
Geometry of Parallelism: A Uniform Analysis of Evaluation

Strategies and Effects by Synchronous Interaction Abstract

Machine

並行性の幾何: 同期付き相互作用抽象機械による評価戦略およ

び副作用の統一的な解析

by

Akira Yoshimizu

由水輝

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 9, 2016

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Ichiro Hasuo 蓮尾一郎

Associate Professor of Computer Science

（
）

ABSTRACT

This thesis introduces the notion of Synchronous Interaction Abstract Machine that is
a novel variation of the Geometry of Interaction (GoI) framework. We provide a thorough
account on the newly introduced framework and employ it to obtain adequate seman-
tics of a class of programming languages possibly with memories and effects, uniformly
treating the call-by-name and the call-by-value strategies.

The Geometry of Interaction (Girard, LC 1988) is originally a scheme to give dynamic
semantics to linear logic proofs. Later, it has proved to be a useful framework in computer
science in general: when represented as a token machine called the Interaction Abstract
Machine (IAM) (Danos & Regnier, Electr. Notes Theor. Comput. Sci. 1996), it can be
seen as a compilation scheme of possibly higher-order computation into first-order, low-
level computation. This character of GoI is theoretically interesting and at the same time
provides a compiler implementation technique based on semantics (e.g. Mackie, POPL
1995). As such, GoI has resulted in a number of results in computer science such as
programming language semantics (Hoshino, FoSSaCS 2011), optimal reduction strategy
(Gonthier et al., POPL 1992), and defunctionalization (Schöpp, TLCA 2013).

The main achievement of the thesis is to better understand the capability of GoI (and
in general dialogue-based) semantics compared to other kinds of semantics. It is presented
via interpretation of a quantum programming language with higher-order functions and
recursion by an extension of the GoI token machine semantics, namely utilizing multiple
tokens at a time. Establishing such a multi-token machine framework itself is non-trivial
and is one of the main contributions of the thesis. Moreover, a seemingly different result,
namely distinction of the call-by-name and the call-by-value behaviors turns out to follow
from the same notion of multi-token machine. We expect that the concurrent and fine
structure of our multi-token machine also provides possibilities of applications to semantic
approach to inherent parallelism of functional programs and a unified framework for type
systems for concurrent computation. Concretely, the contributions of this thesis are as
follows.

In the thesis, we provide a thorough account on a multi-token machine on a much
more expressive proof net system (that we call SMEYLL proof nets) that accommodates
higher-order functions, recursions, and branchings. For linear calculi such a multi-token
machine have been recently proposed (Dal Lago & Faggian, QPL 2011, Yoshimizu et.
al., ESOP 2014), but compared to the linear cases it turns out to be much more non-
trivial whether such a multi-token system behaves well, e.g. whether the machine can
deadlock or not. We examine properties on the proof net system, the multi-token system,
and the relation between the two, by using both traditional notions in linear logic and
new proof techniques we introduce. As a result, it is shown that those systems behave
surprisingly well despite its inherent complexity. The main results include deadlock-
freedom of the SIAM, invariance and adequacy of the multi-token semantics with respect
to net reduction.

Using those results shown, we interpret a PCF-like calculus by SMEYLL nets and
the SIAM (appropriately extended with a notion of integer memory). The SIAM is
shown to possess superiority over the standard IAM: our SIAM can distinguish the call-
by-name and call-by-value reduction strategies without any special construction other
than the two corresponding translation of calculus into proof nets, while the IAM (or
GoI model in general) can only exhibit the call-by-name character even if we naively
apply the call-by-value translation. This is made precise as an adequacy result between
the calculus and the extended SMEYLL nets, which is in turn adequately interpreted
by the extended SIAM. The fact that such a parallel, non-standard token machine can
adequately interpret a standard sequential calculus is already of theoretical interest,
and moreover the parallelism is the source of enrichment of the distinguishing power on
reduction strategies.

Furthermore, we again extend the SMEYLL proof net system and the SIAM sys-
tem by equipping them with a notion of memory structure and (possibly) probabilistic
transitions depending on contents of a memory. Instances of memory structures include
deterministic, probabilistic, and quantum memories. The systems are again shown to
satisfy desirable properties in the probabilistic setting; to prove those properties, we also
introduce a probabilistic variation of abstract reduction system, of which the definition is

of independent interest. Finally we interpret a calculus equipped with a memory struc-
ture by SMEYLL proof nets and the SIAM with a memory structure. All the proofs are
done in a parametric way with respect to memory structure, thus we obtain adequacy
result for all the three instances (and any other instance) at a time.

論文要旨

本論文では Geometry of Interaction (GoI)の新たな変種である Synchronous Interaction

Abstract Machine を導入し, 詳細な分析を与えた上でそれを用いてメモリおよび副作用の

概念を持ちうるあるクラスに属するプログラミング言語の名前呼び・値呼び戦略の双方に

対して妥当な意味論を統一的に与える.

Geometry of Interaction (Girard, LC 1988) は元来線型論理の証明に対する動的な意味

論を与えることを目的とした枠組みであるが, 後にプログラミング言語理論一般において

も有用な枠組みであることが分かってきた. GoI は Interaction Abstract Machine (IAM)

(Danos & Regnier, Electr. Notes Theor. Comput. Sci. 1996)と呼ばれるトークン機械と

しての表現を通じて, 高階計算を 1階の低レベルな計算へコンパイルする枠組みだと見るこ

とができる. この特徴は理論的に興味深いと同時に意味論に基づいたコンパイラの実装技法

を与え (Mackie, POPL 1995 など), その他プログラミング言語意味論 (Hoshino, FoSSaCS

2011), 最適簡約戦略 (Gonthier et al., POPL 1992), defunctionalization (Schöpp, TLCA

2013) などに応用がある.

本論文の主たる貢献は, 高階関数・再帰を持つ量子プログラミング言語の解釈という結

果を通じ, GoI 意味論 (より一般に対話ベースの意味論) の特性についてのより良い理解の

提供したことである. 本論文はこの課題を, トークン機械意味論において複数のトークン

を用いるという拡張によって解決する. そのような複数トークン機械の意味論の設計・確

立それ自体も非自明なものであり, 本論文の主要な貢献である. さらに, この拡張が名前呼

び・値呼び戦略の識別という一見して異なる問題についても統一的に解決を与えることを

示す. また複数トークン機械の並列性と詳細さは関数型プログラムの inherent parallelism

に対する意味論的なアプローチ, 並行計算の型システムに対する統一的なフレームワーク

の提供などに応用できることが期待される. 具体的な貢献は以下のようになる.

本論文では, 高階関数・再帰・分岐を含むより表現力の高い proof net (SMEYLL proof

net)簡約系に対する複数トークン機械 Synchronous Interaction Abstract Machine (SIAM)

について詳細な分析を与える. 上記の線型な場合に比べ, デッドロックするか否か等のトー

クン機械の振る舞いの解析は遥かに非自明なものとなる. 本論文は proof net 簡約系とそ

の上での複数トークン機械の性質, およびこれら 2つの関係について, 線型論理における

既存の概念と新たな証明技法の双方を用いて解析を行い, 結果として内在する複雑さに反

してこれらが良い振る舞いを示すことを示す. 主結果としては複数トークン機械のデッド

ロック自由性, 複数トークン機械の proof net 簡約についての不変性および妥当性が挙げ

られる.

これらの結果を用いて, PCFに近い言語の解釈を整数を保持するメモリを適切に付与し

た SMEYLL net および SIAM によって行う. これにより, 言語の解釈において, SIAM は

名前呼び・値呼び戦略を proof net への翻訳のみによって行えるという利点があることが

示される. これは標準的な IAM が (少なくともナイーブには) 名前呼び戦略のみしか扱え

ないことと対照的であり, 並行性を持つ非標準的なトークン機械である SIAM が逐次的な

言語の解釈においてこのような意味を持つことは理論的に興味深いものである.

さらに SMEYLL proof net および SIAM に対し, メモリ構造と名付けた概念およびメ

モリの内容に依存した確率的な遷移を付与する. 抽象概念であるメモリ構造はインスタン

スとして通常の決定的なメモリ, 確率的メモリ, 量子メモリを内包する. このメモリ構造を

持った SMEYLL proof net, SIAM はやはり妥当性・不変性などの良い性質を持つことが

確率的な設定のもとで示される. 証明には抽象書換え系のやはり確率的な拡張である確率

的抽象書換え系の概念を導入して用いているが, この確率的抽象書換え系の概念自体も理

論的には興味深いものである. 最後に, メモリ構造を含んだプログラミング言語をメモリ構

造を含んだ SMEYLL proof net および SIAM により解釈し, その妥当性を示す. この解釈

および上記の性質の証明は全てメモリ構造をパラメータとして扱っており, 各インスタン

スについての性質は全て同一の定理から従う.

Acknowledgements

Thanks are first of all due to Claudia Faggian, Ugo Dal Lago and Benôıt
Valiron, not only for carrying out joint research (that led to several papers)
with me but also warm and friendly communication in Paris and Bologna when
I visited them. I would like to thank all the current and former members of
Hasuo laboratory and ERATO Hasuo MMSD project. I am gratefully indebted
to my parents Shin and Michiko for kindly watching me and always welcoming
me when at home. I sincerely thank the examiners of this thesis for allowing me
an opportunity to reflect on the arguments in the thesis. Finally, I would like to
express the deepest gratitude to our supervisor Ichiro Hasuo. I could not arrive
here without his patient and continuous encouragement.

This work has been partially supported by Grant-in-Aid for JSPS Fellows,
the JSPS-INRIA Bilateral Joint Research Project CRECOGI, and JST ERATO
Grant Number JPMJER1603.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aims of the thesis . 2
1.3 Contributions . 4

2 Related Work 7
2.1 Work Related to Our Approach . 7

2.1.1 Game Semantics . 7
2.1.2 Petri Nets . 8
2.1.3 Concurrent Computation and Geometry of Interaction . . . 8
2.1.4 Evaluation Strategies and Geometry of Interaction 9
2.1.5 Quantum Computation and Geometry of Interaction 10
2.1.6 Effects in Geometry of Interaction 11

2.2 Work Related to Our Aims . 11
2.2.1 Languages for Quantum Computation 11
2.2.2 Implicit Parallelism . 11
2.2.3 Unified Approach to Process Calculi and Their Type Systems 12

3 Preliminaries 13
3.1 Notations and General Notions . 13
3.2 Abstract Reduction System . 13
3.3 Multiplicative Exponential Linear Logic and Proof Net 14

3.3.1 MELL Sequent Calculus (with MIX Rule) 15
3.3.2 MELL Proof Net . 16

3.4 Geometry of Interaction as Token Machine 19
3.5 Quantum Computation . 22
3.6 Nominal Set . 22

4 Synchronous Interaction Abstract Machine 24
4.1 Motivation . 24

4.1.1 Deterministic, Arithmetic Case 24
4.1.2 Quantum Case . 26

4.2 SMEYLL Proof Nets . 27
4.2.1 Formula . 28
4.2.2 Proof Structures . 28
4.2.3 Reduction Rules . 30
4.2.4 SMEYLL Proof Nets . 33

4.3 Synchronous Interaction Abstract Machine 40
4.3.1 States . 40
4.3.2 Transition Rules . 42
4.3.3 Invariance . 46
4.3.4 Adequacy . 51

vii

4.4 Multi ⊥-Box . 52
4.4.1 SMEYLL Proof Nets with Multi ⊥-Box 52
4.4.2 The SIAM with Multi ⊥-Box 53

4.5 Interpretation of Call-by-Name and Call-by-Value PCF 54
4.5.1 PCF Net . 55
4.5.2 PCF Synchronous Interaction Abstract Machine 56
4.5.3 Adequacy . 58
4.5.4 Call-by-Name Translation 61
4.5.5 Call-by-Value Translation 64
4.5.6 Proof of Theorem 4.86and Theorem 4.90 66

5 Memory-Based Synchronous Interaction Abstract Machine 74
5.1 Probabilistic Abstract Rewriting System 74
5.2 Memory Structures . 77

5.2.1 Instance: Deterministic, Natural Number Memory 79
5.2.2 Instance: Probabilistic Memory 80
5.2.3 Instance: Quantum Memory 81

5.3 Program Net . 82
5.3.1 Reduction Rules . 83

5.4 Memory-Based Synchronous Interaction Abstract Machine 86
5.4.1 Proofs of Invariance, Adequacy, and Deadlock-Freedom of

MSIAM . 91
5.4.2 Proof of Adequacy of MSIAM 97

5.5 Memory-Based PCF . 98

6 Conclusion and Future Work 102
6.1 Conclusion . 102
6.2 Future Work . 103

6.2.1 Implicit Parallelism . 103
6.2.2 Concurrency . 103
6.2.3 Dialogue-Based Semantics and Quantum Computation . . . 104
6.2.4 Logical Basis . 104
6.2.5 Compiler Construction . 104
6.2.6 Extension to Broader Effects 105

References 108

viii

Chapter 1

Introduction

1.1 Background

Programming language semantics. Understanding computation is one of
the principal aims of computer science. By representing individual computation
as a program, programming language semantics describe the behavior of the pro-
gram in a formal, mathematical language. A programming language semantics
provides us a rigorous description of “what does this program do?” and therefore
allows us to examine whether a program behaves as intended or not; such an
examination based on mathematical description is called formal verification. A
formally defined programming language semantics can also be viewed as a guide-
line for compiler implementation of the language, or sometimes a semantics even
directly derives techniques for implementation. Thus studying programming lan-
guage semantics has both theoretical and practical benefits. The practical benefit
of formal verification becomes significant when the program in consideration is
inherently hard to analyze by testing, i.e. by feeding sufficiently many inputs to
the program and checking whether the outputs coincide with our expectation.
In a probabilistic programming language, there can be a rare but critical event
which may be overlooked with high probability by testing. In a quantum pro-
gramming language the situation becomes even worse because testing itself costs
large amount of resource due to the current hardware limitation. For such lan-
guages with effects, the right way should be formal verification based on rigorous
language semantics. Indeed, seeking semantics for those languages with various
effects has been one active research area [41,66,68,74].

There has been much work on programming language semantics since the
early days of computer science, and semantics proposed so far are classified into
three groups: operational, denotational, and axiomatic semantics. An opera-
tional semantics defines how to evaluate a program step by step, either as a
direct transition relation over programs or as an abstract machine. This view of
computation as state transitions is suitable for implementation and agrees with
programmers’ intuition. λ-calculus with the standard β-reduction rule and the
SECD machine [64] are typical examples of this kind. A denotational semantics
assigns a mathematical object (e.g. a number, a set, or a function; called denota-
tion) in a certain semantic domain to each program. This assignment is usually
done in a compositional manner in the sense that the denotation of a composite
program is obtained from the denotations of its subprograms. An advantage of
denotational semantics is easiness of reasoning thanks to this compositionality.
Domain theory [89] is a fundamental denotational semantics where a function (in
a program) is interpreted as a continuous function (in the mathematical sense)
over a domain. Another kind of programming language semantics is axiomatic

1

semantics that describes the behavior of a program as predicates that hold be-
fore and after the execution of the program. A representative of such semantics
is Hoare logic [48]. Given a programming language and its axiomatic semantics,
finding a derivation of specifications written as predicates is nothing but program
verification.

Among them, there is a family of semantics based on interaction dialogues,
including game semantics [6,53] and semantics via Geometry of Interaction(GoI
for short) [39]. They can be seen as denotational semantics that at the same time
carry operational nature. On the one hand, a dialogue-based semantics is deno-
tational in the sense that the semantics represents a program as a mathematical
object, that is a strategy of a player in a game (in game semantics) or flows
of information over the program (in GoI). On the other hand, it is operational
in the sense that denotations are calculated by (or can be seen as) a dynamic
procedure of strategy composition (in game semantics) or path computation (in
GoI). The combination of these characters lead to some distinctive features of
dialogue-based semantics: full abstraction results by game semantics [6, 53], fine
control on resource consumption [36,63], and compiler implementation based on
denotational semantics [35,69].

In particular we focus on GoI semantics in this thesis. To explain our aim, we
first elaborate the intuition of GoI. Geometry of Interaction is a semantics of linear
logic proofs that was originally invented by Girard [39] to characterize not only the
proofs themselves, but also the dynamics of the procedure of cut-elimination on
the proofs. Intuitively, in GoI semantics, a proof is interpreted by a set of certain
“paths” on the proofs. After one step of cut-elimination is performed, the shapes
of paths change accordingly (hence dynamics of cut-elimination is captured), but
at the same time the correspondence of formulas in the conclusions of the proof
remains the same (hence the paths form a semantics). From the perspective of
computation, it can be rephrased as: the meaning of a program is interpreted
as a certain information flow in the program, and when the program is reduced
to an equivalent one the flow itself (of course) changes, but the correspondence
of inputs and outputs remains the same. The dynamics of GoI stands out when
represented as a path computation by so-called token machine [23] or context
semantics [42]; especially we rely on the formulation of token machine in the
thesis. In a token machine, a run of the machine finds out a path satisfying the
above-mentioned character. GoI also has a characteristic that even a higher-order
computation is reduced to first-order one. It is intuitively clear in token machine
semantics since a token can only carry basic, local information on some stacks,
without any pointers, variables to be substituted, or thunks. It is indeed shown
that a semantics closely related to GoI is a composition of defunctionalization
and continuation passing style transformation [87]. Later it is proved that GoI
yields the notion of linear combinatory algebra via its categorical formulation [4],
and it is used to give semantics for programming languages [50,69].

1.2 Aims of the thesis

The main aim of this thesis is a better understanding of characters of dialogue-
based semantics. To this end, the thesis introduces an extension of the GoI
framework that computes all the paths relevant to a proof net by exploiting
multiple tokens rather than one single token at a time. In this multi-token ma-
chine semantics, possibly many tokens move around interacting with each other;
thus such a multi-token machine inevitably gains parallel, concurrent nature (it
is however in a very organized way, as we will see in the thesis). Indeed, a pos-

2

sible gain of parallelization of GoI was recently mentioned in a paper by Hasuo
and Hoshino [45]. They give a GoI-based semantics for an expressive quantum
calculus in the paper; while it is remarkable work that provides one of the first
adequate denotational semantics for such a higher-order quantum calculus, the
calculus has a syntactic restriction on the handling of entangled quantum bits.
The fact that only a single token is exploited in their work is mentioned as the
source of that restriction. Interestingly, a closely related, dialogue-based ap-
proach, namely quantum game semantics proposed by Delbecque [24] also holds
a similar constraint. Such a phenomenon is not present in other work on quantum
programming language semantics, for example in the one by Pagani et al. [79]. In
general, dialogue-based semantics are known to be good at yielding fine-grained
models, but for some reason it is not true in this particular application. A natural
question here is: is it an essential limitation, or is there room for ameliorating the
models concerning this point? We figure out that the essential reason why such a
restriction arises in Hasuo and Hoshino’s work is: without the restriction, there
may be some paths that are relevant to a correct interpretation but are missed by
their token machine (and any of existing standard single-token machines). This
thesis approaches the question based on this insight. By answering this question,
we better understand pros and cons of dialogue semantics and other kinds of
semantics.

It is notable that there exists another problem with the same root. The call-
by-name translation and call-by-value translation are two well-known encodings
of λ calculus with corresponding evaluation strategies into multiplicative expo-
nential proof nets [38]. It is also known that, although both encodings are sound
w.r.t. reduction of λ terms, the standard GoI semantics of those proof nets only
characterizes the call-by-name behavior. In other words, the GoI semantics of the
call-by-value translation is not sound if naively applied. In fact, this phenomenon
can be explained in the same way as the above-mentioned quantum case: the gap
between proof net reduction and the GoI semantics arises from the missing paths
in the computation. Therefore, remedying this gap solves two seemingly different
problems uniformly.

Moreover, we envisage that the idea of multi-token machine semantics can
exhibit its advantages in at least two more areas of computer science: inherent
parallelism and concurrent computation. These topics are beyond the scope of this
thesis (though the research is ongoing and a partial result has been obtained on
the latter; see Chapter 6). The motivations and results we expect are summarized
in the next two paragraphs:

Implicit parallelism from a semantic viewpoint. Functional programming lan-
guages are said to be suitable for writing parallel programs [59], and there has
been research on implicit parallelism of functional programs. Since functional
programs have referential transparency, it has to be safe to execute different
subparts of the program, and thus execution of functional programs can be ac-
celerated by that kind of parallelization. Despite the clarity of the idea, it still
seems to remain as a folklore and not much success has been seen in the automatic
generation of such parallel compilation [96], partly due to non-trivial behaviors
of higher-order functions [49]. A multi-token machine applied to functional lan-
guages may shed light on the subject from a semantic viewpoint, by its nature to
decompose higher-order computation into first-order token transitions together
with the newly introduced parallel character.

Uniform account for type systems in concurrent computation. A naturally
expected application from such a multi-token machine formulation is an interpre-
tation of concurrent computation. Concurrent processes and interactions between

3

processes are often modeled as terms in process calculi, for example CCS [71] or
π-calculus [73]. Then properties desired about such processes, e.g. deadlock-
freedom, can be assured by type systems for those process calculi [62, 98]. By
interpreting process calculi with multi-token GoI machines, the syntax-free na-
ture and the origin being semantics for logic may allow us to uniformly account
for various type systems for those calculi. This will lead to better understanding
of the vast amount of existing calculi and type systems as well as new derivation
of type systems based on a unified semantic framework.

1.3 Contributions

Despite the simplicity of the idea, modeling (sequential) programming languages
with such a parallel multi-token machine is far from straightforward. In this
situation the most natural way to dispatch data to those multiple tokens is to
make one token carry one data. When an n-ary function is applied on those data,
the corresponding tokens are synchronized and data are modified accordingly. In
general, the setting with multiple tokens synchronizing with each other immedi-
ately leads to a possibility of deadlocks. Moreover, when the language we would
like to interpret accommodates duplicable data, we have to be able to control
the number of tokens that correspond to usage of each data: a (structure cor-
responding to) data used twice must generate two distinct tokens, while a data
that is discarded must not generate any token. Such a feature is not present in
the standard token machine. Further, the situation with many tokens running si-
multaneously, synchronizing with each other, is much like that of Petri nets [82].
It is known that the behaviors of Petri nets are in general hard to verify or an-
alyze: for example, decision problem of deadlock-freedom of Petri nets is known
to be in EXPSPACE, and in PSPACE-complete for even 1-safe Petri nets that is
a rather strong restriction (for more details on those decision problems on Petri
nets, see [30,31]).

Thus whether such a multi-token system with synchronization can be a model
of computation or not is, even without computational effects, a non-trivial prob-
lem. Being (perhaps surprisingly) new in the research area of Geometry of Inter-
action, the following questions arise:

• Can we rigorously reason about such a system?

• Can such a parallel system be a computational model of sequential compu-
tation in any sense?

• If it can be so, can it achieve the above-mentioned aims?

• Is there any other interesting notion that is covered by a multi-token system
but not by a single-token one?

The thesis will deal with this non-standard notion of multi-token machine, and
give a thorough account on the definition, properties, and resulting models of
computation. A summary of the contributions of this thesis is as follows. The
first three are described in Chapter 4, and the last two are in Chapter 5.

• Introduction of a notion of multi-token machine. First of all we define a
precise definition of a multi-token machine, called the Synchronous Interac-
tion Abstract Machine (SIAM for short), together with an extended notion
of proof nets, called SMEYLL proof nets. The SMEYLL proof nets in-
clude three novel kinds of nodes to handle synchronization, branching, and

4

recursion respectively. The definition that allows a rigorous modeling of
programming languages in the setting is already novel and not straightfor-
ward to find out. A distinctive feature of the SIAM is that the machine
generates tokens from unit nodes and dereliction nodes on the fly, and
such generation is itself controlled by the tokens generated from derelic-
tion nodes. The machine gives a token machine semantics that is a partial
function computed by the machine to the nets.

• Investigation of properties of the multi-token machine. We prove various
properties about the nets and the machine we define. The properties of
the machine are either far more non-trivial to prove than the case of the
standard Interaction Abstract Machine, or are simply not present in the
standard case. Among them, deadlock-freedom is a distinctive and impor-
tant one: by definition it is absent in the standard single-token machine,
and without a guarantee of being free from deadlocks we are unable to as-
sure that the token machine semantics makes sense or not. The pleasant
properties can be established in the complicated, multi-agent system of the
SIAM by taking advantage of being based on linear logic and proof net
techniques. Relying on polarity of logical formulas is especially useful here.

• Uniform account of the call-by-name and the call-by-value strategies. The
nets and the machine are applied to interpret a PCF-like calculus, and
an adequacy result of the interpretation is shown. Such a semantics of a
sequential language by a parallel, concurrent system is itself of theoretical
interest. Moreover, it turns out that our multi-token machine can not only
form an adequate semantics of the calculus, but also provides a solution for
the problem inherent to the standard GoI, namely distinction of the call-
by-name translation and the call-by-value translation of calculi into linear
logic proof nets. That is, our machine can uniformly interpret both the call-
by-name and the call-by-value translations of terms into proof nets thanks
to the characteristic of multi-token machine that computes all the paths in
parallel, while those paths computed by the standard one only matches the
behavior of the call-by-name case (at least naively).

• Parameterization by memory structures. Furthermore, the initial purpose
of introducing multiple tokens is accomplished with a satisfactory expres-
siveness and a certain generality: we interpret another PCF-like calculus
parameterized by probabilistic branching effects. Those effects and the con-
tent of memory along execution are axiomatized as a notion called memory
structure. The adequacy result of interpretation is also proved parametri-
cally on memory structures. As instantiation of the memory structure, we
automatically obtain semantics of deterministic, probabilistic, and quantum
calculi. In the quantum instance, the syntactic constraint found in [24, 45]
are not present and qubits can be separately treated regardless of entangle-
ment. The deterministic case essentially coincides with the usual PCF case,
and the probabilistic case is akin to existing probabilistic calculi, e.g. [26].

• General properties of probabilistic abstract reduction system. As a byprod-
uct, we introduce a probabilistic extension of abstract rewriting systems
that is also novel and of independent interest. Probabilistic extension is a
natural direction both for syntax and for semantics of programming lan-
guages, as done for programming language [86] and for semantics e.g. do-
main theory [57] or game semantics [21]. However, such a probabilistic

5

extension seems to be undeveloped so far for abstract reduction systems
that is also a common and general notion in the programming language
community. The notion of parallel rewriting of elements in a distributions
is novel, and a property called uniqueness of normal forms can be stated
on the newly introduced rewriting relation over distributions. The prop-
erty does not have its counterpart in the usual abstract rewriting systems;
it makes sense only in the probabilistic setting, and we rely on that property
in a proof about our probabilistic nets and machine.

Organization of the Thesis. Related work to this thesis is discussed in Chap-
ter 2. Chapter 3 provides preliminaries on the basic mathematical or logical no-
tions on which we build our work. Chapter 4 and Chapter 5 are two main chapters
of the thesis. Chapter 4 introduces the notions of SMEYLL proof nets and the
Synchronous Interaction Abstract Machine (SIAM) executed on those nets. The
progress property and the cut-elimination property of SMEYLL proof nets, as
well as deadlock-freedom, invariance, and adequacy of the semantics given by
SIAM are proved with novel proof techniques. Then we apply the framework
to a basic but expressive language akin to PCF by translating terms into proof
nets, and its semantics is obtained by executing the (extension of) SIAM on
the nets translated from terms. The translation is shown to be adequate, and
hence via the translation an adequate multi-token GoI semantics of the PCF-like
language is accomplished. Chapter 5 further extends the proof net system, the
multi-token machine, and the PCF-like language by equipping them with a notion
called memory structure. This yields a class of proof net systems, multi-token
machines, and languages; the adequacy results are also proved in a parameterized
way. The results are shown to subsume the case shown in Chapter 4 as well as a
quantum version of the three systems as a notable instance. Chapter 6 concludes
the thesis, and lists some possible directions of future work.

6

Chapter 2

Related Work

In this chapter, we review some papers relevant to our work in the thesis. Sec-
tion 2.1 describes related work in terms of the specific approach we take in the
thesis, namely Geometry of Interaction and its token machine representation.
Section 2.2 contains some other approaches toward the (short-term and long-
term) aims we stated in Chapter 1.

2.1 Work Related to Our Approach

2.1.1 Game Semantics

Game semantics was originally devised for logics [67] and later applied to a pro-
gramming language called PCF [6,53]. One important capability of game seman-
tics as language semantics is that it yields fully abstract semantics: equivalence
in the model not only implies observational equivalence of the programs corre-
sponding programs, but also the converse holds (i.e. the equivalence in the game
model and the observational equivalence of programs coincide). Full abstraction
is a considerably harder property to obtain than soundness or adequacy, and
construction of such a model for PCF was a long-standing open problem.

Game semantics and Geometry of Interaction are frameworks to give deno-
tational semantics based on dialogues: a game semantics explicitly employs two
players’ dialogues as programs’ behaviors, and GoI semantics can also be for-
mulated as input/output dialogues between components via Int construction [4].
A distinctive feature of these frameworks is that they are dynamic at the same
time providing denotational (static) semantics. Since the use of computation and
information is getting more and more dynamic today, this perspective has cer-
tain importance [2]. Describing such a dynamic process as a mere mathematical
function is here inappropriate, and dialogue-based semantics would serve as a
foundation for such a theory of dynamic information.

In a basic case of modeling multiplicative linear logic (MLL) the two semantics
indeed coincide [5]. On the one hand, game semantics has larger design space in
its definition. Relaxation or extension of the definition of games and strategies
are very often done in order to model various features and effects in programming
languages, and those semantics with such fine tuning often lead to full abstraction
results. On the other hand, GoI has more direct connection to linear logic. Those
semantics called Geometry of Interaction should be a model of linear logic or its
extension, so the design space is relatively restricted when compared to game
semantics. Instead, an advantage of GoI is its simplicity: computation is after
all a run of a token with some elementary data, following some simple rules.

As mentioned in Chapter 1, a programming language semantics is often use-
ful for compiler implementation, either as a guideline or as a practical derivation

7

method. Geometry of Interaction is known to provide us the latter aspect [69],
and a variant of game semantics is also suitable for mechanization [13]. Although
other denotational semantics can also derive such [58,100], the dynamic and fine-
grained nature of GoI/games often yields a notable application. For example,
IntML [63] language made from an observation on dialogue semantics has a dis-
tinctive feature that functions with sublinear space can be expressed. Another
is a compiler called Verity derived from a series of paper entitled Geometry of
Synthesis [35]: it compiles high-level functional languages even with recursion
into hardware description, with modest efficiency and a background on a vari-
ant of game semantics. Speaking of our work, it is currently not clear whether
it leads to some concrete compilation technique or not; however, combining the
concurrent utilization of multiple tokens in our work with the work by Fredriks-
son and Ghica’s compiler for distributed computation based on GoI [32] seems
natural and possibly show some advantage over compilers developed in a usual
way (e.g. automatic and efficient parallelization based on our semantics could be
one possibility).

2.1.2 Petri Nets

Though the motivation on concurrent computation in this work arises from ob-
servation on process calculi, the work in this thesis is definitely reminiscent of
another formalism, namely Petri nets (especially of colored Petri nets [56], since
each token carries some data). The setting that multiple tokens run around a
directed graph structure, sometimes synchronizing with each other, is common
to Petri nets and our approach. However, there is a difficulty to treat the multi-
token machine we will define in the thesis as Petri nets. That is, if we aim at
formalizing our token machine as a colored Petri net, it is necessary to take an
infinite set of stacks as a color set and also to employ infinitely many tokens.
Such an infinite representation is usually prohibited in Petri net theory, and thus
it raises another layer of difficulty to analyze the machine. It is also in contrast to
the fact that the number of tokens in our machine is always finite (even though
the number is unbounded).

There also exist some papers that give semantics of linear logic (on which we
strongly rely) by means of Petri nets [29, 34]. Those semantics clearly explain
the “logic of resource” view of linear logic via Petri nets. The difference from
our token machine semantics (or from GoI semantics in general) is that their
semantics are proof-irrelevant ones, so the dynamics within those Petri nets is
not the same as what is achieved by the token machine approach taken in the
thesis. Concerning our contribution in this thesis, how to extend their semantics
to appropriately reflect evaluation strategies is also unclear.

2.1.3 Concurrent Computation and Geometry of Interaction

One of the first attempts to introduce multiple tokens in the framework of token
machine is the work by Dal Lago and Zorzi [17]. The notion of synchronization,
applying an operation to a memory accompanying the state, is already present
there. However, both expressiveness and generality are rather restricted in their
work: their token machine cannot interpret measurement or non-linear data, and
the setting is specific to quantum setting.

A paper following them [99] (that is mostly the work done as the author’s
master thesis) can be seen as an extension of the work [17] to accommodate mea-
surement using a structure akin to the ⊥ introduction rule in linear logic. While

8

it is true that it interprets all the basic ingredients of quantum computation,
the token machine mechanism to interpret measurement is in a sense static: the
machine first specifies all the branching it follows, then calculate the probability
and the resulting state of that branch. If we consider the actual execution of such
a quantum program, what is natural is to determine the branching dynamically,
one by one. Thus, besides the fact that it is still based on the multiplicative
fragment, it is unsatisfactory as a dynamic semantics of quantum programs (or
more generally, programs with effects).

As for synchronization of tokens, Asperti and Dore [9] also studied the relation
between linear logic proof nets and synchronization of tokens. However their work
has been done from a different point of view compared to what will be done in
the thesis. In their work, tokens synchronize solely to establish a path and then
they just disappear; the process of synchronization deadlocks if and only if the
underlying proof structure is not correct, i.e. not a proof net. (The picture would
be clearer after we show some intuitions and definitions; see also Chapter 4.)
Hence, while it is true that viewing a multi-token machine as a distributed system
can be interesting, the token machine they use does not suit the purpose of the
thesis.

The work by Fredriksson and Ghica [32] (which we already mentioned in this
chapter) is also at the intersection of Geometry of Interaction and distributive
systems, but in a different way. They implemented a compiler from PCF terms
into distributive C codes with the MPI library. From the viewpoint of nets and
GoI, it is not the abstract token machine itself but the actual machines executing
computation that is distributive; the token machine used there is a sequential,
single-token one based on Hoshino [50] and Mackie [69].

2.1.4 Evaluation Strategies and Geometry of Interaction

When applied naively, a token machine of Geometry of Interaction can only in-
terpret the call-by-name evaluation strategy. Intuitively, this is because a path
regarded as a meaningful one connects one output of a program with only a sub-
structure of the underlying net/program that is relevant to the output. Typically
it means that if the output is irrelevant to an input then the path computing the
output does not even touch the input (as in the call-by-name strategy), while in
the standard call-by-value strategy the input is necessarily evaluated. As known,
the difference can cause different behaviors of programs, notably shown by the
one like (λx.1)Ω (where Ω is a diverging term): the “output” 1 of the term is
irrelevant to the input Ω of the lambda abstraction λx.1, so it converges in the
call-by-name while diverges in the call-by-value strategy.

Existing work such as one by Hoshino [50] (and consequently by Hasuo and
Hoshino [45]) or one by Schöpp [88] uses variants of the continuation passing style
(CPS) transformation by Plotkin [85] to impose the call-by-value evaluation order
on the execution path of GoI. The CPS transformation is a well-known technique
and also known to be suitable for an intermediate language during compilation [8].
Though, it appears an indirect way when we consider the origin of GoI: there
exists a standard translation of simply-typed λ calculus types into linear logic
types, both in the call-by-name and the call-by-value manners. The proof nets
obtained by those standard translations do reflect the difference between the two
evaluation strategies, while the usual token machine on those nets exhibits the
same call-by-name behavior on the two different translations. A novelty in our
work about this topic is that we have found a machine that is able to detect the
difference of the two in a uniform way.

9

2.1.5 Quantum Computation and Geometry of Interaction

The notion of quantum computation was first proposed in 80’s, and especially
after the finding of Shor’s algorithm [94] that shows an exponential speedup
compared to the known best algorithm for the integer factorization problem,
much interest and effort have been put into the study of quantum computation.
Although a sufficiently large quantum computer is still to be developed, many
quantum algorithms that perform quadratically or exponentially better than any
other known classical algorithms have been found [16,44,65], as well as quantum-
based cryptography method utilizing the no-cloning property has emerged [12].

Those quantum algorithms are most often described by means of quantum
circuits. Programming with quantum circuits is much like programming with
logical circuits; such a representation is harder to analyze or verify structurally,
and writing a large circuit by hand is simply tedious. Hence quantum program-
ming languages have been considered from around 2000 [61, 78], and recently
some compilers that compile programs written in those languages into (textual
representation of) quantum circuits is developed [43, 97]. Hence, to exploit ad-
vantages of such structured, high-level languages, it would be helpful to provide
rigorous semantics of those languages. Those semantics have been investigated
recently [91], but still the study is in its infancy rather than at a stage that a
standard one is established.

Interpretation using the framework of Geometry of Interaction is one candi-
date for such a semantics for quantum languages and has been sought recently; an
explicit mention has been done by Scott in 2004 [90], and perhaps we could even
say that it has been from around when linear logic (and consequently Geometry
of Interaction) was born, since Girard himself explicitly mentions the possibility
to utilize linear logic to interpret quantum mechanics (and physics in general)
in 1989 [40]. We already mentioned some recent studies on applying linear logic
and Geometry of Interaction in Introduction. We describe below a detail on the
“non-compositional” syntax of [24, 45] and also mention another line of research
on the relation between quantum computation and GoI.

Given a term M of type Q⊗Q (where Q is a ground qubit type) and two uni-
tary gates U, V, the term (or an equivalent term of) let ⟨x, y⟩ = M in ⟨U,V⟩x⊗ y
is not valid in the languages in the existing work [24, 45]. This is because the
constructor only accepts the product type Q⊗Q that is for sure not entangled,
although it is an arguably common construction when we consider a program as
a quantum circuit.

In the thesis, we interpret a quantum calculus with higher-order functions and
recursion. The calculus is fairly expressive. On the one hand, the fact that we
could avoid the syntactic constraint present in existing work [45] suggests that
quantum GoI can still be a candidate for a semantics of a “practical” quantum
programming language. On the other hand, as for expressiveness our multi-token
semantics does not show a superiority to other quantum programming language
semantics.

The paper by Abramsky and Coecke [3] relates quantum processes and cate-
gorical Geometry of Interaction from a different perspective. In the paper they
apply G construction to the traced monoidal category FDVec of finite-dimensional
vector spaces in which quantum processes can be described. The resulting Ge-
ometry of Interaction model is different from the standard token machine model.
Although the interpretation of linear logic by using the notions of quantum pro-
cesses is theoretically of interest, it seems a roundabout way since a mere identity
represented by axiom-cut redex is realized by creating an entangled pair and pro-

10

jecting them.

2.1.6 Effects in Geometry of Interaction

We interpret PCF-like languages with a certain class of effects by our multi-
token machine. There is a series of work in the same line by Hoshino, Hasuo,
and Muroya [51, 76], called memoryful Geometry of Interaction. The languages
to which they give categorical semantics also include !-types and recursion. The
class of effects that memoryful GoI accommodates seems strictly larger than ours:
non-deterministic choice (without probability) is not allowed in our framework
while memoryful GoI can naturally handle it, and the instances of our memory
structure we found so far are instances of memoryful GoI, too.

An apparent difference between our work and theirs is that their token ma-
chine is single-token while ours is multi-token. Thus our machine has a possibility
to exploit the parallelism brought by being multi-token, and indeed there is an
advantage over them. In memoryful GoI, by using a CPS-like construction, the
call-by-value strategy is interpreted in the sense that the denotational seman-
tics is adequate. However, the cost of computation is still that of call-by-name,
meaning that even after a subterm is once evaluated, the path to evaluate it is
again used in the execution later. Such a re-computation is skipped in the usual
notion of call-by-value, and the behavior is indeed counted as an advantage of
employing call-by-value. Our machine naturally reflects the character: once a
computation of a value of ground-type finishes, the value is just copied to the
tokens that are required to have the same value without doing re-computation.
From this perspective we claim that our work is more fine-grained one, although
its practical advantage is still to be further developed.

2.2 Work Related to Our Aims

2.2.1 Languages for Quantum Computation

Quantum process calculi (e.g. [33] and [60]) are formal languages to describe
quantum processes involving communication, such as quantum teleportation or
quantum cryptography protocols between two distant systems. Like the clas-
sical case, quantum process calculi are designed to describe and verify multi-
process, concurrent or distributed quantum computation, while the languages
like quantum λ-calculus [92] are for general description of quantum algorithms.
As explained in Chapter 1, the reason we try to interpret such general-purpose
quantum programming languages rather than quantum process calculi is simply
that the semantic problem we aim at arises from the former. This does not imply
that we cannot apply our multi-token machine to quantum process calculi, but
it would be after we examine the possibility of application of our approach to
non-quantum process calculi (that is one of the future directions of the work),
which is too far to start a concrete discussion.

2.2.2 Implicit Parallelism

Automatic parallelization by utilizing implicit parallelism of functional program-
ming languages is still at an experimental stage, especially when we try to do so
by applying static analysis [95]. Thus recent work on this line of research is relying
on information obtained at runtime. For example, a paper on implicit parallelism
in Haskell [96] achieves positive speed-up on several benchmarks by iteratively de-
termining parallelization points based on runtime profiles. Static analysis seems

11

to have a limitation in utilizing implicit parallelism. Then, a naive question
is: can the dynamism in GoI improve such an analysis, from a more semantic
(and hopefully more fundamental) viewpoint? There in fact exists a support
for this perspective: a research on implementation of an abstract machine for
λ calculus, called PELCR (Parallel Environment for optimal Lambda-Calculus
Reduction) [81] exists. The implementation is based on a variant of GoI (repre-
sented as a graph reduction system) and provides a parallel evaluation of λ terms.
Although it is only concerned with λ calculus, there is room to extend the work,
or the underlying GoI, to a calculus with more common and useful constructs.

2.2.3 Unified Approach to Process Calculi and Their Type Systems

The aim to provide a unifying theory for process calculi (or formal systems for
concurrent computation in general) has been pursued by many researchers. Mil-
ner’s bigraphs [72] and its variants are known to be able to encode calculi such
as π-calculus or fusion calculus, as well as Petri nets. As for unification of type
systems, an approach based on bigraphs is also proposed [27,28]. They aim at de-
riving individual type systems for process calculi from type systems for bigraphs
and it is shown that one particular type system for a finite subset of π-calculus
can indeed be derived in that way. However, only a few instances have been
obtained since the proposal was made. Generic type system for π-calculus [54] is
a type system parameterized by a subtyping relation and a notion called consis-
tency condition. Several existing type systems, including those for guaranteeing
race-freedom and deadlock-freedom, are shown as instances of the generic type
system. Their approach works well for π-calculus, but extending it to other pro-
cess calculi is yet to be done (it is indeed mentioned as future work in the paper).
ψ-calculus [11] is a generalization of some process calculi including π-calculus.
Similarly to the above-mentioned generic type system, its typed version [52] sub-
sumes different type systems for process calculi. Again, the work covers π-like
calculi, but different kinds of process calculi (ambient calculi for example) are
excluded in their work. The reason why the generic type system [54] and ψ-
calculus [52] do not easily extend to other calculi is that those type systems are
defined over the syntax of the calculi. Our approach is expected to be syntax-
free as the standard ones are so, and thus it is possible that our approach can be
applied to different calculi in a uniform way.

12

Chapter 3

Preliminaries

3.1 Notations and General Notions

Throughout the thesis, the set of natural numbers is denoted by N. The set of
booleans is denoted by B (which is explicitly {true, false}). Given a set X, the
set of (sub)distributions {µ : X → [0, 1] |Σx∈X µ(x) ≤ 1} is denoted by Dist(X).
A distribution that maps x1 7→ p1, . . . , xn 7→ pn is also written as {xp11 , . . . x

pn
n }.

Addition of two distributions and multiplication of a distribution by a real number
are defined pointwise if the resulting function is again a distribution. Substitution
is denoted by M{x := N}, meaning to simultaneously replace every occurrence
of x in M by N. For a map f : X → Y , f [x′ 7→ y′] denotes the map defined by
f [x′ 7→ y′](x) = f(x) if x ̸= x′ and f [x′ 7→ y′](x′) = y′.

We sometimes need the following notion of undirected path over a directed
graph.

Definition 3.1. Let G = (N,E) be a directed graph. A undirected path on
G is a sequence e1e2 . . . en where ei ∈ E ∪ {(a, b) | (b, a) ∈ E} and satisfying
snd(ei) = fst(ei+1) for any i ∈ N. The pair ei is said to be forward if ei ∈ E; said
to be backward if ei ∈ {(a, b) | (b, a) ∈ E}.

Precisely speaking, we should distinguish (a′, b′) ∈ E and (a′, b′) ∈ {(a, b) | (b, a) ∈
E} when (a′, b′) and (b′, a′) are both in E; however we do not explicitly do so
because such a case never appear in the thesis.

3.2 Abstract Reduction System

An abstract reduction system (ARS for short) is a transition system over a fixed
set of elements, formally given as follows.

Definition 3.2 (Abstract Reduction System). An abstract reduction system
(A,→) consists of a set A and a relation →⊆ A×A.

Definition 3.3 (Notations). We write a→ b if (a, b) ∈ →, and say that a reduces
to b. When there exists no element b ∈ A satisfying a → b, we write a ̸→ and a
is said to be in normal form or terminal. We also write a →k b if the element
a reduces to b via k times of reductions: a = a0 → a1 → · · · → ak = b. The
transitive closure a →+ b is defined by →+=

∪
i∈N →i. The transitive reflexive

closure →∗ is defined by →∗ = →+ ∪{(a, a) | a ∈ A}.

The notion of ARS is prevalent in (theoretical) computer science. Terms of (either
typed or untyped) λ calculus and β reduction (or in general a programming
language and its small-step reduction) over terms form an ARS; a mathematical

13

notion defined as an equational system can be seen as an ARS if we regard the
equations as a one-directional reduction relation; and formal proofs and cut-
elimination also give rise to an ARS, which is one of the main topics of the thesis.
Therefore we recall some basic notions in the section. For further information we
refer to [14].

The following properties on ARSs are two main properties investigated about
ARSs. Intuitively, normalization assures (may or must) convergence of the sys-
tem, while confluence states that the final result (if exists) is irrelevant to the
paths to reach it in the system.

Definition 3.4 (Normalization). An abstract reduction system (A,→) is said to
be weakly normalizing if for any a ∈ A, there exists b ∈ A satisfying a →∗ b ̸→.
It is strongly normalizing or terminating if for any a ∈ A, there does not exist an
infinite sequence of reductions a→ b1 → b2 →

Definition 3.5 (Confluence). An abstract reduction system (A,→) is said to be
confluent if for any a ∈ A, a →∗ b1 and a →∗ b2 implies existence of an element
c satisfying b1 →∗ c and b2 →∗ c.

A desirable property of ARSs is the diamond property. The reason of the
name is clear if we depict the property as Figure 3.1.

Definition 3.6 (Diamond Property). An abstract reduction system (A,→) is
said to satisfy the diamond property if for any a ∈ A, a→ b1 and a→ b2 implies
either b1 = b2 or existence of an element c satisfying b1 → c and b2 → c.

b1

c

a

b2

Figure 3.1: The Diamond Property

Proposition 3.7. If an abstract reduction system satisfies the diamond property,
then it is confluent.

Proof. Since we use the proposition we explicitly show the proof. Let a→ bn and
a → cm as in Figure 3.2. The element e can be obtained by the “tiling”, where
each “diamond” is constructed by the diamond property.

b1

d1

a

c1

bn
cm

e

Figure 3.2: Tiling

3.3 Multiplicative Exponential Linear Logic and Proof Net

The thesis is based on the notions of linear logic and in particular a framework
to give semantics of linear logic proofs called Geometry of Interaction (GoI for
short). This section briefly recalls basic notions and theorems around multiplica-
tive exponential linear logic.

Linear logic was first introduced by Girard [38] around 1987, and is often seen
as a “refinement” of conventional logics such as intuitionistic logic or classical

14

logic, since the arrow types A→ B in those logics are decomposed into the type
!A⊸B (for intuitionistic logic) or !A⊸ !B (for classical logic) using two novel
primitives ! and ⊸. In this sense linear logic has a finer primitives than those
logics. Though the introduction of linear logic was motivated from the logical
viewpoint, soon after the publication of [38] it has found various usages in the
realm of computer science.

3.3.1 MELL Sequent Calculus (with MIX Rule)

The contributions in the thesis are based on a fragment of linear logic called clas-
sical multiplicative exponential linear logic, or MELL for short. Given a countable
set X, the formulas of MELL are defined by the following BNF:

A ::= α | α⊥ | A⊗A | A`A | !A | ?A

where α is called an atom and α ∈ X. The connectives ⊗, ` are called multi-
plicative conjunction and multiplicative disjunction, respectively, and correspond
to the usual conjunction ∧ and disjunction ∨. The ! and ? modalities (read as
“bang” and “why not” respectively) in the formula !A and ?A are called expo-
nential modalities. Linear negation (−)⊥ is syntactically defined as follows, by
de Morgan’s law

(A⊗B)⊥ ≡ A⊥`B⊥, (A`B)⊥ ≡ A⊥⊗B⊥, (!A)⊥ ≡ ?(A⊥), (?A)⊥ ≡ !(A⊥).

Positive formulas P (resp. negative formulas N) are defined by the BNF P ::=
α |P ⊗ P (resp. N ::= α⊥ |N ` N). We denote a multiset of formulas by Γ or
∆ and the juxtaposition Γ,∆ denotes the multiset union Γ ⊎∆. For a multiset
Γ = {|A1, . . . , An|}, the notation ! Γ means {| !A1, . . . , !An|} (similarly for the
? modality). Linear implication A⊸ B is defined to be1 A⊥ ` B, which is
reminiscent of logical equivalence of A→ B = ¬A ∨B.

A sequent A1, . . . , An ⊢ B1, . . . , Bm consists of multisets of MELL formulas
{|A1, . . . , An|} and {|B1, . . . , Bm|} separated by the turnstile symbol ⊢. The rules
of MELL sequent calculus with MIX rule are shown in Table 3.1. The sequent
under the line in a rule is called a conclusion and one of the sequents over the

line is called a premise. Like other sequent calculi, a rule Γ ⊢ ∆
Γ′ ⊢ ∆′ means that

the conclusion Γ′ ⊢ ∆′ can be derived if the premise(s) Γ ⊢ ∆ are also derivable
in the system. A tree constructed from the rules is called a derivation tree or a
proof.

Remark 3.8. The use of multisets rather than sets is not just a design choice:
A,A ⊢ B and A ⊢ B are different sequents and provability of either does not
implies provability of the other in general. The rules like cut or R⊗ indeed
explicitly exhibits this character as Γ1 and Γ2 in the premises lead to a multiset
union Γ1,Γ2 in the conclusion. In LK the two sequents become equivalent via
weakening and contraction rules. In MELL sequent calculus, application of those
rules are restricted to formulas with ! modality (LW rule and LC rule).

Remark 3.9. Usually, a sequent is defined as sequences of formulas and the
sequent calculus system additionally has the exchange rule to permute the order
of formulas (e.g. B,A ⊢ A,B can be derived from A,B ⊢ A,B). Since the use of

1In intuitionistic linear logic,⊸ is an independent connective rather than such a defined con-
nective, simply because ` does not exist in the syntax. We focus on classical setting throughout
the thesis.

15

A ⊢ A ax
∆1 ⊢ Γ1, A ∆2, A ⊢ Γ2

∆1,∆2 ⊢ Γ1,Γ2
cut

Γ1 ⊢ ∆1 Γ2 ⊢ ∆2

Γ1,Γ2 ⊢ ∆1,∆2
MIX

Γ, A,B ⊢ ∆

Γ, A⊗B ⊢ ∆
L⊗

Γ1,⊢ ∆1, A Γ2,⊢ ∆2, B

Γ1,Γ2 ⊢ ∆1,∆2, A⊗B
R⊗

Γ ⊢ ∆, A,B

Γ ⊢ ∆, A`B
R` Γ1, A ⊢ ∆1 Γ2, B ⊢ ∆2

Γ1,Γ2, A`B ⊢ ∆1,∆2
L`

Γ ⊢ ∆, A

Γ, A⊥ ⊢ ∆
L⊥

Γ, A ⊢ ∆

Γ ⊢ ∆, A⊥ R⊥

Γ ⊢ ∆
Γ, !A ⊢ ∆

LW
Γ ⊢ ∆, A

Γ ⊢ ∆, ?A
RW

Γ, !A, !A ⊢ ∆

Γ, !A ⊢ ∆
LC

Γ ⊢ ∆, ?A, ?A

Γ ⊢ ∆, ?A
RC

Γ, A ⊢ ∆

Γ, !A ⊢ ∆
LD

Γ ⊢ ∆, A

Γ ⊢ ∆, ?A
RD

! Γ, A ⊢ ?∆

! Γ, ?A ⊢ ?∆
LP

! Γ ⊢ ?∆, A

! Γ ⊢ ?∆, !A
RP

Table 3.1: MELL Sequent Calculus Rules with MIX

⊢ A,A⊥ ax ⊢ Γ, A ⊢ ∆, A⊥

⊢ Γ,∆
cut

⊢ Γ ⊢ ∆
⊢ Γ,∆

MIX

⊢ Γ, A ⊢ ∆, B

⊢ Γ,∆, A⊗B
⊗ ⊢ Γ, A,B

⊢ Γ, A`B
`

⊢ Γ
⊢ Γ, ?A

?W
⊢ Γ, ?A, ?A

⊢ Γ, ?A
?C

⊢ Γ, A

⊢ Γ, ?A
?D

⊢ ? Γ, A

⊢ ? Γ, !A
!

Table 3.2: Right-Hand Side Only MELL Sequent Calculus Rules

the exchange rule adds inessential technicality without benefits (at least for our
purpose in the thesis), we choose the definition by multisets that is essentially
the same and simpler.

Remark 3.10. By repeatedly applying R⊥ rule, any sequent Γ ⊢ ∆ can be
turned into the form ⊢ Γ⊥,∆. All rules acting on the left-hand side of sequents
commute with this procedure: the result of applying a left-hand side rule (e.g.
L⊗) and then applying the procedure is the same as the one obtained by applying
the procedure first and then applying a corresponding rule on the left-hand side
(e.g. R`). Thus the calculus can be defined by the right-hand side rules only as
shown in Table 3.2, without changing expressivity. We use the right-hand side
only rules in the next subsection since correspondence with proof structures is
clearer.

3.3.2 MELL Proof Net

In the previous section we saw the rules of MELL sequent calculus. Linear logic
has another convenient graphical syntax to derive valid formulas, called proof
nets [38]. An advantage is that inessential syntactic differences in sequent calculus
disappear in proof nets. Proof nets will be defined as a subset of proof structures
defined as follows:

Definition 3.11 (Nodes and Notations). The set of nodes of MELL proof struc-
tures is {ax, cut,⊗,`, ?c, ?w, ?d, !} shown in Figure 3.3. Each node except the !
node has a fixed number of incoming edges and outgoing edges labeled by MELL
formulas. An incoming (resp. outgoing) edge of a node is called a premise (resp.
conclusion) of the node. An edge labeled by a formula A is said to be of type

16

A. We depict a graph consisting of those nodes directed from up to bottom:
premises (resp. conclusions) of a node is drawn as an edge coming from above
(resp. below) the node. For example, an ax node has no premises and two con-
clusions of type A and A⊥ respectively, and a ⊗ node has two premises of type
A, B and one conclusion of type A ⊗ B. A ! node has a conclusion (called the
principal conclusion of the ! node) of type !A and n-many conclusions (called
auxiliary conclusions of the node) of type ?A1, ?A2, . . . , ?An for some n ∈ N.
Note that n can possibly be 0.

Definition 3.12 (MELL Proof Structure). An MELL proof structure is a finite
directed graph built from the nodes in Figure 3.3 where

• each edge is equipped with a type that matches with the types specified by
the nodes it is connected to;

• some edges may be dangling, i.e. may not be connected to any node. Those
dangling edges are called the conclusions of the structure. By abuse of
notation, their types are also called the conclusions;

• the graph is equipped with a total map from all the ! nodes in it to MELL
proof structures called the contents of the ! nodes, satisfying that the types
of the conclusions of a ! node coincide with those of its content.

The depth of a node in a structure is defined by: if a node is not in a content
of a box, the depth of the node is defined to be 0 (the node is said to be at depth
0 or at surface); otherwise the depth of the node is n + 1 (said to be at depth
n+ 1), where n is the depth of the ! node that has the node as its content. The
graph consisting of the nodes at depth 0 is called the surface structure.

Although formally a ! node and its content are not connected as a directed
graph, it is intuitive and convenient to draw them as if the ! node is a “box” filled
with its content, as shown in Figure 3.4. For this reason a ! node is also called a
!-box.

Exponentials

?c ?w
?A

?A?A

ax
A⊥ A cut ⊗ `A A⊥ A B

A⊗B

A B

A`B

Multiplicatives

?A
!

?A
?d
A

?A1 ?An!A . . .

Figure 3.3: MELL Nodes

S

. . .! ? ?

. . .

!A ?A1 ?An

A

Figure 3.4: !-Box

The proof nets are equipped with the notion of reduction that can be seen as
a procedure of cut-elimination written in the language of graph rewriting.

Definition 3.13. Reduction of MELL proof structures is defined by the reduction
rules shown in Figure 3.5. The reduction rules are defined to be local : a redex
of a reduction rule in a proof structure rewrites to the reduct of the rule and the
rest of the proof structure remains the same.

17

S

cut

?c
cut
cut

!
 c

cut

S1

. . .! ?

. . .
?

cut

S1

. . . ?

. . .
 p

ax

cut
 a ⊗ `

cut
 m cut cut

!

. . . ?

. . .

?

S

! . . . ?

. . .

?

S

! . . . ?

. . .

?

?c ?c. . .

S

cut

?d
cut

!
 d. . . ?

. . .

?

S
. . .

S

cut

?w
!

 w. . . ?

. . .

? ?w ?w
. . .

S2

! . . . ?

. . .

?

S2

! . . . ?

. . .

?

. . . ??

?

?

Figure 3.5: Reduction Rules of MELL Proof Structure

As expected from the names of the nodes, there exists a correspondence be-
tween (derivation trees of) MELL logical formula and MELL proof structures as
shown in Figure 3.6 and 3.7. However, not every proof structure corresponds to
a derivation tree.
The characterization of those structures that have a derivation of an MELL for-
mula is called a correctness criterion; many such criteria are known [10], and
among them the most common one is the one by Danos and Regnier [22]. The
following is a minor variant of theirs.

Definition 3.14 (Switching Path). Given an MELL proof structure R, a switch-
ing path is an undirected path on R (i.e. a path allowed to traverse a directed
edge forward or backward) satisfying that

• on each ` node, the path uses at most one of the premises;

• on each ?c node, the path uses at most one of the premises;

and the path does not use any edge twice or more.

Definition 3.15 (Correctness Criterion). The correctness criterion states that
given an MELL proof structure R, all of its switching paths are acyclic. Such a
path is said to be correct.

Remark 3.16. Precisely speaking, there are two differences from the correctness
criterion in [22]:

• In [22], correctness is defined by correctness graphs rather than switching
paths. As for acyclicity the two definitions can easily be shown to be equiva-
lent. We employ the definition by paths here and later in the thesis because
it is useful in some proofs.

• We drop the connectedness condition in [22]. In the terminology of linear
logic, this corresponds to allowing MIX rule.

18

` A⊥, A
ax

π1....
` Γ1, A

π2....
` Γ2, A

⊥

` Γ1,Γ2
cut

π1....
` Γ1, A

π2....
` Γ2, B

` Γ1,Γ2, A⊗B
⊗

π′
....

` Γ, A,B

` Γ, A`B
`

. . .

Γ
A B

`
A`B

π′

ax

A⊥ A

cut

π1

. . .

Γ1

π2

. . .

Γ2

7→

7→

π1

. . .

Γ1

π2

. . .

Γ2

7→

7→

⊗

A⊗B

A B

A A⊥

π1....
` Γ1

π2....
` Γ2

` Γ1,Γ2
MIX

π1

. . .

Γ1

π2

. . .

Γ2

7→

Figure 3.6: Correspondence between Sequent Calculus Proof and Proof Structure
(1)

Definition 3.17 (MELL Proof Net). An MELL proof net is an MELL proof
structure of which surface structure satisfies the correctness criterion and the
content of every box in it is itself an MELL proof net.

Lemma 3.18. Let R be an MELL proof net. If R ⇝ S then the MELL proof
structure S also satisfies the correctness criterion, hence S is an MELL proof
net.

The fact that the correctness criterion is indeed a characterization of those
“correct” structures is verified by the next theorem. Together with Lemma 3.18,
reduction of proof nets indeed serves as cut-elimination procedure.

Theorem 3.19 (Sequentialization Theorem). Given an MELL proof structure
R, if it is an MELL proof net (i.e. satisfies Danos-Regnier correctness criterion)
then there exists a derivation tree π of MELL sequent calculus satisfying π = R.

3.4 Geometry of Interaction as Token Machine

The Geometry of Interaction, proposed by Girard himself in [39] is a framework
to give a semantics of linear logic proofs (or proof systems derived from linear
logic) as “consistent paths” in proofs in the system. Intuition is that such a path
in a proof represents an information flow over the proof that seeks the source of
an atom (thought as a data) in a logical formula.

19

π′
....

` Γ, ?A, ?A

` Γ, ?A
?C

π′
....

` Γ, A

` Γ, ?A
?D

π′
....

` Γ
` Γ, ?A

?W

π′
....

`?Γ, A

`?Γ, !A
!

. . .

Γ
?A ?A

?c

?A

π′

. . .

Γ
A

?d

?A

π′

. . .

Γ

?w

?A
π′

A

π′

. . . !? ?
?Γ

. . .

!A
?Γ

. . .

7→

7→

7→

7→

Figure 3.7: Correspondence between Sequent Calculus Proof and Proof Structure
(2)

There are various representation of GoI. We follow the most concrete one,
namely the token machine, or specifically the Interaction Abstract Machine (IAM)
given by Danos and Regnier [23].

Definition 3.20. A stack s is given by the following BNF:

σ ::= ∗ | l(σ) | r(σ) | ⌈σ, σ⌉ ,

s ::= ϵ | l.s | r.s | σ.s ,

where ϵ denotes an empty stack and the dot (.) denotes concatenation. Concate-
nation s.ϵ or ϵ.s with an empty stack is defined to be s.

Definition 3.21 (Occurrence Indication). Let A be an MELL formula. A stack
s indicates an occurrence of an atom α in A if s[A] = α holds, where s[A] is
inductively defined by

• ϵ[α] = α,

• l.s[A□B] = s[A];

• r.s[A□B] = s[B];

• σ.s[♠A] = s[A];

• s[A] is undefined otherwise;

20

?c
(l(σ).s, t)

(σ.s, t)
?c

→↓

←↑

(and similarly for the right premiss)

→↓

←↑
?d?d

(∗.s, t)

(s, t)

Exponential Boxes

!

(σ.s, t)

(s, σ.t)→↓

←↑
!

ax ax
(s, t)↓

cut
(s, t)↑

cut

→↑

→↓

�
(s, t)

�
(l.s, t)

→↓

←↑

�
(s, t)

�
(r.s, t)

→↓

←↑

(s, t)↑

(s, t)↓

. . .(σ.s, τ.t)

?
(dσ, τe.s, t)

?
→↓

←↑

Multiplicatives

Exponential Nodes

Figure 3.8: IAM Transition Rules

where □ ∈ {⊗,`}.

Definition 3.22. Let R be an MELL proof net. A state is a triple (e, s, t) where
e is an edge of R (possibly of the content of a box), s is a stack indicating an
atom in the type A of the edge, and t is a stack.

Intuitively, the token machine we are going to define employs a single token
running over a proof net. A state (e, s, t) represents a token on the edge e, keeping
track of an atom in the type of e by the stack s. The other t remembers in which
copy of ! box the token lies.

Definition 3.23 (Initial and Final State). Let R be an MELL proof net. An
initial state is a state (e, s, ϵ) where e is a conclusion edge of R, s indicates a
negative atom in the type A of the edge e. Similarly, a final state is a state
(e, s, ϵ) where e is a conclusion edge of R, s indicates a positive atom in the type
A of the edge e.

Definition 3.24 (Transition Rules). The transition rules over states are picto-
rially defined in Figure 3.8, by representing a state (e, s, t) as a bullet and a pair
(s, t) next to the edge e. An arrow with →↑ (resp. →↓) can be applied only when s
indicates a negative (resp. positive) atom. The symbol □ in the figure represents
a ⊗ node or a ` node.

Thus, intuitively a token starts from a conclusion of a given net, travels over
the net, and ends its travel again a conclusion. The states and the transitions
defined above form a transition system:

Definition 3.25 (Interaction Abstract Machine). Given an MELL proof net R,
the Interaction Abstract Machine (IAM) MR is the transition system (S,→)
where S is the set of all states and →⊆ S×S is the one induced by the transition
rules.

Via the IAM, we can give a semantics of proof nets. It is a semantics in the
sense that it is invariant under reduction of proof nets, with a condition that any

21

? modality appears in the conclusions (Theorem 3.27). In other words, we can
calculate the result of proof net reduction by the IAM instead of reducing a given
net.

Definition 3.26 (Token Machine Semantics). Given an MELL proof net R, the
token machine semantics JRK of the proof net is a partial function InitR ⇀ FinR
given by JRK(T) = U if the run of the IAMMR from the initial state T terminates
in the final state U, and otherwise undefined.

Theorem 3.27. Let R be an MELL proof net without any ? in its conclusion. If
R⇝ S, then JRK = JSK.
3.5 Quantum Computation

In the thesis we do not investigate quantum computation itself, but rather we
would like to show that the minimalistic requirement to constitute quantum com-
putation is accommodated in our framework in Chapter 5. Therefore, we base our
argument on a setting as simple as possible: we only consider finite-dimensional
case, and thus we use vectors in a finite-dimensional Hilbert space to represent a
quantum state. For further details see the standard literature [77].

A quantum bit (often called qubit) is represented by a non-zero vector in a
two-dimensional complex Hilbert space. The orthonormal basis is written as |0⟩
and |1⟩. Thus a qubit is represented by a superposition of |0⟩ and |1⟩. Then a
state of a multi-qubit system is represented by the tensor product of states of
qubits. For example, the basis of a 2-qubit system consists of tensor products of
basis vectors of the two 1-qubit system, that is |0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩, and
|1⟩ ⊗ |1⟩. We write |00⟩ for |0⟩ ⊗ |0⟩, and so on. In such a multi-qubit system, a
peculiar state can exist: For example, the state 1√

2
(|00⟩+ |11⟩) is one of such: as

easily calculated, the state cannot be decomposed into a tensor product |φ⟩⊗ |ψ⟩
of two 1-qubit states φ and ψ. Such a state is called an entangled state, and is the
computational power of quantum computation arises from such entangled states.

Two primitives can be applied to a quantum state: one is application of
unitary gates represented by unitary maps in the Hilbert space. Among unitary

gates, H (Hadamard gate) that sends |0⟩ to
√
2
2 (|0⟩+ |1⟩) and |1⟩ to

√
2
2 (|0⟩− |1⟩),

and CNOT (controlled not gate) that sends |xy⟩ to |x ⊕ y⟩ ⊗ |y⟩ (here ⊕ is the
classical exclusive or) are particularly important, since by applying CNOT(H|0⟩⊗
|0⟩) we can obtain an entangled state 1√

2
(|00⟩+ |11⟩).

The other is measurement : when we would like to retrieve classical informa-
tion (bits) from a quantum state in superposition, in general application of mea-
surement probabilistically yields 1 or 0, with probabilities coming from the (nor-
malized) coefficients. Concretely, given a quantum state α0|0⟩ ⊗ ϕ0 + α1|1⟩ ⊗ ϕ1,
measurement on the first qubit yields 0 with probability |α0|2, resulting a state
|0⟩ ⊗ ϕ0, or 1 with probability |α1|2 resulting |1⟩ ⊗ ϕ1. Therefore, measurement
has another distinctive feature: after measurement, the original state globally
collapses into one of the two possible results.

3.6 Nominal Set

The notion of nominal set has been devised to mathematically cleanly handle the
names appearing in computer science, especially in the study of programming
languages. Although it is a theory as rich as yielding a book [84], what we need
in the thesis is only the very basic notions.

22

Definition 3.28. Let G be a group. A G-set (M, ·) is a set M equipped with
an action of G on M , i.e. a binary operation (·) : G×M →M that respects the
group operation, meaning g · (g′ ·m) = (g · g′) ·m for each g, g′ ∈ G and m ∈M .

Definition 3.29. Let I be a countably infinite set; let M be a set equipped with
an action of the group FinBij(I) of finitary permutations of I.

A support for m ∈ M is a subset A ⊆ I such that for all σ ∈ FinBij(I),
∀i ∈ A, σi = i implies σ ·m = m.

A nominal set is a FinBij(I)-set all of whose elements have finite support. In
this case, if m ∈M , we write supp(m) for the smallest support of m.

The complementary notion of support is freshness: i ∈ I is fresh for m ∈ M
if i ̸∈ supp(m).

We write (i j) for the transposition which swaps i and j.

We will make use of the following characterization of support in terms of
transpositions:

Proposition 3.30. A ⊆ I supports m ∈ M if and only if for every i, j ∈ I − A
it holds that (i j) ·m = m. As a consequence, for all i, j ∈ I, if they are fresh for
m ∈M then (i j) ·m = m.

23

Chapter 4

Synchronous Interaction Abstract Machine

4.1 Motivation

This chapter introduces the main idea and contribution of the thesis, namely
a notion of multi-token machine, called the Synchronous Interaction Abstract
Machine (SIAM). We are going to develop various notions around the multi-
token machine and its underlying proof net system. Before doing so, we describe
the original motivation of the entire work of the thesis. The section is devoted to
this purpose.

The notion of multi-token machine in the thesis was first initiated in [99] for
a multiplicative (thus very simple, restricted) fragment, and later developed fur-
ther in [18] by accommodating exponentials and recursion. The technical details
in this chapter are mostly those of [18], with some modification where needed.
Among the content, the proof theory on the nets partly owes to our coauthor
Claudia Faggian; most of the theory on the multi-token machine, especially its
details, has been developed by the author on the other hand.

4.1.1 Deterministic, Arithmetic Case

Let us first recall the GoI token machine by Mackie [69]. A token bears a pair
(s, n) where s is the information required to find its path; n is a query for a
natural number or an actual natural number under calculation. The primitives
under consideration in the paper include constants n (0-ary), the successor and
the predecessor (both unary), as in the usual PCF. Perhaps it might seem that we
already need multiple tokens if we have a binary (or in general n-ary for n > 1)
primitive such as the addition operator +; however, the case is still feasible with
a single token by stipulating a few more transition rules. Let us take a PCF term
4 + (succ 1) as an example. As a natural extension of the style Mackie took to
accommodate succ node in the paper [69], we give the interpretation of a binary
function + as a node with three conclusions, one with type N and the others
with N⊥, as shown in Figure 4.1. Then, the net corresponding to the term M
is as in Figure 4.2. To extend the token machine semantics so as to interpret

N⊥ N⊥ N
+

Figure 4.1: The Node for +

N⊥
+

N⊥ N
4 1 succ

cutcut
cut

Figure 4.2: A Net Interpreting the
PCF Term

the operator +, we add two more symbols +1,+2 to the language of stacks in
the token machine. Then, a token can correctly calculate the natural number

24

that coincides with the normal form of the term M, namely 6 in this case, by
following the rules shown in Figure 4.3. Intuitively, the first rule throws a query

N⊥ N⊥ N
+

(s, nt)↑
N⊥ N⊥ N

+

(+1s, nt)
↓

−→

N⊥ N⊥ N
+

N⊥ N⊥ N
+

(+2s, nt)
↓

−→

(+1s, nt)
↑

N⊥ N⊥ N
+

N⊥ N⊥ N
+

(s, (m + n)t)↓

−→

(+2s,mnt)↑

Figure 4.3: Additional Transition Rules for Summation

for the first argument of the + node; the second one throws a query for the second
argument, after receiving a natural number for the first query; and the last one
means that both of the two queries successfully returned, thus the rule adds the
two returned values and returns their sum as the final result. Indeed, these rules
are essentially the same as the categorical token machine used by Hasuo and
Hoshino [45]. Several snapshots of the whole execution is described in Figure 4.4.

N⊥
+

N⊥ N
4 1 succ

(ε, q)↑

(+1, q)
↑ N⊥

+

N⊥ N
4 1 succ

(+1, 4)
↑N⊥

+

N⊥ N
4 1 succ

(+2, 4)
↑ N⊥

+

N⊥ N
4 1 succ

(+2, 2 4)↑
N⊥

+

N⊥ N
4 1 succ

(+2, 4)
↓N⊥

+

N⊥ N
4 1 succ

N⊥
+

N⊥ N
4 1 succ

(ε, 6)↓

cut
cut

cut

cut
cut

cut

cut
cut

cut

cut
cut

cut

cut
cut

cut

cut
cut

cut

cut
cut

cut

Figure 4.4: Execution

25

4.1.2 Quantum Case

The situation fundamentally changes when we start to consider a quantum lan-
guage, and it is indeed our original motivation to introduce the multi-token ma-
chine framework. As briefly explained in Section 3.5, one of the peculiar phenom-
ena in quantum computation is entanglement : there exist quantum states that
cannot be decomposed into a tensor product of two states. We are going to look
at two examples involving entanglement. One is the original leading example that
motivated us; however later we realized that it can be interpreted by a single-
token framework with some more complication. The other is more fundamental,
and as for this situation we believe that it exhibits a clear motivation for introduc-
ing a token machine with multiple tokens. Let us look at the first one: we would
like to express a term let ⟨x, y⟩ = (CNOT(Hnew ⊗ new))inx⊗ (CNOT(Hnew ⊗ y))
with quantum primitives in an appropriately extended net, where new represents
preparation of a new qubit; H and CNOT are the 2-qubit Hadamard gate and the
CNOT gate, respectively. To exploit the advantage of being based on linear logic,
it seems natural to assume that the tensor product ⊗ in the quantum language is
interpreted by the ⊗ connective in linear logic1.In the same way as the classical
case above, the most natural candidates for the nodes for qubit preparation and
a unitary gate on n qubits are the ones in Figure 4.5. Using those nodes, the

Q⊥ Q⊥
Un

Q Q

|0〉

Figure 4.5: Nodes for Quantum Primitives

term may be translated into the net depicted in Figure 4.6.

|0〉 |0〉 H CNOT

|0〉

Q⊥
H

Q Q⊥ Q⊥
CNOT

Q Q

cut

cut

cut
cut

cut

cut

Figure 4.6: A Net Interpreting the Term

As a trial, let a token start traveling from the leftmost conclusion as in Fig-
ure 4.7. It first hits CNOT; then as in classical case it starts to search for the first
argument of the CNOT node, and hits the |0⟩ node. Then it returns to the CNOT
and searches for the second argument, hits H and again searches for its argument,
hits another |0⟩. Finally return to the CNOT node and tries to return the state
of the second qubit of the 2-qubit state—which fails and gets stuck, because it
is impossible to represent “the state of the second qubit” of the entangled state
CNOT(Hnew ⊗ new).

Though the execution can be modified not to get stuck if we separate the
quantum data from the token and instead make it bear a pointer to the sepa-
rated data; this is indeed what the categorical token machine [45] essentially does.
However, we still face another mismatch between the term and the (prospected)
interpretation as a token machine, which the following example run of the ma-
chine shows. To see it, let a token again start from the leftmost conclusion.
Since we now do not require a token to retrieve a one-qubit state explicitly,

1This is not the case in Hasuo and Hoshino [45]. There are two kinds of tensor products in
their type system, one for “not entangled for sure” products and another for “maybe entangled”
products, and only the former is interpreted by the multiplicative conjunction ⊗.

26

|0〉 |0〉 H CNOT

|0〉

Q⊥
H

Q Q⊥ Q⊥
CNOT

Q Q

cut

cut

cut
cut

cut

cut

|0〉 |0〉 H CNOT

|0〉

Q⊥
H

Q Q⊥ Q⊥
CNOT

Q Q

cut

cut

cut
cut

cut

cut

|0〉 |0〉 H CNOT

|0〉

Q⊥
H

Q Q⊥ Q⊥
CNOT

Q Q

cut

cut

cut
cut

cut

cut

Figure 4.7: Execution (That Fails)

it may travel around the leftmost CNOT node and safely return to the origi-
nal conclusion—with the state 1√

2
(|00⟩ + |11⟩) calculated along the path, and a

pointer to the second qubit of the state. The point is that the obtained state is
not the intended one (12(|000⟩ + |011⟩ + |101⟩ + |110⟩), where the conclusion we
chose corresponds to the first qubit), and even not compatible with the intended
one, due to entanglement. The reason why the state obtained by this single-token
machine does not coincide with the desired one is that the path of a single token
may miss a (possibly large) part of the net that is actually critical to calculate
the resulting entire state. The behavior is well known as the fact that typical
GoI models are only adequate for call-by-name calculi, not for call-by-value ones;
this nature is also influencing here, in a harmful way.

Hence, if we aim to model quantum computation in the framework of GoI
token machine, it only makes sense to compute all the qubits at the same time.
Considering that one token is in charge of one base type in standard token ma-
chines, it implies that we have multiple tokens at the same time. In this way,
the main theme of the thesis arises. The formal definition and properties of such
multi-token machines will be introduced in Section 4.2 and thereafter.

4.2 SMEYLL Proof Nets

To define multi-token machines as informally described in the previous section,
we first of all need their underlying proof nets, called SMEYLL proof nets (meant
to be read like “smile nets”, and to be the initials of Linear Logic with Synchro-

27

nization, Multiplicatives, Exponentials, and Y-combinator). The section consists
of the definition of SMEYLL proof nets.

4.2.1 Formula

The logical formulas are the same as (classical) MELL formulas with units:

A ::= 1 | ⊥ | A⊗A | A`A | !A | ?A.

Following the usual convention in linear logic, linear negation (−)⊥ is defined on
any formula. The linear implication A⊸B is defined to be A⊥`B. The positive
(resp. negative) types are defined by P ::= 1 | P ⊗P (resp. N ::= ⊥ | N ⊗N).
These formulas will be equipped to proof nets we will define later in the chapter.

4.2.2 Proof Structures

As in linear logic, SMEYLL proof nets (or shortly SMEYLL nets) will be defined
to be proof structures satisfying a correctness criterion akin to Danos & Regnier’s
acyclicity condition [22]2. An interesting point is that our correctness criterion
possesses an additional meaning in the theory of our multi-token machines (that
will be introduced in Section 4.3), that is, it can be seen as a sufficient condition
for deadlock-freedom of the machines.

The kinds of nodes (also called links or cells in the literature) used to construct
SMEYLL proof structures are shown in Figure 6.1. The edges are directed from
top to bottom: an incoming edge of a node is drawn as an edge coming from
above the node, and an outgoing edge is drawn as an edge from below. The
incoming (resp. outgoing) edges of a node are called premises (resp. conclusions)
of the node. Among them, what we introduce are three kinds of nodes specific
to our structures: sync, ⊥-box, and Y-box . The other nodes (multiplicatives,
units, exponentials) are exactly the same as those of the MELL proof nets (see
Section 3.3).

Exponentials

?c ?w
?A

?A?A

Sync

. . .
P1

Pn

Pn

P1⊥
. . .

Γ
⊥

Units
one
1

ax
A⊥ A cut ⊗ `A A⊥ A B

A⊗B

A B

A`B

Multiplicatives

?A
!

Y

?A
?d
A

?A1 ?An!A

. . . ?An!A

. . .

?A1

Fixpoint

Figure 4.8: SMEYLL Nodes

• A sync node has n-many pairs of a premise and a conclusion, pairwisely
having the same positive type. As shown in Figure 6.1, a sync node is

2As mentioned in Chapter 3, hereafter in the thesis we drop the connectedness condition that
is present in [22]. This corresponds to allowing the MIX rule that makes definition of proof nets
with exponential rules easier.

28

S S

. . .! ? ? Y . . .? ?

.

Y-box

!A ?A1 ?An !A ?An
⊥

A

S

⊥ . . .
. . .

+ +

Γ

Γ⊥
bot

A

!-box ⊥-box

?A1
⊥

?A⊥

Figure 4.9: !-, Y-, and ⊥-Boxes, Pictorially

depicted as n-many black squares connected by a line (note that it is a
single node, not n-many nodes connected by edges). It plays a crucial role
to make multiple tokens synchronize in Section 4.3.

• A ⊥-box is a box, like a !-box in the usual MELL nets, with a principal con-
clusion typed by ⊥ and auxiliary conclusions typed by Γ = A1, A2, · · · , An

(possibly n = 0). A ⊥-box must be associated with a content with conclu-
sions Γ and ⊥ node, another new kind of node with no premises and one
conclusion typed with ⊥. This corresponds to adding a rule

⊢ Γ
⊢ ⊥,Γ

for the unit ⊥ to the sequent calculus.

• A Y-box is also a box, with a principal conclusion typed by !A and auxiliary
conclusions typed by Γ = A1, A2, · · · , An (possibly n = 0). A Y-box has one
content with conclusions A and ?A⊥ that is intuitively a recursive function.
This corresponds to adding a “fixpoint” rule

⊢ A, ?A⊥, ? Γ

⊢ !A, ? Γ

to the sequent calculus.

The others are all identical to the nodes for MELL proof structures with multi-
plicative units.

Remark 4.1. In [99], the authors introduced nodes for unitary gates and mea-
surement to interpret a variation of quantum λ calculus: the former ones have
essentially the same typing as our sync nodes, and the latter ones correspond
to multi ⊥-boxes. However, besides the calculus in [99] does not accommodate
exponentials or recursion, the choice taken there actually obfuscates the precise
roles of structures and computational effects, and both the expressiveness and
the properties the proof nets satisfy are weaker than the ones in this thesis. By
separating the structures (as sync nodes and multi ⊥-box) from effects (will be
added in the later in this thesis), we obtain a clearer and more modularized tool
to analyze computation in general.

Remark 4.2. A node for recursion itself is not a novel notion: Montelatici [75]
already introduced such one, though with a slightly different typing rule and a
reduction rule. Indeed, if the formula A is negative, our Y-box can be seen as
a composition of the usual !-box and Montelatici’s Y-box. Thus our construc-
tion can in turn be seen as a relaxation of Montelatici’s Y-box to not necessarily
polarized formulas. This relaxation is crucial when we interpret programming
languages later (Section 4.5), since an interpretation of a function type is neither
positive nor negative in general. Moreover, in [75] no Geometry of Interaction
model is given for the nets, while we have a concrete one that will be also intro-
duced later in this chapter (Section 4.3).

29

Definition 4.3 (SMEYLL Proof Structure). A SMEYLL proof structure is a
finite directed graph built from the nodes in Figure 6.1 where

• each edge is equipped with a type. Each node has to satisfy its constraint
on the types of premises and conclusions as shown in Figure 6.1;

• some edges may be dangling, i.e. may not be connected to any node. Those
edges are called the conclusions of the structure. By abuse of notation,
their types are also called the conclusions;

• the graph is equipped with a total map from all the boxes (!-boxes, Y-boxes,
and multi ⊥-boxes) in it to their contents that are again proof structures.

The depth of a node in a structure is also defined similarly to the MELL case.

Like the MELL case, it is intuitive and convenient to draw a box and its content(s)
as if it is really a “box” filled with its content (Figure 4.9).

Example 4.4. An example of SMEYLL proof structure is shown in Figure 4.10.
Observe that all the typing of edges are instances of the typing in Figure 6.1.

?w
1

ax

?d

! 1

⊥ + +
⊥
bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

?⊥

?⊥

⊥ 1 1

1 1

⊥1

1

⊥

⊥

Figure 4.10: Example of SMEYLL Proof Structure

4.2.3 Reduction Rules

The reduction rules ⇝ for the SMEYLL proof structures are also an extension
of those for MELL, except we require two constraints on reductions:

Definition 4.5 (Reduction Rules of SMEYLL Proof Structure). The reduction
rules of SMEYLL proof structures are shown in Figure 4.11. They are local by
definition: any reduction rewrites the redex into the reduct of the rule applied
and keeps the rest of the proof structure unchanged. Each rule is named for
convenience.

Moreover, we require every reduction to be surface, meaning that we restrict
any reduction to be at depth 0, and to be closed, meaning that reductions on
boxes are prohibited if the box of which the principal conclusion in the redex has
an auxiliary conclusion.

We write ⇝∗ for the reflexive and transitive closure of the reduction relation
⇝ induced by the reduction rules. We also write R ̸⇝ if the structure R is
normal, i.e. if there does not exist any structure S that satisfies R⇝ S.

The rules on MELL connectives in Figure 4.11 are basically identical to MELL
proof reduction rules. Each of the newly-introduced nodes comes with new re-
duction rules; the intuition of the rules for newly-introduced nodes in Figure 4.11
are as follows.

• The rules on sync nodes first “push up” the nodes (⇝s.com rule); if a sync
node reaches the “top” of the structure with all the premises connected to
unit nodes, then it vanishes in a synchronous way (⇝s.el rule).

30

S

cut

?c
cut
cut cut

?w
! ! ! !

 c w

cut

!

S1

. . .! ?

. . .
?

S2

cut

S1

. . . ?

. . .
! p

S

cut

!
?d

S

cut

 d

ax

cut
 a

Sbot
Γ. . .

. . .one

cut

S
Γ. . .

Exponentials

Units

Multiplicatives

 s.el

⊗ `
cut

 m cut

⊗
.

.
⊗ s.com

Sync

⊥ ++

oneone

cut

. . .

 ⊥

S S

Y
cut

S

Y
 y

!

SSS

S2

!

. . .
one one

cut

!

S1

. . .Y ?

. . .
?

S2

cut

S1

. . . ?

. . .
! p

S2

Y

Figure 4.11: Reduction Rules

• The rule⇝⊥ for ⊥-boxes “opens” a ⊥-box, which makes the content of the
box ready to be reduced (the content cannot be reduced unless it comes
out to surface because we require surface reduction).

• A Y-box turns into a ! box by ⇝y rule, unfolding its content and at the
same time duplicating itself. The intention becomes clear by looking at
the translation of a PCF term letrec f x =M inN , shown in Figure 4.12.
The structure reduces to the translation of explicit substitution of f by
λx.letrec f x =M inM in N . Note that the duplicated substructure is in
the inner box, thus due to surface reduction it temporally stops to reduce
further, and hence the rule itself does not immediately introduce divergence.

Surface reduction prohibits any reduction inside a box; we require it in order
to interpret call-by-name calculus with effects appropriately. The role of closed
reduction is simplification; for simple nets (a notion defined later) we can always

31

M † M †
M †

 y

!

N †

N †

cut
cut

cut
Y

Y

Figure 4.12: Example of Y reduction

find a closed redex, thus it is sufficient to analyze closed reductions only.

Example 4.6. An example of SMEYLL proof structure is shown in Figure 4.13.
There are three cuts (named A, B, and C, shown in red) in the structure. The
cut A cannot be reduced since it is not closed (the box in the redex has an
auxiliary conclusion). The cut B cannot reduced neither, since it is not surface
(it is in a !-box). Only C can be reduced: the box whose principal conclusion is
involved in the redex is surface and closed.

!

!
?d

oneax

⊗ ?d

ax

cut

!

one

cut

ax

`
ax

cut

?d ?
A

B

C

Figure 4.13: Example of a SMEYLL Proof Structure with Some Redexes

Since we have a structure for recursion, namely Y -boxes, the reduction of proof
structures do not always terminate. Hence it makes sense to have a predicate for
convergence:

Definition 4.7 (Convergence of SMEYLL Proof Structure Reduction). We write
R⇓ if there exists a SMEYLL proof structure S satisfying R⇝∗ S and S ̸⇝.

We are going to define a subset of proof structures, namely proof nets, and
mainly focus on that subset as in linear logic. However, a strong form of conflu-
ence can be already proved for proof structures:

Proposition 4.8 (Diamond Property). Let R be a SMEYLL proof structure. If
R ⇝ R1 and R ⇝ R2, then either R1 = R2 or there exists a SMEYLL proof
structure S satisfying R1 ⇝ S and R2 ⇝ S.

Proof. By case analysis.

Corollary 4.9 (Confluence, Uniqueness of Normal Form). The reduction relation
⇝ is confluent. Moreover, the normal form is unique for any SMEYLL proof
structure.

Proof. By the tiling argument as usual in abstract reduction systems.

In the rest of the thesis, we also make use of another subset of the proof struc-
tures, namely simple structures. Being simple is often assumed in propositions.
Note that the following definition is about the conclusions of a structure; a simple
structure may contain any complex substructure, e.g. Y-boxes.

32

Definition 4.10 (Simple Structure). A SMEYLL proof structure R is simple if
the conclusions of R consist only of the symbols {1,⊗,`}.

Example 4.11. The proof structure in Figure 4.14 below (exactly the same as
Figure 4.10) is a simple proof structure; as noted above, it contains non-simple
substructures.

?w
1

ax

?d

! 1

⊥ + +
⊥
bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

?⊥

?⊥

⊥ 1 1

1 1

⊥1

1

⊥

⊥

Figure 4.14: Example of SMEYLL Proof Structure (Shown Again)

Example 4.12. A sequence of reduction from the structure above is shown in
Figure 4.15. Note that the reduction on the sync node cannot take place until
two 1 nodes are immediately above the sync node.

4.2.4 SMEYLL Proof Nets

The SMEYLL proof structures include badly behaving ones, in a different mean-
ing from the MELL case in which the proof structures considered as malicious
are those do not have any sequent calculus proof as their counterpart. In our
case the explanation does not stay valid, since the three nodes we introduced
have not found their logical counterparts yet. Instead, we set our “correctness”
as two properties: normalization of reduction and deadlock-freedom of the token
machine we define later.

Remark 4.13. The relation between correctness of proof nets and deadlock-
freedom has already been studied in [9], but the direction is different from ours.
In short, they define a correctness criterion by deadlock-freedom while we de-
fine a correctness criterion for deadlock-freedom. In [9], correctness is given by
a certain kind of deadlock-freedom by viewing proof structures as distributed
systems, and they do use a notion of synchronization. However, their notion of
synchronization is just to establish a path, and the tokens disappear immedi-
ately after synchronization. Moreover, synchronization of three or more tokens
as in the quantum case is not considered nor straightforward to accommodate.
Hence, for our purpose of introducing multi-token machines their viewpoint is
not a satisfactory one.

The correctness criterion is defined as follows, using the notion of switching path
as in linear logic, suitably accommodating sync nodes we introduced.

Definition 4.14 (Switching Path). Given a SMEYLL proof structure R, a
switching path is an undirected path on R (i.e. a path allowed to traverse a
directed edge forward or backward) satisfying that

• on each ` node, the path uses at most one of the premises;

• on each ?c node, the path uses at most one of the premises;

• on each sync node, the path uses at most one of the conclusions;

and the path does not use any edge twice or more.

33

?w
1

ax

?d

! 1

⊥ + +
⊥
bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

?⊥

?⊥

⊥ 1 1

1 1

⊥1

1

⊥

⊥

?w

ax

?d

! 1

⊥ + +
⊥
bot

!

one
one

cut

⊗
1⊗ 1

ax

cut
?⊥

⊥ 1 1

1 1

⊥1

1

⊥

⊥

?w
1

Y

one
?⊥

cut

?w

ax

⊥ + +
⊥
bot

one
one

cut

⊗
1⊗ 1

ax

cut

⊥ 1 1

1 1

⊥1

1

⊥

⊥

?w
1

Y

one
?⊥

cut

 ∗

ax

⊥ + +
⊥
bot

one
one

cut

⊗
1⊗ 1

ax

cut

⊥ 1 1

1 1

⊥1

1

⊥

⊥

⊥ + +
⊥
botone one

cut

⊗
1⊗ 1

ax
1 1

1 1

⊥1

1

⊥

⊥
⊥ + +
⊥
botone one

cut

⊗
1⊗ 1

ax
1 1 ⊥1

1

⊥

⊥

one

⊗
1⊗ 1

ax
1 ⊥1

⊥

Figure 4.15: Example of Reductions

Definition 4.15 (Correctness Criterion). The correctness criterion for SMEYLL
proof nets states that given a SMEYLL proof structure R, all of its switching
paths are acyclic. Such a path is said to be correct.

Definition 4.16 (SMEYLL Proof Net). A SMEYLL proof net is a SMEYLL
proof structure of which surface structure satisfies the correctness criterion and
the content of every box in it is itself a SMEYLL proof net.

Example 4.17. The proof structure in Figure 4.14 indeed satisfies the correct-
ness criterion, and is thus a SMEYLL proof net. It is clear that we have to use
both of the conclusions of the unique sync node in order to form a cyclic path,
but such a path cannot be a switching path by definition.

An example of SMEYLL proof structure that does not satisfy the correctness
criterion is shown in Figure 4.16: there is a cyclic switching path shown as a red
dashed path in the figure. Observe that the path does use at most one conclusion

34

per one sync node.

one

1

1

1 1

1

⊥
cut

one
1

ax

⊗

1

1⊗ 1

Figure 4.16: Example of Incorrect SMEYLL Proof Structure

As in linear logic, the correctness is preserved by reduction. Moreover, simple
SMEYLL proof nets satisfies progress property, and cut elimination property as a
corollary. Here the proof of progress property is fairly non-trivial, mainly because
of ⊥-boxes: the fact that any net may be contained in a ⊥-box and may come
out to the surface by opening a ⊥-box prohibits naive induction.

Proposition 4.18. Let R be a SMEYLL proof net and R ⇝ S. Then S also
satisfies the correctness criterion, hence it is also a SMEYLL proof net.

Proof. By case analysis. Note that the correctness criterion requires to use at
most one conclusion on each sync node, so ⇝s rule cannot introduce a cycle if R
satisfies the correctness criterion.

Theorem 4.19 (Progress of SMEYLL Net). Let R be a simple SMEYLL proof
net. If R contains a cut or a sync node, then there exists S that satisfies R⇝ S.

To show Theorem 4.19, we need some auxiliary notions. First we define a subset
of nodes in a net and a notion of normal forms w.r.t. sync and multiplicative
reductions:

Definition 4.20. Given a SMEYLL proof net R, the set OR is defined as
{sync nodes, boxes (both exponential and ⊥-box), and axioms at surface in R}.

Definition 4.21. A SMEYLL proof net is said to be an SM-normal form if no
reduction can be applied on any sync node nor on multiplicative node (i.e. axiom,
cut, ⊗ or `).

Then the following lemmas immediately hold.

Lemma 4.22 (Sync Normal Forms). If no reduction can be applied on any sync
node, then the only nodes which can be above a sync node are: sync, ⊥-box,
axiom, or 1 node.

Proof. By typing of the nodes, `, c?, d?, w?, !-box, and Y-box cannot be con-
nected to a sync node. Note that both !A and ?A are not positive. If a ⊗ node
is immediately above a sync node, the sync node can be reduced. The rest are
the four kinds of nodes as stated.

Lemma 4.23. Each edge of type !A is a conclusion of a box (either an exponen-
tial box or a ⊥-box).

Proof. The conclusion(s) of the other nodes cannot have type !A.

What we mainly make use of is the following kind of paths over nets. The
notion of non-bouncing path is the same one (except for sync nodes) as in linear
logic proof net, while the last three conditions are specific to our setting.

35

Definition 4.24 (Priority Path). Given a SMEYLL proof net R, a priority path
on R is a non-bouncing path, i.e. a directed path on the net R regarded as an
undirected graph, starting from a node in the set OR and satisfying the following:

• if the path enters an edge of a cut or an axiom node, it exits from the other
edge,

• if the path enters an auxiliary conclusion of a box, it exits from the principal
conclusion, and vice versa,

• if the path enters a premise of a ⊗, `, or sync node, it exits from a conclu-
sion, and vice versa,

and additionally satisfying the following:

• the path only enters a sync node from a conclusion and exits from a premise,

• the path only enters a ⊥-box from an auxiliary conclusion and exits from
the principal conclusion ⊥,

• the path only enters an axiom from the conclusion of type 1 and exits from
the conclusion of type ⊥,

• the path only enters an exponential box from the principal conclusion and
exits from an auxiliary conclusion.

Lemma 4.25. Let R be a SMEYLL proof net in SM-normal form, and r be a
priority path. The following hold:

1. When going downwards, the path r can only visit `, ⊗, ?c, or ?d nodes,
entering from a premise and exiting from the conclusion. Moreover, when
going downwards, no edge occurring in the path r is of type !A,

2. When going upwards, the path r can only visit the following nodes, in the
following way.

• sync nodes: r enters from a conclusion and exits from a premise.

• ⊥ nodes: r enters from an auxiliary conclusion whose type is not in
the form ?A, and exits from the principal conclusion.

• ! and Y nodes: r enters from the principal conclusion and exits from
an auxiliary conclusion.

• 1 nodes: r enters from the conclusion.

• axiom nodes: r enters from the conclusion of type 1 and exits from the
one of type ⊥.

Moreover, when going upwards, no edge occurring in r has type ?A.

Proof. Since r starts from a node in OR, and since r is a priority path, the path
r must start as stated in item 1. or item 2. We prove item 1. and 2. each by
induction on the length n of the path r.

1. • If n = 1, the path r starts from an axiom, a !-box, or Y-box and ends
satisfying all the requirements.

36

• If n > 1, let r = r′e where e is an edge traversed downwards, and r′e is
a path that is the prefix of r of length n− 1. By induction hypothesis
r′ satisfies item 1. and 2. The last node snd(e) can only be one of `,
⊗, ?c, ?d, cut nodes, or a conclusion of the net, simply because of the
direction of the path.

Moreover, the type of the last edge e cannot be in the form !A since
it implies that the path r′ exits from the principal conclusion of an
exponential box or from one of auxiliary conclusions of a ⊥-box (by
Lemma 4.23), which contradicts to the fact that r is a priority path.

2. • If n = 1, the path r starts from a sync node and ends satisfying all
the requirements.

• If n > 1, let r = r′(a, a′) where r′ is the prefix of r of length n − 1
and (a, a′) is an edge traversed upwards. By induction hypothesis r′

satisfies item 2. Because of direction, the last node a′ can be one of:
axiom, sync, !-box (from the principal conclusion), Y-box (from the
principal conclusion), ⊥-box (from one of auxiliary conclusions), `, ⊗,
?c, ?d, or ?w. However, the last five kinds of nodes cannot be there by
the following reason. If a′ is ?c, ?d, or ?w, then a must be one of `, ⊗,
?c, ?d because of typing, which contradicts to the induction hypothesis,
or a cut node connected to a principal conclusion of an exponential box
or an auxiliary conclusion of a ⊥-box, which contradicts to the fact
that r is a priority path. If a′ is ` or ⊗, then a must be a sync node
since r′ satisfies the induction hypothesis, which contradicts to the net
R being in SM-normal form, or a cut node connected to either the dual
of a′ or an auxiliary conclusion of a ⊥-box, the former contradicting
to R being in SM-normal form and the latter contradicting to r being
a priority path. Therefore, the node a′ must be one of axiom, sync,
!-box, Y-box, or ⊥-box.

Moreover, the last edge e cannot be in the form ?A by the same reason
as why the node a′ cannot be ?c, ?d, or ?w.

Lemma 4.26. Let R be a SMEYLL net in SM-normal form. Every priority path
on R is a switching path.

Proof. First observe that if a priority path contains at most one premise of each
` node, at most one premise of each ?c node, and at most one conclusion of each
sync node, then it is a switching path.

Suppose that a priority path r uses both premises of a ` node a. Since R
is finite, we can choose such a path of which every proper subpath does not use
two premises of a ` node or a ?c node, nor more than one conclusion of a sync
node. By Lemma 4.25, r must visit a node a downwards. Therefore r must be
in the form r = (a′, a)r′ as shown in Figure 4.17; the subpath r′ (shown in red)
is a cyclic switching path, which contradicts to the assumption that R is a proof
net and thus satisfies the correctness criterion. The same argument applies for
?c nodes and sync nodes.

Now we define the priority order that is the key notion to show Theorem 4.19.

Definition 4.27 (Priority Order). Let R be a SMEYLL proof net in SM-normal
form. The relation ≺ ⊆ OR × OR, called the priority order is given by a ≺ b if
and only if there exists a priority path from the node a to the node b.

37

`
e

a

r′

Figure 4.17: (Impossible) Priority Path

Proposition 4.28. The priority order ≺ is a strict partial order.

Proof. We prove that the relation is irreflexive and transitive.

• Irreflexivity: since a priority path is a switching path by Lemma 4.26, a≺a
means there exists a cyclic switching path, contradicting to R being a proof
net.

• Transitivity: assume a ≺ b and b ≺ c. By definition there exist a priority
path from a to b and one from b to c. Let r = v1....vn be the priority path
from a = v1 to b = vn and r′ = w1...wm be the priority path from b = w1

to c = wm. We claim that b is the only node that the two paths have in
common, and we can hence concatenate them and obtain a priority path
from a to c. Assume that l = wj = ki is the first node belonging to r′ which
belongs also to r. We follow r′ from b to l and r from l to b. Let us call this
path p, and check that it is non bouncing on l. Therefore p is a priority
path, in contradiction with the fact that b ≺ b does not hold. We observe
that p enters l as r′ and exits l as r. The node l cannot be a cut, otherwise
l would not be the first node which belongs to both paths. For all the
other cases, Lemma 4.25 guarantees that, if l is a node of type ⊗,`, ?c, ?d,
then r′ enters from a premise, and r exits from a conclusion. The exact
opposite is true if l is a sync node. If l is a ⊥-box r′ enters from an auxiliary
conclusion, r exits from the principal conclusion. The opposite is true in
case l is an exponential box. If l is an axiom, it is polarized; r′ enters from
a the positive conclusion, while r exits from the negative conclusion.

We can state the following lemma about the priority order.

Lemma 4.29. Any exponential box maximal with respect to the priority order ≺
is closed.

Proof. Let b be an exponential box maximal with respect to ≺. Each auxiliary
conclusion ?A needs to be a hereditary premise of a cut node c. The path r
descending from ?A to the cut node c is a priority path; the extension of r with
the other premise C of c is still a priority path that is now ascending. By Lemma
4.25, the source of C could be either a 1 node, which is not possible because of
the type, or a node in OR, which is in turn against maximality of b. Therefore,
b cannot have any auxiliary conclusion.

38

Lemma 4.30. Let R be a SMEYLL proof net in SM normal form. OR is empty
if and only if there are no cuts in the net R.

Proof. Assume OR is empty, then R is an MLL net (with 1 nodes also); if there
is a cut, we could perform a multiplicative reduction. Assume OR is not empty.
If there is a box or a polarized axiom, its principal conclusion needs to be cut,
because it does not appear in the conclusions. If there are sync nodes, but no
boxes or axioms, we could apply an s reduction.

Finally, we can prove Theorem 4.19.

Proof. (of Theorem 4.19)
Let R be as in Theorem 4.19. If R is not in SM normal form, a sync or

multiplicative reduction is possible by definition. If R is in SM normal form, and
contains cuts, by Lemma 4.30, OR is non-empty. We find a valid reduction step
by case analysis.

• If OR contains a maximal node l that is not an exponential box, we focus
on it.

– l is a sync node. Any path moving upward from l is a priority path. By
using lemma 4.22 and the fact that l is maximal in OR, we know that
above l there can only be 1 nodes. An s.el reduction hence applies.

– l is a ⊥-box or a polarized axiom. Let ⊥ be the principal conclusion
of the box or the negative conclusion of the axiom. Since it cannot
appear in the conclusions, ⊥ must be a hereditary premise of a cut c.
We find c by descending from ⊥. Since the path descending from l to
the node c is a priority path, by Lemma 4.25 we know that the first
node entered by r after the cut can only be a 1 node, because any other
possibility would belong to OR and is excluded by the maximality of
l. By typing, this implies that the node c is in fact immediately below
l. Hence a reduction applies (either bot.el or axiom-cut).

• Otherwise, we choose a node l as follows.

– If OR contains only exponential boxes, we observe that all cuts have
premises of type ?A, !A, and the !A premise is principal conclusion of
an exponential box. Let l be such a box.

– If OR contains nodes which are not exponential boxes, let l be any
such node.

If l is already a maximal exponential box, let bmax := l, otherwise we choose
a maximal exponential box bmax such that l ≺ bmax. The key properties
that this careful construction guarantees is that for each exponential box b
in the priority path from l to bmax:

i. the principal conclusion !A of b is premise of a cut c;

ii. the other premise ?A⊥ of c is not auxiliary conclusion of a ⊥-box.

(i.) is true for l by construction; moreover, for every exponential box b
which is reached by a priority path r, r can enter b only from the principal
door, ascending from a cut (see case (1.c) in the proof of Lemma 4.25). (ii.)
is true for any cut c which is reached by a priority path r, because if the
cut has premises !A, ?A⊥, r can only use the edge ?A⊥ to descend in c, and

39

must do so from a node which cannot be a ⊥-box (because by Lemma 4.25,
r exits a ⊥-box only from the ⊥ conclusion). We are now able to conclude.

By Lemma 4.29, bmax is a closed box. Because of (i.), the principal con-
clusion !A of bmax is premise of a cut c. The other premise of c has type
?A⊥, and because of (ii.), ?A⊥ can only be conclusion of a node of type
?d, ?c, ?w, or auxiliary conclusion of an exponential box. In each case a
closed reduction applies.

Corollary 4.31 (Cut Elimination). Let R be a simple SMEYLL proof net. If
R⇝∗ S and S is normal, then S does not contain a cut nor a sync node.

Proof. Take the contrapositive of Theorem 4.19.

Corollary 4.32. Let R be a simple SMEYLL proof net. If R is normal, then R
is an MLL proof net, i.e. it only consists of axiom, 1, ⊗, and ` nodes.

Proof. By Corollary 4.31, R cannot contain a cut nor a sync node. If R contains
a node whose conclusion is of type ?A, it must be a hereditary premise of a
cut since R is simple, thus contradicts to the fact that R does not have a cut.
Similarly R cannot have a node with conclusion ⊥ or !A. Thus R can only
contain axiom, 1, ⊗, and `; the other kinds of nodes necessarily have one of the
types mentioned above.

4.3 Synchronous Interaction Abstract Machine

The section introduces the main contribution of the thesis, namely the Syn-
chronous Interaction Abstract Machine (SIAM for short) on the SMEYLL proof
nets. Like the Interaction Abstract Machine [23] (see Section 3.4), it is defined to
be a transition system induced from transition rules on individual tokens. Unlike
the IAM, a state of the system is no longer defined to be a position of one token,
but a set of positions of multiple tokens. The difference makes the behaviors of
the machine much more non-trivial, even though each transition rule is more or
less the same as the IAM ones.

4.3.1 States

Definition 4.33 (Stack). An exponential signature σ and a stack s are defined
by the following BNF:

σ ::= ∗ | l(σ) | r(σ) | ⌈σ, σ⌉ | y(σ, σ) ,

s ::= ϵ | δ.s | l.s | r.s | σ.s ,

where ϵ denotes an empty stack and the dot (.) denotes concatenation. Concate-
nation s.ϵ or ϵ.s with an empty stack is defined to be s.

We have two non-standard symbols in the definition above, namely y(−,−)
and δ: the former handles recursion, while the latter is used to mark a new kind
of tokens (dereliction tokens) appearing later in the section. A stack specify an
occurrence of an atom or a modality in a formula:

Definition 4.34 (Occurrence Indication). Let A be a SMEYLL logical formula
and s be a stack. The stack s indicates an occurrence of an atom α (resp. of a
modality ♠) in A if s[A] = α (resp. s[A] = ♠) holds, where s[A] is inductively
defined by

40

• ϵ[α] = α,

• l.s[A ⋄B] = s[A],

• r.s[A ⋄B] = s[B],

• σ.δ[♠A] = ♠,

• σ.s[♠A] = s[A] if s ̸= δ,

• s[A] is undefined otherwise,

where α ∈ {1,⊥}, ⋄ ∈ {⊗,`}, and ♠ ∈ {!, ?}.

Example 4.35. Let A = !1(⊥ ⊗ !2 1), where the subscripts of !’s are just for
distinction of the two occurrence (i.e. the subscripts are not in the syntax of
logical formulas.) As defined above, the occurrence of !1 is indicated by ∗.δ
since ∗.δ[!1(⊥⊗ !2 1)] = !1, while the occurrence of !2 is indicated by a stack
∗.r. ∗ .δ, calculated as ∗.r. ∗ .δ[!1(⊥⊗ !2 1)] = r. ∗ .δ[⊥⊗ !2 1] = ∗.δ[!2 1] = !2. The
occurrences of units ⊥ and 1 in the formula A are indicated by ∗.l and ∗.r.∗,
respectively.

Next we define positions. A position expresses where and with what status a
token is running over a net.

Definition 4.36. Given a SMEYLL proof net R, a position in the net R is a
triple (e, s, t) where e is an edge (including those inside boxes) of R and s, t are
stacks respectively called a formula stack and a box stack , where s is either δ or
a stack indicating an occurrence of an atom or a modality in the type A of the
edge e and t is a stack consisting only of exponential signatures. We write p,q
for metavariables of positions.

The direction of a position p = (e, s, t), denoted by dir(p), is an element of
the set {↑, ↓,↔} defined by

• dir(p) = ↑ if s indicates an occurrence of a ! modality or a negative atom
⊥,

• dir(p) = ↓ if s indicates an occurrence of a ? modality or a positive atom
1,

• dir(p) = ↔ if s = δ or e is the conclusion of a ⊥ node.

The set of all positions in a net R is denoted by PosR. Several subsets of PosR
will be used later:

• InitR is the set of all positions (e, s, t) where e is a conclusion of R, dir(p) =
↑, and moreover all the exponential signatures in t are ∗.

• FinR is the set of all positions (e, s, t) where e is a conclusion of R and
dir(p) = ↓.

• OnesR is the set of all positions (e, s, t) where e is the conclusion of a 1 node
in R.

• DerR is the set of all positions (e, s, t) where e is the conclusion of a dere-
liction node in R.

• StartR is defined to be InitR ∪OnesR ∪DerR.

41

• StableR is defined to be the set of all positions p with dir(p) =↔.

The requirement that the exponential signatures in t are ∗ in the definition of
InitR is for simplicity of presentation: the discussion later in the section can be
done if we do not have the requirement, but the relaxation of the definition only
yields redundancy and makes no essential benefit.

Definition 4.37 (SIAM State and Token). Given a SMEYLL proof net R, a state
T = (T, origT) over R consists of a set T of tokens and a function3 origT : T →
StartR. When (e, s, t) ∈ T, we also say that “a token with the stacks (s, t) is on
the edge e”. The set of all states on R is denoted by SR.

In the definition of states, the function origT is meant to map each position in T
to its original position.

Definition 4.38 (Initial State). Given a SMEYLL proof net R, the initial state
is the state IR = (InitR, origIR) where origIR is the inclusion function InitR ↪→
StartR.

Definition 4.39 (Final State). Given a SMEYLL proof net R, a final state is a
state (T, origT) where T ⊆ FinR ∪ StableR.

4.3.2 Transition Rules

So far we defined notions to describe “snapshots” of moving tokens. In the section
we define the transition rules and explain their intuition. While many of them
stay local and on a single token, we have several transition rules that involve
multiple tokens at the same time. To define the transition rules we need to define
sets of box stacks:

Definition 4.40. Let R be a SMEYLL proof net and T = (T, origT) be a state
over R. For each substructure S ∈ {R}∪{R′ |R′ is a content of a box in R}, the
set CopyT(S) is defined as follows.

CopyT(S) =

{
{ϵ} if S = R

{t | (e, s, t) ∈ T and e is the principal conclusion of S}

Definition 4.41 (Transition Rules). The transition relation of the SIAM is a
binary relation → ⊂ S × S induced by the transition rules pictorially defined in
Figure 4.18 and 4.19, with the following conventions:

• a token (e, s, t) with the stacks (s, t) on the edge e is depicted by a bullet
(•) accompanied by the pair of stacks (s, t) drawn on (or next to) the edge
e in a picture.

• each transition rule except those marked with (i), (ii), (iii)moves one token.
If p = (e, s, t) is drawn on the left-hand side of a picture and p′ = (e′, s′, t′)
is drawn on the right-hand side, then the relation → is defined to be ({p}∪
T, orig({p}∪T)) → ({p′}∪T, orig({p′}∪T)) for all T, where orig({p′}∪T)(p

′) =
orig({p}∪T)(p) and orig({p′}∪T)(q) = orig({p}∪T)(q) if q ̸= p.

3In [18], a state T explicitly bears the image of the function origT instead of the function
itself, while in [19] we use origT; the two representations are essentially equivalent, and make
no difference in practice.

42

• the rules marked with (i) generate a token if the position newly-added to the
state is not already contained in the image of origT and also t ∈ CopyT(S),
where S is the substructure the edge belongs to. Explicitly, the rules relate
(T, origT) → ({p} ∪ T, orig({p}∪T)) if p /∈ Im(origT), where p = (e, s, t)
as depicted on the right-hand side and orig({p}∪T)(p) = p. The token
generated on the conclusion of a ?d node is called a dereliction token.

• the rule marked by (ii) also requires t ∈ CopyT(S), where S is the content
of the ⊥-box.

• the rule marked by (iii) moves multiple tokens simultaneously. We have a
requirement to apply the rule: every positive atom occurring in the premises
of the sync node is indicated by a token, and all the involved tokens have
the same box stack t.

Besides the conditions (i), (ii), (iii), it is worth mentioning the rule for Y-
box. When a token arrives at its principal conclusion, it first enters the Y-box
and move onto the edge typed by A as if it is a !-box. After traveling inside
the Y-box, the token may reach the principal door from the edge typed by ?A⊥.
This behavior corresponds to a recursive call of the function expressed as the Y-
box: to capture the situation, the token goes onto the edge typed by A, with one
more y symbol in the formula stack. Intuitively, the number n of the y symbols
expresses that the token is executing the n-th recursive call. When the execution
of a recursive call finishes, the token now starts to return the result, ultimately
reaching the edge typed by A with the direction ↓; then it pass the information to
the previous call, with the number of y symbol decreased by 1. If the token does
not contain y symbol on the top of the stack, it means that the entire execution
has finished, and thus it exits the Y-box.

Example 4.42. A sequence of transitions on the SMEYLL net in Example 4.6
is shown in Figure 4.20. The token in the initial state is prohibited to enter the
⊥-box until a token comes to the ⊥ node; the token from the 1 node above the
sync node is also blocked until another token arrives at the other premise of the
sync node.

A fact to note here is that the definition of the transition rules of the SIAM
is parametric on the box stack. Precisely,

Fact 4.43 (Parametricity). Every transition rule is defined parametrically with
respect to box stacks. That means, if a transition
{(e1, s1, t), (e2, s2, t), . . . (en, sn, t)} ∪ T
→ {(e′1, s′1, t′1), (e′2, s′2, t′1), . . . (e′m, s′m, t′m)} ∪ T
is possible with box stacks t, then there exists a transition
{(e1, s1, u), (e2, s2, u), . . . (en, sn, u)} ∪ T
→ {(e′1, s′1, u′1), (e′2, s′2, u′2), . . . (e′m, s′m, u′m)} ∪ T
for any box stacks u. Here n = m where n is the number of saturated tokens if the
rule is sync; n = m = 2 with a token on an edge and another token in CopyT(S)
if the rule is ⊥-box; n = 1, m = 2 with a token in CopyT(S) and another token
added to the state if the rule is token generation; otherwise n = m = 1.

Having explained the rules, the Synchronous Interaction Abstract Machine
(SIAM) on net R is defined as a transition system over the states of R.

Definition 4.44 (Synchronous Interaction Abstract Machine). LetR be a SMEYLL
proof net. The Synchronous Interaction Abstract Machine (SIAM) on net R, de-
noted by MR, is a transition system (SR, IR,→) with IR the initial state.

43

?c
(l(σ).s, t)

(σ.s, t)
?c

→↓

←↑

(and similarly for the right premiss)

→↓

←↑
?d?d

(∗.s, t)

(s, t)

Exponential Boxes

!

(σ.s, t)

(s, σ.t)→↓

←↑
!

ax ax
(s, t)↓

cut
(s, t)↑

cut

→↑

→↓

�
(s, t)

�
(l.s, t)

→↓

←↑

�
(s, t)

�
(r.s, t)

→↓

←↑

(s, t)↑

(s, t)↓

one
→ (ε, t)↓

one

(i)
?d → ?d

(∗.δ, t)↓(i)

. . .(si, t)
↓ (sj, t)

↓
. . .

(si, t)
↓ (sj, t)

↓
→↓

(iii)

⊥ . . .
. . .

+ +

(ε, t)↑

⊥
(ε, t)

⊥-boxes

(ii)

→↑

←↓

→↑
S

. . .

. . .
+ +

S

bot

bot

(s, t)↑
⊥
(ε, t)

. . .

. . .
+ +

Sbot

(s, t)↑

⊥(ε, t)
↔

. . .

. . .
+ +

Sbot

. . .(σ.s, τ.t)

?
(dσ, τe.s, t)

?
→↓

←↑

(s, y(σ, τ).t)↓
(σ.s, τ.t)↑

(*)

→↓Y Y
(σ.s, τ.t)↓

Y

(s, y(σ, τ).t)↑

→↓

(*)
Y

(σ.s, t)

(σ 6= y(τ1, τ2))

(s, σ.t)

→↑

←↓
YY

Multiplicatives

Sync

Exponential Nodes

Figure 4.18: SIAM Transition Rules (i)

44

Y
(σ.δ, t)↑

Y
(δ, σ.t)↔

Y
(σ.δ, τ.t)↓

→ →
Y
(δ, y(σ, τ).t)↔

(σ.δ, t)↑

→!
(δ, σ.t)↔

!

Figure 4.19: SIAM Transition Rules (ii): Exponential Transitions to Stable Po-
sitions

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

→

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↓

→

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↓

(∗.δ, ε)↓ →∗

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↓(δ, ∗)↔

→

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↓(δ, ∗)↔ (ε, ∗)↓

→∗

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↓(δ, ∗)↔ (ε, ε)↓

→

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↓

(δ, ∗)↔

(ε, ε)↓ →∗

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↑

(δ, ∗)↔

(l, ε)↓

→

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥
(ε, ε)↑

(ε, ε)↔(δ, ∗)↔

(l, ε)↓

→

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥

(ε, ε)↔(δ, ∗)↔

(l, ε)↓

(ε, ε)↑

→∗

?w
ax

?d ⊥ + +

bot

Y

one
one

cut

⊗
1⊗ 1

ax

cut

⊥

(ε, ε)↔(δ, ∗)↔

(l, ε)↓
(r, ε)↓

Figure 4.20: Example of Transitions

45

Definition 4.45. Let R be a SMEYLL proof net. An (either finite or infinite)
maximal sequence of transitions IR → T1 → . . . → Tn → is called a run of the
SIAM MR. We write T ̸→ if no transition rule can applied on the state T. A
non-final state T ̸→ is said to be deadlocked. If there exists a run IR → T1 →
. . . → Tn ̸→, the SIAM MR is said to terminate or converge. Similarly, if there
exists an infinite run IR → T1 → . . . → Tn → . . . , the SIAM MR is said to
diverge; if there exists an run IR → T1 → . . . → Tn ̸→ with Tn deadlocked, the
SIAM MR is said to deadlock .

We often simply say the machine to mention the SIAM when it is unambiguous.
As an abstract reduction system, it is straightforward to check that the machine
MR on a net R enjoys some desirable properties:

Proposition 4.46 (Diamond Property). Given any SMEYLL net R, the SIAM
MR has the diamond property.

Proof. By case analysis on each pair of rules: observe that a transition on a token
cannot prohibit a transition on any of the other tokens.

Corollary 4.47 (Confluence, Uniqueness of Normal Form). Given any SMEYLL
net R, the SIAM MR is confluent. Moreover, its final state reachable from the
initial state is unique.

Proof. By the tiling argument. (See Section 3.2.)

Finally, the token machine semantics of a SMEYLL proof net is given as
follows.

Definition 4.48 (Token Machine Semantics). Let R be a SMEYLL proof net.
The token machine semantics JRK of R is either a symbol Ω or a partial functionJRK : InitR ⇀ FinR defined by

• JRK = Ω if MR diverges.

• JRK(p) = q if MR converges and orig(q) = p for q ∈ T where T is the final
state of MR.

Note that in the definition above, a machine MR diverges if there exists one
or more tokens that continue to move forever, even if several tokens can reach
their final positions. This might seem just a matter of definition, but it makes
an essential difference later.

4.3.3 Invariance

A crucial property that the SIAM should satisfy is invariance, meaning that the
behavior of a machine is preserved by net reduction (and thus it).

Theorem 4.49 (Invariance). Let R be a SMEYLL proof net and R⇝ S. ThenJRK = JSK (with the obvious identification of conclusions).

The proof is more non-trivial than the MELL case because not only of being
multi-token but also of existence of divergence. A technical difficulty is that the
key lemmas to prove invariance in the MELL case do not naively extend to our
SMEYLL case due to those reasons. To show the theorem, we first define an
auxiliary notion of transformation map that “translates” the states in MR into
those in MS (we avoid to name it translation because it becomes confusing later
in the thesis).

46

Definition 4.50 (Transformation Map). Given a reducible SMEYLL net R, a
redex r in R, and a reduction on that redex R⇝ S, the transformation map from
R to S is a partial function trsfR,r,S : SR ⇀ SS given by the following way.

• Let the reduction be an ax reduction. Then trsfR,r,S(e, s, t) is defined to be
(e, s, t) if the edge e is not in the redex; otherwise, let e1, e2, e3 be the edges
in the redex and e′ be the edge in the reduct, as shown in Figure 4.21. Then,

ax

cut

e1 e2
e3

e′
Figure 4.21: Edges in the ax Redex

trsfR,r,S(ei, s, ϵ) is defined to be (e′, s, ϵ) for each i ∈ {1, 2, 3}. Since we re-
quire surface reduction, the box stack must be ϵ; otherwise trsfR,r,S(ei, s, ϵ)
is undefined.

• The description above can be rigorously depicted as Figure 4.22: a position
(e, s, ϵ) is represented by putting a bullet (•) and the pair of stacks (s, ϵ)
next to the edge e, and the mapping is represented by the dashed arrows.
If the edge e of a position (e, s, t) is in the redex, but the stacks do not
match with the stacks depicted next to the edge, then trsfR,r,S(e, s, t) is
undefined. Positions not on the edges depicted are assumed to remain the
same (i.e. the image by trsfR,r,S(e, s, t) is defined to be identical to the
position (e, s, t)). We define trsfR,r,S for the other cases of reduction rules

ax

cut
(s, ε)

(s, ε)
(s, ε) (s, ε)

Figure 4.22: trsfR,r,S on ax Reduction, Pictorially

in Figure 4.23 following the convention described, plus a convention that a
dashed arrow pointing to a crossing (×) means the map is undefined on the
position.

We write trsf for trsfR,r,S when no ambiguity occurs.

Remark 4.51. The definition of trsf for some reduction rules deserves detailed
explanation.

• The mapping on the edges around the ` node in the case of ⊗-` rule is
an analogue of those around ⊗. Tokens on the left premise are mapped to
those on the right premise of the cut node on the left, and right to right;
tokens on the conclusion are mapped to left or right according to the symbol
at the top of the formula stack.

• In the definition of trsf for ?d reduction rule, the dereliction token coming
from the ?d node in the redex is deleted. The tokens in the !-box are mapped
to the content of the box that is now at surface, with one ∗ symbol lost
from the bottom of the box stack.

• If the reduction rule is y, we distinguish two cases: if a token in the Y-box
does not have the y symbol at the bottom of the box stack, it is mapped
to the content not in the Y-box in the reduct. This is because having no
y symbol at the bottom means it is the first function call of the recursive
function (that is now unfolded as the content of the !-box in the reduct).

47

T

cut

?c

T

cut

T

cut

!

(s, ε)

(r(σ).s, ε)

(l(σ).s, ε)

(s, ε)
(s, t.l(σ))

(s, t.r(σ))
(s, ε)

(s, ε)

(s, t.σ)
(s, t.σ)

T

cut

?w

T2

cut

T1

. . .! ? ?

. . .

?

T2

cut

T1

. . .? ?

. . .

(s, t)

(dσ, τe.s, ε)

(s, t.dσ, τe)
(s, t)

(σ.s, τ)
(s, t.σ.τ)

T

cut

!
?d

T

cut

(∗.s, ε)
(∗.δ, ε)

(s, t.∗) (s, t)

(s, ε)

(δ, ∗)

. . .
one one one

(ε, ε)

(ε, ε)

one one one
. . .

(ε, ε)

T
bot

⊥ Γ. . .
. . .one

cut
(ε, ε)

(s, t)
T

Γ. . .

(s, t)

⊗ `
cut cut cut

(s, ε)
(s, ε)(s, ε)

(s, ε)

(l.s, ε)
(r.s, ε) ⊗

.

.

⊗
(s, ε)

(l.s, ε)

(s, ε)

(s, ε)

(r.s, ε)

(s, ε)(s, ε)

(s, ε)

T T

Y

T

Y

!

(s, t.y(σ1, y(σ2, . . . , y(σn−2, σn−1) . . .)).σn)
(s, t.σ) (s, t.σ)

(s, t.y(σ1, y(σ2, . . . , y(σn−2, y(σn−1, σn)) . . .))

! ! !

!

!

!

(ε, ε)

(σ is not of the form y(·, ·))
cut

Figure 4.23: trsfR,r,S on Other Reductions

If a token in the Y-box does have one or more y symbols at the bottom of
the box stack, meaning it is the second or later call, then it is mapped to
the content of the Y-box, losing one y symbol.

• No token can exist on the ?w redex

Intuitively, trsfR,r,S sends a state T in MR into another state U in MS that
is “equivalent” to T. The intuition is clarified by the following lemma.

Lemma 4.52 (Properties of Transformation Map). Let R be a reducible SMEYLL
net, r be a redex in R, and R⇝ S be a reduction on that redex.

1. If T → U in MR, then trsf (T) →∗ trsf (U) in MS.

2. If T is initial, then trsf (T) is initial.

3. If T is final, then trsf (T) is final.

48

4. If an (either finite or infinite) sequence of transitions I → T → T1 . . . →
Tn → . . . in MR converges, diverges, or deadlocks, then trsf (I) →∗ trsf (T) →∗

trsf (T1) . . . →∗ trsf (Tn) →∗ . . . converges, diverges, or deadlocks, respec-
tively.

Lemma 4.53. Let IR → . . .→ T = (T, origT) be a run in MR and IS → . . .→
trsf (T) = (U, origU) be the corresponding sequence of transitions in MS. For
each p ∈ T, we have the following:

• origT(p) ∈ InitR iff origU(trsf (p)) ∈ InitS = InitR.

• If origT(p) ∈ InitR then origT(p) = origU(trsf (p)).

Proof. By induction on the length of the run. If T = IR it is immediate by
definition of trsf . If IR = T0 → . . . → Tn−1 → Tn, it can be shown that tracing
back from the positions in trsf (Tn) reaches the same positions as trsf (Tn−1) by
case analysis on reduction rules and transition rules.

To show item 4. of Lemma 4.52, We define an auxiliary notion on transitions and
prove an auxiliary lemma:

Definition 4.54. Given a SMEYLL proof net R and a reduction R ⇝ S, a
transition T → U in the SIAM MR is called a collapsing transition (resp.
a non-collapsing transition) if the transition satisfies trsf (T) = trsf (U) (resp.
trsf (T) →+ trsf (U)).

Lemma 4.55. Let R be a SMEYLL proof net and R ⇝ S be a reduction. For
any state T reachable from the initial state (i.e. a state satisfying IR →∗ T), an
infinite sequence of transitions T → · · · starting from T contains infinitely many
non-collapsing transitions.

Proof. Let us look at the case of ax-cut reduction: the other cases can be shown
similarly. Let R⇝a R

′, T = (T, origT), and e1, e2, e3 be the edges in Figure 4.24.
Since T is finite, the set {(ei, s, ϵ) | i ∈ {1, 2, 3}} ∩ T is also finite. Let n be

ax

cut

e1 e2
e3

e′
Figure 4.24: Edges of the Redex

the number of elements in this set of positions. The length of a sequence of
transitions from T that only uses collapsing transitions is bounded by 2n, since we
cannot apply more than two collapsing transitions on each token. Thus an infinite
sequence T → · · · of transitions starting from T must contain a non-collapsing
transition. The argument above applies for every state in an infinite sequence of
transition. Hence, any infinite sequence of transitions starting from the initial
state contains infinitely many non-collapsing transitions. Similar argument can
be done for the other rules.

Proof. (of Lemma 4.52.)

1. First note that the statement 1. includes trsf (T) = trsf (U). If the transition
T → U is not on the redex of R ⇝ S then the claim holds, because the
positions of tokens and the structure are the same except around the redex.
Else we examine each case of reductions, where we have to consider only
such a transition T → U that moves a token on the redex:

49

• →a The states T and U are mapped to trsf (T) = trsf (U) by definition
of trsf .

• →m Similarly we verify that trsf (T) = trsf (U) (if the transition crosses
⊗ or ` node) or trsf (T) → trsf (U) (if the transition crosses the cut
node).

• →s If the transition crosses the ⊗ node then trsf (T) = trsf (U). If the
transition crosses the sync node then trsf (T) → T′

1 → . . . → T′
n →

trsf (U), where the first transition crosses the sync node and each of
the other transitions crosses the ⊗ node one by one.

• →s.el Similar to the case of →a.

• →bot.el If the transition crosses the cut node or enters the box then
trsf (T) = trsf (U). Else, for the transition T → U in MR inside the
box allowed by a stable token, there is always a transition trsf (T) →
trsf (U) since the structure contained in R in the box is now at surface
in S.

• →c If the transition crosses the ?c node then trsf (T) = trsf (U). Else
trsf (T) → trsf (U) since the transition rules are defined parametrically
with respect to box stacks (thus if T → U is done with a box stack
t.l(σ), trsf (T) → trsf (U) can be done with box stack t.σ.)

• For the other exponential rules the situation is similar: if the transition
is on a dereliction token the states collapse, else trsf (T) → trsf (U) is
possible by the same rule as T → U with a different box stack.

2. By case analysis.

3. By case analysis again.

4. By Lemma 4.55, there are infinitely many transitions Ti → Ti+1 that sat-
isfies trsf (Ti) → trsf (Ti+1). Therefore the sequence trsf (I) →∗ trsf (T) →∗

trsf (T1) . . .→∗ trsf (Tn) →∗ . . . is infinite.

Now we have set all the tools to show the invariance theorem.

Proof. (of Theorem 4.49).
First of all, since a reduction of a net does not changes the conclusions of the
net, InitR = InitS and FinR = FinS . Let us call them Init and Fin, respectively.
By Lemma 4.52.4, if MR diverges then MS does so, too, which means that ifJRK = Ω then JSK = Ω. Conversely, if MS diverges, then MR must also diverge.
This is because otherwise MR has its unique final state T and its image under
trsf is final; however then by diamond property of the SIAM MS cannot diverge.
Hence JRK = Ω if and only if JSK = Ω.

Now suppose the machine MR terminates in the final state T = (T, origT);
by Lemma 4.52 and Lemma 4.47, MS must terminate in its unique final state
U = (U, origU). By Lemma 4.53 and Lemma 4.52, trsf (T) = U and origT(p) =
origU(trsf (p)) for a position p ∈ T if trsf (p) is defined.

If JRK(p) = q for some p ∈ Fin, by Lemma 4.53 JSK(trsf (p)) = q. Since
all the positions in Fin must have ϵ, it is necessary that p = trsf (p). ThereforeJSK(p) = JSK(trsf (p)) = q. Conversely, if JSK(p′) = q, there must be a final
position p ∈ T satisfying trsf (p) = p′ since T is final and by Lemma 4.52. By
Lemma 4.53 orig(p) ∈ Init, thus again by Lemma 4.53 orig(p) = orig(p′), henceJRK(p′) = orig(p) = q.

50

4.3.4 Adequacy

Another important property we are going to show is adequacy, meaning the con-
vergence of a proof net and that of its token machine coincide. In fact, this is true
only for simple nets due to surface reduction and existence of ⊥-box; however it
is sufficient for our purpose, namely interpretation of closed terms. We prove the
following:

Theorem 4.56 (Adequacy between SMEYLL Nets and SIAM). Let R be a sim-
ple SMEYLL net. Then R⇓ if and only if MR⇓.

To show the theorem we will observe that termination of a net implies termi-
nation of the machine, and vice versa. This is achieved by looking at the weight
of nets defined as follows.

Definition 4.57 (Weight). Let R be a SMEYLL proof net, and assume that
the SIAM MR terminates in the final state T. The weight W (T) of the state R
is defined to be the sum of the number of dereliction tokens and the number of
tokens started from 1 node, i.e. W (T) := #{p ∈ T | origT ∈ DerR ∪OnesR}.

Lemma 4.58. Assume R → S. We have that W (T) ≥ W (trsf (T)). Moreover,
if R→ S by the d-rule or ⊥.el-rule, then W (T) > W (trsf (T)).

Proof. Can be proved by checking which tokens are “deleted” in the definition of
trsf (Fig. 4.23).

Lemma 4.59 (Mutual Termination). Let R be a simple SMEYLL net.

1. If a run (see Definition 4.45) of MR terminates, then every sequence of
reductions starting from R terminates;

2. If a sequence of reductions starting from R terminates, then every run of
MR terminates in a final state.

Proof. 1. By assumption, there is a run of MR which terminates in a state T.
We define the weight of the net R as W (R) :=W (T). By Lemma 4.52, if
R→ S, trsf maps the run of MR into a run of MS which terminates in the
state trsf (T). By Lemma 4.58, W (trsf (T)) ≤W (T), hence W (S) ≤W (R).
Then it is not possible to have an infinite sequence of net reductions starting
from R because: (i) each reduction that opens a box (d or bot.el) strictly
decreases the weight of the net; (ii) there can be only a finite number of
reductions that do not open any box.

2. By assumption, R reduces to a cut free net S, which has the form described
in Corollary 4.32. On such a net, it is straightforward to check that all runs
of MS terminate in a final state. If MR has a run which is infinite (resp.
deadlocks), by Lemma 4.52 the map trsf would map it into a run of MS

which is infinite (resp. deadlocks), which yields a contradiction.

Proof. (of Theorem 4.56.) Immediately follows from Lemma 4.59 above.

Given an arbitrary net R, we of course do not know if it reduces to a normal
form or not, but we are still able to use the facts above to prove that MR is
deadlock-free:

51

Theorem 4.60 (Deadlock-Freedom of the SIAM). Let R be a SMEYLL net
where no ? appears in its conclusions. If a run of MR terminates in a state T,
then T is a final state.

Proof. If R has no ⊥ or no ! in its conclusions (i.e. R is simple), deadlock-freedom
immediately follows from Theorem 4.59. We show that it is true also with ⊥ or
! in the conclusions because, we can always “close” the net R into a net without
creating any new deadlocks. Let SA⊥ be a SMEYLL proof net with a conclusion
of type A⊥ (and possibly other conclusions) defined as follows.

• S⊥⊥ = S1 is a net consisting of a single 1 node.

• S1⊥ = S⊥ is a net consisting of a single axiom node with conclusions of
types 1 and ⊥.

• SA`B⊥ = SA⊥⊗B⊥ is a net obtained by connecting the conclusion of type
A⊥ of the net SA⊥ and the conclusion of type B⊥ of the net SB⊥ by a ⊗
node.

• Similarly, SA⊗B⊥ = SA⊥`B⊥ is obtained by connecting SA⊥ and SB⊥ by `
node.

• S!A⊥ = S?A⊥ is a net obtained by connecting ?d node below the conclusion
of type A⊥ of the net S?A⊥ .

• S?A⊥ is undefined.

Therefore, the conclusions of the net SA⊥ other than one of type A⊥ are of types
X⊥, X, 1. Let R be the net obtained from R by connecting each conclusion of
type A with the conclusion of type A⊥ of the net SA⊥ by a cut node. Then it is
straightforward to see that the machine MR deadlocks if and only if the machine
MR deadlocks.

We stress that in the statement above there is no assumption that the con-
clusions are simple formulas (unlike in Lemma 4.59 or Theorem 4.19). The con-
straint that the conclusions are required not to contain the ? modality is instead
an essential limit, which is intrinsic in most presentations of GoI (see e.g. [39]).

4.4 Multi ⊥-Box

In the rest of the thesis, one main content is on how to interpret some PCF-like
calculi as (appropriately extended) SMEYLL nets and multi-token machines. To
do so, we have to further extend our framework to deal with two ingredients of
such calculi, namely branching and a notion of memory. In this short section, we
introduce a modification of ⊥-boxes into multi ⊥-boxes that allow us to interpret
branching. The notion of memory is given for the deterministic, natural number
case in the next section, and given as an abstract class of memories in the next
chapter.

4.4.1 SMEYLL Proof Nets with Multi ⊥-Box

Definition 4.61 (Multi ⊥-Box). A multi ⊥-box is identical to ⊥-box except that
one multi ⊥-box has two contents rather than one, each with the same types of
conclusions as those of a ⊥-box. It will be depicted as in Figure 4.25 hereafter.

52

. . .

Γ

S 0
.bot bot

+ +⊥

S 1

Γ Γ

⊥

⊥ ⊥

Figure 4.25: Multi ⊥-box

Definition 4.62 (Reduction Rules for Multi ⊥-Box). The reduction rules of
multi ⊥-box is shown in Figure 4.26: if a 1 node is directly connected with the
principal conclusion of the multi ⊥-box via a cut node, it either reduces to the
first content (without bot node) or reduces to the second content (without bot
node).

. . .

Γ

S 0
.bot bot

+ +⊥

one

cut

 ⊥1

Γ

. . .

S 1 S 1

Γ

. . .

S 0 f⊥0

. . .

Figure 4.26: Multi ⊥-box Reduction Rules

Note that the rules are non-deterministic: for a redex on multi ⊥-box, either
⇝⊥0 or⇝⊥1 applies. Thus as an abstract reduction system, the proof structures
(or proof nets) with multi ⊥-boxes instead of (single) ⊥-boxes are not any more
confluent; however, in the later sections the proof net system is either extended
further with memories for natural numbers and become deterministic, or obtains
a confluence property in a generalized sense. We do not examine its characters
as a non-deterministic reduction system here, though it could be interesting.

When ⊥-box is replaced by multi ⊥-boxes, the definition of proof structures,
of the correctness criterion, and thus of proof nets stay all the same, except we
require that both contents of each multi ⊥-box to be correct. On the one hand,
properties of proof nets like the diamond property or confluence do not simply
hold because of the reason mentioned above. On the other hand, the progress
lemma and the cut elimination property do hold and the proofs of them done in
Section 4.2 also apply because none of them, especially the definition of priority
order, rely on the fact that a ⊥-box contains only one content.

4.4.2 The SIAM with Multi ⊥-Box

The transitions of the SIAM also gets non-deterministic when multi ⊥-boxes are
present, as shown in Figure 4.27. When a token arrives at the principal conclusion
of a multi ⊥-box, it enters either the first content or the second content of the
box, and becomes stable. The multi-token condition is also modified. When
a token (e, s, t) arrives at one of the auxiliary conclusions of a multi ⊥-box,
if t ∈ CopyT(S0) the token goes onto the corresponding conclusion of S0; if
t ∈ CopyT(S1) it goes onto S1.
Again, the diamond property, confluence, and uniqueness of normal form do
not hold, simply because the two transitions are mutually exclusive: if a token
enters one content of the box it cannot move into another. This is however not
problematic, since we will not use multi ⊥-boxes alone: we will use them with a
notion of memory and then those pleasant properties hold (as usual in section 4.5;
in a generalized sense in chapter 5).

The statement of the mutual termination lemma now becomes:

Lemma 4.63 (Mutual Termination with Multi⊥-box). Let R be a simple SMEYLL
net, possibly with multi ⊥-boxes.

53

. . .

Γ

S 0
.bot bot

+ +⊥

S 1

(ε, t)↑

e0

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

e1

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

Γ
(s, t)↑

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

Γ

(s, t)↑

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

Γ
(s, t)↑

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

Γ

(s, t)↑

Γ
. . .

. . .
Γ

Γ
. . .

Figure 4.27: Transition on Multi ⊥-Box

1. If there exists a run of MR terminates, then there exists a sequence of
reductions starting from R that terminates.

2. If there exists a sequence of reductions starting from R that terminates,
then there exists a run of MR terminating in a final state.

The proofs stays almost the same. As a consequence, deadlock-freedom holds
also with multi ⊥-box.

4.5 Interpretation of Call-by-Name and Call-by-Value PCF

In this section, we show a superiority of the SIAM compared to the usual single-
token machine framework. That is, the SIAM is able to uniformly distinguish the
call-by-name and call-by-value strategies of a language (here a variant of PCF)
simply by the standard call-by-name and call-by-value translation into linear
logic, without any additional structure or transformation such as the continuation
passing style transformation [85].

The language we interpret by SMEYLL nets and SIAMs is mostly the stan-
dard PCF language. The types A, B and the terms M, N, P are defined by the
following BNFs:

M, N, P ::= x | λx.M | MN | πl(M) | πr(M)

| ⟨M,N⟩ | n | succ(M) | pred(M)

| ifP thenM elseN | letrec f x = M inN,

A,B ::= N | A→ B | A×B.

Aside from minor difference of notations, two rules are non-standard: one
is the if then else rule in which the then clause and else are forced to be
closed. This is for a technical reason regarding the translations into proof nets

54

∆, x : A ⊢ x : A

∆, x : A ⊢M : B

∆ ⊢ λx.M : A→ B
∆ ⊢M : A→ B ∆ ⊢ N : A

∆ ⊢MN : B

∆ ⊢M : A×B
∆ ⊢ πl(M) : A

∆ ⊢M : A×B
∆ ⊢ πr(M) : B

∆ ⊢M : A ∆ ⊢ N : B
∆ ⊢ ⟨M,N⟩ : A×B

∆ ⊢ n : N
∆ ⊢M : N

∆ ⊢ succ(M) : N
∆ ⊢M : N

∆ ⊢ pred(M) : N
∆ ⊢ P : N ∆ ⊢M : A ∆ ⊢ N : A

∆ ⊢ ifP thenM elseN : A

∆, f : A→ B, x : A ⊢M : B ∆, f : A→ B ⊢ N : C

∆ ⊢ letrec f x =M inN : C

Table 4.1: Typing rules for PCF

that we will define later in this chapter. The expressiveness is not sacrificed by
this restriction, since we can always abstract all the free variables in those terms
and then provide the variables as arguments. The other non-standard one is use
of the letrec constructor instead of the usual Y combinator. This is because
we would like to consider both the call-by-name strategy and the call-by-value
strategy in the same language, while the usual Y combinator works well only
in the case of the call-by-name strategy: any term YM reduces to M(YM) and
the argument (YM) immediately starts to diverge in the call-by-value strategy.
Moreover, to explicitly force the letrec constructor to bind functions, it has two
arguments (the function f and its argument x) instead of just one. The typing
rules are shown in Table 4.1.

4.5.1 PCF Net

The notion of natural number is included in the language of PCF, while not
in SMEYLL nets. Thus to interpret PCF we extend the system of SMEYLL
nets with an external memory where natural numbers are stored, operations
on memories, and decorations on nets indicating how equipped memories and
operations are handled along reductions or transitions of the multi-token machine
(which is also extended in the next section). From now on, we always base our
discussion on the SMEYLL proof net system with ⊥-boxes replaced by multi
⊥-boxes.

Definition 4.64 (Natural Number Memory). Let I be a countably infinite set
and L = {max, succ, pred} equipped with a function arity : L → N mapping
arity(max) = 2 and arity(succ) = arity(pred) = 1. A natural number memory
m is a function m: I → N together with the following two maps4 (where Mem
denotes the set of memories):

• test : I ×Mem → B ×Mem, defined as test(i,m) = (true,m) if m(i) = 0
and as test(i,m) = (false,m) if m(i) ̸= 0. 5

• update : I∗ × L × Mem ⇀ Mem, where update((i, j), max,m) is defined
to be m[i 7→ max(m(i),m(j)), j 7→ max(m(i),m(j))], update(i, succ,m)
is defined to be m[i 7→ (m(i) + 1)], update(i, pred,m) is defined to be
m[i 7→ (max(m(i)− 1), 0)], and otherwise undefined.

4In [18], we also included a map init. It is no more than a design choice and does not make
any difference.

5The codomain includes Mem for a generalization that will be done later in the thesis. One
may ignore it in this chapter.

55

We also need some auxiliary sets of nodes below to define the translation.

Definition 4.65 (SyncNode and SurfOne). Given a SMEYLL proof net R, The
set SyncNodeR consists of all the sync nodes in R (including those inside a box).
The set SurfOneR consists of all the 1 nodes at surface of R (i.e. excluding those
inside a box).

Definition 4.66 (Input). Given a SMEYLL net R, the set InputR is defined to
be the union of the set of all conclusions of 1 nodes at surface of R and the set
of all occurrence of ⊥ in the conclusions of R.

Definition 4.67 (Decorated Proof Net). A decorated SMEYLL proof net is a
pair (R, opR) where R is a SMEYLL proof net and opR : SyncNodeR → L is a
function satisfying that arity(s) is equal to the number of 1’s occurring in the
conclusions of s for each sync node s.

Definition 4.68 (PCF Net). A PCF net is a triple R = ((R, opR), indR,mR)
where (R, opR) is a decorated SMEYLL proof net, indR : SurfOneR ⇀ I is a
partial injective function, and mR ∈ Mem.

Notation 4.69 (Pictorial Representation of PCF Net). A PCF netR = ((R, opR),
indR,mR) will be hereafter represented as shown in Figure ??. A sync node a
with opR(a) = l is depicted as a sync node with the name l next to the node;
a 1 node a′ with indR(a

′) = i is depicted as a 1 node connected to the index i
by a dotted line; and the memory mR is shown in a rectangle put next to the
SMEYLL net.

Definition 4.70 (Reduction Rules of PCF Nets). Most of the reduction rules of
PCF nets are the “same” as those of SMEYLL nets: given a rule of SMEYLL
nets in Figure 4.28, it is extended to a reduction rule of PCF nets that defines
a reduction ((R, op), ind,m) ⇝ ((S, op), ind,m in PCF nets, where R ⇝ S in
SMEYLL nets by that rule.

Rules in Figure 4.29 are specific to PCF nets. The rule link(i) reduces
((R, opR), indR,mR) to ((R, opR), indR ∪ {a 7→ i},mR) where a is the 1 node
in the redex and i is a fresh index. The rule update reduces ((R, opR), indR,mR)
to ((S, opR), indR, update(i1, . . . , ik, l,mR)) where S is the net obtained by the
rule and i1, . . . , ik are the indexes as shown in the figure. The rule test(i) re-
duces the net, either ((R, opR), indR,mR) to ((S0, opS0

), indR \ {a 7→ i},mR) or
to ((S1, opS1

), indR \ {a 7→ i},mR) depending on the value test(i,mR), where Si
is the net obtained by replacing the redex by Si in the figure and opSi

is obtained
by restricting opR to opSi

accordingly.

Definition 4.71 (Convergence to n). Let R be a PCF net with the only conclu-
sion 1. We write R⇓n if there exists a normal PCF net S = ((S, opS), indS ,mS)
whose underlying SMEYLL proof net consists of a single 1 node a, the PCF net
S satisfies R⇝∗ S ̸⇝, and mS(indS(a)) = n.

4.5.2 PCF Synchronous Interaction Abstract Machine

To interpret PCF nets, the SIAM is also extended with the notion of natural
number memory, in a way analogous to what is done for SMEYLL proof nets:
each state is now equipped with a memory, and several transition rules now
modifies the memory attached to states. The resulting multi-token machine will
be called PCF Synchronous Interaction Abstract Machine (PSIAM).

56

S

cut

?c
cut
cut cut

?w
! ! ! !

 c w

cut

!. . .! ?
. . .

?
cut

S1

. . . ?

. . .
! p

S

cut

!
?d

cut

 d

ax

cut
 a

 s.el

⊗ `
cut

 m cut

⊗
.

.
⊗ s.com

oneone

cut

. . .

S S

Y
cut

S

Y
 y

!

SSS

!

. . .
one one

cut

!. . .Y ?
. . .

?
cut. . . ?

. . .
! p

S1 S2 S2

S1 S2

Y

S1 S2

S

Figure 4.28: Reduction Rules of PCF Nets

. . .

Γ

S 0
.bot bot

+ +⊥

one

cut

i

 test(i)
Γ. . .

S 1 S 1

Γ. . .

S 0
test(i)f

one one one
.

one one one

 upd(l)

iki2i1

l

i

oneone
 link(i)

iki2i1

if test(i,mR) = (ff,mR) if test(i,mR) = (tt,mR)

mS = update(i1, . . . , ik, l,mR)mR mR mR

mRmR mR

Figure 4.29: Additional Reduction Rules of PCF Nets

57

Definition 4.72 (PSIAM State). Let R = ((R, opR), indR,mR) be a PCF net.
A PSIAM state over R is a triple T = (T, indT,mT) where T is a state of the
SIAM MR (of the SMEYLL net R), indT is a partial function indT : StartR ⇀ I
that is however total on InitR, and mR is a memory in Mem, satisfying that if
orig(p) = q for a position p ∈ T immediately below a 1 node a, then indT(q)
is defined. The set of PSIAM states over a PCF net R is denoted by SR. The
initial state IR is give by (IR, indIR ,mR) satisfying indIR(p) = indR(a) where
p is the position immediately below the 1 node a ∈ SurfOneR and undefined on
any other position.

Definition 4.73 (Transition Rules of the PSIAM). Given a PCF net R, the
transition rules of the PSIAM is defined to be a relation → ⊆ SR × SR. Most of
the transition rules are essentially the same as those of the SIAM: (T, ind,m) →
(U, ind,m) holds if T → U as an SIAM transition, except the following two cases.

• A transition (T,m0) → (U,m1) crossing a sync node a now modifies the
memory m0 to m1, where m1 = update(i1, . . . , ik, ℓ,m0) for ℓ = opR(a) and
k = arity(ℓ).

one one one
. . .

one one one →

iki2i1

l

iki2i1

m1 = update(i1, . . . , ik, l,m0)m0

(ε, t)↓ (ε, t)↓ (ε, t)↓

(ε, t)↓ (ε, t)↓ (ε, t)↓

. . .l

Figure 4.30: PSIAM Transition on sync Node

• Let b be a multi ⊥-box as in Fig. 4.31, where S0 and S1 are the two contents
of the box, and the edges e0, e1 are as indicated in the figure. When a
token is in position p = (e, ϵ, t) on the principal conclusion of the box, it
moves to (e0, ϵ, t) if test(orig(p),m) returns the boolean ff (arrow (i) in
Fig. 4.31) and it moves to (e1, ϵ, t) if test(orig(p),m) returns tt (arrow (ii)
in Fig. 4.31).

. . .

Γ

S 0
.bot bot

+ +⊥

S 1

(ε, t)↑

e0

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

. . .

S 0
.bot bot

+ +⊥

S 1

(ε, t)↔

(i)

(ii)
e1

Γ
. . .

. . .
Γ

Γ
. . .

e0 e1

e0 e1

Figure 4.31: PSIAM Transition on Multi ⊥-Box

Definition 4.74 (PCF Synchronous Interaction Abstract Machine). Given a
PCF net R, the PCF Synchronous Interaction Abstract Machine (PSIAM) MR

is the abstract rewriting system (SR,→).

Definition 4.75. Similarly to PCF nets, we write MR ⇓ n if MR terminates in
its unique final state with the only content of the memory in the final state is n.

4.5.3 Adequacy

The definitions of PCF nets and the PSIAM lead to an adequacy result similar
to the one for SMEYLL nets and the SIAM. It is even finer in the sense that it

58

does not only state on mere convergence of the two systems, but also takes into
account the contents of the memories attached to nets and states.

Theorem 4.76 (Adequacy between PCF Nets and PSIAM). Let R be a PCF
net with the only conclusion of type 1. Then R ⇓ n if and only if MR ⇓ n.

The proof technique to show Theorem 4.76 is also an adaptation of the one for
the proof of adequacy between SMEYLL nets and the SIAM. First, the corre-
spondence of positions by the transformation map remains the same except the
case of ⊥ reduction as shown in Figure 4.32, where R⇝ R0 if test(i) = 0 on the
index i of the 1 node in the redex, and R⇝ R1 if test(i) ̸= 0.

Then, in order to take care of memories cleanly, we restrict the domain of the
transformation map trsf to a set [trsf] of PSIAM states, given by the following
definition.

Definition 4.77. Let R ⇝ S be a PCF net reduction. The set [trsf] ⊆ SR is
defined as follows, depending on the reduction rule.

• If the reduction is by ⇝link(j) rule, we define [trsf] as the set of states in
which ind(p) = j, where p ∈ SurfOneR is the position associated to the 1
node a.

• If the reduction is by ⇝update(s) rule, assume p1, . . . ,pn are the positions
associated to the premises of the sync node s in the redex. (observe that each
pi belongs to OnesR). [trsf] is defined to be the set of states (T, indT,mT)
satisfying {p1, . . . ,pn} ⊆ orig(T) and {p1, . . . ,pn} ̸⊆ T.

• If the reduction is by ⇝test(j) rule, we define [trsf] as the set of states that
contain a token on the left ⊥ node of the ⊥-box in the redex (the edge e0
in Figure 4.32) if test(j) = (true,m); if test(j) = (false,m), then [trsf] is
defined to be the set of states containing a token on the right ⊥ node.

• Otherwise we define [trsf] = SR.

Definition 4.78 (Transformation Map). Let R ⇝ S be a reduction on a redex
r in the PCF net R. The transformation map trsfR,r,S : [trsf] → SS is defined by

trsf (T, indT,mT) = (trsf (T), indT,mT)

where trsf on the right-hand side of equation is the transformation map for the
SIAM states.

S0
bot

⊥ Γ. . .
. . .one

cut

S1
bot

⊥ Γ. . .
. . .

(s′, t′)

e0 e1

S1

Γ. . .

(s′, t′)

 u

S0
bot

⊥ Γ. . .
. . .one

cut

(s, t)
S1

bot

⊥ Γ. . .
. . .

e1e0

S0

Γ. . .

(s, t)

 utrsfR,r,R0

trsfR,r,R1

Figure 4.32: Transformation Map on a Multi ⊥-box

59

Remark 4.79. Consider the following sequence of transitions from the initial
state I, and let S be the resulting state. Observe that S ∈ [trsf].

• If the reduction is s.el, first create one token per each 1 node in the redex,
then apply the transition rule to cross the sync node in the redex.

• If the reduction is ⊥, first create one token on the 1 node in the redex, make
the token created cross the cut node in the redex, then apply the transition
rule to enter the ⊥-box in the redex.

Even if I →∗ T ̸∈ [trsf], by confluence of the PSIAM there exists T′ satisfying
T →∗ T′ and S →∗ T′. Observe that if a state is in [trsf], then any state
reachable from that state is also in [trsf]. Thus T →∗ T′ ∈ [trsf]. Therefore we
can always assume that a state in a run is in [trsf] when we analyze convergence,
divergence, or deadlock of the machine.

Then, properties analogous to Lemma 4.52 also hold:

Lemma 4.80. Let R be a PCF net. For any reduction R⇝ R′,

1. If T → U in MR then trsf (T) →∗ trsf (U) in MR′.

2. If T is an initial state in MR, then so is trsf (T) in MR′.

3. If T is a final state in MR, then so is trsf (T) in MR′.

4. If T is a deadlock state in MR, then so is trsf (T) in MS.

Proof. Each statement can be proved by case analysis.

1. If the transition T → U is not on the redex of R ⇝ S then the claim
holds, because the positions of tokens and the structure are the same except
around the redex. For the reductions except ⇝s.el, ⇝bot.el and ⇝decor the
proof is the same as that in the SIAM case since memories are not modified
by the reduction and trsf , and mapping of positions is the same as the
SIAM case. For those three rules of reduction relevant to memories:

• ⇝s.el We only have to consider the transition T → U that crosses
the sync node reduced; by definition of the transformation trsf (T) =
trsf (U) holds.

• ⇝⊥ If the transition crosses the cut node or enters the box then
trsf (T) = trsf (U) by definition. Since no transition can modify the
value of the memory pointed by the 1 node, the contents chosen by
the reduction and by the transitions coincide. Thus for all transitions
T → U in the box trsf (T) → trsf (U) holds.

• ⇝decor Since the machinesMR andMR′ are the same by definition,for
every transition T → U we have trsf (T) → trsf (U).

2. Almost the same as the SIAM: in the case of ⇝s.el, the memory in the
initial state in MR is mapped to that in MR′ by definition of trsf .

3.–5. Same as the SIAM, since the definition of terminal/final/deadlock state
does not rely on memories.

60

Lemma 4.81. Let R⇝ S be a PCF net reduction. The function trsf maps each
run from a state T ∈ [trsf] of MR into a run of MS which converges, diverges,
or deadlocks iff the run of MR does.

Proof. The proof proceeds in exactly the same way as that of the SIAM thanks
to Lemma 4.80.

Fact 4.82. Let R be a PCF net. The following holds by definition of trsf :

• Let R⇝ R′ be not a update reduction and (T,m) be a state of MR. Then
m(indR′(origS(trsf (p)))) = m(indR(origR(p))).

• Let R⇝ R′ be a update reduction. Then

mi(indR′(origS(trsf (p)))) = mi(indR(origR(p))) if T ∈ [trsf].

Intuitively speaking, these facts mean that the content of the memory associated
to a token is preserved by trsf map.

Moreover, similarly to what we have seen in Section 4.3.4,

Lemma 4.83. Let R be a PCF net where all conclusions have type 1. The
machine MR terminates in a final state (T, indTmT) if and only if R reduces to
a cut and sync free net (say S = ((S, opS), indS ,mS)). Moreover,

mS = m′
T

where m′
T is the restriction of m to the elements pointed to by original positions

of final positions in T.

Proof. if. Every run in the cut and sync free net converges because such a net
with all conclusions typed by 1 is nothing but an MLL proof net. Hence by
Lem. 4.81 any run in MR also converges.
only if. A similar argument as in the case of the SIAM applies: if MR terminates
then the reduction of R terminates, and the normal form is cut and sync free.
We observe that the counterpart of Theorem 4.19 holds for PCF nets, because
the number of contents of a ⊥-box is irrelevant to the proof of the theorem, and
memories do not affect the possibility of a reduction.
mS = m′

T. Follows from Fact 4.82.

Theorem 4.76 follows from the lemma above.

Proof. (of Theorem 4.76) Suppose R ⇓ n. By definition, there exists a cut and
sync free PCF net S (of which underlying SMEYLL net consists of a single 1
node). Thus by Lemma 4.83, MR terminates in a final state (T,mT) with

4.5.4 Call-by-Name Translation

The definitions and properties of PCF nets and the PSIAM being stated, we first
look at the call-by-name case that is the standard one in the context of GoI. To
do so, we recall the call-by-name PCF. A call-by-name reduction context C[−] is
defined by the following BNF:

C[−] ::= [−] | C[−]N | πlC[−] | πrC[−] |
succ(C[−]) | pred(C[−]) | ifC[−] thenM elseN.

The set of evaluation rules is the usual one shown in Table 4.2.

61

(1) Axiom rules.

(λx.M)N →cbn M{x := N} πl⟨M,N⟩ →cbn M πr⟨M,N⟩ →cbn N

succ(n) →cbn n+ 1 pred(n+ 1) →cbn n pred(0) →cbn 0

if 0 thenM elseN →cbn M ifn+ 1 thenM elseN →cbn N

letrec f x =M inN →cbn N{f := λx.letrec f x =M in f x}

(2) Congruence rules. Provided that C[−] is a call-by-name context:

M →cbn N

C[M] →cbn C[N]

Table 4.2: Call-by-name evaluation strategy for PCF

Then we give the call-by-name translation from the types and the language
of PCF into SMEYLL types and PCF nets, which is also based on the standard
one (e.g. by Girard [38]).

Definition 4.84. The call-by-name translation from a PCF type A to a SMEYLL
formula A∗ is given by:

• N∗ := 1

• (A→ B)∗ := ? (A∗)⊥ `B∗

• (A×B)∗ := !(A∗)⊗ !(B∗)

Abusing notation, the call-by-name translation (−)∗ from PCF derivation trees
to PCF nets is given in Figure 4.33. The translation of a derivation tree of the
judgment ∆ ⊢ M : A is (again abusing notation) denoted by M∗.

In general, the call-by-name translation of a derivation of the judgment x1 : A1, . . . , x1 : A1 ⊢
M : B is in the form shown in Figure 4.34.The following is immediate by definition
of the translation:

Fact 4.85. Let M be a closed term of type N. Then its translation M∗ is a PCF
net with conclusion 1.

The adequacy result—which is one of the main results of the chapter—states
that the behavior of a PCF term is precisely captured by the PCF net translated
from the term. Since we already obtained adequacy result for PCF nets and the
PSIAM (Theorem 4.76), the PSIAM also exhibits the same behavior as the term.
Hence we obtain a multi-token machine that executes the computation of PCF.
Note also that the statement is bidirectional (if and only if): by contraposition,
divergence is also captured by PCF nets and the PSIAM.

Theorem 4.86 (Adequacy between PCF Term and PCF Net). Let M be a closed
term of type N. Then M ⇓ n if and only if M∗ ⇓ n.

The proof is deferred to Section 4.5.6.

Corollary 4.87 (Adequacy between PCF Term and PSIAM). Let M be a closed
term of type N. Then M ⇓ n if and only if MM∗ ⇓ n.

Proof. Follows from Theorem 4.76 and Theorem 4.86.

62

cut

∆ ` λx.M : A→ B

. . .

?(∆∗)⊥

?(A∗)⊥ B∗

`
?(A∗)⊥ `B∗

M∗

∆ `MN : B

. . .
?(A∗)⊥ `B∗

M∗

?(∆∗)⊥

A∗

N∗

. . . !? ?

?c ?c
⊗

ax

cut

. . .

B∗

∆, x : A ` x : A

. . .

?(∆∗)⊥

?w ?w ax

?(A∗)⊥

?d
∆ ` 〈M,N〉 : A×B

B∗

N∗

. . . !? ?

A∗

M∗

. . . !? ?

?(∆∗)⊥

?c ?c. . . ⊗

!(A∗)⊗!(B∗)

∆ ` n : N

. . .

?(∆∗)⊥

?w ?w

1

one

∆ ` S(M) : N

M∗

. . .

?(∆∗)⊥ 1

⊥ . . .

M∗ N∗

.
bot bot

+ +

∆ ` ifP thenM elseN : A

+

A∗

P ∗

. . .

?(∆∗)⊥

?c ?c. . .?c

∆ ` let rec f x = M inN : C

?(A→ B)∗⊥

M∗

. . .? ?

?A∗⊥ B∗

Y

`. . .

N∗

?(A→ B)∗⊥

?(∆∗)⊥

?c ?c. . . cut

C

∆ ` πl(M) : A

M∗

. . .

?(∆∗)⊥
cut

`
?w?d

ax

A∗

∆ ` P (M) : N

M∗

. . .

?(∆∗)⊥ 1

∆ ` πr(M) : A

M∗

. . .

?(∆∗)⊥
cut

`
?d?w

ax

A∗

...

}
n times

Figure 4.33: Call-by-Name Translation of PCF

. . .

?(A∗1)⊥ B∗

M∗

?(A∗n)⊥

Figure 4.34: General Form of Call-by-Name Translation

63

(1) Axiom rules.

(λx.M)U →cbv M{x := U} πl⟨U, V ⟩ →cbv U πr⟨U, V ⟩ →cbv V

succ(n) →cbv n+ 1 pred(n+ 1) →cbv n pred(0) →cbv 0

if 0 thenM elseN →cbv M ifn+ 1 thenM elseN →cbv N

letrec f x =M inN →cbv N{f := λx.letrec f x =M in f x}

(2) Congruence rules. Provided that C[−] is a call-by-value context:

M →cbn N

C[M] →cbn C[N]

Table 4.3: Call-by-value evaluation strategy for PCF.

4.5.5 Call-by-Value Translation

What we showed in the previous section is however not very surprising, although
such work with a multi-token machine is novel. The call-by-name strategy is
known to be natural for GoI, and after all Mackie’s GoI machine [69] does essen-
tially the same thing. What is truly novel here appears in this section: we obtain
analogous adequacy results also for the call-by-value PCF, solely by changing the
translation into PCF nets, with exactly the same multi-token machine. More-
over the translation is (except some encodings to handle natural numbers) the
so-called “efficient encoding” by Girard [38], without any extra construction such
as continuation passing style transformation. Therefore we claim that our multi-
token machine uniformly serves as an abstract machine both for the call-by-name
and the call-by-value strategy with standard encodings, which is the first one as
far as the author knows.

As in the previous section we first describe the call-by-value strategy of PCF.
A value V is defined by the following BNF:

V ::= x | λx.M | ⟨U,U⟩ | n.
A call-by-value evaluation context C[−] is defined by:

C[−] ::= [−] | C[−]N | V C[−] | ⟨C[−], N⟩ | ⟨V,C[−]⟩ |
πlC[−] | πrC[−] | succ(C[−]) | pred(C[−]) |
ifC[−] thenM elseN,

and the call-by-value evaluation rule is shown in 4.3.
Similarly to the call-by-name case, we translate PCF type derivation into

PCF nets. However, the construction gets more complicated due to the encoding
that requires us to copy the content of a memory linked to a 1 node at surface.
In order to deal with the problem, we need several auxiliary constructions in
Figure 4.35, Figure 4.36, and Figure 4.37.

⊥

⊥ ⊥
copy :=

ax

cut
cut

one

Figure 4.35: Copying Node

64

`

⊥

bot bot

copy
⊥ !1 ?(1⊗ ?⊥)

bot
!

one

?w
!

⊗

p
ax s

ax

?d

?

?d

!(⊥` !1)

⊥ + +

Y

Figure 4.36: PCF Net Computing ⊥` ! 1

?c
:=

A†⊥ `B†⊥

`
?c ?c

A†⊥ B†⊥⊗

ax

⊗

axax ax

cut cutA†⊥ `B†⊥

A†⊥ `B†⊥ A†⊥ `B†⊥ A†⊥ `B†⊥ A†⊥ `B†⊥

?p :=

A†⊥ `B†⊥

`
?p ?p

A†⊥ B†⊥

A†⊥ `B†⊥

?(A†⊥ `B†⊥)

⊗

ax ax

? ? !

cut

?A†⊥ ?B†⊥

?d ?d

?(A†⊥ `B†⊥)

?w
:=

A†⊥ `B†⊥

`
?w ?w

A†⊥ B†⊥

A†⊥ `B†⊥

?c ?c:=

?A

?A ?A

?p

?A

?A ?A

?w

?A

:= ?w

?A

:=

?A

??A

?

?A

!

ax

cut

??A

?c :=

⊥

⊥ ⊥

?p

⊥

⊥ ⊥

:=

⊥

?⊥

copy

net for
⊥` !1 ⊗

ax

cut
⊥

?⊥

Figure 4.37: “Contraction”, “Weakening”, and “Dereliction” on ⊥

65

Definition 4.88. The call-by-value translation from a PCF type A to a SMEYLL
formula A† is given by:

• N† := 1

• (A→ B)† := !(A†⊥ `B†)

• (A×B)† :=A† ⊗B†.

The call-by-value translation (−)† from PCF type derivation trees to PCF
nets is given in Figure 4.39.

. . .

(A†
1)⊥ B†

M†

(A†
n)⊥

Figure 4.38: General Form of Call-by-Value Translation of PCF

For the call-by-value translation, the following statements similar to the call-by-
name case all hold.

Fact 4.89. Let M be a closed term of type N. Then its translation M† is a PCF
net with conclusion 1.

Theorem 4.90 (Adequacy between PCF Term and PCF Net). Let M be a closed
term of type N. Then M ⇓cbv n if and only if M† ⇓ n.

The proof is deferred to 4.5.6.

Corollary 4.91 (Adequacy between PCF Term and PSIAM). Let M be a closed
term of type N. Then M ⇓cbv n if and only if MM† ⇓ n.

Proof. Follows from Theorem 4.76 and Theorem 4.90.

4.5.6 Proof of Theorem 4.86 and Theorem 4.90

The chapter ends with the proof of Theorem 4.86 (Theorem 4.90 also follows in a
similar way). A technical difficulty comes from the fact that one step of reduction
in PCF is simulated by possibly more than one reduction in PCF nets. Especially,
substitution caused by β reduction becomes problematic when we would like to
look at the corresponding reductions in PCF nets. To overcome the difficulty,
we introduce an intermediate language called extPCF. Formally, the intermediate
language extPCF is defined as follows.

Definition 4.92. The syntax of terms of extPCF is the one of PCF, extended
with a constructor substx1, . . . xn byN1, . . . Nn inM where x1, . . . xn are vari-
ables andN1, . . . Nn are terms of extPCF. Instead of lists x1, . . . , xn andN1, . . . , Nn

we write x⃗ and N⃗ .
The typing rule for this new construct is as follows.

∆, x1 : A1, . . . xn : An ⊢M : B · ⊢ Ni : Ai for all i

∆ ⊢ subst x⃗ by N⃗ inM : B

So in particular, all substituting terms are closed.
Rewriting rules are also extended as follows. The new rewriting relation is

denoted by →cbnext.

• Call-by-name contexts are not touched (i.e. no rewriting is allowed to occur
under subst x⃗ by N⃗ inM).

66

cut

∆ ` λx.M : A→ B

. . .
(A†)⊥ B†

`

!(A†⊥ `B†)

M†

∆ `MN : B

. . .
!(A†⊥ `B†)

M†

(∆†)⊥

A†

N†

ax

cut

. . .

B†
∆, x : A ` x : A

. . .

(∆†)⊥

?w ?w ax

(A†)⊥

∆ ` 〈M,N〉 : A×B

B†

N†

A†

M†

(∆†)⊥

?c ?c. . .

∆ ` n : N

. . .

(∆†)⊥

?w ?w

∆ ` S(M) : N

M†

. . .

(∆†)⊥ 1

⊥ . . .

M† N†

.
bot bot

+ +

∆ ` ifP thenM elseN : A

+

A†

P †

. . .

(∆†)⊥

?c ?c. . .?c

∆ ` let rec f x = M inN : C

(A→ B)†⊥

M†

. . .? ?

A†⊥ B†

Y

`. . .

N†

(A→ B)†⊥

(∆†)⊥

?c ?c. . . cut

C

∆ ` πl(M) : A

M†

. . .

(∆†)⊥
cut

`
?w

ax

A†

∆ ` P (M) : N

M†

. . .

(∆†)⊥ 1

∆ ` πr(M) : A

M†

. . .

(∆†)⊥
cut

`
?w

ax

A†

. . . !? ?
(∆†)⊥

. . .

⊗

?d

A†

A† ⊗B†

?c ?c

⊗

1

one

...

}
n times

Figure 4.39: Call-by-Value Translation of PCF

67

• The beta redex is rewritten by

(λx.M)N →cbnext substx byN inM

and the let-rec rewrites by

letrec f x =M inN →cbnext subst f by (λx.letrec f x =M in f x) inN.

The other axiom rules remain the same as →cbn.

• New rewriting rules on the constructor subst x⃗ by N⃗ inM are added as
follows. We assume that alpha conversion is applied accordingly, and that
y is not among the xi’s.

subst x⃗ by N⃗ inxi →cbnext Ni

subst x⃗ by N⃗ in y →cbnext y

subst x⃗ by N⃗ inMP →cbnext (subst x⃗ by N⃗ inM)(subst x⃗ by N⃗ inP)

subst x⃗ by N⃗ inλy.M →cbnext λy.(subst x⃗ by N⃗ inM)

subst x⃗ by N⃗ in ⟨M,P ⟩ →cbnext ⟨subst x⃗ by N⃗ inM, subst x⃗ by N⃗ inP ⟩

subst x⃗ by N⃗ inπl(M) →cbnext πl(subst x⃗ by N⃗ inM)

subst x⃗ by N⃗ inπr(M) →cbnext πr(subst x⃗ by N⃗ inM)

subst x⃗ by N⃗ inn→cbnext n

subst x⃗ by N⃗ in succ(M) →cbnext succ(subst x⃗ by N⃗ inM)

subst x⃗ by N⃗ in pred(M) →cbnext pred(subst x⃗ by N⃗ inM)

subst x⃗ by N⃗ in ifP thenM elseM ′

→cbnext if (subst x⃗ by N⃗ inP) then (subst x⃗ by N⃗ inM) else (subst x⃗ by N⃗ inM ′)

subst x⃗ by N⃗ in letrec f y =M inP

→cbnext letrec f y = (subst x⃗ by N⃗ inM) in subst x⃗ by N⃗ inP

subst x⃗ by N⃗ in subst y byP inM →cbnext subst x⃗, y by N⃗ , P inM

We call these additional rules the substitution rewriting.

The translation (subst x⃗ by N⃗ inM)∗ is defined by wrapping each N∗
i by a

!-box, and connecting M∗ and those boxes via cut as shown in Figure 4.40.
∆ ` λx.M : A→ B

A∗1

!(A∗1)

N†1

!

. . . B†

M†

?(A∗1)⊥ ?(A∗n)⊥A∗n

!(A∗n)

N†1

!

. . .

cut

cut. . .

Figure 4.40: Call-by-Name Translation of subst x⃗ by N⃗ inM

68

The new constructor subst x⃗ by N⃗ inM replaces the usual substitution by
explicit, one-by-one substitution, which allows us to examine the correspondence
between term rewriting and net reduction. In the rest of section, we prove two
groups of lemmas: one for showing that extPCF is equivalent to PCF in a certain
sense, and another for showing that rewriting of extPCF terms can be simulated
by reduction of PCF nets translated from the terms. By using those lemmas we
finally verify the theorem we aim at. First we define the following “read back”
from extPCF terms to PCF terms.

Definition 4.93. A map ↓ from extPCF terms to PCF terms is recursively
defined as follows:

↓(x) = x

↓(n) = n

↓(subst x⃗ by N⃗ inM) = (↓M){xi := ↓Ni | i = 1 · · ·n}.
↓(subst y byM inP) = subst y by ↓(M) in ↓(P)
↓(succ(M)) = succ(↓(M))

↓(pred(M)) = pred(↓(M))

↓(MN) = ↓(M) ↓(N)

↓(λy.M) = λy. ↓(M)

↓(⟨M,N⟩) = ⟨↓(M), ↓(N)⟩
↓(πlM) = πl↓(M)

↓(πrM) = πr↓(M)

↓(ifP thenM elseN) = if ↓(P) then ↓(M) else ↓(N)

↓(letrec f y =M inP) = letrec f y = ↓(M) in ↓(P).

Lemma 4.94. Let M be an extPCF term such that M →cbnext N . If it is by a
substitution rewriting, then ↓M = ↓N holds. Otherwise ↓M →+

cbn ↓N holds.

Proof. By structural induction on the derivation of M →cbnext N .

Lemma 4.95. Let M be a PCF term. If M →∗
cbnext n, then M →∗

cbn n holds.

Proof. Observe that, sinceM is a PCF-term, M does not contain any term in the
form of subst x⃗ by N⃗ inM , and thus ↓M = M by definition. Observe also that
↓n = n by definition. Then the lemma follows by induction on the length of the
rewriting sequence M →∗

cbnext n, invoking Lemma 4.94 in the induction case.

Lemma 4.96. Let P be a term in extPCF such that ↓P →cbn M . Then there
exists a term P ′ in extPCF such that ↓P ′ =M and P →+

cbnext P
′.

Proof. Proof by induction on the size of P .

Lemma 4.97. Suppose that N does not substitution-reduce. Suppose furthermore
that ↓M = ↓N , and that M →cbnext M

′ is not a substitution-reduction step.
Then there exists N ′ such that ↓M ′ = ↓N ′ and N →+

cbnext N
′.

Proof. The proof is done by structural induction on M , and by case distinction
on M →cbnext M

′.

Definition 4.98. We define the substitution-size ss(M) of a termM inductively
as follows.

69

• ss(subst x⃗ by N⃗ inM) is defined as(∏
i

(1 + ss(Ni))

)ss(M)

• the substitution-size of terms built from any other constructors is 1 plus
the sum of the substitution size of their constituents. For example:

ss(x) = ss(n) = 1

ss(πlM) = 1 + ss(M)

ss(MN) = ss(⟨M,N⟩) = 1 + ss(M) + ss(N)

ss(letrec f x =M inN) = 1 + ss(M) + ss(N)

ss(ifP thenM elseN) = 1 + ss(M) + ss(N) + ss(P)

Lemma 4.99. If P is a strict subterm of M , then ss(P) < ss(M). If M
substitution-reduces to N , then ss(N) < ss(M).

Proof. The first part of the lemma is easy to check by structural induction on
M , realizing that for all M , ss(M) ≥ 1. The second part of the lemma is shown
by induction on the derivation of M →cbnext N .

• subst x⃗ by N⃗ inMP →cbnext (subst x⃗ by N⃗ inM)(subst x⃗ by N⃗ inP).

Provided that we set x :=
∏

i(1 + ss(Ni)), we have to show

x1+ss(M)+ss(P) > 1 + xss(M) + xss(P).

With a := xss(M) and b := xss(P), this can be rewritten as

x · a · b > 1 + a+ b.

Since x ≥ 2, it is enough to show that

2 · a · b > 1 + a+ b.

This is equivalent to
a · (2 · b− 1) > b+ 1.

Since a ≥ 2, it is enough to show that

2 · (2 · b− 1) > b+ 1,

that is,
3 · b− 3 > 0.

Since b ≥ 2, this is always verified.

• subst x⃗ by N⃗ inλy.M →cbnext λy.(subst x⃗ by N⃗ inM).

Provided that we set x :=
∏

i(1 + ss(Ni)), we have to show

x1+ss(M) > 1 + xss(M).

With a := xss(M), and since x ≥ 2, it is enough to show

2 · a > 1 + a.

This inequality is valid since a ≥ 2.

70

• subst x⃗ by N⃗ in ifP thenM elseM ′ →cbnext

if (subst x⃗ by N⃗ inP) then (subst x⃗ by N⃗ inM) else (subst x⃗ by N⃗ inM).

Provided that we set x :=
∏

i(1 + ss(Ni)), we have to show

x1+ss(P)+ss(M)+ss(M ′) > 1 + xss(P) + xss(M) + xss(M
′).

With a := xss(P), b := xss(M) and c := xss(M
′) this can be rewritten as

x · a · b · c > 1 + a+ b+ c.

Since x ≥ 2, it is enough to show that

2 · a · b · c > 1 + a+ b+ c.

Since b and c are larger or equal to 2, we have b · c > b + c, and writing
d := b+ c, it is enough to show

a · (2 · d− 1) > d+ 1.

We are back to the situation of first bullet point: this inequality is then
valid.

• subst x⃗ by N⃗ in subst y⃗ by M⃗ inP →cbnext subst x⃗, y⃗ by N⃗ , M⃗ inP .

Provided that we set x :=
∏

i(1 + ss(Ni)), y :=
∏

i(1 + ss(Mi)) and that
we write a := ss(P), we have to show

xy
a
> (x · y)a.

Since y ≥ 2 and a ≥ 1, we have ya > y · a. It is then enough to show

xy·a > (x · y)a.

This is equivalent to
(xy)a > (x · y)a,

and it is correct since xy > x · y.

The other cases are treated similarly.

Lemma 4.100. Suppose that ↓M = ↓N , and thatM →∗
cbnext b, where b is either

a term variable or a constant n. Then N →∗
cbnext b.

Proof. The proof is done by induction on the substitution-size of N .

• Base case: N = c, where c is a term constant or a term variable. We need
to show that c = b.

We proceed by induction on the size of the sequence of reduction from M
to b.

– If M = b, then clearly c = b.

– Suppose that for all terms reducing in n steps to b then c = b. Consider
a sequence of reduction M →cbnext M

′ →∗
cbnext b of size n + 1. Since

N = c, we have ↓M = c. There are two cases:

∗ EitherM = c, in which case we get a contradiction sinceM cannot
reduce to any M ′.

71

∗ OrM = subst x⃗ by P⃗ inP ′. In this case,M ′ is necessarily coming
from a substitution-reduction, meaning that ↓M ′ = ↓M = c. By
induction hypothesis we conclude that c = b.

Therefore, in the case where N is a constant or a variable, it is indeed equal
to b.

• Now, suppose that it is neither a constant nor a variable, and that the result
is correct for all terms of smaller substitution-size.

We again proceed by induction on the size of the sequence of reduction from
M to b.

– If M = b, then ↓N = b. There are two cases.

∗ Either N = b, and we are done.

∗ OrN = subst x⃗ by P⃗ inP ′. It then reduces through a substitution-
reduction to some term that is substitution-smaller than N , from
Lemma 4.99. We can then invoke the induction hypothesis, and
deduce that N reduces to b.

– Otherwise, suppose that M →cbnext M
′ →∗

cbnext b, and that the result
is true for M ′. We know that ↓M = ↓M ′. Without loss of generality
one can suppose that N does not substitution-reduce: otherwise, we
could invoke Lemma 4.99 and the outer-most induction hypothesis as
above to conclude.

We proceed by case distinction on M →cbnext M
′.

∗ If it is a substitution-reduction step, then ↓M = ↓M ′ = ↓N , and
the inner induction hypothesis tells us that N ′ →∗

cbnext b.

∗ Otherwise, we first apply Lemma 4.97, conclude to the existence
of N ′ such that N →cbnext N

′ with ↓N ′ = ↓M ′, and apply the
inner induction hypothesis to conclude.

This closes the proof of the lemma.

Lemma 4.101. If N is a term in extPCF such that ↓N = b, where b is either a
term variable or a constant n, then N →∗

cbnext b.

Proof. This is a corollary of Lemma 4.100, when setting M = b. Indeed, in that
case we trivially have that ↓M = ↓N and that M →∗

cbnext b, so the lemma
applies.

Lemma 4.102. If M is a PCF term, then M →∗
cbn n if and only if M →∗

cbnext n.

Proof. The right-to-left direction is Lemma 4.95. For the left-to-right direction,
remark that ↓M =M and ↓n = n. Then consider the reduction sequence

M →cbn M1 →cbn · · · →cbn Mn = n.

Applying Lemma 4.96 on each step of this sequence, one construct a sequence
of reduction showing that M →∗

cbnext M
′
n where ↓M ′

n = n. We finally conclude
with Lemma 4.101

Lemma 4.103. Suppose that M and N are closed terms of type A. If M →cbnext

N , then M∗ →+ N∗.

72

Proof. The proof is done by structural induction on the derivation of the reduc-
tion M →cbnext N .

Lemma 4.104. Suppose that a net R converges to a normal form. Then any
sequence of reduction starting from R is finite and terminates on the same normal
form.

Proof. As in Proposition 4.9.

Lemma 4.105. Suppose that M is a closed term of type N. Then M →∗
cbnext n

if and only if M∗ →∗ n∗.

Proof. The left-to-right direction is proven by simple induction on the size of the
rewrite sequence M →∗

cbnext n, using Lemma 4.103.
For the right-to-left direction, suppose thatM∗ →∗ n∗ but that there exists an

infinite sequence {Mi}i∈N such that M =M0 and such that for all i, Mi →cbnext

Mi+1. Then using Lemma 4.103 we can conclude that there is an infinite net-
rewrite sequence starting with M∗. From Lemma 4.104 this contradicts the fact
that M∗ converges.

Proof of Theorem 4.86. The desired adequacy result simply follows from the
use of Lemma 4.102 to fall back on the intermediate PCF and Lemma 4.105.

73

Chapter 5

Memory-Based Synchronous Interaction

Abstract Machine

In the previous chapter, we saw how our multi-token framework can successfully
interpret a PCF-like programming language in a uniform manner. Since the initial
motivation for the multi-token framework came from quantum computation, it
is now natural to ask: then, is it able to adequately interpret some quantum
programming language using the same framework? In the chapter, we are going to
answer the question, as expected positively. Moreover, what we can state is more
general. We define a class of proof net systems, multi-token machine systems, and
PCF-like languages, each parameterized by a notion of memory structure. The
deterministic language we studied in §4.5, a quantum language (with exponentials
and recursion) akin to the one studied in [79], and a probabilistic language akin to
the one in [26] are all shown to be certain instances of the parametrically defined
language. Finally we show an adequacy result also in a parameterized way, thus
the adequacy result for each language is automatically obtained as soon as we fix
a specific memory structure.

Besides those results on interpretation of languages, we use the notion of prob-
abilistic abstract rewriting systems (PARSs) to define and analyze the probabilis-
tic systems. It is also of independent interest since the topic seems undeveloped
as far as the author (and coauthors of the paper [19]) know. Especially, the
definition of (an analogue of) the diamond property and providing a sufficient
condition for the property of PARS is novel.

The content of this chapter is based on a published paper [19]. Some part of
proofs and formulation of the notion of memory structure is by Claudia Faggian
and Benôıt Valiron. The initial idea of PARSs is due to Ugo Dal Lago.

Organization of the chapter. In Section 5.1 we introduce the notion of prob-
abilistic abstract rewriting systems (PARSs) and show some basic, important
properties in PARSs. Section 5.2 contains the notion of memory structures, with
some concrete instances of memory structures. We then equip proof nets, token
machines, and a language uniformly with the notion of memory structures in the
following sections (Section 5.3, 5.4, 5.5). As in the classical case translations
from the language to proof nets are defined, and soundness and adequacy will be
shown parametrically on memory structures.

5.1 Probabilistic Abstract Rewriting System

In the chapter we introduce a class of proof net systems, a class of multi-token
machines, and a class of programming languages. All of them are defined as

74

probabilistic abstract rewriting systems (PARSs) that we define and investigate
in the section.

Definition 5.1 (Probabilistic Abstract Rewriting System). A probabilistic ab-
stract rewriting system A is a pair (A,→) where A is a set and → is a relation
→ ⊆ A×Dist(A) satisfying that: if (a, µ) ∈ → then supp(µ) is finite for all a ∈ A
and µ ∈ Dist(A). (See Section 3.1 for the definition of Dist(A))

Definition 5.2 (Partition of Distribution). Given a probabilistic abstract rewrit-
ing system A = (A,→) and a distribution µ ∈ Dist(A), two distributions µ◦, µ̄ ∈
Dist(A) are defined as follows:

µ◦(a) =

{
µ(a) if a ̸→,
0 otherwise;

µ̄(a) = µ(a)− µ◦(a).

Definition 5.3 (Degree of Termination). Given a probabilistic abstract rewriting
system A = (A,→) and a distribution µ ⊆ Dist(A), the degree of termination of
µ is defined as T (µ) =

∑
a∈A µ

◦(a).

As clear from the definition, µ◦ and µ̄ partition the distribution µ into the dis-
tribution of the elements that are in normal form with respect to the relation →,
and the other distribution of the elements that can still evolve by →. The degree
of termination T (µ) is thus the total probability of terminated elements in the
distribution µ.

Unlike ARSs, the types of the “domain” and the “codomain” of → differ,
thus it is not trivial to define a transitive closure of → for a PARS. Here we
define a rather restricted relation ⇒ ⊆ Dist(A) × Dist(A) between Dist(A) that
simultaneously reduces each reducible element in a distribution. We also define
another relation ↬ ⊆ A×Dist(A) that reduces elements one by one. We use the
latter later in the chapter.

Definition 5.4 (Relation⇒ and↬). Let A = (A,→) be a probabilistic abstract
rewriting system. The relation⇒ ⊆ Dist(A)×Dist(A) is defined by the following
rule.

µ = µ◦ + µ̄ {a→ νa}a∈supp(µ̄)
µ⇒ µ◦ +

∑
a∈supp(µ̄) µ(a) · νa .

The relation ↬ ⊆ Dist(A)×Dist(A) is defined by the following rule.

a→ µ
a↬ µ a↬ {a1}

a↬ µ+ {bp} b↬ ρ b /∈ supp(µ)
a↬ µ+ p · ρ

Remark 5.5. Even if we regard an element a ∈ A in a PARS (A,→) as a
distribution {a1}, the distributions reachable by ⇒ and ↬ differs in general. As
an example, consider a PARS ({i, a, b, c, d, e},→) defined by i → {a1/2, b1/2},
a → {c1}, b → {c1}, c → {d1}, and c → {e1}. In this example i↬ {d1/2, e1/2}
holds (for example, first reduce a in {a1/2, b1/2} to d, and then b to e). The
distribution is unreachable by ⇒, that is, {i1} ⇒ {d1/2, e1/2} does not hold,
although {a1/2} ⇒ {d1/2} and {b1/2} ⇒ {e1/2} hold. This is because {i1} ⇒
{a1/2, b1/2}⇒ {c1} and either {c1}⇒ {d1} or {c1}⇒ {e1} only holds.

Remark 5.6. The definition of PARS itself is essentially the same as Markov
decision process. The use of the relation ⇒ is however unusual in the study
of Markov decision processes, and plays an essential role to make it possible to
define notions analogous to abstract reduction systems.

75

Based on the definition of ⇒ above, we define notions corresponding to nor-
malization, convergence, and confluence of ARSs. The first two inevitably become
quantitative, while confluence is defined to be a usual one with respect to the
relation ⇒.

Definition 5.7 (p-Normalization). For a distribution µ,

• µ weakly p-normalizes if there exists ν satisfying µ⇒∗ ν and T (ν) ≥ p.

• µ strongly p-normalizes (or p-terminates) if there exists n ∈ N such that
µ⇒n ν implies T (ν) ≥ p for any such ν.

Definition 5.8 (Convergence with Probability p). Given a probabilistic abstract
rewriting system (A,→), a distribution µ ∈ Dist(A) converges with probability p,
denoted by µ⇓p, if p = supµ⇒∗ν T (ν).

Definition 5.9 (Confluence). A probabilistic abstract rewriting system (A,→) is
said to be confluent if µ⇒∗ ν1 and µ⇒∗ ν2 implies that there exists ξ satisfying
ν1 ⇒∗ ξ and ν2 ⇒∗ ξ.

On top of the notions defined above, we define an important property anal-
ogous to the diamond property of ARSs. The first condition in the definition
below is specific to our probabilistic setting. It is to ensure Theorem 5.12.

Definition 5.10 (Diamond Property of PARS). A probabilistic abstract rewrit-
ing system (A,→) is said to satisfy the diamond property if the following holds:
if µ⇒ ν1 and µ⇒ ν2, then

1. ν1
◦ = ν2

◦,

2. and there exists ξ ∈ Dist(A) satisfying ν1 ⇒ ξ and ν2 ⇒ ξ.

Corollary 5.11. If a probabilistic abstract rewriting system (A,→) satisfies the
diamond property, then (A,→) is confluent.

Proof. Immediate by definition.

Finally, we state and prove a property that we heavily use later. On the one
hand, it assures that weak p-normalization implies strong p-normalization under
the diamond property, which is alike what often stated for ARSs. On the other
hand, the property we call uniqueness of normal forms has no counterpart in
ARSs and allows us to prove some properties we want later in the chapter.

Theorem 5.12 (Uniqueness of Normal Forms and Uniformity). Assume a prob-
abilistic abstract rewriting system (A,→) satisfies the diamond property. Then
we have the following properties.

1. Uniqueness of normal forms. For any k ∈ N and µ ∈ Dist(A), µ⇒k ν
and µ⇒k ξ implies ν◦ = ξ◦.

2. Uniformity. If µ is weakly p-normalizing for some p ∈ [0, 1], then µ is
strongly p-normalizing.

Proof. Item 2. follows from 1. We prove item 1. by an adaptation of the tiling
argument used for usual ARSs. It is not exactly the same as the standard proof,
because even if an element in a distribution µ is in normal form there can still
be non-normal ones in µ, and thus µ can be reduced by ⇒.

76

Assume µ = ν0 ⇒ ν1 ⇒ · · ·⇒ νk and µ⇒ ξ1 ⇒ · · ·⇒ ξk for some k ∈ N. We
prove νk

◦ = ξk
◦ by induction on k. If k = 1 it holds by the diamond property

(Definition 5.10.1). If k > 1, we make a tiling (w.r.t.⇒) as depicted in Figure 5.1:
we build the sequence ξ1 = ρ0 ⇒ ρ1 ⇒ · · · ⇒ ρk−1 (see Figure 5.1) where each
ρi+1 (i ≥ 0) is obtained by the diamond property (Definition 5.10.2), applied for
νi ⇒ νi+1 and νi ⇒ ρi. By Definition 5.10.1, νk

◦ = ρk−1
◦. We have ξ1 ⇒k−1 ξk

µ

ν1

ν2

ξ1 ξ2

νk

ξk

νk−1

ρ1

ρ2

ρk−1

Figure 5.1: Tiling in PARS

and ξ1 ⇒k−1 ρk−1, thus by induction hypothesis ξk
◦ = ρk−1

◦. Hence we conclude
that νk

◦ = ξk
◦.

Remark 5.13. The diamond property is a rather strong property, and it is true
that not so many PARSs satisfy it. Although it would be interesting to search for
more moderate properties and investigate the general theory of PARSs further,
we stop here because the properties we introduced so far are at least sufficient
for our purpose in the thesis.

5.2 Memory Structures

In section 4.5, we interpreted the PCF-like language by SMEYLL nets and the
SIAM extended with a notion of memory consisting of natural numbers. The
content of a memory should be different if we consider another language with a
different data type, such as integers, real numbers, or quantum states. In the
section we introduce a generalized notion to deal with such various memories,
called memory structure, with a requirement that the operations on memories are
commutative in a certain sense. The generalized notion allows us to parameterize
the notions of proof nets, multi-token machines, and programming languages,
hence leading to a unified handling of different kinds of languages in one single
framework. The notion of memory structure is defined to be a certain kind of
nominal sets; this is for convenience rather than a theoretical insight.

Definition 5.14 (Memory Structure). Amemory structure is a 4-tuple (Mem, ·, I,L)
where

• (Mem, ·) is a nominal set,

• I is a countably infinite set whose elements are called indexes,

• L is a finite set whose elements are called operations,

equipped with the following maps

• test : I ×Mem → Dist(B)× (B → Mem)

• update : I∗ × L×Mem⇀ Mem

• arity : L → N

77

satisfying the conditions listed below. The type Dist(B) × (B → Mem) that the
function test returns is meant to represent distributions in the form of
{(true,m0)

p0 , (false,m1)
p1}, and we write test(i,m) = {(true,m0)

p0 , (false,m1)
p1}

for test(i,m) = ({truep0 , falsep1}, {true 7→ m0, false 7→ m1}).

1. The maps test and update respect the group action · of the nominal set
(Mem, ·). Explicitly,

σ · (test(i,m)) = test(σ(i), σ ·m),

σ · (update(⃗i, x,m)) = update(σ(⃗i), x, σ ·m).

2. The map update is defined if and only if the arity of a given operation and
the number of given distinct indexes coincide. Explicitly, update((i1, . . . , in), ℓ,m)
is defined if and only if the indexes ik’s are pairwise disjoint and arity(ℓ) =
n.

3. The maps test and update commute if they act on different indexes. Ex-
plicitly,

• Tests on i commute with tests on j. More precisely, if

– test(i,m) = {(true,m0)
p0 , (false,m1)

p1}
– test(j,m0) = {(true,m00)

p00 , (false,m01)
p01}

– test(j,m1) = {(true,m10)
p10 , (false,m11)

p11}
and

– test(j,m) = {(true,m′
0)

q0 , (false,m′
1)

q1}
– test(i,m′

0) = {(true,m′
00)

q00 , (false,m′
01)

q01}
– test(i,m′

1) = {(true,m′
10)

q10 , (false,m′
11)

q11}
then for all x, y ∈ {0, 1}, mxy = m′

yx and pxpxy = qyqyx.

• Tests of j commute with updates on k⃗. More precisely, if

– test(i,m) = {(true,m0)
p0 , (false,m1)

p1}
– update(k⃗, x,m0) = m′

0

– update(k⃗, x,m1) = m′
1

and if update(k⃗, x,m) = m′ then

test(i,m′) = {(true,m′
0)

p0 , (false,m′
1)

p1}.

• Updates on k⃗ and k⃗′ commute. More precisely:

update(k⃗, x, update(k⃗′, x′,m)) = update(k⃗′, x′, update(k⃗, x,m)).

The commutation of two tests (a) and the commutation of test and update (b)
can be concisely shown as Figure 5.2.

In the next three subsections, we see three typical instances of the memory
structures. Note that they are just instances; whenever the conditions described
in Definition 5.14 are satisfied, it is an instance of memory structures and all the
parameterized arguments in Section 5.3, 5.4, and 5.5 apply.

78

test(i)

test(j)

p0 p1

p00 p01 p10 p11

m

· ·

m11m10m01m00

(true)

(true) (true) (false)

(false)

(false)

q0 q1

q00 q01 q10 q11

m

· ·

m11m10m01m00

(true)

(true) (true) (false)

(false)

(false)

test(j)

test(i)

=

pxpxy = qxqxy

(a)

p0 p1

m

· ·

(true) (false)

m0 m1

test(j)

update(~k, x)

m0 m1

test(j)

update(~k, x)

p0 p1

·
(true) (false)

m

=

(b)

(followed by) (followed by)

(followed by) (followed by)

mxy = m′
xy

Figure 5.2: Commutation of test and update

5.2.1 Instance: Deterministic, Natural Number Memory

The first case is nothing but the memory structure used in Section 4.5. A
natural number memory is an element m of the memory structure MemN =
(MemN, ·, I,L) defined by:

• I = N,

• MemN = {m: I → N} with supp(m) = {i ∈ I |m(i) ̸= 0},

• (σ ·m)(i) := m(σ(i)),

• L = {max, succ, pred}, with arity(max) = 2 and arity(succ) = arity(pred) =
1,

• update is defined as follows.

– update(i, j, max,m) = m[i 7→ max(m(i),m(j)), j 7→ max(m(i),m(j))]

– update(i, succ,m) = m{i:=m(i) + 1}
– update(i, pred,m) = m{i:=max(m(i)− 1, 0)}

• test(i,m) =

{
{(true,m)1} if m(i) = 0

{(false,m)1} if m(i) > 0

We write a natural number memory m as an infinite sequence of integers
(m(0),m(1),m(2), . . .). A memory with an empty support is written m0 =
(0, 0, 0, . . .) for example. If we apply the operation succ on the address 0 of
the memory m0, it rewrites into m1 = update(0, succ,m0) = (1, 0, 0, 0, . . .). Like-
wise, if we apply succ on the address 1 on m1, m2 = update(1, succ,m1) =
(1, 1, 0, 0, . . .), and then if we apply the operation pred on the address 0, we
obtain m3 = update(0, pred,m2) = (0, 1, 0, 0, . . .). Applying the test operation
yields test(1,m3) = {(false,m3)

1}, without changing any value on the memory.
Note that we only need to keep track of finitely many values since having a finite
support is imposed on a memory.

79

Remark 5.15. The equations required for memory structures enforce every
memory to contain the same values in all the fresh addresses (i.e., not in the
support of the memory as a nominal set), but the conditions do not impose any
particular “default” value.

Remark 5.16. One may wonder that the natural number memory structure
does not treat the number 0 as a value stored in a memory, since we define
i /∈ supp(m) if m(i) = 0. It is not the case because we do not make use of a
memory structure alone: in later sections, another structure (net, machine, or
language) always come together with a memory structure, and an address with
such a default value and an “empty” address are distinguished by whether the
address is linked to some object (a 1 node, a position, or a variable) or not.

5.2.2 Instance: Probabilistic Memory

Since test function is defined to be probabilistic, it is straightforward to define
a memory structure that probabilistically behaves. A common probabilistic op-
eration is the (fair or biased) coin flip. A possible instance of memory structure
that realizes the behavior of such an operation can be spelled out as:

• I = N,

• MemP = {m: I → [0, 1] ⊎ N} with supp(m) = {i ∈ I |m(i) ̸= 0},

• (σ ·m)(i) := m(σ(i)),

• L = {succ, pred, coin}, with arity(succ) = arity(pred) = arity(pred) = 1,

• update is defined as follows.

– update(i, succ,m) = m{i:=m(i) + 1}
– update(i, pred,m) = m{i:=max(0,m(i)− 1)}
– update(i, coin,m) = m{i:=1/2}

• test(i,m) =

{
{(true,m)m(i), (false,m)1−m(i)} if m(i) ≤ 1

{(true,m)1} if m(i) > 1.

Intuitively, a value m(i) ∈ [0, 1] on the address i in the memory m represents a
probability to yield true when test is applied on the address.

Example 5.17. Now a memory m0 = (0, 0, 0, . . .) can be seen as a memory filled
with the value “false”. if by applying coin to the address 0, the memory goes
into another memory m1 = update(0, coin,m0) = (12 , 0, 0, 0, . . .). Then applying

test, we obtain test(0,m1) = {(false,m1)
1
2 , (true,m1)

1
2 }.

Remark 5.18. Precisely speaking, the memory structure defined above only ac-
commodates binary branching while the language PPCF defined in [26] has rand
function that yields k < n with probability 1/n when applied to n. However such
a function can be defined only using fair coin as shown in e.g. [21], using recur-
sion that can be expressed in our framework. Moreover, in the same paper [26]
they show that the choice among such probabilistic primitives is irrelevant with
respect to observational equality, thus the difference is in any case not essential.

80

5.2.3 Instance: Quantum Memory

A notable instance of the notion of memory structure is a quantum memory. A
standard model for quantum computation is the QRAM model: quantum data is
stored in a memory seen as a list of (quantum) registers, each one holding a qubit
which can be acted upon. The model supports three main operations: creation of
a new register, measurement of a register, and application of unitary gates on one
or more registers, depending on the arity of the gate under scrutiny. This model
has been used extensively in the context of quantum lambda calculi [17, 79, 93],
with minor variations. The main choice to be made is whether measurement is
destructive (i.e., if one uses garbage collection) or not (i.e., the register is not
reclaimed).

To fix things, we shall concentrate on the presentation given in [79]. We briefly
recall it. Given n qubits, a memory is a normalized vector in (C2)⊗n (equivalent
to a ray). A linking function maps the position of each qubit in the list to some
pointer name. The creation of a new qubit turns the memory ϕ ∈ (C2)⊗n into
ϕ⊗ |0⟩ ∈ (C2)⊗(n+1). The measurement is destructive: if ϕ = α0q0 +α1q1, where
each qb (with b = 0, 1) is normalized of the form

∑
i ϕb,i⊗|b⟩⊗ψb,i, then measuring

ϕ returns
∑

i ϕb,i ⊗ψb,i with probability |αb|2. Finally, the application of a k-ary
unitary gate U on ϕ ∈ (C2)⊗n simply applies the unitary matrix corresponding
to U on the vector ϕ. The language comes with a chosen set U of such gates.

The quantum memory can be presented using a memory structure: in the
following we shall refer to the memory structure as MemQ. Let F0 be the set
of (set-)maps from I to {0, 1} that have value 0 everywhere except for a finite
subset of I. The quantum memory structure MemQ = (MemQ, ·, I,L) is defined
as follows.

• I = N,

• MemQ = H0, that is the Hilbert space built from finite (complex) linear
combinations over F0, with supp(m) = {i ∈ I |m(i) ̸= 0},

• (σ ·m)(i) := m(σ(i)),

• L is a fixed set of unitary gates, with arity(U) being equal to the arity of
the unitary gate U ∈ L,

• update and test are defined via the equivalence described below.

The operation update corresponds to application of an unitary gate to a quantum
state, and test corresponds to measurement followed by a (classical) boolean test
on the result.

Let m ∈ MemQ. Since m has a finite support, a finite subset I0 = {i |m(i) ̸=
0} ⊆ I can always be taken. As fresh values are represented by 0 in m, m can
be regarded as a superposition of some sequences that are equal to 0 on I \ I0.
Then m can be represented as “ϕ ⊗ |000 . . .⟩” for some (finite) vector ϕ. By
omitting the last |0000 . . .⟩, now the vector ϕ is the standard presentation of
finite-dimensional quantum state. The operations update and test can then be
defined on the nominal set presentation through this equivalence.

The equations required for memory structures are indeed satisfied by MemQ.
In this quantum setting, the meaning of the three groups of equations in Def-
inition 5.14 are as follows. Equation 1. is simply renaming of qubits. 2. is a
property known to hold when applying a unitary, and 3. holds because the equa-
tions correspond to the tensor of two unitaries or the tensor of a unitary and a
measurement that is monoidal.

81

Remark 5.19. The reason why the set Mem is in the codomain of test : I ×
Mem → B × Mem is to accommodate the quantum instance. Measurement of
a quantum state may collapse the state globally (see Section 3.5), and thus the
globally modified memory has to be returned together with the resulting boolean
in order to continue computation further.

5.3 Program Net

As observed in the previous three subsections, the notion of memory structure
covers some important effects that “choose” branches probabilistically. In this
section we parameterize SMEYLL nets with a memory structure. To avoid
inessential difference on addresses, the extended nets are quotiented by permu-
tations over addresses.

Definition 5.20 (Raw Program Nets). Given a memory structure Mem =
(Mem, ·, I,L), a raw program net on Mem is a triple ((R, opR), indR,m) where

• (R, opR) is a decorated SMEYLL net (see Definition 4.67),

• indR : InputR ⇀ I is an injective partial function that is however total on
the occurrences of ⊥ in the conclusions of R,

• m ∈ Mem.

We often omit the opR function and write (R, indR,m) for a raw program net.
We require that the arity of each sync node s matches the arity of opR(s). A 1
node a is said to be active if indR(a) is defined.

Definition 5.21 (Program Nets). A program net is defined to be an equivalence
class of raw program nets over permutations of the indexes, where the action of
a permutation σ ∈ FinBij(I) is defined by σ(R, indR,m) = (R, σ · indR, σ · m)
and the equivalence relation ∼ is defined by: (R′, indR′ ,m′) ∼ (R, indR,m) if
(R′, indR′ ,m′) = σ(R, indR,m) for some σ ∈ FinBij(I). Thus formally a program
net can be written as an equivalence class R = [(R, indR,m)].

Notation 5.22. We denote the set of program nets by N . The correspondence
between a 1 node and an index i by the partial function indR is graphically shown
by a dotted line connecting the 1 node and the index i as in Figure 5.3: the left
1 node a1 is linked to the address i = indR(a1) and thus active, while the right
1 node a2 is not (i.e. indR(a2) is undefined). A program net [(R, indR,m)] will
be depicted as in Figure 5.4, showing the memory m in a rectangle next to the
SMEYLL net R and using the convention in Figure 5.3 if some 1 nodes are active.

one one

i

a1 a2

Figure 5.3: Partial Function indR, Graphically

R
. . .

m

Figure 5.4: Program Net, Graphically

82

Example 5.23. An example of program net with the quantummemory defined in
Section 5.2.3 is shown in Figure 5.5. The net corresponds to the translation1 of
a quantum program letrec f x = (ifx then new else f (Hnew)) in (f (Hnew)),
where the language and the translation will be made precise later (Section 5.5)
in the chapter. Intuitively, the program flips a (fair) “quantum coin”; if it yields
head, then a fresh 1-qubit quantum state is returned and the program halts. If it
yields tail the program recursively flips a new coin until head comes out. Observe
that each sync node is equipped with an operation (via op), and the net comes
with a memory.

Y
!(⊥` 1)

?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

?(1⊗⊥)1

|0〉

Figure 5.5: Example of Program Net

5.3.1 Reduction Rules

The reduction rules (as a PARS) for program nets are defined on raw program
nets, and then the rules are shown to be compatible with the equivalence relation
by permutations of indexes (Lemma 5.25). In Figure 5.7, we additionally have a
rule to link an index of memory to a 1 node at surface, and the rules to remove
sync nodes and to open multi ⊥-boxes now interact with the memory attached
to the net. More precisely,

Definition 5.24 (Reduction Rules of Raw Program Nets). The reduction rules of
raw program nets are shown in Figure 5.6 and 5.7. Rules except ⇝test are meant
to represent (R, indR,m)⇝ {(R′, indR′ ,m′)1}. The right-hand side of the⇝test(i)

rule denotes substitution: given test(i,m) = {(true,m0)
p0 , (false,m1)

p1}, the
right-hand side of the rule represents a distribution of raw program nets {(S0, indR,m0)

p0 ,
(S1, indR,m1)

p1}.2 The three rules in Figure 5.7 have to comply with the follow-
ing conditions when applied:

• The link(i) rule can be applied only if the index i ∈ I satisfies i /∈ supp(m)
and i /∈ Im(indR).

• The update(s) rule can be applied only if all the 1 nodes involved in the
reduction are active (i.e. indR is defined on all of them).

• The test(i) rule can be applied only if the 1 node involved in the reduction
is active.

1It is simplified from the exact translation in Section 5.5: all the ax-cut redexes are already
reduced in the figure, and the terms in the “then” clause and “else” clause are not closed. This
is not to complicate the example too much at the same time conveying some computational
intuition by the example.

2Precisely speaking this is an abuse of notation, since we substitute a pair of type
{SMEYLL nets} × (InputR ⇀ I) to a boolean of type B. We will use a similar abuse of
notation in the definition of transition rules of the multi-token machine (Definition 5.33).

83

We write (R, indR,m)
r⇝ µ for the reduction of the redex r in the raw program

net (R, indR,m).

S

cut

?c
S

cut

S

cut

S

cut

?w
X X X X

 c w

S ′

cut

X2

S

. . .X1 ? ?

. . .
?

S ′

cut

S

. . .? ?

. . .

X1

X2
 p

S

cut

S

Y
cut

S

cut

?d
Y

S

cut

!
?d

S

cut

 d y

Exponentials

ax

cut
 a ⊗ `

cut
 m

cut cut

Multiplicatives

(void)

Figure 5.6: Rules Not Involving Memories

oneone
 link(i)

i

. . .
Γ

S0
.bot bot

+ +⊥
one

cut

S1 Γ
. . .
S0

 test(i)

one one one
.

one one one
 update(s)

ini2i1

s

ini2i1

i

test(i,m)
false :=

Γ. . .
S1true :=

m

m m
m update(ln, i1, · · · , in,m)

Figure 5.7: Rules Involving Memories

Lemma 5.25 (Preservation of Equivalence). Let (R, indR,m)
r⇝ µ and (R, σ ·

indR, σ · m)
r⇝ ν be two reductions of raw program nets on the same redex r in

the underlying SMEYLL net R. Then µ ∼ ν pointwisely: for all S ∈ supp(µ),
there exists a program net S′ ∈ supp(ν) satisfying S ∼ S′ and µ(S) = ν(S′); for
all S′ ∈ supp(ν), there exists a program net S ∈ supp(µ) satisfying S ∼ S′ and
µ(S) = ν(S′).

Proof. Let us check the rule ⇝test(i). Suppose (R′, indR′ ,m′) = σ(R, indR,m),

(R, indR,m)
r⇝test(i) µ= {(R0, indR0 ,m0)

p0, (R1, indR1 ,m1)
p1}, and (R′, ind′R,m

′)
r⇝test(i) ν = {(R′

0, ind
′
R0
,m′

0)
p′0 , (R′

1, indR′
1
,m′

1)
p′1} by reducing the same redex r.

It suffices to show that ν = σ · µ. Element-wisely, we have to check R′
i = Ri,

84

ind′Ri
= σ ◦ ind′Ri

, m′
i = σ · mi, and p

′
i = pi for i ∈ {0, 1}. The first two follow

by definition of ⇝test(i) and the last two follow from the equation σ · (test(i)) =
test(σ(i), σ ·m). The other rules can be similarly checked.

Since (R, indR,m) ∼ (R, σ · indR, σ ·m), we can regard the reductions as those
on program nets. We write R⇝ µ for that reduction relation⇝ ⊆ N ×Dist(N)
over program nets and distributions on program nets. In this way, the set of pro-
gram nets and the reduction over program nets form a PARS. The PARS indeed
satisfies the diamond property defined in section 5.1, and hence also satisfies the
uniqueness of normal forms:

Lemma 5.26 (Diamond Property of Program Net). The probabilistic abstract
reduction system (N ,⇝) satisfies the diamond property.

Lemma 5.26 follows from the following lemma.

Lemma 5.27 (Locality of ⇝). Assume that R = [(R, indR,m)] has two distinct

redexes r1 and r2, with R
r1⇝ µ1, R

r2⇝ µ2 and µ1 ̸= µ2. Then the redex r2 (resp.
r1) is still a redex in each (R′, indR′ ,m′) ∈ supp(µ1) (resp. supp(µ2)).

Proof. By case analysis.

Proof. (of Lemma 5.26.) Lemma 5.27 implies the following two facts:
(1) If (R, indR,m) ⇝ µ with µ◦ ̸= ∅, then the raw program net (R, indR,m)
contains exactly one redex.
(2) If (R, indR,m)

r1⇝ µ and (R, indR,m)
r2⇝ ξ with µ ̸= ξ, then there exists ρ

satisfying µ⇒ ρ and ξ ⇒ ρ. Concretely, µ⇒ ρ is obtained by reducing the redex
r2 in each (R′, indR′ ,m′) ∈ supp(µ), and ξ ⇒ ρ is obtained by reducing r1.

Assuming µ ⇒ ν and µ ⇒ ξ, item 1. implies ν◦ = ξ◦, and item 2. implies
∃ρ.ν ⇒ ρ ∧ ξ ⇒ ρ. Let us review some of the non-evident cases explicitly.

If r1 and r2 are both non-active 1 nodes, say x and y respectively, (R, indR,m)
reduces to (R, indR ∪ {x 7→ i, y 7→ j},m) and (R, indR ∪ {x 7→ k, y 7→ l},m) for
some fresh indexes i, j, k, l. The permutation (i, k)◦(j, l) renders the two program
nets equivalent.

If both r1 and r2 modify memories (i.e. they perform either update or test), the
property holds because the injectivity of indR guarantees that we always have the
requirement (disjointness of indexes) of the equations. Hence the two reductions
commute both on memory (up to group action) and on probability.

Corollary 5.28 (Uniqueness of Normal Forms). The probabilistic abstract re-
duction system (N ,⇝) satisfies the uniqueness of normal forms.

Proof. By Lemma 5.26 and Theorem 5.12.

Example 5.29. The program net in Example 5.23 reduces as shown in Fig-
ure 5.8 and Figure 5.9. The first reduction applies the Hadamard gate H to the
corresponding memory via the index 0 = ind(a) where a is the only 1 node at
surface. Then after some more reduction, the multi ⊥-box is opened by test rule
that yields one of the two reducts probabilistically, here with the same probabil-
ity 1

2 . One of the two reaches to a normal form after some more reduction with
the only one 1 node is linked to a fresh index 1; the other continues to reduce
by first assigning a fresh index 1 to the 1 node that newly came out by test
reduction, then applying H to that 1 node (now the quantum memory is in the
state 1√

2
|1⟩ ⊗ (|0⟩+ |1⟩), as shown in Figure 5.9), and eventually the second test

reduction will take place.

85

Y
!(⊥` 1)

?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

?(1⊗⊥)1

|0〉

Y
!(⊥` 1)

?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

?(1⊗⊥)1

1√
2
(|0〉+ |1〉)

11

!(⊥` 1)

bot bot

+⊥
⊥⊥

⊥` 1

⊗
one ?w

one
ax

?d

H

cut

⊗

one
ax

?d

?(1⊗⊥)1

1√
2
(|0〉+ |1〉)

1

Y
?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cut

`
!

+

bot bot

+⊥
⊥⊥

⊗
one ?w

one
ax

?d

H

cut

one

ax

1

1√
2
(|0〉+ |1〉)

∗

1

Y
?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cut

+

cut

0 0

0

0

Figure 5.8: Example of Program Net Reduction (i)

5.4 Memory-Based Synchronous Interaction Abstract Machine

In the section we define the Memory-based Synchronous Interaction Abstract Ma-
chine (MSIAM) that is a multi-token machine whose states and the transitions
are also equipped with memories and probabilities induced from the memory
structure. The way we define them precisely follows the one we did in the pre-
vious section: first we define raw states, then states are defined as equivalence
classes defined by permutations. Transition rules are first defined on raw states,
then they naturally extend to those on the equivalence classes.

Definition 5.30 (Raw MSIAM States). Given a memory structure Mem =
(Mem, I,L) and a raw program net (R, indR,mR) on Mem, a raw state is a
tuple (T, indT,mT) where

• T is a state of the SIAM MR,

• indT : StartR ⇀ I is a partial injective function,

• mT ∈ Mem.

86

one ?w

ax

|0〉

∗

1
2

Y
?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cutcut

⊗

one
ax

?d

H

|1〉
1
2

Y
?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cut

ax

cut

,

one

|00〉

∗

1
2

1
2

,

Y
!(⊥` 1)

?(1⊗⊥)

bot bot

+ +⊥
⊥⊥

⊥` 1

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

?(1⊗⊥)1

1√
2
|1〉 ⊗ (|0〉+ |1〉)

1

1

Figure 5.9: Example of Program Net Reduction (ii)

Definition 5.31 (MSIAM States). An MSIAM state is defined as an equivalence
class T = [(T, indT,mT)] of raw states over permutations, with the action of
FinBij(I) on tuples being the natural one, that is σ · (T, indT,mT) = (T, σ ·
indT, σ ·mT).

Notation 5.32. We depict an MSIAM state [(T, indT,mT)] on the program net
[(R, indR,mR)] as in Figure 5.10. To distinguish from the memory of the underly-
ing program net (which does not coincides with the memory of the MSIAM state
in general), the memory mT is surrounded by an ellipse. Notation for tokens is
the same as the SIAM case.

Definition 5.33 (Transition Rules of MSIAM). The transition rules on raw
states are defined in Figure 5.11 and in Figure 5.12 with the same conventions

87

R

. . .

mT

(s′, t′)↑(s, t)↓

Figure 5.10: MSIAM State, Graphically

as the ones of the SIAM. The rules in Figure 5.11 do not involve memories and
indexes: on the first components of raw states the rules acts in exactly the same
way as those for the SIAM, and the second and the third components remain
unchanged (thus the memories are omitted in Figure 5.11). Formally, if T → U
in Figure 5.11, then (T, indT,m) → {(U, indT,m)1}. The multi-token conditions
to generate a token from a dereliction node and to move a token inside a multi
⊥-box are again the same as the SIAM. The rules in Figure 5.12 interact with
memories:

• The rule →link(i) generates a token associated to an address. Let p be the
token in the right-hand side of the rule, a be the 1 node depicted in the
figure, and c be the conclusion of a. Then, formally it defines a transition
(T, indT,mT) →link(i) (U, indT ∪ {origp 7→ i},mT) where i is defined to be
indR(a) if a is active in the underlying program net R, otherwise defined to
be an address fresh in both indT and mT. Note that the memory m itself
is unchanged by the rule.

• The rule →update(l) applies the function update when tokens simultane-
ously cross a sync node, with the same condition as the SIAM. Let l ∈
L be the operation associated to a sync node, n be its arity, and i⃗ be
the sequence of addresses associated to the tokens, i.e. indT(origT(p1)),
indT(origT(p2)), . . . , indT(origT(pn)) where pi’s are the tokens depicted.
Then (T, indT,mT) →update(l) {(U, indT, update(l, i⃗,mT)

1}.

• The rule →test(i) is the only rule that (possibly) yields a distribution not
in the form {(T, indT,mT)

1}, using the function test. When a token p ∈ T
is at the conclusion of the principal conclusion of a multi ⊥-box and i =
indT(orig(p)), then (T, indT,mT) →test(i) test(i,mT)[false := (T0, indT),
true := (T1, indT)] where T0 (resp. T1) is the SIAM state containing a
token on the conclusion of the left (resp. right) bot node.

Example 5.34. The MSIAM of the program net in Example 5.23 starts from
the initial state shown at top left in Figure 5.13. Then the token from the 1
node passes the sync node applying H gate to the corresponding address of the
memory; the dereliction token meanwhile opens the Y-box. The token from the 1
node enters the Y-box and eventually reaches the principal conclusion of the multi
⊥-box in the Y-box. It causes the test transition rule and yields a probability
distribution of MSIAM states, shown at the bottom of Figure 5.13. The run of
the machine continues as in Figure 5.14: the state with a stable token on the
left content of the multi ⊥-box generates a token from 1 node inside the ⊥-box;
this token goes out from the boxes, and finally reaches at the conclusion of the
net. The other state with a stable token on the right content of the multi ⊥-box
generates a token from a 1 node, but this token will reach the Y node from right
and starts the second recursion, eventually reaches at the principal conclusion of
the multi ⊥-box (shown in the last distribution in Figure 5.14) and will continue
to another probabilistic branching.

88

Multi ⊥-Box

?c
(l(σ).s, t)

(σ.s, t)
?c

→↓

←↑

(and similarly for the right premiss)

→↓

←↑
?d?d

(∗.s, t)

(s, t)

Exponential Boxes

!

(σ.s, t)

(s, σ.t)→↓

←↑
!

. . .(σ.s, τ.t)

?
(dσ, τe.s, t)

?
→↓

←↑

(s, y(σ, τ).t)↓
(σ.s, τ.t)↑

(*)

→↓Y Y
(σ.s, τ.t)↓

Y

(s, y(σ, τ).t)↑

→↓

(*)
Y

(σ.s, t)

(σ 6= y(τ1, τ2))

(s, σ.t)

→↑

←↓
YY

Exponential Nodes

ax ax
(s, t)↓

cut
(s, t)↑

cut

→↑

→↓

�
(s, t)

�
(l.s, t)

→↓

←↑

�
(s, t)

�
(r.s, t)

→↓

←↑

(s, t)↑

(s, t)↓

Multiplicatives

?d

(with a similar rule for (ε, t) in the left bot)

S0

.bot bot

⊥

S1

+
(ε, t)↔

. . .+

(s, t)

.bot bot

⊥

S1

. . .+ +
(s, t)

(ε, t)↔

→↑

?d

(∗.δ, t)↓
→

←↓

Y
(σ.δ, t)↑

Y
(δ, σ.t)↔

Y
(σ.δ, τ.t)↓

Y
(δ, y(σ, τ).t)↔

(σ.δ, t)↑

→↑!
(δ, σ.t)↔

!

→↑ →↓

S0

Figure 5.11: MSIAM Transitions Not Involving Memory

oneone
→link(i)

. . .
Γ

S0
.bot bot

+ +⊥

S1

→test(i)

. . . →update(l)l

test(i,mT)

false :=

true :=

update(l, i1, · · · , in,mT)

. . .l

(s1, t)
↓

. . .
Γ

S0
.bot bot

+ +⊥

S1

. . .
Γ

S0
.bot bot

+ +⊥

S1

(ε, t)↓

(s2, t)
↓ (sn, t)

↓

mT

(ε, t)↑

(ε, t)↔

(ε, t)↔

mT mT

(s1, t)
↓ (s2, t)

↓ (sn, t)
↓

. . .
. . .

. . .
. . .

Figure 5.12: MSIAM Transitions Involving Memory

89

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1−

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1|0〉

0

(ε, ε)↓

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1

0

(ε, ε)↓

1√
2
(|0〉+ |1〉)

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1

0

(ε, ∗)↑

1√
2
(|0〉+ |1〉)

∗

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1

0

(ε, ∗)↑

1√
2
(|0〉+ |1〉)

(∗.δ, ε)↓
Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1

0

(ε, ∗)↑

1√
2
(|0〉+ |1〉)

(δ, ∗)↔

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1
2

0

(ε, ∗)↔

(δ, ∗)↔

∗

∗

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

0

(δ, ∗)↔

,

1
2|0〉 |1〉

(ε, ∗)↔

Figure 5.13: Example of MSIAM Transition (i)

Finally, we have three theorems, namely invariance, deadlock-freedom, and
adequacy, where invariance and adequacy are in a quantitative form. Since the
proofs are rather long, we defer them to the next two subsections.

Theorem 5.35 (Invariance of MSIAM). Let R be a program net of conclusion
1 and R ⇝

∑
i pi · {Ri}. Then, MR⇓q if and only if MRi⇓qi for each i with∑

i(pi · qi) = q.

Theorem 5.36 (Deadlock-Freedom of MSIAM). Let R be a program net of
conclusion 1. If IR↬ µ and T ∈ supp(µ) is terminal, then T is a final state.

90

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1
2

0

(ε, ∗)↔

(δ, ∗)↔

∗

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

0

(δ, ∗)↔

,

1
2|00〉 |10〉

(ε, ∗)↔(ε, ∗)↓
(ε, ∗)↓

1
1

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

1
2

0

(ε, ε)↔

(δ, ∗)↔

∗

Y

bot bot

+ +⊥

⊗

`

one ?w
one
ax

?d

H

cut

⊗

one
ax

?d

H

0

(δ, ∗)↔

,

1
2|00〉

(ε, ε)↔

(ε, ∗)↓

1
1

1√
2
|1〉 ⊗ (|0〉+ |1〉)

(δ, y(∗, ∗))↔

(ε, y(∗, ∗))↑

Figure 5.14: Example of MSIAM Transition (ii)

Theorem 5.37 (Adequacy of MSIAM). Let R be a program net of conclusion
1. Then, MR⇓p if and only if R⇓p.

5.4.1 Proofs of Invariance, Adequacy, and Deadlock-Freedom of MSIAM

The MSIAM is non-deterministic w.r.t. →. However, by confluence and unique-
ness of normal forms, any run from a distribution of states produces the same
normal forms with the same probabilities. Therefore, we choose a run starting
with specific transitions when we study termination of the MSIAM:

Remark 5.38 (Convention). LetR⇝ ρ be a program net reduction via link, update
or test rule. Hereafter in this subsection, we will always look at a run in MR

which begins as specified below:

1. link rule. Assume (R, indR,mR)⇝link(i) {(R, indR ∪ {x 7→ i},mR)
1}. From

the initial state IR of the machine, first a transition using the link(i)
rule occur on the 1 node involved in the reduction. We can choose the
same address i because we know it is fresh in mR. Therefore we have
(I, indI ,mR) →link(i) {(U, indU ,mR)

1} = µ.

2. update rule. Assume (R, indR,mR)⇝update(s) {(R′, indR, update(l, i⃗,mR)}.
By definition of the reduction rule, the 1 nodes a⃗ in the redex are active; let
j⃗ be the corresponding addresses ind(⃗a). We choose a run starting with the
transitions (I, indI ,mR) →link(j1) {(U, indU ,mR)

1} and (U, indU ,mR) →update(s)

{(U, indU , update(l, i⃗,mR)} = µ.

3. test rule. Assume (R, indR,mR) ⇝test(j) ρ where R ⇝ui Ri as SMEYLL
nets, for each i ∈ {1, 2}. Again the 1 node a in the redex is active by
definition. Let j be the corresponding address indR(a). We start the
run of the machine by applying a transition by link(j) rule to the ini-
tial state (I, indI ,mR), then the token crosses the cut node in the redex,

91

and finally applies a transition by test(j) rule occur on the redex, reaching
test(j,mR)[true := U0, false := U1]) = µ.

We generalize the transformation map given in Section 4.5.3 to the one for
the MSIAM. Let trsfR,r,Ri : PosR ⇀ PosRi be the one defined on the SIAM states
over SMEYLL nets with multi ⊥-boxes.

We now extend trsfR⇝Ri to MSIAM states as a generalization of the one given
in Chapter 5. To do so smoothly, we define a subset [trsfRi] of the set of reachable
states SIR that depends on the reduction rule. Working with such states simplify
the proofs, and is always possible by following the convention in Remark 5.38.

Definition 5.39. The set [trsfRi] is defined as follows.

• If the reduction is by ⇝link(j) rule, we define [trsfRi] as the set of states in
SIR in which ind(p) = j, where p ∈ SurfOneR is the position associated to
the 1 node a.

• If the reduction is by ⇝update(s) rule, assume p1, . . . ,pn are the positions
associated to the premises of the sync node s (observe that each pi belongs
to OnesR). [trsfRi] is defined to be the set of states T ∈ SIR satisfying
{p1, . . . ,pn} ⊆ orig(T) and {p1, . . . ,pn} ̸⊆ T.

• If the reduction is by ⇝test(j) rule, we define [trsfR0] as the set of states in
SIR that contain a token on the left ⊥ node of the multi-⊥-box in the redex
(the edge e0 in Figure 4.32). We define [trsfR1] similarly.

• Otherwise we define [trsfRi] = SIR .

Definition 5.40 (Transformation Map). 1. trsfi : [trsfRi] → SRi maps the
state T = [(T, ind,m)] into [trsfi(T, ind,m)], with

trsfi(T, ind,m) = (trsfi(T), ind,m).

2. The definition extends linearly to distributions. Assume µ =
∑
ck · {Tk}

and Tk ∈ [trsfRi] for each Tk, then

trsfR⇝Ri(µ) :=
∑

ck · {trsfR⇝Ri(Tk)}.

We observe the following facts:

Fact 5.41. If T ∈ [trsfRi], with T → µ and S ∈ supp(µ), then S ∈ [trsfRi].

Fact 5.42. The construction given in 5.38 leads to a distribution µ in each case,
where each state in the support supp(µ) satisfies the following:

• Si ∈ [trsfRi].

• trsfRi(Si) = IRi .

Let us analyze the set of states that can be reached by a run of the MSIAM
from the initial state, using the following notions:

Definition 5.43 (⊥-pair). Given a multi ⊥-box in a program net R, let e0 be
the conclusion of the left ⊥ node of the box and e1 be the conclusion of the right
⊥ node. For any stacks s, t, the pair of two stable positions (e0, s, t) and (e1, s, t)
is called a ⊥-pair.

92

The two positions in a ⊥-pair are mutually exclusive in a state, because it
must be the case that orig(e0, s, t) = orig(e1, s, t).

Definition 5.44 (Conflict Relation). Two states T,S ∈ SIR are said to be in
conflict and written T ⌣ S if T contains one of the two positions of a ⊥-pair
and S contains the other.

We observe that conflict is hereditary with respect to transitions, because sta-
ble positions are never deleted or modified by a transition. Let T⇒ = {S | T⇒∗

ρ ∧ S ∈ supp(ρ)}. The following properties are all immediate to check:

Proposition 5.45. Let R be a program net. In the PSIAM MR,

1. If T⌣ T′, S ∈ T⇒, and S′ ∈ T′⇒, then S⌣ S′.

2. If T → µ, either µ = {T′1}, or µ = {Sp0
0 ,S

p1
1 } with S0 ⌣ S1.

3. If IR ⇒∗ µ, then for each T ̸= T′ ∈ supp(µ), T⌣ T′.

States in conflict are in particular disjoint: it is impossible for two states to
reduces to the same state. Therefore we can sum them without any special care,
unlike the example shown in Remark 5.5.

Lemma 5.46. Let R be a program net and µ ∈ Dist(SIR) be a distribution of
reachable states in MR. The following rule is admissible in MR:

∀Ti,Tj ∈ supp(µ). Ti ⌣ Tj {T⇒k ρT}T∈supp(µ)

µ⇒k
∑

T∈supp(µ) µ(T) · ρT .

As a consequence, the following also hold:

Corollary 5.47. The following rule are admissible in MR.

S → µ {T⇒k ρT}T∈supp(µ)

S⇒k+1
∑

T∈supp(µ) µ(T) · ρT

S⇒n µ {T⇒k ρT}T∈supp(µ)

S⇒n+k
∑

T∈supp(µ) µ(T) · ρT

The Reachability Relation ↬

The reachability relation ↬ (defined in Section 5.1) is a useful tool in the study
of the MSIAM. In the case of the MSIAM, the relations ↬ and ⇒ are equivalent
with respect to normal forms. Note that this does not follow for a general PARS:
we use facts about the conflict relation in the next proof.

Lemma 5.48. Let R be a program net. If {T}⇒∗ ξ in MR then T↬ξ in MR.
Conversely, if T↬ µ in MR, then there exists ρ ∈ Dist(A) satisfying {T}⇒∗ ρ
and µ◦ ⊆ ρ◦ in MR.

Proof. The former part is by induction on the length n of the sequence {T}⇒n ξ.
The latter is shown as follows. The leaves of a derivation tree of T↬ µ consists
of finitely many transitions; let A be the set {T1 → µ1,T2 → µ2, . . . ,Tk → µk}
of those transitions. The set A in particular contains finitely many transitions
by test rules S1 → {Up11

11 ,U
p12
12 },S2 → {Up21

21 ,U
p22
22 }, . . . ,Sl → {Upl1

l1 ,U
pl2
l2 }. By

definition of ↬, any state in supp(µ) has a probability in the form of q1q2 · · · qh

93

for some h < k where qj ∈ {p11, p12, . . . pl1, pl2} and satisfying that if qj = pi1,
qj′ = pi′1, and j ̸= j′, then i ̸= i′. Hence we can construct a sequence of
derivations {T1} = µ0 ⇒ µ1 ⇒ µ2 · · · ⇒ µn in the following way: for each state
in µ̄i that is also in the redex in A, choose the corresponding transition in A
in the derivation of µi ⇒ µi+1; for any other state in µ̄i, choose an arbitrary
transition. In such a derivation, no undesirable “join” of states (see Remark 5.5)
happens since all the states in any distribution µi are in conflict. Every terminal
state reached in this way either matches one in µ including its probability or not
in supp(µ) by construction. Hence µ◦ ⊆ µn

◦.

We also define another auxiliary relation T↬◦ τ that is helpful in some proofs.
This relation states that T reaches a set τ of terminal states. It is immediate
that T↬◦ τ if and only if ∃ρ. T⇒∗ ρ and τ ⊆ ρ◦.

Definition 5.49 (The Relation ↬◦). A relation ↬◦⊆ SIR ×Dist(SIR) is defined
by T↬◦ τ if there exists µ satisfying T↬ µ and τ ⊆ µ◦.

Properties of trsf

We now study the action of trsf on transitions. We first look at how trsf maps
initial/final/deadlock states. In short, the map trsf preserves those properties
provided that the states belong to the set [trsfRi].

Lemma 5.50. 1. If IR ∈ [trsfRi], then trsfRi(IR) = IRi .

2. Assume T ∈ [trsfRi] is a final/deadlock state of MR; then trsfRi(T) is a
final/deadlock state of MRi.

3. If τ = τ◦ (i.e. all states in the distribution τ are terminal), and supp(τ) ⊆
[trsfRi], then T (τ) = T (trsfRi(τ)).

Another important property of the map trsf is that it preserves conflicts:

Lemma 5.51. If T⌣ T′ and T,T′ ∈ [trsfRi], then trsfRi(T)⌣ trsfRi(T
′)

Fact 5.52 (Stable Tokens). For any trsfRi , S(T) ≥ S(trsfRi(T)). Moreover, if
the reduction ⇝ is by d, y, or ui rule, then S(T) > S(trsfRi(T)).

We prove the following result from which invariance (Theorem 5.35) follows.

Lemma 5.53. Assume R ⇝
∑

i pi · {Ri}. IR q-terminates if and only if IRi

qi-terminates and
∑

(pi · qi) = q.

Let us first sketch the proof. We need to work our way “back and forth” via
Lemmas 5.56 and 5.59, because of the following observations.

Remark 5.54. • Unfortunately, it is in general not true that IR ⇒∗ µ im-
plies trsfRi(IR)⇒∗ trsfRi(µ). However for the relation ↬ it is the case: if
IR↬µ inMR, then trsfRi(IR)↬trsfRi(µ) holds (under natural conditions).
This will be made precise by Lemma 5.56 later in this section.

• On the other side, the strength of the relation ⇒ is that if IR ⇒n µ, then
for any sequence of the same length IR ⇒n ρ, we have that ρ◦ = µ◦ thanks
to uniqueness of normal forms (Theorem 5.12). This is not the case for the
relation ↬ which is not informative. The (slightly complex) construction
which is given by Lemma 5.59 allows us to exploit the power of ⇒.

94

As in the SIAM case, we say a transition T → {S1} is a collapsing transition
if trsf (T) = trsf (S), and the following lemma similarly holds.

Fact 5.55. Let R
r⇝
∑

Ri be a program net reduction. Given a transition
T → µ inMR, ifT ∈ [trsfRi], then either the transition collapses, or trsfRi(T) →
trsfRi(µ) is a transition of MRi .

Lemma 5.56. If T ∈ [trsfRi] and T↬ µ (in MR), then trsfRi(T)↬ trsfRi(µ)
holds.

Proof. We transform a derivation Π ofT↬µ inMR into a derivation of trsfRi(T)↬
trsfRi(µ) in MRi , by induction on the structure of the derivation.

• Case T↬{T} becomes trsfRiT↬{trsfRi(T)}

• Case

T→
∑
pS · S {

. . .
S↬µS}

T↬
∑
pS · µS

We examine the left premise, checking if it collapses:

– If it does not collapse, trsfRi(T)→
∑
pS · trsfRi(S) is a transition of

MR′ and we have:

trsfRi(T)→
∑
pS · trsfRi(S) {trsfRi(S)↬ trsfRi(µS)} by I.H.

trsfRi(T)↬
∑
pS · trsfRi(µS)

– If it collapses, we must have T → {S}, we also have trsfRi(T) =
trsfRi(S),and the derivation Π is of the form:

T→{S}
...

S↬µ
T↬µ

By induction, trsfRi(S)↬trsfRi(µ), and therefore we conclude trsfRi(T) =
trsfRi(S)↬ trsfRi(µ).

Lemma 5.56, the construction in Remark 5.38, and Lemma 5.50 allow us to
transfer termination from IR to IRi , and to prove one direction of Lemma 5.53.
The other direction is more delicate.

Assume that IRi qi-terminates. It means that for a certain n, whenever
IRi ⇒n σ then T (σ) ≥ q by definition. Lemma 5.59 below constructs such a
sequence IRi ⇒ σ1 ⇒ . . . ⇒ σn = σ that satisfies σ = trsfRi(µ) for some distri-
bution µ of states in MR. This allows us to transfer the properties of termination
of IRi back to IR, ultimately leading to the other direction of Lemma 5.53.

Lemma 5.57. From any T ∈ SIR , there can be at most a finite number of
consecutive collapsing transitions.

Proof. By case analysis on reduction rules.

Lemma 5.58. Assume trsfRi(T) is terminal. Then there exists a state T′ sat-
isfying that T↬ {T′1}, that T′ is terminal, and that trsfRi(T

′) = trsfRi(T).

Proof. By case analysis on reduction rules.

95

Lemma 5.59. Assume R ⇝
∑

{Rpi
i } and T ∈ [trsfRi]. For any n ∈ N the

following holds.

1. there exists a distribution µ ∈ Dist(SR) such that T↬ µ and trsfRi(T)⇒n

trsfRi(µ);

2. moreover, we can choose µ so that it satisfies T (µ) = T (trsfRi(µ)).

Proof. 1. We construct µ and its derivation, by induction on n.

n = 1. There are three cases. Note that there cannot be a transition T →
{Sp1

1 ,S
p2
2 } because T ∈ [trsfRi].

• If T is terminal, then trsfRi(T) is terminal by Lemma 5.50, and
trsfRi(T)⇒ trsfRi(T).

• If there exists µ satisfying T → µ that is non-collapsing. We
have trsfRi(T) → trsfRi(µ) and thus trsfRi(T) ⇒ trsfRi(µ) by
definition of ⇒.

• If all transitions from T are collapsing, for such a reduction we
have that T → T′ and trsfRi(T) = trsfRi(T

′). We repeat the
argument onT′ until we find a state S that either is terminal or has
a non-collapsing transition S → µ. By Lemma 5.57, this repetition
always terminates. The former case is reduced to the case of T
being terminal. The latter gives S↬ µ and therefore T↬ µ, and
trsfRi(T) = trsfRi(S)↬ trsfRi(µ), hence trsfRi(T)⇒ trsfRi(µ).

n > 1. By the induction hypothesis we assume that we have obtained a deriva-
tion of T↬ρ with trsfRi(T)⇒n−1 trsfRi(ρ). We have that trsfRi(ρ) =∑
ρ(S) · trsfRi(S) by definition. For each S ∈ supp(ρ), we apply

the base step and obtain a derivation of S ↬ µS with trsfRi(S) ⇒
trsfRi(µS). Putting things together, we obtain a derivation of T↬∑
ρ(S)·µS and trsfRi(T)⇒n

∑
ρ(S)·trsfRi(µS) follows by Lemma 5.46.

2. Let T↬µ be the result obtained in the proof of item 1. above. Let {Sk} be
the set of states in supp(µ) such that trsfRi(Sk) is terminal. This induces
a partition of µ, namely µ = ρ +

∑
ck · {Sk} where ρ does not contain

terminal states as its support. By Lemma 5.58, we can take a terminal
state S′

k satisfying Sk ↬ {S′
k} and trsfRi(S

′
k) = trsfRi(Sk) for each Sk.

Observe also that ρ does not contain any terminal state. Let ν =
∑
ck ·

{S′
k}. We have by transitivity T↬ (ρ+ ν), and trsfRi(T)⇒n trsfRi(ρ+ ν)

because trsfRi(ρ + ν) = trsfRi(µ). Moreover, we have T (trsfRi(ρ+ ν)) =
T (trsfRi(ν)) =

∑
ck because trsfRi(ν) =

∑
ck · trsfRi(S

′
k). We conclude by

observing that T (ρ+ ν) = T (ν) =
∑
ck.

Summing up, we now have all the elements to prove Lemma 5.53.

Proof. (of Lemma 5.53.) ⇒. Follows from Lemma 5.56, by using the construction
in Remark 5.38, Lemma 5.50, and linearity of trsf . Assume IR ⇒∗ µ, with µ◦

not empty, and that the machine starts as described in Remark 5.38 if ⇝ is by
link, update, or test rule. We observe that every state T ∈ supp(µ) is contained
in [trsfi] for some i. We can then prove that for each i there exists µi ∈ Dist(SIR)
such that IRi ↬ trsfRi(µi), and such that ν =

∑
i pi · µi.

⇐. Follows from Lemma 5.59. We examine the only non-straightforward case.
Assume R ⇝test(i) {R

p0
0 ,R

p1
1 }. We choose a run of the machine which starts as

96

described in Remark 5.38; we have that IR↬
∑
pi · {Ti}, with trsfRi(Ti) = IRi

by Fact 5.42. By hypothesis, IRi terminates with probability at least qi; assume
it does so in n steps. By using Lemma 5.59, we build a derivation Ti↬ µi such
that trsfRi(Ti) ⇒n trsfRi(µi) and T (µi) = T (trsfRi(µi)). By Theorem 5.12,
T (trsfRi(µi)) ≥ qi. Putting all together, we have that IR ↬

∑
pi · µi, and IR

terminates with probability at least
∑
pi · qi.

Now we can prove the soundness theorem.

Proof. (of Theorem 5.35.) Suppose
∑

i(pi ·qi) > q. Then there exist distributions
µi that satisfy IRi ⇒∗ µi, T (µi) = q′i, and

∑
i(pi · q′i) > q. By Lemma 5.53, IR

(
∑

i(pi · qi))-terminates, which contradicts to MR⇓q.
Suppose

∑
i(pi ·qi) < q. Since MR⇓q holds, IR q′-terminates for some probability

q′ that satisfies
∑

i(pi · qi) < q′ ≤ q. By Lemma 5.53, IRi q
′
i-terminates for some

q′i with
∑

i(pi · q′i) = q′ >
∑

i(pi · qi). This implies either or both of q′i are larger
than qi, which contradicts to MRi⇓qi .
Hence

∑
i(pi · qi) necessarily coincides with q.

5.4.2 Proof of Adequacy of MSIAM

We are now able to establish adequacy (Theorem 5.37) and deadlock-freedom
(Theorem 5.36). Both are direct consequence of Proposition 5.61 below, which
in turn follows form Lemma 5.53 and Fact 5.60, by finely exploiting the interplay
between nets and the machine as in the SIAM case.

Fact 5.60. Let R be a SMEYLL proof net with conclusion 1 in normal form. By
Corollary 4.31, R has no cuts, and therefore consists of simply a single 1 node.
On such a simple net, MR can only terminate in a final state: no deadlock is
possible.

Proposition 5.61 (Mutual Termination, Probabilistically). Let R be a net with
conclusion 1. The following are equivalent:

1. IR q-terminates;

2. R q-terminates.

Moreover, if IR↬ µ and T ∈ supp(µ) is terminal, then T is a final state.

Proof. (1. ⇒ 2.) and 3. We prove that

if IR ↬◦ τ , then
(*) R terminates with probability at least T (τ),
(**) all states in supp(τ) are final.

The proof is by nested induction on the lexicographically ordered pair (S(ν),W (R)),
whereW (R) is the weight of the cuts at surface ofR, and S(ν) =

∑
T∈supp(τ) S(T)

with S(T) the number of stable tokens in T (Fact 5.52). Both parameters are
finite.

We will largely use the following fact (immediate consequence of the definition
of ↬◦ and of Lemma 5.50): if T↬◦ ν in MR and T ∈ [trsfi], then trsfi(T)↬◦

trsfi(ν).

• If R has no reduction step, then S(ν) = W (ν) = 0 and T (R) = 1, by
Fact 5.60, which trivially proves (*); (**) also follows from Fact 5.60.

97

• Assume R ⇝ {R′1} is not by test rule. (observe that this is a determin-
istic reduction). We have that IR′ ↬◦ trsf (ν), and T (trsf (ν)) ≥ T (ν).
By Fact 5.52, S(trsf (ν)) ≤ S(ν). If R ⇝d R′, then S(trsf (ν)) < S(ν)
since ν only contains terminal states. Otherwise S(trsf (ν)) = S(ν) but
W (R′) < W (R) because the step reduces a cut node at surface, and does
not open any box. Hence by induction, R′ terminates with probability at
least T (trsf (ν)) ≥ T (ν) (and therefore so does R) and all states in trsf (ν)
are final, from which (**) holds by Lemma 5.50.2.

• Assume R ⇝test(i,m)

∑
pi · {Ri}. From IR ↬◦ ν, by Lemma 5.48 we have

that there is a distribution ρ satisfying IR ⇒∗ ρ and ν ⊆ ρ◦. Using the
construction in Remark 5.38, we have IR ⇒∗ ∑ pi · {Ti}, which induces
a partition of ν in ν = p0 · ν0 + p1 · ν1 with Ti ↬◦ νi for each i. We
have that S(νi) < S(ν), and that IRi ↬◦ trsfi(νi), because trsfi(Ti) is
defined and therefore trsfi(U) is defined for each state U ∈ νi. By Fact
5.52, S(trsfi(νi)) ≤ S(νi) < S(ν), thus by induction Ri terminates with
probability at least T (trsfi(νi)), and all states in supp(trsfi(νi)) are final.
Therefore, R terminates with probability at least

∑
pi ·T (trsfi(νi)) ≥

∑
pi ·

T (νi) = T (ν) by Lemma 5.50.3, and all states in supp(ν) are final by
Lemma 5.50.2.

2. ⇒ 1. By hypothesis, R ⇒n ρ with T (ρ) ≥ q. We prove the implication by
induction on n.

Case n = 0. The implication is true by Fact 5.60.
Case n > 0. Assume R⇝

∑
pi ·Ri. By hypothesis, each Ri terminates with

probability at least qi (with
∑
pi · qi = q). By induction, each IRi qi-terminates,

and therefore (Lemma 5.53) IR q-terminates.

Now the deadlock-freedom and adequacy can be shown by using the proposi-
tion above.

Proof. (of Theorem 5.36) Immediately follows from Proposition 5.61.

Proof. (of Theorem 5.37) Assume MR⇓p. Then R cannot q-terminate with p <
q, since it implies that MR q-terminates by Proposition 5.61, which contradicts
to MR⇓p. Similarly R q′-terminates for any q′ < p by Proposition 5.61 since MR

does so. Hence R⇓p. The other direction is shown in exactly the same way.

5.5 Memory-Based PCF

The language is more or less the same as in the one in chapter 4, but this time
parameterized by memory structures. By interpreting the language by program
nets and the MSIAM that are also parameterized, in this section we obtain an
adequacy result in a parameterized setting. In other words, we are able to obtain
a multi-token GoI interpretation of any specific language as long as the axioms
of memory structures hold.

Definition 5.62 (PCFMem). Given a memory structure Mem = (Mem, I,L),
the language PCFMem is defined by the following BNF:

M,N,P ::= x |λx.MN | let ⟨x, y⟩ = M inN | ⟨M,N⟩ |
letrec f x = M inN |
new | ℓ | ifP thenM elseN,

A,B ::= α |A→ B |A×B | !A

where ℓ ∈ L.

98

!∆ ⊢ new : α !∆, x : !(A→ B) ⊢ x : A→ B
A linear

!∆, x : A ⊢ x : A

!∆ ⊢ V : A→ B V value
!∆ ⊢ V : !(A→ B)

∆, x : A ⊢M : B

∆ ⊢ λx.M : A→ B

! ∆,Γ1 ⊢M : A→ B !∆,Γ2 ⊢ N : A

! ∆,Γ1,Γ2 ⊢MN : B

!∆,Γ1 ⊢M : A !∆,Γ2 ⊢ N : B

! ∆,Γ1,Γ2 ⊢ ⟨M,N⟩ : A×B

!∆,Γ1 ⊢M : A×B !∆,Γ2, x : A, y : B ⊢ N : C

!∆,Γ1,Γ2 ⊢ let ⟨x, y⟩ =M inN : C

∆ ⊢ P : α · ⊢M : A · ⊢ N : A
∆ ⊢ ifP thenM elseN : A

arity(ℓ) = n

!∆ ⊢ ℓ : α×n → α×n

!∆, f : !(A→B), x : A ⊢M : B !∆,Γ, f : !(A→B) ⊢ N : C

!∆,Γ ⊢ letrec f x =M inN : C

Figure 5.15: Typing Rules.

Definition 5.63 (Typing Rules of PCFMem). The typing rule of PCFMem is as
shown in Figure 5.15.

Once again, a status during evaluation of a term in PCFMem, called an eval-
uation closure, is given by a triple consisting of a term, a memory, and an
indexing (partial) function. The reduction rules are as shown in Figure 5.16,
where the syntax of values is the same as the usual one with operations ℓ added:
U, V ::= x |λx.M | ⟨U, V ⟩ | ℓ. Here we choose the call-by-value evaluation strategy
since it is the standard one in presence of the kinds of effects with which a mem-
ory structure deals, while the call-by-name can also be accommodated exactly in
the same way as Chapter 4.

Definition 5.64 (Raw Evaluation Closure). A raw evaluation closure ofPCFMem

is a triple (M, indM,mM) where M is a term, indM is an injective partial function
from the set of free variables in M to I, and m ∈ Mem.

Definition 5.65 (Evaluation Closure). An evaluation closure of PCFMem is
an equivalence class over raw evaluation closures quotiented by permutations
σ ∈ FinBij(I).

The translation of PCFMem judgments into program nets is shown in Fig-
ure 5.17 and 5.18.

Remark 5.66. Precisely speaking, the syntax of PCFMemN and PCF in Chap-
ter 4 do not exactly coincide, because in PCFMemN the successor and the prede-
cessor are represented by function symbols of type N → N while they are construc-
tors rather than function symbols in PCF. However they are essentially equiva-
lent: the function symbol succ in PCFMemN can be represented by λx.succx in
PCF, and the construction succM in PCF can be represented by the function
application succM in PCFMemN ; moreover their normal forms are the same,
both as terms and as nets that interpret them.

Theorem 5.67 (Adequacy between PCFMem and Program Nets). Let ⊢ M : α.
Then, M⇓p if and only if M†⇓p.

99

(C[new], ind,m) →link (C[x], ind ∪ {x 7→ i},m)

(C[ℓ ⟨x1, . . . , xn⟩], ind,m) →update(ℓ) (C[⟨x⃗⟩], ind, update(⃗i, ℓ,m))

(C[ifx thenMtrue elseMfalse], ind,m)
→test(i) test(i,m)[true := (Mtrue, ind \ {x 7→ i}), false := (Mfalse, ind \ {x 7→ i})]

(C[(λx.M)U], ind,m) → (C[M{x := U}], ind,m)

(C[let ⟨x, y⟩ = ⟨U, V ⟩ inM], ind,m) → (C[N [x := U, y := V]], ind,m)

(C[letrec f x =M inN], ind,m)
→ (C[N{f := λx.letrec f x =M inM}], ind,m)

Figure 5.16: Call-by-Value evaluation Rules for PCFMem

∆ ` λx.M : A(B

. . .

(?∆⊥)†

(A†)⊥ B†

`
(A†)⊥ `B†

π†

. . .

(Γ⊥)†

! ∆, x : A ` x : A

. . .

(?∆⊥)†

?w ?w ax

(A†)⊥ A†

! ∆, x :!(A(B) ` x : A(B

π . ! ∆,Γ `M : A⊗B ρ . ! ∆,Σ, x : A, y : B ` N : C
! ∆,Γ,Σ ` let 〈xA, yB〉 beM in N : C

. . . A† ⊗B†

(?∆⊥)†

(A†)⊥

ρ†

. . .

?c ?c
cut

. . .

(B†)⊥ C†

`
. . .

π†

. . .

(Γ⊥)† (Σ⊥)†
. . .

π†

. . .

ρ†

(?∆⊥)†

. . .

cut

π . ! ∆, f : !(A(B), x : A `M : B ρ . ! ∆,Γ, f : !(A(B) ` N : C
! ∆,Γ ` letrec fA(B beM in N : C

. . . ?(A†⊥ `B†)A†⊥B†`

?(A†⊥ `B†)

C†

. . .? ? Y
!(A† ⊗B†⊥)

?c?c

(Γ⊥)†
. . .

. . .

(?∆⊥)†

?w ?w ax

?(A†⊗(B†)⊥) (A†)⊥ `B†
?d

π .∆, x : A `M : B

π . ! ∆,Γ `M : A ρ . ! ∆,Σ ` N : B
! ∆,Γ,Σ ` 〈M,N〉 : A⊗B

. . . A†

(?∆⊥)†

ρ†

. . .

?c ?c. . .

B†
. . .

π†

. . .

(Γ⊥)† (Σ⊥)†
. . . ⊗

A† ⊗B†

π†

. . .

. . .? ? !
!(A†⊥ `B†)

A†⊥`B†

(?∆⊥)†

π . ! ∆ ` V : A(B

! ∆ ` V :!(A(B)

π . ! ∆,Γ `M : A(B ρ . ! ∆,Σ ` N : A
! ∆,Γ,Σ `MN : B

. . . A†⊥`B†

(?∆⊥)†

ρ†

. . .

?c ?c. . .

A†
. . .

π†

. . .

(Γ⊥)† (Σ⊥)†
. . .

⊗

B†
cut

! ∆, x : α ` x : α

. . .

(?∆⊥)†

?w ?w

1

one
ind(x)

x ∈ Dom(ind)

Figure 5.17: Call-by-Value Translation of PCFMem (1)

100

! ∆ ` c : α⊗n (α⊗n

`
. . .

(?∆⊥)†

?w ?w ax

(1⊗n)⊥ 1⊗n

1⊗n (1⊗n

c

! ∆ ` new : α

1

one

. . .

(?∆⊥)†

?w ?w

π . ! ∆,Γ ` P : B ρ . · `M : A
! ∆,Γ ` if P thenM else N : A

(?∆⊥)†

ρ†

cut

A†

. . .

π†

(Γ⊥)†

⊥

bot bot

+

ξ . · ` N : A

ξ†

A†

A†
. . .

Figure 5.18: Call-by-Value Translation of PCFMem (2)

The proof of Theorem 5.67 relies on some lemmas on the translation (−)† below.

Lemma 5.68. Let M = (M, ind,m) be an evaluation closure with · ⊢ M : α, and
µ be a distribution of evaluation closures. We have:

1. M is in normal form (as an evaluation closure) if and only if M† is in
normal form (as a program net).

2. T (µ) = T (µ†).

Proof. Item 1. can be checked by case analysis on evaluation rules (of PCFMem)
and reduction rules (of program nets). Item 2. immediately follows from 1.

Lemma 5.69. Let M = (M, ind,m) be an evaluation closure with · ⊢ M : α. We
have:

1. if M → µ, then M† ⇒+ µ†.

2. if µ⇒∗ ν, then µ† ⇒∗ ν†.

Proof. Again item 1. follows by case analysis on evaluation rules. Item 2. is a
consequence of 1.

Corollary 5.70. Let M = (M, ind,m) be an evaluation closure with · ⊢ M : α,
and µ be a distribution of evaluation closures. We have:

1. If M† ⇝ ρ, then there exists µ satisfying M → µ with M† ̸= µ†.

2. If M† ⇒k ρ, then there exists µ satisfying M ⇒∗ µ and M† ⇒m µ† for
some m ≥ k.

Proof. (1.) Immediate consequence of Lemma 5.68 and 5.69 (2.) By induction.

Now the proof proceeds as follows.

Proof of Theorem 5.67. Assume M ⇓pterm and M† ⇓pnet ; we prove pterm = pnet
by showing pterm ≤ pnet and pterm ≥ pnet.
pterm ≤ pnet. Assume M⇒∗ µ with T (µ) = pterm, then M† ⇒∗ µ† (by Lemma
5.69.2) and T (µ†) = pterm (by Lemma 5.68.2). Thus pterm ≤ pnet (because
convergence is defined by supremum: see Definition 5.8).
pterm ≥ pnet. We prove that if M† ⇒∗ ρ then there exists µ satisfying M⇒∗ µ
and T (µ) ≥ T (ρ). Assume M† ⇒∗ ρ is in k steps, i.e. M† ⇒k ρ. By Corol-
lary 5.70, M⇒∗ µ and M† ⇒m µ†, with m ≥ k. By Uniqueness of Normal Forms
(Theorem 5.12.1) we have that T (µ†) ≥ T (ρ). By Lemma 5.68, T (µ) = T (µ†),
from which we deduce the statement.

101

Chapter 6

Conclusion and Future Work

We conclude the thesis reviewing the aims we stated in Chapter 1 (Section 6.1),
and show several directions of future work (Section 6.2).

6.1 Conclusion

In the thesis we introduced comprehensive definitions of multi-token Geometry
of Interaction machines and its underlying proof nets, and examined how the
multi-token machine framework can adequately interpret a class of PCF-like lan-
guages possibly with choice effects. The three constructs we introduced (Fig. and
Fig. 4.9), especially the sync node, are non-standard ones; nevertheless, the proof
nets, called SMEYLL proof nets, are shown to have desirable properties (Cor. 4.9,
Thm. 4.19, Cor. 4.31). The progress property, and the cut-elimination property
as its consequence, are guaranteed by a correctness criterion as in linear logic,
while the proofs get much more complicated. Then we in turn proved that the
multi-token machine on SMEYLL nets (called the synchronous interaction ab-
stract machine) also had desirable properties (Thm. 4.60, Thm. 4.49, Thm. 4.56).
Deadlocks are by definition absent in the standard case; it is however proved by
relying on the correctness criterion and by transferring properties of nets and the
machine to each other, which is done in the standard case. The nets and ma-
chine are then applied to interpretation of PCF-like calculus, and the adequacy
property is also shown. The fact that our token machine can distinguish the
call-by-name and call-by-value translations suggests that the notion of paths cal-
culated in our machine has some fundamental meaning despite its non-standard
definition. Chapter 5 further extended the use of multi-token machine as a com-
putational model. Using the notion of probabilistic abstract rewriting system that
we introduced in this work, we uniformly constructed models of calculi parame-
terized by the notion of memory structures. A quantum calculus is interpreted
as an instance of the model; soundness and adequacy are simply instantiated
from parameterized soundness and adequacy theorems. This explains that the
syntactic constraint seen in previous work [24, 45] is inessential, hence achieves
the main aim of this thesis, a better understanding of characters of dialogue-based
semantics. The technical details and difficulties we overcame in this thesis pro-
vide us a fairly firm basis for the forthcoming discussion on the two long-term
goals, implicit parallelism from a semantic viewpoint and uniform account for
type systems in concurrent computation, in future work. We give details on them
as well as some other possible future directions of work relevant to the multi-token
framework below.

102

6.2 Future Work

6.2.1 Implicit Parallelism

The relation between our work and implicit parallelism is left unexamined in
the thesis. The multi-token character of the machine does suggest a form of
parallelism inherent to programs: parallel movement of dereliction tokens implies
that the correspondent function calls are independent of each other and thus
can be evaluated in parallel, and the same argument holds for tokens generated
from the unit nodes. However, the cost of path computation is not the same as
the usual one; the standard single-token machine is known to be efficient (or, at
least not very inefficient) according to existing work [37, 83], but the addition of
synchronization and global conditions to generate tokens can be an obstacle in
a possible implementation. The benefit of employing implicit parallelism comes
from the fact that those parallelized evaluations do not need to be arbitrated, so
it is probable that an implementation of the multi-token machine contributes to
speed-up. Therefore, a possible contribution for this area is to use our framework
not for execution of a program itself but for an analysis of the program. This
might look similar to an approach based on runtime profiles [96], but since the
multi-token machine is confluent we do not have to iterate the analysis and search
for heuristics. Another possible advantage over existing approaches is that the
parallelism of our framework is applicable not only to a pure functional language
but also to language with probabilistic effects. The very argument that explains
the availability of implicit parallelism is based on referential transparency. Thus,
in general, it is not valid for languages with effects; our approach suggests that
in some type of effects the argument still holds and possibly parallelized in an
automatic way. As mentioned in Chapter 2, interpretation of our work from the
viewpoint of PELCR [81] may also lead to a better understanding as well as an
extraction of implementation. All this is, however, only speculative at this stage
and requires further study.

6.2.2 Concurrency

The most promising (and perhaps the most interesting) direction of future work
is application of our formulation of the multi-token machines to the modeling
of concurrent computation. The idea itself is straightforward since the token
machines defined in the thesis obviously carry a concurrent flavor. However, a
suitable adaptation is required for the purpose. This is because proof nets do not
exhibit a concurrent behavior in the sense that the reductions/transitions satisfy
confluence (in the usual sense or the probabilistic sense). A hopeful solution is
to consider some other graph-based concurrent system and utilize intuition and
techniques of the multi-token systems we developed so far. This is indeed not a
mere idea but ongoing work: we have carried out work [20]1 to obtain multi-token
machine semantics of multiport interaction net [7, 70] that is a general and ex-
pressive graph reduction system capable of expressing concurrent computation.
Moreover, we are trying to extend this line of research to obtain token machine
semantics of differential interaction net [25] with Ugo Dal Lago and Damiano
Mazza, which is ongoing work. Ultimately, we envisage to (re)construct behav-
ioral type systems for some process calculus via our concurrent GoI framework,
utilizing the fact that a GoI semantics carries certain information on the types

1Since this topic has been done as another student’s master thesis topic, we do not include
it as a part of this thesis.

103

with which the underlying structures are equipped.

6.2.3 Dialogue-Based Semantics and Quantum Computation

We successfully constructed an adequate semantics for a higher-order quantum
programming language without the syntactic constraint seen in existing work [24,
45]. The fact that it is proved to be possible to give an adequate semantics with
the multi-token machine framework, and that the two standard evaluation strate-
gies can be treated uniformly, support our non-standard approach. This suggests
that game semantics in Delbecque’s work [24] might also be modified to one that
is sound (and hopefully fully abstract) with respect to a quantum programming
language without the constraint, on which we desired to obtain some clue through
the work. Currently, we are unsure whether our multi-token machine framework
leads to a concrete contribution to the area of quantum computation. However,
the research on semantics of quantum programming languages as well as their
application to practical implementation is still active (e.g. [80]); at this stage,
exploration of as many alternative semantics as possible is valuable to find out
the best suitable one for practical quantum computers in the approaching future.

6.2.4 Logical Basis

Another possible direction is to seek a formal logic for the proof nets we have
defined. The system of SMEYLL nets is surely novel, but how novel they are
could be more clearly presented by relating the systems with some existent ones.
The new constructs we added, in particular sync nodes, look peculiar as logical
operations; currently we have not found any logical equivalent of them except
for Montelatici’s original work on Y box [75]. Such a formulation would lead to
import existing notions from traditional logics and export the notions we invented
to those. On this topic, the logical system presented in [47] also looks relevant to
SMEYLL proof nets, though the connection is still to be clarified. If we succeed
to identify the connection, SMEYLL will be formally related to Abelian logic,
which possibly yields further investigation on the role of sync nodes for example.

We have also been trying to characterize the multi-token machine in the lan-
guage of category theory. A candidate is to use multiset monad for describing
multiple tokens running around the nets. We expect that not only our multi-token
machine but also a broad class of concurrent computation would be explained in
a single categorical framework if this can spell out the behavior of our machine.
More precise comparison with [45] would also be possible, and in that case we can
possibly merge two successful extensions of the Geometry of Interaction approach.

6.2.5 Compiler Construction

One notable benefit of using Geometry of Interaction as programming language
semantics is that it often provides us a direct implementation of a compiler for
the language we interpret with GoI. Concerning this perspective, the multi-token
machine we introduced in the thesis does not seem suitable for this purpose.
Advantages to derive such a compiler from GoI semantics are: (a) simplicity of
the machine, (b) space efficiency, (c) time efficiency, (d) correctness of the derived
compiler by construction. (b) is most probably lost in our machine since we now
have to record the global state during execution to correctly assure that exactly
one token is generated for each unit/dereliction node in each copy of exponential
boxes. (c) is also doubtful for the same reason: we have to check the conditions on
those copies frequently, which should correspond to a sharp slow down regarding

104

execution time. (a) and (d) among these reasons survive for our machine, but
without the efficiency merits it would not be of interest to users.

Still, there is at least theoretically interesting way to relate our multi-token
machine to compiler construction. The work by Fredriksson and Ghica [32] con-
structs a compiler for distributed computation from Geometry of Interaction se-
mantics. Although the languages we interpreted with our multi-token machine
in the thesis are all sequential, the machine apparently carries a distributed fla-
vor. Whether we can realize our multi-token machine as a physically distributed
system is itself of interest, and possibly some efficiency can be achieved, too.

6.2.6 Extension to Broader Effects

The probabilistic branchings we studied in the thesis and non-deterministic branch-
ing can be unified by some categorical axioms [46]. However, our axiomatization
of memory structure does not accommodate non-deterministic branching (with-
out probabilities). Another desirable effect to be unified is global states with
update and lookup. The reason why it is not contained in our current axioma-
tization is that multiple updates of global state break the diamond property as
a (probabilistic) rewriting system, thus the behavior deviates from the branch-
ing effects we dealt in the thesis. Relaxing the requirement on memory possibly
makes sense and broader kinds of effects like the above two would be in the scope
of our framework; this is surely future work.

105

Index

⊥ node, 29
⊥-pair, 92
⊥-box, 28
box stack, 41

call-by-name translation, 62
call-by-value translation, 66
collapsing transition, 49
conclusion, 28
conflict relation, 93
confluence, 76
convergence

of SIAM, 46
of SMEYLL proof structure, 32

convergence to n, 56, 58
convergence with probability p, 76
Copy(), 42
correctness criterion, 34

deadlock, 46
decorated SMEYLL proof net, 56
degree of termination, 75
dereliction token, 43
diamond property of PARS, 76
direction, 41
divergence

of SIAM, 46

evaluation closure, 99
extPCF, 66

final state, 42
formula stack, 41

initial state, 42
Input, 56

linear logic, 14

MELL proof structure, 17
memory structure, 77
multi ⊥-box, 52
multi-token machines, 24

natural number memory, 55

nodes of SMEYLL proof structures,
28

occurrence indication, 40

p-normalization, 76
partition of distribution, 75
PCF net, 56
PCF Synchronous Interaction

Abstract Machine
(PSIAM), 58

position, 41
premise, 28
priority order, 37
priority path, 36
probabilistic abstract rewriting

systems, 75
program net, 82
PSIAM state, 58

raw evaluation closure, 99
raw MSIAM state, 86
raw program net, 82
reduction rule

of multi bot-box, 53
of SMEYLL proof structure, 30

reduction rules
of PCF nets, 56
of raw program nets, 83

run, 46

simple structure, 33
SM-normal form, 35
SMEYLL proof net, 34
SMEYLL proof structure, 30
stack, 40
state, 42

in MSIAM, 87
SurfOne, 56
switching path, 33
sync node, 28
Synchronous Interaction Abstract

Machine, 43
SyncNode, 56

106

token, 42

token machine semantics, 46

transformation map, 47

transition rules

of MSIAM, 87

of PSIAM, 58

of SIAM, 42

value, 64

weight, 51

Y-box, 28

107

References

[1] Proceedings of the Fourth Annual Symposium on Logic in Computer Sci-
ence (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989. IEEE
Computer Society, 1989.

[2] Samson Abramsky. Information, processes and games. In Johan van Ben-
them and Pieter Adriaans, editors, Philosophy of Information, pages 483–
549, 2008.

[3] Samson Abramsky and Bob Coecke. Physical traces: Quantum vs. classical
information processing. Electr. Notes Theor. Comput. Sci., 69:1–22, 2002.

[4] Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. Geometry
of interaction and linear combinatory algebras. Mathematical Structures in
Computer Science, 12(5):625–665, 2002.

[5] Samson Abramsky and Radha Jagadeesan. New foundations for the geom-
etry of interaction. In Proceedings of the Seventh Annual Symposium on
Logic in Computer Science (LICS ’92), Santa Cruz, California, USA, June
22-25, 1992, pages 211–222. IEEE Computer Society, 1992.

[6] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full ab-
straction for PCF. Inf. Comput., 163(2):409–470, 2000.

[7] Vladimir Alexiev. Non-deterministic interaction nets. PhD thesis, Univer-
sity of Alberta, 1999.

[8] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[9] Andrea Asperti and Giovanna M. Dore. Yet another correctness criterion
for multiplicative linear logic with MIX. In Anil Nerode and Yuri Matiya-
sevich, editors, Logical Foundations of Computer Science, Third Interna-
tional Symposium, LFCS’94, St. Petersburg, Russia, July 11-14, 1994, Pro-
ceedings, volume 813 of Lecture Notes in Computer Science, pages 34–46.
Springer, 1994.

[10] Marc Bagnol, Amina Doumane, and Alexis Saurin. On the dependen-
cies of logical rules. In Andrew M. Pitts, editor, Foundations of Software
Science and Computation Structures - 18th International Conference, FoS-
SaCS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, volume 9034 of Lecture Notes in Computer Science, pages 436–
450. Springer, 2015.

[11] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor.
Psi-calculi: Mobile processes, nominal data, and logic. In Proceedings of the

108

24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009,
11-14 August 2009, Los Angeles, CA, USA, pages 39–48. IEEE Computer
Society, 2009.

[12] Charles H Bennett and Gilles Brassard. Quantum cryptography: Public
key distribution and coin tossing. In IEEE International Conference on
Computers, Systems and Signal Processing, volume 175, page 8, 1984.

[13] Daniil Berezun and Neil D. Jones. Compiling untyped lambda calculus to
lower-level code by game semantics and partial evaluation (invited paper).
In Ulrik Pagh Schultz and Jeremy Yallop, editors, Proceedings of the 2017
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion, PEPM 2017, Paris, France, January 18-20, 2017, pages 1–11. ACM,
2017.

[14] M. Bezem and J. W. Klop. Term Rewriting Systems, volume 55 of Cam-
bridge Tracts in Theoretical Computer Science, chapter Abstract Reduction
Systems. Cambridge University Press, 2003.

[15] Giuseppe Castagna and Andrew D. Gordon, editors. Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. ACM, 2017.

[16] Kevin K. H. Cheung and Michele Mosca. Decomposing finite abelian
groups. Quantum Information & Computation, 1(3):26–32, 2001.

[17] U. Dal Lago and M. Zorzi. Wave-style token machines and quantum lambda
calculi. In LINEARITY, pages 64–78, 2014.

[18] Ugo Dal Lago, Claudia Faggian, Benôıt Valiron, and Akira Yoshimizu.
Parallelism and synchronization in an infinitary context. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto,
Japan, July 6-10, 2015, pages 559–572. IEEE Computer Society, 2015.

[19] Ugo Dal Lago, Claudia Faggian, Benôıt Valiron, and Akira Yoshimizu. The
geometry of parallelism: classical, probabilistic, and quantum effects. In
Castagna and Gordon [15], pages 833–845.

[20] Ugo Dal Lago, Ryo Tanaka, and Akira Yoshimizu. The geometry of con-
current interaction: Handling multiple ports by way of multiple tokens. To
appear in proceedings of LICS 2017.

[21] Vincent Danos and Russell Harmer. Probabilistic game semantics. ACM
Trans. Comput. Log., 3(3):359–382, 2002.

[22] Vincent Danos and Laurent Regnier. The structure of multiplicatives.
Archive for Mathematical Logic, 28(3):181–203, 1989.

[23] Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal
lambda-machines. Electr. Notes Theor. Comput. Sci., 3:40–60, 1996.

[24] Yannick Delbecque. Game semantics for quantum data. Electr. Notes
Theor. Comput. Sci., 270(1):41–57, 2011.

[25] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Electr.
Notes Theor. Comput. Sci., 123:35–74, 2005.

109

[26] Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic co-
herence spaces are fully abstract for probabilistic PCF. In Jagannathan
and Sewell [55], pages 309–320.

[27] Ebbe Elsborg. Bigraphs: Modelling, Simulation, and Type Systems. On
Bigraphs for Ubiquitous Computing and on Bigraphical Type Systems. PhD
thesis, IT-Universitetet i København, 2009.

[28] Ebbe Elsborg, Thomas T. Hildebrandt, and Davide Sangiorgi. Type sys-
tems for bigraphs. In Christos Kaklamanis and Flemming Nielson, editors,
Trustworthy Global Computing, 4th International Symposium, TGC 2008,
Barcelona, Spain, November 3-4, 2008, Revised Selected Papers, volume
5474 of Lecture Notes in Computer Science, pages 126–140. Springer, 2008.

[29] Uffe Engberg and Glynn Winskel. Petri nets as models of linear logic. In
André Arnold, editor, CAAP ’90, 15th Colloquium on Trees in Algebra
and Programming, Copenhagen, Denmark, May 15-18, 1990, Proceedings,
volume 431 of Lecture Notes in Computer Science, pages 147–161. Springer,
1990.

[30] Javier Esparza. Decidability and complexity of petri net problems - an
introduction. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures
on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are
based on the Advanced Course on Petri Nets, held in Dagstuhl, September
1996, volume 1491 of Lecture Notes in Computer Science, pages 374–428.
Springer, 1996.

[31] Javier Esparza and Mogens Nielsen. Decidability issues for petri nets - a
survey. Bulletin of the EATCS, 52:244–262, 1994.

[32] Olle Fredriksson and Dan R. Ghica. Seamless distributed computing from
the geometry of interaction. In Catuscia Palamidessi and Mark Dermot
Ryan, editors, Trustworthy Global Computing - 7th International Sympo-
sium, TGC 2012, Newcastle upon Tyne, UK, September 7-8, 2012, Revised
Selected Papers, volume 8191 of Lecture Notes in Computer Science, pages
34–48. Springer, 2012.

[33] Simon J. Gay and Rajagopal Nagarajan. Communicating quantum pro-
cesses. In Jens Palsberg and Mart́ın Abadi, editors, Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2005, Long Beach, California, USA, January 12-14, 2005,
pages 145–157. ACM, 2005.

[34] Vijay Ghelot. A Proof-Theoretic Approach to Semantics of Concurrency.
PhD thesis, University of Pennsylvania, 1992.

[35] Dan R. Ghica. Geometry of synthesis: a structured approach to VLSI de-
sign. In Martin Hofmann and Matthias Felleisen, editors, Proceedings of
the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2007, Nice, France, January 17-19, 2007, pages
363–375. ACM, 2007.

[36] Dan R. Ghica and Alex Smith. Geometry of synthesis iii: resource man-
agement through type inference. In Thomas Ball and Mooly Sagiv, editors,
POPL, pages 345–356. ACM, 2011.

110

[37] Dan R. Ghica, Alex Smith, and Satnam Singh. Geometry of synthe-
sis iv: compiling affine recursion into static hardware. In Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, ICFP, pages 221–
233. ACM, 2011.

[38] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[39] Jean-Yves Girard. Geometry of interaction 1: Interpretation of system F.
Logic Colloquium 88, 1989.

[40] Jean-Yves Girard. Towards a geometry of interaction. Contemporary Math-
ematics, 92, 1989.

[41] Sergey Goncharov and Lutz Schröder. A relatively complete generic hoare
logic for order-enriched effects. In 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, pages 273–282. IEEE Computer Society, 2013.

[42] Georges Gonthier, Mart́ın Abadi, and Jean-Jacques Lévy. The geometry
of optimal lambda reduction. In Ravi Sethi, editor, POPL, pages 15–26.
ACM Press, 1992.

[43] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger,
and Benôıt Valiron. Quipper: a scalable quantum programming language.
In Hans-Juergen Boehm and Cormac Flanagan, editors, PLDI, pages 333–
342. ACM, 2013.

[44] Ramesh Hariharan and V. Vinay. String matching in õ(sqrt(n)+sqrt(m))
quantum time. J. Discrete Algorithms, 1(1):103–110, 2003.

[45] Ichiro Hasuo and Naohiko Hoshino. Semantics of higher-order quantum
computation via geometry of interaction. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,
2011, Toronto, Ontario, Canada, pages 237–246. IEEE Computer Society,
2011.

[46] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via
coinduction. Logical Methods in Computer Science, 3(4), 2007.

[47] Yoichi Hirai. Session types in abelian logic. In Nobuko Yoshida and Wim
Vanderbauwhede, editors, Proceedings 6th Workshop on Programming Lan-
guage Approaches to Concurrency and Communication-cEntric Software,
PLACES 2013, Rome, Italy, 23rd March 2013., volume 137 of EPTCS,
pages 33–52, 2013.

[48] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[49] Guido Hogen, Andrea Kindler, and Rita Loogen. Automatic parallelization
of lazy functional programs. In Bernd Krieg-Brückner, editor, ESOP ’92,
4th European Symposium on Programming, Rennes, France, February 26-
28, 1992, Proceedings, volume 582 of Lecture Notes in Computer Science,
pages 254–268. Springer, 1992.

[50] Naohiko Hoshino. A modified goi interpretation for a linear functional
programming language and its adequacy. In Martin Hofmann, editor,

111

Foundations of Software Science and Computational Structures - 14th In-
ternational Conference, FOSSACS 2011, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6604
of Lecture Notes in Computer Science, pages 320–334. Springer, 2011.

[51] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of
interaction: from coalgebraic components to algebraic effects. In Thomas A.
Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
52:1–52:10. ACM, 2014.

[52] Hans Hüttel. Typed ψ-calculi. In Joost-Pieter Katoen and Barbara König,
editors, CONCUR 2011 - Concurrency Theory - 22nd International Con-
ference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceed-
ings, volume 6901 of Lecture Notes in Computer Science, pages 265–279.
Springer, 2011.

[53] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II,
and III. Inf. Comput., 163(2):285–408, 2000.

[54] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-
calculus. Theor. Comput. Sci., 311(1-3):121–163, 2004.

[55] Suresh Jagannathan and Peter Sewell, editors. The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014. ACM, 2014.

[56] Kurt Jensen. Coloured petri nets. In Wilfried Brauer, Wolfgang Reisig, and
Grzegorz Rozenberg, editors, Petri Nets: Central Models and Their Prop-
erties, Advances in Petri Nets 1986, Part I, Proceedings of an Advanced
Course, Bad Honnef, 8.-19. September 1986, volume 254 of Lecture Notes
in Computer Science, pages 248–299. Springer, 1986.

[57] C. Jones and Gordon D. Plotkin. A probabilistic powerdomain of eval-
uations. In Proceedings of the Fourth Annual Symposium on Logic in
Computer Science (LICS ’89), Pacific Grove, California, USA, June 5-8,
1989 [1], pages 186–195.

[58] Neil D. Jones and David A. Schmidt. Compiler generation from denota-
tional semantics. In Neil D. Jones, editor, Semantics-Directed Compiler
Generation, Proceedings of a Workshop, Aarhus, Denmark, January 14-
18, 1980, volume 94 of Lecture Notes in Computer Science, pages 70–93.
Springer, 1980.

[59] Simon L. Peyton Jones. Parallel implementations of functional program-
ming languages. Comput. J., 32(2):175–186, 1989.

[60] Philippe Jorrand and Marie Lalire. From quantum physics to program-
ming languages: A process algebraic approach. In Jean-Pierre Banâtre,
Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors, Uncon-
ventional Programming Paradigms, International Workshop UPP 2004, Le
Mont Saint Michel, France, September 15-17, 2004, Revised Selected and

112

Invited Papers, volume 3566 of Lecture Notes in Computer Science, pages
1–16. Springer, 2004.

[61] Emmanuel Knill. Conventions for quantum pseudocode. Technical report,
Los Alamos National Lab., NM (United States), 1996.

[62] Naoki Kobayashi. A partially deadlock-free typed process calculus. In
Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science,
Warsaw, Poland, June 29 - July 2, 1997, pages 128–139. IEEE Computer
Society, 1997.

[63] Ugo Dal Lago and Ulrich Schöpp. Functional programming in sublinear
space. In Andrew D. Gordon, editor, Programming Languages and Systems,
19th European Symposium on Programming, ESOP 2010, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume
6012 of Lecture Notes in Computer Science, pages 205–225. Springer, 2010.

[64] Peter J Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[65] François Le Gall. An efficient quantum algorithm for some instances of the
group isomorphism problem. In Jean-Yves Marion and Thomas Schwentick,
editors, 27th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2010, March 4-6, 2010, Nancy, France, volume 5
of LIPIcs, pages 549–560. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2010.

[66] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves
Girard, editor, Typed Lambda Calculi and Applications, 4th International
Conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings, vol-
ume 1581 of Lecture Notes in Computer Science, pages 228–242. Springer,
1999.

[67] Paul Lorenzen. Ein dialogisches konstruktivitätskriterium. Infinitistic
Methods, op. cit., 1961.

[68] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In
Jeanne Ferrante and P. Mager, editors, Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, San
Diego, California, USA, January 10-13, 1988, pages 47–57. ACM Press,
1988.

[69] Ian Mackie. The geometry of interaction machine. In Ron K. Cytron and
Peter Lee, editors, Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Fran-
cisco, California, USA, January 23-25, 1995, pages 198–208. ACM Press,
1995.

[70] Damiano Mazza. Interaction Nets: Semantics and Concurrent Extensions.
PhD thesis, Université de la Méditerranée and Università degli Studi Roma
Tre, 2006.

[71] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

113

[72] Robin Milner. Bigraphical reactive systems. In Kim Guldstrand Larsen and
Mogens Nielsen, editors, CONCUR 2001 - Concurrency Theory, 12th Inter-
national Conference, Aalborg, Denmark, August 20-25, 2001, Proceedings,
volume 2154 of Lecture Notes in Computer Science, pages 16–35. Springer,
2001.

[73] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I. Inf. Comput., 100(1):1–40, 1992.

[74] Eugenio Moggi. Computational lambda-calculus and monads. In Proceed-
ings of the Fourth Annual Symposium on Logic in Computer Science (LICS
’89), Pacific Grove, California, USA, June 5-8, 1989 [1], pages 14–23.

[75] Raphaël Montelatici. Polarized proof nets with cycles and fixpoints seman-
tics. In Martin Hofmann, editor, Typed Lambda Calculi and Applications,
6th International Conference, TLCA 2003, Valencia, Spain, June 10-12,
2003, Proceedings., volume 2701 of Lecture Notes in Computer Science,
pages 256–270. Springer, 2003.

[76] Koko Muroya, Naohiko Hoshino, and Ichiro Hasuo. Memoryful geometry of
interaction II: recursion and adequacy. In Rastislav Bod́ık and Rupak Ma-
jumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Pe-
tersburg, FL, USA, January 20 - 22, 2016, pages 748–760. ACM, 2016.

[77] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge Univ. Press, 2000.

[78] B. Ömer. Quantum programming in qcl. Master’s thesis, Institute of In-
formation Systems, Technical University of Vienna, 2000.

[79] Michele Pagani, Peter Selinger, and Benôıt Valiron. Applying quantitative
semantics to higher-order quantum computing. In Jagannathan and Sewell
[55], pages 647–658.

[80] Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: a core lan-
guage for quantum circuits. In Castagna and Gordon [15], pages 846–858.

[81] Marco Pedicini and Francesco Quaglia. PELCR: parallel environment for
optimal lambda-calculus reduction. ACM Trans. Comput. Log., 8(3):14,
2007.

[82] Carl Adam Petri. Communication with automata. Technical Report
RADC-TR-65-377, Rome Air Dev. Center, New York, 1966. English trans-
lation of the original PhD thesis (1962).

[83] J. S. Pinto. Implantation Parallèle avec la Logique Linéaire (Applications
des Réseaux d’Interaction et de la Géométrie de l’Interaction). PhD thesis,
École Polytechnique, 2001. Main text in English.

[84] Andrew M Pitts. Nominal sets: Names and symmetry in computer science.
Cambridge University Press, 2013.

[85] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
Theor. Comput. Sci., 1(2):125–159, 1975.

114

[86] N. Saheb-Djahromi. Probabilistic LCF. In Józef Winkowski, editor, Math-
ematical Foundations of Computer Science 1978, Proceedings, 7th Sympo-
sium, Zakopane, Poland, September 4-8, 1978, volume 64 of Lecture Notes
in Computer Science, pages 442–451. Springer, 1978.

[87] Ulrich Schöpp. On interaction, continuations and defunctionalization. In
Masahito Hasegawa, editor, Typed Lambda Calculi and Applications, 11th
International Conference, TLCA 2013, Eindhoven, The Netherlands, June
26-28, 2013. Proceedings, volume 7941 of Lecture Notes in Computer Sci-
ence, pages 205–220. Springer, 2013.

[88] Ulrich Schöpp. Call-by-value in a basic logic for interaction. In Jacques
Garrigue, editor, Programming Languages and Systems - 12th Asian Sym-
posium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings, vol-
ume 8858 of Lecture Notes in Computer Science, pages 428–448. Springer,
2014.

[89] Dana Scott. Outline of a mathematical theory of computation. Oxford
University Computing Laboratory, Programming Research Group, 1970.

[90] Philip Scott. Tutorial on geometry of interaction., 2004. Tutorial talk at
FMCS 2004. Slides available online at
http://www.site.uottawa.ca/ phil/papers/GoI.tutorial.pdf.

[91] Peter Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[92] Peter Selinger and Benôıt Valiron. A lambda calculus for quantum com-
putation with classical control. In Pawel Urzyczyn, editor, Typed Lambda
Calculi and Applications, 7th International Conference, TLCA 2005, Nara,
Japan, April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes in
Computer Science, pages 354–368. Springer, 2005.

[93] Peter Selinger and Benôıt Valiron. Quantum lambda calculus. In Simon
Gay and Ian Mackie, editors, Semantic Techniques in Quantum Computa-
tion, pages 135–172. Cambridge Univ. Press, 2009.

[94] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–
1509, 1997.

[95] G. Tremblay and G. R. Gao. The impact of laziness on parallelism and the
limits of strictness analysis. In PROCEEDINGS HIGH PERFORMANCE
FUNCTIONAL COMPUTING, pages 119–133, 1995.

[96] José Manuel Calderón Trilla and Colin Runciman. Improving implicit par-
allelism. In Ben Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN
Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 153–164. ACM, 2015.

[97] Dave Wecker and Krysta M. Svore. Liqui|>: A software design archi-
tecture and domain-specific language for quantum computing. CoRR,
abs/1402.4467, 2014.

[98] Nobuko Yoshida. Graph types for monadic mobile processes. In Vijay
Chandru and V. Vinay, editors, Foundations of Software Technology and

115

Theoretical Computer Science, 16th Conference, Hyderabad, India, Decem-
ber 18-20, 1996, Proceedings, volume 1180 of Lecture Notes in Computer
Science, pages 371–386. Springer, 1996.

[99] Akira Yoshimizu, Ichiro Hasuo, Claudia Faggian, and Ugo Dal Lago. Mea-
surements in proof nets as higher-order quantum circuits. In Zhong Shao,
editor, Programming Languages and Systems - 23rd European Symposium
on Programming, ESOP 2014, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Computer
Science, pages 371–391. Springer, 2014.

[100] Ming-Yuan Zhu. Denotational semantics of programming languages and
compiler generation in powerepsilon. SIGPLAN Notices, 36(9):39–53, 2001.

116

