictly one end in . Let and represent the vertex and edge sets of ,

respectively. Consider that a Hamiltonian cycle in , should one exist, may only ever

flow in and out of the subgraph once by traversing two of the edges in the set .
Said differently, if we have a cycle graph (i.e. a cyclic chain of connected vertices)

corresponding to any Hamiltonian cycle in , the traversal of this Hamiltonian cycle

through will correspond to a linear chain of vertices with exactly edges. If

we now generate a minor of be contracting to a single vertex , for any

Hamiltonian cycle in we can likewise contract the linear chain of vertices

corresponding to a traversal of the subgraph to generate a Hamiltonian cycle for .

Therefore, if is a minor of an undirected graph generated via the contraction of a

-edge-connected subgraph, or by the same argument, a set of disjoint -edge-

connected subgraphs, if is non-Hamiltonian then is non-Hamiltonian. We ask the
reader to please note, however, that the converse of this statement need not hold.

168

The below Mathematica 10.4.1 function --- ‘SubgraphContract[]’ --- can be used to
contract a specified subgraph in a Mathematica 10.4.1 graph object ::

(*
New function ‘SubgraphContract[]’ ::
Input 1: Original MMA 10.4.1 (undirected / directed / mixed) graph object;
Input 2: List of vertices specifying the target subgraph for contraction;
Input 3: Label for vertex representing contracted subgraph;
*)
SubgraphContract:=
 With[{originalVertexCoordinateList=
 Table[VertexList[#1][[i]]->GraphEmbedding[#1][[i]],
 {i,1,Length[VertexList[#1]]}],
 subgraphAdjacencyList=Complement[Union[Flatten[
 Table[AdjacencyList[#1,#2[[i]]],{i,1,Length[#2]}]]],#2]},
 If[Length[#2]>1&&ConnectedGraphQ[Subgraph[#1,#2]],
 SetProperty[VertexDelete[EdgeAdd[VertexAdd[#1,{#3}],
 Table[
 Which[
 Select[EdgeList[#1],
 ((subgraphAdjacencyList[[i]]==#[[1]]&&
 MemberQ[subgraphAdjacencyList,#[[2]]]==False)||
 (subgraphAdjacencyList[[i]]==#[[2]]&&
 MemberQ[subgraphAdjacencyList,#[[1]]]==False))&&
 (StringContainsQ[ToString[#],"\[UndirectedEdge]"]==True||
 StringContainsQ[ToString[#],"<->"]==True)&]!={},
 #3<->subgraphAdjacencyList[[i]],
 Select[EdgeList[#1],subgraphAdjacencyList[[i]]==#[[1]]&&
 MemberQ[subgraphAdjacencyList,#[[2]]]==False&&
 (StringContainsQ[ToString[#],"\[DirectedEdge]"]==True||
 StringContainsQ[ToString[#],"->"]==True)&]!={},
 #3\[DirectedEdge]subgraphAdjacencyList[[i]],
 Select[EdgeList[#1],subgraphAdjacencyList[[i]]==#[[2]]&&
 MemberQ[subgraphAdjacencyList,#[[1]]]==False&&
 (StringContainsQ[ToString[#],"\[DirectedEdge]"]==True||
 StringContainsQ[ToString[#],"->"]==True)&]!={},
 subgraphAdjacencyList[[i]]\[DirectedEdge]#3],
 {i,1,Length[subgraphAdjacencyList]}]],#2],
 VertexCoordinates->Append[originalVertexCoordinateList,
 #3->Mean[Table[originalVertexCoordinateList[[All,2]][[Position[
 originalVertexCoordinateList[[All,1]],
 #2[[i]]][[1,1]]]],{i,1,Length[#2]}]]]]
 ,
 "Subgraph contraction failure; check inputs."
]
]&;

-

Example usage of the ‘SubgraphContract[]’ function; we contract (to a vertex labeled
‘contractedVertex’) four vertices defining a face of the 3-cube, yielding a graph
isomorphic to the wheel graph :

mmaTargetGraph=Graph[{1<->2,1<->3,1<->4,2<->5,2<->6,3<->5,3<->8,4<->6,4<->8,5<->7,6<-
>7,7<->8},VertexLabels->"Name"];
contractedMMATargetGraph=SubgraphContract[mmaTargetGraph,{1,2,4,6},"contractedVertex"]
w5WheelGraph=Graph[{1<->2,1<->3,1<->4,1<->5,2<->3,2<->5,3<->4,4<->5}]
IsomorphicGraphQ[contractedMMATargetGraph,w5WheelGraph]

Output: (1) a drawing of ‘contractedMMATargetGraph’; (2) ‘True’ as the output of
‘IsomorphicGraphQ[contractedMMATargetGraph,w5WheelGraph]’.

169

7.8 Planarity testing with Mathematica 10.4.1, Combinatorica,
and SAGE 7.2

170

Using Mathematica’s ‘PlanarGraphQ[]’ function:

Usage: Letting ‘mmaTargetGraph’ be a Mathematica 10.4.1 graph object encoding a simple
undirected graph, the function call ‘PlanarGraphQ[mmaTargetGraph]’ will return ‘True’
if ‘mmaTargetGraph’ is a planar graph and ‘False’ otherwise.

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

mmaTargetGraph = ImportString["GsXOXc","graph6"];
PlanarGraphQ[mmaTargetGraph]

Output: ‘True’

Using Combinatorica’s ‘PlanarQ[]’ function:

Usage: Letting ‘combinatoricaTargetGraph’ be a Combinatorica graph object encoding a
simple undirected graph, the function call ‘PlanarQ[combinatoricaTargetGraph]’ will
return ‘True’ if ‘combinatoricaTargetGraph’ is a planar graph and ‘False’ otherwise.

Regarding the procedure underlying the ‘PlanarQ[]’ function, we refer the reader to
(pg. 370) of the textbook guide to Combinatorica (written by Pemmaraju and Skiena):
[Pemmaraju, S. V., Skiena, S. S.: Computational discrete mathematics: combinatorics
and graph theory with Mathematica. Cambridge University Press: New York, NY (2003).]
[143]. Providing our interpretation of the author’s words, while it is true that
multiple O(n) planarity testing algorithms exist (one of the first was reported in:
[Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), pp. 549 - 568
(1974)] [81]), these implementations are “…difficult to implement…”. The authors then

state, however, that “…Most of these algorithms are based on ideas from an old
algorithm by Auslander and Parter [AP61]…” (here [AP61] refers to: [Auslander, L.,
Parter, S.: On imbedding graphs in the sphere. J. Mathematics and Mechanics 10(3), pp.
517 - 523 (1961)] [11]; regarding the title, recall that there exists a topological

embedding of a graph into iff there exists a topological embedding of the graph

into). Therefore, we assume that the ‘PlanarQ[]’ implementation was likewise based

on the Auslander-Parter algorithm. We also refer the reader to the source code
for the latest version of Combinatorica (v2.0.0):
<http://homepage.cs.uiowa.edu/~sriram/Combinatorica/NewCombinatorica.m>.

(Note :: See the posting by ‘Szabolcs Horvat’ at this link ---
<http://community.wolfram.com/groups/-/m/t/880870?p_p_auth=S7lctraj> --- regarding a
solution (which we make use of) for employing ‘Block[]’ to allow usage of
Combinatorica functions without adding Combinatorica to ‘$ContextPath’.)

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
targetGraphAdjacencyMatrix = Normal[AdjacencyMatrix[ImportString["GsXOXc","graph6"]]];
combinatoricaTargetGraph=
Combinatorica`FromAdjacencyMatrix[targetGraphAdjacencyMatrix];
Combinatorica`PlanarQ[combinatoricaTargetGraph]

Output: ‘True’

Using SAGE 7.2’s ‘is_planar()’ function:

Usage: After first loading the ‘is_planar()’ function via the command ‘from
sage.graphs.planarity import is_planar’, and letting ‘sageTargetGraph’ be a SAGE 7.2

171

graph object encoding a simple undirected graph, the function call
‘is_planar(sageTargetGraph)’ will return ‘True’ if ‘sageTargetGraph’ is a planar graph
and ‘False’ otherwise.

We note the procedure underlying the ‘is_planar()’ function is a Cython implementation
of the O(n) Boyer-Myrvold planarity testing algorithm: [Boyer, J. M., Myrvold, W. J.:
On the cutting edge: simplified O(n) planarity by edge addition. J. Graph Algorithms
Appl. 8(3), pp. 241 - 273 (2004)] [30].

Regarding the SAGE documentation for this function, we refer the reader to the
following link:
<http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/planarity.html>

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

from sage.graphs.planarity import is_planar
sageTargetGraph=Graph('GsXOXc')
is_planar(sageTargetGraph)

Output: ‘True’

172

7.9 Determining the minimum vertex cut for a graph with
Combinatorica, SAGE 7.2, and the ’igraph’ R package

173

Using Mathematica 10.4.1’s ‘VertexConnectivity[]’ function:

Usage: Letting ‘mmaTargetGraph’ be a Mathematica 10.4.1 graph object encoding a simple
undirected and connected graph, the function call ‘VertexConnectivity[mmaTargetGraph]’
will return the minimum vertex cut of the graph.

(Warning :: Combinatorica’s function for the minimum vertex cut is also denoted
‘VertexConnectivity[]’; adding the Combinatorica package (e.g. via
‘Needs["Combinatorica`"]’) to the general MMA context path (i.e. ‘$ContextPath’) will
disable Mathematica 10.4.1’s native ‘VertexConnectivity[]’ function. See the posting
by ‘Szabolcs Horvat’ at this link --- <http://community.wolfram.com/groups/-
/m/t/880870?p_p_auth=S7lctraj> --- regarding a solution (which we make use of) for
employing ‘Block[]’ to allow usage of Combinatorica functions without adding
Combinatorica to ‘$ContextPath’.)

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

mmaTargetGraph = ImportString["GsXOXc","graph6"];
VertexConnectivity[mmaTargetGraph]

Output: ‘3’

Using Combinatorica’s ‘VertexConnectivity[]’ function:

Usage: Letting ‘combinatoricaTargetGraph’ be a Combinatorica graph object encoding a
simple undirected and connected graph, the function call
‘VertexConnectivity[combinatoricaTargetGraph]’ will return the minimum vertex cut of
the graph.

(Note :: Mathamtica 10.4.1’s function for the minimum vertex cut is also denoted
‘VertexConnectivity[]’; adding the Combinatorica package (e.g. via
‘Needs["Combinatorica`"]’) to the general MMA context path (i.e. ‘$ContextPath’) will
disable Mathematica 10.4.1’s native ‘VertexConnectivity[]’ function. See the posting
by ‘Szabolcs Horvat’ at this link --- <http://community.wolfram.com/groups/-
/m/t/880870?p_p_auth=S7lctraj> --- regarding a solution (which we make use of) for
employing ‘Block[]’ to allow usage of Combinatorica functions without adding
Combinatorica to ‘$ContextPath’.)

(Warning :: Loading the Graph Utilities package along with Combinatorica may interfere
with the ‘VertexConnectivity[]’ function.)

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
targetGraphAdjacencyMatrix = Normal[AdjacencyMatrix[ImportString["GsXOXc","graph6"]]];
combinatoricaTargetGraph=
Combinatorica`FromAdjacencyMatrix[targetGraphAdjacencyMatrix];
Combinatorica`VertexConnectivity[combinatoricaTargetGraph]

Output: ‘3’

Using SAGE 7.2’s ‘vertex_connectivity()’ function:

Usage: Letting ‘sageTargetGraph’ be a SAGE 7.2 graph object encoding a simple
undirected and connected graph, the command: ‘sageTargetGraph.vertex_connectivity()’
will return the minimum vertex cut of the graph.

174

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

sageTargetGraph=Graph('GsXOXc')
sageTargetGraph.vertex_connectivity()

Output: ‘3’

Using the ‘igraph’ R package’s ‘vertex_connectivity()’ function:

Usage: Letting ‘igraphTargetGraph’ be an ‘igraph’ R package graph object encoding a
simple undirected and connected graph, the command:
‘vertex_connectivity(igraphTargetGraph, source = NULL, target = NULL, checks = TRUE)’
will return the minimum vertex cut of the graph.

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

library(igraph)
igraphTargetGraph <- make_empty_graph(directed=FALSE) %>%
add_vertices(8) %>%
add_edges(c(1,2, 1,3, 1,4, 2,5)) %>%
add_edges(c(2,6, 3,5, 3,8, 4,6)) %>%
add_edges(c(4,8, 5,7, 6,7, 7,8))
vertex_connectivity(igraphTargetGraph, source = NULL, target = NULL, checks = TRUE)

Output: ‘3’

175

7.10 Determining the chromatic number χ(G) for a graph with
Mathematica 10.4.1, Combinatorica, and SAGE 7.2

176

Computing the chromatic number of a graph with Mathematica 10.4.1:

While Mathematica 10.4.1 has a ‘BipartiteGraphQ[]’ function, which efficiently tests
if a Mathematica 10.4.1 graph object is bipartite, we are unaware of any other built-
in functionality to compute chromatic numbers or chromatic polynomials for graphs.

Computing the chromatic number of a graph with Combinatorica:

Combinatorica has a ‘ChromaticNumber[]’ function, which will return to the chromatic
number of a Combinatorica graph object. This function, after checking e.g. that that
the input graph is not bipartite, makes repeated calls to Combinatorica’s
‘Backtrack[]’ algorithm.

Computing the chromatic number of a graph with SAGE 7.2:

See:
<http://doc.sagemath.org/html/en/reference/graphs/sage/graphs/graph_coloring.html>

There are (at least) two functions that may be called in SAGE 7.2 to compute the

chromatic number of a graph: ‘chromatic_number(sageTargetGraph)’ and
‘vertex_coloring()’. Here, we also make use of SAGE 7.2’s ‘is_bipartite()’ function.

Note that prior to using ‘chromatic_number()’ or ‘vertex_coloring()’, the two
functions must be imported. For the ‘chromatic_number()’ function this can be done
via the command ‘from sage.graphs.graph_coloring import chromatic_number’; for the
‘vertex_coloring’ function this can be done via the command ‘from
sage.graphs.graph_coloring import vertex_coloring’. Once imported the relevant
function(s) are imported, either the call ‘chromatic_number(sageTargetGraph)’ or
‘vertex_coloring(sageTargetGraph, value_only=True)’ will return the chromatic number
of a specified SAGE 7.2 graph object (‘sageTargetGraph’).

There are multiple additional options for ‘vertex_coloring’, which are detailed at the
aforementioned link to the SAGE documentation on graph coloring. For example, with
regards to the ‘vertex_coloring()’ function, while we specify ‘value_only=True’ above,

if one specifies ‘value_only=False’ a minimal -coloring of the graph vertices will be

returned. One can directly test for a existence of a -coloring for a specified value

of . While this may lead to speedups if one expects a small range of possible
minimum colorations for a given ‘sageTargetGraph’, as a word of caution, one is NOT

testing here if a given -coloration is a minimal coloring, only that such a -

coloration exists. Here, for example, to test if ‘sageTargetGraph’ is -

colorable, which will return ‘True’ if ‘sageTargetGraph’ is either -colorable or
bipartite, one can call ‘vertex_coloring()’ as follows:
‘vertex_coloring(sageTargetGraph, k=3, value_only=True)’.

Finally, if one is working with large and/or pathological graph objects, it’s
important to note that Mixed Integer Linear Programming (MILP) solvers, such as CPLEX
and GUROBI, can be specified for use by the ‘chromatic_number(sageTargetGraph)’ and
‘vertex_coloring()’ functions. See the following SAGE documentation page for
installation instructions:
<http://doc.sagemath.org/html/en/thematic_tutorials/linear_programming.html>. We do
NOT, however, install or otherwise make use of optional MILP solvers for this work.

177

7.11 Determining the girth for a graph with Combinatorica,
SAGE 7.2, and the ’igraph’ R package

178

Output of Combinatorica’s ‘Girth[]’ function:

Output of SAGE 7.2’s ‘girth()’ function:

Output for the ‘igraph’ R package ‘girth()’ function:

Using Combinatorica’s ‘Girth[]’ function:

Usage: Letting ‘combinatoricaTargetGraph’ be a Combinatorica graph object encoding a
simple undirected and connected graph, the function call
‘Girth[combinatoricaTargetGraph]’ will return the girth (i.e. minimum cycle length) of
the graph.

(Note :: See the posting by ‘Szabolcs Horvat’ at this link ---
<http://community.wolfram.com/groups/-/m/t/880870?p_p_auth=S7lctraj> --- regarding a
solution (which we make use of) for employing ‘Block[]’ to allow usage of
Combinatorica functions without adding Combinatorica to ‘$ContextPath’.)

(Warning :: Loading the Graph Utilities package along with Combinatorica may interfere
with the ‘Girth[]’ function.)

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

Quiet[Block[{$ContextPath},Needs["Combinatorica`"]]]
mmaEdgeList=EdgeList[ImportString["GsXOXc","graph6"]];
targetGraphAM=Normal[AdjacencyMatrix[Graph[mmaEdgeList]]];
combinatoricaTargetGraph=Combinatorica`FromAdjacencyMatrix[targetGraphAM];
Combinatorica`Girth[combinatoricaTargetGraph]

Output: ‘4’

Using SAGE 7.2’s ‘girth()’ function:

Usage: Letting ‘sageTargetGraph’ be a SAGE 7.2 graph object encoding a simple
undirected and connected graph, the command: ‘sageTargetGraph.girth()’ will return the
girth (i.e. minimum cycle length) of the graph.

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

sageTargetGraph=Graph('GsXOXc')
sageTargetGraph.girth()

Output: ‘4’

Using the ‘igraph’ R package’s ‘girth()’ function:

Usage: Letting ‘igraphTargetGraph’ be an ‘igraph’ R package graph object encoding a
simple undirected and connected graph, the command:
‘vertex_connectivity(igraphTargetGraph, source = NULL, target = NULL, checks = TRUE)’
will return the girth (i.e. minimum cycle length) of the graph.

179

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

library(igraph)
igraphTargetGraph <- make_empty_graph(directed=FALSE) %>%
add_vertices(8) %>%
add_edges(c(1,2, 1,3, 1,4, 2,5)) %>%
add_edges(c(2,6, 3,5, 3,8, 4,6)) %>%
add_edges(c(4,8, 5,7, 6,7, 7,8))
girth(igraphTargetGraph)

Output:

$girth
[1] 4

$circle
+ 4/8 vertices:
[1] 7 8 4 6

180

7.12 Determining the minimum genus γmin(G) and minimum
genus embedding of a graph with SAGE 7.2

181

The genus of a graph is a natural number specifying the minimum number of handles

that must be added to a planar surface to allow for the embedding of a given graph

, or said differently, a “drawing” on without edge crossings.

Determining if a graph has genus is an NP-complete problem (see: [Thomassen,
C.: The graph genus problem is NP-complete. J. Algorithms 10(4), pp. 568 - 576 (1989)]

[169] where the classic -complete problem of determining if a graph has an

independent vertex set of size is reduced to the problem of determining if

the graph has genus), however the genus of special types of graphs, such as
complete graphs or complete bipartite graphs, may be computing in polynomial-time.
For examples of these special families of graphs and corresponding literature
references, we refer the reader to the Wolfram Mathworld “Graph Genus” page:
<http://mathworld.wolfram.com/GraphGenus.html>.

For make use of SAGE 7.2’s method of calculating a graph’s genus by determining the
genus of all possible combinatorial embeddings of the given graph and determining the
minimum value:
<http://combinat.sagemath.org/doc/reference/graphs/sage/graphs/genus.html>.

Using SAGE 7.2’s ‘genus()’ function:

Usage: Letting ‘sageTargetGraph’ be a SAGE 7.2 graph object encoding a simple
undirected and connected graph, the routine shown in the examples (below), which
requires one to import ‘sage.graphs.genus’, will return the genus of
‘sageTargetGraph’. Additionally, if one calls ‘genus(record_embedding = True)’, as
shown in the example, the function ‘get_embedding()’ can then be used to return a
clockwise-ordered list of nearest-neighbors for each vertex in a minimum genus
embedding, which is sufficient to specify an embedding if the surface one is embedding
into is orientable.

--

Example with an (n=3)-cube graph (graph6 (.g6) string: “GsXOXc”):

import sage.graphs.genus

sageTargetGraph=Graph('GsXOXc')

G = Graph(sageTargetGraph, implementation='c_graph', sparse=False)
gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
gb.genus(record_embedding = True)

Output ::

‘0’

182

-

gb.get_embedding()

Output ::

{0: [1, 2, 3],
 1: [0, 5, 4],
 2: [0, 4, 7],
 3: [0, 7, 5],
 4: [1, 6, 2],
 5: [1, 3, 6],
 6: [4, 5, 7],
 7: [2, 6, 3]}

--

Example with , i.e. the complete graph on vertices (graph6 (.g6) string:
“E~~w”):

import sage.graphs.genus

sageTargetGraph=Graph('E~~w')

G = Graph(sageTargetGraph, implementation='c_graph', sparse=False)
gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
gb.genus(record_embedding = True)

Output ::

‘1’

-

gb.get_embedding()

Output ::

{0: [1, 2, 3, 4, 5],
 1: [0, 2, 3, 5, 4],
 2: [0, 4, 3, 1, 5],
 3: [0, 5, 1, 2, 4],
 4: [0, 3, 2, 1, 5],
 5: [0, 4, 1, 3, 2]}

183

--

Example with the (Figure 4.9.b) cubic 3-connected bipartite graph (on 42 vertices):

import sage.graphs.genus

sageTargetGraph=Graph([(0,2),(1,5),(2,6),(2,17),(3,6),(3,7),(3,8),(4,9),(4,10),(4,11),
(5,11),(5,20),(6,21),(7,12),(7,31),(8,13),(8,32),(9,15),(9,33),(10,16),(10,34),(11,24)
,(12,17),(12,18),(13,18),(13,27),(14,15),(14,26),(14,27),(15,19),(16,19),(16,20),(17,3
0),(18,22),(19,23),(20,35),(21,25),(21,36),(22,25),(22,26),(23,28),(23,29),(24,29),(24
,39),(25,31),(26,32),(27,28),(28,33),(29,34),(30,36),(30,37),(31,37),(32,37),(33,38),(
34,38),(35,38),(35,39),(36,40),(39,41)])

G = Graph(sageTargetGraph, implementation='c_graph', sparse=False)
gb = sage.graphs.genus.simple_connected_genus_backtracker(G._backend.c_graph()[0])
gb.genus(record_embedding = True)

Output ::

‘2’

-

gb.get_embedding()

Output (embedding in the orientable surface --- FORMAT: “vertex : [clockwise

ordering of vertices about in embedding]) ::

{0: [2],
 1: [5],
 2: [0, 6, 17],
 3: [6, 7, 8],
 4: [9, 10, 11],
 5: [1, 11, 20],
 6: [2, 3, 21],
 7: [3, 12, 31],
 8: [3, 32, 13],
 9: [4, 33, 15],
 10: [4, 16, 34],
 11: [4, 5, 24],
 12: [7, 17, 18],
 13: [8, 27, 18],
 14: [15, 27, 26],
 15: [9, 14, 19],
 16: [10, 19, 20],
 17: [2, 30, 12],
 18: [12, 13, 22],
 19: [15, 23, 16],
 20: [5, 35, 16],
 21: [6, 36, 25],
 22: [18, 26, 25],
 23: [19, 28, 29],
 24: [11, 29, 39],
 25: [21, 31, 22],
 26: [14, 32, 22],
 27: [13, 14, 28],
 28: [23, 27, 33],
 29: [23, 34, 24],
 30: [17, 37, 36],
 31: [7, 25, 37],
 32: [8, 37, 26],
 33: [9, 38, 28],
 34: [10, 29, 38],

184

 35: [20, 38, 39],
 36: [21, 40, 30],
 37: [30, 32, 31],
 38: [33, 35, 34],
 39: [24, 35, 41],
 40: [36],
 41: [39]}

185

7.13 Introduction to Brendan McKay’s NAUTY and Plantri
packages

186

References ::

NAUTY package:
[McKay, B. D., Piperno, A.: Practical graph isomorphism, II. J. Symbolic. Comput. 60,
pp. 94 - 112 (2014)] [122]

Plantri package:
[Brinkmann, G., McKay, B. D.: Fast generation of planar graphs. Match Commun. Math.
Co. 58(2), pp. 323 - 357 (2007)] [33]

NOTE: For usage in the context of SAGE 7.2, either or both packages must be installed.
See <http://doc.sagemath.org/html/en/reference/misc/sage/misc/package.html> for a list
of optional packages for SAGE ('nauty' corresponds to NAUTY and 'plantri' corresponds
to Plantri) as well as package installation instructions.

NAUTY (No AUTomorphisms, Yes?) ::

Brendan McKay’s NAUTY (No AUTomorphisms, Yes?) software, consisting of a set of
routines written in C, includes the world’s fastest practical algorithms for
determination of the generators, cardinalities, and orbits for the automorphism groups
of connected and unconnected graphs (and hence, graph isomorphism testing), and was
the first software used to enumerate all 1,182,004 order (n=11) non-isomorphic graphs.
NAUTY also includes an absolutely fantastic algorithm denoted ‘geng()’ for enumerating
all elements in sets of connected and/or unconnected graphs of specified order and
with specified restrictions for e.g. upper- and lower-bounds on vertex degrees, edge
counts, and edge 2-connectivity, as well as properties like bipartiteness.

The NAUTY package, as well as instructions for its use (including instructions for the
use of the ‘geng()’ algorithm and its variants), are available at the following
website: <http://users.cecs.anu.edu.au/~bdm/nauty/>

-

Example usage of NAUTY’s ‘geng()’ algorithm to generate all 2-connected bipartite
cubic (planar and non-planar) graphs of order :

Let’s call ‘geng()’ with the following command: ./geng -C -b -d2 -D3 16 24:24 -g
'outputTarget.txt'

This will result in the following example command prompt output:

“>A ./geng -Cbd2D3 n=16 e=24
>Z 38 graphs generated in 0.14 sec”

This will also output, to the specified file ‘outputTarget.txt’, all non-isomorphic
graphs that: (1) are 2-edge-connected (toggle ‘–C’); (2) are bipartite (toggle –b);
(3) have minimium vertex degree 2 (toggle ‘d2’); (4) have maximum degree 3 (toggle

‘D3’); (5) are of order ; (6) have between k1:k2=24:24 edges (where we set
k1=k2=24 to force the graph to be cubic despite the allowance of minimum vertex degree
of 2). Finally, the toggle ‘-g’ specifies a graph6 (.g6) encoding scheme for the
graphs outputted to the specified file ‘outputTarget.txt’. Note that the order in
which the toggles are specified is of no consequence.

Plantri ::

Brinkmann and McKay’s ‘plantri()’ algorithm is an extension of NAUTY’s ‘geng()’ that
allows for very fast and memory efficient generation of planar graphs (i.e. graphs

embeddable in or without edge crossings) and their planar duals (e.g. the dual
of a 3-connected bipartite cubic planar graph is a eulerian planar triangulation).

187

The Plantri package, as well as instructions for its use, are available at the
following website: <https://users.cecs.anu.edu.au/~bdm/plantri/>

-

Example usage of the ‘plantri()’ algorithm to generate all 3-connected bipartite cubic
planar graphs of order :

Let’s call ‘plantri()’ with the following command: ./plantri -bp –c3 16 –e24:24 –g
'outputTarget.txt'

This will result in the following example command prompt output:

“2 bipartite graphs written to plantriOutputDUMP.txt; cpu=0.00 sec”

This will also output, to the specified file ‘outputTarget.txt’, all non-isomorphic
planar graphs that: (1) are at least 3-edge-connected (toggle ‘–c3’); (2) are
bipartite (toggle –bp; note that just specifying ‘b’ will cause ‘plantri()’ to output
a Eulerian planar triangulation); (3) are of order (n=16); (4) and have between -
ek1:k2=-e24:24 edges (where we set k1=k2=24 to force the graph to be cubic despite the
allowance of minimum vertex degree of 2). Finally, and just like with ‘geng()’, note
that the toggle ‘-g’ specifies a graph6 (.g6) encoding scheme for the graphs outputted
to the specified file ‘outputTarget.txt’ (unlike ‘geng()’ though this is no longer
“default” behavior), and note that the order in which the toggles are specified is of
no consequence.

Briefly elaborating on this example, the output for a call to ‘plantri()’ of the form
--- ./plantri -bp –c3 n –e(3n/2):(3n/2) –g 'outputTarget.txt' --- where ‘n’
corresponds to the order of the target family of graphs, will exactly match the
following On-Line Encyclopedia of Integer Sequences (OEIS) entry for 3-connected
bipartite cubic planar graphs (Barnette) graphs: "Number of unlabeled trivalent 3-
connected bipartite planar graphs with 2n nodes." <https://oeis.org/A007083>

(n) a(n)
4 0
6 0
8 1
10 0
12 1
14 1
16 2
18 2
20 8
22 8
24 32
26 57
28 185
30 466
32 1543

(NOTE / WARNING :: The "A007083 as a simple table" link (i.e.
<https://oeis.org/A007083/list>) incorrectly states that their list corresponds to ‘n
vs. a(n)’. This is a mistake as their list should be labeled ‘2n vs. a(n)’. For the
reader’s convenience, we provide the corrected ‘n vs. a(n)’ list immediately above.)

188

7.14 A Mathematica 10.4.1 script to trace the faces and return
the dual of an arbitrary 3-connected planar graph

189

The following two scripts take as input an arbitrary 3-connected planar graph and
return, in the case of ‘TraceFaces[]’, a set of edge lists corresponding to the faces
of the graph, and in the case of ‘GenerateDualGraph[]’, the dual of the graph. From
[Whitney, H.: Congruent graphs and the connectivity of graphs. Amer. J. Math. 54(1),
pp. 150 - 168 (1932)] [189] we have that any 3-connected planar graph is “uniquely

embeddable” in or and that any two planar embeddings of the same 3-connected
planar graph will necessarily have isomorphic combinatorial (eq. geometrical) duals.

(*Provided an arbitrary 3-connected planar graph ‘TraceFaces[]’ will return a list of
edge sets defining the faces of the graph.*)
TraceFaces[mmaInputGraph_]:=Module[{mmaTargetGraph,mmaVertexList,mmaEdgeList,mmaVCList
,allPossibleDirectedEdgesList,counterClockwiseVertexOrderings,currentFace,faceList,cur
rentEdge,initialVertex,initialVertexReturnFlag},vertexLabelResetMap=Table[VertexList[m
maInputGraph][[i]]->i,{i,1,Length[VertexList[mmaInputGraph]]}];
mmaVertexList=Sort[Flatten[ReplaceAll[VertexList[mmaInputGraph],vertexLabelResetMap]]]
;
mmaEdgeList=Flatten[ReplaceAll[EdgeList[mmaInputGraph],vertexLabelResetMap]];
mmaTargetGraph=Graph[mmaVertexList,mmaEdgeList,GraphLayout->"PlanarEmbedding"];
mmaVCList=SortBy[Table[VertexList[mmaTargetGraph][[i]]-
>GraphEmbedding[mmaTargetGraph][[i]],{i,1,Length[mmaVertexList]}],First];
allPossibleDirectedEdgesList=EdgeList[DirectedGraph[mmaEdgeList,VertexCoordinates-
>mmaVCList]];
counterClockwiseVertexOrderings=Table[mmaVCList[[All,1]][[Flatten[Map[Position[mmaVCLi
st[[All,2]],#]&,Sort[Take[GraphEmbedding[SetProperty[NeighborhoodGraph[mmaTargetGraph,
mmaVertexList[[i]],1],VertexCoordinates->mmaVCList]],{2,-
1}],ToPolarCoordinates[#1+({0,0}-mmaVCList[[i,2]])][[2]]<ToPolarCoordinates[#2+({0,0}-
mmaVCList[[i,2]])][[2]]&]]]]],{i,1,VertexCount[mmaTargetGraph]}];
faceList={};
While[Length[allPossibleDirectedEdgesList]>0,
currentEdge=allPossibleDirectedEdgesList[[1]];
currentFace={};
initialVertexReturnFlag=False;
initialVertex=currentEdge[[1]];
While[initialVertexReturnFlag==False,
currentFace=Append[currentFace,currentEdge[[1]]];
currentEdge=currentEdge[[2]]-
>counterClockwiseVertexOrderings[[currentEdge[[2]]]][[Mod[Position[counterClockwiseVer
texOrderings[[currentEdge[[2]]]],currentEdge[[1]]][[1,1]]+1,Length[counterClockwiseVer
texOrderings[[currentEdge[[2]]]]],1]]];
If[currentEdge[[1]]==initialVertex,
initialVertexReturnFlag=True;
];
];
allPossibleDirectedEdgesList=Delete[allPossibleDirectedEdgesList,Partition[Map[Positio
n[allPossibleDirectedEdgesList,#][[1,1]]&,Append[Table[currentFace[[r]]\[DirectedEdge]
currentFace[[r+1]],{r,1,Length[currentFace]-1}],currentFace[[-
1]]\[DirectedEdge]currentFace[[1]]]],1]];
currentFace=Append[Table[Sort[{currentFace[[r]],currentFace[[r+1]]}][[1]]<-
>Sort[{currentFace[[r]],currentFace[[r+1]]}][[2]],{r,1,Length[currentFace]-
1}],Sort[{currentFace[[-1]],currentFace[[1]]}][[1]]<->Sort[{currentFace[[-
1]],currentFace[[1]]}][[2]]];
faceList=Append[faceList,currentFace];
];
Table[Map[Replace[#[[1]],Map[#[[2]]->#[[1]]&,vertexLabelResetMap]]<-
>Replace[#[[2]],Map[#[[2]]-
>#[[1]]&,vertexLabelResetMap]]&,faceList[[i]]],{i,1,Length[faceList]}]
];

190

(*Provided an arbitrary 3-connected planar graph ‘GenerateDualGraph[]’ will return its
dual; note that this procedure requires ‘TraceFaces[]’ to be defined prior to its
use.*)
GenerateDualGraph[mmaInputGraph_]:=Module[{faces=TraceFaces[mmaInputGraph],pairsOfElem
ents},pairsOfElements=Subsets[Range[Length[faces]],{2}];
Graph[Pick[Table[pairsOfElements[[i,1]]<-
>pairsOfElements[[i,2]],{i,1,Length[pairsOfElements]}],Map[#1>0&,Map[Length[Intersecti
on[#[[1]],#[[2]]]]&,Subsets[faces,{2}]]],True],GraphLayout->"PlanarEmbedding"]
];

-

Example usage of ‘TraceFaces[]’ with an (n=3)-cube graph (graph6 (.g6) string:
“GsXOXc”):

mmaTargetGraph=Graph[{1<->2,1<->3,1<->4,2<->5,2<->6,3<->5,3<->8,4<->6,4<->8,5<->7,6<-
>7,7<->8}];

TraceFaces[mmaTargetGraph]

Output ::

‘{{1<->2,2<->6,4<->6,1<->4},{1<->3,3<->5,2<->5,1<->2},{1<->4,4<->8,3<->8,1<->3},{2<-
>5,5<->7,6<->7,2<->6},{3<->8,8<->7,5<->7,3<->5},{4<->6,6<->7,8<->7,4<->8}}’

-

Example usage of ‘GenerateDualGraph[]’ with an (n=3)-cube graph (graph6 (.g6) string:
“GsXOXc”) which will generate the skeleton graph of the octahedron:

mmaTargetGraph=Graph[{1<->2,1<->3,1<->4,2<->5,2<->6,3<->5,3<->8,4<->6,4<->8,5<->7,6<-
>7,7<->8}];

octahedronSkeletonGraph=Graph[{1<->2,1<->3,1<->4,1<->5,2<->3,2<->5,2<->6,3<->4,3<-
>6,4<->5,4<->6,5<->6}];

IsomorphicGraphQ[GenerateDualGraph[mmaTargetGraph],octahedronSkeletonGraph]

Output ::

‘True’

191

Chapter 8

Appendix: Gadget Properties, Edge Lists, and Embedding
Coordinates

192

8.1 (Figure 2.2) gadget (height (q = 1) instance)

1

2

3

4

8

5

6

7 11

9

10

13

12

14

193

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘14’

Number of Edges: ‘18’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

194

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]2,2\[DirectedEdge]3,2\[DirectedEdge]4,3\[DirectedEdge]8,4\[DirectedEd
ge]5,4\[DirectedEdge]6,5\[DirectedEdge]3,6\[DirectedEdge]7,7\[DirectedEdge]5,7\[Direct
edEdge]11,8\[DirectedEdge]9,10\[DirectedEdge]6,10\[DirectedEdge]11,11\[DirectedEdge]13
,12\[DirectedEdge]10,12\[DirectedEdge]13,13\[DirectedEdge]8,14\[DirectedEdge]12}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-3.,-1.6429},2->{-2.,-0.6429},3->{-2.,0.3571},4->{-1.,-0.6429},5->{-1.,0.3571},6-
>{0.,-0.6429},7->{0.,0.3571},8->{0.,1.8571},9->{0.,2.8571},10->{1.,-0.6429},11-
>{1.,0.3571},12->{2.,-0.6429},13->{2.,0.3571},14->{3.,-1.6429}}

Edge list (SAGE 7.2):

[(0,1),(1,2),(1,3),(2,7),(3,4),(3,5),(4,2),(5,6),(6,4),(6,10),(7,8),(9,5),(9,10),(10,1
2),(11,9),(11,12),(12,7),(13,11)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-3.,-1.6429],1:[-2.,-0.6429],2:[-2.,0.3571],3:[-1.,-0.6429],4:[-1.,0.3571],5:[0.,-
0.6429],6:[0.,0.3571],7:[0.,1.8571],8:[0.,2.8571],9:[1.,-
0.6429],10:[1.,0.3571],11:[2.,-0.6429],12:[2.,0.3571],13:[3.,-1.6429]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorOne,5->colorTwo,6->colorTwo,7-
>colorOne,8->colorTwo,9->colorOne,10->colorOne,11->colorTwo,12->colorTwo,13-
>colorOne,14->colorOne}

195

8.2 (Figure 2.2) gadget (height (q = 2) instance)

1

2

3

6

4

5

8

14

7

10

9

12

11 17

13 19

15

16

21

18

23

20

22

24

196

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘24

Number of Edges: ‘33

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

197

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]2,2\[DirectedEdge]3,2\[DirectedEdge]6,3\[DirectedEdge]4,4\[DirectedEd
ge]5,4\[DirectedEdge]8,5\[DirectedEdge]14,6\[DirectedEdge]7,6\[DirectedEdge]10,7\[Dire
ctedEdge]3,8\[DirectedEdge]9,8\[DirectedEdge]12,9\[DirectedEdge]5,10\[DirectedEdge]11,
11\[DirectedEdge]7,11\[DirectedEdge]17,12\[DirectedEdge]13,13\[DirectedEdge]9,13\[Dire
ctedEdge]19,14\[DirectedEdge]15,16\[DirectedEdge]10,16\[DirectedEdge]17,17\[DirectedEd
ge]21,18\[DirectedEdge]12,18\[DirectedEdge]19,19\[DirectedEdge]23,20\[DirectedEdge]16,
20\[DirectedEdge]21,21\[DirectedEdge]22,22\[DirectedEdge]18,22\[DirectedEdge]23,23\[Di
rectedEdge]14,24\[DirectedEdge]20}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-3.,-2.5833},2->{-2.,-1.5833},3->{-2.,-0.5833},4->{-2.,0.4167},5->{-2.,1.4167},6-
>{-1.,-1.5833},7->{-1.,-0.5833},8->{-1.,0.4167},9->{-1.,1.4167},10->{0.,-1.5833},11-
>{0.,-0.5833},12->{0.,0.4167},13->{0.,1.4167},14->{0.,2.9167},15->{0.,3.9167},16-
>{1.,-1.5833},17->{1.,-0.5833},18->{1.,0.4167},19->{1.,1.4167},20->{2.,-1.5833},21-
>{2.,-0.5833},22->{2.,0.4167},23->{2.,1.4167},24->{3.,-2.5833}}

Edge list (SAGE 7.2):

[(0,1),(1,2),(1,5),(2,3),(3,4),(3,7),(4,13),(5,6),(5,9),(6,2),(7,8),(7,11),(8,4),(9,10
),(10,6),(10,16),(11,12),(12,8),(12,18),(13,14),(15,9),(15,16),(16,20),(17,11),(17,18)
,(18,22),(19,15),(19,20),(20,21),(21,17),(21,22),(22,13),(23,19)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-3.,-2.5833],1:[-2.,-1.5833],2:[-2.,-0.5833],3:[-2.,0.4167],4:[-2.,1.4167],5:[-
1.,-1.5833],6:[-1.,-0.5833],7:[-1.,0.4167],8:[-1.,1.4167],9:[0.,-1.5833],10:[0.,-
0.5833],11:[0.,0.4167],12:[0.,1.4167],13:[0.,2.9167],14:[0.,3.9167],15:[1.,-
1.5833],16:[1.,-0.5833],17:[1.,0.4167],18:[1.,1.4167],19:[2.,-1.5833],20:[2.,-
0.5833],21:[2.,0.4167],22:[2.,1.4167],23:[3.,-2.5833]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorTwo,5->colorOne,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorOne}

198

8.3 (Figure 2.2) gadget (height (q = 3) instance)

1

2

3

8

4

5

10

6

7

12

20

9

14

11

16

13

18

15 23

17 25

19 27

21

22

29

24

31

26

33

28

30

32

34

199

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘34’

Number of Edges: ‘48’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

200

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]2,2\[DirectedEdge]3,2\[DirectedEdge]8,3\[DirectedEdge]4,4\[DirectedEd
ge]5,4\[DirectedEdge]10,5\[DirectedEdge]6,6\[DirectedEdge]7,6\[DirectedEdge]12,7\[Dire
ctedEdge]20,8\[DirectedEdge]9,8\[DirectedEdge]14,9\[DirectedEdge]3,10\[DirectedEdge]11
,10\[DirectedEdge]16,11\[DirectedEdge]5,12\[DirectedEdge]13,12\[DirectedEdge]18,13\[Di
rectedEdge]7,14\[DirectedEdge]15,15\[DirectedEdge]9,15\[DirectedEdge]23,16\[DirectedEd
ge]17,17\[DirectedEdge]11,17\[DirectedEdge]25,18\[DirectedEdge]19,19\[DirectedEdge]13,
19\[DirectedEdge]27,20\[DirectedEdge]21,22\[DirectedEdge]14,22\[DirectedEdge]23,23\[Di
rectedEdge]29,24\[DirectedEdge]16,24\[DirectedEdge]25,25\[DirectedEdge]31,26\[Directed
Edge]18,26\[DirectedEdge]27,27\[DirectedEdge]33,28\[DirectedEdge]22,28\[DirectedEdge]2
9,29\[DirectedEdge]30,30\[DirectedEdge]24,30\[DirectedEdge]31,31\[DirectedEdge]32,32\[
DirectedEdge]26,32\[DirectedEdge]33,33\[DirectedEdge]20,34\[DirectedEdge]28}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-3.,-3.5588},2->{-2.,-2.5588},3->{-2.,-1.5588},4->{-2.,-0.5588},5->{-
2.,0.4412},6->{-2.,1.4412},7->{-2.,2.4412},8->{-1.,-2.5588},9->{-1.,-1.5588},10->{-
1.,-0.5588},11->{-1.,0.4412},12->{-1.,1.4412},13->{-1.,2.4412},14->{0.,-2.5588},15-
>{0.,-1.5588},16->{0.,-0.5588},17->{0.,0.4412},18->{0.,1.4412},19->{0.,2.4412},20-
>{0.,3.9412},21->{0.,4.9412},22->{1.,-2.5588},23->{1.,-1.5588},24->{1.,-0.5588},25-
>{1.,0.4412},26->{1.,1.4412},27->{1.,2.4412},28->{2.,-2.5588},29->{2.,-1.5588},30-
>{2.,-0.5588},31->{2.,0.4412},32->{2.,1.4412},33->{2.,2.4412},34->{3.,-3.5588}}

Edge list (SAGE 7.2):

[(0,1),(1,2),(1,7),(2,3),(3,4),(3,9),(4,5),(5,6),(5,11),(6,19),(7,8),(7,13),(8,2),(9,1
0),(9,15),(10,4),(11,12),(11,17),(12,6),(13,14),(14,8),(14,22),(15,16),(16,10),(16,24)
,(17,18),(18,12),(18,26),(19,20),(21,13),(21,22),(22,28),(23,15),(23,24),(24,30),(25,1
7),(25,26),(26,32),(27,21),(27,28),(28,29),(29,23),(29,30),(30,31),(31,25),(31,32),(32
,19),(33,27)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-3.,-3.5588],1:[-2.,-2.5588],2:[-2.,-1.5588],3:[-2.,-0.5588],4:[-2.,0.4412],5:[-
2.,1.4412],6:[-2.,2.4412],7:[-1.,-2.5588],8:[-1.,-1.5588],9:[-1.,-0.5588],10:[-
1.,0.4412],11:[-1.,1.4412],12:[-1.,2.4412],13:[0.,-2.5588],14:[0.,-1.5588],15:[0.,-
0.5588],16:[0.,0.4412],17:[0.,1.4412],18:[0.,2.4412],19:[0.,3.9412],20:[0.,4.9412],21:
[1.,-2.5588],22:[1.,-1.5588],23:[1.,-
0.5588],24:[1.,0.4412],25:[1.,1.4412],26:[1.,2.4412],27:[2.,-2.5588],28:[2.,-
1.5588],29:[2.,-0.5588],30:[2.,0.4412],31:[2.,1.4412],32:[2.,2.4412],33:[3.,-3.5588]}

201

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorOne,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorOne,23->colorTwo,24->colorOne,25-
>colorTwo,26->colorOne,27->colorTwo,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorOne}

202

8.4 (Figure 2.3) gadget (depth (q = 1) instance)

1

7

2

3

9

8 10

4

5

6

203

Graph Properties ::

--

Number of Vertices: ‘10’

Number of Edges: ‘12’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

204

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->7,2<->3,2<->7,2<->9,3<->8,3<->10,4<->5,4<->8,4<->10,6<->9,7<->8,9<->10}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-1.5155,-0.875},2->{0.,-1.},3->{0.,0.},4->{0.,1.},5->{0.,1.75},6->{1.5155,-
0.875},7->{-0.866,-0.5},8->{-0.866,0.5},9->{0.866,-0.5},10->{0.866,0.5}}

Edge list (SAGE 7.2):

[(0,6),(1,2),(1,6),(1,8),(2,7),(2,9),(3,4),(3,7),(3,9),(5,8),(6,7),(8,9)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-1.5155,-0.875],1:[0.,-1.],2:[0.,0.],3:[0.,1.],4:[0.,1.75],5:[1.5155,-0.875],6:[-
0.866,-0.5],7:[-0.866,0.5],8:[0.866,-0.5],9:[0.866,0.5]}

Canonical vertex -coloring ::
{1->colorOne,2->colorOne,3->colorTwo,4->colorTwo,5->colorOne,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne}

205

8.5 (Figure 2.3) gadget (depth (q = 2) instance)

1

9

2

3 15

11 13

4

5

12 14

6

7

10 16

8

206

Graph Properties ::

--

Number of Vertices: ‘16’

Number of Edges: ‘21’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

207

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->9,2<->3,2<->9,2<->15,3<->11,3<->13,4<->5,4<->11,4<->13,5<->12,5<->14,6<->7,6<-
>10,6<->16,8<->15,9<->10,10<->12,11<->12,13<->14,14<->16,15<->16}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-1.5155,-0.875},2->{0.,-1.},3->{0.,-0.5},4->{0.,0.},5->{0.,0.5},6->{0.,1.},7-
>{0.,1.75},8->{1.5155,-0.875},9->{-0.866,-0.5},10->{-0.866,0.5},11->{-0.433,-0.25},12-
>{-0.433,0.25},13->{0.433,-0.25},14->{0.433,0.25},15->{0.866,-0.5},16->{0.866,0.5}}

Edge list (SAGE 7.2):

[(0,8),(1,2),(1,8),(1,14),(2,10),(2,12),(3,4),(3,10),(3,12),(4,11),(4,13),(5,6),(5,9),
(5,15),(7,14),(8,9),(9,11),(10,11),(12,13),(13,15),(14,15)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-1.5155,-0.875],1:[0.,-1.],2:[0.,-
0.5],3:[0.,0.],4:[0.,0.5],5:[0.,1.],6:[0.,1.75],7:[1.5155,-0.875],8:[-0.866,-0.5],9:[-
0.866,0.5],10:[-0.433,-0.25],11:[-0.433,0.25],12:[0.433,-
0.25],13:[0.433,0.25],14:[0.866,-0.5],15:[0.866,0.5]}

Canonical vertex -coloring ::
{1->colorOne,2->colorOne,3->colorTwo,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorOne,8->colorOne,9->colorTwo,10->colorOne,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorTwo,16->colorOne}

208

8.6 (Figure 2.3) gadget (depth (q = 3) instance)

1

19

2

3

21

11 174

5

13 15

14 16

6

7

12 18

8

9

20 22

10

209

Graph Properties ::

--

Number of Vertices: ‘22’

Number of Edges: ‘30’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

210

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->19,2<->3,2<->19,2<->21,3<->11,3<->17,4<->5,4<->13,4<->15,5<->14,5<->16,6<->7,6<-
>14,6<->16,7<->12,7<->18,8<->9,8<->20,8<->22,10<->21,11<->12,11<->13,12<->20,13<-
>14,15<->16,15<->17,17<->18,18<->22,19<->20,21<->22}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-1.5155,-0.875},2->{0.,-1.},3->{0.,-0.6667},4->{0.,-0.3333},5->{0.,0.},6-
>{0.,0.3333},7->{0.,0.6667},8->{0.,1.},9->{0.,1.75},10->{1.5155,-0.875},11->{-0.5774,-
0.3333},12->{-0.5774,0.3333},13->{-0.2887,-0.1667},14->{-0.2887,0.1667},15->{0.2887,-
0.1667},16->{0.2887,0.1667},17->{0.5774,-0.3333},18->{0.5774,0.3333},19->{-0.866,-
0.5},20->{-0.866,0.5},21->{0.866,-0.5},22->{0.866,0.5}}

Edge list (SAGE 7.2):

[(0,18),(1,2),(1,18),(1,20),(2,10),(2,16),(3,4),(3,12),(3,14),(4,13),(4,15),(5,6),(5,1
3),(5,15),(6,11),(6,17),(7,8),(7,19),(7,21),(9,20),(10,11),(10,12),(11,19),(12,13),(14
,15),(14,16),(16,17),(17,21),(18,19),(20,21)]

Example embedding coordinates (SAGE 7.2):

{0:[-1.5155,-0.875],1:[0.,-1.],2:[0.,-0.6667],3:[0.,-
0.3333],4:[0.,0.],5:[0.,0.3333],6:[0.,0.6667],7:[0.,1.],8:[0.,1.75],9:[1.5155,-
0.875],10:[-0.5774,-0.3333],11:[-0.5774,0.3333],12:[-0.2887,-0.1667],13:[-
0.2887,0.1667],14:[0.2887,-0.1667],15:[0.2887,0.1667],16:[0.5774,-
0.3333],17:[0.5774,0.3333],18:[-0.866,-0.5],19:[-0.866,0.5],20:[0.866,-
0.5],21:[0.866,0.5]}

Canonical vertex -coloring ::
{1->colorOne,2->colorOne,3->colorTwo,4->colorOne,5->colorTwo,6->colorTwo,7-
>colorOne,8->colorTwo,9->colorOne,10->colorOne,11->colorOne,12->colorTwo,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorOne,18->colorTwo,19-
>colorTwo,20->colorOne,21->colorTwo,22->colorOne}

211

8.7 (Figure 3.1) gadget (depth (q = 1) instance)

1

2

3

6

5

10

4 7

8

9

14

12

13

11

15

16

212

Graph Properties ::

--

Number of Vertices: ‘16’

Number of Edges: ‘21’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

213

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,2<->3,2<->6,3<->5,3<->10,4<->5,4<->7,4<->8,5<->9,6<->7,6<->14,7<->12,8<->9,8<-
>12,9<->13,10<->11,10<->15,12<->13,13<->15,14<->15,14<->16}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-0.8333,-0.8875},2->{-0.5,-0.5542},3->{-0.5,0.4458},4->{-0.3,-0.3542},5->{-
0.3,0.4458},6->{0.,-0.5542},7->{0.,-0.3542},8->{0.,0.0458},9->{0.,0.4458},10-
>{0.,0.9458},11->{0.,1.2792},12->{0.3,-0.3542},13->{0.3,0.4458},14->{0.5,-0.5542},15-
>{0.5,0.4458},16->{0.8333,-0.8875}}

Edge list (SAGE 7.2):

[(0,1),(1,2),(1,5),(2,4),(2,9),(3,4),(3,6),(3,7),(4,8),(5,6),(5,13),(6,11),(7,8),(7,11
),(8,12),(9,10),(9,14),(11,12),(12,14),(13,14),(13,15)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-0.8333,-0.8875],1:[-0.5,-0.5542],2:[-0.5,0.4458],3:[-0.3,-0.3542],4:[-
0.3,0.4458],5:[0.,-0.5542],6:[0.,-
0.3542],7:[0.,0.0458],8:[0.,0.4458],9:[0.,0.9458],10:[0.,1.2792],11:[0.3,-
0.3542],12:[0.3,0.4458],13:[0.5,-0.5542],14:[0.5,0.4458],15:[0.8333,-0.8875]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorTwo,9->colorOne,10->colorTwo,11->colorOne,12->colorOne,13-
>colorTwo,14->colorTwo,15->colorOne,16->colorOne}

214

8.8 (Figure 3.1) gadget (depth (q = 2) instance)

1

2

3

10

5

18

4

6

11

17

7

12

9

16

8 13

14

15

26

24

22

20

21 23

25

19

27

28

215

Graph Properties ::

--

Number of Vertices: ‘28’

Number of Edges: ‘39’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

216

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,2<->3,2<->10,3<->5,3<->18,4<->5,4<->6,4<->11,5<->17,6<->7,6<->12,7<->9,7<-
>16,8<->9,8<->13,8<->14,9<->15,10<->11,10<->26,11<->24,12<->13,12<->22,13<->20,14<-
>15,14<->20,15<->21,16<->17,16<->23,17<->25,18<->19,18<->27,20<->21,21<->23,22<-
>23,22<->24,24<->25,25<->27,26<->27,26<->28}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-0.8333,-0.876},2->{-0.5,-0.5426},3->{-0.5,0.4574},4->{-0.3,-0.3426},5->{-
0.3,0.4574},6->{-0.1818,-0.2251},7->{-0.1818,0.1385},8->{-0.1091,-0.1524},9->{-
0.1091,0.1385},10->{0.,-0.5426},11->{0.,-0.3426},12->{0.,-0.2251},13->{0.,-0.1524},14-
>{0.,-0.007},15->{0.,0.1385},16->{0.,0.3203},17->{0.,0.4574},18->{0.,0.9574},19-
>{0.,1.2907},20->{0.1091,-0.1524},21->{0.1091,0.1385},22->{0.1818,-0.2251},23-
>{0.1818,0.1385},24->{0.3,-0.3426},25->{0.3,0.4574},26->{0.5,-0.5426},27-
>{0.5,0.4574},28->{0.8333,-0.876}}

Edge list (SAGE 7.2):

[(0,1),(1,2),(1,9),(2,4),(2,17),(3,4),(3,5),(3,10),(4,16),(5,6),(5,11),(6,8),(6,15),(7
,8),(7,12),(7,13),(8,14),(9,10),(9,25),(10,23),(11,12),(11,21),(12,19),(13,14),(13,19)
,(14,20),(15,16),(15,22),(16,24),(17,18),(17,26),(19,20),(20,22),(21,22),(21,23),(23,2
4),(24,26),(25,26),(25,27)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-0.8333,-0.876],1:[-0.5,-0.5426],2:[-0.5,0.4574],3:[-0.3,-0.3426],4:[-
0.3,0.4574],5:[-0.1818,-0.2251],6:[-0.1818,0.1385],7:[-0.1091,-0.1524],8:[-
0.1091,0.1385],9:[0.,-0.5426],10:[0.,-0.3426],11:[0.,-0.2251],12:[0.,-0.1524],13:[0.,-
0.007],14:[0.,0.1385],15:[0.,0.3203],16:[0.,0.4574],17:[0.,0.9574],18:[0.,1.2907],19:[
0.1091,-0.1524],20:[0.1091,0.1385],21:[0.1818,-0.2251],22:[0.1818,0.1385],23:[0.3,-
0.3426],24:[0.3,0.4574],25:[0.5,-0.5426],26:[0.5,0.4574],27:[0.8333,-0.876]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorOne,5->colorTwo,6->colorTwo,7-
>colorOne,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorOne,21->colorTwo,22->colorTwo,23->colorOne,24->colorOne,25-
>colorTwo,26->colorTwo,27->colorOne,28->colorOne}

217

8.9 (Figure 3.1) gadget (depth (q = 3) instance)

1

2

3

14

5

26

4

6

15

25

7

16

9

24

8

10

17

23

11

18

13

22

101010101010

12 19

20

21

38

36

34

32

3018181818

28

2931

33 35

37

27

39

40

218

Graph Properties ::

--

Number of Vertices: ‘40’

Number of Edges: ‘57’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

219

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,2<->3,2<->14,3<->5,3<->26,4<->5,4<->6,4<->15,5<->25,6<->7,6<->16,7<->9,7<-
>24,8<->9,8<->10,8<->17,9<->23,10<->11,10<->18,11<->13,11<->22,12<->13,12<->19,12<-
>20,13<->21,14<->15,14<->38,15<->36,16<->17,16<->34,17<->32,18<->19,18<->30,19<-
>28,20<->21,20<->28,21<->29,22<->23,22<->31,23<->33,24<->25,24<->35,25<->37,26<-
>27,26<->39,28<->29,29<->31,30<->31,30<->32,32<->33,33<->35,34<->35,34<->36,36<-
>37,37<->39,38<->39,38<->40}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-0.8333,-0.866},2->{-0.5,-0.5326},3->{-0.5,0.4674},4->{-0.3,-0.3326},5->{-
0.3,0.4674},6->{-0.1818,-0.2151},7->{-0.1818,0.1485},8->{-0.1091,-0.1424},9->{-
0.1091,0.1485},10->{-0.0661,-0.0997},11->{-0.0661,0.0326},12->{-0.0397,-0.0732},13->{-
0.0397,0.0326},14->{0.,-0.5326},15->{0.,-0.3326},16->{0.,-0.2151},17->{0.,-0.1424},18-
>{0.,-0.0997},19->{0.,-0.0732},20->{0.,-0.0203},21->{0.,0.0326},22->{0.,0.0987},23-
>{0.,0.1485},24->{0.,0.3303},25->{0.,0.4674},26->{0.,0.9674},27->{0.,1.3007},28-
>{0.0397,-0.0732},29->{0.0397,0.0326},30->{0.0661,-0.0997},31->{0.0661,0.0326},32-
>{0.1091,-0.1424},33->{0.1091,0.1485},34->{0.1818,-0.2151},35->{0.1818,0.1485},36-
>{0.3,-0.3326},37->{0.3,0.4674},38->{0.5,-0.5326},39->{0.5,0.4674},40->{0.8333,-
0.866}}

Edge list (SAGE 7.2):

[(0,1),(1,2),(1,13),(2,4),(2,25),(3,4),(3,5),(3,14),(4,24),(5,6),(5,15),(6,8),(6,23),(
7,8),(7,9),(7,16),(8,22),(9,10),(9,17),(10,12),(10,21),(11,12),(11,18),(11,19),(12,20)
,(13,14),(13,37),(14,35),(15,16),(15,33),(16,31),(17,18),(17,29),(18,27),(19,20),(19,2
7),(20,28),(21,22),(21,30),(22,32),(23,24),(23,34),(24,36),(25,26),(25,38),(27,28),(28
,30),(29,30),(29,31),(31,32),(32,34),(33,34),(33,35),(35,36),(36,38),(37,38),(37,39)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-0.8333,-0.866],1:[-0.5,-0.5326],2:[-0.5,0.4674],3:[-0.3,-0.3326],4:[-
0.3,0.4674],5:[-0.1818,-0.2151],6:[-0.1818,0.1485],7:[-0.1091,-0.1424],8:[-
0.1091,0.1485],9:[-0.0661,-0.0997],10:[-0.0661,0.0326],11:[-0.0397,-0.0732],12:[-
0.0397,0.0326],13:[0.,-0.5326],14:[0.,-0.3326],15:[0.,-0.2151],16:[0.,-
0.1424],17:[0.,-0.0997],18:[0.,-0.0732],19:[0.,-
0.0203],20:[0.,0.0326],21:[0.,0.0987],22:[0.,0.1485],23:[0.,0.3303],24:[0.,0.4674],25:
[0.,0.9674],26:[0.,1.3007],27:[0.0397,-0.0732],28:[0.0397,0.0326],29:[0.0661,-
0.0997],30:[0.0661,0.0326],31:[0.1091,-0.1424],32:[0.1091,0.1485],33:[0.1818,-
0.2151],34:[0.1818,0.1485],35:[0.3,-0.3326],36:[0.3,0.4674],37:[0.5,-
0.5326],38:[0.5,0.4674],39:[0.8333,-0.866]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorOne,5->colorTwo,6->colorTwo,7-
>colorOne,8->colorOne,9->colorTwo,10->colorTwo,11->colorOne,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorOne,29->colorTwo,30->colorTwo,31-
>colorOne,32->colorOne,33->colorTwo,34->colorTwo,35->colorOne,36->colorOne,37-
>colorTwo,38->colorTwo,39->colorOne,40->colorOne}

220

8.10 (Figure 4.4.a gadget) (equivalent to the (Figure 4.9.a)
gadget and to the “Fig. 2.a” gadget from ref. [118])

1

3

2

14

4

27

5

15

6

17

7

18

8

20

9

34

10

35

11

21

12

23

13

1212

24

26

42

16

28
15

1616
29

30

19

18

31

32

2020

19

33

10

22

36
21

2222
37

38

25

2424

39

40

2626

25

41

47
282828

4343

49

50
3232323232

4444

52

53
3636363636

4545

55

56
4040404040

4646

58

48

51

54

57

4747

59

50

60

53

61

56

62

63

64

65

66

67

63

69

70

64

72

73

65

75

76

66

78

68

83

67

79

86

71

87

70

80

90

74

91

73

81

94

77

95

76

82

98

84

79797979

85

88

80808080

89

92

818181

93

96

828282

97

111

8484
99

8484

100

86

101

102

8888
103

8888

104

116

117

9292
105

9292

106

9494

107

108

9696
109

9696

110

122

112

101101101

113

114

103103

115

118

107107107

119

120

109109

121

123

124

221

Graph Properties ::

--

Number of Vertices: ‘124’

Number of Edges: ‘182’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

222

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->14,3<->4,3<->27,4<->5,4<->15,5<->6,5<->17,6<->7,6<->18,7<->8,7<->20,8<-
>9,8<->34,9<->10,9<->35,10<->11,10<->21,11<->12,11<->23,12<->13,12<->24,13<->14,13<-
>26,14<->42,15<->16,15<->28,16<->17,16<->29,17<->30,18<->19,18<->31,19<->20,19<-
>32,20<->33,21<->22,21<->36,22<->23,22<->37,23<->38,24<->25,24<->39,25<->26,25<-
>40,26<->41,27<->28,27<->47,28<->43,29<->30,29<->43,30<->49,31<->32,31<->50,32<-
>44,33<->34,33<->44,34<->52,35<->36,35<->53,36<->45,37<->38,37<->45,38<->55,39<-
>40,39<->56,40<->46,41<->42,41<->46,42<->58,43<->48,44<->51,45<->54,46<->57,47<-
>48,47<->59,48<->49,49<->59,50<->51,50<->60,51<->52,52<->60,53<->54,53<->61,54<-
>55,55<->61,56<->57,56<->62,57<->58,58<->62,59<->63,60<->64,61<->65,62<->66,63<-
>67,63<->69,64<->70,64<->72,65<->73,65<->75,66<->76,66<->78,67<->68,67<->83,68<-
>69,68<->79,69<->86,70<->71,70<->87,71<->72,71<->80,72<->90,73<->74,73<->91,74<-
>75,74<->81,75<->94,76<->77,76<->95,77<->78,77<->82,78<->98,79<->84,79<->85,80<-
>88,80<->89,81<->92,81<->93,82<->96,82<->97,83<->84,83<->111,84<->99,85<->86,85<-
>100,86<->101,87<->88,87<->102,88<->103,89<->90,89<->104,90<->116,91<->92,91<-
>117,92<->105,93<->94,93<->106,94<->107,95<->96,95<->108,96<->109,97<->98,97<-
>110,98<->122,99<->100,99<->112,100<->101,101<->113,102<->103,102<->114,103<-
>104,104<->115,105<->106,105<->118,106<->107,107<->119,108<->109,108<->120,109<-
>110,110<->121,111<->112,111<->123,112<->113,113<->114,114<->115,115<->116,116<-
>117,117<->118,118<->119,119<->120,120<->121,121<->122,122<->124}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-10.0364},5->{-3.5,-7.6364},6-
>{-3.5,-5.4545},7->{-3.5,-3.0545},8->{-3.5,-1.0909},9->{-3.5,1.0909},10->{-
3.5,3.0545},11->{-3.5,5.4545},12->{-3.5,7.6364},13->{-3.5,10.0364},14->{-3.5,12.},15-
>{-2.8354,-10.0364},16->{-2.8354,-9.6},17->{-2.8354,-8.1542},18->{-2.8354,-4.9367},19-
>{-2.8354,-3.4909},20->{-2.8354,-3.0545},21->{-2.8354,3.0545},22->{-2.8354,3.4909},23-
>{-2.8354,4.9367},24->{-2.8354,8.1542},25->{-2.8354,9.6},26->{-2.8354,10.0364},27->{-
2.3028,-11.0671},28->{-2.3028,-10.1712},29->{-2.3028,-9.4652},30->{-2.3028,-
8.5693},31->{-2.3028,-4.5217},32->{-2.3028,-3.6258},33->{-2.3028,-2.9197},34->{-
2.3028,-2.0238},35->{-2.3028,2.0238},36->{-2.3028,2.9197},37->{-2.3028,3.6258},38->{-
2.3028,4.5217},39->{-2.3028,8.5693},40->{-2.3028,9.4652},41->{-2.3028,10.1712},42->{-
2.3028,11.0671},43->{-1.9736,-9.8182},44->{-1.9736,-3.2727},45->{-1.9736,3.2727},46-
>{-1.9736,9.8182},47->{-1.4,-10.3636},48->{-1.4,-9.8182},49->{-1.4,-9.2727},50->{-
1.4,-3.8182},51->{-1.4,-3.2727},52->{-1.4,-2.7273},53->{-1.4,2.7273},54->{-
1.4,3.2727},55->{-1.4,3.8182},56->{-1.4,9.2727},57->{-1.4,9.8182},58->{-
1.4,10.3636},59->{-0.7,-9.8182},60->{-0.7,-3.2727},61->{-0.7,3.2727},62->{-
0.7,9.8182},63->{0.7,-9.8182},64->{0.7,-3.2727},65->{0.7,3.2727},66->{0.7,9.8182},67-
>{1.4,-10.3636},68->{1.4,-9.8182},69->{1.4,-9.2727},70->{1.4,-3.8182},71->{1.4,-
3.2727},72->{1.4,-2.7273},73->{1.4,2.7273},74->{1.4,3.2727},75->{1.4,3.8182},76-
>{1.4,9.2727},77->{1.4,9.8182},78->{1.4,10.3636},79->{1.9736,-9.8182},80->{1.9736,-
3.2727},81->{1.9736,3.2727},82->{1.9736,9.8182},83->{2.3028,-11.0671},84->{2.3028,-
10.1712},85->{2.3028,-9.4652},86->{2.3028,-8.5693},87->{2.3028,-4.5217},88->{2.3028,-
3.6258},89->{2.3028,-2.9197},90->{2.3028,-2.0238},91->{2.3028,2.0238},92-
>{2.3028,2.9197},93->{2.3028,3.6258},94->{2.3028,4.5217},95->{2.3028,8.5693},96-
>{2.3028,9.4652},97->{2.3028,10.1712},98->{2.3028,11.0671},99->{2.8354,-10.0364},100-
>{2.8354,-9.6},101->{2.8354,-8.1542},102->{2.8354,-4.9367},103->{2.8354,-3.4909},104-
>{2.8354,-3.0545},105->{2.8354,3.0545},106->{2.8354,3.4909},107->{2.8354,4.9367},108-
>{2.8354,8.1542},109->{2.8354,9.6},110->{2.8354,10.0364},111->{3.5,-12.},112->{3.5,-
10.0364},113->{3.5,-7.6364},114->{3.5,-5.4545},115->{3.5,-3.0545},116->{3.5,-
1.0909},117->{3.5,1.0909},118->{3.5,3.0545},119->{3.5,5.4545},120->{3.5,7.6364},121-
>{3.5,10.0364},122->{3.5,12.},123->{6.,-14.5},124->{6.,14.5}}

223

Edge list (SAGE 7.2):

[(0,2),(1,13),(2,3),(2,26),(3,4),(3,14),(4,5),(4,16),(5,6),(5,17),(6,7),(6,19),(7,8),(
7,33),(8,9),(8,34),(9,10),(9,20),(10,11),(10,22),(11,12),(11,23),(12,13),(12,25),(13,4
1),(14,15),(14,27),(15,16),(15,28),(16,29),(17,18),(17,30),(18,19),(18,31),(19,32),(20
,21),(20,35),(21,22),(21,36),(22,37),(23,24),(23,38),(24,25),(24,39),(25,40),(26,27),(
26,46),(27,42),(28,29),(28,42),(29,48),(30,31),(30,49),(31,43),(32,33),(32,43),(33,51)
,(34,35),(34,52),(35,44),(36,37),(36,44),(37,54),(38,39),(38,55),(39,45),(40,41),(40,4
5),(41,57),(42,47),(43,50),(44,53),(45,56),(46,47),(46,58),(47,48),(48,58),(49,50),(49
,59),(50,51),(51,59),(52,53),(52,60),(53,54),(54,60),(55,56),(55,61),(56,57),(57,61),(
58,62),(59,63),(60,64),(61,65),(62,66),(62,68),(63,69),(63,71),(64,72),(64,74),(65,75)
,(65,77),(66,67),(66,82),(67,68),(67,78),(68,85),(69,70),(69,86),(70,71),(70,79),(71,8
9),(72,73),(72,90),(73,74),(73,80),(74,93),(75,76),(75,94),(76,77),(76,81),(77,97),(78
,83),(78,84),(79,87),(79,88),(80,91),(80,92),(81,95),(81,96),(82,83),(82,110),(83,98),
(84,85),(84,99),(85,100),(86,87),(86,101),(87,102),(88,89),(88,103),(89,115),(90,91),(
90,116),(91,104),(92,93),(92,105),(93,106),(94,95),(94,107),(95,108),(96,97),(96,109),
(97,121),(98,99),(98,111),(99,100),(100,112),(101,102),(101,113),(102,103),(103,114),(
104,105),(104,117),(105,106),(106,118),(107,108),(107,119),(108,109),(109,120),(110,11
1),(110,122),(111,112),(112,113),(113,114),(114,115),(115,116),(116,117),(117,118),(11
8,119),(119,120),(120,121),(121,123)]

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-10.0364],4:[-3.5,-7.6364],5:[-3.5,-
5.4545],6:[-3.5,-3.0545],7:[-3.5,-1.0909],8:[-3.5,1.0909],9:[-3.5,3.0545],10:[-
3.5,5.4545],11:[-3.5,7.6364],12:[-3.5,10.0364],13:[-3.5,12.],14:[-2.8354,-
10.0364],15:[-2.8354,-9.6],16:[-2.8354,-8.1542],17:[-2.8354,-4.9367],18:[-2.8354,-
3.4909],19:[-2.8354,-3.0545],20:[-2.8354,3.0545],21:[-2.8354,3.4909],22:[-
2.8354,4.9367],23:[-2.8354,8.1542],24:[-2.8354,9.6],25:[-2.8354,10.0364],26:[-2.3028,-
11.0671],27:[-2.3028,-10.1712],28:[-2.3028,-9.4652],29:[-2.3028,-8.5693],30:[-2.3028,-
4.5217],31:[-2.3028,-3.6258],32:[-2.3028,-2.9197],33:[-2.3028,-2.0238],34:[-
2.3028,2.0238],35:[-2.3028,2.9197],36:[-2.3028,3.6258],37:[-2.3028,4.5217],38:[-
2.3028,8.5693],39:[-2.3028,9.4652],40:[-2.3028,10.1712],41:[-2.3028,11.0671],42:[-
1.9736,-9.8182],43:[-1.9736,-3.2727],44:[-1.9736,3.2727],45:[-1.9736,9.8182],46:[-
1.4,-10.3636],47:[-1.4,-9.8182],48:[-1.4,-9.2727],49:[-1.4,-3.8182],50:[-1.4,-
3.2727],51:[-1.4,-2.7273],52:[-1.4,2.7273],53:[-1.4,3.2727],54:[-1.4,3.8182],55:[-
1.4,9.2727],56:[-1.4,9.8182],57:[-1.4,10.3636],58:[-0.7,-9.8182],59:[-0.7,-
3.2727],60:[-0.7,3.2727],61:[-0.7,9.8182],62:[0.7,-9.8182],63:[0.7,-
3.2727],64:[0.7,3.2727],65:[0.7,9.8182],66:[1.4,-10.3636],67:[1.4,-9.8182],68:[1.4,-
9.2727],69:[1.4,-3.8182],70:[1.4,-3.2727],71:[1.4,-
2.7273],72:[1.4,2.7273],73:[1.4,3.2727],74:[1.4,3.8182],75:[1.4,9.2727],76:[1.4,9.8182
],77:[1.4,10.3636],78:[1.9736,-9.8182],79:[1.9736,-
3.2727],80:[1.9736,3.2727],81:[1.9736,9.8182],82:[2.3028,-11.0671],83:[2.3028,-
10.1712],84:[2.3028,-9.4652],85:[2.3028,-8.5693],86:[2.3028,-4.5217],87:[2.3028,-
3.6258],88:[2.3028,-2.9197],89:[2.3028,-
2.0238],90:[2.3028,2.0238],91:[2.3028,2.9197],92:[2.3028,3.6258],93:[2.3028,4.5217],94
:[2.3028,8.5693],95:[2.3028,9.4652],96:[2.3028,10.1712],97:[2.3028,11.0671],98:[2.8354
,-10.0364],99:[2.8354,-9.6],100:[2.8354,-8.1542],101:[2.8354,-4.9367],102:[2.8354,-
3.4909],103:[2.8354,-
3.0545],104:[2.8354,3.0545],105:[2.8354,3.4909],106:[2.8354,4.9367],107:[2.8354,8.1542
],108:[2.8354,9.6],109:[2.8354,10.0364],110:[3.5,-12.],111:[3.5,-10.0364],112:[3.5,-
7.6364],113:[3.5,-5.4545],114:[3.5,-3.0545],115:[3.5,-
1.0909],116:[3.5,1.0909],117:[3.5,3.0545],118:[3.5,5.4545],119:[3.5,7.6364],120:[3.5,1
0.0364],121:[3.5,12.],122:[6.,-14.5],123:[6.,14.5]}

224

8.11 (Figure 4.4.b) gadget (equivalent to the (Figure 4.10.a)
gadget and to the “Fig. 3.e” gadget from ref. [118])

1

2

3

4

5

10

6

11

7

12

8

13

9

14

15

16

18

19

20

21

22

23

17

25

26

27

28

29

24

30

225

Graph Properties ::

--

Number of Vertices: ‘30’

Number of Edges: ‘40’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘3’

Output of SAGE 7.2’s ‘girth()’ function: ‘3’

Output for the ‘igraph’ R package ‘girth()’ function: ‘3’

226

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->4,2<->4,2<->5,3<->4,3<->10,5<->6,5<->11,6<->7,6<->12,7<->8,7<->13,8<-
>9,8<->14,9<->10,9<->15,10<->16,11<->12,11<->18,12<->19,13<->14,13<->20,14<->21,15<-
>16,15<->22,16<->23,17<->18,18<->25,19<->20,19<->26,20<->27,21<->22,21<->28,22<-
>29,23<->24,23<->30,25<->26,27<->28,29<->30}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-14.3619,0.},2->{-10.9333,-6.},3->{-10.9333,6.},4->{-7.5047,0.},5->{-2.9333,-
25.},6->{-2.9333,-13.},7->{-2.9333,-6.},8->{-2.9333,6.},9->{-2.9333,13.},10->{-
2.9333,25.},11->{1.0667,-25.},12->{1.0667,-13.},13->{1.0667,-6.},14->{1.0667,6.},15-
>{1.0667,13.},16->{1.0667,25.},17->{3.0667,-31.5},18->{3.0667,-27.5},19->{3.0667,-
10.5},20->{3.0667,-8.5},21->{3.0667,8.5},22->{3.0667,10.5},23->{3.0667,27.5},24-
>{3.0667,31.5},25->{5.0667,-25.},26->{5.0667,-13.},27->{5.0667,-6.},28-
>{5.0667,6.},29->{5.0667,13.},30->{5.0667,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,3),(1,3),(1,4),(2,3),(2,9),(4,5),(4,10),(5,6),(5,11),(6,7),(6,12),(7,8
),(7,13),(8,9),(8,14),(9,15),(10,11),(10,17),(11,18),(12,13),(12,19),(13,20),(14,15),(
14,21),(15,22),(16,17),(17,24),(18,19),(18,25),(19,26),(20,21),(20,27),(21,28),(22,23)
,(22,29),(24,25),(26,27),(28,29)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-14.3619,0.],1:[-10.9333,-6.],2:[-10.9333,6.],3:[-7.5047,0.],4:[-2.9333,-25.],5:[-
2.9333,-13.],6:[-2.9333,-6.],7:[-2.9333,6.],8:[-2.9333,13.],9:[-
2.9333,25.],10:[1.0667,-25.],11:[1.0667,-13.],12:[1.0667,-
6.],13:[1.0667,6.],14:[1.0667,13.],15:[1.0667,25.],16:[3.0667,-31.5],17:[3.0667,-
27.5],18:[3.0667,-10.5],19:[3.0667,-
8.5],20:[3.0667,8.5],21:[3.0667,10.5],22:[3.0667,27.5],23:[3.0667,31.5],24:[5.0667,-
25.],25:[5.0667,-13.],26:[5.0667,-6.],27:[5.0667,6.],28:[5.0667,13.],29:[5.0667,25.]}

227

8.12 (Figure 4.4.c) gadget (equivalent to the (Figure 4.11.a)
gadget and to the “single-literal clause” gadget shown in
“Fig. 5” of ref. [118])

1

2

3

4

5

6

8

9

7

11

10

12

228

Graph Properties ::

--

Number of Vertices: ‘12’

Number of Edges: ‘15’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘3’

Output of SAGE 7.2’s ‘girth()’ function: ‘3’

Output for the ‘igraph’ R package ‘girth()’ function: ‘3’

229

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->4,2<->4,2<->5,3<->4,3<->6,5<->6,5<->8,6<->9,7<->8,8<->11,9<->10,9<-
>12,11<->12}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-5.0133,0.},2->{-3.3333,-2.94},3->{-3.3333,2.94},4->{-1.6533,0.},5->{-0.3333,-
6.},6->{-0.3333,6.},7->{1.6667,-12.5},8->{1.6667,-8.5},9->{1.6667,8.5},10-
>{1.6667,12.5},11->{3.6667,-6.},12->{3.6667,6.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,3),(1,3),(1,4),(2,3),(2,5),(4,5),(4,7),(5,8),(6,7),(7,10),(8,9),(8,11)
,(10,11)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-5.0133,0.],1:[-3.3333,-2.94],2:[-3.3333,2.94],3:[-1.6533,0.],4:[-0.3333,-6.],5:[-
0.3333,6.],6:[1.6667,-12.5],7:[1.6667,-
8.5],8:[1.6667,8.5],9:[1.6667,12.5],10:[3.6667,-6.],11:[3.6667,6.]}

230

8.13 (Figure 4.5.a) gadget (specifying (z = 1) blocks)

1

3

2

4

5

10

6

21

7

11

8

14

9

15

25

26

12

16

13

17

18

20

22

19 23

24

27

28

29

30

231

Graph Properties ::

--

Number of Vertices: ‘30’

Number of Edges: ‘41’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

232

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->4,3<->4,3<->5,4<->10,5<->6,5<->21,6<->7,6<->11,7<->8,7<->14,8<->9,8<-
>15,9<->10,9<->25,10<->26,11<->12,11<->16,12<->13,12<->17,13<->14,13<->18,14<->15,15<-
>20,16<->17,16<->22,17<->18,18<->19,19<->20,19<->23,20<->24,21<->22,21<->27,22<-
>23,23<->24,24<->25,25<->26,26<->28,27<->28,27<->29,28<->30}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-13.86},2->{-6.,15.1399},3->{-3.5,-11.36},4->{-3.5,12.6399},5->{-2.,-
11.36},6->{-2.,-6.5601},7->{-2.,0.64},8->{-2.,3.0403},9->{-2.,7.8402},10->{-
2.,12.6399},11->{-0.6667,-6.5601},12->{-0.6667,-4.1602},13->{-0.6667,-1.7599},14->{-
0.6667,0.64},15->{-0.6667,3.0403},16->{0.6667,-6.5601},17->{0.6667,-4.1602},18-
>{0.6667,-1.7599},19->{0.6667,0.64},20->{0.6667,3.0403},21->{2.,-11.36},22->{2.,-
6.5601},23->{2.,0.64},24->{2.,3.0403},25->{2.,7.8402},26->{2.,12.6399},27->{3.5,-
11.36},28->{3.5,12.6399},29->{6.,-13.86},30->{6.,15.1399}}

Edge list (SAGE 7.2):

[(0,2),(1,3),(2,3),(2,4),(3,9),(4,5),(4,20),(5,6),(5,10),(6,7),(6,13),(7,8),(7,14),(8,
9),(8,24),(9,25),(10,11),(10,15),(11,12),(11,16),(12,13),(12,17),(13,14),(14,19),(15,1
6),(15,21),(16,17),(17,18),(18,19),(18,22),(19,23),(20,21),(20,26),(21,22),(22,23),(23
,24),(24,25),(25,27),(26,27),(26,28),(27,29)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-13.86],1:[-6.,15.1399],2:[-3.5,-11.36],3:[-3.5,12.6399],4:[-2.,-11.36],5:[-
2.,-6.5601],6:[-2.,0.64],7:[-2.,3.0403],8:[-2.,7.8402],9:[-2.,12.6399],10:[-0.6667,-
6.5601],11:[-0.6667,-4.1602],12:[-0.6667,-1.7599],13:[-0.6667,0.64],14:[-
0.6667,3.0403],15:[0.6667,-6.5601],16:[0.6667,-4.1602],17:[0.6667,-
1.7599],18:[0.6667,0.64],19:[0.6667,3.0403],20:[2.,-11.36],21:[2.,-
6.5601],22:[2.,0.64],23:[2.,3.0403],24:[2.,7.8402],25:[2.,12.6399],26:[3.5,-
11.36],27:[3.5,12.6399],28:[6.,-13.86],29:[6.,15.1399]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorOne,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorTwo,28->colorOne,29->colorOne,30->colorTwo}

233

8.14 (Figure 4.5.a) gadget (specifying (z = 2) blocks)

1

3

2

6

4

7

5

12

13

18

8

39

9

19

10

22

11

23

43

44

14

45

15

24

16

27

17

28

49

50

20

29

21

30

31

33

25

34

26

35

36

38

40

32 41

42

46

37 47

48

51

52

53

54

55

56

234

Graph Properties ::

--

Number of Vertices: ‘56’

Number of Edges: ‘80’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

235

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->6,3<->4,3<->7,4<->5,4<->12,5<->6,5<->13,6<->18,7<->8,7<->39,8<->9,8<-
>19,9<->10,9<->22,10<->11,10<->23,11<->12,11<->43,12<->44,13<->14,13<->45,14<->15,14<-
>24,15<->16,15<->27,16<->17,16<->28,17<->18,17<->49,18<->50,19<->20,19<->29,20<-
>21,20<->30,21<->22,21<->31,22<->23,23<->33,24<->25,24<->34,25<->26,25<->35,26<-
>27,26<->36,27<->28,28<->38,29<->30,29<->40,30<->31,31<->32,32<->33,32<->41,33<-
>42,34<->35,34<->46,35<->36,36<->37,37<->38,37<->47,38<->48,39<->40,39<->51,40<-
>41,41<->42,42<->43,43<->44,44<->52,45<->46,45<->53,46<->47,47<->48,48<->49,49<-
>50,50<->54,51<->52,51<->55,52<->53,53<->54,54<->56}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.2061},2->{-6.,14.7939},3->{-3.5,-11.7061},4->{-3.5,-1.4205},5->{-
3.5,2.0082},6->{-3.5,12.2939},7->{-2.,-11.7061},8->{-2.,-9.649},9->{-2.,-6.5633},10-
>{-2.,-5.5346},11->{-2.,-3.4775},12->{-2.,-1.4205},13->{-2.,2.0082},14->{-
2.,4.0654},15->{-2.,7.1511},16->{-2.,8.1794},17->{-2.,10.2367},18->{-2.,12.2939},19-
>{-0.6667,-9.649},20->{-0.6667,-8.6205},21->{-0.6667,-7.5918},22->{-0.6667,-
6.5633},23->{-0.6667,-5.5346},24->{-0.6667,4.0654},25->{-0.6667,5.0939},26->{-
0.6667,6.1224},27->{-0.6667,7.1511},28->{-0.6667,8.1794},29->{0.6667,-9.649},30-
>{0.6667,-8.6205},31->{0.6667,-7.5918},32->{0.6667,-6.5633},33->{0.6667,-5.5346},34-
>{0.6667,4.0654},35->{0.6667,5.0939},36->{0.6667,6.1224},37->{0.6667,7.1511},38-
>{0.6667,8.1794},39->{2.,-11.7061},40->{2.,-9.649},41->{2.,-6.5633},42->{2.,-
5.5346},43->{2.,-3.4775},44->{2.,-1.4205},45->{2.,2.0082},46->{2.,4.0654},47-
>{2.,7.1511},48->{2.,8.1794},49->{2.,10.2367},50->{2.,12.2939},51->{3.5,-11.7061},52-
>{3.5,-1.4205},53->{3.5,2.0082},54->{3.5,12.2939},55->{6.,-14.2061},56->{6.,14.7939}}

Edge list (SAGE 7.2):

[(0,2),(1,5),(2,3),(2,6),(3,4),(3,11),(4,5),(4,12),(5,17),(6,7),(6,38),(7,8),(7,18),(8
,9),(8,21),(9,10),(9,22),(10,11),(10,42),(11,43),(12,13),(12,44),(13,14),(13,23),(14,1
5),(14,26),(15,16),(15,27),(16,17),(16,48),(17,49),(18,19),(18,28),(19,20),(19,29),(20
,21),(20,30),(21,22),(22,32),(23,24),(23,33),(24,25),(24,34),(25,26),(25,35),(26,27),(
27,37),(28,29),(28,39),(29,30),(30,31),(31,32),(31,40),(32,41),(33,34),(33,45),(34,35)
,(35,36),(36,37),(36,46),(37,47),(38,39),(38,50),(39,40),(40,41),(41,42),(42,43),(43,5
1),(44,45),(44,52),(45,46),(46,47),(47,48),(48,49),(49,53),(50,51),(50,54),(51,52),(52
,53),(53,55)]

236

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.2061],1:[-6.,14.7939],2:[-3.5,-11.7061],3:[-3.5,-1.4205],4:[-
3.5,2.0082],5:[-3.5,12.2939],6:[-2.,-11.7061],7:[-2.,-9.649],8:[-2.,-6.5633],9:[-2.,-
5.5346],10:[-2.,-3.4775],11:[-2.,-1.4205],12:[-2.,2.0082],13:[-2.,4.0654],14:[-
2.,7.1511],15:[-2.,8.1794],16:[-2.,10.2367],17:[-2.,12.2939],18:[-0.6667,-9.649],19:[-
0.6667,-8.6205],20:[-0.6667,-7.5918],21:[-0.6667,-6.5633],22:[-0.6667,-5.5346],23:[-
0.6667,4.0654],24:[-0.6667,5.0939],25:[-0.6667,6.1224],26:[-0.6667,7.1511],27:[-
0.6667,8.1794],28:[0.6667,-9.649],29:[0.6667,-8.6205],30:[0.6667,-7.5918],31:[0.6667,-
6.5633],32:[0.6667,-
5.5346],33:[0.6667,4.0654],34:[0.6667,5.0939],35:[0.6667,6.1224],36:[0.6667,7.1511],37
:[0.6667,8.1794],38:[2.,-11.7061],39:[2.,-9.649],40:[2.,-6.5633],41:[2.,-
5.5346],42:[2.,-3.4775],43:[2.,-
1.4205],44:[2.,2.0082],45:[2.,4.0654],46:[2.,7.1511],47:[2.,8.1794],48:[2.,10.2367],49
:[2.,12.2939],50:[3.5,-11.7061],51:[3.5,-
1.4205],52:[3.5,2.0082],53:[3.5,12.2939],54:[6.,-14.2061],55:[6.,14.7939]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorOne,21->colorTwo,22->colorOne,23->colorTwo,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorOne,35->colorTwo,36->colorOne,37-
>colorTwo,38->colorOne,39->colorOne,40->colorTwo,41->colorOne,42->colorTwo,43-
>colorOne,44->colorTwo,45->colorOne,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo,51->colorTwo,52->colorOne,53->colorTwo,54->colorOne,55-
>colorOne,56->colorTwo}

237

8.15 (Figure 4.5.a) gadget (specifying (z = 3) blocks)

1

3

2

8

4

9

5

14

6

15

7

20

21

26

10

57

11

27

12

30

13

31

61

62

16

63

17

32

18

35

19

36

67

68

22

69

23

37

24

40

25

41

73

74

28

42

29

43

44

46

33

47

34

48

49

51

38

52

39

53

54

56

58

45 59

60

64

50 65

66

70

55 71

72

75

76

77

78

79

80

81

82

238

Graph Properties ::

--

Number of Vertices: ‘82’

Number of Edges: ‘119’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

239

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->8,3<->4,3<->9,4<->5,4<->14,5<->6,5<->15,6<->7,6<->20,7<->8,7<->21,8<-
>26,9<->10,9<->57,10<->11,10<->27,11<->12,11<->30,12<->13,12<->31,13<->14,13<->61,14<-
>62,15<->16,15<->63,16<->17,16<->32,17<->18,17<->35,18<->19,18<->36,19<->20,19<-
>67,20<->68,21<->22,21<->69,22<->23,22<->37,23<->24,23<->40,24<->25,24<->41,25<-
>26,25<->73,26<->74,27<->28,27<->42,28<->29,28<->43,29<->30,29<->44,30<->31,31<-
>46,32<->33,32<->47,33<->34,33<->48,34<->35,34<->49,35<->36,36<->51,37<->38,37<-
>52,38<->39,38<->53,39<->40,39<->54,40<->41,41<->56,42<->43,42<->58,43<->44,44<-
>45,45<->46,45<->59,46<->60,47<->48,47<->64,48<->49,49<->50,50<->51,50<->65,51<-
>66,52<->53,52<->70,53<->54,54<->55,55<->56,55<->71,56<->72,57<->58,57<->75,58<-
>59,59<->60,60<->61,61<->62,62<->76,63<->64,63<->77,64<->65,65<->66,66<->67,67<-
>68,68<->78,69<->70,69<->79,70<->71,71<->72,72<->73,73<->74,74<->80,75<->76,75<-
>81,76<->77,77<->78,78<->79,79<->80,80<->82}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.3084},2->{-6.,14.6916},3->{-3.5,-11.8084},4->{-3.5,-5.263},5->{-3.5,-
3.0811},6->{-3.5,3.4643},7->{-3.5,5.6461},8->{-3.5,12.1916},9->{-2.,-11.8084},10->{-
2.,-10.4993},11->{-2.,-8.5357},12->{-2.,-7.8811},13->{-2.,-6.572},14->{-2.,-5.263},15-
>{-2.,-3.0811},16->{-2.,-1.772},17->{-2.,0.1916},18->{-2.,0.846},19->{-2.,2.1552},20-
>{-2.,3.4643},21->{-2.,5.6461},22->{-2.,6.9551},23->{-2.,8.9189},24->{-2.,9.5734},25-
>{-2.,10.8825},26->{-2.,12.1916},27->{-0.6667,-10.4993},28->{-0.6667,-9.8448},29->{-
0.6667,-9.1902},30->{-0.6667,-8.5357},31->{-0.6667,-7.8811},32->{-0.6667,-1.772},33-
>{-0.6667,-1.1175},34->{-0.6667,-0.463},35->{-0.6667,0.1916},36->{-0.6667,0.846},37-
>{-0.6667,6.9551},38->{-0.6667,7.6098},39->{-0.6667,8.2642},40->{-0.6667,8.9189},41-
>{-0.6667,9.5734},42->{0.6667,-10.4993},43->{0.6667,-9.8448},44->{0.6667,-9.1902},45-
>{0.6667,-8.5357},46->{0.6667,-7.8811},47->{0.6667,-1.772},48->{0.6667,-1.1175},49-
>{0.6667,-0.463},50->{0.6667,0.1916},51->{0.6667,0.846},52->{0.6667,6.9551},53-
>{0.6667,7.6098},54->{0.6667,8.2642},55->{0.6667,8.9189},56->{0.6667,9.5734},57->{2.,-
11.8084},58->{2.,-10.4993},59->{2.,-8.5357},60->{2.,-7.8811},61->{2.,-6.572},62->{2.,-
5.263},63->{2.,-3.0811},64->{2.,-1.772},65->{2.,0.1916},66->{2.,0.846},67-
>{2.,2.1552},68->{2.,3.4643},69->{2.,5.6461},70->{2.,6.9551},71->{2.,8.9189},72-
>{2.,9.5734},73->{2.,10.8825},74->{2.,12.1916},75->{3.5,-11.8084},76->{3.5,-5.263},77-
>{3.5,-3.0811},78->{3.5,3.4643},79->{3.5,5.6461},80->{3.5,12.1916},81->{6.,-
14.3084},82->{6.,14.6916}}

Edge list (SAGE 7.2):

[(0,2),(1,7),(2,3),(2,8),(3,4),(3,13),(4,5),(4,14),(5,6),(5,19),(6,7),(6,20),(7,25),(8
,9),(8,56),(9,10),(9,26),(10,11),(10,29),(11,12),(11,30),(12,13),(12,60),(13,61),(14,1
5),(14,62),(15,16),(15,31),(16,17),(16,34),(17,18),(17,35),(18,19),(18,66),(19,67),(20
,21),(20,68),(21,22),(21,36),(22,23),(22,39),(23,24),(23,40),(24,25),(24,72),(25,73),(
26,27),(26,41),(27,28),(27,42),(28,29),(28,43),(29,30),(30,45),(31,32),(31,46),(32,33)
,(32,47),(33,34),(33,48),(34,35),(35,50),(36,37),(36,51),(37,38),(37,52),(38,39),(38,5
3),(39,40),(40,55),(41,42),(41,57),(42,43),(43,44),(44,45),(44,58),(45,59),(46,47),(46
,63),(47,48),(48,49),(49,50),(49,64),(50,65),(51,52),(51,69),(52,53),(53,54),(54,55),(
54,70),(55,71),(56,57),(56,74),(57,58),(58,59),(59,60),(60,61),(61,75),(62,63),(62,76)
,(63,64),(64,65),(65,66),(66,67),(67,77),(68,69),(68,78),(69,70),(70,71),(71,72),(72,7
3),(73,79),(74,75),(74,80),(75,76),(76,77),(77,78),(78,79),(79,81)]

240

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.3084],1:[-6.,14.6916],2:[-3.5,-11.8084],3:[-3.5,-5.263],4:[-3.5,-
3.0811],5:[-3.5,3.4643],6:[-3.5,5.6461],7:[-3.5,12.1916],8:[-2.,-11.8084],9:[-2.,-
10.4993],10:[-2.,-8.5357],11:[-2.,-7.8811],12:[-2.,-6.572],13:[-2.,-5.263],14:[-2.,-
3.0811],15:[-2.,-1.772],16:[-2.,0.1916],17:[-2.,0.846],18:[-2.,2.1552],19:[-
2.,3.4643],20:[-2.,5.6461],21:[-2.,6.9551],22:[-2.,8.9189],23:[-2.,9.5734],24:[-
2.,10.8825],25:[-2.,12.1916],26:[-0.6667,-10.4993],27:[-0.6667,-9.8448],28:[-0.6667,-
9.1902],29:[-0.6667,-8.5357],30:[-0.6667,-7.8811],31:[-0.6667,-1.772],32:[-0.6667,-
1.1175],33:[-0.6667,-0.463],34:[-0.6667,0.1916],35:[-0.6667,0.846],36:[-
0.6667,6.9551],37:[-0.6667,7.6098],38:[-0.6667,8.2642],39:[-0.6667,8.9189],40:[-
0.6667,9.5734],41:[0.6667,-10.4993],42:[0.6667,-9.8448],43:[0.6667,-
9.1902],44:[0.6667,-8.5357],45:[0.6667,-7.8811],46:[0.6667,-1.772],47:[0.6667,-
1.1175],48:[0.6667,-
0.463],49:[0.6667,0.1916],50:[0.6667,0.846],51:[0.6667,6.9551],52:[0.6667,7.6098],53:[
0.6667,8.2642],54:[0.6667,8.9189],55:[0.6667,9.5734],56:[2.,-11.8084],57:[2.,-
10.4993],58:[2.,-8.5357],59:[2.,-7.8811],60:[2.,-6.572],61:[2.,-5.263],62:[2.,-
3.0811],63:[2.,-
1.772],64:[2.,0.1916],65:[2.,0.846],66:[2.,2.1552],67:[2.,3.4643],68:[2.,5.6461],69:[2
.,6.9551],70:[2.,8.9189],71:[2.,9.5734],72:[2.,10.8825],73:[2.,12.1916],74:[3.5,-
11.8084],75:[3.5,-5.263],76:[3.5,-
3.0811],77:[3.5,3.4643],78:[3.5,5.6461],79:[3.5,12.1916],80:[6.,-
14.3084],81:[6.,14.6916]}

Canonical vertex -coloring ::
{1->colorTwo,3->colorOne,2->colorOne,8->colorTwo,4->colorTwo,9->colorTwo,5-
>colorOne,14->colorOne,6->colorTwo,15->colorTwo,7->colorOne,20->colorOne,21-
>colorTwo,26->colorOne,10->colorOne,57->colorOne,11->colorTwo,27->colorTwo,12-
>colorOne,30->colorOne,13->colorTwo,31->colorTwo,61->colorOne,62->colorTwo,16-
>colorOne,63->colorOne,17->colorTwo,32->colorTwo,18->colorOne,35->colorOne,19-
>colorTwo,36->colorTwo,67->colorOne,68->colorTwo,22->colorOne,69->colorOne,23-
>colorTwo,37->colorTwo,24->colorOne,40->colorOne,25->colorTwo,41->colorTwo,73-
>colorOne,74->colorTwo,28->colorOne,42->colorOne,29->colorTwo,43->colorTwo,44-
>colorOne,46->colorOne,33->colorOne,47->colorOne,34->colorTwo,48->colorTwo,49-
>colorOne,51->colorOne,38->colorOne,52->colorOne,39->colorTwo,53->colorTwo,54-
>colorOne,56->colorOne,58->colorTwo,45->colorTwo,59->colorOne,60->colorTwo,64-
>colorTwo,50->colorTwo,65->colorOne,66->colorTwo,70->colorTwo,55->colorTwo,71-
>colorOne,72->colorTwo,75->colorTwo,76->colorOne,77->colorTwo,78->colorOne,79-
>colorTwo,80->colorOne,81->colorOne,82->colorTwo}

241

8.16 (Figure 4.5.b) gadget (specifying (z = 1) blocks)

1

2

3

29

4

34

5

10

6

21

7

11

8

14

9

15

25

26

12

16

13

17

18

20

22

19 23

24

27

28

31

32

30

35

36

37

33

38

39

40

42

43

44

45

46

47

41

49

50

51

52

53

48

54

242

Graph Properties ::

--

Number of Vertices: ‘54’

Number of Edges: ‘76’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

243

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->29,2<->4,2<->34,3<->4,3<->5,4<->10,5<->6,5<->21,6<->7,6<->11,7<-
>8,7<->14,8<->9,8<->15,9<->10,9<->25,10<->26,11<->12,11<->16,12<->13,12<->17,13<-
>14,13<->18,14<->15,15<->20,16<->17,16<->22,17<->18,18<->19,19<->20,19<->23,20<-
>24,21<->22,21<->27,22<->23,23<->24,24<->25,25<->26,26<->28,27<->28,27<->31,28<-
>32,29<->30,29<->35,30<->31,30<->36,31<->37,32<->33,32<->38,33<->34,33<->39,34<-
>40,35<->36,35<->42,36<->43,37<->38,37<->44,38<->45,39<->40,39<->46,40<->47,41<-
>42,42<->49,43<->44,43<->50,44<->51,45<->46,45<->52,46<->53,47<->48,47<->54,49<-
>50,51<->52,53<->54}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-14.2592,-12.6445},2->{-14.2592,13.3555},3->{-9.7592,-11.6445},4->{-
9.7592,12.3554},5->{-8.2592,-11.6445},6->{-8.2592,-6.8446},7->{-8.2592,0.3555},8->{-
8.2592,2.7558},9->{-8.2592,7.5557},10->{-8.2592,12.3554},11->{-6.9259,-6.8446},12->{-
6.9259,-4.4447},13->{-6.9259,-2.0444},14->{-6.9259,0.3555},15->{-6.9259,2.7558},16->{-
5.5925,-6.8446},17->{-5.5925,-4.4447},18->{-5.5925,-2.0444},19->{-5.5925,0.3555},20-
>{-5.5925,2.7558},21->{-4.2592,-11.6445},22->{-4.2592,-6.8446},23->{-
4.2592,0.3555},24->{-4.2592,2.7558},25->{-4.2592,7.5557},26->{-4.2592,12.3554},27->{-
2.7592,-11.6445},28->{-2.7592,12.3554},29->{2.7407,-24.6445},30->{2.7407,-12.6445},31-
>{2.7407,-5.6445},32->{2.7407,6.3555},33->{2.7407,13.3555},34->{2.7407,25.3555},35-
>{6.7408,-24.6445},36->{6.7408,-12.6445},37->{6.7408,-5.6445},38->{6.7408,6.3555},39-
>{6.7408,13.3555},40->{6.7408,25.3555},41->{8.7408,-31.1445},42->{8.7408,-27.1445},43-
>{8.7408,-10.1445},44->{8.7408,-8.1445},45->{8.7408,8.8555},46->{8.7408,10.8555},47-
>{8.7408,27.8555},48->{8.7408,31.8555},49->{10.7408,-24.6445},50->{10.7408,-
12.6445},51->{10.7408,-5.6445},52->{10.7408,6.3555},53->{10.7408,13.3555},54-
>{10.7408,25.3555}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,28),(1,3),(1,33),(2,3),(2,4),(3,9),(4,5),(4,20),(5,6),(5,10),(6,7),(6,
13),(7,8),(7,14),(8,9),(8,24),(9,25),(10,11),(10,15),(11,12),(11,16),(12,13),(12,17),(
13,14),(14,19),(15,16),(15,21),(16,17),(17,18),(18,19),(18,22),(19,23),(20,21),(20,26)
,(21,22),(22,23),(23,24),(24,25),(25,27),(26,27),(26,30),(27,31),(28,29),(28,34),(29,3
0),(29,35),(30,36),(31,32),(31,37),(32,33),(32,38),(33,39),(34,35),(34,41),(35,42),(36
,37),(36,43),(37,44),(38,39),(38,45),(39,46),(40,41),(41,48),(42,43),(42,49),(43,50),(
44,45),(44,51),(45,52),(46,47),(46,53),(48,49),(50,51),(52,53)]

244

-

Example embedding coordinates (SAGE 7.2):

{0:[-14.2592,-12.6445],1:[-14.2592,13.3555],2:[-9.7592,-11.6445],3:[-
9.7592,12.3554],4:[-8.2592,-11.6445],5:[-8.2592,-6.8446],6:[-8.2592,0.3555],7:[-
8.2592,2.7558],8:[-8.2592,7.5557],9:[-8.2592,12.3554],10:[-6.9259,-6.8446],11:[-
6.9259,-4.4447],12:[-6.9259,-2.0444],13:[-6.9259,0.3555],14:[-6.9259,2.7558],15:[-
5.5925,-6.8446],16:[-5.5925,-4.4447],17:[-5.5925,-2.0444],18:[-5.5925,0.3555],19:[-
5.5925,2.7558],20:[-4.2592,-11.6445],21:[-4.2592,-6.8446],22:[-4.2592,0.3555],23:[-
4.2592,2.7558],24:[-4.2592,7.5557],25:[-4.2592,12.3554],26:[-2.7592,-11.6445],27:[-
2.7592,12.3554],28:[2.7407,-24.6445],29:[2.7407,-12.6445],30:[2.7407,-
5.6445],31:[2.7407,6.3555],32:[2.7407,13.3555],33:[2.7407,25.3555],34:[6.7408,-
24.6445],35:[6.7408,-12.6445],36:[6.7408,-
5.6445],37:[6.7408,6.3555],38:[6.7408,13.3555],39:[6.7408,25.3555],40:[8.7408,-
31.1445],41:[8.7408,-27.1445],42:[8.7408,-10.1445],43:[8.7408,-
8.1445],44:[8.7408,8.8555],45:[8.7408,10.8555],46:[8.7408,27.8555],47:[8.7408,31.8555]
,48:[10.7408,-24.6445],49:[10.7408,-12.6445],50:[10.7408,-
5.6445],51:[10.7408,6.3555],52:[10.7408,13.3555],53:[10.7408,25.3555]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorOne,6->colorTwo,7-
>colorOne,8->colorTwo,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorTwo,22->colorOne,23->colorTwo,24->colorOne,25-
>colorTwo,26->colorOne,27->colorOne,28->colorTwo,29->colorTwo,30->colorOne,31-
>colorTwo,32->colorOne,33->colorTwo,34->colorOne,35->colorOne,36->colorTwo,37-
>colorOne,38->colorTwo,39->colorOne,40->colorTwo,41->colorOne,42->colorTwo,43-
>colorOne,44->colorTwo,45->colorOne,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo,51->colorOne,52->colorTwo,53->colorOne,54->colorTwo}

245

8.17 (Figure 4.5.b) gadget (specifying (z = 2) blocks)

1

2

3

55

6

60

4

7

5

12

13

18

8

39

9

19

10

22

11

23

43

44

14

45

15

24

16

27

17

28

49

50

20

29

21

30

31

33

25

34

26

35

36

38

40

32 41

42

46

37 47

48

51

52

53

54

57

58

56

61

62

63

59

64

65

66

68

69

70

71

72

73

67

75

76

77

78

79

74

80

246

Graph Properties ::

--

Number of Vertices: ‘80’

Number of Edges: ‘115’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

247

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->55,2<->6,2<->60,3<->4,3<->7,4<->5,4<->12,5<->6,5<->13,6<->18,7<-
>8,7<->39,8<->9,8<->19,9<->10,9<->22,10<->11,10<->23,11<->12,11<->43,12<->44,13<-
>14,13<->45,14<->15,14<->24,15<->16,15<->27,16<->17,16<->28,17<->18,17<->49,18<-
>50,19<->20,19<->29,20<->21,20<->30,21<->22,21<->31,22<->23,23<->33,24<->25,24<-
>34,25<->26,25<->35,26<->27,26<->36,27<->28,28<->38,29<->30,29<->40,30<->31,31<-
>32,32<->33,32<->41,33<->42,34<->35,34<->46,35<->36,36<->37,37<->38,37<->47,38<-
>48,39<->40,39<->51,40<->41,41<->42,42<->43,43<->44,44<->52,45<->46,45<->53,46<-
>47,47<->48,48<->49,49<->50,50<->54,51<->52,51<->57,52<->53,53<->54,54<->58,55<-
>56,55<->61,56<->57,56<->62,57<->63,58<->59,58<->64,59<->60,59<->65,60<->66,61<-
>62,61<->68,62<->69,63<->64,63<->70,64<->71,65<->66,65<->72,66<->73,67<->68,68<-
>75,69<->70,69<->76,70<->77,71<->72,71<->78,72<->79,73<->74,73<->80,75<->76,77<-
>78,79<->80}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-12.225,-12.7943},2->{-12.225,13.2057},3->{-7.725,-11.7943},4->{-7.725,-
1.5087},5->{-7.725,1.92},6->{-7.725,12.2057},7->{-6.225,-11.7943},8->{-6.225,-
9.7372},9->{-6.225,-6.6515},10->{-6.225,-5.6228},11->{-6.225,-3.5657},12->{-6.225,-
1.5087},13->{-6.225,1.92},14->{-6.225,3.9772},15->{-6.225,7.0629},16->{-
6.225,8.0912},17->{-6.225,10.1485},18->{-6.225,12.2057},19->{-4.8917,-9.7372},20->{-
4.8917,-8.7087},21->{-4.8917,-7.68},22->{-4.8917,-6.6515},23->{-4.8917,-5.6228},24->{-
4.8917,3.9772},25->{-4.8917,5.0057},26->{-4.8917,6.0342},27->{-4.8917,7.0629},28->{-
4.8917,8.0912},29->{-3.5583,-9.7372},30->{-3.5583,-8.7087},31->{-3.5583,-7.68},32->{-
3.5583,-6.6515},33->{-3.5583,-5.6228},34->{-3.5583,3.9772},35->{-3.5583,5.0057},36->{-
3.5583,6.0342},37->{-3.5583,7.0629},38->{-3.5583,8.0912},39->{-2.225,-11.7943},40->{-
2.225,-9.7372},41->{-2.225,-6.6515},42->{-2.225,-5.6228},43->{-2.225,-3.5657},44->{-
2.225,-1.5087},45->{-2.225,1.92},46->{-2.225,3.9772},47->{-2.225,7.0629},48->{-
2.225,8.0912},49->{-2.225,10.1485},50->{-2.225,12.2057},51->{-0.725,-11.7943},52->{-
0.725,-1.5087},53->{-0.725,1.92},54->{-0.725,12.2057},55->{4.7749,-24.7943},56-
>{4.7749,-12.7943},57->{4.7749,-5.7943},58->{4.7749,6.2057},59->{4.7749,13.2057},60-
>{4.7749,25.2057},61->{8.775,-24.7943},62->{8.775,-12.7943},63->{8.775,-5.7943},64-
>{8.775,6.2057},65->{8.775,13.2057},66->{8.775,25.2057},67->{10.775,-31.2943},68-
>{10.775,-27.2943},69->{10.775,-10.2943},70->{10.775,-8.2943},71->{10.775,8.7057},72-
>{10.775,10.7057},73->{10.775,27.7057},74->{10.775,31.7057},75->{12.775,-24.7943},76-
>{12.775,-12.7943},77->{12.775,-5.7943},78->{12.775,6.2057},79->{12.775,13.2057},80-
>{12.775,25.2057}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,54),(1,5),(1,59),(2,3),(2,6),(3,4),(3,11),(4,5),(4,12),(5,17),(6,7),(6
,38),(7,8),(7,18),(8,9),(8,21),(9,10),(9,22),(10,11),(10,42),(11,43),(12,13),(12,44),(
13,14),(13,23),(14,15),(14,26),(15,16),(15,27),(16,17),(16,48),(17,49),(18,19),(18,28)
,(19,20),(19,29),(20,21),(20,30),(21,22),(22,32),(23,24),(23,33),(24,25),(24,34),(25,2
6),(25,35),(26,27),(27,37),(28,29),(28,39),(29,30),(30,31),(31,32),(31,40),(32,41),(33
,34),(33,45),(34,35),(35,36),(36,37),(36,46),(37,47),(38,39),(38,50),(39,40),(40,41),(
41,42),(42,43),(43,51),(44,45),(44,52),(45,46),(46,47),(47,48),(48,49),(49,53),(50,51)
,(50,56),(51,52),(52,53),(53,57),(54,55),(54,60),(55,56),(55,61),(56,62),(57,58),(57,6
3),(58,59),(58,64),(59,65),(60,61),(60,67),(61,68),(62,63),(62,69),(63,70),(64,65),(64
,71),(65,72),(66,67),(67,74),(68,69),(68,75),(69,76),(70,71),(70,77),(71,78),(72,73),(
72,79),(74,75),(76,77),(78,79)]

248

-

Example embedding coordinates (SAGE 7.2):

{0:[-12.225,-12.7943],1:[-12.225,13.2057],2:[-7.725,-11.7943],3:[-7.725,-1.5087],4:[-
7.725,1.92],5:[-7.725,12.2057],6:[-6.225,-11.7943],7:[-6.225,-9.7372],8:[-6.225,-
6.6515],9:[-6.225,-5.6228],10:[-6.225,-3.5657],11:[-6.225,-1.5087],12:[-
6.225,1.92],13:[-6.225,3.9772],14:[-6.225,7.0629],15:[-6.225,8.0912],16:[-
6.225,10.1485],17:[-6.225,12.2057],18:[-4.8917,-9.7372],19:[-4.8917,-8.7087],20:[-
4.8917,-7.68],21:[-4.8917,-6.6515],22:[-4.8917,-5.6228],23:[-4.8917,3.9772],24:[-
4.8917,5.0057],25:[-4.8917,6.0342],26:[-4.8917,7.0629],27:[-4.8917,8.0912],28:[-
3.5583,-9.7372],29:[-3.5583,-8.7087],30:[-3.5583,-7.68],31:[-3.5583,-6.6515],32:[-
3.5583,-5.6228],33:[-3.5583,3.9772],34:[-3.5583,5.0057],35:[-3.5583,6.0342],36:[-
3.5583,7.0629],37:[-3.5583,8.0912],38:[-2.225,-11.7943],39:[-2.225,-9.7372],40:[-
2.225,-6.6515],41:[-2.225,-5.6228],42:[-2.225,-3.5657],43:[-2.225,-1.5087],44:[-
2.225,1.92],45:[-2.225,3.9772],46:[-2.225,7.0629],47:[-2.225,8.0912],48:[-
2.225,10.1485],49:[-2.225,12.2057],50:[-0.725,-11.7943],51:[-0.725,-1.5087],52:[-
0.725,1.92],53:[-0.725,12.2057],54:[4.7749,-24.7943],55:[4.7749,-12.7943],56:[4.7749,-
5.7943],57:[4.7749,6.2057],58:[4.7749,13.2057],59:[4.7749,25.2057],60:[8.775,-
24.7943],61:[8.775,-12.7943],62:[8.775,-
5.7943],63:[8.775,6.2057],64:[8.775,13.2057],65:[8.775,25.2057],66:[10.775,-
31.2943],67:[10.775,-27.2943],68:[10.775,-10.2943],69:[10.775,-
8.2943],70:[10.775,8.7057],71:[10.775,10.7057],72:[10.775,27.7057],73:[10.775,31.7057]
,74:[12.775,-24.7943],75:[12.775,-12.7943],76:[12.775,-
5.7943],77:[12.775,6.2057],78:[12.775,13.2057],79:[12.775,25.2057]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorOne,8->colorTwo,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorOne,25-
>colorTwo,26->colorOne,27->colorTwo,28->colorOne,29->colorTwo,30->colorOne,31-
>colorTwo,32->colorOne,33->colorTwo,34->colorTwo,35->colorOne,36->colorTwo,37-
>colorOne,38->colorTwo,39->colorTwo,40->colorOne,41->colorTwo,42->colorOne,43-
>colorTwo,44->colorOne,45->colorTwo,46->colorOne,47->colorTwo,48->colorOne,49-
>colorTwo,50->colorOne,51->colorOne,52->colorTwo,53->colorOne,54->colorTwo,55-
>colorTwo,56->colorOne,57->colorTwo,58->colorOne,59->colorTwo,60->colorOne,61-
>colorOne,62->colorTwo,63->colorOne,64->colorTwo,65->colorOne,66->colorTwo,67-
>colorOne,68->colorTwo,69->colorOne,70->colorTwo,71->colorOne,72->colorTwo,73-
>colorOne,74->colorTwo,75->colorOne,76->colorTwo,77->colorOne,78->colorTwo,79-
>colorOne,80->colorTwo}

249

8.18 (Figure 4.5.b) gadget (specifying (z = 3) blocks)

1

2

3

81

8

86

4

9

5

14

6

15

7

20

21

26

10

57

11

27

12

30

13

31

61

62

16

63

17

32

18

35

19

36

67

68

22

69

23

37

24

40

25

41

73

74

28

42

29

43

44

46

33

47

34

48

49

51

38

52

39

53

54

56

58

45 59

60

64

50 65

66

70

55 71

72

75

76

77

78

79

80

83

84

82

87

88

89

85

90

91

92

94

95

96

97

98

99

93

101

102

103

104

105

100

106

250

Graph Properties ::

--

Number of Vertices: ‘106’

Number of Edges: ‘154’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

251

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->81,2<->8,2<->86,3<->4,3<->9,4<->5,4<->14,5<->6,5<->15,6<->7,6<-
>20,7<->8,7<->21,8<->26,9<->10,9<->57,10<->11,10<->27,11<->12,11<->30,12<->13,12<-
>31,13<->14,13<->61,14<->62,15<->16,15<->63,16<->17,16<->32,17<->18,17<->35,18<-
>19,18<->36,19<->20,19<->67,20<->68,21<->22,21<->69,22<->23,22<->37,23<->24,23<-
>40,24<->25,24<->41,25<->26,25<->73,26<->74,27<->28,27<->42,28<->29,28<->43,29<-
>30,29<->44,30<->31,31<->46,32<->33,32<->47,33<->34,33<->48,34<->35,34<->49,35<-
>36,36<->51,37<->38,37<->52,38<->39,38<->53,39<->40,39<->54,40<->41,41<->56,42<-
>43,42<->58,43<->44,44<->45,45<->46,45<->59,46<->60,47<->48,47<->64,48<->49,49<-
>50,50<->51,50<->65,51<->66,52<->53,52<->70,53<->54,54<->55,55<->56,55<->71,56<-
>72,57<->58,57<->75,58<->59,59<->60,60<->61,61<->62,62<->76,63<->64,63<->77,64<-
>65,65<->66,66<->67,67<->68,68<->78,69<->70,69<->79,70<->71,71<->72,72<->73,73<-
>74,74<->80,75<->76,75<->83,76<->77,77<->78,78<->79,79<->80,80<->84,81<->82,81<-
>87,82<->83,82<->88,83<->89,84<->85,84<->90,85<->86,85<->91,86<->92,87<->88,87<-
>94,88<->95,89<->90,89<->96,90<->97,91<->92,91<->98,92<->99,93<->94,94<->101,95<-
>96,95<->102,96<->103,97<->98,97<->104,98<->105,99<->100,99<->106,101<->102,103<-
>104,105<->106}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-11.1887,-12.8518},2->{-11.1887,13.1482},3->{-6.6887,-11.8518},4->{-6.6887,-
5.3064},5->{-6.6887,-3.1245},6->{-6.6887,3.4209},7->{-6.6887,5.6027},8->{-
6.6887,12.1482},9->{-5.1887,-11.8518},10->{-5.1887,-10.5427},11->{-5.1887,-8.5791},12-
>{-5.1887,-7.9245},13->{-5.1887,-6.6154},14->{-5.1887,-5.3064},15->{-5.1887,-
3.1245},16->{-5.1887,-1.8154},17->{-5.1887,0.1482},18->{-5.1887,0.8026},19->{-
5.1887,2.1118},20->{-5.1887,3.4209},21->{-5.1887,5.6027},22->{-5.1887,6.9117},23->{-
5.1887,8.8755},24->{-5.1887,9.53},25->{-5.1887,10.8391},26->{-5.1887,12.1482},27->{-
3.8554,-10.5427},28->{-3.8554,-9.8882},29->{-3.8554,-9.2336},30->{-3.8554,-8.5791},31-
>{-3.8554,-7.9245},32->{-3.8554,-1.8154},33->{-3.8554,-1.1609},34->{-3.8554,-
0.5064},35->{-3.8554,0.1482},36->{-3.8554,0.8026},37->{-3.8554,6.9117},38->{-
3.8554,7.5664},39->{-3.8554,8.2208},40->{-3.8554,8.8755},41->{-3.8554,9.53},42->{-
2.522,-10.5427},43->{-2.522,-9.8882},44->{-2.522,-9.2336},45->{-2.522,-8.5791},46->{-
2.522,-7.9245},47->{-2.522,-1.8154},48->{-2.522,-1.1609},49->{-2.522,-0.5064},50->{-
2.522,0.1482},51->{-2.522,0.8026},52->{-2.522,6.9117},53->{-2.522,7.5664},54->{-
2.522,8.2208},55->{-2.522,8.8755},56->{-2.522,9.53},57->{-1.1887,-11.8518},58->{-
1.1887,-10.5427},59->{-1.1887,-8.5791},60->{-1.1887,-7.9245},61->{-1.1887,-6.6154},62-
>{-1.1887,-5.3064},63->{-1.1887,-3.1245},64->{-1.1887,-1.8154},65->{-
1.1887,0.1482},66->{-1.1887,0.8026},67->{-1.1887,2.1118},68->{-1.1887,3.4209},69->{-
1.1887,5.6027},70->{-1.1887,6.9117},71->{-1.1887,8.8755},72->{-1.1887,9.53},73->{-
1.1887,10.8391},74->{-1.1887,12.1482},75->{0.3113,-11.8518},76->{0.3113,-5.3064},77-
>{0.3113,-3.1245},78->{0.3113,3.4209},79->{0.3113,5.6027},80->{0.3113,12.1482},81-
>{5.8112,-24.8518},82->{5.8112,-12.8518},83->{5.8112,-5.8518},84->{5.8112,6.1482},85-
>{5.8112,13.1482},86->{5.8112,25.1482},87->{9.8113,-24.8518},88->{9.8113,-12.8518},89-
>{9.8113,-5.8518},90->{9.8113,6.1482},91->{9.8113,13.1482},92->{9.8113,25.1482},93-
>{11.8113,-31.3518},94->{11.8113,-27.3518},95->{11.8113,-10.3518},96->{11.8113,-
8.3518},97->{11.8113,8.6482},98->{11.8113,10.6482},99->{11.8113,27.6482},100-
>{11.8113,31.6482},101->{13.8113,-24.8518},102->{13.8113,-12.8518},103->{13.8113,-
5.8518},104->{13.8113,6.1482},105->{13.8113,13.1482},106->{13.8113,25.1482}}

252

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,80),(1,7),(1,85),(2,3),(2,8),(3,4),(3,13),(4,5),(4,14),(5,6),(5,19),(6
,7),(6,20),(7,25),(8,9),(8,56),(9,10),(9,26),(10,11),(10,29),(11,12),(11,30),(12,13),(
12,60),(13,61),(14,15),(14,62),(15,16),(15,31),(16,17),(16,34),(17,18),(17,35),(18,19)
,(18,66),(19,67),(20,21),(20,68),(21,22),(21,36),(22,23),(22,39),(23,24),(23,40),(24,2
5),(24,72),(25,73),(26,27),(26,41),(27,28),(27,42),(28,29),(28,43),(29,30),(30,45),(31
,32),(31,46),(32,33),(32,47),(33,34),(33,48),(34,35),(35,50),(36,37),(36,51),(37,38),(
37,52),(38,39),(38,53),(39,40),(40,55),(41,42),(41,57),(42,43),(43,44),(44,45),(44,58)
,(45,59),(46,47),(46,63),(47,48),(48,49),(49,50),(49,64),(50,65),(51,52),(51,69),(52,5
3),(53,54),(54,55),(54,70),(55,71),(56,57),(56,74),(57,58),(58,59),(59,60),(60,61),(61
,75),(62,63),(62,76),(63,64),(64,65),(65,66),(66,67),(67,77),(68,69),(68,78),(69,70),(
70,71),(71,72),(72,73),(73,79),(74,75),(74,82),(75,76),(76,77),(77,78),(78,79),(79,83)
,(80,81),(80,86),(81,82),(81,87),(82,88),(83,84),(83,89),(84,85),(84,90),(85,91),(86,8
7),(86,93),(87,94),(88,89),(88,95),(89,96),(90,91),(90,97),(91,98),(92,93),(93,100),(9
4,95),(94,101),(95,102),(96,97),(96,103),(97,104),(98,99),(98,105),(100,101),(102,103)
,(104,105)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-11.1887,-12.8518],1:[-11.1887,13.1482],2:[-6.6887,-11.8518],3:[-6.6887,-
5.3064],4:[-6.6887,-3.1245],5:[-6.6887,3.4209],6:[-6.6887,5.6027],7:[-
6.6887,12.1482],8:[-5.1887,-11.8518],9:[-5.1887,-10.5427],10:[-5.1887,-8.5791],11:[-
5.1887,-7.9245],12:[-5.1887,-6.6154],13:[-5.1887,-5.3064],14:[-5.1887,-3.1245],15:[-
5.1887,-1.8154],16:[-5.1887,0.1482],17:[-5.1887,0.8026],18:[-5.1887,2.1118],19:[-
5.1887,3.4209],20:[-5.1887,5.6027],21:[-5.1887,6.9117],22:[-5.1887,8.8755],23:[-
5.1887,9.53],24:[-5.1887,10.8391],25:[-5.1887,12.1482],26:[-3.8554,-10.5427],27:[-
3.8554,-9.8882],28:[-3.8554,-9.2336],29:[-3.8554,-8.5791],30:[-3.8554,-7.9245],31:[-
3.8554,-1.8154],32:[-3.8554,-1.1609],33:[-3.8554,-0.5064],34:[-3.8554,0.1482],35:[-
3.8554,0.8026],36:[-3.8554,6.9117],37:[-3.8554,7.5664],38:[-3.8554,8.2208],39:[-
3.8554,8.8755],40:[-3.8554,9.53],41:[-2.522,-10.5427],42:[-2.522,-9.8882],43:[-2.522,-
9.2336],44:[-2.522,-8.5791],45:[-2.522,-7.9245],46:[-2.522,-1.8154],47:[-2.522,-
1.1609],48:[-2.522,-0.5064],49:[-2.522,0.1482],50:[-2.522,0.8026],51:[-
2.522,6.9117],52:[-2.522,7.5664],53:[-2.522,8.2208],54:[-2.522,8.8755],55:[-
2.522,9.53],56:[-1.1887,-11.8518],57:[-1.1887,-10.5427],58:[-1.1887,-8.5791],59:[-
1.1887,-7.9245],60:[-1.1887,-6.6154],61:[-1.1887,-5.3064],62:[-1.1887,-3.1245],63:[-
1.1887,-1.8154],64:[-1.1887,0.1482],65:[-1.1887,0.8026],66:[-1.1887,2.1118],67:[-
1.1887,3.4209],68:[-1.1887,5.6027],69:[-1.1887,6.9117],70:[-1.1887,8.8755],71:[-
1.1887,9.53],72:[-1.1887,10.8391],73:[-1.1887,12.1482],74:[0.3113,-
11.8518],75:[0.3113,-5.3064],76:[0.3113,-
3.1245],77:[0.3113,3.4209],78:[0.3113,5.6027],79:[0.3113,12.1482],80:[5.8112,-
24.8518],81:[5.8112,-12.8518],82:[5.8112,-
5.8518],83:[5.8112,6.1482],84:[5.8112,13.1482],85:[5.8112,25.1482],86:[9.8113,-
24.8518],87:[9.8113,-12.8518],88:[9.8113,-
5.8518],89:[9.8113,6.1482],90:[9.8113,13.1482],91:[9.8113,25.1482],92:[11.8113,-
31.3518],93:[11.8113,-27.3518],94:[11.8113,-10.3518],95:[11.8113,-
8.3518],96:[11.8113,8.6482],97:[11.8113,10.6482],98:[11.8113,27.6482],99:[11.8113,31.6
482],100:[13.8113,-24.8518],101:[13.8113,-12.8518],102:[13.8113,-
5.8518],103:[13.8113,6.1482],104:[13.8113,13.1482],105:[13.8113,25.1482]}

253

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorOne,33->colorTwo,34->colorOne,35->colorTwo,36->colorOne,37-
>colorOne,38->colorTwo,39->colorOne,40->colorTwo,41->colorOne,42->colorTwo,43-
>colorOne,44->colorTwo,45->colorOne,46->colorTwo,47->colorTwo,48->colorOne,49-
>colorTwo,50->colorOne,51->colorTwo,52->colorTwo,53->colorOne,54->colorTwo,55-
>colorOne,56->colorTwo,57->colorTwo,58->colorOne,59->colorTwo,60->colorOne,61-
>colorTwo,62->colorOne,63->colorTwo,64->colorOne,65->colorTwo,66->colorOne,67-
>colorTwo,68->colorOne,69->colorTwo,70->colorOne,71->colorTwo,72->colorOne,73-
>colorTwo,74->colorOne,75->colorOne,76->colorTwo,77->colorOne,78->colorTwo,79-
>colorOne,80->colorTwo,81->colorTwo,82->colorOne,83->colorTwo,84->colorOne,85-
>colorTwo,86->colorOne,87->colorOne,88->colorTwo,89->colorOne,90->colorTwo,91-
>colorOne,92->colorTwo,93->colorOne,94->colorTwo,95->colorOne,96->colorTwo,97-
>colorOne,98->colorTwo,99->colorOne,100->colorTwo,101->colorOne,102->colorTwo,103-
>colorOne,104->colorTwo,105->colorOne,106->colorTwo}

254

8.19 (Figure 4.5.c) gadget (specifying (z = 1) blocks)

1

2

3

28

8

31

4

19

5

9

6

12

7

13

23

24

10

14

11

15

16

18

20

17 21

22

25

26

29

30

27

33

34

32

255

Graph Properties ::

--

Number of Vertices: ‘34’

Number of Edges: ‘48’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

256

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->28,2<->8,2<->31,3<->4,3<->19,4<->5,4<->9,5<->6,5<->12,6<->7,6<-
>13,7<->8,7<->23,8<->24,9<->10,9<->14,10<->11,10<->15,11<->12,11<->16,12<->13,13<-
>18,14<->15,14<->20,15<->16,16<->17,17<->18,17<->21,18<->22,19<->20,19<->25,20<-
>21,21<->22,22<->23,23<->24,24<->26,25<->26,25<->29,26<->30,27<->28,28<->29,29<-
>33,30<->31,30<->34,31<->32,33<->34}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-7.1471,-11.4353},2->{-7.1471,12.5646},3->{-5.6471,-11.4353},4->{-5.6471,-
6.6354},5->{-5.6471,0.5647},6->{-5.6471,2.965},7->{-5.6471,7.7649},8->{-
5.6471,12.5646},9->{-4.3138,-6.6354},10->{-4.3138,-4.2355},11->{-4.3138,-1.8352},12-
>{-4.3138,0.5647},13->{-4.3138,2.965},14->{-2.9804,-6.6354},15->{-2.9804,-4.2355},16-
>{-2.9804,-1.8352},17->{-2.9804,0.5647},18->{-2.9804,2.965},19->{-1.6471,-11.4353},20-
>{-1.6471,-6.6354},21->{-1.6471,0.5647},22->{-1.6471,2.965},23->{-1.6471,7.7649},24-
>{-1.6471,12.5646},25->{-0.1471,-11.4353},26->{-0.1471,12.5646},27->{11.3529,-
30.9353},28->{11.3529,-26.9353},29->{11.3529,-7.9353},30->{11.3529,9.0647},31-
>{11.3529,28.0647},32->{11.3529,32.0647},33->{13.3529,-5.4353},34->{13.3529,6.5647}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,27),(1,7),(1,30),(2,3),(2,18),(3,4),(3,8),(4,5),(4,11),(5,6),(5,12),(6
,7),(6,22),(7,23),(8,9),(8,13),(9,10),(9,14),(10,11),(10,15),(11,12),(12,17),(13,14),(
13,19),(14,15),(15,16),(16,17),(16,20),(17,21),(18,19),(18,24),(19,20),(20,21),(21,22)
,(22,23),(23,25),(24,25),(24,28),(25,29),(26,27),(27,28),(28,32),(29,30),(29,33),(30,3
1),(32,33)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-7.1471,-11.4353],1:[-7.1471,12.5646],2:[-5.6471,-11.4353],3:[-5.6471,-
6.6354],4:[-5.6471,0.5647],5:[-5.6471,2.965],6:[-5.6471,7.7649],7:[-
5.6471,12.5646],8:[-4.3138,-6.6354],9:[-4.3138,-4.2355],10:[-4.3138,-1.8352],11:[-
4.3138,0.5647],12:[-4.3138,2.965],13:[-2.9804,-6.6354],14:[-2.9804,-4.2355],15:[-
2.9804,-1.8352],16:[-2.9804,0.5647],17:[-2.9804,2.965],18:[-1.6471,-11.4353],19:[-
1.6471,-6.6354],20:[-1.6471,0.5647],21:[-1.6471,2.965],22:[-1.6471,7.7649],23:[-
1.6471,12.5646],24:[-0.1471,-11.4353],25:[-0.1471,12.5646],26:[11.3529,-
30.9353],27:[11.3529,-26.9353],28:[11.3529,-
7.9353],29:[11.3529,9.0647],30:[11.3529,28.0647],31:[11.3529,32.0647],32:[13.3529,-
5.4353],33:[13.3529,6.5647]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorTwo,26->colorOne,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorTwo,34->colorOne}

257

8.20 (Figure 4.5.c) gadget (specifying (z = 2) blocks)

1

2

5

54

3

10

4

11

16

57

6

37

7

17

8

20

9

21

41

42

12

43

13

22

14

25

15

26

47

48

18

27

19

28

29

31

23

32

24

33

34

36

38

30 39

40

44

35 45

46

49

50

51

52

55

56

53

59

60

58

258

Graph Properties ::

--

Number of Vertices: ‘60’

Number of Edges: ‘87’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

259

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->5,1<->54,2<->3,2<->10,3<->4,3<->11,4<->16,4<->57,5<->6,5<->37,6<->7,6<-
>17,7<->8,7<->20,8<->9,8<->21,9<->10,9<->41,10<->42,11<->12,11<->43,12<->13,12<-
>22,13<->14,13<->25,14<->15,14<->26,15<->16,15<->47,16<->48,17<->18,17<->27,18<-
>19,18<->28,19<->20,19<->29,20<->21,21<->31,22<->23,22<->32,23<->24,23<->33,24<-
>25,24<->34,25<->26,26<->36,27<->28,27<->38,28<->29,29<->30,30<->31,30<->39,31<-
>40,32<->33,32<->44,33<->34,34<->35,35<->36,35<->45,36<->46,37<->38,37<->49,38<-
>39,39<->40,40<->41,41<->42,42<->50,43<->44,43<->51,44<->45,45<->46,46<->47,47<-
>48,48<->52,49<->50,49<->55,50<->51,51<->52,52<->56,53<->54,54<->55,55<->59,56<-
>57,56<->60,57<->58,59<->60}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-5.5667,-11.7257},2->{-5.5667,-1.4401},3->{-5.5667,1.9886},4->{-
5.5667,12.2743},5->{-4.0667,-11.7257},6->{-4.0667,-9.6686},7->{-4.0667,-6.5829},8->{-
4.0667,-5.5542},9->{-4.0667,-3.4971},10->{-4.0667,-1.4401},11->{-4.0667,1.9886},12->{-
4.0667,4.0458},13->{-4.0667,7.1315},14->{-4.0667,8.1598},15->{-4.0667,10.2171},16->{-
4.0667,12.2743},17->{-2.7334,-9.6686},18->{-2.7334,-8.6401},19->{-2.7334,-7.6114},20-
>{-2.7334,-6.5829},21->{-2.7334,-5.5542},22->{-2.7334,4.0458},23->{-2.7334,5.0743},24-
>{-2.7334,6.1028},25->{-2.7334,7.1315},26->{-2.7334,8.1598},27->{-1.4,-9.6686},28->{-
1.4,-8.6401},29->{-1.4,-7.6114},30->{-1.4,-6.5829},31->{-1.4,-5.5542},32->{-
1.4,4.0458},33->{-1.4,5.0743},34->{-1.4,6.1028},35->{-1.4,7.1315},36->{-
1.4,8.1598},37->{-0.0667,-11.7257},38->{-0.0667,-9.6686},39->{-0.0667,-6.5829},40->{-
0.0667,-5.5542},41->{-0.0667,-3.4971},42->{-0.0667,-1.4401},43->{-0.0667,1.9886},44-
>{-0.0667,4.0458},45->{-0.0667,7.1315},46->{-0.0667,8.1598},47->{-0.0667,10.2171},48-
>{-0.0667,12.2743},49->{1.4333,-11.7257},50->{1.4333,-1.4401},51->{1.4333,1.9886},52-
>{1.4333,12.2743},53->{12.9333,-31.2257},54->{12.9333,-27.2257},55->{12.9333,-
8.2257},56->{12.9333,8.7743},57->{12.9333,27.7743},58->{12.9333,31.7743},59-
>{14.9333,-5.7257},60->{14.9333,6.2743}}

Edge list (SAGE 7.2):

[(0,1),(0,4),(0,53),(1,2),(1,9),(2,3),(2,10),(3,15),(3,56),(4,5),(4,36),(5,6),(5,16),(
6,7),(6,19),(7,8),(7,20),(8,9),(8,40),(9,41),(10,11),(10,42),(11,12),(11,21),(12,13),(
12,24),(13,14),(13,25),(14,15),(14,46),(15,47),(16,17),(16,26),(17,18),(17,27),(18,19)
,(18,28),(19,20),(20,30),(21,22),(21,31),(22,23),(22,32),(23,24),(23,33),(24,25),(25,3
5),(26,27),(26,37),(27,28),(28,29),(29,30),(29,38),(30,39),(31,32),(31,43),(32,33),(33
,34),(34,35),(34,44),(35,45),(36,37),(36,48),(37,38),(38,39),(39,40),(40,41),(41,49),(
42,43),(42,50),(43,44),(44,45),(45,46),(46,47),(47,51),(48,49),(48,54),(49,50),(50,51)
,(51,55),(52,53),(53,54),(54,58),(55,56),(55,59),(56,57),(58,59)]

260

-

Example embedding coordinates (SAGE 7.2):

{0:[-5.5667,-11.7257],1:[-5.5667,-1.4401],2:[-5.5667,1.9886],3:[-5.5667,12.2743],4:[-
4.0667,-11.7257],5:[-4.0667,-9.6686],6:[-4.0667,-6.5829],7:[-4.0667,-5.5542],8:[-
4.0667,-3.4971],9:[-4.0667,-1.4401],10:[-4.0667,1.9886],11:[-4.0667,4.0458],12:[-
4.0667,7.1315],13:[-4.0667,8.1598],14:[-4.0667,10.2171],15:[-4.0667,12.2743],16:[-
2.7334,-9.6686],17:[-2.7334,-8.6401],18:[-2.7334,-7.6114],19:[-2.7334,-6.5829],20:[-
2.7334,-5.5542],21:[-2.7334,4.0458],22:[-2.7334,5.0743],23:[-2.7334,6.1028],24:[-
2.7334,7.1315],25:[-2.7334,8.1598],26:[-1.4,-9.6686],27:[-1.4,-8.6401],28:[-1.4,-
7.6114],29:[-1.4,-6.5829],30:[-1.4,-5.5542],31:[-1.4,4.0458],32:[-1.4,5.0743],33:[-
1.4,6.1028],34:[-1.4,7.1315],35:[-1.4,8.1598],36:[-0.0667,-11.7257],37:[-0.0667,-
9.6686],38:[-0.0667,-6.5829],39:[-0.0667,-5.5542],40:[-0.0667,-3.4971],41:[-0.0667,-
1.4401],42:[-0.0667,1.9886],43:[-0.0667,4.0458],44:[-0.0667,7.1315],45:[-
0.0667,8.1598],46:[-0.0667,10.2171],47:[-0.0667,12.2743],48:[1.4333,-
11.7257],49:[1.4333,-1.4401],50:[1.4333,1.9886],51:[1.4333,12.2743],52:[12.9333,-
31.2257],53:[12.9333,-27.2257],54:[12.9333,-
8.2257],55:[12.9333,8.7743],56:[12.9333,27.7743],57:[12.9333,31.7743],58:[14.9333,-
5.7257],59:[14.9333,6.2743]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorTwo,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorOne,21->colorTwo,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorOne,33->colorTwo,34->colorOne,35->colorTwo,36->colorOne,37-
>colorOne,38->colorTwo,39->colorOne,40->colorTwo,41->colorOne,42->colorTwo,43-
>colorOne,44->colorTwo,45->colorOne,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorTwo,50->colorOne,51->colorTwo,52->colorOne,53->colorOne,54->colorTwo,55-
>colorOne,56->colorTwo,57->colorOne,58->colorTwo,59->colorTwo,60->colorOne}

261

8.21 (Figure 4.5.c) gadget (specifying (z = 3) blocks)

1

2

7

80

3

12

4

13

5

18

6

19

24

83

8

55

9

25

10

28

11

29

59

60

14

61

15

30

16

33

17

34

65

66

20

67

21

35

22

38

23

39

71

72

26

40

27

41

42

44

31

45

32

46

47

49

36

50

37

51

52

54

56

43 57

58

62

48 63

64

68

53 69

70

73

74

75

76

77

78

81

82

79

85

86

84

262

Graph Properties ::

--

Number of Vertices: ‘86’

Number of Edges: ‘126’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

263

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->7,1<->80,2<->3,2<->12,3<->4,3<->13,4<->5,4<->18,5<->6,5<->19,6<->24,6<-
>83,7<->8,7<->55,8<->9,8<->25,9<->10,9<->28,10<->11,10<->29,11<->12,11<->59,12<-
>60,13<->14,13<->61,14<->15,14<->30,15<->16,15<->33,16<->17,16<->34,17<->18,17<-
>65,18<->66,19<->20,19<->67,20<->21,20<->35,21<->22,21<->38,22<->23,22<->39,23<-
>24,23<->71,24<->72,25<->26,25<->40,26<->27,26<->41,27<->28,27<->42,28<->29,29<-
>44,30<->31,30<->45,31<->32,31<->46,32<->33,32<->47,33<->34,34<->49,35<->36,35<-
>50,36<->37,36<->51,37<->38,37<->52,38<->39,39<->54,40<->41,40<->56,41<->42,42<-
>43,43<->44,43<->57,44<->58,45<->46,45<->62,46<->47,47<->48,48<->49,48<->63,49<-
>64,50<->51,50<->68,51<->52,52<->53,53<->54,53<->69,54<->70,55<->56,55<->73,56<-
>57,57<->58,58<->59,59<->60,60<->74,61<->62,61<->75,62<->63,63<->64,64<->65,65<-
>66,66<->76,67<->68,67<->77,68<->69,69<->70,70<->71,71<->72,72<->78,73<->74,73<-
>81,74<->75,75<->76,76<->77,77<->78,78<->82,79<->80,80<->81,81<->85,82<->83,82<-
>86,83<->84,85<->86}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-4.9419,-11.8173},2->{-4.9419,-5.2719},3->{-4.9419,-3.09},4->{-4.9419,3.4554},5-
>{-4.9419,5.6372},6->{-4.9419,12.1827},7->{-3.4419,-11.8173},8->{-3.4419,-10.5082},9-
>{-3.4419,-8.5446},10->{-3.4419,-7.89},11->{-3.4419,-6.5809},12->{-3.4419,-5.2719},13-
>{-3.4419,-3.09},14->{-3.4419,-1.7809},15->{-3.4419,0.1827},16->{-3.4419,0.8371},17-
>{-3.4419,2.1463},18->{-3.4419,3.4554},19->{-3.4419,5.6372},20->{-3.4419,6.9462},21-
>{-3.4419,8.91},22->{-3.4419,9.5645},23->{-3.4419,10.8736},24->{-3.4419,12.1827},25-
>{-2.1086,-10.5082},26->{-2.1086,-9.8537},27->{-2.1086,-9.1991},28->{-2.1086,-
8.5446},29->{-2.1086,-7.89},30->{-2.1086,-1.7809},31->{-2.1086,-1.1264},32->{-2.1086,-
0.4719},33->{-2.1086,0.1827},34->{-2.1086,0.8371},35->{-2.1086,6.9462},36->{-
2.1086,7.6009},37->{-2.1086,8.2553},38->{-2.1086,8.91},39->{-2.1086,9.5645},40->{-
0.7752,-10.5082},41->{-0.7752,-9.8537},42->{-0.7752,-9.1991},43->{-0.7752,-8.5446},44-
>{-0.7752,-7.89},45->{-0.7752,-1.7809},46->{-0.7752,-1.1264},47->{-0.7752,-0.4719},48-
>{-0.7752,0.1827},49->{-0.7752,0.8371},50->{-0.7752,6.9462},51->{-0.7752,7.6009},52-
>{-0.7752,8.2553},53->{-0.7752,8.91},54->{-0.7752,9.5645},55->{0.5581,-11.8173},56-
>{0.5581,-10.5082},57->{0.5581,-8.5446},58->{0.5581,-7.89},59->{0.5581,-6.5809},60-
>{0.5581,-5.2719},61->{0.5581,-3.09},62->{0.5581,-1.7809},63->{0.5581,0.1827},64-
>{0.5581,0.8371},65->{0.5581,2.1463},66->{0.5581,3.4554},67->{0.5581,5.6372},68-
>{0.5581,6.9462},69->{0.5581,8.91},70->{0.5581,9.5645},71->{0.5581,10.8736},72-
>{0.5581,12.1827},73->{2.0581,-11.8173},74->{2.0581,-5.2719},75->{2.0581,-3.09},76-
>{2.0581,3.4554},77->{2.0581,5.6372},78->{2.0581,12.1827},79->{13.5581,-31.3173},80-
>{13.5581,-27.3173},81->{13.5581,-8.3173},82->{13.5581,8.6827},83-
>{13.5581,27.6827},84->{13.5581,31.6827},85->{15.5581,-5.8173},86->{15.5581,6.1827}}

264

Edge list (SAGE 7.2):

[(0,1),(0,6),(0,79),(1,2),(1,11),(2,3),(2,12),(3,4),(3,17),(4,5),(4,18),(5,23),(5,82),
(6,7),(6,54),(7,8),(7,24),(8,9),(8,27),(9,10),(9,28),(10,11),(10,58),(11,59),(12,13),(
12,60),(13,14),(13,29),(14,15),(14,32),(15,16),(15,33),(16,17),(16,64),(17,65),(18,19)
,(18,66),(19,20),(19,34),(20,21),(20,37),(21,22),(21,38),(22,23),(22,70),(23,71),(24,2
5),(24,39),(25,26),(25,40),(26,27),(26,41),(27,28),(28,43),(29,30),(29,44),(30,31),(30
,45),(31,32),(31,46),(32,33),(33,48),(34,35),(34,49),(35,36),(35,50),(36,37),(36,51),(
37,38),(38,53),(39,40),(39,55),(40,41),(41,42),(42,43),(42,56),(43,57),(44,45),(44,61)
,(45,46),(46,47),(47,48),(47,62),(48,63),(49,50),(49,67),(50,51),(51,52),(52,53),(52,6
8),(53,69),(54,55),(54,72),(55,56),(56,57),(57,58),(58,59),(59,73),(60,61),(60,74),(61
,62),(62,63),(63,64),(64,65),(65,75),(66,67),(66,76),(67,68),(68,69),(69,70),(70,71),(
71,77),(72,73),(72,80),(73,74),(74,75),(75,76),(76,77),(77,81),(78,79),(79,80),(80,84)
,(81,82),(81,85),(82,83),(84,85)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-4.9419,-11.8173],1:[-4.9419,-5.2719],2:[-4.9419,-3.09],3:[-4.9419,3.4554],4:[-
4.9419,5.6372],5:[-4.9419,12.1827],6:[-3.4419,-11.8173],7:[-3.4419,-10.5082],8:[-
3.4419,-8.5446],9:[-3.4419,-7.89],10:[-3.4419,-6.5809],11:[-3.4419,-5.2719],12:[-
3.4419,-3.09],13:[-3.4419,-1.7809],14:[-3.4419,0.1827],15:[-3.4419,0.8371],16:[-
3.4419,2.1463],17:[-3.4419,3.4554],18:[-3.4419,5.6372],19:[-3.4419,6.9462],20:[-
3.4419,8.91],21:[-3.4419,9.5645],22:[-3.4419,10.8736],23:[-3.4419,12.1827],24:[-
2.1086,-10.5082],25:[-2.1086,-9.8537],26:[-2.1086,-9.1991],27:[-2.1086,-8.5446],28:[-
2.1086,-7.89],29:[-2.1086,-1.7809],30:[-2.1086,-1.1264],31:[-2.1086,-0.4719],32:[-
2.1086,0.1827],33:[-2.1086,0.8371],34:[-2.1086,6.9462],35:[-2.1086,7.6009],36:[-
2.1086,8.2553],37:[-2.1086,8.91],38:[-2.1086,9.5645],39:[-0.7752,-10.5082],40:[-
0.7752,-9.8537],41:[-0.7752,-9.1991],42:[-0.7752,-8.5446],43:[-0.7752,-7.89],44:[-
0.7752,-1.7809],45:[-0.7752,-1.1264],46:[-0.7752,-0.4719],47:[-0.7752,0.1827],48:[-
0.7752,0.8371],49:[-0.7752,6.9462],50:[-0.7752,7.6009],51:[-0.7752,8.2553],52:[-
0.7752,8.91],53:[-0.7752,9.5645],54:[0.5581,-11.8173],55:[0.5581,-
10.5082],56:[0.5581,-8.5446],57:[0.5581,-7.89],58:[0.5581,-6.5809],59:[0.5581,-
5.2719],60:[0.5581,-3.09],61:[0.5581,-
1.7809],62:[0.5581,0.1827],63:[0.5581,0.8371],64:[0.5581,2.1463],65:[0.5581,3.4554],66
:[0.5581,5.6372],67:[0.5581,6.9462],68:[0.5581,8.91],69:[0.5581,9.5645],70:[0.5581,10.
8736],71:[0.5581,12.1827],72:[2.0581,-11.8173],73:[2.0581,-5.2719],74:[2.0581,-
3.09],75:[2.0581,3.4554],76:[2.0581,5.6372],77:[2.0581,12.1827],78:[13.5581,-
31.3173],79:[13.5581,-27.3173],80:[13.5581,-
8.3173],81:[13.5581,8.6827],82:[13.5581,27.6827],83:[13.5581,31.6827],84:[15.5581,-
5.8173],85:[15.5581,6.1827]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorOne,21->colorTwo,22->colorOne,23->colorTwo,24->colorOne,25-
>colorTwo,26->colorOne,27->colorTwo,28->colorOne,29->colorTwo,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo,35->colorTwo,36->colorOne,37-
>colorTwo,38->colorOne,39->colorTwo,40->colorOne,41->colorTwo,42->colorOne,43-
>colorTwo,44->colorOne,45->colorOne,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorOne,50->colorOne,51->colorTwo,52->colorOne,53->colorTwo,54->colorOne,55-
>colorOne,56->colorTwo,57->colorOne,58->colorTwo,59->colorOne,60->colorTwo,61-
>colorOne,62->colorTwo,63->colorOne,64->colorTwo,65->colorOne,66->colorTwo,67-
>colorOne,68->colorTwo,69->colorOne,70->colorTwo,71->colorOne,72->colorTwo,73-
>colorTwo,74->colorOne,75->colorTwo,76->colorOne,77->colorTwo,78->colorOne,79-
>colorOne,80->colorTwo,81->colorOne,82->colorTwo,83->colorOne,84->colorTwo,85-
>colorTwo,86->colorOne}

265

8.22 (Figure 4.8.a) gadget (specifying (z = 1) blocks)

1

3

2

4

5

10

6

11

7

12

8

13

9

14

15

16

17

18

19

20

266

Graph Properties ::

--

Number of Vertices: ‘20’

Number of Edges: ‘26’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

267

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->4,3<->4,3<->5,4<->10,5<->6,5<->11,6<->7,6<->12,7<->8,7<->13,8<->9,8<-
>14,9<->10,9<->15,10<->16,11<->12,11<->17,12<->13,13<->14,14<->15,15<->16,16<->18,17<-
>18,17<->19,18<->20}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,12.},5->{-2.,-12.},6->{-2.,-
7.2},7->{-2.,-2.4},8->{-2.,2.4},9->{-2.,7.2},10->{-2.,12.},11->{2.,-12.},12->{2.,-
7.2},13->{2.,-2.4},14->{2.,2.4},15->{2.,7.2},16->{2.,12.},17->{3.5,-12.},18-
>{3.5,12.},19->{6.,-14.5},20->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,3),(2,3),(2,4),(3,9),(4,5),(4,10),(5,6),(5,11),(6,7),(6,12),(7,8),(7,13),(8,
9),(8,14),(9,15),(10,11),(10,16),(11,12),(12,13),(13,14),(14,15),(15,17),(16,17),(16,1
8),(17,19)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,12.],4:[-2.,-12.],5:[-2.,-7.2],6:[-
2.,-2.4],7:[-2.,2.4],8:[-2.,7.2],9:[-2.,12.],10:[2.,-12.],11:[2.,-7.2],12:[2.,-
2.4],13:[2.,2.4],14:[2.,7.2],15:[2.,12.],16:[3.5,-12.],17:[3.5,12.],18:[6.,-
14.5],19:[6.,14.5]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorTwo,18->colorOne,19-
>colorOne,20->colorTwo}

268

8.23 (Figure 4.8.a) gadget (specifying (z = 2) blocks)

1

3

2

6

4

7

5

12

13

18

8

19

9

20

10

21

11

22

23

24

14

25

15

26

16

27

17

28

29

30

31

32

33

34

35

36

269

Graph Properties ::

--

Number of Vertices: ‘’

Number of Edges: ‘’

Minimum vertex degree : ‘’

Maximum vertex degree : ‘’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘’

Output of SAGE 7.2’s ‘girth()’ function: ‘’

Output for the ‘igraph’ R package ‘girth()’ function: ‘’

270

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->6,3<->4,3<->7,4<->5,4<->12,5<->6,5<->13,6<->18,7<->8,7<->19,8<->9,8<-
>20,9<->10,9<->21,10<->11,10<->22,11<->12,11<->23,12<->24,13<->14,13<->25,14<->15,14<-
>26,15<->16,15<->27,16<->17,16<->28,17<->18,17<->29,18<->30,19<->20,19<->31,20<-
>21,21<->22,22<->23,23<->24,24<->32,25<->26,25<->33,26<->27,27<->28,28<->29,29<-
>30,30<->34,31<->32,31<->35,32<->33,33<->34,34<->36}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-1.7142},5->{-3.5,1.7143},6->{-
3.5,12.},7->{-2.,-12.},8->{-2.,-9.9429},9->{-2.,-7.8857},10->{-2.,-5.8285},11->{-2.,-
3.7714},12->{-2.,-1.7142},13->{-2.,1.7143},14->{-2.,3.7715},15->{-2.,5.8285},16->{-
2.,7.8855},17->{-2.,9.9428},18->{-2.,12.},19->{2.,-12.},20->{2.,-9.9429},21->{2.,-
7.8857},22->{2.,-5.8285},23->{2.,-3.7714},24->{2.,-1.7142},25->{2.,1.7143},26-
>{2.,3.7715},27->{2.,5.8285},28->{2.,7.8855},29->{2.,9.9428},30->{2.,12.},31->{3.5,-
12.},32->{3.5,-1.7142},33->{3.5,1.7143},34->{3.5,12.},35->{6.,-14.5},36->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,5),(2,3),(2,6),(3,4),(3,11),(4,5),(4,12),(5,17),(6,7),(6,18),(7,8),(7,19),(8
,9),(8,20),(9,10),(9,21),(10,11),(10,22),(11,23),(12,13),(12,24),(13,14),(13,25),(14,1
5),(14,26),(15,16),(15,27),(16,17),(16,28),(17,29),(18,19),(18,30),(19,20),(20,21),(21
,22),(22,23),(23,31),(24,25),(24,32),(25,26),(26,27),(27,28),(28,29),(29,33),(30,31),(
30,34),(31,32),(32,33),(33,35)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-1.7142],4:[-3.5,1.7143],5:[-
3.5,12.],6:[-2.,-12.],7:[-2.,-9.9429],8:[-2.,-7.8857],9:[-2.,-5.8285],10:[-2.,-
3.7714],11:[-2.,-1.7142],12:[-2.,1.7143],13:[-2.,3.7715],14:[-2.,5.8285],15:[-
2.,7.8855],16:[-2.,9.9428],17:[-2.,12.],18:[2.,-12.],19:[2.,-9.9429],20:[2.,-
7.8857],21:[2.,-5.8285],22:[2.,-3.7714],23:[2.,-
1.7142],24:[2.,1.7143],25:[2.,3.7715],26:[2.,5.8285],27:[2.,7.8855],28:[2.,9.9428],29:
[2.,12.],30:[3.5,-12.],31:[3.5,-1.7142],32:[3.5,1.7143],33:[3.5,12.],34:[6.,-
14.5],35:[6.,14.5]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorTwo,32->colorOne,33->colorTwo,34->colorOne,35->colorOne,36->colorTwo}

271

8.24 (Figure 4.8.a) gadget (specifying (z = 3) blocks)

1

3

2

8

4

9

5

14

6

15

7

20

21

26

10

27

11

28

12

29

13

30

31

32

16

33

17

34

18

35

19

36

37

38

22

39

23

40

24

41

25

42

43

44

45

46

47

48

49

50

51

52

272

Graph Properties ::

--

Number of Vertices: ‘52’

Number of Edges: ‘74’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

273

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->8,3<->4,3<->9,4<->5,4<->14,5<->6,5<->15,6<->7,6<->20,7<->8,7<->21,8<-
>26,9<->10,9<->27,10<->11,10<->28,11<->12,11<->29,12<->13,12<->30,13<->14,13<->31,14<-
>32,15<->16,15<->33,16<->17,16<->34,17<->18,17<->35,18<->19,18<->36,19<->20,19<-
>37,20<->38,21<->22,21<->39,22<->23,22<->40,23<->24,23<->41,24<->25,24<->42,25<-
>26,25<->43,26<->44,27<->28,27<->45,28<->29,29<->30,30<->31,31<->32,32<->46,33<-
>34,33<->47,34<->35,35<->36,36<->37,37<->38,38<->48,39<->40,39<->49,40<->41,41<-
>42,42<->43,43<->44,44<->50,45<->46,45<->51,46<->47,47<->48,48<->49,49<->50,50<->52}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-5.4545},5->{-3.5,-3.2727},6->{-
3.5,3.2727},7->{-3.5,5.4546},8->{-3.5,12.},9->{-2.,-12.},10->{-2.,-10.6909},11->{-2.,-
9.3818},12->{-2.,-8.0727},13->{-2.,-6.7636},14->{-2.,-5.4545},15->{-2.,-3.2727},16->{-
2.,-1.9636},17->{-2.,-0.6546},18->{-2.,0.6544},19->{-2.,1.9636},20->{-2.,3.2727},21-
>{-2.,5.4546},22->{-2.,6.7635},23->{-2.,8.0727},24->{-2.,9.3818},25->{-2.,10.6909},26-
>{-2.,12.},27->{2.,-12.},28->{2.,-10.6909},29->{2.,-9.3818},30->{2.,-8.0727},31->{2.,-
6.7636},32->{2.,-5.4545},33->{2.,-3.2727},34->{2.,-1.9636},35->{2.,-0.6546},36-
>{2.,0.6544},37->{2.,1.9636},38->{2.,3.2727},39->{2.,5.4546},40->{2.,6.7635},41-
>{2.,8.0727},42->{2.,9.3818},43->{2.,10.6909},44->{2.,12.},45->{3.5,-12.},46->{3.5,-
5.4545},47->{3.5,-3.2727},48->{3.5,3.2727},49->{3.5,5.4546},50->{3.5,12.},51->{6.,-
14.5},52->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,7),(2,3),(2,8),(3,4),(3,13),(4,5),(4,14),(5,6),(5,19),(6,7),(6,20),(7,25),(8
,9),(8,26),(9,10),(9,27),(10,11),(10,28),(11,12),(11,29),(12,13),(12,30),(13,31),(14,1
5),(14,32),(15,16),(15,33),(16,17),(16,34),(17,18),(17,35),(18,19),(18,36),(19,37),(20
,21),(20,38),(21,22),(21,39),(22,23),(22,40),(23,24),(23,41),(24,25),(24,42),(25,43),(
26,27),(26,44),(27,28),(28,29),(29,30),(30,31),(31,45),(32,33),(32,46),(33,34),(34,35)
,(35,36),(36,37),(37,47),(38,39),(38,48),(39,40),(40,41),(41,42),(42,43),(43,49),(44,4
5),(44,50),(45,46),(46,47),(47,48),(48,49),(49,51)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-5.4545],4:[-3.5,-3.2727],5:[-
3.5,3.2727],6:[-3.5,5.4546],7:[-3.5,12.],8:[-2.,-12.],9:[-2.,-10.6909],10:[-2.,-
9.3818],11:[-2.,-8.0727],12:[-2.,-6.7636],13:[-2.,-5.4545],14:[-2.,-3.2727],15:[-2.,-
1.9636],16:[-2.,-0.6546],17:[-2.,0.6544],18:[-2.,1.9636],19:[-2.,3.2727],20:[-
2.,5.4546],21:[-2.,6.7635],22:[-2.,8.0727],23:[-2.,9.3818],24:[-2.,10.6909],25:[-
2.,12.],26:[2.,-12.],27:[2.,-10.6909],28:[2.,-9.3818],29:[2.,-8.0727],30:[2.,-
6.7636],31:[2.,-5.4545],32:[2.,-3.2727],33:[2.,-1.9636],34:[2.,-
0.6546],35:[2.,0.6544],36:[2.,1.9636],37:[2.,3.2727],38:[2.,5.4546],39:[2.,6.7635],40:
[2.,8.0727],41:[2.,9.3818],42:[2.,10.6909],43:[2.,12.],44:[3.5,-12.],45:[3.5,-
5.4545],46:[3.5,-3.2727],47:[3.5,3.2727],48:[3.5,5.4546],49:[3.5,12.],50:[6.,-
14.5],51:[6.,14.5]}

274

Canonical vertex -coloring ::
{1->colorTwo,3->colorOne,2->colorOne,8->colorTwo,4->colorTwo,9->colorTwo,5-
>colorOne,14->colorOne,6->colorTwo,15->colorTwo,7->colorOne,20->colorOne,21-
>colorTwo,26->colorOne,10->colorOne,27->colorOne,11->colorTwo,28->colorTwo,12-
>colorOne,29->colorOne,13->colorTwo,30->colorTwo,31->colorOne,32->colorTwo,16-
>colorOne,33->colorOne,17->colorTwo,34->colorTwo,18->colorOne,35->colorOne,19-
>colorTwo,36->colorTwo,37->colorOne,38->colorTwo,22->colorOne,39->colorOne,23-
>colorTwo,40->colorTwo,24->colorOne,41->colorOne,25->colorTwo,42->colorTwo,43-
>colorOne,44->colorTwo,45->colorTwo,46->colorOne,47->colorTwo,48->colorOne,49-
>colorTwo,50->colorOne,51->colorOne,52->colorTwo}

275

8.25 (Figure 4.8.b) gadget (specifying (z = 1) blocks)

1

2

3

19

4

24

5

10

6

11

7

12

8

13

9

14

15

16

17

18

21

22

20

25

26

27

23

28

29

30

32

33

34

35

36

37

31

39

40

41

42

43

38

44

276

Graph Properties ::

--

Number of Vertices: ‘44’

Number of Edges: ‘61’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

277

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->19,2<->4,2<->24,3<->4,3<->5,4<->10,5<->6,5<->11,6<->7,6<->12,7<-
>8,7<->13,8<->9,8<->14,9<->10,9<->15,10<->16,11<->12,11<->17,12<->13,13<->14,14<-
>15,15<->16,16<->18,17<->18,17<->21,18<->22,19<->20,19<->25,20<->21,20<->26,21<-
>27,22<->23,22<->28,23<->24,23<->29,24<->30,25<->26,25<->32,26<->33,27<->28,27<-
>34,28<->35,29<->30,29<->36,30<->37,31<->32,32<->39,33<->34,33<->40,34<->41,35<-
>36,35<->42,36<->43,37<->38,37<->44,39<->40,41<->42,43<->44}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-15.6818,-13.},2->{-15.6818,13.},3->{-11.1818,-12.},4->{-11.1818,12.},5->{-
9.6818,-12.},6->{-9.6818,-7.2},7->{-9.6818,-2.4},8->{-9.6818,2.4},9->{-9.6818,7.2},10-
>{-9.6818,12.},11->{-5.6818,-12.},12->{-5.6818,-7.2},13->{-5.6818,-2.4},14->{-
5.6818,2.4},15->{-5.6818,7.2},16->{-5.6818,12.},17->{-4.1818,-12.},18->{-
4.1818,12.},19->{1.3181,-25.},20->{1.3181,-13.},21->{1.3181,-6.},22->{1.3181,6.},23-
>{1.3181,13.},24->{1.3181,25.},25->{5.3182,-25.},26->{5.3182,-13.},27->{5.3182,-
6.},28->{5.3182,6.},29->{5.3182,13.},30->{5.3182,25.},31->{7.3182,-31.5},32->{7.3182,-
27.5},33->{7.3182,-10.5},34->{7.3182,-8.5},35->{7.3182,8.5},36->{7.3182,10.5},37-
>{7.3182,27.5},38->{7.3182,31.5},39->{9.3182,-25.},40->{9.3182,-13.},41->{9.3182,-
6.},42->{9.3182,6.},43->{9.3182,13.},44->{9.3182,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,18),(1,3),(1,23),(2,3),(2,4),(3,9),(4,5),(4,10),(5,6),(5,11),(6,7),(6,
12),(7,8),(7,13),(8,9),(8,14),(9,15),(10,11),(10,16),(11,12),(12,13),(13,14),(14,15),(
15,17),(16,17),(16,20),(17,21),(18,19),(18,24),(19,20),(19,25),(20,26),(21,22),(21,27)
,(22,23),(22,28),(23,29),(24,25),(24,31),(25,32),(26,27),(26,33),(27,34),(28,29),(28,3
5),(29,36),(30,31),(31,38),(32,33),(32,39),(33,40),(34,35),(34,41),(35,42),(36,37),(36
,43),(38,39),(40,41),(42,43)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-15.6818,-13.],1:[-15.6818,13.],2:[-11.1818,-12.],3:[-11.1818,12.],4:[-9.6818,-
12.],5:[-9.6818,-7.2],6:[-9.6818,-2.4],7:[-9.6818,2.4],8:[-9.6818,7.2],9:[-
9.6818,12.],10:[-5.6818,-12.],11:[-5.6818,-7.2],12:[-5.6818,-2.4],13:[-
5.6818,2.4],14:[-5.6818,7.2],15:[-5.6818,12.],16:[-4.1818,-12.],17:[-
4.1818,12.],18:[1.3181,-25.],19:[1.3181,-13.],20:[1.3181,-
6.],21:[1.3181,6.],22:[1.3181,13.],23:[1.3181,25.],24:[5.3182,-25.],25:[5.3182,-
13.],26:[5.3182,-6.],27:[5.3182,6.],28:[5.3182,13.],29:[5.3182,25.],30:[7.3182,-
31.5],31:[7.3182,-27.5],32:[7.3182,-10.5],33:[7.3182,-
8.5],34:[7.3182,8.5],35:[7.3182,10.5],36:[7.3182,27.5],37:[7.3182,31.5],38:[9.3182,-
25.],39:[9.3182,-13.],40:[9.3182,-6.],41:[9.3182,6.],42:[9.3182,13.],43:[9.3182,25.]}

278

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorOne,6->colorTwo,7-
>colorOne,8->colorTwo,9->colorOne,10->colorTwo,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorOne,18->colorTwo,19-
>colorTwo,20->colorOne,21->colorTwo,22->colorOne,23->colorTwo,24->colorOne,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo,35->colorOne,36->colorTwo,37-
>colorOne,38->colorTwo,39->colorOne,40->colorTwo,41->colorOne,42->colorTwo,43-
>colorOne,44->colorTwo}

279

8.26 (Figure 4.8.b) gadget (specifying (z = 2) blocks)

1

2

3

35

6

40

4

7

5

12

13

18

8

19

9

20

10

21

11

22

23

24

14

25

15

26

16

27

17

28

29

30

31

32

33

34

37

38

36

41

42

43

39

44

45

46

48

49

50

51

52

53

47

55

56

57

58

59

54

60

280

Graph Properties ::

--

Number of Vertices: ‘60’

Number of Edges: ‘85’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

281

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->35,2<->6,2<->40,3<->4,3<->7,4<->5,4<->12,5<->6,5<->13,6<->18,7<-
>8,7<->19,8<->9,8<->20,9<->10,9<->21,10<->11,10<->22,11<->12,11<->23,12<->24,13<-
>14,13<->25,14<->15,14<->26,15<->16,15<->27,16<->17,16<->28,17<->18,17<->29,18<-
>30,19<->20,19<->31,20<->21,21<->22,22<->23,23<->24,24<->32,25<->26,25<->33,26<-
>27,27<->28,28<->29,29<->30,30<->34,31<->32,31<->37,32<->33,33<->34,34<->38,35<-
>36,35<->41,36<->37,36<->42,37<->43,38<->39,38<->44,39<->40,39<->45,40<->46,41<-
>42,41<->48,42<->49,43<->44,43<->50,44<->51,45<->46,45<->52,46<->53,47<->48,48<-
>55,49<->50,49<->56,50<->57,51<->52,51<->58,52<->59,53<->54,53<->60,55<->56,57<-
>58,59<->60}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-13.6333,-13.},2->{-13.6333,13.},3->{-9.1333,-12.},4->{-9.1333,-1.7142},5->{-
9.1333,1.7143},6->{-9.1333,12.},7->{-7.6333,-12.},8->{-7.6333,-9.9429},9->{-7.6333,-
7.8857},10->{-7.6333,-5.8285},11->{-7.6333,-3.7714},12->{-7.6333,-1.7142},13->{-
7.6333,1.7143},14->{-7.6333,3.7715},15->{-7.6333,5.8285},16->{-7.6333,7.8855},17->{-
7.6333,9.9428},18->{-7.6333,12.},19->{-3.6333,-12.},20->{-3.6333,-9.9429},21->{-
3.6333,-7.8857},22->{-3.6333,-5.8285},23->{-3.6333,-3.7714},24->{-3.6333,-1.7142},25-
>{-3.6333,1.7143},26->{-3.6333,3.7715},27->{-3.6333,5.8285},28->{-3.6333,7.8855},29-
>{-3.6333,9.9428},30->{-3.6333,12.},31->{-2.1333,-12.},32->{-2.1333,-1.7142},33->{-
2.1333,1.7143},34->{-2.1333,12.},35->{3.3666,-25.},36->{3.3666,-13.},37->{3.3666,-
6.},38->{3.3666,6.},39->{3.3666,13.},40->{3.3666,25.},41->{7.3667,-25.},42->{7.3667,-
13.},43->{7.3667,-6.},44->{7.3667,6.},45->{7.3667,13.},46->{7.3667,25.},47->{9.3667,-
31.5},48->{9.3667,-27.5},49->{9.3667,-10.5},50->{9.3667,-8.5},51->{9.3667,8.5},52-
>{9.3667,10.5},53->{9.3667,27.5},54->{9.3667,31.5},55->{11.3667,-25.},56->{11.3667,-
13.},57->{11.3667,-6.},58->{11.3667,6.},59->{11.3667,13.},60->{11.3667,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,34),(1,5),(1,39),(2,3),(2,6),(3,4),(3,11),(4,5),(4,12),(5,17),(6,7),(6
,18),(7,8),(7,19),(8,9),(8,20),(9,10),(9,21),(10,11),(10,22),(11,23),(12,13),(12,24),(
13,14),(13,25),(14,15),(14,26),(15,16),(15,27),(16,17),(16,28),(17,29),(18,19),(18,30)
,(19,20),(20,21),(21,22),(22,23),(23,31),(24,25),(24,32),(25,26),(26,27),(27,28),(28,2
9),(29,33),(30,31),(30,36),(31,32),(32,33),(33,37),(34,35),(34,40),(35,36),(35,41),(36
,42),(37,38),(37,43),(38,39),(38,44),(39,45),(40,41),(40,47),(41,48),(42,43),(42,49),(
43,50),(44,45),(44,51),(45,52),(46,47),(47,54),(48,49),(48,55),(49,56),(50,51),(50,57)
,(51,58),(52,53),(52,59),(54,55),(56,57),(58,59)]

282

-

Example embedding coordinates (SAGE 7.2):

{0:[-13.6333,-13.],1:[-13.6333,13.],2:[-9.1333,-12.],3:[-9.1333,-1.7142],4:[-
9.1333,1.7143],5:[-9.1333,12.],6:[-7.6333,-12.],7:[-7.6333,-9.9429],8:[-7.6333,-
7.8857],9:[-7.6333,-5.8285],10:[-7.6333,-3.7714],11:[-7.6333,-1.7142],12:[-
7.6333,1.7143],13:[-7.6333,3.7715],14:[-7.6333,5.8285],15:[-7.6333,7.8855],16:[-
7.6333,9.9428],17:[-7.6333,12.],18:[-3.6333,-12.],19:[-3.6333,-9.9429],20:[-3.6333,-
7.8857],21:[-3.6333,-5.8285],22:[-3.6333,-3.7714],23:[-3.6333,-1.7142],24:[-
3.6333,1.7143],25:[-3.6333,3.7715],26:[-3.6333,5.8285],27:[-3.6333,7.8855],28:[-
3.6333,9.9428],29:[-3.6333,12.],30:[-2.1333,-12.],31:[-2.1333,-1.7142],32:[-
2.1333,1.7143],33:[-2.1333,12.],34:[3.3666,-25.],35:[3.3666,-13.],36:[3.3666,-
6.],37:[3.3666,6.],38:[3.3666,13.],39:[3.3666,25.],40:[7.3667,-25.],41:[7.3667,-
13.],42:[7.3667,-6.],43:[7.3667,6.],44:[7.3667,13.],45:[7.3667,25.],46:[9.3667,-
31.5],47:[9.3667,-27.5],48:[9.3667,-10.5],49:[9.3667,-
8.5],50:[9.3667,8.5],51:[9.3667,10.5],52:[9.3667,27.5],53:[9.3667,31.5],54:[11.3667,-
25.],55:[11.3667,-13.],56:[11.3667,-
6.],57:[11.3667,6.],58:[11.3667,13.],59:[11.3667,25.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorOne,8->colorTwo,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorTwo,20->colorOne,21->colorTwo,22->colorOne,23->colorTwo,24->colorOne,25-
>colorTwo,26->colorOne,27->colorTwo,28->colorOne,29->colorTwo,30->colorOne,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo,35->colorTwo,36->colorOne,37-
>colorTwo,38->colorOne,39->colorTwo,40->colorOne,41->colorOne,42->colorTwo,43-
>colorOne,44->colorTwo,45->colorOne,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo,51->colorOne,52->colorTwo,53->colorOne,54->colorTwo,55-
>colorOne,56->colorTwo,57->colorOne,58->colorTwo,59->colorOne,60->colorTwo}

283

8.27 (Figure 4.8.b) gadget (specifying (z = 3) blocks)

1

2

3

51

8

56

4

9

5

14

6

15

7

20

21

26

10

27

11

28

12

29

13

30

31

32

16

33

17

34

18

35

19

36

37

38

22

39

23

40

24

41

25

42

43

44

45

46

47

48

49

50

53

54

52

57

58

59

55

60

61

62

64

65

66

67

68

69

63

71

72

73

74

75

70

76

284

Graph Properties ::

--

Number of Vertices: ‘76’

Number of Edges: ‘109’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

285

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->51,2<->8,2<->56,3<->4,3<->9,4<->5,4<->14,5<->6,5<->15,6<->7,6<-
>20,7<->8,7<->21,8<->26,9<->10,9<->27,10<->11,10<->28,11<->12,11<->29,12<->13,12<-
>30,13<->14,13<->31,14<->32,15<->16,15<->33,16<->17,16<->34,17<->18,17<->35,18<-
>19,18<->36,19<->20,19<->37,20<->38,21<->22,21<->39,22<->23,22<->40,23<->24,23<-
>41,24<->25,24<->42,25<->26,25<->43,26<->44,27<->28,27<->45,28<->29,29<->30,30<-
>31,31<->32,32<->46,33<->34,33<->47,34<->35,35<->36,36<->37,37<->38,38<->48,39<-
>40,39<->49,40<->41,41<->42,42<->43,43<->44,44<->50,45<->46,45<->53,46<->47,47<-
>48,48<->49,49<->50,50<->54,51<->52,51<->57,52<->53,52<->58,53<->59,54<->55,54<-
>60,55<->56,55<->61,56<->62,57<->58,57<->64,58<->65,59<->60,59<->66,60<->67,61<-
>62,61<->68,62<->69,63<->64,64<->71,65<->66,65<->72,66<->73,67<->68,67<->74,68<-
>75,69<->70,69<->76,71<->72,73<->74,75<->76}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-12.4474,-13.},2->{-12.4474,13.},3->{-7.9474,-12.},4->{-7.9474,-5.4545},5->{-
7.9474,-3.2727},6->{-7.9474,3.2727},7->{-7.9474,5.4546},8->{-7.9474,12.},9->{-6.4474,-
12.},10->{-6.4474,-10.6909},11->{-6.4474,-9.3818},12->{-6.4474,-8.0727},13->{-6.4474,-
6.7636},14->{-6.4474,-5.4545},15->{-6.4474,-3.2727},16->{-6.4474,-1.9636},17->{-
6.4474,-0.6546},18->{-6.4474,0.6544},19->{-6.4474,1.9636},20->{-6.4474,3.2727},21->{-
6.4474,5.4546},22->{-6.4474,6.7635},23->{-6.4474,8.0727},24->{-6.4474,9.3818},25->{-
6.4474,10.6909},26->{-6.4474,12.},27->{-2.4474,-12.},28->{-2.4474,-10.6909},29->{-
2.4474,-9.3818},30->{-2.4474,-8.0727},31->{-2.4474,-6.7636},32->{-2.4474,-5.4545},33-
>{-2.4474,-3.2727},34->{-2.4474,-1.9636},35->{-2.4474,-0.6546},36->{-
2.4474,0.6544},37->{-2.4474,1.9636},38->{-2.4474,3.2727},39->{-2.4474,5.4546},40->{-
2.4474,6.7635},41->{-2.4474,8.0727},42->{-2.4474,9.3818},43->{-2.4474,10.6909},44->{-
2.4474,12.},45->{-0.9474,-12.},46->{-0.9474,-5.4545},47->{-0.9474,-3.2727},48->{-
0.9474,3.2727},49->{-0.9474,5.4546},50->{-0.9474,12.},51->{4.5525,-25.},52->{4.5525,-
13.},53->{4.5525,-6.},54->{4.5525,6.},55->{4.5525,13.},56->{4.5525,25.},57->{8.5526,-
25.},58->{8.5526,-13.},59->{8.5526,-6.},60->{8.5526,6.},61->{8.5526,13.},62-
>{8.5526,25.},63->{10.5526,-31.5},64->{10.5526,-27.5},65->{10.5526,-10.5},66-
>{10.5526,-8.5},67->{10.5526,8.5},68->{10.5526,10.5},69->{10.5526,27.5},70-
>{10.5526,31.5},71->{12.5526,-25.},72->{12.5526,-13.},73->{12.5526,-6.},74-
>{12.5526,6.},75->{12.5526,13.},76->{12.5526,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,50),(1,7),(1,55),(2,3),(2,8),(3,4),(3,13),(4,5),(4,14),(5,6),(5,19),(6
,7),(6,20),(7,25),(8,9),(8,26),(9,10),(9,27),(10,11),(10,28),(11,12),(11,29),(12,13),(
12,30),(13,31),(14,15),(14,32),(15,16),(15,33),(16,17),(16,34),(17,18),(17,35),(18,19)
,(18,36),(19,37),(20,21),(20,38),(21,22),(21,39),(22,23),(22,40),(23,24),(23,41),(24,2
5),(24,42),(25,43),(26,27),(26,44),(27,28),(28,29),(29,30),(30,31),(31,45),(32,33),(32
,46),(33,34),(34,35),(35,36),(36,37),(37,47),(38,39),(38,48),(39,40),(40,41),(41,42),(
42,43),(43,49),(44,45),(44,52),(45,46),(46,47),(47,48),(48,49),(49,53),(50,51),(50,56)
,(51,52),(51,57),(52,58),(53,54),(53,59),(54,55),(54,60),(55,61),(56,57),(56,63),(57,6
4),(58,59),(58,65),(59,66),(60,61),(60,67),(61,68),(62,63),(63,70),(64,65),(64,71),(65
,72),(66,67),(66,73),(67,74),(68,69),(68,75),(70,71),(72,73),(74,75)]

286

-

Example embedding coordinates (SAGE 7.2):

{0:[-12.4474,-13.],1:[-12.4474,13.],2:[-7.9474,-12.],3:[-7.9474,-5.4545],4:[-7.9474,-
3.2727],5:[-7.9474,3.2727],6:[-7.9474,5.4546],7:[-7.9474,12.],8:[-6.4474,-12.],9:[-
6.4474,-10.6909],10:[-6.4474,-9.3818],11:[-6.4474,-8.0727],12:[-6.4474,-6.7636],13:[-
6.4474,-5.4545],14:[-6.4474,-3.2727],15:[-6.4474,-1.9636],16:[-6.4474,-0.6546],17:[-
6.4474,0.6544],18:[-6.4474,1.9636],19:[-6.4474,3.2727],20:[-6.4474,5.4546],21:[-
6.4474,6.7635],22:[-6.4474,8.0727],23:[-6.4474,9.3818],24:[-6.4474,10.6909],25:[-
6.4474,12.],26:[-2.4474,-12.],27:[-2.4474,-10.6909],28:[-2.4474,-9.3818],29:[-2.4474,-
8.0727],30:[-2.4474,-6.7636],31:[-2.4474,-5.4545],32:[-2.4474,-3.2727],33:[-2.4474,-
1.9636],34:[-2.4474,-0.6546],35:[-2.4474,0.6544],36:[-2.4474,1.9636],37:[-
2.4474,3.2727],38:[-2.4474,5.4546],39:[-2.4474,6.7635],40:[-2.4474,8.0727],41:[-
2.4474,9.3818],42:[-2.4474,10.6909],43:[-2.4474,12.],44:[-0.9474,-12.],45:[-0.9474,-
5.4545],46:[-0.9474,-3.2727],47:[-0.9474,3.2727],48:[-0.9474,5.4546],49:[-
0.9474,12.],50:[4.5525,-25.],51:[4.5525,-13.],52:[4.5525,-
6.],53:[4.5525,6.],54:[4.5525,13.],55:[4.5525,25.],56:[8.5526,-25.],57:[8.5526,-
13.],58:[8.5526,-6.],59:[8.5526,6.],60:[8.5526,13.],61:[8.5526,25.],62:[10.5526,-
31.5],63:[10.5526,-27.5],64:[10.5526,-10.5],65:[10.5526,-
8.5],66:[10.5526,8.5],67:[10.5526,10.5],68:[10.5526,27.5],69:[10.5526,31.5],70:[12.552
6,-25.],71:[12.5526,-13.],72:[12.5526,-
6.],73:[12.5526,6.],74:[12.5526,13.],75:[12.5526,25.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorTwo,28->colorOne,29->colorTwo,30->colorOne,31-
>colorTwo,32->colorOne,33->colorTwo,34->colorOne,35->colorTwo,36->colorOne,37-
>colorTwo,38->colorOne,39->colorTwo,40->colorOne,41->colorTwo,42->colorOne,43-
>colorTwo,44->colorOne,45->colorOne,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo,51->colorTwo,52->colorOne,53->colorTwo,54->colorOne,55-
>colorTwo,56->colorOne,57->colorOne,58->colorTwo,59->colorOne,60->colorTwo,61-
>colorOne,62->colorTwo,63->colorOne,64->colorTwo,65->colorOne,66->colorTwo,67-
>colorOne,68->colorTwo,69->colorOne,70->colorTwo,71->colorOne,72->colorTwo,73-
>colorOne,74->colorTwo,75->colorOne,76->colorTwo}

287

8.28 (Figure 4.8.c) gadget (specifying (z = 1) blocks)

1

2

3

18

8

21

4

9

5

10

6

11

7

12

13

14

15

16

19

20

17

23

24

22

288

Graph Properties ::

--

Number of Vertices: ‘24’

Number of Edges: ‘33’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

289

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->18,2<->8,2<->21,3<->4,3<->9,4<->5,4<->10,5<->6,5<->11,6<->7,6<-
>12,7<->8,7<->13,8<->14,9<->10,9<->15,10<->11,11<->12,12<->13,13<->14,14<->16,15<-
>16,15<->19,16<->20,17<->18,18<->19,19<->23,20<->21,20<->24,21<->22,23<->24}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-8.6667,-12.},2->{-8.6667,12.},3->{-7.1667,-12.},4->{-7.1667,-7.2},5->{-7.1667,-
2.4},6->{-7.1667,2.4},7->{-7.1667,7.2},8->{-7.1667,12.},9->{-3.1667,-12.},10->{-
3.1667,-7.2},11->{-3.1667,-2.4},12->{-3.1667,2.4},13->{-3.1667,7.2},14->{-
3.1667,12.},15->{-1.6667,-12.},16->{-1.6667,12.},17->{9.8333,-31.5},18->{9.8333,-
27.5},19->{9.8333,-8.5},20->{9.8333,8.5},21->{9.8333,27.5},22->{9.8333,31.5},23-
>{11.8333,-6.},24->{11.8333,6.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,17),(1,7),(1,20),(2,3),(2,8),(3,4),(3,9),(4,5),(4,10),(5,6),(5,11),(6,
7),(6,12),(7,13),(8,9),(8,14),(9,10),(10,11),(11,12),(12,13),(13,15),(14,15),(14,18),(
15,19),(16,17),(17,18),(18,22),(19,20),(19,23),(20,21),(22,23)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-8.6667,-12.],1:[-8.6667,12.],2:[-7.1667,-12.],3:[-7.1667,-7.2],4:[-7.1667,-
2.4],5:[-7.1667,2.4],6:[-7.1667,7.2],7:[-7.1667,12.],8:[-3.1667,-12.],9:[-3.1667,-
7.2],10:[-3.1667,-2.4],11:[-3.1667,2.4],12:[-3.1667,7.2],13:[-3.1667,12.],14:[-
1.6667,-12.],15:[-1.6667,12.],16:[9.8333,-31.5],17:[9.8333,-27.5],18:[9.8333,-
8.5],19:[9.8333,8.5],20:[9.8333,27.5],21:[9.8333,31.5],22:[11.8333,-
6.],23:[11.8333,6.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorTwo,16->colorOne,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorTwo,24->colorOne}

290

8.29 (Figure 4.8.c) gadget (specifying (z = 2) blocks)

1

2

5

34

3

10

4

11

16

37

6

17

7

18

8

19

9

20

21

22

12

23

13

24

14

25

15

26

27

28

29

30

31

32

35

36

33

39

40

38

291

Graph Properties ::

--

Number of Vertices: ‘40’

Number of Edges: ‘57’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

292

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->5,1<->34,2<->3,2<->10,3<->4,3<->11,4<->16,4<->37,5<->6,5<->17,6<->7,6<-
>18,7<->8,7<->19,8<->9,8<->20,9<->10,9<->21,10<->22,11<->12,11<->23,12<->13,12<-
>24,13<->14,13<->25,14<->15,14<->26,15<->16,15<->27,16<->28,17<->18,17<->29,18<-
>19,19<->20,20<->21,21<->22,22<->30,23<->24,23<->31,24<->25,25<->26,26<->27,27<-
>28,28<->32,29<->30,29<->35,30<->31,31<->32,32<->36,33<->34,34<->35,35<->39,36<-
>37,36<->40,37<->38,39<->40}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.6,-12.},2->{-6.6,-1.7142},3->{-6.6,1.7143},4->{-6.6,12.},5->{-5.1,-12.},6->{-
5.1,-9.9429},7->{-5.1,-7.8857},8->{-5.1,-5.8285},9->{-5.1,-3.7714},10->{-5.1,-
1.7142},11->{-5.1,1.7143},12->{-5.1,3.7715},13->{-5.1,5.8285},14->{-5.1,7.8855},15->{-
5.1,9.9428},16->{-5.1,12.},17->{-1.1,-12.},18->{-1.1,-9.9429},19->{-1.1,-7.8857},20-
>{-1.1,-5.8285},21->{-1.1,-3.7714},22->{-1.1,-1.7142},23->{-1.1,1.7143},24->{-
1.1,3.7715},25->{-1.1,5.8285},26->{-1.1,7.8855},27->{-1.1,9.9428},28->{-1.1,12.},29-
>{0.4,-12.},30->{0.4,-1.7142},31->{0.4,1.7143},32->{0.4,12.},33->{11.9,-31.5},34-
>{11.9,-27.5},35->{11.9,-8.5},36->{11.9,8.5},37->{11.9,27.5},38->{11.9,31.5},39-
>{13.9,-6.},40->{13.9,6.}}

Edge list (SAGE 7.2):

[(0,1),(0,4),(0,33),(1,2),(1,9),(2,3),(2,10),(3,15),(3,36),(4,5),(4,16),(5,6),(5,17),(
6,7),(6,18),(7,8),(7,19),(8,9),(8,20),(9,21),(10,11),(10,22),(11,12),(11,23),(12,13),(
12,24),(13,14),(13,25),(14,15),(14,26),(15,27),(16,17),(16,28),(17,18),(18,19),(19,20)
,(20,21),(21,29),(22,23),(22,30),(23,24),(24,25),(25,26),(26,27),(27,31),(28,29),(28,3
4),(29,30),(30,31),(31,35),(32,33),(33,34),(34,38),(35,36),(35,39),(36,37),(38,39)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.6,-12.],1:[-6.6,-1.7142],2:[-6.6,1.7143],3:[-6.6,12.],4:[-5.1,-12.],5:[-5.1,-
9.9429],6:[-5.1,-7.8857],7:[-5.1,-5.8285],8:[-5.1,-3.7714],9:[-5.1,-1.7142],10:[-
5.1,1.7143],11:[-5.1,3.7715],12:[-5.1,5.8285],13:[-5.1,7.8855],14:[-5.1,9.9428],15:[-
5.1,12.],16:[-1.1,-12.],17:[-1.1,-9.9429],18:[-1.1,-7.8857],19:[-1.1,-5.8285],20:[-
1.1,-3.7714],21:[-1.1,-1.7142],22:[-1.1,1.7143],23:[-1.1,3.7715],24:[-
1.1,5.8285],25:[-1.1,7.8855],26:[-1.1,9.9428],27:[-1.1,12.],28:[0.4,-12.],29:[0.4,-
1.7142],30:[0.4,1.7143],31:[0.4,12.],32:[11.9,-31.5],33:[11.9,-27.5],34:[11.9,-
8.5],35:[11.9,8.5],36:[11.9,27.5],37:[11.9,31.5],38:[13.9,-6.],39:[13.9,6.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorTwo,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorTwo,30->colorOne,31-
>colorTwo,32->colorOne,33->colorOne,34->colorTwo,35->colorOne,36->colorTwo,37-
>colorOne,38->colorTwo,39->colorTwo,40->colorOne}

293

8.30 (Figure 4.8.c) gadget (specifying (z = 3) blocks)

1

2

7

50

3

12

4

13

5

18

6

19

24

53

8

25

9

26

10

27

11

28

29

30

14

31

15

32

16

33

17

34

35

36

20

37

21

38

22

39

23

40

41

42

43

44

45

46

47

48

51

52

49

55

56

54

294

Graph Properties ::

--

Number of Vertices: ‘56’

Number of Edges: ‘81’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

295

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->7,1<->50,2<->3,2<->12,3<->4,3<->13,4<->5,4<->18,5<->6,5<->19,6<->24,6<-
>53,7<->8,7<->25,8<->9,8<->26,9<->10,9<->27,10<->11,10<->28,11<->12,11<->29,12<-
>30,13<->14,13<->31,14<->15,14<->32,15<->16,15<->33,16<->17,16<->34,17<->18,17<-
>35,18<->36,19<->20,19<->37,20<->21,20<->38,21<->22,21<->39,22<->23,22<->40,23<-
>24,23<->41,24<->42,25<->26,25<->43,26<->27,27<->28,28<->29,29<->30,30<->44,31<-
>32,31<->45,32<->33,33<->34,34<->35,35<->36,36<->46,37<->38,37<->47,38<->39,39<-
>40,40<->41,41<->42,42<->48,43<->44,43<->51,44<->45,45<->46,46<->47,47<->48,48<-
>52,49<->50,50<->51,51<->55,52<->53,52<->56,53<->54,55<->56}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-5.7143,-12.},2->{-5.7143,-5.4545},3->{-5.7143,-3.2727},4->{-5.7143,3.2727},5->{-
5.7143,5.4546},6->{-5.7143,12.},7->{-4.2143,-12.},8->{-4.2143,-10.6909},9->{-4.2143,-
9.3818},10->{-4.2143,-8.0727},11->{-4.2143,-6.7636},12->{-4.2143,-5.4545},13->{-
4.2143,-3.2727},14->{-4.2143,-1.9636},15->{-4.2143,-0.6546},16->{-4.2143,0.6544},17-
>{-4.2143,1.9636},18->{-4.2143,3.2727},19->{-4.2143,5.4546},20->{-4.2143,6.7635},21-
>{-4.2143,8.0727},22->{-4.2143,9.3818},23->{-4.2143,10.6909},24->{-4.2143,12.},25->{-
0.2143,-12.},26->{-0.2143,-10.6909},27->{-0.2143,-9.3818},28->{-0.2143,-8.0727},29->{-
0.2143,-6.7636},30->{-0.2143,-5.4545},31->{-0.2143,-3.2727},32->{-0.2143,-1.9636},33-
>{-0.2143,-0.6546},34->{-0.2143,0.6544},35->{-0.2143,1.9636},36->{-0.2143,3.2727},37-
>{-0.2143,5.4546},38->{-0.2143,6.7635},39->{-0.2143,8.0727},40->{-0.2143,9.3818},41-
>{-0.2143,10.6909},42->{-0.2143,12.},43->{1.2857,-12.},44->{1.2857,-5.4545},45-
>{1.2857,-3.2727},46->{1.2857,3.2727},47->{1.2857,5.4546},48->{1.2857,12.},49-
>{12.7857,-31.5},50->{12.7857,-27.5},51->{12.7857,-8.5},52->{12.7857,8.5},53-
>{12.7857,27.5},54->{12.7857,31.5},55->{14.7857,-6.},56->{14.7857,6.}}

Edge list (SAGE 7.2):

[(0,1),(0,6),(0,49),(1,2),(1,11),(2,3),(2,12),(3,4),(3,17),(4,5),(4,18),(5,23),(5,52),
(6,7),(6,24),(7,8),(7,25),(8,9),(8,26),(9,10),(9,27),(10,11),(10,28),(11,29),(12,13),(
12,30),(13,14),(13,31),(14,15),(14,32),(15,16),(15,33),(16,17),(16,34),(17,35),(18,19)
,(18,36),(19,20),(19,37),(20,21),(20,38),(21,22),(21,39),(22,23),(22,40),(23,41),(24,2
5),(24,42),(25,26),(26,27),(27,28),(28,29),(29,43),(30,31),(30,44),(31,32),(32,33),(33
,34),(34,35),(35,45),(36,37),(36,46),(37,38),(38,39),(39,40),(40,41),(41,47),(42,43),(
42,50),(43,44),(44,45),(45,46),(46,47),(47,51),(48,49),(49,50),(50,54),(51,52),(51,55)
,(52,53),(54,55)]

296

-

Example embedding coordinates (SAGE 7.2):

{0:[-5.7143,-12.],1:[-5.7143,-5.4545],2:[-5.7143,-3.2727],3:[-5.7143,3.2727],4:[-
5.7143,5.4546],5:[-5.7143,12.],6:[-4.2143,-12.],7:[-4.2143,-10.6909],8:[-4.2143,-
9.3818],9:[-4.2143,-8.0727],10:[-4.2143,-6.7636],11:[-4.2143,-5.4545],12:[-4.2143,-
3.2727],13:[-4.2143,-1.9636],14:[-4.2143,-0.6546],15:[-4.2143,0.6544],16:[-
4.2143,1.9636],17:[-4.2143,3.2727],18:[-4.2143,5.4546],19:[-4.2143,6.7635],20:[-
4.2143,8.0727],21:[-4.2143,9.3818],22:[-4.2143,10.6909],23:[-4.2143,12.],24:[-0.2143,-
12.],25:[-0.2143,-10.6909],26:[-0.2143,-9.3818],27:[-0.2143,-8.0727],28:[-0.2143,-
6.7636],29:[-0.2143,-5.4545],30:[-0.2143,-3.2727],31:[-0.2143,-1.9636],32:[-0.2143,-
0.6546],33:[-0.2143,0.6544],34:[-0.2143,1.9636],35:[-0.2143,3.2727],36:[-
0.2143,5.4546],37:[-0.2143,6.7635],38:[-0.2143,8.0727],39:[-0.2143,9.3818],40:[-
0.2143,10.6909],41:[-0.2143,12.],42:[1.2857,-12.],43:[1.2857,-5.4545],44:[1.2857,-
3.2727],45:[1.2857,3.2727],46:[1.2857,5.4546],47:[1.2857,12.],48:[12.7857,-
31.5],49:[12.7857,-27.5],50:[12.7857,-
8.5],51:[12.7857,8.5],52:[12.7857,27.5],53:[12.7857,31.5],54:[14.7857,-
6.],55:[14.7857,6.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorOne,21->colorTwo,22->colorOne,23->colorTwo,24->colorOne,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo,35->colorOne,36->colorTwo,37-
>colorOne,38->colorTwo,39->colorOne,40->colorTwo,41->colorOne,42->colorTwo,43-
>colorTwo,44->colorOne,45->colorTwo,46->colorOne,47->colorTwo,48->colorOne,49-
>colorOne,50->colorTwo,51->colorOne,52->colorTwo,53->colorOne,54->colorTwo,55-
>colorTwo,56->colorOne}

297

8.31 (Figure 4.9.b) gadget (subgraph of the “Fig. 4” 54 vertex
cubic 3-connected bipartite non-Hamiltonian graph from
ref. [54])

1

3

2

6

7

18

4

8

9

5

10

11

12

21

22

13

32

14

33

16

34

17

35

25

19

2815

27

20

31

23

24

36

26

37

29

30

40

38

39

41

42

298

Graph Properties ::

--

Number of Vertices: ‘42’

Number of Edges: ‘59’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘False’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘6’

Output of SAGE 7.2’s ‘girth()’ function: ‘6’

Output for the ‘igraph’ R package ‘girth()’ function: ‘6’

299

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘2’

(Embedding in the orientable surface --- FORMAT: “vertex : [clockwise ordering of

vertices about in embedding]) ::

{0: [2],
 1: [5],
 2: [0, 6, 17],
 3: [6, 7, 8],
 4: [9, 10, 11],
 5: [1, 11, 20],
 6: [2, 3, 21],
 7: [3, 12, 31],
 8: [3, 32, 13],
 9: [4, 33, 15],
 10: [4, 16, 34],
 11: [4, 5, 24],
 12: [7, 17, 18],
 13: [8, 27, 18],
 14: [15, 27, 26],
 15: [9, 14, 19],
 16: [10, 19, 20],
 17: [2, 30, 12],
 18: [12, 13, 22],
 19: [15, 23, 16],
 20: [5, 35, 16],
 21: [6, 36, 25],
 22: [18, 26, 25],
 23: [19, 28, 29],
 24: [11, 29, 39],
 25: [21, 31, 22],
 26: [14, 32, 22],
 27: [13, 14, 28],
 28: [23, 27, 33],
 29: [23, 34, 24],
 30: [17, 37, 36],
 31: [7, 25, 37],
 32: [8, 37, 26],
 33: [9, 38, 28],
 34: [10, 29, 38],
 35: [20, 38, 39],
 36: [21, 40, 30],
 37: [30, 32, 31],
 38: [33, 35, 34],
 39: [24, 35, 41],
 40: [36],
 41: [39]}

300

Edge list (Mathematica 10.4.1):

{1<->3,2<->6,3<->7,3<->18,4<->7,4<->8,4<->9,5<->10,5<->11,5<->12,6<->12,6<->21,7<-
>22,8<->13,8<->32,9<->14,9<->33,10<->16,10<->34,11<->17,11<->35,12<->25,13<->18,13<-
>19,14<->19,14<->28,15<->16,15<->27,15<->28,16<->20,17<->20,17<->21,18<->31,19<-
>23,20<->24,21<->36,22<->26,22<->37,23<->26,23<->27,24<->29,24<->30,25<->30,25<-
>40,26<->32,27<->33,28<->29,29<->34,30<->35,31<->37,31<->38,32<->38,33<->38,34<-
>39,35<->39,36<->39,36<->40,37<->41,40<->42}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-6.},5->{-3.5,6.},6->{-
3.5,12.},7->{-2.5,-9.},8->{-2.5,-3.75},9->{-2.5,-1.5},10->{-2.5,1.5},11->{-
2.5,3.75},12->{-2.5,9.},13->{-1.5,-6.},14->{-1.5,-3.},15->{-1.5,0.},16->{-1.5,3.},17-
>{-1.5,6.},18->{-0.5,-7.5},19->{-0.5,-4.5},20->{-0.5,4.5},21->{-0.5,7.5},22->{0.5,-
7.5},23->{0.5,-4.5},24->{0.5,4.5},25->{0.5,7.5},26->{1.5,-6.},27->{1.5,-3.},28-
>{1.5,0.},29->{1.5,3.},30->{1.5,6.},31->{2.5,-9.},32->{2.5,-3.75},33->{2.5,-1.5},34-
>{2.5,1.5},35->{2.5,3.75},36->{2.5,9.},37->{3.5,-12.},38->{3.5,-6.},39->{3.5,6.},40-
>{3.5,12.},41->{6.,-14.5},42->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,5),(2,6),(2,17),(3,6),(3,7),(3,8),(4,9),(4,10),(4,11),(5,11),(5,20),(6,21),(
7,12),(7,31),(8,13),(8,32),(9,15),(9,33),(10,16),(10,34),(11,24),(12,17),(12,18),(13,1
8),(13,27),(14,15),(14,26),(14,27),(15,19),(16,19),(16,20),(17,30),(18,22),(19,23),(20
,35),(21,25),(21,36),(22,25),(22,26),(23,28),(23,29),(24,29),(24,39),(25,31),(26,32),(
27,28),(28,33),(29,34),(30,36),(30,37),(31,37),(32,37),(33,38),(34,38),(35,38),(35,39)
,(36,40),(39,41)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-4.75,-13.875],1:[-4.75,13.875],2:[-3.5,-12.],3:[-3.5,-6.],4:[-3.5,6.],5:[-
3.5,12.],6:[-2.5,-9.],7:[-2.5,-3.75],8:[-2.5,-1.5],9:[-2.5,1.5],10:[-2.5,3.75],11:[-
2.5,9.],12:[-1.5,-6.],13:[-1.5,-3.],14:[-1.5,0.],15:[-1.5,3.],16:[-1.5,6.],17:[-0.5,-
7.5],18:[-0.5,-4.5],19:[-0.5,4.5],20:[-0.5,7.5],21:[0.5,-7.5],22:[0.5,-
4.5],23:[0.5,4.5],24:[0.5,7.5],25:[1.5,-6.],26:[1.5,-
3.],27:[1.5,0.],28:[1.5,3.],29:[1.5,6.],30:[2.5,-9.],31:[2.5,-3.75],32:[2.5,-
1.5],33:[2.5,1.5],34:[2.5,3.75],35:[2.5,9.],36:[3.5,-12.],37:[3.5,-
6.],38:[3.5,6.],39:[3.5,12.],40:[4.75,-13.875],41:[4.75,13.875]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorOne,5->colorTwo,6->colorTwo,7-
>colorTwo,8->colorTwo,9->colorTwo,10->colorOne,11->colorOne,12->colorOne,13-
>colorOne,14->colorOne,15->colorOne,16->colorTwo,17->colorTwo,18->colorTwo,19-
>colorTwo,20->colorOne,21->colorOne,22->colorOne,23->colorOne,24->colorTwo,25-
>colorTwo,26->colorTwo,27->colorTwo,28->colorTwo,29->colorOne,30->colorOne,31-
>colorOne,32->colorOne,33->colorOne,34->colorTwo,35->colorTwo,36->colorTwo,37-
>colorTwo,38->colorTwo,39->colorOne,40->colorOne,41->colorOne,42->colorTwo}

301

8.32 (Figure 4.9.c) gadget

1

3

2

6

4

7

5

24

25

8

9

10

11

12

13

17

18

14

19

20

15

16

21

22

23

26

27

28

302

Graph Properties ::

--

Number of Vertices: ‘28’

Number of Edges: ‘38’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

303

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->3,2<->6,3<->4,3<->7,4<->5,4<->24,5<->6,5<->25,6<->8,7<->9,7<->10,8<->11,8<-
>12,9<->13,9<->17,10<->13,10<->18,11<->14,11<->19,12<->14,12<->20,13<->15,14<->16,15<-
>17,15<->18,16<->19,16<->20,17<->21,18<->21,19<->22,20<->22,21<->23,22<->26,23<-
>24,23<->27,24<->25,25<->26,26<->28}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-4.},5->{-3.5,4.},6->{-
3.5,12.},7->{-2.1,-12.},8->{-2.1,12.},9->{-1.4,-13.2},10->{-1.4,-10.8},11->{-
1.4,10.8},12->{-1.4,13.2},13->{-0.7,-12.},14->{-0.7,12.},15->{0.7,-12.},16-
>{0.7,12.},17->{1.4,-13.2},18->{1.4,-10.8},19->{1.4,10.8},20->{1.4,13.2},21->{2.1,-
12.},22->{2.1,12.},23->{3.5,-12.},24->{3.5,-4.},25->{3.5,4.},26->{3.5,12.},27->{6.,-
14.5},28->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,5),(2,3),(2,6),(3,4),(3,23),(4,5),(4,24),(5,7),(6,8),(6,9),(7,10),(7,11),(8,
12),(8,16),(9,12),(9,17),(10,13),(10,18),(11,13),(11,19),(12,14),(13,15),(14,16),(14,1
7),(15,18),(15,19),(16,20),(17,20),(18,21),(19,21),(20,22),(21,25),(22,23),(22,26),(23
,24),(24,25),(25,27)]

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-4.],4:[-3.5,4.],5:[-3.5,12.],6:[-
2.1,-12.],7:[-2.1,12.],8:[-1.4,-13.2],9:[-1.4,-10.8],10:[-1.4,10.8],11:[-
1.4,13.2],12:[-0.7,-12.],13:[-0.7,12.],14:[0.7,-12.],15:[0.7,12.],16:[1.4,-
13.2],17:[1.4,-10.8],18:[1.4,10.8],19:[1.4,13.2],20:[2.1,-12.],21:[2.1,12.],22:[3.5,-
12.],23:[3.5,-4.],24:[3.5,4.],25:[3.5,12.],26:[6.,-14.5],27:[6.,14.5]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorOne,10->colorOne,11->colorTwo,12->colorTwo,13-
>colorTwo,14->colorOne,15->colorOne,16->colorTwo,17->colorTwo,18->colorTwo,19-
>colorOne,20->colorOne,21->colorOne,22->colorTwo,23->colorTwo,24->colorOne,25-
>colorTwo,26->colorOne,27->colorOne,28->colorTwo}

304

8.33 (Figure 4.9.d) gadget (nearly identical to the “Fig. 2.a”
gadget from ref. [67])

1

3

2

8

4

21

5

36

6

37

7

9

11

15

10

12

13
10

14

17
131313131313

1616

19

18 20

38

22

24

23

26

22

25

29

27

2525252525

28

33

30
272727

31

292929

32

34

32

35

39

40

305

Graph Properties ::

--

Number of Vertices: ‘40’

Number of Edges: ‘56’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

306

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->3,2<->8,3<->4,3<->21,4<->5,4<->36,5<->6,5<->37,6<->7,6<->9,7<->8,7<->11,8<-
>15,9<->10,9<->12,10<->11,10<->13,11<->14,12<->13,12<->17,13<->16,14<->15,14<->16,15<-
>19,16<->18,17<->18,17<->20,18<->19,19<->20,20<->38,21<->22,21<->24,22<->23,22<-
>26,23<->24,23<->25,24<->29,25<->27,25<->28,26<->27,26<->33,27<->30,28<->29,28<-
>31,29<->32,30<->31,30<->34,31<->32,32<->35,33<->34,33<->39,34<->35,35<->36,36<-
>37,37<->38,38<->40}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-4.},5->{-3.5,4.},6->{-
3.5,7.6364},7->{-3.5,10.0364},8->{-3.5,12.},9->{-2.8354,8.1542},10->{-2.8354,9.6},11-
>{-2.8354,10.0364},12->{-2.3028,8.5693},13->{-2.3028,9.4652},14->{-2.3028,10.1712},15-
>{-2.3028,11.0671},16->{-1.9736,9.8182},17->{-1.4,9.2727},18->{-1.4,9.8182},19->{-
1.4,10.3636},20->{-0.7,9.8182},21->{0.7,-9.8182},22->{1.4,-10.3636},23->{1.4,-
9.8182},24->{1.4,-9.2727},25->{1.9736,-9.8182},26->{2.3028,-11.0671},27->{2.3028,-
10.1712},28->{2.3028,-9.4652},29->{2.3028,-8.5693},30->{2.8354,-10.0364},31->{2.8354,-
9.6},32->{2.8354,-8.1542},33->{3.5,-12.},34->{3.5,-10.0364},35->{3.5,-7.6364},36-
>{3.5,-4.},37->{3.5,4.},38->{3.5,12.},39->{6.,-14.5},40->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,7),(2,3),(2,20),(3,4),(3,35),(4,5),(4,36),(5,6),(5,8),(6,7),(6,10),(7,14),(8
,9),(8,11),(9,10),(9,12),(10,13),(11,12),(11,16),(12,15),(13,14),(13,15),(14,18),(15,1
7),(16,17),(16,19),(17,18),(18,19),(19,37),(20,21),(20,23),(21,22),(21,25),(22,23),(22
,24),(23,28),(24,26),(24,27),(25,26),(25,32),(26,29),(27,28),(27,30),(28,31),(29,30),(
29,33),(30,31),(31,34),(32,33),(32,38),(33,34),(34,35),(35,36),(36,37),(37,39)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-4.],4:[-3.5,4.],5:[-
3.5,7.6364],6:[-3.5,10.0364],7:[-3.5,12.],8:[-2.8354,8.1542],9:[-2.8354,9.6],10:[-
2.8354,10.0364],11:[-2.3028,8.5693],12:[-2.3028,9.4652],13:[-2.3028,10.1712],14:[-
2.3028,11.0671],15:[-1.9736,9.8182],16:[-1.4,9.2727],17:[-1.4,9.8182],18:[-
1.4,10.3636],19:[-0.7,9.8182],20:[0.7,-9.8182],21:[1.4,-10.3636],22:[1.4,-
9.8182],23:[1.4,-9.2727],24:[1.9736,-9.8182],25:[2.3028,-11.0671],26:[2.3028,-
10.1712],27:[2.3028,-9.4652],28:[2.3028,-8.5693],29:[2.8354,-10.0364],30:[2.8354,-
9.6],31:[2.8354,-8.1542],32:[3.5,-12.],33:[3.5,-10.0364],34:[3.5,-7.6364],35:[3.5,-
4.],36:[3.5,4.],37:[3.5,12.],38:[6.,-14.5],39:[6.,14.5]}

307

8.34 (Figure 4.9.e) gadget

1

3

2

6

4

7

5

12

13

8

9

10

11

14

15

16

308

Graph Properties ::

--

Number of Vertices: ‘16’

Number of Edges: ‘18’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

309

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->3,2<->6,3<->4,3<->7,4<->5,4<->12,5<->6,5<->13,6<->8,7<->9,8<->10,9<->11,10<-
>14,11<->12,11<->15,12<->13,13<->14,14<->16}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-4.},5->{-3.5,4.},6->{-
3.5,12.},7->{-1.1667,-12.},8->{-1.1667,12.},9->{1.1667,-12.},10->{1.1667,12.},11-
>{3.5,-12.},12->{3.5,-4.},13->{3.5,4.},14->{3.5,12.},15->{6.,-14.5},16->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,5),(2,3),(2,6),(3,4),(3,11),(4,5),(4,12),(5,7),(6,8),(7,9),(8,10),(9,13),(10
,11),(10,14),(11,12),(12,13),(13,15)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-4.],4:[-3.5,4.],5:[-3.5,12.],6:[-
1.1667,-12.],7:[-1.1667,12.],8:[1.1667,-12.],9:[1.1667,12.],10:[3.5,-12.],11:[3.5,-
4.],12:[3.5,4.],13:[3.5,12.],14:[6.,-14.5],15:[6.,14.5]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorOne,10->colorTwo,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorOne,16->colorTwo}

310

8.35 (Figure 4.10.b) gadget

1

2

3

41

6

46

7

18

4

8

9

5

10

11

12

21

22

13

32

14

33

16

34

17

35

25

19

2815

27

20

31

23

24

36

26

37

29

30

40

38

39

43

44

42

47

48

49

45

50

51

52

54

55

56

57

58

59

53

61

62

63

64

65

60

66

311

Graph Properties ::

--

Number of Vertices: ‘66’

Number of Edges: ‘94’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘False’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

312

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->41,2<->6,2<->46,3<->7,3<->18,4<->7,4<->8,4<->9,5<->10,5<->11,5<-
>12,6<->12,6<->21,7<->22,8<->13,8<->32,9<->14,9<->33,10<->16,10<->34,11<->17,11<-
>35,12<->25,13<->18,13<->19,14<->19,14<->28,15<->16,15<->27,15<->28,16<->20,17<-
>20,17<->21,18<->31,19<->23,20<->24,21<->36,22<->26,22<->37,23<->26,23<->27,24<-
>29,24<->30,25<->30,25<->40,26<->32,27<->33,28<->29,29<->34,30<->35,31<->37,31<-
>38,32<->38,33<->38,34<->39,35<->39,36<->39,36<->40,37<->43,40<->44,41<->42,41<-
>47,42<->43,42<->48,43<->49,44<->45,44<->50,45<->46,45<->51,46<->52,47<->48,47<-
>54,48<->55,49<->50,49<->56,50<->57,51<->52,51<->58,52<->59,53<->54,54<->61,55<-
>56,55<->62,56<->63,57<->58,57<->64,58<->65,59<->60,59<->66,61<->62,63<->64,65<->66}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-13.1212,-13.},2->{-13.1212,13.},3->{-8.6212,-12.},4->{-8.6212,-6.},5->{-
8.6212,6.},6->{-8.6212,12.},7->{-7.6212,-9.},8->{-7.6212,-3.75},9->{-7.6212,-1.5},10-
>{-7.6212,1.5},11->{-7.6212,3.75},12->{-7.6212,9.},13->{-6.6212,-6.},14->{-6.6212,-
3.},15->{-6.6212,0.},16->{-6.6212,3.},17->{-6.6212,6.},18->{-5.6212,-7.5},19->{-
5.6212,-4.5},20->{-5.6212,4.5},21->{-5.6212,7.5},22->{-4.6212,-7.5},23->{-4.6212,-
4.5},24->{-4.6212,4.5},25->{-4.6212,7.5},26->{-3.6212,-6.},27->{-3.6212,-3.},28->{-
3.6212,0.},29->{-3.6212,3.},30->{-3.6212,6.},31->{-2.6212,-9.},32->{-2.6212,-3.75},33-
>{-2.6212,-1.5},34->{-2.6212,1.5},35->{-2.6212,3.75},36->{-2.6212,9.},37->{-1.6212,-
12.},38->{-1.6212,-6.},39->{-1.6212,6.},40->{-1.6212,12.},41->{3.8788,-25.},42-
>{3.8788,-13.},43->{3.8788,-6.},44->{3.8788,6.},45->{3.8788,13.},46->{3.8788,25.},47-
>{7.8788,-25.},48->{7.8788,-13.},49->{7.8788,-6.},50->{7.8788,6.},51->{7.8788,13.},52-
>{7.8788,25.},53->{9.8788,-31.5},54->{9.8788,-27.5},55->{9.8788,-10.5},56->{9.8788,-
8.5},57->{9.8788,8.5},58->{9.8788,10.5},59->{9.8788,27.5},60->{9.8788,31.5},61-
>{11.8788,-25.},62->{11.8788,-13.},63->{11.8788,-6.},64->{11.8788,6.},65-
>{11.8788,13.},66->{11.8788,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,40),(1,5),(1,45),(2,6),(2,17),(3,6),(3,7),(3,8),(4,9),(4,10),(4,11),(5
,11),(5,20),(6,21),(7,12),(7,31),(8,13),(8,32),(9,15),(9,33),(10,16),(10,34),(11,24),(
12,17),(12,18),(13,18),(13,27),(14,15),(14,26),(14,27),(15,19),(16,19),(16,20),(17,30)
,(18,22),(19,23),(20,35),(21,25),(21,36),(22,25),(22,26),(23,28),(23,29),(24,29),(24,3
9),(25,31),(26,32),(27,28),(28,33),(29,34),(30,36),(30,37),(31,37),(32,37),(33,38),(34
,38),(35,38),(35,39),(36,42),(39,43),(40,41),(40,46),(41,42),(41,47),(42,48),(43,44),(
43,49),(44,45),(44,50),(45,51),(46,47),(46,53),(47,54),(48,49),(48,55),(49,56),(50,51)
,(50,57),(51,58),(52,53),(53,60),(54,55),(54,61),(55,62),(56,57),(56,63),(57,64),(58,5
9),(58,65),(60,61),(62,63),(64,65)]

313

-

Example embedding coordinates (SAGE 7.2):

{0:[-13.1212,-13.],1:[-13.1212,13.],2:[-8.6212,-12.],3:[-8.6212,-6.],4:[-
8.6212,6.],5:[-8.6212,12.],6:[-7.6212,-9.],7:[-7.6212,-3.75],8:[-7.6212,-1.5],9:[-
7.6212,1.5],10:[-7.6212,3.75],11:[-7.6212,9.],12:[-6.6212,-6.],13:[-6.6212,-3.],14:[-
6.6212,0.],15:[-6.6212,3.],16:[-6.6212,6.],17:[-5.6212,-7.5],18:[-5.6212,-4.5],19:[-
5.6212,4.5],20:[-5.6212,7.5],21:[-4.6212,-7.5],22:[-4.6212,-4.5],23:[-
4.6212,4.5],24:[-4.6212,7.5],25:[-3.6212,-6.],26:[-3.6212,-3.],27:[-3.6212,0.],28:[-
3.6212,3.],29:[-3.6212,6.],30:[-2.6212,-9.],31:[-2.6212,-3.75],32:[-2.6212,-1.5],33:[-
2.6212,1.5],34:[-2.6212,3.75],35:[-2.6212,9.],36:[-1.6212,-12.],37:[-1.6212,-6.],38:[-
1.6212,6.],39:[-1.6212,12.],40:[3.8788,-25.],41:[3.8788,-13.],42:[3.8788,-
6.],43:[3.8788,6.],44:[3.8788,13.],45:[3.8788,25.],46:[7.8788,-25.],47:[7.8788,-
13.],48:[7.8788,-6.],49:[7.8788,6.],50:[7.8788,13.],51:[7.8788,25.],52:[9.8788,-
31.5],53:[9.8788,-27.5],54:[9.8788,-10.5],55:[9.8788,-
8.5],56:[9.8788,8.5],57:[9.8788,10.5],58:[9.8788,27.5],59:[9.8788,31.5],60:[11.8788,-
25.],61:[11.8788,-13.],62:[11.8788,-
6.],63:[11.8788,6.],64:[11.8788,13.],65:[11.8788,25.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorTwo,5->colorOne,6->colorOne,7-
>colorOne,8->colorOne,9->colorOne,10->colorTwo,11->colorTwo,12->colorTwo,13-
>colorTwo,14->colorTwo,15->colorTwo,16->colorOne,17->colorOne,18->colorOne,19-
>colorOne,20->colorTwo,21->colorTwo,22->colorTwo,23->colorTwo,24->colorOne,25-
>colorOne,26->colorOne,27->colorOne,28->colorOne,29->colorTwo,30->colorTwo,31-
>colorTwo,32->colorTwo,33->colorTwo,34->colorOne,35->colorOne,36->colorOne,37-
>colorOne,38->colorOne,39->colorTwo,40->colorTwo,41->colorTwo,42->colorOne,43-
>colorTwo,44->colorOne,45->colorTwo,46->colorOne,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo,51->colorOne,52->colorTwo,53->colorOne,54->colorTwo,55-
>colorOne,56->colorTwo,57->colorOne,58->colorTwo,59->colorOne,60->colorTwo,61-
>colorOne,62->colorTwo,63->colorOne,64->colorTwo,65->colorOne,66->colorTwo}

314

8.36 (Figure 4.10.c) gadget

1

2

3

4

5

6

7

9

8

14

10

15

11

16

12

17

13

18

19

20

22

23

24

25

26

27

21

29

30

31

32

33

28

34

315

Graph Properties ::

--

Number of Vertices: ‘34’

Number of Edges: ‘46’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

316

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->4,2<->5,2<->6,3<->7,3<->9,4<->5,4<->7,5<->8,6<->8,6<->14,7<->8,9<-
>10,9<->15,10<->11,10<->16,11<->12,11<->17,12<->13,12<->18,13<->14,13<->19,14<-
>20,15<->16,15<->22,16<->23,17<->18,17<->24,18<->25,19<->20,19<->26,20<->27,21<-
>22,22<->29,23<->24,23<->30,24<->31,25<->26,25<->32,26<->33,27<->28,27<->34,29<-
>30,31<->32,33<->34}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-13.0757,-4.},2->{-13.0757,4.},3->{-9.6471,-6.},4->{-9.6471,-2.},5->{-
9.6471,2.},6->{-9.6471,6.},7->{-6.2185,-4.},8->{-6.2185,4.},9->{-1.6471,-25.},10->{-
1.6471,-13.},11->{-1.6471,-6.},12->{-1.6471,6.},13->{-1.6471,13.},14->{-
1.6471,25.},15->{2.3529,-25.},16->{2.3529,-13.},17->{2.3529,-6.},18->{2.3529,6.},19-
>{2.3529,13.},20->{2.3529,25.},21->{4.3529,-31.5},22->{4.3529,-27.5},23->{4.3529,-
10.5},24->{4.3529,-8.5},25->{4.3529,8.5},26->{4.3529,10.5},27->{4.3529,27.5},28-
>{4.3529,31.5},29->{6.3529,-25.},30->{6.3529,-13.},31->{6.3529,-6.},32-
>{6.3529,6.},33->{6.3529,13.},34->{6.3529,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,3),(1,4),(1,5),(2,6),(2,8),(3,4),(3,6),(4,7),(5,7),(5,13),(6,7),(8,9),
(8,14),(9,10),(9,15),(10,11),(10,16),(11,12),(11,17),(12,13),(12,18),(13,19),(14,15),(
14,21),(15,22),(16,17),(16,23),(17,24),(18,19),(18,25),(19,26),(20,21),(21,28),(22,23)
,(22,29),(23,30),(24,25),(24,31),(25,32),(26,27),(26,33),(28,29),(30,31),(32,33)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-13.0757,-4.],1:[-13.0757,4.],2:[-9.6471,-6.],3:[-9.6471,-2.],4:[-9.6471,2.],5:[-
9.6471,6.],6:[-6.2185,-4.],7:[-6.2185,4.],8:[-1.6471,-25.],9:[-1.6471,-13.],10:[-
1.6471,-6.],11:[-1.6471,6.],12:[-1.6471,13.],13:[-1.6471,25.],14:[2.3529,-
25.],15:[2.3529,-13.],16:[2.3529,-
6.],17:[2.3529,6.],18:[2.3529,13.],19:[2.3529,25.],20:[4.3529,-31.5],21:[4.3529,-
27.5],22:[4.3529,-10.5],23:[4.3529,-
8.5],24:[4.3529,8.5],25:[4.3529,10.5],26:[4.3529,27.5],27:[4.3529,31.5],28:[6.3529,-
25.],29:[6.3529,-13.],30:[6.3529,-6.],31:[6.3529,6.],32:[6.3529,13.],33:[6.3529,25.]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorOne,5->colorTwo,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo}

317

8.37 (Figure 4.10.d) gadget

1

2

3

39

8

44

4

21

5

36

6

37

7

6

9

11

15

10

99
12

131010101010

14

1212

17
13
16
13
16161616
1313

19

13
18

17171717

20

38

22

212121

24

23

26

222222

25

2424

29

27
2222

232525
28

33

30272727

31

2929
32

34

3232

35

41

42

40

45

46

47

43

48

49

50

52

53

54

55

56

57

51

59

60

61

62

63

58

64

318

Graph Properties ::

--

Number of Vertices: ‘64’

Number of Edges: ‘91’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

319

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->39,2<->8,2<->44,3<->4,3<->21,4<->5,4<->36,5<->6,5<->37,6<->7,6<-
>9,7<->8,7<->11,8<->15,9<->10,9<->12,10<->11,10<->13,11<->14,12<->13,12<->17,13<-
>16,14<->15,14<->16,15<->19,16<->18,17<->18,17<->20,18<->19,19<->20,20<->38,21<-
>22,21<->24,22<->23,22<->26,23<->24,23<->25,24<->29,25<->27,25<->28,26<->27,26<-
>33,27<->30,28<->29,28<->31,29<->32,30<->31,30<->34,31<->32,32<->35,33<->34,33<-
>41,34<->35,35<->36,36<->37,37<->38,38<->42,39<->40,39<->45,40<->41,40<->46,41<-
>47,42<->43,42<->48,43<->44,43<->49,44<->50,45<->46,45<->52,46<->53,47<->48,47<-
>54,48<->55,49<->50,49<->56,50<->57,51<->52,52<->59,53<->54,53<->60,54<->61,55<-
>56,55<->62,56<->63,57<->58,57<->64,59<->60,61<->62,63<->64}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-13.2812,-13.},2->{-13.2812,13.},3->{-8.7812,-12.},4->{-8.7812,-4.},5->{-
8.7812,4.},6->{-8.7812,7.6364},7->{-8.7812,10.0364},8->{-8.7812,12.},9->{-
8.1166,8.1542},10->{-8.1166,9.6},11->{-8.1166,10.0364},12->{-7.584,8.5693},13->{-
7.584,9.4652},14->{-7.584,10.1712},15->{-7.584,11.0671},16->{-7.2548,9.8182},17->{-
6.6812,9.2727},18->{-6.6812,9.8182},19->{-6.6812,10.3636},20->{-5.9813,9.8182},21->{-
4.5813,-9.8182},22->{-3.8812,-10.3636},23->{-3.8812,-9.8182},24->{-3.8812,-9.2727},25-
>{-3.3077,-9.8182},26->{-2.9785,-11.0671},27->{-2.9785,-10.1712},28->{-2.9785,-
9.4652},29->{-2.9785,-8.5693},30->{-2.4459,-10.0364},31->{-2.4459,-9.6},32->{-2.4459,-
8.1542},33->{-1.7813,-12.},34->{-1.7813,-10.0364},35->{-1.7813,-7.6364},36->{-1.7813,-
4.},37->{-1.7813,4.},38->{-1.7813,12.},39->{3.7187,-25.},40->{3.7187,-13.},41-
>{3.7187,-6.},42->{3.7187,6.},43->{3.7187,13.},44->{3.7187,25.},45->{7.7188,-25.},46-
>{7.7188,-13.},47->{7.7188,-6.},48->{7.7188,6.},49->{7.7188,13.},50->{7.7188,25.},51-
>{9.7188,-31.5},52->{9.7188,-27.5},53->{9.7188,-10.5},54->{9.7188,-8.5},55-
>{9.7188,8.5},56->{9.7188,10.5},57->{9.7188,27.5},58->{9.7188,31.5},59->{11.7188,-
25.},60->{11.7188,-13.},61->{11.7188,-6.},62->{11.7188,6.},63->{11.7188,13.},64-
>{11.7188,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,38),(1,7),(1,43),(2,3),(2,20),(3,4),(3,35),(4,5),(4,36),(5,6),(5,8),(6
,7),(6,10),(7,14),(8,9),(8,11),(9,10),(9,12),(10,13),(11,12),(11,16),(12,15),(13,14),(
13,15),(14,18),(15,17),(16,17),(16,19),(17,18),(18,19),(19,37),(20,21),(20,23),(21,22)
,(21,25),(22,23),(22,24),(23,28),(24,26),(24,27),(25,26),(25,32),(26,29),(27,28),(27,3
0),(28,31),(29,30),(29,33),(30,31),(31,34),(32,33),(32,40),(33,34),(34,35),(35,36),(36
,37),(37,41),(38,39),(38,44),(39,40),(39,45),(40,46),(41,42),(41,47),(42,43),(42,48),(
43,49),(44,45),(44,51),(45,52),(46,47),(46,53),(47,54),(48,49),(48,55),(49,56),(50,51)
,(51,58),(52,53),(52,59),(53,60),(54,55),(54,61),(55,62),(56,57),(56,63),(58,59),(60,6
1),(62,63)]

320

-

Example embedding coordinates (SAGE 7.2):

{0:[-13.2812,-13.],1:[-13.2812,13.],2:[-8.7812,-12.],3:[-8.7812,-4.],4:[-
8.7812,4.],5:[-8.7812,7.6364],6:[-8.7812,10.0364],7:[-8.7812,12.],8:[-
8.1166,8.1542],9:[-8.1166,9.6],10:[-8.1166,10.0364],11:[-7.584,8.5693],12:[-
7.584,9.4652],13:[-7.584,10.1712],14:[-7.584,11.0671],15:[-7.2548,9.8182],16:[-
6.6812,9.2727],17:[-6.6812,9.8182],18:[-6.6812,10.3636],19:[-5.9813,9.8182],20:[-
4.5813,-9.8182],21:[-3.8812,-10.3636],22:[-3.8812,-9.8182],23:[-3.8812,-9.2727],24:[-
3.3077,-9.8182],25:[-2.9785,-11.0671],26:[-2.9785,-10.1712],27:[-2.9785,-9.4652],28:[-
2.9785,-8.5693],29:[-2.4459,-10.0364],30:[-2.4459,-9.6],31:[-2.4459,-8.1542],32:[-
1.7813,-12.],33:[-1.7813,-10.0364],34:[-1.7813,-7.6364],35:[-1.7813,-4.],36:[-
1.7813,4.],37:[-1.7813,12.],38:[3.7187,-25.],39:[3.7187,-13.],40:[3.7187,-
6.],41:[3.7187,6.],42:[3.7187,13.],43:[3.7187,25.],44:[7.7188,-25.],45:[7.7188,-
13.],46:[7.7188,-6.],47:[7.7188,6.],48:[7.7188,13.],49:[7.7188,25.],50:[9.7188,-
31.5],51:[9.7188,-27.5],52:[9.7188,-10.5],53:[9.7188,-
8.5],54:[9.7188,8.5],55:[9.7188,10.5],56:[9.7188,27.5],57:[9.7188,31.5],58:[11.7188,-
25.],59:[11.7188,-13.],60:[11.7188,-
6.],61:[11.7188,6.],62:[11.7188,13.],63:[11.7188,25.]}

321

8.38 (Figure 4.10.e) gadget

1

2

3

8

4

9

5

10

11

6

7

12

13

14

16

17

18

19

20

21

15

23

24

25

26

27

22

28

322

Graph Properties ::

--

Number of Vertices: ‘28’

Number of Edges: ‘35’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

323

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,2<->8,3<->4,3<->9,4<->5,4<->10,5<->11,6<->7,6<->12,7<->8,7<->13,8<-
>14,9<->10,9<->16,10<->17,11<->12,11<->18,12<->19,13<->14,13<->20,14<->21,15<->16,16<-
>23,17<->18,17<->24,18<->25,19<->20,19<->26,20<->27,21<->22,21<->28,23<->24,25<-
>26,27<->28}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-11.7143,-6.},2->{-11.7143,6.},3->{-3.7143,-25.},4->{-3.7143,-13.},5->{-3.7143,-
6.},6->{-3.7143,6.},7->{-3.7143,13.},8->{-3.7143,25.},9->{0.2857,-25.},10->{0.2857,-
13.},11->{0.2857,-6.},12->{0.2857,6.},13->{0.2857,13.},14->{0.2857,25.},15->{2.2857,-
31.5},16->{2.2857,-27.5},17->{2.2857,-10.5},18->{2.2857,-8.5},19->{2.2857,8.5},20-
>{2.2857,10.5},21->{2.2857,27.5},22->{2.2857,31.5},23->{4.2857,-25.},24->{4.2857,-
13.},25->{4.2857,-6.},26->{4.2857,6.},27->{4.2857,13.},28->{4.2857,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(1,7),(2,3),(2,8),(3,4),(3,9),(4,10),(5,6),(5,11),(6,7),(6,12),(7,13),(8,
9),(8,15),(9,16),(10,11),(10,17),(11,18),(12,13),(12,19),(13,20),(14,15),(15,22),(16,1
7),(16,23),(17,24),(18,19),(18,25),(19,26),(20,21),(20,27),(22,23),(24,25),(26,27)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-11.7143,-6.],1:[-11.7143,6.],2:[-3.7143,-25.],3:[-3.7143,-13.],4:[-3.7143,-
6.],5:[-3.7143,6.],6:[-3.7143,13.],7:[-3.7143,25.],8:[0.2857,-25.],9:[0.2857,-
13.],10:[0.2857,-6.],11:[0.2857,6.],12:[0.2857,13.],13:[0.2857,25.],14:[2.2857,-
31.5],15:[2.2857,-27.5],16:[2.2857,-10.5],17:[2.2857,-
8.5],18:[2.2857,8.5],19:[2.2857,10.5],20:[2.2857,27.5],21:[2.2857,31.5],22:[4.2857,-
25.],23:[4.2857,-13.],24:[4.2857,-6.],25:[4.2857,6.],26:[4.2857,13.],27:[4.2857,25.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo}

324

8.39 (Figure 4.11.b) gadget

1

5

16

44

2

6

7

3

8

9

10

4

19

47

20

11

30

12

31

14

32

15

33

23

17

2613

25

18

29

21

22

34

24

35

27

28

38

36

37

41

42

39

40

45

46

43

49

50

48

325

Graph Properties ::

--

Number of Vertices: ‘50’

Number of Edges: ‘72’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘False’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘6’

Output of SAGE 7.2’s ‘girth()’ function: ‘6’

Output for the ‘igraph’ R package ‘girth()’ function: ‘6’

326

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->5,1<->16,1<->44,2<->5,2<->6,2<->7,3<->8,3<->9,3<->10,4<->10,4<->19,4<->47,5<-
>20,6<->11,6<->30,7<->12,7<->31,8<->14,8<->32,9<->15,9<->33,10<->23,11<->16,11<-
>17,12<->17,12<->26,13<->14,13<->25,13<->26,14<->18,15<->18,15<->19,16<->29,17<-
>21,18<->22,19<->34,20<->24,20<->35,21<->24,21<->25,22<->27,22<->28,23<->28,23<-
>38,24<->30,25<->31,26<->27,27<->32,28<->33,29<->35,29<->36,30<->36,31<->36,32<-
>37,33<->37,34<->37,34<->38,35<->41,38<->42,39<->40,39<->44,39<->45,40<->46,40<-
>47,41<->42,41<->45,42<->46,43<->44,45<->49,46<->50,47<->48,49<->50}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.83,-12.},2->{-6.83,-6.},3->{-6.83,6.},4->{-6.83,12.},5->{-5.83,-9.},6->{-
5.83,-3.75},7->{-5.83,-1.5},8->{-5.83,1.5},9->{-5.83,3.75},10->{-5.83,9.},11->{-4.83,-
6.},12->{-4.83,-3.},13->{-4.83,0.},14->{-4.83,3.},15->{-4.83,6.},16->{-3.83,-7.5},17-
>{-3.83,-4.5},18->{-3.83,4.5},19->{-3.83,7.5},20->{-2.83,-7.5},21->{-2.83,-4.5},22->{-
2.83,4.5},23->{-2.83,7.5},24->{-1.83,-6.},25->{-1.83,-3.},26->{-1.83,0.},27->{-
1.83,3.},28->{-1.83,6.},29->{-0.83,-9.},30->{-0.83,-3.75},31->{-0.83,-1.5},32->{-
0.83,1.5},33->{-0.83,3.75},34->{-0.83,9.},35->{0.17,-12.},36->{0.17,-6.},37-
>{0.17,6.},38->{0.17,12.},39->{4.92,-18.},40->{4.92,18.},41->{9.67,-6.},42-
>{9.67,6.},43->{11.67,-31.5},44->{11.67,-27.5},45->{11.67,-8.5},46->{11.67,8.5},47-
>{11.67,27.5},48->{11.67,31.5},49->{13.67,-6.},50->{13.67,6.}}

Edge list (SAGE 7.2):

[(0,4),(0,15),(0,43),(1,4),(1,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,18),(3,46),(4,19),(5
,10),(5,29),(6,11),(6,30),(7,13),(7,31),(8,14),(8,32),(9,22),(10,15),(10,16),(11,16),(
11,25),(12,13),(12,24),(12,25),(13,17),(14,17),(14,18),(15,28),(16,20),(17,21),(18,33)
,(19,23),(19,34),(20,23),(20,24),(21,26),(21,27),(22,27),(22,37),(23,29),(24,30),(25,2
6),(26,31),(27,32),(28,34),(28,35),(29,35),(30,35),(31,36),(32,36),(33,36),(33,37),(34
,40),(37,41),(38,39),(38,43),(38,44),(39,45),(39,46),(40,41),(40,44),(41,45),(42,43),(
44,48),(45,49),(46,47),(48,49)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.83,-12.],1:[-6.83,-6.],2:[-6.83,6.],3:[-6.83,12.],4:[-5.83,-9.],5:[-5.83,-
3.75],6:[-5.83,-1.5],7:[-5.83,1.5],8:[-5.83,3.75],9:[-5.83,9.],10:[-4.83,-6.],11:[-
4.83,-3.],12:[-4.83,0.],13:[-4.83,3.],14:[-4.83,6.],15:[-3.83,-7.5],16:[-3.83,-
4.5],17:[-3.83,4.5],18:[-3.83,7.5],19:[-2.83,-7.5],20:[-2.83,-4.5],21:[-
2.83,4.5],22:[-2.83,7.5],23:[-1.83,-6.],24:[-1.83,-3.],25:[-1.83,0.],26:[-
1.83,3.],27:[-1.83,6.],28:[-0.83,-9.],29:[-0.83,-3.75],30:[-0.83,-1.5],31:[-
0.83,1.5],32:[-0.83,3.75],33:[-0.83,9.],34:[0.17,-12.],35:[0.17,-
6.],36:[0.17,6.],37:[0.17,12.],38:[4.92,-18.],39:[4.92,18.],40:[9.67,-
6.],41:[9.67,6.],42:[11.67,-31.5],43:[11.67,-27.5],44:[11.67,-
8.5],45:[11.67,8.5],46:[11.67,27.5],47:[11.67,31.5],48:[13.67,-6.],49:[13.67,6.]}

327

Canonical vertex -coloring ::
{1->colorOne,2->colorOne,3->colorTwo,4->colorTwo,5->colorTwo,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorOne,10->colorOne,11->colorOne,12->colorOne,13-
>colorOne,14->colorTwo,15->colorTwo,16->colorTwo,17->colorTwo,18->colorOne,19-
>colorOne,20->colorOne,21->colorOne,22->colorTwo,23->colorTwo,24->colorTwo,25-
>colorTwo,26->colorTwo,27->colorOne,28->colorOne,29->colorOne,30->colorOne,31-
>colorOne,32->colorTwo,33->colorTwo,34->colorTwo,35->colorTwo,36->colorTwo,37-
>colorOne,38->colorOne,39->colorOne,40->colorTwo,41->colorOne,42->colorTwo,43-
>colorOne,44->colorTwo,45->colorTwo,46->colorOne,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo}

328

8.40 (Figure 4.11.c) gadget

1

2

3

4

5

6

7

9

8

10

12

13

11

15

14

16

329

Graph Properties ::

--

Number of Vertices: ‘16’

Number of Edges: ‘21’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

330

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,1<->4,2<->5,2<->6,3<->7,3<->9,4<->5,4<->7,5<->8,6<->8,6<->10,7<->8,9<-
>10,9<->12,10<->13,11<->12,12<->15,13<->14,13<->16,15<->16}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-5.18,-1.96},2->{-5.18,1.96},3->{-3.5,-2.94},4->{-3.5,-0.98},5->{-3.5,0.98},6->{-
3.5,2.94},7->{-1.82,-1.96},8->{-1.82,1.96},9->{1.5,-6.},10->{1.5,6.},11->{3.5,-
12.5},12->{3.5,-8.5},13->{3.5,8.5},14->{3.5,12.5},15->{5.5,-6.},16->{5.5,6.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(0,3),(1,4),(1,5),(2,6),(2,8),(3,4),(3,6),(4,7),(5,7),(5,9),(6,7),(8,9),(
8,11),(9,12),(10,11),(11,14),(12,13),(12,15),(14,15)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-5.18,-1.96],1:[-5.18,1.96],2:[-3.5,-2.94],3:[-3.5,-0.98],4:[-3.5,0.98],5:[-
3.5,2.94],6:[-1.82,-1.96],7:[-1.82,1.96],8:[1.5,-6.],9:[1.5,6.],10:[3.5,-
12.5],11:[3.5,-8.5],12:[3.5,8.5],13:[3.5,12.5],14:[5.5,-6.],15:[5.5,6.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorTwo,5->colorOne,6->colorOne,7-
>colorOne,8->colorTwo,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo}

331

8.41 (Figure 4.11.d) gadget

1

2

19

40

3

34

4

35

5

44

7

6

9

13

43

8

77
10

11888

12

1010

15
11
14
11
14141414
1111

17

11
16

15151515

18

36

20

1919

22

21

24

2020202020

23

2222

27

25
2020

212323
26

31

28252525

29

2727
30

32

303030

33

37

38

41

42

39

45

46

44

332

Graph Properties ::

--

Number of Vertices: ‘46’

Number of Edges: ‘66’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

333

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->19,1<->40,2<->3,2<->34,3<->4,3<->35,4<->5,4<->7,5<->6,5<->9,6<->13,6<-
>43,7<->8,7<->10,8<->9,8<->11,9<->12,10<->11,10<->15,11<->14,12<->13,12<->14,13<-
>17,14<->16,15<->16,15<->18,16<->17,17<->18,18<->36,19<->20,19<->22,20<->21,20<-
>24,21<->22,21<->23,22<->27,23<->25,23<->26,24<->25,24<->31,25<->28,26<->27,26<-
>29,27<->30,28<->29,28<->32,29<->30,30<->33,31<->32,31<->37,32<->33,33<->34,34<-
>35,35<->36,36<->38,37<->38,37<->41,38<->42,39<->40,40<->41,41<->45,42<->43,42<-
>46,43<->44,45<->46}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.7609,-12.},2->{-6.7609,-4.},3->{-6.7609,4.},4->{-6.7609,7.6364},5->{-
6.7609,10.0364},6->{-6.7609,12.},7->{-6.0963,8.1542},8->{-6.0963,9.6},9->{-
6.0963,10.0364},10->{-5.5637,8.5693},11->{-5.5637,9.4652},12->{-5.5637,10.1712},13->{-
5.5637,11.0671},14->{-5.2345,9.8182},15->{-4.6609,9.2727},16->{-4.6609,9.8182},17->{-
4.6609,10.3636},18->{-3.9609,9.8182},19->{-2.5609,-9.8182},20->{-1.8609,-10.3636},21-
>{-1.8609,-9.8182},22->{-1.8609,-9.2727},23->{-1.2873,-9.8182},24->{-0.9581,-
11.0671},25->{-0.9581,-10.1712},26->{-0.9581,-9.4652},27->{-0.9581,-8.5693},28->{-
0.4255,-10.0364},29->{-0.4255,-9.6},30->{-0.4255,-8.1542},31->{0.2391,-12.},32-
>{0.2391,-10.0364},33->{0.2391,-7.6364},34->{0.2391,-4.},35->{0.2391,4.},36-
>{0.2391,12.},37->{9.7391,-6.},38->{9.7391,6.},39->{11.7391,-31.5},40->{11.7391,-
27.5},41->{11.7391,-8.5},42->{11.7391,8.5},43->{11.7391,27.5},44->{11.7391,31.5},45-
>{13.7391,-6.},46->{13.7391,6.}}

Edge list (SAGE 7.2):

[(0,1),(0,18),(0,39),(1,2),(1,33),(2,3),(2,34),(3,4),(3,6),(4,5),(4,8),(5,12),(5,42),(
6,7),(6,9),(7,8),(7,10),(8,11),(9,10),(9,14),(10,13),(11,12),(11,13),(12,16),(13,15),(
14,15),(14,17),(15,16),(16,17),(17,35),(18,19),(18,21),(19,20),(19,23),(20,21),(20,22)
,(21,26),(22,24),(22,25),(23,24),(23,30),(24,27),(25,26),(25,28),(26,29),(27,28),(27,3
1),(28,29),(29,32),(30,31),(30,36),(31,32),(32,33),(33,34),(34,35),(35,37),(36,37),(36
,40),(37,41),(38,39),(39,40),(40,44),(41,42),(41,45),(42,43),(44,45)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.7609,-12.],1:[-6.7609,-4.],2:[-6.7609,4.],3:[-6.7609,7.6364],4:[-
6.7609,10.0364],5:[-6.7609,12.],6:[-6.0963,8.1542],7:[-6.0963,9.6],8:[-
6.0963,10.0364],9:[-5.5637,8.5693],10:[-5.5637,9.4652],11:[-5.5637,10.1712],12:[-
5.5637,11.0671],13:[-5.2345,9.8182],14:[-4.6609,9.2727],15:[-4.6609,9.8182],16:[-
4.6609,10.3636],17:[-3.9609,9.8182],18:[-2.5609,-9.8182],19:[-1.8609,-10.3636],20:[-
1.8609,-9.8182],21:[-1.8609,-9.2727],22:[-1.2873,-9.8182],23:[-0.9581,-11.0671],24:[-
0.9581,-10.1712],25:[-0.9581,-9.4652],26:[-0.9581,-8.5693],27:[-0.4255,-10.0364],28:[-
0.4255,-9.6],29:[-0.4255,-8.1542],30:[0.2391,-12.],31:[0.2391,-10.0364],32:[0.2391,-
7.6364],33:[0.2391,-4.],34:[0.2391,4.],35:[0.2391,12.],36:[9.7391,-
6.],37:[9.7391,6.],38:[11.7391,-31.5],39:[11.7391,-27.5],40:[11.7391,-
8.5],41:[11.7391,8.5],42:[11.7391,27.5],43:[11.7391,31.5],44:[13.7391,-
6.],45:[13.7391,6.]}

334

8.42 (Figure 4.11.e) gadget

1

2

3

4

6

7

5

9

8

10

335

Graph Properties ::

--

Number of Vertices: ‘10’

Number of Edges: ‘11’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

336

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1<->2,1<->3,2<->4,3<->4,3<->6,4<->7,5<->6,6<->9,7<->8,7<->10,9<->10}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-5.6,-2.94},2->{-5.6,2.94},3->{-0.6,-6.},4->{-0.6,6.},5->{1.4,-12.5},6->{1.4,-
8.5},7->{1.4,8.5},8->{1.4,12.5},9->{3.4,-6.},10->{3.4,6.}}

Edge list (SAGE 7.2):

[(0,1),(0,2),(1,3),(2,3),(2,5),(3,6),(4,5),(5,8),(6,7),(6,9),(8,9)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-5.6,-2.94],1:[-5.6,2.94],2:[-0.6,-6.],3:[-0.6,6.],4:[1.4,-12.5],5:[1.4,-
8.5],6:[1.4,8.5],7:[1.4,12.5],8:[3.4,-6.],9:[3.4,6.]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorOne,8->colorTwo,9->colorOne,10->colorTwo}

337

8.43 (Figure 4.13) gadget

1

3

2

8

43

47

4

9

22

55

5

10

11

6

12

13

14

7

26

49

27

15

38101010
16

39

121212

20

40

21

41

31

1515

23

1616161616

24
111111

17

18

33

34

1212
19

2424242424

29

202020

25

37

28

30

42

272727

32

35

30303030

36

46

44

45

51

56

48

52

57

90

53

58

50

54

59

92

60

63

64

67

91

61

5757

62

65

5959

66

72 82

616161

68

69

73 83

74 84

65656565

70

71

75 85

72727272

76

6969

77

7474747474

78

7171

79

7272

80

89

94

81

8282828282828282

86

101

87

102

828282

88

95

8484

93

96

104

131

133

105

97

89

98

9797

103

115

118

99

94969696969694

100

119

106

122

103103103103103103

111

112

105105105105105

113

114

107

104104104104

108

107107

116

112112112112112112

117

109

102106106106106102102

110

120

114114114114114114

121

127

116116116116116116

123

124

128

129

120120120120120

125

126

130

132

134

135

137

139

143

136

140

144

177

141

145

138

142

146

179

147

150

151

154

148

144144144144144144

149

152

146146146146146

153

147147147

159 169

148148148148148148

155

156

149

160 170

161 171

152152152152152

157

158

153153

162 172

159159159159159159

163

156156156156156156156

164

161161161

165

158158158

166

159159159

167

176

181

168

169169169169169169169169

173

188

165165

174

189

169169169169

175

182

171171171171171171

180

183

182182

191

178

219

214

221

192

184

176176176176176

185

184184184184

190

202

205

186

181183183181181181181183183181181181181

187

206

193

209

190190190190190190

198

199

192192192192192

200

201

194

191191191191191

195

203

199199199199199

204

196

189193193193193189189

197

207

201201201201

208

215

203203203203203203

210

211

216

217

207207207207207

212

213

218

220

222

223

265

261

266

227227227227

238

224

228

229

225

230

231

232

226

242

243

233

256228228228228
234

257

230230230

236

258

237

259

237

247

233233

239

229229

235235235

240

252

231231
236236

241

255

233

244

240240

245

251

236

246

247247

260

243238238238238238

248

262

244239239239239239

249

250

245245

253

246246246241241241241

254

263

264

267

268

338

Graph Properties ::

--

Number of Vertices: ‘268’

Number of Edges: ‘398’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘False’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

339

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->8,3<->43,3<->47,4<->9,4<->22,4<->55,5<->9,5<->10,5<->11,6<->12,6<->13,6<-
>14,7<->8,7<->14,7<->26,8<->49,9<->27,10<->15,10<->38,11<->16,11<->39,12<->20,12<-
>40,13<->21,13<->41,14<->31,15<->22,15<->23,16<->23,16<->24,17<->18,17<->33,17<-
>34,18<->19,18<->29,19<->20,19<->24,20<->25,21<->25,21<->26,22<->37,23<->28,24<-
>29,25<->30,26<->42,27<->32,27<->43,28<->32,28<->33,29<->34,30<->35,30<->36,31<-
>36,31<->46,32<->38,33<->39,34<->35,35<->40,36<->41,37<->43,37<->44,38<->44,39<-
>44,40<->45,41<->45,42<->45,42<->46,46<->55,47<->51,47<->56,48<->52,48<->57,48<-
>90,49<->53,49<->58,50<->54,50<->59,50<->92,51<->57,51<->60,52<->56,52<->63,53<-
>59,53<->64,54<->58,54<->67,55<->91,56<->61,57<->62,58<->65,59<->66,60<->72,60<-
>82,61<->68,61<->72,62<->69,62<->73,63<->73,63<->83,64<->74,64<->84,65<->70,65<-
>74,66<->71,66<->75,67<->75,67<->85,68<->69,68<->76,69<->77,70<->71,70<->78,71<-
>79,72<->73,74<->75,76<->80,76<->82,77<->83,77<->89,78<->84,78<->94,79<->81,79<-
>85,80<->86,80<->101,81<->87,81<->102,82<->83,84<->85,86<->88,86<->95,87<->93,87<-
>96,88<->89,88<->104,89<->95,90<->91,90<->131,91<->92,92<->133,93<->94,93<->105,94<-
>96,95<->101,96<->102,97<->98,97<->103,97<->115,98<->104,98<->118,99<->100,99<-
>105,99<->119,100<->106,100<->122,101<->103,102<->106,103<->111,104<->112,105<-
>113,106<->114,107<->108,107<->115,107<->116,108<->117,108<->118,109<->110,109<-
>119,109<->120,110<->121,110<->122,111<->112,111<->116,112<->117,113<->114,113<-
>120,114<->121,115<->127,116<->123,117<->124,118<->128,119<->129,120<->125,121<-
>126,122<->130,123<->128,123<->131,124<->127,124<->132,125<->130,125<->133,126<-
>129,126<->134,127<->131,128<->132,129<->133,130<->134,132<->135,134<->137,135<-
>139,135<->143,136<->140,136<->144,136<->177,137<->141,137<->145,138<->142,138<-
>146,138<->179,139<->144,139<->147,140<->143,140<->150,141<->146,141<->151,142<-
>145,142<->154,143<->148,144<->149,145<->152,146<->153,147<->159,147<->169,148<-
>155,148<->159,149<->156,149<->160,150<->160,150<->170,151<->161,151<->171,152<-
>157,152<->161,153<->158,153<->162,154<->162,154<->172,155<->156,155<->163,156<-
>164,157<->158,157<->165,158<->166,159<->160,161<->162,163<->167,163<->169,164<-
>170,164<->176,165<->171,165<->181,166<->168,166<->172,167<->173,167<->188,168<-
>174,168<->189,169<->170,171<->172,173<->175,173<->182,174<->180,174<->183,175<-
>176,175<->191,176<->182,177<->178,177<->219,178<->179,178<->214,179<->221,180<-
>181,180<->192,181<->183,182<->188,183<->189,184<->185,184<->190,184<->202,185<-
>191,185<->205,186<->187,186<->192,186<->206,187<->193,187<->209,188<->190,189<-
>193,190<->198,191<->199,192<->200,193<->201,194<->195,194<->202,194<->203,195<-
>204,195<->205,196<->197,196<->206,196<->207,197<->208,197<->209,198<->199,198<-
>203,199<->204,200<->201,200<->207,201<->208,202<->215,203<->210,204<->211,205<-
>216,206<->217,207<->212,208<->213,209<->218,210<->216,210<->219,211<->215,211<-
>220,212<->218,212<->221,213<->217,213<->222,214<->223,214<->265,215<->219,216<-
>220,217<->221,218<->222,220<->261,222<->266,223<->227,223<->238,224<->227,224<-
>228,224<->229,225<->230,225<->231,225<->232,226<->232,226<->242,226<->266,227<-
>243,228<->233,228<->256,229<->234,229<->257,230<->236,230<->258,231<->237,231<-
>259,232<->247,233<->238,233<->239,234<->235,234<->239,235<->240,235<->252,236<-
>241,236<->252,237<->241,237<->242,238<->255,239<->244,240<->245,240<->251,241<-
>246,242<->260,243<->248,243<->262,244<->248,244<->249,245<->250,245<->253,246<-
>253,246<->254,247<->254,247<->265,248<->256,249<->250,249<->257,250<->251,251<-
>252,253<->258,254<->259,255<->262,255<->263,256<->263,257<->263,258<->264,259<-
>264,260<->264,260<->265,261<->262,261<->267,266<->268}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-17.5,-12.},2->{-17.5,12.},3->{-14.,-8.5},4->{-14.,-4.274},5->{-14.,-2.137},6->{-
14.,2.137},7->{-14.,4.274},8->{-14.,8.5},9->{-13.6438,-3.2055},10->{-13.6438,-
1.3356},11->{-13.6438,-0.5343},12->{-13.6438,0.5342},13->{-13.6438,1.3356},14->{-
13.6438,3.2055},15->{-13.2877,-2.137},16->{-13.2877,-1.0685},17->{-13.2877,0.},18->{-

340

13.2877,0.3561},19->{-13.2877,0.7123},20->{-13.2877,1.0685},21->{-13.2877,2.137},22-
>{-12.9315,-2.6713},23->{-12.9315,-1.6028},24->{-12.9315,-0.7123},25->{-
12.9315,1.6027},26->{-12.9315,2.6712},27->{-12.5753,-2.6713},28->{-12.5753,-
1.6028},29->{-12.5753,-0.3562},30->{-12.5753,1.6027},31->{-12.5753,2.6712},32->{-
12.2192,-2.137},33->{-12.2192,-1.0685},34->{-12.2192,0.},35->{-12.2192,1.0685},36->{-
12.2192,2.137},37->{-11.863,-3.2055},38->{-11.863,-1.3356},39->{-11.863,-0.5343},40-
>{-11.863,0.5342},41->{-11.863,1.3356},42->{-11.863,3.2055},43->{-11.5068,-4.274},44-
>{-11.5068,-2.137},45->{-11.5068,2.137},46->{-11.5068,4.274},47->{-9.7415,-8.5},48->{-
9.7415,-6.0069},49->{-9.7415,6.0068},50->{-9.7415,8.5},51->{-8.673,-8.1439},52->{-
8.673,-6.363},53->{-8.673,6.363},54->{-8.673,8.1438},55->{-8.6575,0.},56->{-8.1388,-
7.4315},57->{-8.1388,-7.0754},58->{-8.1388,7.0753},59->{-8.1388,7.4315},60->{-7.6045,-
8.5},61->{-7.6045,-7.7877},62->{-7.6045,-6.7192},63->{-7.6045,-6.0069},64->{-
7.6045,6.0068},65->{-7.6045,6.7192},66->{-7.6045,7.7877},67->{-7.6045,8.5},68->{-
7.0703,-7.4315},69->{-7.0703,-7.0754},70->{-7.0703,7.0753},71->{-7.0703,7.4315},72->{-
6.8031,-8.1439},73->{-6.8031,-6.363},74->{-6.8031,6.363},75->{-6.8031,8.1438},76->{-
6.536,-7.7877},77->{-6.536,-6.7192},78->{-6.536,6.7192},79->{-6.536,7.7877},80->{-
6.1798,-7.7877},81->{-6.1798,7.4315},82->{-6.0018,-8.1439},83->{-6.0018,-6.363},84->{-
6.0018,6.363},85->{-6.0018,8.1438},86->{-5.8237,-7.7877},87->{-5.8237,7.0753},88->{-
5.4675,-7.7877},89->{-5.4675,-6.7192},90->{-5.4675,-3.19},91->{-5.4675,0.},92->{-
5.4675,3.19},93->{-5.4675,6.7192},94->{-5.4675,7.7877},95->{-5.1113,-7.0754},96->{-
5.1113,7.7877},97->{-4.9333,-8.1439},98->{-4.9333,-6.363},99->{-4.9333,6.363},100->{-
4.9333,8.1438},101->{-4.7552,-7.4315},102->{-4.7552,7.7877},103->{-4.399,-7.7877},104-
>{-4.399,-6.7192},105->{-4.399,6.7192},106->{-4.399,7.7877},107->{-4.1319,-
8.1439},108->{-4.1319,-6.363},109->{-4.1319,6.363},110->{-4.1319,8.1438},111->{-
3.8648,-7.4315},112->{-3.8648,-7.0754},113->{-3.8648,7.0753},114->{-
3.8648,7.4315},115->{-3.3305,-8.5},116->{-3.3305,-7.7877},117->{-3.3305,-6.7192},118-
>{-3.3305,-6.0069},119->{-3.3305,6.0068},120->{-3.3305,6.7192},121->{-
3.3305,7.7877},122->{-3.3305,8.5},123->{-2.7963,-7.4315},124->{-2.7963,-7.0754},125-
>{-2.7963,7.0753},126->{-2.7963,7.4315},127->{-2.262,-8.1439},128->{-2.262,-
6.363},129->{-2.262,6.363},130->{-2.262,8.1438},131->{-1.1935,-8.5},132->{-1.1935,-
6.0069},133->{-1.1935,6.0068},134->{-1.1935,8.5},135->{1.1935,-8.5},136->{1.1935,-
6.0069},137->{1.1935,6.0068},138->{1.1935,8.5},139->{2.262,-8.1439},140->{2.262,-
6.363},141->{2.262,6.363},142->{2.262,8.1438},143->{2.7962,-7.4315},144->{2.7962,-
7.0754},145->{2.7962,7.0753},146->{2.7962,7.4315},147->{3.3305,-8.5},148->{3.3305,-
7.7877},149->{3.3305,-6.7192},150->{3.3305,-6.0069},151->{3.3305,6.0068},152-
>{3.3305,6.7192},153->{3.3305,7.7877},154->{3.3305,8.5},155->{3.8647,-7.4315},156-
>{3.8647,-7.0754},157->{3.8647,7.0753},158->{3.8647,7.4315},159->{4.1319,-8.1439},160-
>{4.1319,-6.363},161->{4.1319,6.363},162->{4.1319,8.1438},163->{4.399,-7.7877},164-
>{4.399,-6.7192},165->{4.399,6.7192},166->{4.399,7.7877},167->{4.7552,-7.7877},168-
>{4.7552,7.4315},169->{4.9332,-8.1439},170->{4.9332,-6.363},171->{4.9332,6.363},172-
>{4.9332,8.1438},173->{5.1113,-7.7877},174->{5.1113,7.0753},175->{5.4675,-7.7877},176-
>{5.4675,-6.7192},177->{5.4675,-3.19},178->{5.4675,0.},179->{5.4675,3.19},180-
>{5.4675,6.7192},181->{5.4675,7.7877},182->{5.8237,-7.0754},183->{5.8237,7.7877},184-
>{6.0017,-8.1439},185->{6.0017,-6.363},186->{6.0017,6.363},187->{6.0017,8.1438},188-
>{6.1798,-7.4315},189->{6.1798,7.7877},190->{6.536,-7.7877},191->{6.536,-6.7192},192-
>{6.536,6.7192},193->{6.536,7.7877},194->{6.8031,-8.1439},195->{6.8031,-6.363},196-
>{6.8031,6.363},197->{6.8031,8.1438},198->{7.0702,-7.4315},199->{7.0702,-7.0754},200-
>{7.0702,7.0753},201->{7.0702,7.4315},202->{7.6045,-8.5},203->{7.6045,-7.7877},204-
>{7.6045,-6.7192},205->{7.6045,-6.0069},206->{7.6045,6.0068},207->{7.6045,6.7192},208-
>{7.6045,7.7877},209->{7.6045,8.5},210->{8.1387,-7.4315},211->{8.1387,-7.0754},212-
>{8.1387,7.0753},213->{8.1387,7.4315},214->{8.6575,0.},215->{8.673,-8.1439},216-
>{8.673,-6.363},217->{8.673,6.363},218->{8.673,8.1438},219->{9.7415,-8.5},220-
>{9.7415,-6.0069},221->{9.7415,6.0068},222->{9.7415,8.5},223->{11.5068,-4.274},224-
>{11.5068,-2.137},225->{11.5068,2.137},226->{11.5068,4.274},227->{11.863,-3.2055},228-
>{11.863,-1.3356},229->{11.863,-0.5343},230->{11.863,0.5342},231->{11.863,1.3356},232-
>{11.863,3.2055},233->{12.2192,-2.137},234->{12.2192,-1.0685},235->{12.2192,0.},236-
>{12.2192,1.0685},237->{12.2192,2.137},238->{12.5753,-2.6713},239->{12.5753,-
1.6028},240->{12.5753,0.3561},241->{12.5753,1.6027},242->{12.5753,2.6712},243-
>{12.9315,-2.6713},244->{12.9315,-1.6028},245->{12.9315,0.7123},246-
>{12.9315,1.6027},247->{12.9315,2.6712},248->{13.2877,-2.137},249->{13.2877,-
1.0685},250->{13.2877,-0.7123},251->{13.2877,-0.3562},252->{13.2877,0.},253-
>{13.2877,1.0685},254->{13.2877,2.137},255->{13.6438,-3.2055},256->{13.6438,-
1.3356},257->{13.6438,-0.5343},258->{13.6438,0.5342},259->{13.6438,1.3356},260-

341

>{13.6438,3.2055},261->{14.,-8.5},262->{14.,-4.274},263->{14.,-2.137},264-
>{14.,2.137},265->{14.,4.274},266->{14.,8.5},267->{17.5,-12.},268->{17.5,12.}}

Edge list (SAGE 7.2):

[(0,2),(1,7),(2,42),(2,46),(3,8),(3,21),(3,54),(4,8),(4,9),(4,10),(5,11),(5,12),(5,13)
,(6,7),(6,13),(6,25),(7,48),(8,26),(9,14),(9,37),(10,15),(10,38),(11,19),(11,39),(12,2
0),(12,40),(13,30),(14,21),(14,22),(15,22),(15,23),(16,17),(16,32),(16,33),(17,18),(17
,28),(18,19),(18,23),(19,24),(20,24),(20,25),(21,36),(22,27),(23,28),(24,29),(25,41),(
26,31),(26,42),(27,31),(27,32),(28,33),(29,34),(29,35),(30,35),(30,45),(31,37),(32,38)
,(33,34),(34,39),(35,40),(36,42),(36,43),(37,43),(38,43),(39,44),(40,44),(41,44),(41,4
5),(45,54),(46,50),(46,55),(47,51),(47,56),(47,89),(48,52),(48,57),(49,53),(49,58),(49
,91),(50,56),(50,59),(51,55),(51,62),(52,58),(52,63),(53,57),(53,66),(54,90),(55,60),(
56,61),(57,64),(58,65),(59,71),(59,81),(60,67),(60,71),(61,68),(61,72),(62,72),(62,82)
,(63,73),(63,83),(64,69),(64,73),(65,70),(65,74),(66,74),(66,84),(67,68),(67,75),(68,7
6),(69,70),(69,77),(70,78),(71,72),(73,74),(75,79),(75,81),(76,82),(76,88),(77,83),(77
,93),(78,80),(78,84),(79,85),(79,100),(80,86),(80,101),(81,82),(83,84),(85,87),(85,94)
,(86,92),(86,95),(87,88),(87,103),(88,94),(89,90),(89,130),(90,91),(91,132),(92,93),(9
2,104),(93,95),(94,100),(95,101),(96,97),(96,102),(96,114),(97,103),(97,117),(98,99),(
98,104),(98,118),(99,105),(99,121),(100,102),(101,105),(102,110),(103,111),(104,112),(
105,113),(106,107),(106,114),(106,115),(107,116),(107,117),(108,109),(108,118),(108,11
9),(109,120),(109,121),(110,111),(110,115),(111,116),(112,113),(112,119),(113,120),(11
4,126),(115,122),(116,123),(117,127),(118,128),(119,124),(120,125),(121,129),(122,127)
,(122,130),(123,126),(123,131),(124,129),(124,132),(125,128),(125,133),(126,130),(127,
131),(128,132),(129,133),(131,134),(133,136),(134,138),(134,142),(135,139),(135,143),(
135,176),(136,140),(136,144),(137,141),(137,145),(137,178),(138,143),(138,146),(139,14
2),(139,149),(140,145),(140,150),(141,144),(141,153),(142,147),(143,148),(144,151),(14
5,152),(146,158),(146,168),(147,154),(147,158),(148,155),(148,159),(149,159),(149,169)
,(150,160),(150,170),(151,156),(151,160),(152,157),(152,161),(153,161),(153,171),(154,
155),(154,162),(155,163),(156,157),(156,164),(157,165),(158,159),(160,161),(162,166),(
162,168),(163,169),(163,175),(164,170),(164,180),(165,167),(165,171),(166,172),(166,18
7),(167,173),(167,188),(168,169),(170,171),(172,174),(172,181),(173,179),(173,182),(17
4,175),(174,190),(175,181),(176,177),(176,218),(177,178),(177,213),(178,220),(179,180)
,(179,191),(180,182),(181,187),(182,188),(183,184),(183,189),(183,201),(184,190),(184,
204),(185,186),(185,191),(185,205),(186,192),(186,208),(187,189),(188,192),(189,197),(
190,198),(191,199),(192,200),(193,194),(193,201),(193,202),(194,203),(194,204),(195,19
6),(195,205),(195,206),(196,207),(196,208),(197,198),(197,202),(198,203),(199,200),(19
9,206),(200,207),(201,214),(202,209),(203,210),(204,215),(205,216),(206,211),(207,212)
,(208,217),(209,215),(209,218),(210,214),(210,219),(211,217),(211,220),(212,216),(212,
221),(213,222),(213,264),(214,218),(215,219),(216,220),(217,221),(219,260),(221,265),(
222,226),(222,237),(223,226),(223,227),(223,228),(224,229),(224,230),(224,231),(225,23
1),(225,241),(225,265),(226,242),(227,232),(227,255),(228,233),(228,256),(229,235),(22
9,257),(230,236),(230,258),(231,246),(232,237),(232,238),(233,234),(233,238),(234,239)
,(234,251),(235,240),(235,251),(236,240),(236,241),(237,254),(238,243),(239,244),(239,
250),(240,245),(241,259),(242,247),(242,261),(243,247),(243,248),(244,249),(244,252),(
245,252),(245,253),(246,253),(246,264),(247,255),(248,249),(248,256),(249,250),(250,25
1),(252,257),(253,258),(254,261),(254,262),(255,262),(256,262),(257,263),(258,263),(25
9,263),(259,264),(260,261),(260,266),(265,267)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-17.5,-12.],1:[-17.5,12.],2:[-14.,-8.5],3:[-14.,-4.274],4:[-14.,-2.137],5:[-
14.,2.137],6:[-14.,4.274],7:[-14.,8.5],8:[-13.6438,-3.2055],9:[-13.6438,-1.3356],10:[-
13.6438,-0.5343],11:[-13.6438,0.5342],12:[-13.6438,1.3356],13:[-13.6438,3.2055],14:[-
13.2877,-2.137],15:[-13.2877,-1.0685],16:[-13.2877,0.],17:[-13.2877,0.3561],18:[-
13.2877,0.7123],19:[-13.2877,1.0685],20:[-13.2877,2.137],21:[-12.9315,-2.6713],22:[-
12.9315,-1.6028],23:[-12.9315,-0.7123],24:[-12.9315,1.6027],25:[-12.9315,2.6712],26:[-
12.5753,-2.6713],27:[-12.5753,-1.6028],28:[-12.5753,-0.3562],29:[-
12.5753,1.6027],30:[-12.5753,2.6712],31:[-12.2192,-2.137],32:[-12.2192,-1.0685],33:[-
12.2192,0.],34:[-12.2192,1.0685],35:[-12.2192,2.137],36:[-11.863,-3.2055],37:[-
11.863,-1.3356],38:[-11.863,-0.5343],39:[-11.863,0.5342],40:[-11.863,1.3356],41:[-

342

11.863,3.2055],42:[-11.5068,-4.274],43:[-11.5068,-2.137],44:[-11.5068,2.137],45:[-
11.5068,4.274],46:[-9.7415,-8.5],47:[-9.7415,-6.0069],48:[-9.7415,6.0068],49:[-
9.7415,8.5],50:[-8.673,-8.1439],51:[-8.673,-6.363],52:[-8.673,6.363],53:[-
8.673,8.1438],54:[-8.6575,0.],55:[-8.1388,-7.4315],56:[-8.1388,-7.0754],57:[-
8.1388,7.0753],58:[-8.1388,7.4315],59:[-7.6045,-8.5],60:[-7.6045,-7.7877],61:[-
7.6045,-6.7192],62:[-7.6045,-6.0069],63:[-7.6045,6.0068],64:[-7.6045,6.7192],65:[-
7.6045,7.7877],66:[-7.6045,8.5],67:[-7.0703,-7.4315],68:[-7.0703,-7.0754],69:[-
7.0703,7.0753],70:[-7.0703,7.4315],71:[-6.8031,-8.1439],72:[-6.8031,-6.363],73:[-
6.8031,6.363],74:[-6.8031,8.1438],75:[-6.536,-7.7877],76:[-6.536,-6.7192],77:[-
6.536,6.7192],78:[-6.536,7.7877],79:[-6.1798,-7.7877],80:[-6.1798,7.4315],81:[-
6.0018,-8.1439],82:[-6.0018,-6.363],83:[-6.0018,6.363],84:[-6.0018,8.1438],85:[-
5.8237,-7.7877],86:[-5.8237,7.0753],87:[-5.4675,-7.7877],88:[-5.4675,-6.7192],89:[-
5.4675,-3.19],90:[-5.4675,0.],91:[-5.4675,3.19],92:[-5.4675,6.7192],93:[-
5.4675,7.7877],94:[-5.1113,-7.0754],95:[-5.1113,7.7877],96:[-4.9333,-8.1439],97:[-
4.9333,-6.363],98:[-4.9333,6.363],99:[-4.9333,8.1438],100:[-4.7552,-7.4315],101:[-
4.7552,7.7877],102:[-4.399,-7.7877],103:[-4.399,-6.7192],104:[-4.399,6.7192],105:[-
4.399,7.7877],106:[-4.1319,-8.1439],107:[-4.1319,-6.363],108:[-4.1319,6.363],109:[-
4.1319,8.1438],110:[-3.8648,-7.4315],111:[-3.8648,-7.0754],112:[-3.8648,7.0753],113:[-
3.8648,7.4315],114:[-3.3305,-8.5],115:[-3.3305,-7.7877],116:[-3.3305,-6.7192],117:[-
3.3305,-6.0069],118:[-3.3305,6.0068],119:[-3.3305,6.7192],120:[-3.3305,7.7877],121:[-
3.3305,8.5],122:[-2.7963,-7.4315],123:[-2.7963,-7.0754],124:[-2.7963,7.0753],125:[-
2.7963,7.4315],126:[-2.262,-8.1439],127:[-2.262,-6.363],128:[-2.262,6.363],129:[-
2.262,8.1438],130:[-1.1935,-8.5],131:[-1.1935,-6.0069],132:[-1.1935,6.0068],133:[-
1.1935,8.5],134:[1.1935,-8.5],135:[1.1935,-
6.0069],136:[1.1935,6.0068],137:[1.1935,8.5],138:[2.262,-8.1439],139:[2.262,-
6.363],140:[2.262,6.363],141:[2.262,8.1438],142:[2.7962,-7.4315],143:[2.7962,-
7.0754],144:[2.7962,7.0753],145:[2.7962,7.4315],146:[3.3305,-8.5],147:[3.3305,-
7.7877],148:[3.3305,-6.7192],149:[3.3305,-
6.0069],150:[3.3305,6.0068],151:[3.3305,6.7192],152:[3.3305,7.7877],153:[3.3305,8.5],1
54:[3.8647,-7.4315],155:[3.8647,-
7.0754],156:[3.8647,7.0753],157:[3.8647,7.4315],158:[4.1319,-8.1439],159:[4.1319,-
6.363],160:[4.1319,6.363],161:[4.1319,8.1438],162:[4.399,-7.7877],163:[4.399,-
6.7192],164:[4.399,6.7192],165:[4.399,7.7877],166:[4.7552,-
7.7877],167:[4.7552,7.4315],168:[4.9332,-8.1439],169:[4.9332,-
6.363],170:[4.9332,6.363],171:[4.9332,8.1438],172:[5.1113,-
7.7877],173:[5.1113,7.0753],174:[5.4675,-7.7877],175:[5.4675,-6.7192],176:[5.4675,-
3.19],177:[5.4675,0.],178:[5.4675,3.19],179:[5.4675,6.7192],180:[5.4675,7.7877],181:[5
.8237,-7.0754],182:[5.8237,7.7877],183:[6.0017,-8.1439],184:[6.0017,-
6.363],185:[6.0017,6.363],186:[6.0017,8.1438],187:[6.1798,-
7.4315],188:[6.1798,7.7877],189:[6.536,-7.7877],190:[6.536,-
6.7192],191:[6.536,6.7192],192:[6.536,7.7877],193:[6.8031,-8.1439],194:[6.8031,-
6.363],195:[6.8031,6.363],196:[6.8031,8.1438],197:[7.0702,-7.4315],198:[7.0702,-
7.0754],199:[7.0702,7.0753],200:[7.0702,7.4315],201:[7.6045,-8.5],202:[7.6045,-
7.7877],203:[7.6045,-6.7192],204:[7.6045,-
6.0069],205:[7.6045,6.0068],206:[7.6045,6.7192],207:[7.6045,7.7877],208:[7.6045,8.5],2
09:[8.1387,-7.4315],210:[8.1387,-
7.0754],211:[8.1387,7.0753],212:[8.1387,7.4315],213:[8.6575,0.],214:[8.673,-
8.1439],215:[8.673,-6.363],216:[8.673,6.363],217:[8.673,8.1438],218:[9.7415,-
8.5],219:[9.7415,-6.0069],220:[9.7415,6.0068],221:[9.7415,8.5],222:[11.5068,-
4.274],223:[11.5068,-2.137],224:[11.5068,2.137],225:[11.5068,4.274],226:[11.863,-
3.2055],227:[11.863,-1.3356],228:[11.863,-
0.5343],229:[11.863,0.5342],230:[11.863,1.3356],231:[11.863,3.2055],232:[12.2192,-
2.137],233:[12.2192,-
1.0685],234:[12.2192,0.],235:[12.2192,1.0685],236:[12.2192,2.137],237:[12.5753,-
2.6713],238:[12.5753,-
1.6028],239:[12.5753,0.3561],240:[12.5753,1.6027],241:[12.5753,2.6712],242:[12.9315,-
2.6713],243:[12.9315,-
1.6028],244:[12.9315,0.7123],245:[12.9315,1.6027],246:[12.9315,2.6712],247:[13.2877,-
2.137],248:[13.2877,-1.0685],249:[13.2877,-0.7123],250:[13.2877,-
0.3562],251:[13.2877,0.],252:[13.2877,1.0685],253:[13.2877,2.137],254:[13.6438,-
3.2055],255:[13.6438,-1.3356],256:[13.6438,-
0.5343],257:[13.6438,0.5342],258:[13.6438,1.3356],259:[13.6438,3.2055],260:[14.,-

343

8.5],261:[14.,-4.274],262:[14.,-
2.137],263:[14.,2.137],264:[14.,4.274],265:[14.,8.5],266:[17.5,-12.],267:[17.5,12.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorOne,3->colorTwo,4->colorTwo,5->colorTwo,6->colorOne,7-
>colorOne,8->colorTwo,9->colorOne,10->colorOne,11->colorOne,12->colorTwo,13-
>colorTwo,14->colorTwo,15->colorTwo,16->colorTwo,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorOne,21->colorOne,22->colorOne,23->colorOne,24->colorOne,25-
>colorTwo,26->colorTwo,27->colorTwo,28->colorTwo,29->colorTwo,30->colorOne,31-
>colorOne,32->colorOne,33->colorOne,34->colorOne,35->colorTwo,36->colorTwo,37-
>colorTwo,38->colorTwo,39->colorTwo,40->colorOne,41->colorOne,42->colorOne,43-
>colorOne,44->colorOne,45->colorTwo,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo,51->colorTwo,52->colorOne,53->colorTwo,54->colorOne,55-
>colorOne,56->colorTwo,57->colorOne,58->colorTwo,59->colorOne,60->colorOne,61-
>colorOne,62->colorTwo,63->colorTwo,64->colorOne,65->colorOne,66->colorTwo,67-
>colorTwo,68->colorTwo,69->colorOne,70->colorTwo,71->colorOne,72->colorTwo,73-
>colorOne,74->colorTwo,75->colorOne,76->colorOne,77->colorTwo,78->colorOne,79-
>colorTwo,80->colorTwo,81->colorOne,82->colorTwo,83->colorOne,84->colorTwo,85-
>colorOne,86->colorOne,87->colorTwo,88->colorTwo,89->colorOne,90->colorOne,91-
>colorTwo,92->colorOne,93->colorOne,94->colorTwo,95->colorTwo,96->colorOne,97-
>colorOne,98->colorTwo,99->colorOne,100->colorTwo,101->colorOne,102->colorTwo,103-
>colorTwo,104->colorOne,105->colorTwo,106->colorOne,107->colorOne,108->colorTwo,109-
>colorOne,110->colorTwo,111->colorOne,112->colorTwo,113->colorOne,114->colorTwo,115-
>colorTwo,116->colorTwo,117->colorOne,118->colorOne,119->colorTwo,120->colorTwo,121-
>colorOne,122->colorOne,123->colorOne,124->colorTwo,125->colorOne,126->colorTwo,127-
>colorOne,128->colorTwo,129->colorOne,130->colorTwo,131->colorTwo,132->colorOne,133-
>colorTwo,134->colorOne,135->colorTwo,136->colorOne,137->colorTwo,138->colorOne,139-
>colorOne,140->colorTwo,141->colorOne,142->colorTwo,143->colorOne,144->colorTwo,145-
>colorOne,146->colorTwo,147->colorTwo,148->colorTwo,149->colorOne,150->colorOne,151-
>colorTwo,152->colorTwo,153->colorOne,154->colorOne,155->colorOne,156->colorTwo,157-
>colorOne,158->colorTwo,159->colorOne,160->colorTwo,161->colorOne,162->colorTwo,163-
>colorTwo,164->colorOne,165->colorTwo,166->colorOne,167->colorOne,168->colorTwo,169-
>colorOne,170->colorTwo,171->colorOne,172->colorTwo,173->colorTwo,174->colorOne,175-
>colorOne,176->colorTwo,177->colorTwo,178->colorOne,179->colorTwo,180->colorTwo,181-
>colorOne,182->colorOne,183->colorTwo,184->colorTwo,185->colorOne,186->colorTwo,187-
>colorOne,188->colorTwo,189->colorOne,190->colorOne,191->colorTwo,192->colorOne,193-
>colorTwo,194->colorTwo,195->colorOne,196->colorTwo,197->colorOne,198->colorTwo,199-
>colorOne,200->colorTwo,201->colorOne,202->colorOne,203->colorOne,204->colorTwo,205-
>colorTwo,206->colorOne,207->colorOne,208->colorTwo,209->colorTwo,210->colorTwo,211-
>colorOne,212->colorTwo,213->colorOne,214->colorTwo,215->colorTwo,216->colorOne,217-
>colorTwo,218->colorOne,219->colorOne,220->colorTwo,221->colorOne,222->colorTwo,223-
>colorOne,224->colorOne,225->colorTwo,226->colorTwo,227->colorTwo,228->colorTwo,229-
>colorTwo,230->colorOne,231->colorOne,232->colorOne,233->colorOne,234->colorOne,235-
>colorTwo,236->colorTwo,237->colorTwo,238->colorTwo,239->colorTwo,240->colorOne,241-
>colorOne,242->colorOne,243->colorOne,244->colorOne,245->colorTwo,246->colorTwo,247-
>colorTwo,248->colorTwo,249->colorTwo,250->colorOne,251->colorTwo,252->colorOne,253-
>colorOne,254->colorOne,255->colorOne,256->colorOne,257->colorOne,258->colorTwo,259-
>colorTwo,260->colorTwo,261->colorOne,262->colorTwo,263->colorTwo,264->colorOne,265-
>colorOne,266->colorOne,267->colorTwo,268->colorTwo}

344

8.44 (Figure 4.14) gadget

1

3

2

14

48

15

4

5

6

7

8

9

10

12

11

13

16

17

20

23

18

19

21

22

24

25

26

27

28

29

30

31

32

34

33

35

36

37

38

39

49

42

45

40

41

43

44

46

47

50

345

Graph Properties ::

--

Number of Vertices: ‘50’

Number of Edges: ‘73’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

346

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->3,2<->14,2<->48,3<->15,4<->5,4<->6,4<->7,5<->8,5<->9,6<->10,6<->12,7<-
>8,7<->10,8<->11,9<->11,9<->13,10<->11,12<->13,12<->14,13<->15,14<->16,15<->17,16<-
>17,16<->20,17<->23,18<->19,18<->20,18<->21,19<->22,19<->23,20<->24,21<->22,21<-
>24,22<->25,23<->25,24<->25,26<->27,26<->28,26<->29,27<->30,27<->31,28<->32,28<-
>34,29<->30,29<->32,30<->33,31<->33,31<->35,32<->33,34<->35,34<->36,35<->37,36<-
>38,36<->48,37<->39,37<->49,38<->39,38<->42,39<->45,40<->41,40<->42,40<->43,41<-
>44,41<->45,42<->46,43<->44,43<->46,44<->47,45<->47,46<->47,48<->49,49<->50}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-17.5,11.52},2->{-14.,-8.98},3->{-14.,8.02},4->{-12.7143,-2.48},5->{-
12.7143,1.52},6->{-11.,-3.48},7->{-11.,-1.48},8->{-11.,0.52},9->{-11.,2.52},10->{-
9.2857,-2.48},11->{-9.2857,1.52},12->{-8.33,-4.1229},13->{-8.33,3.1628},14->{-7.,-
4.1229},15->{-7.,3.1628},16->{-5.67,-4.1229},17->{-5.67,3.1628},18->{-4.7143,-
2.48},19->{-4.7143,1.52},20->{-3.,-3.48},21->{-3.,-1.48},22->{-3.,0.52},23->{-
3.,2.52},24->{-1.2857,-2.48},25->{-1.2857,1.52},26->{1.2857,-2.48},27-
>{1.2857,1.52},28->{3.,-3.48},29->{3.,-1.48},30->{3.,0.52},31->{3.,2.52},32->{4.7143,-
2.48},33->{4.7143,1.52},34->{5.67,-4.1229},35->{5.67,3.1628},36->{7.,-4.1229},37-
>{7.,3.1628},38->{8.33,-4.1229},39->{8.33,3.1628},40->{9.2857,-2.48},41-
>{9.2857,1.52},42->{11.,-3.48},43->{11.,-1.48},44->{11.,0.52},45->{11.,2.52},46-
>{12.7143,-2.48},47->{12.7143,1.52},48->{14.,-8.98},49->{14.,8.02},50->{17.5,11.52}}

Edge list (SAGE 7.2):

[(0,2),(1,2),(1,13),(1,47),(2,14),(3,4),(3,5),(3,6),(4,7),(4,8),(5,9),(5,11),(6,7),(6,
9),(7,10),(8,10),(8,12),(9,10),(11,12),(11,13),(12,14),(13,15),(14,16),(15,16),(15,19)
,(16,22),(17,18),(17,19),(17,20),(18,21),(18,22),(19,23),(20,21),(20,23),(21,24),(22,2
4),(23,24),(25,26),(25,27),(25,28),(26,29),(26,30),(27,31),(27,33),(28,29),(28,31),(29
,32),(30,32),(30,34),(31,32),(33,34),(33,35),(34,36),(35,37),(35,47),(36,38),(36,48),(
37,38),(37,41),(38,44),(39,40),(39,41),(39,42),(40,43),(40,44),(41,45),(42,43),(42,45)
,(43,46),(44,46),(45,46),(47,48),(48,49)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-17.5,11.52],1:[-14.,-8.98],2:[-14.,8.02],3:[-12.7143,-2.48],4:[-
12.7143,1.52],5:[-11.,-3.48],6:[-11.,-1.48],7:[-11.,0.52],8:[-11.,2.52],9:[-9.2857,-
2.48],10:[-9.2857,1.52],11:[-8.33,-4.1229],12:[-8.33,3.1628],13:[-7.,-4.1229],14:[-
7.,3.1628],15:[-5.67,-4.1229],16:[-5.67,3.1628],17:[-4.7143,-2.48],18:[-
4.7143,1.52],19:[-3.,-3.48],20:[-3.,-1.48],21:[-3.,0.52],22:[-3.,2.52],23:[-1.2857,-
2.48],24:[-1.2857,1.52],25:[1.2857,-2.48],26:[1.2857,1.52],27:[3.,-3.48],28:[3.,-
1.48],29:[3.,0.52],30:[3.,2.52],31:[4.7143,-2.48],32:[4.7143,1.52],33:[5.67,-
4.1229],34:[5.67,3.1628],35:[7.,-4.1229],36:[7.,3.1628],37:[8.33,-
4.1229],38:[8.33,3.1628],39:[9.2857,-2.48],40:[9.2857,1.52],41:[11.,-3.48],42:[11.,-
1.48],43:[11.,0.52],44:[11.,2.52],45:[12.7143,-2.48],46:[12.7143,1.52],47:[14.,-
8.98],48:[14.,8.02],49:[17.5,11.52]}

347

Canonical vertex -coloring ::
{1->colorOne,2->colorOne,3->colorTwo,4->colorOne,5->colorTwo,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorOne,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorTwo,15->colorOne,16->colorOne,17->colorTwo,18->colorOne,19-
>colorTwo,20->colorTwo,21->colorTwo,22->colorOne,23->colorOne,24->colorOne,25-
>colorTwo,26->colorTwo,27->colorOne,28->colorOne,29->colorOne,30->colorTwo,31-
>colorTwo,32->colorTwo,33->colorOne,34->colorTwo,35->colorOne,36->colorOne,37-
>colorTwo,38->colorTwo,39->colorOne,40->colorTwo,41->colorOne,42->colorOne,43-
>colorOne,44->colorTwo,45->colorTwo,46->colorTwo,47->colorOne,48->colorTwo,49-
>colorOne,50->colorTwo}

348

8.45 (Figure 4.15) gadget

1

3

2

7

4

24

5

15

6

8

12

25

9

13

10

14

11
16

18

13

17

2016

19

22

19

21 23 42

26

40

27

44

28

30

29

31

32

38

33

39

3030

34

36

35

37

41

45

43

46

40404040

49

50

3838

51

52

61

515151

53

54

62

47474747

55

49

57

48

56

58

5757

59

60

63

64

65

81

66

85

67

71

6666

68

72

69

77

707070

78

73

727272

74

79

82

80

84

86

7474

87

75

81

88

68

76
89

92

93

100

83 102

101

90

96

8787

91

97

94

9191

95

98

99

118

122

103

105

104

107

105105105105105

106

110

106106

108

109

113

108108108

111

109109109

112

110

114

119

111111111

115

116

117

121

117117117117

120

123

124

349

Graph Properties ::

--

Number of Vertices: ‘124’

Number of Edges: ‘182’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘3’

Output of SAGE 7.2’s ‘girth()’ function: ‘3’

Output for the ‘igraph’ R package ‘girth()’ function: ‘3’

350

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->7,3<->4,3<->24,4<->5,4<->15,5<->6,5<->8,6<->7,6<->12,7<->25,8<->9,8<-
>13,9<->10,9<->14,10<->12,10<->14,11<->13,11<->15,11<->16,12<->18,13<->16,14<->17,15<-
>20,16<->19,17<->18,17<->19,18<->22,19<->21,20<->21,20<->23,21<->22,22<->23,23<-
>42,24<->26,24<->40,25<->27,25<->44,26<->28,26<->30,27<->29,27<->31,28<->32,28<-
>38,29<->33,29<->39,30<->34,30<->36,31<->35,31<->37,32<->41,32<->45,33<->43,33<-
>46,34<->36,34<->38,35<->37,35<->39,36<->49,37<->50,38<->51,39<->52,40<->49,40<-
>61,41<->42,41<->53,42<->43,43<->54,44<->50,44<->62,45<->51,45<->53,46<->52,46<-
>54,47<->49,47<->55,47<->57,48<->50,48<->56,48<->58,51<->55,52<->56,53<->59,54<-
>60,55<->57,56<->58,57<->59,58<->60,59<->61,60<->62,61<->63,62<->64,63<->65,63<-
>81,64<->66,64<->85,65<->67,65<->71,66<->68,66<->72,67<->69,67<->77,68<->70,68<-
>78,69<->73,69<->77,70<->74,70<->78,71<->79,71<->82,72<->80,72<->84,73<->79,73<-
>86,74<->80,74<->87,75<->77,75<->81,75<->88,76<->78,76<->85,76<->89,79<->92,80<-
>93,81<->100,82<->83,82<->92,83<->84,83<->102,84<->93,85<->101,86<->90,86<->96,87<-
>91,87<->97,88<->90,88<->94,89<->91,89<->95,90<->94,91<->95,92<->96,93<->97,94<-
>98,95<->99,96<->98,97<->99,98<->100,99<->101,100<->118,101<->122,102<->103,102<-
>105,103<->104,103<->107,104<->105,104<->106,105<->110,106<->108,106<->109,107<-
>108,107<->113,108<->111,109<->112,109<->114,110<->114,110<->119,111<->115,111<-
>116,112<->114,112<->117,113<->115,113<->121,115<->116,116<->117,117<->120,118<-
>119,118<->123,119<->120,120<->121,121<->122,122<->124}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-17.5,-12.0015},2->{-17.5,11.9985},3->{-14.,-8.5015},4->{-14.,-2.8349},5->{-14.,-
0.0015},6->{-14.,2.8318},7->{-14.,8.4985},8->{-13.5957,-0.4736},9->{-
13.3264,0.3917},10->{-13.057,1.2576},11->{-12.9898,-1.1819},12->{-12.7876,2.1235},13-
>{-12.632,-0.3795},14->{-12.4735,0.6541},15->{-12.3833,-1.8902},16->{-12.0468,-
0.9853},17->{-11.8894,0.0512},18->{-11.5752,1.4151},19->{-11.3059,-0.5523},20->{-
10.7666,-0.9462},21->{-10.565,-0.1194},22->{-10.3628,0.7068},23->{-9.1504,-0.0015},24-
>{-8.4,-8.5015},25->{-8.4,8.4985},26->{-7.7,-7.2747},27->{-7.7,7.2717},28->{-7.,-
6.0479},29->{-7.,6.0448},30->{-6.8443,-7.5473},31->{-6.8443,7.5442},32->{-6.3,-
4.821},33->{-6.3,4.818},34->{-6.2479,-6.9568},35->{-6.2479,6.9538},36->{-5.9886,-
7.8198},37->{-5.9886,7.8168},38->{-5.6521,-6.3658},39->{-5.6521,6.3627},40->{-5.6,-
8.5015},41->{-5.6,-3.5942},42->{-5.6,-0.0015},43->{-5.6,3.5912},44->{-5.6,8.4985},45-
>{-5.4835,-5.0256},46->{-5.4835,5.0226},47->{-5.2265,-7.1172},48->{-5.2265,7.1141},49-
>{-5.1335,-8.0924},50->{-5.1335,8.0894},51->{-5.0557,-5.7753},52->{-5.0557,5.7723},53-
>{-4.6665,-5.2296},54->{-4.6665,5.2266},55->{-4.6278,-6.525},56->{-4.6278,6.522},57-
>{-4.4335,-7.4793},58->{-4.4335,7.4762},59->{-3.7335,-6.8656},60->{-3.7335,6.8625},61-
>{-2.8,-8.5015},62->{-2.8,8.4985},63->{2.8,-8.5015},64->{2.8,8.4985},65->{3.7335,-
6.8656},66->{3.7335,6.8625},67->{4.4335,-7.4793},68->{4.4335,7.4762},69->{4.6278,-
6.525},70->{4.6278,6.522},71->{4.6665,-5.2296},72->{4.6665,5.2266},73->{5.0557,-
5.7753},74->{5.0557,5.7723},75->{5.1335,-8.0924},76->{5.1335,8.0894},77->{5.2265,-
7.1172},78->{5.2265,7.1141},79->{5.4835,-5.0256},80->{5.4835,5.0226},81->{5.6,-
8.5015},82->{5.6,-3.5942},83->{5.6,-0.0015},84->{5.6,3.5912},85->{5.6,8.4985},86-
>{5.6521,-6.3658},87->{5.6521,6.3627},88->{5.9886,-7.8198},89->{5.9886,7.8168},90-
>{6.2479,-6.9568},91->{6.2479,6.9538},92->{6.3,-4.821},93->{6.3,4.818},94->{6.8443,-
7.5473},95->{6.8443,7.5442},96->{7.,-6.0479},97->{7.,6.0448},98->{7.7,-7.2747},99-
>{7.7,7.2717},100->{8.4,-8.5015},101->{8.4,8.4985},102->{9.1504,-0.0015},103-
>{10.3628,0.7069},104->{10.565,-0.1193},105->{10.7666,-0.9461},106->{11.3058,-
0.5523},107->{11.5752,1.4152},108->{11.8893,0.0512},109->{12.0467,-0.9852},110-
>{12.3832,-1.8902},111->{12.4734,0.6542},112->{12.6319,-0.3794},113-
>{12.7876,2.1235},114->{12.9897,-1.1818},115->{13.0569,1.2577},116-
>{13.3263,0.3918},117->{13.5956,-0.4735},118->{14.,-8.5015},119->{14.,-2.8348},120-

351

>{14.,-0.0015},121->{14.,2.8319},122->{14.,8.4985},123->{17.5,-12.0015},124-
>{17.5,11.9985}}

Edge list (SAGE 7.2):

[(0,2),(1,6),(2,3),(2,23),(3,4),(3,14),(4,5),(4,7),(5,6),(5,11),(6,24),(7,8),(7,12),(8
,9),(8,13),(9,11),(9,13),(10,12),(10,14),(10,15),(11,17),(12,15),(13,16),(14,19),(15,1
8),(16,17),(16,18),(17,21),(18,20),(19,20),(19,22),(20,21),(21,22),(22,41),(23,25),(23
,39),(24,26),(24,43),(25,27),(25,29),(26,28),(26,30),(27,31),(27,37),(28,32),(28,38),(
29,33),(29,35),(30,34),(30,36),(31,40),(31,44),(32,42),(32,45),(33,35),(33,37),(34,36)
,(34,38),(35,48),(36,49),(37,50),(38,51),(39,48),(39,60),(40,41),(40,52),(41,42),(42,5
3),(43,49),(43,61),(44,50),(44,52),(45,51),(45,53),(46,48),(46,54),(46,56),(47,49),(47
,55),(47,57),(50,54),(51,55),(52,58),(53,59),(54,56),(55,57),(56,58),(57,59),(58,60),(
59,61),(60,62),(61,63),(62,64),(62,80),(63,65),(63,84),(64,66),(64,70),(65,67),(65,71)
,(66,68),(66,76),(67,69),(67,77),(68,72),(68,76),(69,73),(69,77),(70,78),(70,81),(71,7
9),(71,83),(72,78),(72,85),(73,79),(73,86),(74,76),(74,80),(74,87),(75,77),(75,84),(75
,88),(78,91),(79,92),(80,99),(81,82),(81,91),(82,83),(82,101),(83,92),(84,100),(85,89)
,(85,95),(86,90),(86,96),(87,89),(87,93),(88,90),(88,94),(89,93),(90,94),(91,95),(92,9
6),(93,97),(94,98),(95,97),(96,98),(97,99),(98,100),(99,117),(100,121),(101,102),(101,
104),(102,103),(102,106),(103,104),(103,105),(104,109),(105,107),(105,108),(106,107),(
106,112),(107,110),(108,111),(108,113),(109,113),(109,118),(110,114),(110,115),(111,11
3),(111,116),(112,114),(112,120),(114,115),(115,116),(116,119),(117,118),(117,122),(11
8,119),(119,120),(120,121),(121,123)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-17.5,-12.0015],1:[-17.5,11.9985],2:[-14.,-8.5015],3:[-14.,-2.8349],4:[-14.,-
0.0015],5:[-14.,2.8318],6:[-14.,8.4985],7:[-13.5957,-0.4736],8:[-13.3264,0.3917],9:[-
13.057,1.2576],10:[-12.9898,-1.1819],11:[-12.7876,2.1235],12:[-12.632,-0.3795],13:[-
12.4735,0.6541],14:[-12.3833,-1.8902],15:[-12.0468,-0.9853],16:[-11.8894,0.0512],17:[-
11.5752,1.4151],18:[-11.3059,-0.5523],19:[-10.7666,-0.9462],20:[-10.565,-0.1194],21:[-
10.3628,0.7068],22:[-9.1504,-0.0015],23:[-8.4,-8.5015],24:[-8.4,8.4985],25:[-7.7,-
7.2747],26:[-7.7,7.2717],27:[-7.,-6.0479],28:[-7.,6.0448],29:[-6.8443,-7.5473],30:[-
6.8443,7.5442],31:[-6.3,-4.821],32:[-6.3,4.818],33:[-6.2479,-6.9568],34:[-
6.2479,6.9538],35:[-5.9886,-7.8198],36:[-5.9886,7.8168],37:[-5.6521,-6.3658],38:[-
5.6521,6.3627],39:[-5.6,-8.5015],40:[-5.6,-3.5942],41:[-5.6,-0.0015],42:[-
5.6,3.5912],43:[-5.6,8.4985],44:[-5.4835,-5.0256],45:[-5.4835,5.0226],46:[-5.2265,-
7.1172],47:[-5.2265,7.1141],48:[-5.1335,-8.0924],49:[-5.1335,8.0894],50:[-5.0557,-
5.7753],51:[-5.0557,5.7723],52:[-4.6665,-5.2296],53:[-4.6665,5.2266],54:[-4.6278,-
6.525],55:[-4.6278,6.522],56:[-4.4335,-7.4793],57:[-4.4335,7.4762],58:[-3.7335,-
6.8656],59:[-3.7335,6.8625],60:[-2.8,-8.5015],61:[-2.8,8.4985],62:[2.8,-
8.5015],63:[2.8,8.4985],64:[3.7335,-6.8656],65:[3.7335,6.8625],66:[4.4335,-
7.4793],67:[4.4335,7.4762],68:[4.6278,-6.525],69:[4.6278,6.522],70:[4.6665,-
5.2296],71:[4.6665,5.2266],72:[5.0557,-5.7753],73:[5.0557,5.7723],74:[5.1335,-
8.0924],75:[5.1335,8.0894],76:[5.2265,-7.1172],77:[5.2265,7.1141],78:[5.4835,-
5.0256],79:[5.4835,5.0226],80:[5.6,-8.5015],81:[5.6,-3.5942],82:[5.6,-
0.0015],83:[5.6,3.5912],84:[5.6,8.4985],85:[5.6521,-
6.3658],86:[5.6521,6.3627],87:[5.9886,-7.8198],88:[5.9886,7.8168],89:[6.2479,-
6.9568],90:[6.2479,6.9538],91:[6.3,-4.821],92:[6.3,4.818],93:[6.8443,-
7.5473],94:[6.8443,7.5442],95:[7.,-6.0479],96:[7.,6.0448],97:[7.7,-
7.2747],98:[7.7,7.2717],99:[8.4,-8.5015],100:[8.4,8.4985],101:[9.1504,-
0.0015],102:[10.3628,0.7069],103:[10.565,-0.1193],104:[10.7666,-0.9461],105:[11.3058,-
0.5523],106:[11.5752,1.4152],107:[11.8893,0.0512],108:[12.0467,-0.9852],109:[12.3832,-
1.8902],110:[12.4734,0.6542],111:[12.6319,-0.3794],112:[12.7876,2.1235],113:[12.9897,-
1.1818],114:[13.0569,1.2577],115:[13.3263,0.3918],116:[13.5956,-0.4735],117:[14.,-
8.5015],118:[14.,-2.8348],119:[14.,-
0.0015],120:[14.,2.8319],121:[14.,8.4985],122:[17.5,-12.0015],123:[17.5,11.9985]}

352

8.46 (Figure 5.3.a) gadget (equivalent to the “Fig. 4” gadget
from ref. [146])

1

3 7

4

5 9

6

2

8

11

10

12

353

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘12’

Number of Edges: ‘14’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

354

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]3,3\[DirectedEdge]7,4\[DirectedEdge]3,4\[DirectedEdge]5,5\[DirectedEd
ge]9,6\[DirectedEdge]2,6\[DirectedEdge]5,7\[DirectedEdge]8,7\[DirectedEdge]11,8\[Direc
tedEdge]4,9\[DirectedEdge]8,9\[DirectedEdge]10,10\[DirectedEdge]6,12\[DirectedEdge]10}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-4.},5->{-3.5,4.},6->{-
3.5,12.},7->{3.5,-12.},8->{3.5,-4.},9->{3.5,4.},10->{3.5,12.},11->{6.,-14.5},12-
>{6.,14.5}}

Edge list (SAGE 7.2):

({0:[2],2:[6],6:[7,10],3:[2,4],4:[8],8:[7,9],5:[4,1],1:[],7:[3],10:[],9:[5],11:[9]})

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-4.],4:[-3.5,4.],5:[-
3.5,12.],6:[3.5,-12.],7:[3.5,-4.],8:[3.5,4.],9:[3.5,12.],10:[6.,-14.5],11:[6.,14.5]}

Canonical vertex -coloring ::
{1->colorTwo,2->colorOne,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorOne,12->colorTwo}

355

8.47 (Figure 5.3.b) gadget (equivalent to the “Fig. 2” gadget
from ref. [146])

1

2

6

12

3 8

4

5 10

7

14

9

16

11

18

13

21

15

23

17

25

19

20

27

22

29

24

31

26

28

30

32

356

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘32’

Number of Edges: ‘43’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

357

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]2,2\[DirectedEdge]6,2\[DirectedEdge]12,3\[DirectedEdge]1,3\[DirectedE
dge]8,4\[DirectedEdge]3,4\[DirectedEdge]5,5\[DirectedEdge]10,6\[DirectedEdge]5,7\[Dire
ctedEdge]1,7\[DirectedEdge]8,8\[DirectedEdge]14,9\[DirectedEdge]4,9\[DirectedEdge]10,1
0\[DirectedEdge]16,11\[DirectedEdge]6,11\[DirectedEdge]12,12\[DirectedEdge]18,13\[Dire
ctedEdge]7,14\[DirectedEdge]13,14\[DirectedEdge]21,15\[DirectedEdge]9,16\[DirectedEdge
]15,16\[DirectedEdge]23,17\[DirectedEdge]11,18\[DirectedEdge]17,18\[DirectedEdge]25,19
\[DirectedEdge]20,20\[DirectedEdge]13,20\[DirectedEdge]27,21\[DirectedEdge]22,22\[Dire
ctedEdge]15,22\[DirectedEdge]29,23\[DirectedEdge]24,24\[DirectedEdge]17,24\[DirectedEd
ge]31,25\[DirectedEdge]26,27\[DirectedEdge]28,28\[DirectedEdge]21,29\[DirectedEdge]30,
30\[DirectedEdge]23,31\[DirectedEdge]32,32\[DirectedEdge]25}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-12.9375,-25.},2->{-12.9375,25.},3->{-7.9375,-13.},4->{-7.9375,-6.},5->{-
7.9375,6.},6->{-7.9375,13.},7->{-3.9375,-25.},8->{-3.9375,-13.},9->{-3.9375,-6.},10-
>{-3.9375,6.},11->{-3.9375,13.},12->{-3.9375,25.},13->{2.0625,-25.},14->{2.0625,-
13.},15->{2.0625,-6.},16->{2.0625,6.},17->{2.0625,13.},18->{2.0625,25.},19->{4.0625,-
31.5},20->{4.0625,-27.5},21->{4.0625,-10.5},22->{4.0625,-8.5},23->{4.0625,8.5},24-
>{4.0625,10.5},25->{4.0625,27.5},26->{4.0625,31.5},27->{6.0625,-25.},28->{6.0625,-
13.},29->{6.0625,-6.},30->{6.0625,6.},31->{6.0625,13.},32->{6.0625,25.}}

Edge list (SAGE 7.2):

({0:[1],1:[5,11],5:[4],11:[17],2:[0,7],7:[13],3:[2,4],4:[9],9:[15],6:[0,7],13:[12,20],
8:[3,9],15:[14,22],10:[5,11],17:[16,24],12:[6],20:[21],14:[8],22:[23],16:[10],24:[25],
18:[19],19:[12,26],26:[27],21:[14,28],28:[29],23:[16,30],30:[31],25:[],27:[20],29:[22]
,31:[24]})

-

Example embedding coordinates (SAGE 7.2):

{0:[-12.9375,-25.],1:[-12.9375,25.],2:[-7.9375,-13.],3:[-7.9375,-6.],4:[-
7.9375,6.],5:[-7.9375,13.],6:[-3.9375,-25.],7:[-3.9375,-13.],8:[-3.9375,-6.],9:[-
3.9375,6.],10:[-3.9375,13.],11:[-3.9375,25.],12:[2.0625,-25.],13:[2.0625,-
13.],14:[2.0625,-6.],15:[2.0625,6.],16:[2.0625,13.],17:[2.0625,25.],18:[4.0625,-
31.5],19:[4.0625,-27.5],20:[4.0625,-10.5],21:[4.0625,-
8.5],22:[4.0625,8.5],23:[4.0625,10.5],24:[4.0625,27.5],25:[4.0625,31.5],26:[6.0625,-
25.],27:[6.0625,-13.],28:[6.0625,-6.],29:[6.0625,6.],30:[6.0625,13.],31:[6.0625,25.]}

358

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo}

359

8.48 (Figure 5.3.c) gadget

1

2

6

12

3 8

4

5 10

7

14

9

16

11

18

13

21

15

23

17

25

19

20

27

22

29

24

31

26

28

30

32

360

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘32’

Number of Edges: ‘43’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,
target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

361

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: ‘0’

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]2,2\[DirectedEdge]6,2\[DirectedEdge]12,3\[DirectedEdge]1,3\[DirectedE
dge]8,4\[DirectedEdge]3,5\[DirectedEdge]4,5\[DirectedEdge]10,6\[DirectedEdge]5,7\[Dire
ctedEdge]1,7\[DirectedEdge]8,8\[DirectedEdge]14,9\[DirectedEdge]4,9\[DirectedEdge]10,1
0\[DirectedEdge]16,11\[DirectedEdge]6,11\[DirectedEdge]12,12\[DirectedEdge]18,13\[Dire
ctedEdge]7,14\[DirectedEdge]13,14\[DirectedEdge]21,15\[DirectedEdge]9,16\[DirectedEdge
]15,16\[DirectedEdge]23,17\[DirectedEdge]11,18\[DirectedEdge]17,18\[DirectedEdge]25,19
\[DirectedEdge]20,20\[DirectedEdge]13,20\[DirectedEdge]27,21\[DirectedEdge]22,22\[Dire
ctedEdge]15,22\[DirectedEdge]29,23\[DirectedEdge]24,24\[DirectedEdge]17,24\[DirectedEd
ge]31,25\[DirectedEdge]26,27\[DirectedEdge]28,28\[DirectedEdge]21,29\[DirectedEdge]30,
30\[DirectedEdge]23,31\[DirectedEdge]32,32\[DirectedEdge]25}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-12.9375,-25.},2->{-12.9375,25.},3->{-7.9375,-13.},4->{-7.9375,-6.},5->{-
7.9375,6.},6->{-7.9375,13.},7->{-3.9375,-25.},8->{-3.9375,-13.},9->{-3.9375,-6.},10-
>{-3.9375,6.},11->{-3.9375,13.},12->{-3.9375,25.},13->{2.0625,-25.},14->{2.0625,-
13.},15->{2.0625,-6.},16->{2.0625,6.},17->{2.0625,13.},18->{2.0625,25.},19->{4.0625,-
31.5},20->{4.0625,-27.5},21->{4.0625,-10.5},22->{4.0625,-8.5},23->{4.0625,8.5},24-
>{4.0625,10.5},25->{4.0625,27.5},26->{4.0625,31.5},27->{6.0625,-25.},28->{6.0625,-
13.},29->{6.0625,-6.},30->{6.0625,6.},31->{6.0625,13.},32->{6.0625,25.}}

Edge list (SAGE 7.2):

({0:[1],1:[5,11],5:[4],11:[17],2:[0,7],7:[13],3:[2],4:[3,9],9:[15],6:[0,7],13:[12,20],
8:[3,9],15:[14,22],10:[5,11],17:[16,24],12:[6],20:[21],14:[8],22:[23],16:[10],24:[25],
18:[19],19:[12,26],26:[27],21:[14,28],28:[29],23:[16,30],30:[31],25:[],27:[20],29:[22]
,31:[24]})

-

Example embedding coordinates (SAGE 7.2):

{0:[-12.9375,-25.],1:[-12.9375,25.],2:[-7.9375,-13.],3:[-7.9375,-6.],4:[-
7.9375,6.],5:[-7.9375,13.],6:[-3.9375,-25.],7:[-3.9375,-13.],8:[-3.9375,-6.],9:[-
3.9375,6.],10:[-3.9375,13.],11:[-3.9375,25.],12:[2.0625,-25.],13:[2.0625,-
13.],14:[2.0625,-6.],15:[2.0625,6.],16:[2.0625,13.],17:[2.0625,25.],18:[4.0625,-
31.5],19:[4.0625,-27.5],20:[4.0625,-10.5],21:[4.0625,-
8.5],22:[4.0625,8.5],23:[4.0625,10.5],24:[4.0625,27.5],25:[4.0625,31.5],26:[6.0625,-
25.],27:[6.0625,-13.],28:[6.0625,-6.],29:[6.0625,6.],30:[6.0625,13.],31:[6.0625,25.]}

362

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorOne,14->colorTwo,15->colorOne,16->colorTwo,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo}

363

8.49 (Figure 5.4.a) gadget

1

3 9

4

5 14

6

2

7 11

16

8

10

17

15

13

12

23

24

19

18

20

27

29

21

30

22

25

26

33

31

28

32

35

34

36

364

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘36’

Number of Edges: ‘50’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

365

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]3,3\[DirectedEdge]9,4\[DirectedEdge]3,4\[DirectedEdge]5,5\[DirectedEd
ge]14,6\[DirectedEdge]2,6\[DirectedEdge]5,7\[DirectedEdge]11,7\[DirectedEdge]16,8\[Dir
ectedEdge]10,8\[DirectedEdge]17,9\[DirectedEdge]7,9\[DirectedEdge]15,10\[DirectedEdge]
6,11\[DirectedEdge]13,12\[DirectedEdge]8,13\[DirectedEdge]4,13\[DirectedEdge]23,14\[Di
rectedEdge]12,14\[DirectedEdge]24,15\[DirectedEdge]19,16\[DirectedEdge]15,17\[Directed
Edge]18,18\[DirectedEdge]10,19\[DirectedEdge]20,19\[DirectedEdge]27,20\[DirectedEdge]1
6,20\[DirectedEdge]29,21\[DirectedEdge]17,21\[DirectedEdge]30,22\[DirectedEdge]18,22\[
DirectedEdge]21,23\[DirectedEdge]25,24\[DirectedEdge]26,24\[DirectedEdge]33,25\[Direct
edEdge]11,25\[DirectedEdge]29,26\[DirectedEdge]12,27\[DirectedEdge]31,28\[DirectedEdge
]22,29\[DirectedEdge]27,30\[DirectedEdge]26,30\[DirectedEdge]28,31\[DirectedEdge]32,31
\[DirectedEdge]35,32\[DirectedEdge]23,33\[DirectedEdge]32,33\[DirectedEdge]34,34\[Dire
ctedEdge]28,36\[DirectedEdge]34}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-4.},5->{-3.5,4.},6->{-
3.5,12.},7->{-2.6,-7.8},8->{-2.6,7.8},9->{-2.1,-12.},10->{-2.1,12.},11->{-1.2167,-
7.8},12->{-1.2167,7.8},13->{-1.1667,-4.},14->{-1.1667,4.},15->{-1.,-13.6},16->{-1.,-
10.},17->{-1.,10.},18->{-1.,13.6},19->{1.,-13.6},20->{1.,-10.},21->{1.,10.},22-
>{1.,13.6},23->{1.1667,-4.},24->{1.1667,4.},25->{1.2167,-7.8},26->{1.2167,7.8},27-
>{2.1,-12.},28->{2.1,12.},29->{2.6,-7.8},30->{2.6,7.8},31->{3.5,-12.},32->{3.5,-
4.},33->{3.5,4.},34->{3.5,12.},35->{6.,-14.5},36->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(2,8),(3,2),(3,4),(4,13),(5,1),(5,4),(6,10),(6,15),(7,9),(7,16),(8,6),(8,14),(9
,5),(10,12),(11,7),(12,3),(12,22),(13,11),(13,23),(14,18),(15,14),(16,17),(17,9),(18,1
9),(18,26),(19,15),(19,28),(20,16),(20,29),(21,17),(21,20),(22,24),(23,25),(23,32),(24
,10),(24,28),(25,11),(26,30),(27,21),(28,26),(29,25),(29,27),(30,31),(30,34),(31,22),(
32,31),(32,33),(33,27),(35,33)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-4.],4:[-3.5,4.],5:[-3.5,12.],6:[-
2.6,-7.8],7:[-2.6,7.8],8:[-2.1,-12.],9:[-2.1,12.],10:[-1.2167,-7.8],11:[-
1.2167,7.8],12:[-1.1667,-4.],13:[-1.1667,4.],14:[-1.,-13.6],15:[-1.,-10.],16:[-
1.,10.],17:[-1.,13.6],18:[1.,-13.6],19:[1.,-10.],20:[1.,10.],21:[1.,13.6],22:[1.1667,-
4.],23:[1.1667,4.],24:[1.2167,-7.8],25:[1.2167,7.8],26:[2.1,-
12.],27:[2.1,12.],28:[2.6,-7.8],29:[2.6,7.8],30:[3.5,-12.],31:[3.5,-
4.],32:[3.5,4.],33:[3.5,12.],34:[6.,-14.5],35:[6.,14.5]}

366

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorOne,10->colorTwo,11->colorOne,12->colorTwo,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorTwo,18->colorOne,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorTwo,26->colorOne,27->colorTwo,28->colorOne,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo,35->colorTwo,36->colorOne}

367

8.50 (Figure 5.4.b) gadget

1

3

2

6

4

7

5

8

9

10

11

12

13

14

15

20

21

16

17

18

19

22

23

24

25

26

27

28

29

30

31

32

368

Graph Properties ::

--

Number of Vertices: ‘32’

Number of Edges: ‘38’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘6’

Output of SAGE 7.2’s ‘girth()’ function: ‘6’

Output for the ‘igraph’ R package ‘girth()’ function: ‘6’

369

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->6,3<->4,3<->7,4<->5,4<->8,5<->6,5<->9,6<->10,7<->11,8<->12,9<->13,10<-
>14,11<->12,11<->15,12<->20,13<->14,13<->21,14<->16,15<->17,16<->18,17<->19,18<-
>22,19<->20,19<->23,20<->24,21<->22,21<->25,22<->26,23<->27,24<->28,25<->29,26<-
>30,27<->28,27<->31,28<->29,29<->30,30<->32}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-4.},5->{-3.5,4.},6->{-
3.5,12.},7->{-2.5,-12.},8->{-2.5,-4.},9->{-2.5,4.},10->{-2.5,12.},11->{-1.5,-12.},12-
>{-1.5,-4.},13->{-1.5,4.},14->{-1.5,12.},15->{-0.5,-12.},16->{-0.5,12.},17->{0.5,-
12.},18->{0.5,12.},19->{1.5,-12.},20->{1.5,-4.},21->{1.5,4.},22->{1.5,12.},23->{2.5,-
12.},24->{2.5,-4.},25->{2.5,4.},26->{2.5,12.},27->{3.5,-12.},28->{3.5,-4.},29-
>{3.5,4.},30->{3.5,12.},31->{6.,-14.5},32->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,5),(2,3),(2,6),(3,4),(3,7),(4,5),(4,8),(5,9),(6,10),(7,11),(8,12),(9,13),(10
,11),(10,14),(11,19),(12,13),(12,20),(13,15),(14,16),(15,17),(16,18),(17,21),(18,19),(
18,22),(19,23),(20,21),(20,24),(21,25),(22,26),(23,27),(24,28),(25,29),(26,27),(26,30)
,(27,28),(28,29),(29,31)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-4.],4:[-3.5,4.],5:[-3.5,12.],6:[-
2.5,-12.],7:[-2.5,-4.],8:[-2.5,4.],9:[-2.5,12.],10:[-1.5,-12.],11:[-1.5,-4.],12:[-
1.5,4.],13:[-1.5,12.],14:[-0.5,-12.],15:[-0.5,12.],16:[0.5,-
12.],17:[0.5,12.],18:[1.5,-12.],19:[1.5,-4.],20:[1.5,4.],21:[1.5,12.],22:[2.5,-
12.],23:[2.5,-4.],24:[2.5,4.],25:[2.5,12.],26:[3.5,-12.],27:[3.5,-
4.],28:[3.5,4.],29:[3.5,12.],30:[6.,-14.5],31:[6.,14.5]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorOne,8->colorTwo,9->colorOne,10->colorTwo,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorOne,16->colorTwo,17->colorTwo,18->colorOne,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorTwo,24->colorOne,25-
>colorTwo,26->colorOne,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorTwo,32->colorOne}

370

8.51 (Figure 5.4.c) gadget

1

3

2

10

4

11

5

13

6

14

7

16

8

17

9

19

20

22

12 23

15 24

18 25

21 26

27

28

29

30

31

33

34

36

37

39

40

42

32

43

44

35

45

46

38

47

48

41

49

50

51

52

371

Graph Properties ::

--

Number of Vertices: ‘52’

Number of Edges: ‘70’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

372

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,2<->10,3<->4,3<->11,4<->5,4<->13,5<->6,5<->14,6<->7,6<->16,7<->8,7<->17,8<-
>9,8<->19,9<->10,9<->20,10<->22,11<->12,11<->23,12<->13,13<->23,14<->15,14<->24,15<-
>16,16<->24,17<->18,17<->25,18<->19,19<->25,20<->21,20<->26,21<->22,22<->26,23<-
>27,24<->28,25<->29,26<->30,27<->31,27<->33,28<->34,28<->36,29<->37,29<->39,30<-
>40,30<->42,31<->32,31<->43,32<->33,33<->44,34<->35,34<->45,35<->36,36<->46,37<-
>38,37<->47,38<->39,39<->48,40<->41,40<->49,41<->42,42<->50,43<->44,43<->51,44<-
>45,45<->46,46<->47,47<->48,48<->49,49<->50,50<->52}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-6.,-14.5},2->{-6.,14.5},3->{-3.5,-12.},4->{-3.5,-7.6364},5->{-3.5,-5.4545},6->{-
3.5,-1.0909},7->{-3.5,1.0909},8->{-3.5,5.4545},9->{-3.5,7.6364},10->{-3.5,12.},11->{-
2.1,-10.9091},12->{-2.1,-9.8182},13->{-2.1,-8.7273},14->{-2.1,-4.3636},15->{-2.1,-
3.2727},16->{-2.1,-2.1818},17->{-2.1,2.1819},18->{-2.1,3.2728},19->{-2.1,4.3637},20-
>{-2.1,8.7274},21->{-2.1,9.8183},22->{-2.1,10.9092},23->{-0.7,-9.8182},24->{-0.7,-
3.2727},25->{-0.7,3.2727},26->{-0.7,9.8182},27->{0.7,-9.8182},28->{0.7,-3.2727},29-
>{0.7,3.2727},30->{0.7,9.8182},31->{2.1,-10.9091},32->{2.1,-9.8182},33->{2.1,-
8.7273},34->{2.1,-4.3636},35->{2.1,-3.2727},36->{2.1,-2.1818},37->{2.1,2.1819},38-
>{2.1,3.2728},39->{2.1,4.3637},40->{2.1,8.7274},41->{2.1,9.8183},42->{2.1,10.9092},43-
>{3.5,-12.},44->{3.5,-7.6364},45->{3.5,-5.4545},46->{3.5,-1.0909},47->{3.5,1.0909},48-
>{3.5,5.4545},49->{3.5,7.6364},50->{3.5,12.},51->{6.,-14.5},52->{6.,14.5}}

Edge list (SAGE 7.2):

[(0,2),(1,9),(2,3),(2,10),(3,4),(3,12),(4,5),(4,13),(5,6),(5,15),(6,7),(6,16),(7,8),(7
,18),(8,9),(8,19),(9,21),(10,11),(10,22),(11,12),(12,22),(13,14),(13,23),(14,15),(15,2
3),(16,17),(16,24),(17,18),(18,24),(19,20),(19,25),(20,21),(21,25),(22,26),(23,27),(24
,28),(25,29),(26,30),(26,32),(27,33),(27,35),(28,36),(28,38),(29,39),(29,41),(30,31),(
30,42),(31,32),(32,43),(33,34),(33,44),(34,35),(35,45),(36,37),(36,46),(37,38),(38,47)
,(39,40),(39,48),(40,41),(41,49),(42,43),(42,50),(43,44),(44,45),(45,46),(46,47),(47,4
8),(48,49),(49,51)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-6.,-14.5],1:[-6.,14.5],2:[-3.5,-12.],3:[-3.5,-7.6364],4:[-3.5,-5.4545],5:[-3.5,-
1.0909],6:[-3.5,1.0909],7:[-3.5,5.4545],8:[-3.5,7.6364],9:[-3.5,12.],10:[-2.1,-
10.9091],11:[-2.1,-9.8182],12:[-2.1,-8.7273],13:[-2.1,-4.3636],14:[-2.1,-3.2727],15:[-
2.1,-2.1818],16:[-2.1,2.1819],17:[-2.1,3.2728],18:[-2.1,4.3637],19:[-2.1,8.7274],20:[-
2.1,9.8183],21:[-2.1,10.9092],22:[-0.7,-9.8182],23:[-0.7,-3.2727],24:[-
0.7,3.2727],25:[-0.7,9.8182],26:[0.7,-9.8182],27:[0.7,-
3.2727],28:[0.7,3.2727],29:[0.7,9.8182],30:[2.1,-10.9091],31:[2.1,-9.8182],32:[2.1,-
8.7273],33:[2.1,-4.3636],34:[2.1,-3.2727],35:[2.1,-
2.1818],36:[2.1,2.1819],37:[2.1,3.2728],38:[2.1,4.3637],39:[2.1,8.7274],40:[2.1,9.8183
],41:[2.1,10.9092],42:[3.5,-12.],43:[3.5,-7.6364],44:[3.5,-5.4545],45:[3.5,-
1.0909],46:[3.5,1.0909],47:[3.5,5.4545],48:[3.5,7.6364],49:[3.5,12.],50:[6.,-
14.5],51:[6.,14.5]}

373

8.52 (Figure 5.4.d) gadget

1

2

8

16

3 10

4

5 12

6

7 14

9

18

11

13

20

15

22

17

25

19

27

21

29

23

24

31

26

33

28

35

30

32

34

36

374

Graph Properties ::

(NOTE: Properties in this section are computed assuming that the digraph is
undirected.)

--

Number of Vertices: ‘36’

Number of Edges: ‘49’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

375

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1\[DirectedEdge]2,2\[DirectedEdge]8,2\[DirectedEdge]16,3\[DirectedEdge]1,3\[DirectedE
dge]10,4\[DirectedEdge]3,5\[DirectedEdge]4,5\[DirectedEdge]12,6\[DirectedEdge]5,6\[Dir
ectedEdge]7,7\[DirectedEdge]14,8\[DirectedEdge]7,9\[DirectedEdge]1,9\[DirectedEdge]10,
10\[DirectedEdge]18,11\[DirectedEdge]4,11\[DirectedEdge]12,12\[DirectedEdge]13,13\[Dir
ectedEdge]6,13\[DirectedEdge]14,14\[DirectedEdge]20,15\[DirectedEdge]8,15\[DirectedEdg
e]16,16\[DirectedEdge]22,17\[DirectedEdge]9,18\[DirectedEdge]17,18\[DirectedEdge]25,19
\[DirectedEdge]11,20\[DirectedEdge]19,20\[DirectedEdge]27,21\[DirectedEdge]15,22\[Dire
ctedEdge]21,22\[DirectedEdge]29,23\[DirectedEdge]24,24\[DirectedEdge]17,24\[DirectedEd
ge]31,25\[DirectedEdge]26,26\[DirectedEdge]19,26\[DirectedEdge]33,27\[DirectedEdge]28,
28\[DirectedEdge]21,28\[DirectedEdge]35,29\[DirectedEdge]30,31\[DirectedEdge]32,32\[Di
rectedEdge]25,33\[DirectedEdge]34,34\[DirectedEdge]27,35\[DirectedEdge]36,36\[Directed
Edge]29}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-12.2778,-25.},2->{-12.2778,25.},3->{-7.2778,-13.},4->{-7.2778,-6.},5->{-7.2778,-
2.},6->{-7.2778,2.},7->{-7.2778,6.},8->{-7.2778,13.},9->{-3.2778,-25.},10->{-3.2778,-
13.},11->{-3.2778,-6.},12->{-3.2778,-2.},13->{-3.2778,2.},14->{-3.2778,6.},15->{-
3.2778,13.},16->{-3.2778,25.},17->{2.7222,-25.},18->{2.7222,-13.},19->{2.7222,-6.},20-
>{2.7222,6.},21->{2.7222,13.},22->{2.7222,25.},23->{4.7222,-31.5},24->{4.7222,-
27.5},25->{4.7222,-10.5},26->{4.7222,-8.5},27->{4.7222,8.5},28->{4.7222,10.5},29-
>{4.7222,27.5},30->{4.7222,31.5},31->{6.7222,-25.},32->{6.7222,-13.},33->{6.7222,-
6.},34->{6.7222,6.},35->{6.7222,13.},36->{6.7222,25.}}

Edge list (SAGE 7.2):

[(0,1),(1,7),(1,15),(2,0),(2,9),(3,2),(4,3),(4,11),(5,4),(5,6),(6,13),(7,6),(8,0),(8,9
),(9,17),(10,3),(10,11),(11,12),(12,5),(12,13),(13,19),(14,7),(14,15),(15,21),(16,8),(
17,16),(17,24),(18,10),(19,18),(19,26),(20,14),(21,20),(21,28),(22,23),(23,16),(23,30)
,(24,25),(25,18),(25,32),(26,27),(27,20),(27,34),(28,29),(30,31),(31,24),(32,33),(33,2
6),(34,35),(35,28)]

376

-

Example embedding coordinates (SAGE 7.2):

{0:[-12.2778,-25.],1:[-12.2778,25.],2:[-7.2778,-13.],3:[-7.2778,-6.],4:[-7.2778,-
2.],5:[-7.2778,2.],6:[-7.2778,6.],7:[-7.2778,13.],8:[-3.2778,-25.],9:[-3.2778,-
13.],10:[-3.2778,-6.],11:[-3.2778,-2.],12:[-3.2778,2.],13:[-3.2778,6.],14:[-
3.2778,13.],15:[-3.2778,25.],16:[2.7222,-25.],17:[2.7222,-13.],18:[2.7222,-
6.],19:[2.7222,6.],20:[2.7222,13.],21:[2.7222,25.],22:[4.7222,-31.5],23:[4.7222,-
27.5],24:[4.7222,-10.5],25:[4.7222,-
8.5],26:[4.7222,8.5],27:[4.7222,10.5],28:[4.7222,27.5],29:[4.7222,31.5],30:[6.7222,-
25.],31:[6.7222,-13.],32:[6.7222,-6.],33:[6.7222,6.],34:[6.7222,13.],35:[6.7222,25.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorTwo,4->colorOne,5->colorTwo,6->colorOne,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorOne,18->colorTwo,19-
>colorOne,20->colorTwo,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo,35->colorOne,36->colorTwo}

377

8.53 (Figure 5.4.e) gadget

1

2

7

10

3

4

13

16

5

6

11

12

8

21

9

22

17

14

15

18

25

26

19

20

23

24

28

29

30

31

32

33

27

35

36

37

38

39

34

40

378

Graph Properties ::

--

Number of Vertices: ‘40’

Number of Edges: ‘51’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘2’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘2’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘True’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘4’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

379

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->2,1<->7,2<->10,3<->4,3<->13,4<->16,5<->6,5<->11,6<->12,7<->8,7<->21,8<->9,8<-
>22,9<->10,9<->17,10<->11,11<->12,12<->13,13<->14,14<->15,14<->18,15<->16,15<->25,16<-
>26,17<->18,17<->19,18<->20,19<->23,20<->24,21<->22,21<->28,22<->29,23<->24,23<-
>30,24<->31,25<->26,25<->32,26<->33,27<->28,28<->35,29<->30,29<->36,30<->37,31<-
>32,31<->38,32<->39,33<->34,33<->40,35<->36,37<->38,39<->40}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-10.2,-6.},2->{-10.2,-2.},3->{-10.2,2.},4->{-10.2,6.},5->{-6.2,-0.6667},6->{-
6.2,0.6667},7->{-2.2,-25.},8->{-2.2,-13.},9->{-2.2,-6.},10->{-2.2,-2.},11->{-2.2,-
0.6667},12->{-2.2,0.6667},13->{-2.2,2.},14->{-2.2,6.},15->{-2.2,13.},16->{-
2.2,25.},17->{-0.8667,-6.},18->{-0.8667,6.},19->{0.4667,-6.},20->{0.4667,6.},21-
>{1.8,-25.},22->{1.8,-13.},23->{1.8,-6.},24->{1.8,6.},25->{1.8,13.},26->{1.8,25.},27-
>{3.8,-31.5},28->{3.8,-27.5},29->{3.8,-10.5},30->{3.8,-8.5},31->{3.8,8.5},32-
>{3.8,10.5},33->{3.8,27.5},34->{3.8,31.5},35->{5.8,-25.},36->{5.8,-13.},37->{5.8,-
6.},38->{5.8,6.},39->{5.8,13.},40->{5.8,25.}}

Edge list (SAGE 7.2):

[(0,1),(0,6),(1,9),(2,3),(2,12),(3,15),(4,5),(4,10),(5,11),(6,7),(6,20),(7,8),(7,21),(
8,9),(8,16),(9,10),(10,11),(11,12),(12,13),(13,14),(13,17),(14,15),(14,24),(15,25),(16
,17),(16,18),(17,19),(18,22),(19,23),(20,21),(20,27),(21,28),(22,23),(22,29),(23,30),(
24,25),(24,31),(25,32),(26,27),(27,34),(28,29),(28,35),(29,36),(30,31),(30,37),(31,38)
,(32,33),(32,39),(34,35),(36,37),(38,39)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-10.2,-6.],1:[-10.2,-2.],2:[-10.2,2.],3:[-10.2,6.],4:[-6.2,-0.6667],5:[-
6.2,0.6667],6:[-2.2,-25.],7:[-2.2,-13.],8:[-2.2,-6.],9:[-2.2,-2.],10:[-2.2,-
0.6667],11:[-2.2,0.6667],12:[-2.2,2.],13:[-2.2,6.],14:[-2.2,13.],15:[-2.2,25.],16:[-
0.8667,-6.],17:[-0.8667,6.],18:[0.4667,-6.],19:[0.4667,6.],20:[1.8,-25.],21:[1.8,-
13.],22:[1.8,-6.],23:[1.8,6.],24:[1.8,13.],25:[1.8,25.],26:[3.8,-31.5],27:[3.8,-
27.5],28:[3.8,-10.5],29:[3.8,-
8.5],30:[3.8,8.5],31:[3.8,10.5],32:[3.8,27.5],33:[3.8,31.5],34:[5.8,-25.],35:[5.8,-
13.],36:[5.8,-6.],37:[5.8,6.],38:[5.8,13.],39:[5.8,25.]}

Canonical vertex -coloring ::
{1->colorOne,2->colorTwo,3->colorOne,4->colorTwo,5->colorOne,6->colorTwo,7-
>colorTwo,8->colorOne,9->colorTwo,10->colorOne,11->colorTwo,12->colorOne,13-
>colorTwo,14->colorOne,15->colorTwo,16->colorOne,17->colorOne,18->colorTwo,19-
>colorTwo,20->colorOne,21->colorOne,22->colorTwo,23->colorOne,24->colorTwo,25-
>colorOne,26->colorTwo,27->colorOne,28->colorTwo,29->colorOne,30->colorTwo,31-
>colorOne,32->colorTwo,33->colorOne,34->colorTwo,35->colorOne,36->colorTwo,37-
>colorOne,38->colorTwo,39->colorOne,40->colorTwo}

380

8.54 (Figure 5.4.f) gadget

1

3

4

2

7

8

9

5

11

6

12

13

14

15

16

10

18

19

20

21

22

17

23

381

Graph Properties ::

--

Number of Vertices: ‘23’

Number of Edges: ‘29’

Minimum vertex degree : ‘1’

Maximum vertex degree : ‘3’

Output of SAGE 7.2’s ‘is_regular(k=3)’ function: ‘False’

--

Planarity:

Output of Mathematica 10.4.1’s ‘PlanarGraphQ[]’ function: ‘True’

Output of Combinatorica’s ‘PlanarQ[]’ function: ‘True’

Output of SAGE 7.2’s ‘is_planar(sageTargetGraph)’ function: ‘True’

--

-Vertex Connectivity / Minimum Vertex Cut:

Output of Mathematica 10.4.1’s ‘VertexConnectivity[]’ function: ‘1’

Output of Combinatorica’s ‘VertexConnectivity[]’ function: ‘1’

Output of SAGE 7.2’s ‘vertex_connectivity()’ function: ‘1’

Output for the ‘igraph’ R package command ‘vertex_connectivity(g, source = NULL,

target = NULL, checks = TRUE)’: ‘1’

--

Chromatic Number :

Output of Combinatorica’s ‘ChromaticNumber[]’ function: ‘3’

Output of SAGE 7.2’s ‘chromatic_number(sageTargetGraph)’ function: ‘3’

Output of Mathematica 10.4.1’s ‘BipartiteGraphQ[]’ function: ‘False’

Output of Combinatorica’s ‘BipartiteQ[]’ function: ‘False’

Output of SAGE 7.2’s ‘is_bipartite()’ function: ‘False’

--

Girth:

Output of Combinatorica’s ‘Girth[]’ function: ‘4’

Output of SAGE 7.2’s ‘girth()’ function: ‘’

Output for the ‘igraph’ R package ‘girth()’ function: ‘4’

382

--

Minimum Genus :

Output of SAGE 7.2’s ‘genus()’ function: (--- Not Computed ---)

Edge list (Mathematica 10.4.1):

{1<->3,1<->4,2<->3,2<->7,2<->8,3<->9,4<->5,4<->11,5<->6,5<->12,6<->7,6<->13,7<->14,8<-
>9,8<->15,9<->16,10<->11,11<->18,12<->13,12<->19,13<->20,14<->15,14<->21,15<->22,16<-
>17,16<->23,18<->19,20<->21,22<->23}

-

Example embedding coordinates (Mathematica 10.4.1):

{1->{-10.9565,-1.6522},2->{-4.9565,11.3478},3->{-4.9565,23.3478},4->{-0.9565,-
26.6522},5->{-0.9565,-14.6522},6->{-0.9565,-7.6522},7->{-0.9565,4.3478},8->{-
0.9565,11.3478},9->{-0.9565,23.3478},10->{1.0435,-33.1522},11->{1.0435,-29.1522},12-
>{1.0435,-12.1522},13->{1.0435,-10.1522},14->{1.0435,6.8478},15->{1.0435,8.8478},16-
>{1.0435,25.8478},17->{1.0435,29.8478},18->{3.0435,-26.6522},19->{3.0435,-14.6522},20-
>{3.0435,-7.6522},21->{3.0435,4.3478},22->{3.0435,11.3478},23->{3.0435,23.3478}}

Edge list (SAGE 7.2):

[(0,2),(0,3),(1,2),(1,6),(1,7),(2,8),(3,4),(3,10),(4,5),(4,11),(5,6),(5,12),(6,13),(7,
8),(7,14),(8,15),(9,10),(10,17),(11,12),(11,18),(12,19),(13,14),(13,20),(14,21),(15,16
),(15,22),(17,18),(19,20),(21,22)]

-

Example embedding coordinates (SAGE 7.2):

{0:[-10.9565,-1.6522],1:[-4.9565,11.3478],2:[-4.9565,23.3478],3:[-0.9565,-
26.6522],4:[-0.9565,-14.6522],5:[-0.9565,-7.6522],6:[-0.9565,4.3478],7:[-
0.9565,11.3478],8:[-0.9565,23.3478],9:[1.0435,-33.1522],10:[1.0435,-
29.1522],11:[1.0435,-12.1522],12:[1.0435,-
10.1522],13:[1.0435,6.8478],14:[1.0435,8.8478],15:[1.0435,25.8478],16:[1.0435,29.8478]
,17:[3.0435,-26.6522],18:[3.0435,-14.6522],19:[3.0435,-
7.6522],20:[3.0435,4.3478],21:[3.0435,11.3478],22:[3.0435,23.3478]}

383

Acknowledgements

I sincerely thank my supervisor, Professor Akira Suyama, for taking a chance on
me three years ago, for his guidance in helping me to make my work coherent, and
for providing me a place in which to at least try to approximate a meaningful
contribution to science (and perhaps even certain areas of mathematics). To
be clear, none of this would have otherwise been possible. I also wish to
sincerely thank the lab members of Suyama group for their support, for sitting
through my sometimes (or perhaps I should say often) lousy talks, and for
sharing their knowledge and experience with me. I wish to mention here Dr.
Koh-ichiroh Shohda, a superb organic chemist, and someone who had the patience
to collaborate with a person who probably couldn’t run a simple acid-base titration
at this point. I wish to mention here Maasa Yokomori, whose extensive assistance
and guidance made (Chapter 6) of this dissertation possible (and the citations
in this section speak for themselves in this regard). I wish to express my deepest
gratitude to Kazushiro Minegishi for taking care of me when I first arrived in
Japan, and for getting me an honest-to-god LP of Utada Hikaru’s First Love. Last
but certainly not least, as a recipient of the Todai fellowship, I am indebted to
the University of Tokyo for their generous financial support of the International
Student Special Scholarship Program, and to the members of the committee who
decided I was a worthwhile investment. All of these things together allowed for
this dissertation to exist.

384

Bibliography

[1] V. Acuna, F. Chierichetti, V. Lacroix, A. Marchetti-Spaccamela, M. F.
Sagot, and L. Stougie. Modes and cuts in metabolic networks: complexity
and algorithms. BioSystems, 95(1):51–60, 2009.

[2] V. Acuna, A. Marchetti-Spaccamela, M. F. Sagot, and L. Stougie. A note on
the complexity of finding and enumerating elementary modes. BioSystems,
99(3):210–214, 2010.

[3] K. J. Adolfsen and M. P. Brynildsen. Futile cycling increases sensitivity
toward oxidative stress in Escherichia coli. Metab. Eng., 29:26–35, 2015.

[4] T. Akiyama, T. Nishizeki, and N. Saito. NP-completeness of the Hamiltonian
cycle problem for bipartite graphs. Journal of Information Processing,
3(2):73–76, 1980.

[5] R. E. L. Aldred, S. Bau, D. Holton, and B. D. McKay. Nonhamiltonian
3-connected cubic planar graphs. SIAM J. Discrete Math., 13(1):25–32, 2000.

[6] J. F. Allemand, D. Bensimon, L. Jullien, A. Bensimon, and V. Croquette.
pH-dependent specific binding and combing of DNA. Biophys. J.,
73(4):2064–2070, 1997.

[7] T. Ami, K. Ito, Y. Yoshimura, and K. Fujimoto. Sequence specific
interstrand photocrosslinking for effective SNP typing. Org. Biomol. Chem.,
5(16):2583–2586, 2007.

[8] E. V. Anslyn and D. A. Dougherty. Modern physical organic chemistry.
University Science Books: Sausalito, CA, 1st edition, 2005.

[9] S. Arora and B. Barak. Computational complexity: a modern approach.
Cambridge University Press: New York, NY, 1st edition, 2009.

[10] V. Arvind and P. P. Kurur. Graph isomorphism is in SPP. Inform. Comput.,
204(5):835–852, 2006.

[11] L. Auslander and S. Parter. On imbedding graphs in the sphere. J.
Mathematics and Mechanics, 10(3):517–523, 1961.

[12] V. Bailly, M. Derydt, and W. G. Verly. δ-Elimination in the repair of AP
(apurinic/apyrimidinic) sites in DNA. Biochem. J., 261(3):707–713, 1989.

[13] V. Bailly and W. G. Verly. Possible roles of β-elimination and δ-elimination
reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites
in mammalian cells. Biochem. J., 253(2):553–559, 1988.

[14] F. Barahona. On the computational complexity of Ising spin glass models.
J. Phys. A: Math. Gen., 15:3241–3253, 1982.

[15] F. Barany. Genetic disease detection and DNA amplification using cloned
thermostable ligase. PNAS, 88(1):189–193, 1991.

385

[16] R. D. Barish and A. Suyama. Counting substrate cycles in topologically
restricted metabolic networks. Proceedings of the 13th conference on
Computability in Europe (CiE), pages 129–140, 2017.

[17] R. Beigel, R. Buhrman, and L. Fortnow. NP might not be as easy as detecting
unique solutions. Proceedings of 30th Annual ACM Symposium on Theory
of Computing (STOC), pages 203–208, 1998.

[18] B. P. Belotserkovskii and B. H. Johnston. Polypropylene tube surfaces
may induce denaturation and multimerization of DNA. Science,
271(5246):222–223, 1996.

[19] B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic
(HP) model is NP-complete. J. Comp. Biol., 5(1):27–40, 1998.

[20] A. Besaratinia, J. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn,
and G. P. Pfeifer. Wavelength dependence of ultraviolet radiation-induced
DNA damage as determined by laser irradiation suggests that cyclobutane
pyrimidine dimers are the principal DNA lesions produced by terrestrial
sunlight. FASEB J., 25(9):3079–3091, 2011.

[21] A. Björklund. Determinant sums for undirected Hamiltonicity. SIAM J.
Comput., 43(1):280–299, 2014.

[22] A. Björklund. Below all subsets for some permutational counting problems.
Proceedings of the 15th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT), pages 17:1–17:11, 2016.

[23] A. Björklund and T. Husfeldt. The parity of directed Hamiltonian cycles.
Proceedings of the 54th annual symposium on Foundations of Computer
Science (FOCS), pages 727–735, 2013.

[24] B. Bollobás. Modern graph theory. Springer-Verlag: New York, NY, 1st
edition, 1998.

[25] J. A. Bondy and U. S. R. Murty. Graph theory with applications. Macmillan
Press: New York, NY, 1st edition, 1976.

[26] P. N. Borer, B. Dengler, I. Jr. Tinoco, and O. C. Uhlenbeck. Stability of
ribonucleic acid double-stranded helices. J. Mol. Biol., 86(4):843–853, 1974.

[27] S. N. Bose and R. J. Davies. The photoreactivity of T-A sequences in
oligodeoxyribonucleotides and DNA. Nucleic Acids Res., 12(20):7903–7914,
1984.

[28] S. N. Bose, R. J. Davies, S. K. Sethi, and J. A. McCloskey. Formation of
an adenine-thymine photoadduct in the deoxydinucleoside monophosphate
d(TpA) and in DNA. Science, 220(4598):723–725, 1983.

[29] S. N. Bose, S. Kumar, R. J. Davies, S. K. Sethi, and J. A. McCloskey. The
photochemistry of d(T-A) in aqueous solution and in ice. Nucleic Acids Res.,
12(20):7929–7947, 1984.

[30] J. M. Boyer and W. J. Myrvold. On the cutting edge: simplified O(n)
planarity by edge addition. J. Graph Algorithms Appl., 8(3):241–273, 2004.

[31] G. Brightwell and P. Winkler. Counting linear extensions. Order,
8(3):225–242, 1991.

[32] G. Brightwell and P. Winkler. Counting eulerian circuits is #p-complete.
Proceedings of the 7th workshop on Algorithm Engineering and Experiments
(ALENEX) and the 2nd workshop on Analytic Algorithmics and
Combinatorics (ANALCO), pages 259–262, 2005.

386

[33] G. Brinkmann and B. D. McKay. Fast generation of planar graphs. Match
Commun. Math. Co., 58(2):323–357, 2007.

[34] I. Briquel and P. Koiran. A dichotomy theorem for polynomial
evaluation. Proceedings of the 34th international symposium on Mathematical
Foundations of Computer Science (MFCS), pages 187–198, 2009.

[35] L. G. Bunville, E. P. Geiduschek, M. A. Rawitscher, and J. Sturtevant.
Kinetics and equilibria in the acid denaturation of deoxyribonucleic acids
from various sources. Biopolymers, 3(3):213–240, 1965.

[36] J. Cadet, L. Voituriez, A. Grand, F. E. Hruska, P. Vigny, and L. S. Kan.
Recent aspects of the photochemistry of nucleic acids and related model
compounds. Biochimie, 67(3-4):277–292, 1985.

[37] N. Chiba and T. Nishizeki. The Hamiltonian cycle problem is linear-time
solvable for 4-connected planar graphs. J. Algorithms, 10(2):187–211, 1989.

[38] M. G. Clark, D. P. Bloxham, P. C. Holland, and H. A. Lardy. Estimation of
the fructose diphosphatase–phosphofructokinase substrate cycle in the flight
muscle of Bombus affinis. Biochem. J., 134(2):589–597, 1973.

[39] S. Condamin, O. Bénichou, and M. Moreau. Random walks and brownian
motion: a method of computation for first-passage times and related
quantities in confined geometries. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys., 75(2):021111, 2007.

[40] S. A. Cook. The complexity of theorem-proving procedures. Proceedings of
the 3rd annual ACM Symposium on Theory of Computing (STOC), pages
151–158, 1971.

[41] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm
for matching large graphs. Proceedings of the 3rd IAPR-TC15 workshop
on Graph-based Representations in Pattern Recognition (GbRPR), pages
149–159, 2001.

[42] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans. Pattern
Anal. Mach. Intell., 26(10):1367–1372, 2004.

[43] N. Creignou and M. Hermann. Complexity of generalized satisfiability
counting problems. Inform. Comput., 125(1):1–12, 1996.

[44] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and
M. Yannakakis. On the complexity of protein folding. J. Comp. Biol.,
5(3):423–465, 1998.

[45] G. Csárdi and T. Nepusz. The igraph software package for complex network
research. InterJournal, vol. Complex Systems, 1695, 2006.

[46] M. Cygan, S. Kratsch, and J. Nederlof. Fast Hamiltonicity checking via bases
of perfect matchings. Proceedings of the 45th annual ACM Symposium on
Theory of Computing (STOC), pages 301–310, 2013.

[47] R. J. H. Davies, J. F. Malone, and S. Neidle. High-resolution crystal
structure of the intramolecular d(TpA) thymine–adenine photoadduct and
its mechanistic implications. Nucleic Acids Res., 35(4):1048–1053, 2007.

[48] M. de Berg and A. Khosravi. Optimal binary space partitions in the
plane. Proceedings of the 13th international Computing and Combinatorics
Conference (COCOON), pages 216–225, 2010.

387

[49] K. A. Dill. Theory for the folding and stability of globular proteins.
Biochemistry, 24(6):1501–1609, 1985.

[50] T. Douki, A. Reynaud-Angelin, J. Cadet, and E. Sage. Bipyrimidine
photoproducts rather than oxidative lesions are the main type of DNA
damage involved in the genotoxic effect of solar UVA radiation. Biochemistry,
42(30):9221–9226, 2003.

[51] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum. The relative
complexity of approximate counting problems. Algorithmica, 38(3):471–500,
2004.

[52] M. E. Dyer and A. M. Frieze. Planar 3DM is NP-complete. J. Algorithms,
7(2):174–184, 1986.

[53] J. Eigner, H. Boedtker, and G. Michaels. The thermal degradation of nucleic
acids. Biochim. Biophys. Acta, 51(1):165–168, 1961.

[54] M. N. Ellingham and J. D. Horton. Non-Hamiltonian 3-connected cubic
bipartite graphs. J. Combin. Theory Ser. B, 34(3):350–353, 1983.

[55] D. Eppstein. The traveling salesman problem for cubic graphs. J. Graph
Algorithms Appl., 11(1):61–81, 2007.

[56] T. Feder and C. Subi. On Barnette’s conjecture. Rep. TR06-015, Electronic
Colloquium on Computational Complexity, 2006.

[57] L. A. Frederico, T. A. Kunkel, and B. R. Shaw. A sensitive genetic assay for
the detection of cytosine deamination: determination of rate constants and
the activation energy. Biochemistry, 29(10):2532–2537, 1990.

[58] S. M. Freier, R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers,
T. Neilson, and D. H. Turner. Improved free-energy parameters for
predictions of RNA duplex stability. PNAS, 83(24):9373–9377, 1986.

[59] K. Fujimoto, K. Hiratsuka-Konishi, T. Sakamoto, T. Ohtake, K. Shinohara,
and Y. Yoshimura. Specific and reversible photochemical labeling
of plasmid DNA using photoresponsive oligonucleotides containing
3-cyanovinylcarbazole. Mol. BioSyst., 8(2):491–494, 2012.

[60] K. Fujimoto, S. Kishi, and T. Sakamoto. Geometric effect on the
photocrosslinking reaction between 3-cyanovinylcarbazole nucleoside and
pyrimidine base in DNA/RNA heteroduplex. Photochem. Photobiol.,
89(5):1095–1099, 2013.

[61] K. Fujimoto, K. Konishi-Hiratsuka, T. Sakamoto, and Y. Yoshimura.
Site-specific cytosine to uracil transition by using reversible DNA
photo-crosslinking. ChemBioChem, 11(12):1661–1664, 2010.

[62] K. Fujimoto, S. Matsuda, N. Takahashi, and I. Saito. Template-directed
photoreversible ligation of deoxyoligonucleotides via 5-vinyldeoxyuridine. J.
Am. Chem. Soc., 122(23):5646–5647, 2000.

[63] K. Fujimoto, S. Matsuda, Y. Yoshimura, T. Matsumura, M. Hayashi, and
I. Saito. Site-specific transition of cytosine to uracil via reversible DNA
photoligation. Chem. Commun., 30:3223–3225, 2006.

[64] K. Fujimoto, N. Ogawa, M. Hayashi, S. Matsuda, and I. Saito. Template
directed photochemical synthesis of branched oligodeoxynucleotides via
5-carboxyvinyldeoxyuridine. Tet. Lett., 41(49):9437–9440, 2000.

[65] K. Fujimoto, A. Yamada, Y. Yoshimura, T. Tsukaguchi, and
T. Sakamoto. Details of the ultrafast dna photo-cross-linking

388

reaction of 3-cyanovinylcarbazole nucleoside: cis-trans isomeric effect
and the application for SNP-based genotyping. J. Am. Chem. Soc.,
135(43):16161–16167, 2013.

[66] Y. Yoshimura K. Fujimoto. Ultrafast reversible photo-cross-linking reaction:
toward in situ DNA manipulation. Org. Lett., 10(15):3227–3230, 2008.

[67] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian
circuit problem is NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

[68] E. R. Garrett, J. K. Seydel, and A. J. Sharpen. The acid-catalyzed solvolysis
of pyrimidine nucleosides. J. Org. Chem., 31(7):2219–2227, 1966.

[69] Q. Ge and D. Štefankovič. The complexity of counting Eulerian tours in
4-regular graphs. Algorithmica, 63(3):588–601, 2012.

[70] P. M. Girard, S. Francesconi, M. Pozzebon, D. Graindorge, P. Rochette,
R. Drouin, and E. Sage. UVA-induced damage to dna and proteins: direct
versus indirect photochemical processes. J. Phys.: Conf. Ser., 261(1):1–10,
2011.

[71] C. Goffin, V. Bailly, and W. G. Verly. Nicks 3’ to 5’ to AP sites or to
mispaired bases, and one-nucleotide gaps can be sealed by T4 DNA ligase.
Nucleic Acids Res., 15(21):8755–8771, 1987.

[72] L. M. Goldschlager and I. Parberry. On the construction of parallel
computers from various bases of boolean functions. Theor. Comput. Sci.,
43(1):43–58, 1986.

[73] P. R. Goodey. Hamiltonian circuits in polytopes with even sided faces. Israel
J. Math., 22(1):52–56, 1975.

[74] O. Gotoh, Y. Murakami, and A. Suyama. Multiplex cDNA quantification
method that facilitates the standardization of gene expression data. Nucleic
Acids Res., 39(10):1–11, 2011.

[75] D. Gouyou-Beauchamps. The Hamiltonian circuit problem is polynomial for
4-connected planar graphs. SIAM J. Comput., 11(3):529–539, 1982.

[76] M. Green and S. S. Cohen. Studies on the biosynthesis of bacterial
and viral pyrimidines III. Derivatives of dihydrocytosine. J. Biol. Chem.,
228(2):601–609, 1958.

[77] B. Grunbaum. Polytopes, graphs, and complexes. Bull. Amer. Math. Soc.,
76:1131–1201, 1970.

[78] A. Hertel. A survey & strengthening of Barnette’s conjecture. Department
of Computer Science, University of Toronto, Technical Report, 2005.

[79] J. F. Hervagault and S. Canu. Bistability and irreversible transitions in a
simple substrate cycle. J. Theor. Biol., 127(4):439–449, 1987.

[80] D. A. Holton, B. Manvel, and B. D. McKay. Hamiltonian cycles in
cubic 3-connected bipartite planar graphs. J. Combin. Theory Ser. B,
38(3):279–297, 1985.

[81] J. Hopcroft and R. Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974.

[82] H. B. Hunt, M. V. Marathe, V. Radhakrishnan, and R. E. Stearns. The
complexity of planar counting problems. SIAM J. Comput., 27(4):1142–1167,
1998.

389

[83] OEIS Foundation Inc. The on-line encyclopedia of integer sequences,
http://oeis.org/a070968. 2017.

[84] S. Istrail. Statistical mechanics, three-dimensionality and NP-completeness.
I. Universality of intractability for the partition function of the Ising model
across non-planar lattices. Proceedings of the 32nd annual ACM Symposium
on Theory of Computing (STOC), pages 87–96, 2000.

[85] K. Iwama and T. Nakashima. An improved exact algorithm for cubic graph
TSP. Proceedings of the 13th international Computing and Combinatorics
Conference (COCOON), pages 108–117, 2007.

[86] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi. The
large-scale organization of metabolic networks. Nature, 407(6804):651–654,
2000.

[87] M. Jerrum. Counting, sampling, and integrating: algorithms and
complexity. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag: Basel,
Switzerland, 2003.

[88] M. Jiang and B. Zhu. Protein folding on the hexagonal lattice in the HP
model. J. Bioinform. Comput. Biol., 3(1):19–34, 2005.

[89] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all
maximal independent sets. Inform. Process. Lett., 27(3):119–123, 1988.

[90] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Res., 28(1):27–30, 2000.

[91] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996.

[92] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations, R. E. Miller and J. W. Thatcher, eds., pages
85–103, 1972.

[93] R. M. Karp and M. Luby. Monte-Carlo algorithms for enumeration
and reliability problems. Proceedings of the 24th annual symposium on
Foundations Of Computer Science (FOCS), pages 56–64, 1983.

[94] L. Kazak, E. T. Chouchani, M. P. Jedrychowski, B. K. Erickson, K. Shinoda,
P. Cohen, R. Vetrivelan, G. Z. Lu, D. Laznik-Bogoslavski, S. C. Hasenfuss,
S. Kajimura, S. P. Gygi, and B. M. Spiegelman. A creatine-driven substrate
cycle enhances energy expenditure and thermogenesis in beige fat. Cell,
163(3):643–655, 2015.

[95] A. K. Kelmans. Constructions of cubic bipartite 3-connected graphs without
Hamiltonian cycles. Amer. Math. Soc. Transl. (Ser. 2), 158:127–140, 1994.

[96] J. Kim and M. Mrksich. Profiling the selectivity of DNA ligases in an array
format with mass spectrometry. Nucleic Acids Res., 38(1):1–10, 2010.

[97] M. Kimoto, R. Kawai, T. Mitsui, S. Yokoyama, and I. Hirao. An unnatural
base pair system for efficient PCR amplification and functionalization of
DNA molecules. Nucleic Acids Res., 37(2):1–9, 2008.

[98] G. Kirchhoff. Über die auflösung der gleichungen, auf welche man bei
der untersuchung der linearen verteilung galvanischer ströme geführt wird.
Annalen der Physik und Chemie, 72:497–508, 1847.

[99] T. P. Kirkman. On the representation of polyedra. Philosophical
Transactions of the Royal Society London, 146:413–418, 1856.

390

[100] W. Kladwang, J. Hum, and R. Das. Ultraviolet shadowing of RNA can
cause significant chemical damage in seconds. Scientific Reports, 2(article
517):1–7, 2012.

[101] S. Klamt, J. Gagneur, and A. von Kamp. Algorithmic approaches for
computing elementary modes in large biochemical reaction networks. IEE
Proc. Syst. Biol., 152(4),:249–255, 2005.

[102] F. Klepper, K. Polborn, and T. Carell. Robust synthesis and
crystal-structure analysis of 7-cyano-7-deazaguanine (preQ0 base) and
7-(aminomethyl)-7-deazaguanine (preQ1 base). Helv. Chim. Acta,
88(10):2610–2616, 2005.

[103] D. E. Knuth and A. Raghunathan. The problem of compatible
representatives. SIAM J. Discrete Math., 5(3):422–427, 1992.

[104] T. M. G. Koning, R. J. H. Davies, and R. Kaptein. The solution structure
of the intramolecular photoproduct of d(TpA) derived with the use of NMR
and a combination of distance geometry and molecular dynamics. Nucleic
Acids Res., 18(2):277–284, 1990.

[105] K. Kuratowski. Sur le problème des courbes gauches en topologie.
Fundamenta Mathematicae, 15(1):271–283, 1930.

[106] V. Labet, C. Morell, T. Douki, J. Cadet, L. A. Eriksson, and A. Grand.
Hydrolytic deamination of 5,6-dihydrocytosine in a protic medium: a
theoretical study. J. Phys. Chem. A, 114(4):1826–1834, 2010.

[107] D. J. R. Laurence. Chain breakage of deoxyribonucleic acid following
treatment with low doses of sulphur mustard. Proc. R. Soc. Lond. A,
271(1347):520–530, 1963.

[108] P. D. Lawley, J. H. Lethbridge, P. A. Edwards, and K. V. Shooter.
Inactivation of bacteriophage T7 by mono- and difunctional sulphur
mustards in relation to cross-linking and depurination of bacteriophage DNA.
J. Mol. Biol., 39(1):181–198, 1969.

[109] A. Levskaya, O. D. Weiner, W. A. Lim, and C. A. Voigt. Spatiotemporal
control of cell signalling using a light–switchable protein interaction. Nature,
461(7266):997–1001, 2009.

[110] Y. Li and R. R. Breaker. Kinetics of RNA degradation by specific base
catalysis of transesterification involving the 2’-hydroxyl group. J. Am. Chem.
Soc., 121(23):5364–5372, 1999.

[111] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):1–16, 1982.

[112] T. Lindahl. Instability and decay of the primary structure of DNA. Nature,
362(6422):709–715, 1993.

[113] T. Lindahl and A. Andersson. Rate of chain breakage at apurinic sites
in double-stranded deoxyribonucleic acid. Biochemistry, 11(19):3618–3623,
1972.

[114] T. Lindahl and O. Karlstrom. Heat-induced depyrimidination of
deoxyribonucleic acid in neutral solution. Biochemistry, 12(25):5151–5154,
1973.

[115] T. Lindahl and B. Nyberg. Rate of depurination of native deoxyribonucleic
acid. Biochemistry, 11(19):3610–3618, 1972.

391

[116] T. Lindahl and B. Nyberg. Heat-induced deamination of cytosine residues
in deoxyribonucleic acid. Biochemistry, 13(16):3405–3410, 1974.

[117] N. Linial. Hard enumeration problems in geometry and combinatorics. SIAM
J. Alg. Disc. Meth., 7(2):331–335, 1986.

[118] M. Liskiewicz, M. Ogihara, and S. Toda. The complexity of counting
self-avoiding walks in subgraphs of two-dimensional grids and hypercubes.
Theoret. Comput. Sci., 304(1-3):129–156, 2003.

[119] Y. Liu, P. Marchioro, and R. Petreschi. At most single-bend embeddings of
cubic graphs. Appl. Math. J. Chinese Univ. Ser. B, 9(2):127–142, 1994.

[120] N. Livne. A note on #P-completeness of NP-witnessing relations. Inf.
Process. Lett., 109(5):259–261, 2009.

[121] V. T. Luyen, Y. Ooka, S. Alam, H. Suzuki, K. Fujimoto, and T. Tsukahara.
Chemical RNA editing as a possibility novel therapy for genetic disorders.
Int. J. Adv. Comp. Sci., 2(6):237–241, 2012.

[122] B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symbolic.
Comput., 60:94–112, 2014.

[123] B. M. E. Moret. Planar NAE3SAT is in P. ACM SIGACT News, 19(2):51–54,
1988.

[124] S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, and T. Douki.
Cyclobutane pyrimidine dimers are predominant DNA lesions in whole
human skin exposed to UVA radiation. PNAS, 103(37):13765–13770, 2006.

[125] A. Munaro. On line graphs of subcubic triangle-free graphs. Discrete Math.,
340(6):1210–1226, 2017.

[126] S. Nakamura, S. Ogasawara, S. Matuda, I. Saito, and K. Fujimoto. Template
directed reversible photochemical ligation of oligodeoxynucleotides.
Molecules, 17(1):163–178, 2012.

[127] E. A. Newsholme and B. Crabtree. Substrate cycles in metabolic regulation
and in heat generation. Biochem. Soc. Symp., 41:61–109, 1976.

[128] N. Nishida, T. Tanabe, K. Hashido, K. Hirayasu, M. Takasu, A. Suyama, and
K. Tokunaga. DigiTag assay for multiplex single nucleotide polymorphism
typing with high success rate. Anal. Biochem., 346(2):281–288, 2005.

[129] N. Nishida, T. Tanabe, M. Takasu, A. Suyama, and K. Tokunaga. Further
development of multiplex single nucleotide polymorphism typing method,
the digiTag2 assay. Anal. Biochem., 364(1):78–85, 2007.

[130] J. M. Nitsche, H. C. Chang, P. A. Weber, and B. J. Nicholson. A transient
diffusion model yields unitary gap junctional permeabilities from images of
cell-to-cell fluorescent dye transfer between Xenopus oocytes. Biophys. J.,
86(4):2058–2077, 2004.

[131] S. Ogasawara and K. Fujimoto. A novel method to synthesize versatile
multiple-branched DNA (MB-DNA) by reversible photochemical ligation.
ChemBioChem, 6(10):1756–1760, 2005.

[132] M. Ogino and K. Fujimoto. Photochemical synthesis of R-shaped DNA
toward DNA recombination and processing in vitro. Angew. Chem. Int. Ed.,
45(43):7223–7226, 2006.

392

[133] M. Ogino, D. Okamura, and K. Fujimoto. Replication of cyclobutane
pyrimidine dimer analogue by Ex Taq DNA polymerase. Sci. Technol. Adv.
Mater., 8(4):318–322, 2007.

[134] M. Ogino, Y. Taya, and K. Fujimoto. Highly selective detection
of 5-methylcytosine using photochemical ligation. Chem. Commun.,
45:5996–5998, 2008.

[135] M. Ogino, Y. Taya, and K. Fujimoto. Detection of methylcytosine by DNA
photoligation via hydrophobic interaction of the alkyl group. Org. Biomol.
Chem., 7(15):3163–3167, 2009.

[136] J. G. Oxley. Matroid theory. Oxford University Press: New York, NY, 1st
edition, 1992.

[137] A. Pagourtzis and S. Zachos. The complexity of counting functions with
easy decision version. Proceedings of the 31st international symposium on
Mathematical Foundations of Computer Science (MFCS), pages 741–752,
2006.

[138] V. S. Pande, A. U. Grosberg, C. Joerg, and T. Tanaka. Enumerations
of the Hamiltonian walks on a cubic sublattice. J. Phys. A: Math. Gen.,
27(18):6231–6236, 1994.

[139] C. H. Papadimitriou. Computational complexity. Addison-Wesley: Reading,
MA, 1st edition, 1994.

[140] C. H. Papadimitriou and S. Zachos. Two remarks on the power of counting.
Proceedings of the 6th GI-Conference in Theoretical Computer Science
(GITCS), pages 269–276, 1983.

[141] B. H. Park and M. Levitt. The complexity and accuracy of discrete state
models of protein structure. J. Mol. Biol., 249(2):493–507, 1995.

[142] H. J. Park, K. Zhang, Y. Ren, S. Nadji, N. Sinha, J. S. Taylor, and C. H.
Kang. Crystal structure of a DNA decamer containing a cis-syn thymine
dimer. PNAS, 99(25):15965–15970, 2002.

[143] S. V. Pemmaraju and S. S. Skiena. Computational discrete mathematics:
combinatorics and graph theory with Mathematica. Cambridge University
Press: New York, NY, 2003.

[144] D. Perdiz, P. Grof, M. Mezzina, O. Nikaido, E. Moustacchi, and E. Sage.
Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated
mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis.
J. Biol. Chem., 275(35):26732–26742, 2000.

[145] G. P. Pfeifer. Formation and processing of UV photoproducts: effects of DNA
sequence and chromatin environment. Photochem. Photobiol., 65(2):270–283,
1997.

[146] J. Plesnik. The NP-completeness of the Hamiltonian cycle problem in planar
digraphs with degree bound two. Inform. Process. Lett., 8(4):199–201, 1979.

[147] S. Podell, W. Maske, E. Ibanez, and E. Jablonski. Comparison of
solution hybridization efficiencies using alkaline phosphatase-labelled and
32P-labelled oligodeoxynucleotide probes. Mol. Cell Probes, 5(2):117–124,
1991.

[148] C. E. Pritchard and E. M. Southern. Effects of base mismatches on
joining of short oligodeoxynucleotides by DNA ligases. Nucleic Acids Res.,
25(17):3403–3407, 2007.

393

[149] A. Radzicka and R. Wolfenden. A proficient enzyme. Science,
267(5194):90–93, 1995.

[150] E. Sage. Distribution and repair of photolesions in DNA: genetic
consequences and the role of sequence context. Photochem. Photobiol.,
57(1):163–174, 1993.

[151] I. Saito, Y. Miyauchi, Y. Saito, and K. Fujimoto.
Template-directed photoreversible ligation of DNA via
7-carboxyvinyl-7-deaza-2’-deoxyadenosine. Tet. Lett., 46(1):97–99, 2005.

[152] J. Jr. SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide
DNA nearest-neighbor thermodynamics. PNAS, 95(4):1460–1465, 1998.

[153] T. J. Schaefer. The complexity of satisfiability problems. Proceedings of
the 23rd annual ACM Symposium on Theory of Computing (STOC), pages
216–226, 1978.

[154] C. H. Schilling, D. Letscher, and B. O. Palsson. Theory for the
systemic definition of metabolic pathways and their use in interpreting
metabolic function from a pathway-oriented perspective. J. Theor. Biol.,
203(3):229–248, 2000.

[155] S. Schuster and C. Hilgetag. On elementary flux modes in biochemical
reaction systems at steady state. J. Biol. Syst., 2(2):165–182, 1994.

[156] E. Shakhnovich and A. Gutin. Enumeration of all compact conformations of
copolymers with random sequence of links. J. Chem. Phys., 93(8):5967–5971,
1990.

[157] R. Shapiro and M. Danzig. Acidic hydrolysis of deoxycytidine and
deoxyuridine derivatives. The general mechanism of deoxyribonucleoside
hydrolysis. Biochemistry, 11(1):23–29, 1972.

[158] A. Shigeno, T. Sakamoto, Y. Yoshimura, and K. Fujimoto. Quick regulation
of mRNA functions by a few seconds of photoirradiation. Org. Biomol.
Chem., 10(38):7820–7825, 2012.

[159] J. Simon. On the difference between one and many. Proceedings of the
4th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 480–491, 1977.

[160] M. Sipser. Introduction to the theory of computation. Thomson Course
Technology: Boston, MA, 2nd edition, 2005.

[161] C. A. B. Smith and W. T. Tutte. On unicursal paths in a network of degree
4. Amer. Math. Monthly, 48(4):233–237, 1941.

[162] C. Solnon. Alldifferent-based filtering for subgraph isomorphism. Artificial
Intelligence, 174(12-13):850–864, 2010.

[163] R. P. Stanley. Acyclic orientations of graphs. Discrete Math., 5(2):171–178,
1973.

[164] W.A. Stein et al. Sage Mathematics Software (Version 7.2.0). The Sage
Development Team, (2016). http://www.sagemath.org.

[165] E. Steinitz. Polyeder und raumeinteilungen. Encyklopadie der
mathematischen Wissenschaften. Bd. III-1B, Hft. 9, pages 1–139, 1922.

[166] L. J. Stockmeyer. The polynomial-time hierarchy. Theoret. Comput. Sci.,
3(1):1–22, 1976.

394

[167] H. Sugiyama, T. Fujiwara, A. Ura, T. Tashiro, K. Yamamoto, S. Kawanishi,
and I. Saito. Chemistry of thermal degradation of abasic sites in DNA.
Mechanistic investigation on thermal DNA strand cleavage of alkylated
DNA. Chem. Res. Toxicol., 7(5):673–683, 1994.

[168] C. Switzer, S. E. Moroney, and S. A. Benner. Enzymatic incorporation of a
new base pair into DNA and RNA. J. Am. Chem. Soc., 111(21):8322–8323,
1989.

[169] P. G. Tait. Listing’s topologie. Philosophical Magazine (5th ser.), pages
30–46, 1884.

[170] C. Thomassen. The graph genus problem is NP-complete. J. Algorithms,
10(4):568–576, 1989.

[171] Texas Instruments (TI). “dlp9500: Dlp R© 0.95 1080p 2x
lvds type a dmd.” (posted: Aug. 2012, revised march 2017).
http://www.tij.co.jp/jp/lit/ds/symlink/dlp9500.pdf.

[172] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865–877, 1991.

[173] J. Tong, W. Cao, and F. Barany. Biochemical properties of a high fidelity
DNA ligase from thermus species AK16D. Nucleic Acids Res., 27(3):788–794,
1999.

[174] J. Torán. Structural properties of the counting hierarchies. Ph.D Thesis
(Facultat d’Informatica de Barcelona, Barcelona), 1988.

[175] M. Tsuruoka, K. Yano, K. Ikebukuro, H. Nakayama, Y. Masuda,
and I. Karube. Optimization of the rate of DNA hybridization and
rapid detection of methicillin resistant Staphylococcus aureus DNA using
fluorescence polarization. J. Biotechnol., 48(3):201–208, 1996.

[176] W. T. Tutte. On Hamiltonian circuits. J. London Math. Soc.,
s1-21(2):98–101, 1946.

[177] W. T. Tutte. A theorem on planar graphs. Trans. Amer. Math. Soc.,
82:99–116, 1956.

[178] W. T. Tutte. On the 2-factors of bicubic graphs. Discrete Math.,
1(2):203–208, 1971.

[179] R. M. Tyrrell. Induction of pyrimidine dimers in bacterial DNA by 365 nm
radiation. Photochem. Photobiol., 17(1):69–73, 1973.

[180] L. G. Valiant. The complexity of computing the permanent. Theoret.
Comput. Sci., 8(2):189–201, 1979.

[181] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
J. Comput., 8(3):410–421, 1979.

[182] L. G. Valiant. Completeness for parity problems. Proceedings of the 11th
international Computing and Combinatorics Conference (COCOON), pages
1–8, 2005.

[183] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions.
Theoret. Comput. Sci., 47:85–93, 1986.

[184] T. van Aardenne-Ehrenfest and N. G. de Bruijn. Circuits and trees in
oriented linear graphs. Simon Stevin: wis- en natuurkundig tijdschrift,
28:203–217, 1951.

395

[185] M. Las Vergnas. Convexity in oriented matroids. J. Combin. Theory Ser.
B, 29(2):231–243, 1980.

[186] K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische
Annalen, 114:570–590, 1937.

[187] P. A. Weber, H. C. Chang, K. E. Spaeth, J. M. Nitsche, and B. J. Nicholson.
The permeability of gap junction channels to probes of different size is
dependent on connexin composition and permeant-pore affinities. Biophys.
J., 87(2):958–973, 2004.

[188] D. J. A. Welsh. Complexity: knots, colourings and counting. Cambridge
University Press: Cambridge, UK, 1st edition, 1993.

[189] H. Whitney. Congruent graphs and the connectivity of graphs. Amer. J.
Math., 54(1):150–168, 1932.

[190] Wolfram Research, Inc. Mathematica 10.4.1.0 (64-bit), (2016).
http://www.wolfram.com.

[191] M. Yamamoto. Approximately counting paths and cycles in a graph. Discrete
Appl. Math., 217(2):381–387, 2017.

[192] C. Yang, Y. Yu, K. Liu, D. Song, L. Wu, and H. Su. [2+2]
photocycloaddition reaction dynamics of triplet pyrimidines. J. Phys. Chem.
A, 115(21):5335–5345, 2011.

[193] M. Yokomori. Personal communication.

[194] M. Yokomori, O. Gotoh, Y. Murakami, K. Fujimoto, and A. Suyama. A
multiplex RNA quantification method to determine the absolute amounts of
mRNA without reverse transcription. Anal. Biochem., 539:96–103, 2017.

[195] M. Yokomori, O. Gotoh, and A. Suyama. A multiplex and sensitive rna
quantification method for determining the absolute amounts of mRNAs
without reverse transcription processes. Conference abstract: ➎ ✤✐❢
♥✚✱➈ ✚, 2012.

[196] M. Yokomori, O. Gotoh, and A. Suyama. Highly parallel and sensitive
method for analyzing gene expression kinetics. Conference abstract: CBI❢
✚2013 ✬✚-✤⑥❀➡➴✶❢★✟✬✚-➷"#☞➟&➹➥➵*✟➋+❪❲❢
✉➡✌, 2013.

[197] Y. Yoshimura, Y. Ito, and K. Fujimoto. Interstrand DNA photocrosslinking
by photoresponsive artificial nucleic acid. Nucleic Acids Symp. Ser. (Oxf),
48(1):81–82, 2004.

[198] Y. Yoshimura, Y. Ito, and K. Fujimoto. Interstrand photocrosslinking of
DNA via p-carbamoylvinyl phenol nucleoside. Bioorg. Med. Chem. Lett.,
15(5):1299–1301, 2005.

[199] Y. Yoshimura, Y. Noguchi, H. Sato, and K. Fujimoto. Template-directed
DNA photoligation in rapid and selective detection of RNA point mutations.
ChemBioChem, 7(4):598–601, 2006.

[200] Y. Yoshimura, T. Ohtake, H. Okada, T. Ami, T. Tsukaguchi, and
K. Fujimoto. SNP genotyping by DNA photoligation: application to SNP
detection of genes from food crops. Sci. Technol. Adv. Mater., 10(3):1–4,
2009.

[201] Y. Yoshimura, T. Ohtake, H. Okada, and K. Fujimoto. A new approach for
reversible RNA photocrosslinking reaction: application to sequence-specific
RNA selection. ChemBioChem, 10(9):1473–1476, 2009.

396

[202] Y. Yoshimura, H. Okada, and K. Fujimoto. Photoreversible DNA end
capping for the formation of hairpin structures. Org. Biomol. Chem.,
8(7):1523–1526, 2010.

[203] V. Zanko. #P-completeness via many-one reductions. Int. J. Found.
Comput. Sci., 2(1):77–82, 1991.

[204] R. B. Zhang and L. A. Eriksson. A triplet mechanism for the formation of
cyclobutane pyrimidine dimers in UV-irradiated DNA. J. Phys. Chem. B,
110(14):7556–7562, 2006.

[205] X. Zhao, S. Nadji, J. L. F. Kao, and J. S. Taylor. The structure of d(TpA)*,
the major photoproduct of thymidylyl-(3’-5’)-deoxyadenosine. Nucleic Acids
Res., 24(8):1554–1560, 1996.

[206] C. Zimmer, G. Luck, H. Venner, and J. Fric. Studies on the conformation of
protonated DNA. Biopolymers, 6(4):563–574, 1968.

397

