THE UNIVERSITY OF TOKYO

Graduate School of Information Science and Technology

Department of Creative Informatics

&

:‘ﬁFFHjC

A Platform for Composable and Statically-
Checkable Domain-Specific Languages

(A RIRED OFIIRE RA[RE 7 P A A VERHBED 2O D 77 v 7 4+ — L)

Academic Advisor:
Shigeru Chiba

THE %

Doctoral Dissertation of:

Kazuhiro Ichikawa

HiJll ROk

Abstract

This dissertation proposes ProteaJ, which is a programming language support-
ing composable and flexible user-defined operators and user-defined scope rules
for them. User-defined operators, named protean operators, are procedures with
their own syntax. Protean operators are overloaded by operators that have the
same syntax but have different return type or operand types. An operator is
available only at an expression where its return type is expected. In other
words, programmers can regard return type and operand types as non-terminal
symbols. Programmers can define various syntax as user-defined operators by
exploiting types as non-terminals. This helps programmers implementing em-
bedded domain specific languages (embedded DSLs). Users can safely use mul-
tiple such the embedded DSLs that different programmers developed even if the
embedded DSLs have operators that have similar syntax. Programmers do not
have to care about conflicts of syntax since protean operators are distinguished
by types. We call this property composability. Composability is important for
software development style that uses multiple DSLs together. Protead also sup-
ports context-sensitive expressions, which are a variant of lambda expressions,
for expressing name binding and scope rules. Context-sensitive expressions take
parameters but the parameters are not explicitly written. Since the parame-
ter names are not given, the parameters cannot be accessed via the parameter
names. Instead, the members of a parameter are available without receivers
in context-sensitive expressions. In ProteaJ, protean operators can be instance
members. This means that we can express syntax that is available only at
context-sensitive expressions. Hence we can express name binding and scope
rules by using context-sensitive expressions. ProteaJ supports turnstile types,
which express the types of context-sensitive expressions. ProteaJ also supports
generic names to recognize arbitrary names given by end-users. User-defined
language constructs implemented by using context-sensitive expressions can be
safely composed because the scope of protean operators is expressed by turn-
stile types. Additionally, ProteaJ allows programmers to define declarations
with their own scope rules. A declaration declares something and enables to
use it after the declaration. ProteaJ provides an activate statement that takes
an object as its argument and enables its members after the statement without
receivers. The scope of activated members does not follow the scope of local
variables in the host language. If the activate statement is used in the body
of an operator/method, the visible members are also available at the call-site

3

of the operator/method. Hence we can implement an operator that simulates
a variable declaration. The scope of activated members is given by scope for
clauses. A scope for clause takes several types and it expresses the scope of ac-
tivated members of given objects. Programmers can implement different scope
rules for each embedded DSLs. To statically check which members are acti-
vated, ProteaJ also provides activates clauses. Since the compiler can check
what members are available by checking signatures of methods/operators, user-
defined declarations and their scope rules can be safely composed.

Contents

1 Introduction
1.1 Motivation e e e
1.2 Approach

2 Domain Specific Languages

2.1 Parser Generators and Parser Combinators
2.1.1 Parsing Algorithms
2.2 Language Workbenches
2.3 Embedded DSLs o
2.3.1 String Embedding
2.3.2 Fluent Interfaces,
2.3.3 Operator Overloading and User-Defined Operators
2.3.4 Higher-Order Abstract Syntax
2.3.5 Lexical Macros
2.3.6 Syntactic Macros L.
2.3.7 User-Defined Syntax Sugar

2.3.8 Hybrid Approaches Between Language Workbenches and
Embedded DSLs
2.4 Comparison of Approaches for Developing DSLs

3 Protean Operators

3.1 Introduction
3.2 Motivation
3.3 Proposal: Protean Operators
3.3.1 Protean Operators
332 Parsing
3.3.3 Parsing Speed and Expressiveness
3.3.4 Operator precedence and associativity
3.4 Implementation: ProteaJ
3.4.1 Definitions of Protean Operators
3.4.2 Expression Operators and Readas Operators
3.4.3 Operator Precedence and Parsing Precedence

3.4.4 Subtype Relationship between an Expected Type of the
Expression and the Return Type of an Operator

5

6 CONTENTS

345 CaseStudy
3.5 Experiments.o

3.5.1 Parsing Expressions Including User-Defined Literals

3.5.2 User-Defined Literals and Identifiers

3.5.3 Parsing Java Source code L.
3.6 Related Worko o
3.7 Conclusion

4 Context-Sensitive Expressions

4.1 Introduction Lo o
4.2 Motivation L
4.2.1 User-Defined Operators
4.22 Name Binding oo,
4.3 Proposal : Context-Sensitive Expressions
4.3.1 Context-Sensitive Expressions
4.3.2 Turnstile Types oo
433 DSLClasses. v v v v it e e e
4.3.4 Generic Names
4.3.5 Operator Priorities,
4.4 Parsing e e
4.5 Evaluation. Lo
4.5.1 Time Complexity
452 CaseStudy
4.6 Related Work
4.7 Conclusion

5 User-Defined Declaration Statements

5.1 Declarations and Scopes oo
5.2 Context Activation within a User-Defined Scope
5.2.1 Simplified QML oo
5.2.2 Activate Statements
5.2.3 Scoping Rule for Activated DSL Objects
5.2.4 TImplementation oL
5.2.5 Definition of simplified QML
5.3 Discussiono s
5.3.1 Contributions L
5.3.2 Limitations
5.3.3 Future Work,

6 Concluding Remarks

100
101
101
101
101

103

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.5
3.6
3.7

3.8

3.9

3.10
3.11
3.12

3.13
3.14
3.15
3.16
3.17

3.18
3.19

3.20
3.21
3.22

A code snippet using an embedded DSL based on string embedding 20

Embedded DSL based on fluent interfaces in Java 20
A definition of syntactic macros in Scheme 26
An example of composable operators 33
Composable user-defined operators with new syntax 33
An example of grammar including regular expression literals . . . 35
The protean operators expressing regular expression literals (in-

complete) 36
The parse tree for the literal hel+o 37
the parsing algorithm for statements 41
protean operators with operator precedence and associativity ex-

pressing regular expression literals 45
The definition of the regular expression literals without operator

precedence or associativity (the translation from Figure 3.7) . . . 46
Definition of protean operators expressing regular expressions . . 47
Syntax of an operator declaration in ProteaJ 48
Multiple operator modules can be imported in one source file . . 49
The definition of the regular expression literals supporting sub-

type relationship (the translation from Figure 3.8) 52
Regular expression literals as an internal DSL 54
Optimized string concatenation operators 54
File path operator module 55
A program using SQLOperators 56
The grammar of the language only supporting file-path names

and arithmetic calculations 58
The input source for the experiment of ProteaJ 58
Comparison between generating all possible trees by JSGLR and

our method by the ProteaJ compiler 59
The compilation time by ProteaJ 60
Simplified Java statement syntax 61
The parsing time by JSGLR of the source code containing user-

defined literals 62

3.23

3.24

4.1

4.2

4.3
4.4

4.5
4.6
4.7

4.8
4.9
4.10

4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

LIST OF FIGURES

The compilation time by the ProteaJ compiler of the source code

containing user-defined literals 63
The compilation time of logdj 64
Code snippet using user-defined control flow statements fold-for

and if-exists 72
Code snippet using fold-for and if-exists represented by higher-
order abstract syntax oL Lo oL 73
The definition of the DSL class MapEntryRef 7
The definition of the DSL class MapUtils that contains the op-
erator if-exists Lo 78
The definition of fold-for in ProteaJ2 79
The definition of the DSL class with operator priorities. 80
Operators that could cause compilation time to increase faster

than linear time oo 82
The result of the micro benchmarks 84
The implementation of lambda expressions 85
The definition of the DSL class that implements syntax like lambda
expressions for KeyListener 86
The definition of the DSL class for implementing try-with . . . 87
The definition of the DSL class that encapsulates BufferedReader 88
Part of the definition of pattern matching 92
A QML program 94
A program in simplified QMLo 95
A pseudo code showing the scope of activated DSL object 96
A definition of property declaration specialized for size. 97
A definition of property declaration supporting rectl.size . . 98
A definition of Rectangle declaration that works as a scope for

Size e 99
A definition of a DSL class that contains an operator expressing

the QML region delimiter 99

A definition of simplified QML 102

List of Tables

2.1 Comparison of approaches for developing DSLs 29
3.1 The expected types of Java expressions 39
3.2 The translation from PEGs to protean operators 43
6.1 Positions of ProteaJ and ProteaJ2 105

10

LIST OF TABLES

Chapter 1

Introduction

There are huge number of programming languages today and programmers can
select a language for their purpose. When they develop a program that runs
on a supercomputer, they often select C, C++, Fortran, and so on. Scripting
languages such as JavaScript, Ruby, Python, and PHP are often used for de-
veloping web pages. If programmers want to write more robust programs, they
can select statically typed programming languages such as Java, Scala, OCaml,
and Haskell.

Language oriented programming (LOP) is a paradigm of software develop-
ment in which programmers develop domain specific languages (DSLs) at first
rather than directly write a program in a general purpose language [78]. A DSL
is a programming language that is a programming language for a particular
problem domain. Programmers can write more concise and readable code for
the particular domain. In LOP, programmers develop most part of software as
DSL programs. It improves maintainability since DSL programs only discribe
business logic.

Unfortunately, the cost of developing a DSL from scratch is extremely high.
To reduce this cost, various tools to help implementing a compiler or an inter-
preter have been developed. Such the tools are called as compiler-generators or
compiler-compilers. We can regard them as DSLs for developing a programming
language; therefore we can develop a DSL without considering implementation
details such as a parsing algorithm. However, developing a new DSL is still
hard. A compiler or interpreter of a programming language, even a small DSL,
is a large software product, so it is difficult to apply LOP for usual software
development.

Embedded DSL (or internal DSL) is an idea for developping a DSL in lower
cost by “inheriting the infrastructure of some other language” [32]. An embed-
ded DSL is not a programming language. An embedded DSL is just a library
of the host language but it looks like a DSL. It exploits language features of
the host language such as macros for emulating the DSL. In the rest of this
dissertation, we call normal DSLs external DSLs. If we simply write DSLs, they
mean either or both of embedded DSLs and external DSLs.

11

12 CHAPTER 1. INTRODUCTION

An advantage of embedded DSLs is that a DSL can cooperate with other
DSLs and its host language. Since an embedded DSL is just a library of the
host language, programmers can use it only by importing the library. Unlike
external DSLs, programmers can use multiple embedded DSLs at the same time
as if they are a single DSL. This property is called as composability [53]. In LOP,
composability is important property because programmers develop a product by
using different DSLs depending on a component of the product.

A disadvantage of embedded DSLs is that DSL syntax is restricted by the
host language. Since syntax of an embedded DSL is implemented by exploiting
the host language syntax, it cannot use syntax that cannot parse in the host
language. For example, fluent interfaces [Fowler2005] are a technique for im-
plementing embedded DSLs in object-oriented programming language. Fluent
interfaces exploit method call chain to express DSL syntax. Therefore, they
cannot use keywords that cannot be used as a method name.

This dissertation aims to give techniques to relax the restriction of embed-
ded DSLs and allow users to define arbitrary DSLs in the same host language.
We first show protean operators, which are user-defined operators that can ex-
press user-defined literals. Protean operators enable programmers to implement
any DSL syntax that is expressed by parsing expression grammar (PEG) [20].
Then we show context-sensitive expressions and turnstile types, which enhance
protean operators to cover DSL syntax involving name binding. They enable
programmers to implement lambda expressions, let expressions, for expressions,
and so on. The contribution of this dissertation is that we show a design of
a syntax extension system that enables programmers to implement embedded
DSLs with their own syntax including literal syntax and local names in type-
safe fashion. The type-safety improves composability of embedded DSLs since
it makes composing DSLs to be more safe.

1.1 Motivation

Our ultimate goal is to let programmers add any kind of new language constructs
to a host language. This means, programmers can use their favorite language
constructs by importing libraries. Programmers can also use different syntax of
their favorite language. Their programs can be easily composed since they are
developed in the same language. For example, a programmer uses Lisp syntax
and another programmer uses Java-like syntax in the same language.

To do this, programmers should be able to define new syntax within the
host language. They can package language constructs involving new syntax
as a library. A number of programming languages have a system that allows
programmers to define new syntax, however, such the system has restrictions of
the syntax that can be defined or it makes composability worse. For example,
SugarJ [18] can define new syntax sugar as a library. In SugarJ, programmers
can declare new syntax of arbitrary context free grammar and implement its
semantics as a transformation of the abstract syntax tree (AST). Libraries of
SugarJ are usually composable, however, they are not composable in case syntax

1.2. APPROACH 13

is ambiguous. Ambiguous means there are two or more abstract syntax trees
for a single code. In SugarJ, if a program is ambiguous, the compiler fails to
compile and reports an error even if the correct AST is obvious from the context.
If programmers can define their own syntax and programmers can compose
multiple libraries, syntax tends to be ambiguous. Especially, user-defined literals
make syntax highly ambiguous. This is because syntax of user-defined literals
does not have characteristic keywords. Another approach is forcing user-defined
syntax to contain characteristic keywords but it has syntax restrictions. We aim
to develop a new language extension system with less syntax restrictions and
more composability.

Another problem that programmers encounter when adding any kind of new
language constructs is name binding. Name binding is one of the most important
feature of a programming language. It is the association of names with values,
functions, classes, or types. For example, variable declarations bind a name
with a variable. This name can be used within a scope, for example, curly
braced code block involving the declaration. A large part of language constructs
introduce their new name binding. To allow programmers define their own
language constructs, a programming language should have a facility for defining
new syntax having new name binding. However, there are few languages having
a system that allows programmers to define new name binding. Anaphoric
macros [29] are one of such the systems but they are known as unsafe. In this
dissertation, we aim to develop a new language extension system that enables
programmers to safely extend name binding rules.

1.2 Approach

This dissertation proposes three language features: protean operators, context-
sensitive expressions, and context activation within a user-defined scope. Pro-
tean operators are a language extension system that can expresses user-defined
literals. They have less syntax restrictions and more composability. Context-
sensitive expressions are a language construct that helps protean operators.
They enable protean operators to safely extend name binding rules. Context
activation within a user-defined scope enables programmers to implement user-
defined declarations. Context activation is expressed by activate statements
and activates clauses and a user-defined scope is defined by scope for clauses.
We have developed ProteaJ, which is an extension language of Java. ProtealJ
implements our proposals.

Protean operators are procedures with their own syntax. They are invoked
by an operator call and the call follows the syntax of the operator. The syntax
of protean operators is written as a sequence of name parts and operands. A
name part is a keyword for identifying the protean operator. An operand takes
an expression as its argument. The characteristics of protean operators are that
operators are overloaded by operators that have the same syntax but have a
different return type or operand types. An operator is available only at an
expression where its return type is expected. Hence we can regard that the

14 CHAPTER 1. INTRODUCTION

return type of an operator denotes where the operator is available and the
operand types restrict syntax of the operands. Programmers can use types as if
they are non-terminal symbols of Backus-Naur form (BNF) [41] for expressing
various syntax. In Protead, syntax of literals is also extensible in the same way
to normal syntax. Programmers do not have to care about conflicts of syntax
since protean operators are distinguished by types.

Context-sensitive expressions are a variant of lambda expressions. They
take parameters but the parameters are not explicitly written. Since the pa-
rameter names are not given, the parameters cannot be accessed via the pa-
rameter names. Instead, the members of a parameter are available without
receivers in context-sensitive expressions. In ProteaJ, protean operators can be
instance members. This means that we can express syntax that is available
only at context-sensitive expressions. It enables programmers to define name
binding rules by defining an operator that take a context-sensitive expression
as its operand. ProteaJ supports turnstile types, which express the types of
context-sensitive expressions. ProteaJ also supports generic names to recognize
arbitrary names given by end-users. User-defined language constructs imple-
mented by using context-sensitive expressions can be safely composed because
the scope of protean operators is expressed by turnstile types.

An activate statement takes an object as its argument and enables its
members after the statement without receivers. The scope of activated mem-
bers does not follow the scope of local variables in the host language. If the
activate statement is used in the body of an operator/method, the visible
members are also available at the call-site of the operator/method. Hence we
can implement an operator that simulates a variable declaration. The scope of
activated members is given by scope for clauses. A scope for clause takes
several types and it expresses the scope of activated members of given objects.
Programmers can implement different scope rules for each embedded DSLs. To
statically check which members are activated, ProteaJ also provides activates
clauses. Since the compiler can check what members are available by checking
signatures of methods/operators, user-defined declarations and their scope rules
can be safely composed.

Chapter 2

Domain Specific Languages

A domain specific language (DSL) is a programming language specialized to
a specific domain. For exmple, SQL is a DSL for manipulating database and
LaTeX is a DSL for writing documents. Advantage of DSLs is readability and
maintainability. Since a DSL is specialized to the specified domain, a DSL
program contains only code that directly expresses domain logic. This makes a
program concise and easy to maintain. Language oriented programming (LOP)
is a paradigm of software development in which programmers develop DSLs
at first rather than directly write a program in a general purpose language
[78]. Large parts of software component are implemented in the developed
DSLs. LOP improves maintainability of software since DSL programs have
better maintainability than programs in a general purpose language. In large
software development, even though developing DSLs require extra development
cost, advantage of LOP exceeds the cost.

If the cost of developing DSLs were smaller, LOP would be more effective.
There are a lot of tools and techniques for helping to develop DSLs. In this
chapter, we describe existing tools and techniques for developing DSLs and
discuss advantages and disadvantages of each technique.

2.1 Parser Generators and Parser Combinators

To implement a programming language, a programmer should define an inter-
preter or compiler. The interpreter reads a source code of the language and
executes it. The compiler translates a source code of the DSL into a code writ-
ten in another language. Both of them first read a string from a text file and
they try to analyze the structure of the program. This phase is called parsing.
A parser is a component of an interpreter or compiler for parsing. A parser
translates a string into a tree structure that is called an abstract syntax tree
(AST). A parser recognizes a string according to the syntaz (grammar) of the
language; syntax is a set of rules that express what input string is accepted or
rejected as a program of the language.

15

16 CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

To be easy to implement an interpreter or compiler, parser generators are
developed since long time ago. A parser generator takes a program that includes
syntax of a language and AST construction rules and generates a parser that
recognizes the given syntax. The syntax is usually written in Backus-Naur form
(BNF) [41] or its variant [80]. AST construction rules (semantics of the parser)
are often written in a general purpose language such as C. For example, yacc [37]
is one of the most popular parser generator. In yacc, programmers use BNF for
expressing syntax of a language and they use C for expressing AST construction
rules. yacc generates a parser based on LALR(1) parsing [14].

A parser combinator [77, 26, 33| is a similar tool to a parser generator
but it is just a library of a general purpose language. Such the library provides
functions for construction of a small primitive parser such as an identifier parser
and functions for composition of several parsers. Users build a large parser by
combining a number of small parsers. A parser combinator can be regarded
as an embedded DSL of a parser generator. A parser combinator is getting
popular in a statically typed functional language such as Haskell [50] and Scala
[61]. In such the languages, a parser combinator is designed as a monad [76,
34]. The parsec [46] in Haskell is a famous implementation of a monadic parser
combinator.

2.1.1 Parsing Algorithms

A parser generator or parser combinator cannot handle arbitrary syntax. The
range of syntax that they can handle is quantified as language class and grammar
class. A set of input that a parser can parse is called a language. A language
class expresses a set of languages of a parser that a parser generator or parser
combinator can generate. A grammar class expresses a set of syntax (grammar)
that a parser generator or parser combinator can take. The language class
and grammar class of a parser generator or parser combinator depend on their
parsing algorithm. For example, a parser generator based on LALR(1) parsing
such as yacc can handle LALR(1) grammar [14]. In general, a parsing algorithm
with stronger grammar class or language class takes a longer time to parse.

LALR(1) parsing is a sort of LR parsing [42]. LR parsing is an algorithm that
is extension of deterministic finite automaton (DFA). LR parsing consists of two
operations: shift and reduce. A shift operation corresponds to a state transition
of DFA. A reduce operation expresses a derivation from an expression, which is
a sequence of terminals and non-terminals, to the corresponding non-terminal
symbol. The operation rewinds transitions as much as the number of the reduced
sequence and applies transition that expresses reading the corresponding non-
terminal symbol. The language class of LR parsing is deterministic context free
language [27, 42]. This is enough to use for well-designed languages, however,
it is difficult to support syntax composition. This is because composed syntax
might be non-deterministic. Hence DSL users cannot compose multiple DSLs if
the system for implementing DSLs is based on LR parsing.

Generalized LR (GLR) parsing [70] is a parsing algorithm that is an ex-
tension of LR parsing. The difference from LR parsing is that GLR parsing is

2.2. LANGUAGE WORKBENCHES 17

nondeterministic. To efficiently parse an input, GLR parsing uses graph struc-
tured stack (GSS). GLR parsing can parse any context-free grammars (CFGs).
Note that CFGs can be ambiguous; in the context of parsing, the parser might
return multiple ASTs from a single input. It enables programmers to compose
syntax. Since composed syntax might be ambiguous, programmers should do
disambiguation of the resulting ASTs. The worst-case time complexity of GLR
parsing is O(N?3) where N is the length of the input. If the syntax is “mostly
unambiguous”, namely mostly deterministic, GLR parsing can parse an input
in mostly linear time of the length of the input. Earley parsing [15] and CYK
parsing [39, 81] are also parsing algorithms that can parse any CFGs. Both
of them are based on dynamic programming. CYK parsing is the most basic
algorithm for parsing CFGs; it first parses each substrings of the input with
length 1, and then it parses each substrings of length 2 by using the previous
results. Similarly, it parses substrings of length n by using the parsing results of
substrings whose length is less than n. Earley parsing is a variant of CYK pars-
ing that is different order of parsing substrings. Both of them has O(N?) time
complexity. GLR parsing can be regarded as an optimized variant of Earley
parsing.

Recursive descent parsing is a parsing algorithm that implements each non-
terminal symbol as a recursive function. The parser first calls the function
corresponding to the start symbol. A function call expresses a derivation from
its corresponding non-terminal symbol to expressions that are the right-hand
side of parsing rules whose left-hand side is the corresponding non-terminal.
Packrat parsing [19] is a parsing algorithm based on recursive descent pars-
ing. Packrat parsing adopts memoization for optimization. The unique point
of packrat parsing is that it saves only one AST for each position in the input
and each non-terminal symbol. If there are multiple ASTs for the same posi-
tion and non-terminal symbol, the parser selects one by heuristics. A packrat
parser recognizes parsing expression grammar (PEG) [20] if the parser adopts
ordered choice rules as the heuristics. A packrat parser cannot recognizes a
grammar that has several ambiguities; since the parser selects an AST for each
position and non-terminal, ambiguities should be resolved at the each position.
Surprisingly, this does not mean the language of the parser is weaker than the
language of CFG, which can have ambiguities. Packrat parsing is useful for
parsing a program since almost all of programming languages do not have am-
biguous syntax, and if so, the parser can parse a program in linear time of the
input length. LL(*) parsing [54] is also a parsing algorithm based on recursive
descent parsing. We can regard it as an optimized variant of packrat parsing
that works faster if the grammar is LL(k).

2.2 Language Workbenches
Language workbenches [23] are a toolkit for DSL development. They provide

several DSLs for implementing DSLs. Programmers implement a DSL by writ-
ing the specification of the DSL in declarative style. The DSL specifications can

18 CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

be reused. Language workbenches also generate the integrated development
environment (IDE) including editors with syntax highlighting for the defined
DSLs. This reduces the cost for development of tools by integrating the imple-
mentations of the DSL and the IDE.

Spoofax [40] is a language workbench that is developed as plugins for Eclipse
and IntelliJ. In Spoofax, the DSL syntax is defined in SDF [30], which is a DSL
for syntax definitions. SDF can express any syntax in CFG as well as BNF. SDF
also directly supports operator precedence and operator associativity. The algo-
rithm of the parser generator for SDF is scannerless GLR algorithm, a variant
of GLR algorithm. Spoofax includes a DSL named NaBL [45] to specify name
binding and type checking. Name binding means identifying a name and associ-
ating its declaration. This is used for resolving variable names, function names
and type names. Spoofax also includes Stratego [75, 10], which is a term rewrit-
ing language for program transformation. Programmers can implement syntax
sugar in Stratego. The dynamic semantics of DSLs are implemented in DynSem
[73]. In DynSem, programmers declaratively write operational semantics.

Meta Programming System (MPS) [35] is a language workbench developed
by JetBrains. MPS itself is an IDE of DSLs including a DSL for implementing
DSLs. A unique feature of MPS is that MPS is based on projectional editing
[24]. Projectional editing is an alternative model of programming to source code
editing. Programmers write an AST instead of a source code in projectional
editing. In MPS, programmers use a code completion for writing an AST. The
AST is projected to the display as if it is a source code. DSL authors should
implement a projector of ASTs instead of a parser. This helps developing DSLs
since implementing a projector is easier than implementing a parser. The idea
of MPS derives from Intentional Programming [63].

A problem of language workbenches, especially that are based on projectional
editing, is the risk of vendor lock-in [23]. Language workbenches generates a
processor of a DSL and an IDE of the DSL from the definition of the DSL. Such
the processor and IDE are designed that run within the language workbench.
For example, if we want to use a DSL implemented in MPS, we should write
a program by using projectional editing of MPS. Therefore, we cannot use the
DSL without MPS.

2.3 Embedded DSLs

DSLs often have the similar features to other DSLs or general-purpose pro-
gramming languages. For example, a lot of DSLs have string literals, arithmetic
expressions, and conditional branches. Several DSLs are often used with other
DSLs together, for example, regular expressions or URLs. Reusing such the
features or DSLs is important issue.

An embedded DSL (or internal DSL) is a DSL implemented as a library
of a general-purpose programming language (host language). It is technically
not a programming language but it looks like a language. For emulating the
DSL syntax, it exploits language features of the host language. For example,

2.3. EMBEDDED DSLS 19

syntactic macros [44, 29] are common technique for embedding DSLs in Lisp.
Since an embedded DSL is just a library, we can use it with the constructs of host
language together. Hudak said that embedded DSL is an idea for developping a
DSL in lower cost by “inheriting the infrastructure of some other language” [32].
An important property of embedded DSLs is composability [53]. Composability
means that programmers can use multiple embedded DSLs at the same time
even if they are designed without considering each other. DSL users can use
different embedded DSLs that are suitable for each part of the program and all
parts work together.

2.3.1 String Embedding

String embedding is an approach in which users write a DSL code as a string
literal. The DSL code is executed by the interpreter implemented in the host
language. The folling code snippet is an example that uses the embedded DSL
based on string embedding in Java:

stmt . executeQuery (
"select name from users" +
"where name = 'ichikawa' and password = 'password'");

This embedded DSL is an implemention of SQL in Java. Here, stmt is an object
of java.sql.Statement. The method executeQuery takes the string literal and
it executes the given string as a SQL statement. To implement such the DSL,
DSL authors should implement its parser and interpreter. The implementation
of embedded DSLs based on string embedding is almost same as external (stand
alone) DSLs.

An advantage of string embedding over external DSLs is that DSL users can
use host language facilities for building DSL code as a string. For example, DSL
users can write the program shown in Figure 2.1. In this program, parts of SQL
query are given by the input object. The SQL query is changed by end-user’s
input. Several languages have the feature named string interpolation, which
helps building DSL code as a string. In C#, DSL users can write the following
program:

db.ExecuteQuery(
$"select name from users" +
$"where name = '{input.Namel}' and password = '{input.Password}'");

$"..." is a special string literal for string interpolation. In this literal, curly
braced code is executed as C# code and the result value is embedded to the
string.

String embedding has well-known problems, called code injection problems.
The code injection is an attack that changing DSL code by sending unexpected
inputs. Attackers can insert their malicious code into the program shown in
Figure 2.1 by injecting several SQL code in the password field of input. For
example, if attackers give "' or '1' = '1" as the password of input, the query
is expanded as follows:

20 CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

stmt . executeQuery(
"select name from users" +
"where name = '" + input.getName() + "'" +
"and password = '" + input.getPassword() + "'")

Figure 2.1: A code snippet using an embedded DSL based on string embedding

SQL.select ("name")
.from("users")
.where("name") .equal (input.getName())
.and ("password") .equal (input.getPassword()) ;

Figure 2.2: Embedded DSL based on fluent interfaces in Java

select name from users where name = '...' and password = '' or '1' = '1'

This query returns all the names recorded in the user table since '1' = '1!'
always return true. This behavior is not intended. To prevent code injection,
we should escape several characters such as quotes ' or validate whether user
input is a legal DSL value. Embedded DSLs based on string embedding usually
provide the safer API than using raw strings to building DSL programs. Unfor-
tunately, such the API contains several boilerplate code and its program tends
to be verbose.

2.3.2 Fluent Interfaces

Fluent interfaces [22] are an approach for expressing DSL syntax by using
method chains. Fluent interfaces are often used in object-oriented program-
ming languages such as Java. Figure 2.2 is a code snippet that uses an em-
bedded DSL based on fluent interfaces in Java. In fluent interfaces, method
call obj .method (param) is used for expressing DSL syntax obj method param.
The first identifier of a method chain, SQL in this example, indicates the kind of
embedded DSLs. This program is equivalent to the code shown in Figure 2.1.

An advantage of fluent interfaces is that they are safer than string embedding
and DSL users can receive several tool supports such as code completions. User’s
input cannot change the structure of a DSL program since DSL code is already
structured. Furthermore, in a statically typed language, the compiler checks the
types of method calls and method definitions. If users write a vulnerable code
in an embedded DSL based on fluent interfaces, the compiler might report a
type error. Hence fluent interfaces are much safer than string embedding. Type
safety also brings composability since each embedded DSLs can be distinguished
by static types.

A disadvantage of fluent interfaces is that syntax of embedded DSLs is re-

2.3. EMBEDDED DSLS 21

stricted and verbose. Symbols that are available in DSL syntax are restricted
since the DSL syntax consists of method names, class names, and literals. For
example, the symbol = cannot be used as a method or class name in Java. In
Figure 2.2, the keyword equal is used instead. This DSL code also contains
several extra keyword SQL, periods ., and parentheses ().

Several languages provide features that reduce verbosity of fluent interfaces.
import static in Java is a feature that allows programmers to omit class name
from calls of static methods. If DSL users use import static, they can omit
the leading keyword of fluent interfaces such as SQL. Scala has syntax sugar that
allow programmers to write obj method param instead of obj.method (param).
Programmers can write the following code by using the syntax sugar:

SQL select "name" from "users"
where "name" equal input.getName ()
and "password" equal input.getPassword()

Here, we do not apply the syntax sugar to input.getName () because of operator
precedence. Unfortunately, we cannot omit the keyword SQL even if we use a
language feature like import static. This is because the receiver object should
be specified for applying the syntax sugar in Scala.

To omit the keyword SQL, we can choose another design of the embedded
DSL: in this design, select is an object and name is a method name of the object
select. In such the DSL, we can write the following code that is equivalent to
the program shown in Figure 2.2:

select.name (from) .users
(where) .name (equal) .value (input.getName ())
.and ("password") .equal (input.getPassword())

In this code, select, from, where, and equal are a variable name and name,
users, value, and, and equal are a method name. If we apply the syntax sugar
in Scala to this code, this code becomes the following code:

select name from users
where name equal value(input.getName())
and "password" equal input.getPassword()

This code contains extra keyword value since the expression input.getName ()
cannot place at a method name position. name, users, and password are
method names in this code but they are given by DSL users and DSL au-
thors cannot know them. Several languages such as Ruby have a feature called
method missing, which enables DSL authors to implement such the method
names. Method missing invokes a special method method_missing of a receiver
if the given method name does not found in the receiver object. Although DSL
authors can implement an embedded DSL in which DSL users can write the
program above by using method missing, the implementation of the embedded
DSL is complicated. This API design emulates syntax of the DSL but it does
not consider the semantics of the DSL. DSL authors should reconstruct the
AST that corresponds to the semantics. Furthermore, DSL users might feel
the embedded DSL is not easy to use since this API design is not consistent.

22 CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

Column names are sometimes given as a string literal such as "password" but
sometimes given as a method name such as name. Expressions sometimes have
to be enclosed by value method but sometimes do not have to be.

2.3.3 Operator Overloading and User-Defined Operators

A user-defined operator is a function with its own syntax. User-defined oper-
ators are useful for expressing DSL syntax. A number of languages have their
restricted variant of user-defined operators. One of the most famous variant of
user-defined operators is operator overloading in C++. It enables programmers
to overload predefined operators such as + and new. Several languages such
as Swift have more powerful feature; programmers can define their own infix
binary operators, prefix unary operators, and postfix unary operators. In Swift,
programmers can also declare operator precedences and associativity. They help
implementing various DSL syntax. We can regard that Scala’s syntax sugar is
also a variant of user-defined operators. In Scala, defining method m with one
argument for the object obj can be regarded as defining an infix operator m
since we can use it as obj m arg. Mixfix operators [13] are a powerful variant
of user-defined operators that is provided in Coq, Isabelle, Agda, et al. Mix-
fix operators are a collective term of infix, prefix, postfix, and outfix operators.
Here, infix means syntax that starts with an operand, ends with an operand, and
takes operator names between each two operands. Note that an infix operators
should have at least one operator name. Prefix means syntax that starts with
an operator name, ends with an operand, and alternates operands and operator
names. Similarly, postfix means syntax that starts with an operands, ends with
an operator name, and alternates operands and operator names. Outfix means
syntax that starts and ends with an operator name and alternates operands and
operator names.

Developing embedded DSLs by using user-defined operators is similar strat-
egy to fluent interfaces but the approach based on user-defined operators can
use more natural syntax than method chains. Since user-defined operators are
functions, DSL authors express DSLs by combinations of function calls, just like
fluent interfaces. User-defined operators can also receive the benefit of static
types since they are just functions. Hence embedded DSLs based on user-defined
operators are as safe as fluent interfaces and they are composable. Developing
embedded DSLs by user-defined operators is easier than fluent interfaces be-
cause DSL authors can define operators that expresses syntax that corresponds
to the semantics of the DSL. They do not have to reconstruct the AST unlike
fluent interfaces.

User-defined operators are useful for implementing embedded DSLs, how-
ever, existing programming languages only have limited set of operators that
can be defined by users. For example, mixfix operators supports only operators
that do not have two adjacent operands. This means that mixfix operators can
express only subset of operator precedence grammar. Such the restrictions of
user-defined operators are for simplifying parsing. If a language allows program-
mers to define arbitrary operators, the syntax may be ambiguous.

2.3. EMBEDDED DSLS 23

2.3.4 Higher-Order Abstract Syntax

Fluent interfaces and user-defined operators can express various DSLs, however,
they cannot express language constructs involving name binding. Name binding
is the association of data with identifiers. For example, look at the following
code snippet:

for (n <- list) println(n)

This code snippet uses a for statement. The for statement have a name bind-
ing, a variable n. The bound variable n is used at the body of for statement.
Programmers cannot implement such the for statements by fluent interfaces or
user-defined operators since they express DSLs by combinations of methods or
operators, respectively.

Higher-order abstract syntax (HOAS) [56] is a technique for expressing name
binding in embedded DSLs. It uses lambda expressions for expressing name
binding. The for expression shown above is expressed in HOAS style as follows:

my_for(list, n -> println(n))

The second argument of my_for is a lambda expression. This lambda expression
binds a variable n and the variable is available at the body of the lambda
expression. The function my_for is known as map in functional programming
languages. An advantage of the HOAS style is that the compiler can statically
check the name binding. DSL authors can use HOAS style name binding within
fluent interfaces or user-defined operators.

HOAS can express name binding but programmers cannot extend the syntax
of name binding even if they use user-defined operators together. HOAS uses
lambda expressions as a primitive of name binding. This is because a lambda
expression have functionalities of name binding; it can introduce a new name
and it has the scope of the new name. Since function calls, method calls, and
operator calls do not have such the functionalities, fluent interfaces and user-
defined operators cannot extend the syntax of lambda expressions.

Several languages supports syntax overloading [7], which allows programmers
to overload pre-defined language constructs such as if and for. In Scala, for
expressions are syntax sugar of method calls foreach, flatMap, map, filter,
and withFilter [51]. Programmers can overload for expressions by defining the
methods foreach, flatMap, map, filter, and withFilter. Scala-virtualized
[58] is an extension of Scala and supports overloadable language constructs such
as if, while, and new. Scala-virtualized adopts the same approach to Scala. To
overload if expressions, programmers define __ifThenElse method. Scala and
scala-virtualized use HOAS to express name binding. Haskell provides syntax
sugar, called do-notation [50], for embedded DSLs implemented with monads
[76, 60]. Monads have the bind operation >>=, which expresses name binding
of the DSLs, and the lift operation return, which translates the host language
value to the DSL value. The bind operation >>= takes a lambda expression
for expressing name binding. If we use the do-notation, we can write the bind
operation like a normal variable declaration instead of using lambda expressions.

24 CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

In other words, programmers can extend the pre-defined construct do-notation
by implementing their own monads. A limitation of syntax overloading is that
programmers cannot define their own language constructs with custom syntax.
They can only overload pre-defined constructs.

Recaf [5] supports a limited form of user-defined language constructs with
custom syntax based on HOAS. In Recaf, programmers can define a new lan-
guage construct with one of the supported forms of syntax such as syntax similar
to for or while statement. Recaf supports translates the new language con-
struct into its HOAS representation. To implement the new language construct,
programmers should define a function that will be used in the HOAS representa-
tion. Unfortunately, Recaf cannot translate every possible syntax into a HOAS
representation: Recaf compiler can translate syntax that has the same syntax
as pre-defined constructs except for keywords.

2.3.5 Lexical Macros

In C, C++, and TeX, programmers can define lexical macros, which are rewrit-
ing rules of sequences of tokens. Lexical macros take several sequences of tokens
and build another sequence of tokens. C or C++ have two kinds of lexical
macros; object-like macros and function-like macros [25]. An object-like macro
is just an identifier and it is replaced by the specified tokens. A function-like
macro is a lexical macro that looks like a function call. It takes sequences of
tokens as its arguments. To define macros, programmers use #define derective.
Lexical macros can implement DSL syntax that does not follow the syntax of
the host language. The rewriting by lexical macros is applied before the parsing.
If lexical macros translate the DSL code into the host language code, the DSL
code can be compiled even if it does not follow the host language syntax. The
following code snippet defines function-like macros that emulate SQL syntax:

#define SELECT(c) select_from_where(c,
#define FROM(t) t,
#define WHERE(w) w)

We can write the following code by using these macros:

SELECT("name") FROM("users")
WHERE("name = " + in.getName() + " and password = " + in.getPassword())

Here, SELECT, FROM, and WHERE are function-like macros This code is translated
into the following code:

select_from_where("name", "users",
"name = " + in.getName() + " and password = " + in.getPassword())

Although lexical macros can extend the syntax of the host language, they
should not be used for implementing DSL syntax since DSL users cannot use
the DSL without knowledge of its implementation. For example, the following
code looks okey but it cannot be compiled:

SELECT("name") FROM("users")

2.3. EMBEDDED DSLS 25

The reported error message will be “expected expression”. This is because the
DSL author did not implement the SELECT statement without WHERE clause. If
DSL users do not know the implementation, this error message is not helpful.

Furthermore, lexical macros have a composability problem since they are
distinguished only by their macro names. If DSL users use the SQL DSL with
another DSL together in the same file and the DSL defines FROM macro, a pro-
gram using the SQL DSL might not properly work. Since the macro processor
cannot distinguish the FROM macros of two DSLs, it might select the FROM macro
that is not for SQL DSL even if DSL users intend SQL code.

Several languages such as Common Lisp support reader macros, which en-
able programmers to replace the reader (also called scanner or lexer) of the
language [29]. Programmers can implement arbitrary syntax of DSLs by de-
veloping a reader for it. In Common Lisp, use of a reader macro is specified
by a macro character. Programmers can define their own macro character and
its corresponding function that expresses a reader. Although reader macros are
more powerful than lexical macros in C or C++, they also have a composability
problem since they are also distinguished only by their macro characters.

2.3.6 Syntactic Macros

Syntactic macros are a language feature that rewrites branches of an AST.
Lisp have supported syntactic macros for a long time. Syntactic macros find
ASTs that match the given pattern and replaces them into other ASTs that
are generated by executing the macro body. Scheme, a dialect of Lisp, pro-
vides define-syntax and syntax-rules for defining syntactic macros [65].
Figure 2.3 is an example defining syntactic macros in Scheme. This code de-
fines two macros: select and sql-cond. The definitions of the macros use
syntax-rules, which declares patterns of ASTs and rules of AST transforma-
tions. The first argument of syntax-rules declares a list of identifiers that
are used as a keyword in the macro. The second argument declares patterns of
ASTs and their corresponding rules of AST transformations. For example, the
select macro matches the pattern select ¢ from t where cond ... where
select, from, and where are keywords. c, t, and cond ... denotes parameters
of the macro. cond ... takes variable length arguments. According to line 4
in the figure, an expression using the select macro is expanded into the call
of the function select_from_where. c, t, and cond ... are replaced into the
corresponding arguments when the macro is expanded. Since the result of the
macro expansion includes the macro sql-cond, the macro sql-cond is recur-
sively expanded. If we use the macros declared in Figure 2.3, we can write the
following program:

(define (query n p)
(select name from users where name = n and password = p))

This code is expanded as follows:

(define (query n p)
(select-from-where 'name 'users

26 CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

(define-syntax select
(syntax-rules (from where)
((select ¢ from t where cond ...)
(select-from-where 'c 't (sql-cond cond ...)))))

(define-syntax sql-cond
(syntax-rules (and =)
((sql-cond c1 = vl and rest ...)
(sql-and (sql-eq 'cl v1) (sql-cond rest ...)))
((sql-cond c1 = v1)
(sql-eq 'cl v1))))

Figure 2.3: A definition of syntactic macros in Scheme

(sql-and (sql-eq 'name n) (sql-eq 'password p))))

There are a lot of researches to provide the power of Lisp macros in non-
Lisp language. Syntactic macros are powerful in Lisp because Lisp has a very
simple syntax, S-expressions. Bachrach and Playford demonstrated that non-
Lisp language can provide Lisp-like syntactic macros [3]. They designed macro
system for the object-oriented programming language Dylan. Several modern
languages such as Rust and Haskell also provide syntactic macros [68, 61].

Hygiene [44] is an important property of syntactic macros. Hygiene means
that local variables in a macro body do not accidentally capture variables of
caller scope. Scheme, Dylan, and Rust macros are designed hygienic. In hygienic
macro definitions, local variables have a lexical scope. This makes macros safer,
however, this makes it difficult to define language constructs involving name
binding.

Anaphoric macros [29] are also syntactic macros but they are not hygienic.
They intentionally capture several variables. They are used for expressing name
binding. Several languages such as Common Lisp can define anaphoric macros.
The following is a sample code that defines anaphoric macros:

(defmacro aif (test-form then-form &optional else-form)
“(let ((it ,test-form))
(if it ,then-form ,else-form)))

This code is borrowed from [29]. It defines the macro aif, which can be used
like if expression. The macro declares a variable named it, and the variable
it is available at the arguments of the second parameter then-form and the
third parameter else-form. Quasi-quote ~ and unquote , are a notation for
building an AST. Quasi-quote ~ takes an expression and returns the AST of the
expression. Unquote , takes an AST and returns the expression that the AST
expresses. We can write the following code by using the macro aif:

(aif (read-line nil nil) (format t "read: ~A~%" it))

This code is expanded as follows:

2.3. EMBEDDED DSLS 27

(let ((it (read-line nil nil)))
(if it (format t "read: ~A~%" it) nil))

2.3.7 User-Defined Syntax Sugar

SugarJ [18] is a programming language supporting user-defined syntax sugar.
In SugarJ, programmers can declare their own syntax and transformation rules.
The declared syntax and transformation rules are modularized as a library,
named sugar library. Users can use such the syntax by importing the library.
The parser of SugarJ is based on the parsing technique of SDF [8, 30] and the
transformation of ASTs is processed in Stratego [75, 10].

Users can compose and use several sugar libraries by importing the libraries
at the same time, however, library composition is not always possible. Library
composition might cause syntactic ambiguities even if each libraries are well-
designed. When the sugar libraries cause syntactic ambiguities, SugarJ compiler
cannot correctly parse a program that uses the syntax sugars declared in the
sugar libraries.

Wyvern [53, 52] supports type-specific languages (TSLs) and typed syntax
macros (TSMs). These are based on similar idea; the syntax is changed into
user-defined syntax in the special code block and the syntax is determined by
the type of the code block. Wyvern provides “generic literals” for specifying
the special code block. Programmers can use any Adams grammar [1] for their
DSL syntax in Wyvern. Adams grammar is an extension of CFG that supports
off-side rules.

2.3.8 Hybrid Approaches Between Language Workbenches
and Embedded DSLs

Cedalion [49] is a programming language supporting a powerful syntax extension
system but it is designed to edit by projectional editing. Syntax extensions
are composable since the compiler do not need to care about ambiguities. In
Cedalion, programmers directly write ASTs instead of text. This makes the
compiler to be free from parsing. Since the ambiguity problem is a problem of
parsing, Cedalion do not need to care it.

Cedalion has advantages of both language workbenches and embedded DSLs,
however, it also has disadvantage of both language workbenches and embedded
DSLs. Since Cedalion is a language workbench based on projectional editing,
it has the risk of vendor lock-in. In contrast, since Cedalion is a host language
of embedded DSLs, the name rules of embedded DSLs follow the name rules
of Cedalion. This makes difficult to define name rules specialized to DSLs.
Actually, Cedalion does not support defining language constructs involving local
name binding.

28 CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

2.4 Comparison of Approaches for Developing
DSLs

Composability is important property of DSLs for language-oriented program-
ming (LOP). Composable means that DSL users can use multiple DSLs at the
same time as if they are a single DSL. DSL users can use different embedded
DSLs that are suitable for each part of the program and all parts work together.
External DSLs cannot guarantees composability because they have their own
syntax, name rules, type rules, and runtime semantics. It is unclear whether
such the rules can be correctly composed or not. Embedded DSLs are usually
composable, however, the level of the composability depends on approaches for
embedding DSLs. Ideally, we want to use DSLs in the same code without “glue
code” [49]. However, several approaches need glue code such as ExecuteQuery
in the example of string embedding. We classify the level of the composability
into four as follows:

e uncomposable
DSL users cannot use multiple DSLs at the same time

o bounded-composable
DSL users can use multiple DSLs if the DSL boundary is explicitly speci-
fied

o partially-composable
DSL users can use multiple DSLs if the DSLs does not conflict each other

e fully-composable
DSL users can use multiple DSLs at the same time as if they are a single
DSL

Developing embedded DSLs is relatively easy but such the DSLs have several
restrictions. Since an embedded DSL is just a library, the DSL syntax should
follow the syntax of the host language. Syntax extension systems can relax
this restriction but there are few languages having powerful syntax extension
systems. Furthermore, powerful syntax extension systems might reduce the
composability of embedded DSLs. In contrast, external DSLs does not have
any restrictions of syntax. This is because external DSLs have their own parser.

Another problem of DSLs is name binding. Name binding is the association
of a definition with an identifier. For an external DSL, DSL authors implement
its own name rule. However, this approach is not composable since different
name rules of external DSLs are difficult to compose. In contrast, embedded
DSLs uses the name rules of the host language and most of them does not
support implementing a new name rule. This contributes to the composability
of embedded DSLs but greatly restricts DSLs that can be developed.

Table 2.1 shows the comparison of approaches for developing DSLs. The
green cells of this table express that the property is good for LOP. According
to the table, there is no approach that is fully-composable, that can define

2.4. COMPARISON OF APPROACHES FOR DEVELOPING DSLS 29

H composability \ syntax \ name binding
Spoofax uncomposable CFG yes
MPS uncomposable projectional yes
string embedding bounded arbitrary yes
fluent interfaces fully host syntax no
mixfix operators fully mixfix syntax no
Scala-virtualized fully host syntax no
Recaf fully host syntax no
C / C++ macros partially function call syntax yes
reader macros partially starts with macro character yes
hygienic macros partially host syntax no
anaphoric macros partially host syntax yes
SugarJ partially CFG yes
Wyvern bounded Adams grammar no
Cedalion fully projectional no

Table 2.1: Comparison of approaches for developing DSLs

flexible syntax, and that can define name binding rules. Language workbenches,
Spoofax and MPS, can define flexible syntax and name binding rules for DSLs
but they are not composable. Several approaches for embedded DSLs such
as fluent interfaces and mixfix operators are fully-composable but they cannot
define flexible syntax and name binding rules for DSLs. SugarJ can define any
CFG and name binding rules for DSLs but it loses composability. Cedalion are
fully-composable and it allows programmers to define various syntax, however,
it does not have extensibility of name binding rules.

In this dissertation, we first show that we can construct a langauge sup-
porting a syntax extension system that are fully-composable and flexible. The
difference from Cedalion is that our approach does not need to use projectional
editing. Then, we show that we can extend the language to support user-defined
language constructs involving name binding.

30

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

Chapter 3

Protean Operators

3.1 Introduction

A Domain Specific Language (DSL) is a simple programming language specially
designed for only a limited purpose. Since a DSL is specialized for its application
domain, its source code is more concise and intuitive than the equivalent code
written in a general purpose language. An internal DSL [23] (or Embedded DSL)
is a DSL that is implemented as a library in a general purpose language. It can
be used together with the general purpose language (called the host language)
since a program written in the DSL is still a valid program in the host language.
It can be also used together with another DSL implemented on the same host
language since both DSL programs are host language programs. An advantage
of internal DSLs is this feature, composability. On the other hand, internal
DSLs have drawbacks in the syntax — the syntax of internal DSLs is restricted
by their host language. We aims to relax the restriction of the DSL syntax.
Composable user-defined operators are a useful tool for implementing inter-
nal DSLs since we can consider that they define their own syntax and semantics.
The overloaded operators in C++ are simple user-defined operators but there
have been user-defined operators that enable syntax extension. Mixfix operators
[13] are one of the most powerful implementation of composable user-defined op-
erators. However, the expressiveness of the mixfix operators is still limited and
they cannot express certain kinds of syntax for internal DSLs. A typical prob-
lem is that they cannot express user-defined literals. A literal is a token that
corresponds to a particular value. Changing the syntax of a token is difficult
at a parse level since a token is normally recognized by a lexical analyzer and
it is passed to a parser. A number of existing DSLs have their own literals
that are unique in their domain. For example, flex [47], which is a DSL for
generating a scanner, has literals for expressing regular expressions. Without
such user-defined literals, they would have to be expressed by character strings;
it weakens maintainability and safety since the compiler does not check that
the string character fits the literal syntax. Using user-defined literals makes the

31

32 CHAPTER 3. PROTEAN OPERATORS

program concise and safe but it makes the parsing difficult. User-defined literals
might introduce a large number of ambiguities into the grammar.

In this chapter, we propose new composable user-defined operators, named
protean operators. They can express user-defined literals such as regular ex-
pressions and they are designed to be parsed in pragmatic time. There are two
important features for efficient parsing: operator overloading and a precedence
rule of operators. The first one is that a protean operator is overloaded on
its return type and its parameter types. It enables us to consider static types
as non-terminal symbols in the grammar. The compiler can use static type
information for parsing. It resolves ambiguities of the rules with the same syn-
tax but a different type. Furthermore, it also guarantees their composability.
The second feature is that protean operators with the same return type require
that the precedence among them is explicitly specified. These precedence rules
completely remove ambiguities from the grammar since all the rules applica-
ble to the same place are ordered. The parser can efficiently parse expressions
including protean operators since the grammar has no ambiguities. We have
developed ProteaJ, which is a subset language of Java supporting protean oper-
ators. For supporting the type system of Java, we extend our parsing method to
handle subtype relationship. We have conducted an experiment for demonstrat-
ing that ProteaJ can efficiently parse expressions including user-defined literals
even though a naive parsing method cannot parse them in pragmatic time. We
have also conducted experiments for measuring the parsing speed of programs
written in not extremely ambiguous syntax.

In the rest of this chapter, we first show the limitation of existing composable
user-defined operators. Then we propose new composable user-defined opera-
tors, named protean operators, and we show the parsing method for them in
Section 3. In Section 4, we describe how to apply our proposal into Java and
we present a programming language supporting protean operators, named Pro-
teaJ. Section 5 mentions experiments for evaluating the efficiency of our parsing
method. Section 6 is on related work. We conclude in Section 7.

3.2 Motivation

Composable user-defined operators are useful for implementing internal DSLs.
“Composable” means that operators with similar syntax can be safely used
together at the same time. For example, composable operators are distinguished
by static types. Figure 3.1 shows an example of composable operators. In this
figure, there are three + operators. The first + operator expresses addition of
integer values. The second + operator expresses concatenation of a string and an
integer. The third + operator expresses concatenation of two strings. Although
these three operators share the same syntax, they are distinguished by their
parameter types. In some languages, programmers can define new operators
that are not only predefined operators such as +. For example, programmers
can define new binary infix operators in Scala [51]. Figure 3.2 shows a unit test
program with ScalaTest [59] library in Scala. Line 3 in the figure consists of

3.2. MOTIVATION 33

for (int 1 = 0; i< 10; i =1i + 1) {
print("Loop " + i + "\n");

}

Figure 3.1: An example of composable operators

val vl = calci()
val v2 = calc2()
vl should be (0)
v2 should not be (0)

Figure 3.2: Composable user-defined operators with new syntax

a binary infix operator should and a function call be(0). Line 4 in the figure
also includes two binary infix operators should and be. We can write a unit
test program by using these operators as if it is written in a domain-specific
or “natural” language. We can consider that composable user-defined operators
make a new language on the host language since they have their own syntax and
they are separated from the host language syntax, for example, by static types.
Programmers can compose a library of composable user-defined operators as an
internal DSL.

Mixfix operators [13] are a powerful implementation of composable user-
defined operators. Mixfix indicates prefix, postfix, infix, or outfix. An important
feature of mixfix operators is that any two operands or any two name parts are
not adjacent to each other. For example, the following syntax can be expressed
by mixfix operators:

if _ then _ else _ // prefix
.1 // postfix
<<_ // infix

| | // outfix

but the following syntax can not be expressed by them:

if _ _ else _ // two operands are adjacent to each other
// nameless operator
// implicit type coercion

here, an underscore _ indicates an operand. Mixfix operators adopted in several
languages such as Isabelle [55], Agda [2], and Pure [28]. Some languages sup-
porting mixfix operators also support nameless operators. In these languages,
syntax including operands that are adjacent to each other like if _ _ else _
can be expressed.

Mixfix operators (with nameless operators) can express various syntax but
they do not have sufficient syntactic expressiveness for implementing a certain
kind of DSL. They cannot express complicated literals since they do not support

34 CHAPTER 3. PROTEAN OPERATORS

literal-level syntax extension. The following code is an example of a regular
expression literal:

Regex r = hel+o ;

the right-hand side of = is a regular expression literal that denotes helo, hello,
helllo, and so on. Expressing user-defined literals by mixfix operators is diffi-
cult since the definition of tokens read by the scanner cannot be changed. For
example, the literal hel+o should be tokenized into [h, e, 1, +, o], but it is
tokenized into three tokens [hel, +, o] in typical general purpose languages
such as C and Java.

Scannerless parsing is an implementation technique for a parser that handles
every character as a token. It enables us to handle literals as non-terminal
symbols constructed by tokens. Since each character is a token, the syntax
rules of user-defined literals can be handled by a parser. For instance, the
literal hel+o is tokenized into [h, e, 1, +, o] in a language implemented by
a scannerless parser, and we can express the literal hel+o by six operators: four
operand-less operators (h, e, 1, and o) for recognizing a single character as a
sub-expression, a nameless operator (_ _) for concatenating sub-expressions,
and a postfix operator (_ +). Mixfix operators can express user-defined literals
when the host language is implemented by using a scannerless parser and they
support nameless operators.

A typical parser for user-defined operators generates all possible parse trees
when parsing an expression. Then the compiler selects the most suitable parse
tree from all possible trees by using the language semantics since the syntax of
a user-defined operator should be allowed to conflict with another operator or
the host language syntax. This is for flexible DSL definitions. The type checker
is usually used for selecting the suitable parse tree since the type information
holds the semantics of programs — what the programmer intends. For example,
the expression hel+o has some possible parse trees and the interpretation of the
expression should be changed by the context. It should be interpreted as an
addition of integers if it is used as follows:

int i = hel+o;
but it should be interpreted as a regular expression literal if it is used as follows:
Regex r = hel+o;

Therefore, the syntax including regular expression literals should be an ambigu-
ous grammar such as in Figure 3.3 and the ambiguities must be resolved by the
type checker.

A typical scannerless parser is inefficient when parsing a program including
user-defined literals. It must generate all possible parse trees but the number
of these trees tends to be extremely large due to the ambiguity introduced by
user-defined literals. Scannerless Generalized LR (SGLR) [74, 8] parser is a
well-known implementation of a scannerless parser. The parsing time of SGLR,
parsers is proportional to the degree of ambiguities in the grammar, and the
worst-case time complexity is O(n3) (n is the input length). Note that n in this

3.3. PROPOSAL: PROTEAN OPERATORS 35

Stmt — Type Id "=" Ezpr ";"
Expr — Regex | Sum

Regex — Star+

Star — Letter "+" | Letter
Sum — Sum "+" Id | Id

1d — Letter+

Figure 3.3: An example of grammar including regular expression literals

complexity is the number of tokens and it is equal to the number of characters
in the program when an SGLR parser is used. n is sometimes larger than 10000.
For example, the definition of the ArrayList class in OpenJDK 7 includes more
than 12000 characters excluding comments and white-spaces.

3.3 Proposal: Protean Operators

We propose new composable user-defined operators, named protean operators.
They can express user-defined literals such as regular expressions and parse them
in pragmatic time. There are two important features of protean operators for
efficient parsing : (1) overloading based on return type, and (2) parsing prece-
dence. The overloading by return type enables the parser to resolve grammar
ambiguities by using type information at parse time. The parsing precedence
resolves the remaining ambiguities after the type checking by (1). Since these
features resolve all the grammar ambiguities at parse time, protean operators
that express user-defined literals can be parsed even in pragmatic time.

3.3.1 Protean Operators

Protean operators are composable user-defined operators that can have any
number of operator names and operands. Unlike mixfix operators, a protean
operator is not only infix, prefix, postfix, or outfix; for example, a “nameless”
operator, which is an operator without an operator name, is a protean operator.
Nameless operators are useful for implementing a concise internal DSL since
they are invisible. Figure 3.4 shows examples of protean operators that express
regular expression literals. To express a protean operator, we introduce the
following notation: [S]:T represents that an operator has syntax S and a return
type T. A double-quoted string denotes an operator name and _:T denotes an
operand of type T. Note that Figure 3.4 is not a complete definition for the
sake of simplicity. The complete definition is shown later in section 3.3.4. The
literal hel+o is parsed as a regular expression literal as shown in Figure 3.5.
The literal hel+o consists of four literals h, e, 1+, and o and they are connected
with a nameless operator. The nameless operator takes literals as two operands
and it returns a new literal expressing a regular expression constructed by the
concatenation of the given regular expressions.

36 CHAPTER 3. PROTEAN OPERATORS

(A) [_:Regex _:Regex]:Regex
(B) [_:Regex "++"]:Regex
(C) [_:Regex "+"]:Regex

(D) [_:Letter]:Regex

(

(

(E-z) ["z"]:Letter

Figure 3.4: The protean operators expressing regular expression literals (incom-
plete)

The details of the parsing of hel+o are the following. We assume that
any single character is recognized as a token. First, each alphabetic token is
interpreted as a simple Letter literal by the corresponding operator taking
the token as an operator name such as ["h"]:Letter and ["e"]:Letter.
Each of these operators can be considered as a simple user-defined literal, which
consists of one letter. Each Letter literal is converted into a Regex literal by
the nameless operator [_:Letter]:Regex at (D) in Figure 3.4. This nameless
operator takes a Letter object as an operand and it returns an object expressing
a regular expression that accepts the given letter. It is used as implicit type
coercion. The two Regex literals, h and e, are tied by the nameless operator [
_:Regex _:Regex]:Regex at (A) in Figure 3.4. The nameless operator takes
two operands of type Regex, and it expresses a sequence of regular expressions.
In this part, it takes the two Regex literals, h and e, as operands and it returns
an object expressing a regular expression that accepts he. 1+ forms a literal
of a regular expression constructed by a postfix unary operator [_:Regex "+"
1:Regex shown at (C) in Figure 3.4. It represents a regular expression that
accepts one or more sequences of 1. Then he and 1+ are tied by [_:Regex
_:Regex]:Regex, and they make a literal expressing hel, hell, helll, and
so on. Finally, hel+ and o make a literal that expresses the complete regular
expression by [_:Regex _:Regex]:Regex.

Protean operators are overloaded by their return types and their parame-
ter types. Overloading by return type allows defining operators that have the
same syntax but a different return type. The interpretation of an expression
is changed by the expected type there. This fact is useful for developing inter-
nal DSLs since an operator is used only where it is required. For example, an
expression hel+o can be interpreted as either of the following two patterns:

int hel = 2;

int o = 3;

int x1 = hel+o; // 5

Regex x2 = hel+o; // helo, hello, helllo,

The expression hel+o in the third line is interpreted as an addition expression of
integers since the right hand of the assignment expects an integer value. Only

3.3. PROPOSAL: PROTEAN OPERATORS 37

’ [_:Regex _:Regex]:Regex

’ [_:Regex _:Regex]:Regex ‘[_:Letter]:Regex

’ [_:Regex _:Regex]:Regex [_:Regex "+"]:Regex ["o"]:Letter

O

‘[_:letter]:Regex||[_:Letter]:Regex||[_:Letter]:Regex

["h"]:Letter ["e"]:Letter ["1"]:Letter

® © ®

Figure 3.5: The parse tree for the literal hel+o

the expression hel+o in the fourth line is interpreted as a regular expression
literal since a Regex object is expected. It can be considered that the expected
type of an expression determines the parsing of the expression.

If two protean operators share the same return type, the user must specify
the parsing precedence among them. This precedence determines which operator
should be selected when multiple interpretations are possible during parsing. In
ProtealJ, the earlier declared operator has the higher parsing precedence. For
example, the possessive quantifier [_:Regex "++"]:Regex has higher prece-
dence than the greedy quantifier [_:Regex "+"]:Regex since [_:Regex
"++"]:Regex is a special case of [_:Regex "+"]:Regex. An operator with
higher precedence is applied for parsing before operators with lower precedence.
If the operator with higher precedence is successfully applied, then the other op-
erators with lower precedence are not applied. The literal hel++o is interpreted
as he(1++)o by applying [_:Regex "++"]:Regex rather than he ((1+)+)o by
[_:Regex "+"]:Regex since the former has higher precedence. The literal
hel+o is interpreted as he (1+)o since [_:Regex "++"]:Regex is applied first
and fails and then [_:Regex "+"]:Regex is successfully applied. Note that
parsing precedence is different from operator precedence. Operator precedence
is an useful feature for operator composition. Since a rule including operator
precedence can be translated into a rule without it, we do not consider it is a
core feature. We will mention it in detail in section 3.3.4.

A drawback of protean operators is a limited kind of places where the oper-
ators are available. Protean operators are available only in an expression whose
expected type is statically determined before parsing the expression. The places
where protean operators are available depend on the host language. For exam-
ple, in typical general purpose languages such as Java, protean operators can be
used in the right-hand side of an assignment but they cannot be used in the left
hand of an assignment. The expected type of the right hand of an assignment

38 CHAPTER 3. PROTEAN OPERATORS

is determined since it is the same type of the left-hand side. However, the ex-
pected type of the left-hand side of an assignment is not known before parsing
the assignment expression. If we use a protean operator on the left-hand side
of an assignment, the compiler emits a parse error. It is a drawback that the
compiler cannot distinguish between a syntax error and a type error. Table 3.1
lists the expected types of every kind of expressions in Java. It reveals that
protean operators are available in any kind of expression in Java except the
left-hand side of an assignment, the target of a member access, and the operand
of a cast. Since the left-hand side of an assignment is usually a simple expres-
sion, programmers rarely want to use protean operators there. The target of a
member access could be a complicated expression like:

boolean b = (hel+o) .matches("hello");
In such case, the programmers must rewrite the code as follows:

Regex r = hel+o;
boolean b = r.matches("hello");

Or, they must rewrite by using another protean operator as follows:
boolean b = hel+o matches "hello";

Here, matches is a binary infix operator of type boolean. In Java, protean
operators are not available in the operand of a cast operator. A cast operator
that expresses a type conversion from S (source) to T (target) explicitly takes
the target type T as an argument but it does not take the source type S. Thus,
the compiler cannot know the expected type of the operand of a cast since it is
the source type S. Look at the following example:

int a = (int)(sin 0.0);

Programmers intend that the type of (sin 0.0) is double but the compiler
cannot know the expected type of (sin 0.0). It is because the source type
double of the cast (int) is implicitly specified in Java. If the cast operator
explicitly specified the source type as follows:

int a = (double -> int)(sin 0.0);

Then the expected type of (sin 0.0) would be known as double.

In the argument of a throw statement in Java, it is difficult to determine
available protean operators properly. According to Table 3.1, the expected type
of the argument of a throw statement is Throwable; however, it is not proper
because it must throw either an Error, a RuntimeException, an exception
declared in the throws clause, or an exception caught in surrounding catch
clauses. Our current compiler does not consider this.

This drawback, protean operators are available only in an expression whose
expected type is statically determined, also makes an obstacle to use Java gener-
ics. Assuming that the generic type List [T] is available, we would like to define
the following operator:

["length" "of" _:List[T]]:int

3.3. PROPOSAL: PROTEAN OPERATORS 39

Place Expected type

left hand of an assignment unknown

right hand of an assignment the left-hand side type

target of a method call unknown

target of a field access unknown

operand of a cast unknown

argument of a method call corresponding parameter type
argument of a constructor corresponding parameter type
argument of an operator corresponding parameter type
condition of if, for, while boolean

argument of switch, case char or int

argument of throw Throwable

return expression the return type of the method
statement expression void

initial value of a field the field type

Table 3.1: The expected types of Java expressions

In this operator, the type parameter T cannot be inferred from the return type.
Hence, the expected type List[T] of the operand of this operator cannot be
determined. So we cannot use a protean operator in that operand. Since we
currently do not have a good solution of this problem, our compiler introduced
in section 3.4 does not support generics.

3.3.2 Parsing

To efficiently parse an expression including protean operators, we developed a
parsing method based on packrat parsing [19] supporting left recursion [79]. Our
parsing method is a recursive descent parsing with backtracking and it considers
type information. In this section, we do not regard operator precedence since a
grammar having operator precedence can be translated to a grammar that does
not have it (see section 3.3.4). For simplicity, we use a host language that has
only variables and some control flow statements. We will describe in the next
section how to apply our method into a practical language such as Java.

Before parsing statements, the definition of protean operators available in
the program is parsed. The compiler parses the definitions excluding their body
parts. It collects the meta-information of the protean operators such as syntax
and type signature. The collected information is sorted by return types and
parsing precedence for later use.

The parser first attempts to parse a given piece of code as a statement such as
if until it encounters a non-terminal symbol representing an expression. Protean
operators cannot be used for statement-level syntax since a protean operator
and its operands constitute only an expression. The statements are parsed by
using only the syntax rules of the host language. Once the parser encounters an

40 CHAPTER 3. PROTEAN OPERATORS

expression, it first determines the expected type of the expression by analyzing
the code that the parser has already read. For example, an assignment statement
is parsed by this rule:

Assignment — Id "=" Expr

The right-hand side of the statement Expr is parsed under the expected type
obtained from the L-value, in this case, the variable named Id.

The parser first chooses a protean operator that returns the expected type
and has the highest parsing precedence. Then it attempts to parse the expression
by assuming that the expression is of the chosen operator. If this attempt
succeeds, the parser returns the resulting parse tree of the expression. If it fails,
the parser backtracks and tries a protean operator with the next highest parsing
precedence. If there is no other operator, the parser parses the expression by
using the host language syntax for expressions. Each attempt at parsing with
a protean operator is to do the following action sequentially for each element of
the syntax of the operator:

e An operator name "n" : read tokens by assuming that they match n

e« An operand _:T : parse the successive tokens as an expression of the
expected type T

Figure 3.6 shows a pseudo code of the parsing algorithm for statements. We
assume that a host language supports several control flow statements such as
while and it also supports local variables. The procedure parseStmt is an entry
point of the parser. The procedure parseWhileStmt parses a while statement.
Since a condition expression in the while statement must return a boolean
value, the expected type of the condition expression is boolean. Thus the call
parseExpr (Boolean, ops, env) parses it. The procedure scan performs token
analysis and returns Success if the next token matches the given string, other-
wise Failure. The procedure parseVarDecl parses a local variable declaration.
An initialization expression of the declaration is parsed by using expected type
information that is specified as the variable type. The name and the type of the
variable is stored into the environment env. The procedure parseExpr parses
an expression. It takes an expected type as a parameter and attempts to parse
an expression returning a value of that type. If all the attempts fail, it calls
another procedure parseExprByPredefinedRule to parse the expression in the
host language rules. The procedure parseExprByOperator parses according to
the syntax of each protean operator. If it encounters an operand, it recursively
calls parseExpr. It passes the operand type to parseExpr as the expected type.

In this figure, memoization is not shown for simplicity; however, it can be
easily applied to the algorithm. To apply memoization, the algorithm must be
modified so that the result will be memoized before it is returned and parseExpr
will first look up the memoization table to avoid redundant parsing attempts.

3.3. PROPOSAL: PROTEAN OPERATORS 41

// entry point // typ is expected type

// ops is operators collected before parsing def parseExpr(typ, ops, env) {

// env is variable environment ops_t = ops.filter(op -> op 7e-

def parseStmt(ops, env) { turns typ)
r = parseWhileStmt (ops, env) for (op in
if (r s Success) return r ops_t sorted by parsing precedence) {
else backtrack r = parseExprByOperator(op, ops, env)
[parse by the other control flow rules] if (r is Success) return r
r = parseVarDecl(ops, env) else backtrack
if (r ¢s Success) return r by
else backtrack return parseExprByPredefinedRule(typ, ops, env)
[parse by the other statement rules] }

r = parseExprStmt(ops, env)

if (r is Success) return r // op is an operator

return Failure def parseExprByOperator(op, ops, env) {

} for (e in the syntaz of op) {
if (e s an operator-name) {

// WhileStmt if (scan(e to string) is Failure)
// "while" " (" Ezxpr<Boolean> ")" Stmt return Failure
def parseWhileStmt(ops, env) { b .

w = scan("while") else if (e is an operand) {

1 = scan("(") r = parseExpr(e’s type, ops, env)

¢ = parseExpr(Boolean, ops, env) if (r ¢s Failure) return Failure

r = scan(™)") else append r to the parse tree

s = parseStmt(ops, env)

if (w is Success && 1 is Success && 3

c is Success && T is Success && return the parse tree

s 18 Success) return WhileStmt(c, s) }
3 else return Fadlure // variable access rule is a predefined

def parseExprByPredefinedRule(typ, ops, env) {

// VarDecl r = parse by the identifier rule
// TypeName<T> Identifier "=" Ezpr<T> v = get a variable r from env

if (r is Success && v’s type is typ)
return VarAccess(v)

else backtrack

[parse by any other predefined rules]

return Failure

}

def parseVarDecl(ops, env) {

t = parse by the identifier rule

n = parse by the identifier rule

e = scan("=")

v = parseExpr(get a type of t, ops, env)

if (t is Success && n is Success &&

e is Success && v is Success) {
add a variable n whose type is t to env
return VarDecl(t, n, v)

¥
else return Failure

}

// ExprStmt
// Bxpr<Void> ";"
def parseExprStmt(ops, env) {
e = parseExpr(Void, ops, env)
s = scan(";")
if (e is Success && s is Success)
return ExprStmt(e)
else return Failure

}

Figure 3.6: the parsing algorithm for statements

42 CHAPTER 3. PROTEAN OPERATORS

3.3.3 Parsing Speed and Expressiveness

Our parsing method is sufficiently fast to parse protean operators even if they
express user-defined literals since the operators can be regarded as Parsing Ex-
pression Grammar (PEG) [20] with left recursion as shown later. Our parsing
method is a scannerless recursive descent parsing with memoization. Memoiza-
tion is used for eliminating the cost of backtracking. Recursive descent parsing
with memoization is called packrat parsing. It is an efficient parsing method
and its time complexity is O(n). The original packrat parsing does not support
left recursion but it can support left recursion by a small extension according to
the paper [79]. Although the worst-case time complexity of the packrat parsing
supporting left recursion is not O(n), it is still sufficiently fast since such a case
hardly occurs in practical programming languages according to the paper. It is
sufficiently fast to apply scannerless parsing; the parsing time is O(n), where n
is the number of characters in the program, in most cases.

The expressiveness of protean operators is equivalent to PEG. Any protean
operator can be expressed by PEG syntax and any PEG syntax can be expressed
by protean operators. Each rule of PEG has the form A < e, where A is a non-
terminal symbol and e is a parsed expression. A parsed expression consists of
terminal symbols, non-terminal symbols, the empty string, sequence operators
e1es, and ordered-choice operators e /es. Here, e1 and ey are parsed expressions.
The other operators such as optional operators can be expressed by the above
operators.

We can translate any protean operator to PEGs by replacing the types of
the protean operator with non-terminal symbols. For example, the following
protean operator:

[_:Regex "+"]:Regex
can be translated into the following PEG syntax:
Expr<Regex> — Expr<Reger> "+"

Here, Expr<Regexr> denotes a non-terminal symbol representing an expression
of the expected type Regex. Protean operators with different return types are
translated into PEG rules with different non-terminal symbols in the left-hand
side of —. If an operator returns Letter, it is translated into a rule for non-
terminal symbol Fzpr<Letter>. The parsing precedence is translated into the
ordered-choice rule in PEG. For example, see the following protean operators:

[_:Regex "++"]:Regex
[_:Regex "+"]:Regex

Here, the two different protean operators return the same type. The first oper-
ator has higher parsing precedence than the second operator because the earlier
declared operator has the higher parsing precedence. We translate these oper-
ators into the following PEG syntax:

Ezpr<Regex> — Ezpr<Reger> "++"
| Ezpr<Regezr> "+"

3.3. PROPOSAL: PROTEAN OPERATORS 43

PEG protean operators

parsing rule A«+ce an operator op that returns A
and the syntax of op is e

an operator-name ”a”

an operand _ : T
an operator-name
a sequence ejesg
an operand _ : X
and operators op; > opa
op1 and opy return X
and the syntax of op; is e;

1

terminal a
non-terminal T
empty string €
sequence €16
ordered-choice ej/es

7

il iy

Table 3.2: The translation from PEGs to protean operators

Note that the ordered choice | chooses the left operand first and then the right
operand. So an operator with a higher precedence is placed at the left-hand
side of | and an operator with a lower precedence is placed at the right-hand
side of |.

On the other hand, any PEG rule can be translated into a protean operator.
Table 3.2 presents the translation from PEG to protean operators. In this table,
op1 > opy denotes that op; has a higher parsing precedence than opy. A terminal
symbol in PEG is translated into an operator name of a protean operator. A
non-terminal symbol at the left-hand side of — is translated into a return type
of an operator while a non-terminal symbol at the right-hand side is translated
into an operand type. The left and right operands of an ordered choice are
translated into two distinct protean operators. An operator for the left has a
higher parsing precedence than an operator for the right.

3.3.4 Operator precedence and associativity

Since the static types of protean operators serve as non-terminal symbols of
PEG, programmers define a new type and operators when they need to define a
new non-terminal symbol for new syntax. However, this often causes too many
types defined for non-terminal symbols, which are used to resolve ambiguities
of the grammar with respect to precedence order. For example, consider the
addition and multiplication operator of integers. A multiplication can be used
as an operand of the addition operator but an addition cannot be used as an
operand of the multiplication operator. To express this syntax, programmers
would define new types extending the integer type and use them as the return
type and the operand types of the operators. Programmers would also define
new operators that express the relationship between the new types and the
integer type. The following operators express the syntax:

[_:IntAdd]:int
[_:IntAdd "+" _:IntMul]:IntAdd

44 CHAPTER 3. PROTEAN OPERATORS

[_:IntMul]:IntAdd
[_:IntMul "*" _:IntVal]:IntMul
[_:IntVal]:IntMul

In this example, IntAdd, IntMul, and IntVal are types extending the integer
type. The first, third, and fifth operators express the relationship between these
types and the integer type.

Operator precedence and associativity are useful features for avoiding such
verbosity. They express which operators may be used for building an expres-
sion for an operand of an operator. In general, an expression of an operator
A is occurred at an operand of an operator B only if A has a higher or equal
precedence than B. We support three kinds of associativity for expressing prac-
tical syntax; right-associativity, left-associativity, and non-associativity. If an
operator B is left-open (meaning that no operator name precedes the left-most
operand) and right-associative, an expression of an operator A is occurred at
the left-most operand of B only when A has a strictly higher precedence than
B. If an operator B is right-open and left-associative, an expression of an oper-
ator A is occurred at the right-most operand of B only when A has a strictly
higher precedence than B. If the operator B is non-associative, an expression
of an operator A is occurred at an operand of B only when A has a strictly
higher precedence than B. Figure 3.7 shows an example of protean operators
with operator precedence and associativity. It is a complete version of Figure
3.4.

Protean operators with operator precedence and associativity can be trans-
lated into operators without them. We below show how to translate them. As-
sume that operator precedence is represented by a non-negative integer number
and a larger number indicates higher precedence. The following is a translation
from a protean operator [S]:T having operator precedence P and associativity
A. The operator syntax S involves n operands and each operand has a type T°.
First, the return type T is translated into a type Tp. Here, the subscript P is
a non-negative integer number that is equivalent to the operator precedence.
If the operator is left-open and operator associativity A is right-assoc, the left-
most operand _:T! is translated into _:T} 11 and the other operand _ :T? in the
operator syntax S is translated into an operand _:Tj. If the operator is right-
open and operator associativity A is left-assoc, the right-most operand _:T" is
translated into _:Tg,, and the other operand _ : T in the operator syntax S is
translated into an operand _:Tp. If the operator associativity A is non-assoc,
each operand _:T' is translated into _: T 11 If the operator is not left-open but
right-assoc or the operator is not right-open but left-assoc, each operand _:T*
is translated into _: T¢.

For example, the following operator:

[_:Regex _:Regex]:Regex { left-assoc }
with the operator precedence 0, is translated into:

[_:Regexo _:Regex;]:Regexo

3.4. IMPLEMENTATION: PROTEAJ 45

_:Regex _:Regex]:Regex { left-assoc }
_:Regex "++"]:Regex { non-assoc }
_:Regex "+"]:Regex { non-assoc }
_:Letter]:Regex { non-assoc }

a) ["a"]l:Letter

-b) ["b"]:Letter

(E-z) ["z"]:Letter

operator precedence:

(A) < (B) = (C) < (D) < (E-a) = (E-b) = ... = (Ez)

Figure 3.7: protean operators with operator precedence and associativity ex-
pressing regular expression literals

Next we add an addition operator [_:Tp] :Tp_; for each return type Tp if P is
not 0. This operator converts its operand to a value of type Tp_; and returns
it. Note that the parsing precedence of the added operator [_:Tp]:Tp_1 is set
to the lowest among the operators with the return type Tp_;. Finally, we add
the operator [_:To] : T for each return type To. It converts an operand from T,
to T. For example, the protean operators in Figure 3.7 are translated into the
operators in Figure 3.8.

3.4 Implementation: ProtealJ

We have developed ProteaJ, which is a subset language of Java but supports
protean operators. ProteaJ recognizes a single character as a token. It enables
protean operators to express user-defined literals. In this section, we describe
how we have adapted protean operators into Java.

ProteaJ provides a module system called operator modules to implement and
export user-defined operators; an operator module expresses a DSL. Program-
mers can use the DSL by importing the module with using declaration. There
are two different precedence rules, operator precedence and parsing precedence,
in ProteaJ. Operator precedence is specified by an integer value for each oper-
ator. The value is used only for comparing precedence among operators in the
same operator module. The entire operator precedence is determined by the
order of using declarations. Since DSLs are composable in Proteal, operator
precedence of each DSL is independent. Parsing precedence of protean oper-
ators is specified by the order of their definitions. It is a precedence among
operators with the same operator precedence. In Protead, parsing precedence is
also needed among operators with different return type because any class type
in Java is a subtype of Object. Although our parsing method introduced in
the previous section does not consider subtype relationship, it is an important
feature of Java. To handle subtype relationship, the ProteaJ compiler automat-
ically generates operators that express subtype relationship and translates the

46 CHAPTER 3. PROTEAN OPERATORS

_:Letters]:Letter;
"a"]:Letters

[_:Regexo]:Regex

[_:Regexo _:Regex;]:Regexo
[_:Regex:]: Regexo

[_:Regex, "++"]:Regex;
[_:Regex, "+"]:Regex:
[_:Regex,]: Regex:

[_:Letters]:Regexs

[_:Lettery]:Letter

[_:Letter;]:Letterp

[_:Lettery,]:Letter:

[

[

["z"]:Letters

Figure 3.8: The definition of the regular expression literals without operator
precedence or associativity (the translation from Figure 3.7)

return types of user-defined operators. Protead provides some useful features
for convenience. For example, ProteaJ provides two kinds of protean opera-
tors: expression operators and readas operators. An expression operator is an
operator that recognizes a white space as a special token that is a separator.
In contrast, a readas operator recognizes a white space as a normal token. A
readas operator is used for building user-defined literals.

We give some examples of DSLs that are implemented in ProteaJ to show
the expressiveness of the protean operators. We also give examples in which
multiple DSLs are used. We have implemented the compiler of Proteal in
Java. ProteaJ does not support generics since there is a problem when protean
operators and generics are used together (see section 3.3.1). Protead also does
not support inner classes because they complicate the compiler. For the same
reason, ProteaJ does not support annotations and the other facilities introduced
in Java 1.5 or above.

3.4.1 Definitions of Protean Operators

The definitions of protean operators in ProteaJ are similar to the class and
method definitions in Java. Figure 3.9 shows definitions of protean operators
that express regular expressions. This code defines an operator module named
RegexOperators. This module defines four protean operators. For example, the
third one defines the greedy quantifier operator [_:Regex "+"]:Regex. The
keyword readas lindicates that this operator expresses a user-defined literal.
It specifies that a white space is recognized as a normal token rather than a
token separator. The details on readas are mentioned later (see 3.4.2). Regex
next to readas represents the return type of the operator. The following part
r "+" represents the syntax of the operator. The identifier r represents the

3.4. IMPLEMENTATION: PROTEAJ 47

operators RegexOperators {
readas Regex rs+ (Regex... rs): priority = 200 {
return new RegexList(rs);
}
readas Regex r "++" (Regex r): priority = 250 {
return new RegexPossessivePlus(r);
}
readas Regex r "+" (Regex r): priority = 250 {
return new RegexPlus(r);
}
readas Regex 1 (Letter 1): priority = 300 {
return new Regex(1);
}
}

Figure 3.9: Definition of protean operators expressing regular expressions

operand of the operator and the double-quoted string "+" represents an operator
name of the operator. The parameter type of the operand r is described in the
following part enclosed in parentheses (Regex r). It denotes that the type
of the operand named r is Regex. The following : priority = 250 represents
operator precedence. The remaining part enclosed in curly braces is an operator
body. It is equivalent to the method body of a method declaration.

Figure 3.10 shows syntax of an operator declaration in ProteaJ. In Proteal,
an operator is defined in an operator module. An operator declaration consists
of two parts, a header and a body. The body part is described as a method
body. The header part consists of modifiers, a return type, syntax, throw-
able exceptions, and an operator priority. Protean operators can have modi-
fiers rassoc, nonassoc, and readas. The modifiers rassoc and nonassoc specify
operator associativity: rassoc specifies right-associative and nonassoc specifies
non-associative. The default associativity is left-associative. ProteaJ provides
several notations like PEG notations for describing the syntax of the operator
more concisely. 7, *, and + are annotations that follows operands. ? indicates
an optional operand of the operator. It is used with a default argument as
follows:

readas Regex r "+" a? (Regex r, Anno a = Anno.greedy)
: priority = 250 {
return new RegexPlus(r, a);
}
readas Anno "+" () : priority = 300 {
return Anno.possessive;

}

IThe keyword readas means that the parser reads the next input as an instance of a
specified type.

48 CHAPTER 3. PROTEAN OPERATORS

OpModule — "operators" Id "{" OpDefx "}"

OpDef — Header Body

Header — Mod* Type Syntaxr Params Throws Prty

Mod — "rassoc" | "nonassoc" | "readas"

Syntax — (OpName | Operand | Opt | Rep | Pred)+
OpName — StringLiteral

Operand — 1d

Opt — Id "7v
R@p — Id (Ny n | ngn)
Pred — (ngn | npn) Type

Params — "(" Param ("," Param)*x ")"
Param — Type VarArgs? Id DfltArg?

VarArgs — "..."
DfitArg — "=" Ezpr
Prty — ":" "priority" "=" IntConst

Figure 3.10: Syntax of an operator declaration in ProteaJ

* indicates zero or more repetitions, and + indicates one or more repetitions.
They are used with variable arguments. The lines from 2 to 4 in Figure 3.9 is an
example using +. The operator [_+:Regex]:Regex, which concatenates one
or more regular expressions, is defined there. ProtealJ also provides predicate
for building syntax of an operator. & and ! are predicates and they take a type
following the symbol. They represent look-ahead; they test the next inputs
and determine whether parsing fails or continues depending on the test result.
Either way, they do not consume the inputs. & T is a predicate that tries to
parse the next inputs assuming that the expected type is the given type T and
parsing fails when the look-ahead fails. ! T is similar to & T but it fails when
the look-ahead succeeds.

To use protean operators, using declaration is needed to import an operator
module. For example, regular expression literals defined in Figure 3.9 can be
used as follows:

using RegexOperators;

Regex r = hel+o;

the protean operators defined in Regex0Operators are used for the code hel+o.
The using declaration is written at the beginning of programs. Multiple operator
modules can be imported in one source file by writing multiple using declara-
tions. For example, Figure 3.11 shows a program that imports GrepOperators,
RegexOperators, and FilePathOperators together.

3.4.2 Expression Operators and Readas Operators

In ProtealJ, protean operators can be divided into two categories: expression
operators and readas operators. The definitions of an expression operator and

3.4. IMPLEMENTATION: PROTEAJ 49

using RegexOperators;
using FilePathOperators;
using GrepOperators;

GrepResult r = grep -i hel+o ~/src/Main.java;

Figure 3.11: Multiple operator modules can be imported in one source file

a readas operator are almost same but the definition of the readas operator
contains the modifier readas. When parsing an expression operator, a white
space is recognized as a separator of tokens. On the other hand, when parsing
a readas operator, a white space is a token. An operand of a readas operator
must be an expression of a readas operator. Readas operators are mainly used
for defining literals. Expression operators are not suitable for that since white
spaces are not allowed in a number of literals. For convenience, if readas is
not specified, a white space is automatically recognized as a separator. The
operators defined without readas are called expression operators.

To parse both of expression operators and readas operators, the parser of
the ProteaJ compiler parses an expression as follows:

1. parse the expression by expression operators

2. if 1 fails, parse the expression by the expression rules in the host language
(e.g. method call)

3. if 2 fails, parse the expression by readas operators

4. if 3 fails, parse the expression by the literal rules in the host language (e.g.
string literal)

In 1 and 3, the parser works in our parsing method introduced in the previous
section. White spaces are recognized as a token separator in 1 and 2 but they
are recognized as a normal token in 3 and 4. In 1, an operand of an operator is
parsed by 1. In 3, an operand of an operator is parsed by 3. An argument of a
method call or a constructor call, which can be members of the expression rules,
is parsed by 1. Since the compiler knows the expected type of each argument,
protean operators are available there. Note that, if the type of the parsing result
is not the expected type, 2 also fails.

According to this parsing method, the predefined expression rules have a
higher priority over user-defined literals. For example, a variable access has a
higher priority over a regular expression literal as follows:

Regex r = hel+o; // helo, hello, helllo,
Regex r2 = r; // helo, hello, helllo,

This is reasonable in most cases, we believe, since a conflict between a variable
and a literal occurs only when they have the same type. ProteaJ adopts the
solution of this conflict that gives a higher priority to variables in this case. We

50 CHAPTER 3. PROTEAN OPERATORS

can also give priority to user-defined literals by using a certain trick. When we
define the following expression operator:

Regex2 r (Regex r) : priority = 0 {...}
we can use regular expression as follows:

Regex2 r = hel+o; // helo, hello, helllo,
Regex2 r2 = r; // r

r can be parsed as both of a variable r and an expression of the expression op-
erator [_:Regex]:Regex2. Since an expression operator has a higher priority
over the predefined expression rules, r is parsed as an expression of the expres-
sion operator [_:Regex]:Regex2. The operand of the operator is parsed as
a regular expression literal rather than a variable r since the operand type of
the operator is Regex rather than Regex?2.

3.4.3 Operator Precedence and Parsing Precedence

ProteaJ has two different precedence rules, operator precedence and parsing
precedence. Operator precedence is specified by an integer value for each oper-
ator. For example, : priority = 250 in Figure 3.9 represents operator prece-
dence. In Proteald, as the value of a precedence is larger, the binding of an
operator is tighter. For example, the third operator in Figure 3.9 [_:Regex
"+"]:Regex is bound tighter than the first operator [_+:Regex]:Regex.

The value representing operator precedence is used only for comparing prece-
dence among operators in the same operator module. The entire operator prece-
dence is determined by the order of using declarations. Operators imported
earlier bind tighter than operators imported later. For example, operators that
express regular expression literals bind tighter than grep operator in Figure
3.11. This feature improves composability of DSLs since operator precedence of
each DSL is independent of each other.

Parsing precedence of protean operators is specified by the order of their
definitions. It is a precedence among operators with the same operator prece-
dence. The precedence of an operator defined earlier is higher. For example,
the second operator in Figure 3.9 [_:Regex "++"]:Regex has higher parsing
precedence than the third operator [_:Regex "+"]:Regex. Although parsing
precedence was given to operators with the same return type in section 4.3, we
here change this because all operators in ProteaJ return a subtype of the same
type Object.

3.4.4 Subtype Relationship between an Expected Type of
the Expression and the Return Type of an Operator

Programmers may want to use an operator in an expression whose expected type
is a supertype of the return type of that operator. For example, a programmer
might want to use operators in Figure 3.9 as follows:

3.4. IMPLEMENTATION: PROTEAJ 51

using RegexOperators;

Regex r = hel+o;
Object obj = hel+o;

However, our parsing method introduced in the previous section does not con-
sider subtype relationship between the expected type of an expression and the
return type of an operator. In the last line of the example above, the expected
type of the right-hand side expression of the equal sign is Object. Since the
return type of each operator defined in RegexOperators is Regex rather than
Object, our parsing method does not select these operators when parsing the
expression.

To support subtypes, the ProteaJ compiler automatically generates opera-
tors that express subtype relationship and translates the return types of user-
defined operators after the translation explained in section 3.3.4. First, the
return type Tp of a user-defined operators is translated into TR. Here, the sub-
script P is a non-negative integer number that is equivalent to the operator
precedence. The superscript Q is an integer number that expresses the pars-
ing precedence of the operator and a larger number indicates higher precedence.
Then for every Tg, the compiler generates an operator [_ :TS 1 : Superp for each
T’s supertype Super. The parsing precedence of the generated operator is higher
than the operator [_:Superpy;]:Superp, which is added by the translation
explained in section 3.3.4. When Q1 is larger than Q2, [_:Tg1 1 :Superp has
higher parsing precedence than [_:ng] :Superp. For example, the protean
operators in Figure 3.8 are translated into the operators in Figure 3.12.

The reader might think there is a simpler approach, for example, generating
an operator like [_:Regexp]:0bjectp for each operator precedence P, but it
does not work. This approach might break operator precedence. According to
section 3.3.4, the operators [_:Regex;]:Regexo and [_:Regex,]:Regex;
are automatically generated. So an operator with the return type Regex, is
selected before an operator with the return type Object;. This approach might
also break parsing precedence. The compiler cannot determine the parsing
precedence between [_:Regexp]:0bjectp and [_:Stringp]:0bjectp.

The parser of Proteal is still sufficiently fast although it supports subtype
relationship. Operators supporting subtype relationship can be translated into
protean operators without the support as shown above since all user-defined
operators are totally ordered by the operator precedence and the parsing prece-
dence in ProteaJ. Even if the translation generates a large number of operators
that return Object type, it does not cause a large impact on performance in a
practical case since the parser chooses those operators one-by-one in the order
of the precedence and hence the parsing time is a proportion to the number of
expressions expecting Object type. The number of such expressions are usually
not many in a statically typed language.

3.4.5 Case Study

In the rest of this section, we show several DSLs implemented in Protead.

52

L T s T T s Y s T e T e Y s I s B e B |

L B W e B W |

Lo T s T e T s T s s I s B e B |

[}

:Regexo] :Regex

:Regex) 1:Regexo

:Regex;]:Regexo

:Regexo _:Regex;]:Regex)
:Regex;]:Regex;
:Regex]]:Regex;
:Regex,]:Regex;
:Regex, "++"]:Regex|
:Regex, "+"]:Regex)
:Regexy]:Regex
:Letters]:Regex)

:Lettery]:Letter
:Letter;]:Letterg
:Lettery,]:Letter;
:Letters]:Letter,

:Letter?®]:Letters

:Letterg] :Letters
a"]:Letter?

z"]:Letterd

:0bjecto]:0bject
:Regex)]:0bjecto
:Object;]:0bjecto
:Regex]]:0bject;
:Regex]]:0bject;
:Object,]:0bject;
:Regex)]:0bject,
:0bjects]:0bject,
:Letter3®]:0bjects

:Letterg]:0bjects

CHAPTER 3. PROTEAN OPERATORS

Figure 3.12: The definition of the regular expression literals supporting subtype
relationship (the translation from Figure 3.8)

3.4. IMPLEMENTATION: PROTEAJ 53

Ruby-like print statement

In Protead, programmers can define a new statement since ProteaJ allows them
to define an operator returning void. Programmers can use such an operator
for building a user-defined statement since the expression type of a statement
expression is void in ProteaJ. A statement expression is a statement that con-
sists of only one expression. A statement expression whose expression is built
by a user-defined operator looks like a user-defined statement. The following
code is a definition of an operator returning void:

operators OutputOperators {
void "p" msg (String msg): priority = 0 {
System.out.println(msg);
}
}

and we can use it as follows:

using OutputOperators;

p "Hello world!";

In the code above, the last line is a statement expression. We can use p to build
a statement taking a string and printing this string since OutputOperators
provides the operator [p _:String]:void.

Regular Expression

Programmers can define complex literals by using readas operators. For exam-
ple, regular expression literals can be defined as in Figure 3.13. This operator
module RegexOperators provides Regex literals, which express regular expres-
sions. The following code is an example using RegexOperators:

using OutputOperators;
using RegexOperators;

Regex stnumber = [0-9]1{2}(BIMID) [0-9]1{5};
Matcher m = stnumber.matcher(text);
if(m.£find) {

p "match : " + m.group();
}

Regex literals are used in the statement in line 4 in the code above. This
regular expression literal consists of several operators: [_+:Regex]:Regex, [
_:Regex | _:Regex]:Regex, [_:Regex { _:Nat }]:Regex, [[_+:ClsElm
] 1:Regex, and so on. Parentheses operator (_) is an operator provided by
ProtealJ. It resets operator precedence of the operand.

Simple Optimization

Another usage of protean operators is performance optimization. For exam-
ple, the binary operator [_:String + _:String]:String, which is used for

54 CHAPTER 3. PROTEAN OPERATORS

operators RegexOperators {

readas Regex 1 "|" r (Regex 1, Regex r): priority = 100
readas Regex rs+ (Regex... rs): priority = 200

readas Regex r "7+" (Regex r): priority = 250

readas Regex r "*+" (Regex r): priority = 250

readas Regex r "++" (Regex r): priority = 250

readas Regex r "?7" (Regex r): priority = 250

readas Regex r "*7" (Regex r): priority = 250

readas Regex r "+7" (Regex r): priority = 250

readas Regex r "7" (Regex r): priority = 250

readas Regex r "*" (Regex r): priority = 250

readas Regex r "+" (Regex r): priority = 250

readas Regex r "{" n "}" (Regex r, Nat n): priority = 250
readas Regex "[" es+ "]" (ClsElm... es): priority = 270
readas ClsElm f "-" t (Letter f, Letter t): priority = 280
readas ClsElm 1 (Letter 1): priority = 300

readas Regex "." (): priority = 300

readas Regex 1 (Letter 1): priority = 300

Figure 3.13: Regular expression literals as an internal DSL

string concatenation, is not efficient when it is successively used more than
once. To make string concatenation more efficient, we should instead use the
StringBuilder class. Protean operators in ProteaJ can be used in this case.

The definition in Figure 3.14 is an operator module that defines optimized
string concatenation. When the operator module is used, concatenation of two
strings such as "foo" + "bar" is interpreted as "foo".concat("bar"), but
concatenation of three strings such as "foo" + "bar" + "baz" is interpreted
as the following:

new StringBuilder().append("foo")
.append ("bar") .append("baz") .toString ()

Like this, protean operators enable us to optimize an expression that conforms

operators ExStringOperators {

String buf (StringBuilder buf): priority = 200
{ return buf.toString(); }

StringBuilder 1 "+" r

(StringBuilder 1, String r): priority = 250
{ return 1l.append(zr); }

String 1 "+" r (String 1, String r): priority = 300
{ return 1.concat(r); }

StringBuilder s1 "+" s2 "+" s3

(String s1, String s2, String s3): priority = 350
{ return new StringBuilder () .append(sl).append(s2).append(s3); }

Figure 3.14: Optimized string concatenation operators

3.4. IMPLEMENTATION: PROTEAJ 55

// PrimitiveOperators is predefined operator module
// and it is imported implicitly like java.lang
operators PrimitiveOperators {

int a + b (int a, int b): priority = 900 { ... }
int a - b (int a, int b): priority = 900 { ... }
int a * b (int a, int b): priority = 1000 { ... }
int a / b (int a, int b): priority = 1000 { ... }

}
operators FilePathOperators {
readas FilePath dir? name
(DirPath dir = CurDir.v, Identifier name)
: priority = 100 { ... }
readas DirPath parent? name "/"
(DirPath parent = CurDir.v, Identifier name)

: priority = 200 { ... }

readas DirPath dir? "./" (DirPath dir = CurDir.v)
: priority = 200 { ... }

readas DirPath dir? "../" (DirPath dir = CurDir.v)
: priority =200 { ... }

readas DirPath "/" (): priority = 200 { ... }

readas DirPath "~/" () : priority = 200 { ... }

Figure 3.15: File path operator module

to such typical patterns. An important fact is that this optimization is defined
by a library, not the compiler.

SQL

In Protead, programmers can implement more complex internal DSLs. For ex-
ample, they can implement a subset of SQL. We have implemented two operator
modules, FilePathOperators and SQLOperators. FilePathOperators mod-
ule enables us to write a file path like ~/Documents/file.txt. The definition
of FilePathOperators is shown in Figure 3.15. SQLOperators module defines
some SQL operators, for example, select, create table, and insert into. The defini-
tions of these operator modules are available from our github page.2With these
modules, programmers can write the program shown in Figure 3.16.

2The source codes of ProteaJ and DSLs introduced in this section are available from github:
https://github.com/csg-tokyo/proteaj

56

import java.sql.*;

using FilePathOperators;
using SQLOperators;
using OutputOperators;
using ExStringOperators;

public class Main {
private static boolean existTable
(String tbl) throws Exception

CHAPTER 3. PROTEAN OPERATORS

ResultSet tables = select tablename from sys.systables
where tablename = tbl.toUpperCase();

return tables.next();

}

private static void insertMember

(int id, String name) throws Exception

{

insert into members (user_id, name) values (id, name);

}

public static void main(String[] args) throws Exception {

connect to ./database.db;

if (existTable("members")) drop table members;

create table members (

user_id int not null primary key,

name varchar(64) not null

);

if (existTable("posts")) drop table posts;

create table posts (

id int not null generated always as identity,
date timestamp default current timestamp,

user_id int,
comment long varchar

N

insertMember (123, "ichikawa");
insertMember (345, "ohtani");
insertMember (567, "hiramatsu");

insert into posts (user_id, comment)
values (123, "Ohayo!");

ResultSet rs = select * from members;

while(rs.next()) {

p rs.getInt(1) + " " + rs.getString(2);

commit;
disconnect;

Figure 3.16: A program using SQLOperators

3.5. EXPERIMENTS o7

3.5 Experiments

3.5.1 Parsing Expressions Including User-Defined Literals

We have conducted an experiment for demonstrating that our method can effi-
ciently parse expressions including user-defined literals even though a naive
method cannot parse them in pragmatic time. In a typical naive method for
parsing user-defined literals, a parser generates all possible parse trees and a
semantic analyzer determines the most suitable tree. On the other hand, our
method uses type information, which is obtained by a semantic analyzer, for
parsing. The most important difference between the naive method and our
method is grammar ambiguity when parsing; the naive method uses ambiguous
grammar but our method uses unambiguous grammar. This experiment aims
to show the performance impact caused by this difference. We used JSGLR
parser [38], which is a well-known implementation of SGLR parser in Java, as a
parser of the naive method for mixfix operators supporting user-defined literals.
Since the parser of ProteaJ cannot be detached from the compiler, we com-
pared the compilation time (parsing time + code generation time) by ProteaJ
and the parsing time by JSGLR. The machine used for the experimentation
had a 2.67GHz Core i5 processor and 8 GB of memory. The installed operating
system on the machine was OpenSUSE 12.3. We used Oracle JDK 1.8.0_05.
The problem setting of the experiment is as follows:

e Grammar: basic arithmetic operators and file path literals.
The grammar for the experiment of JSGLR is shown in Figure 3.17. Pro-
teaJ uses the two operator modules in Figure 3.15 as an implementation
of this grammar.

o Input: a/a/a/.../a (a sequence of a separated by /)
The input size is the number of a in the input. For example, the input
size of a/a/a is 3.
In the experiment of Protead, the input source is more complex since it
should be a valid Protead source code. Figure 3.18 shows the input source
for Proteald.

e Measurement: an average parsing or compilation time of ten executions.

The grammar shown in Figure 3.17 is a simple grammar only including basic
arithmetic operators and file path literals. It has ambiguities, for example, a
can be parsed as both of a variable and a file name. a/a might be a division
expression of two numbers, a division expression of a number and a file name,
a division expression of two file names, and a file path literal. The possible
parsing results of the input a/a/. . ./a explode exponentially. We designed this
grammar supposing the host language has operator precedence and associativity
for reducing ambiguities. When the two modules in Figure 3.15 are imported
by using declarations, ProteaJ can parse any expressions that can be expressed
by the grammar in Figure 3.17 except that a file name is not restricted. We
have measured the parsing or compilation time by changing the input size.

58 CHAPTER 3. PROTEAN OPERATORS

S — Ezpr
Expr — AddE
AddE — AddE "+" MulE | AddE "-" MulE | MulE
MulE — MulE "*" Primary | MulE "/" Primary | Primary
Primary — "a" | FilePath
FilePath — DirPath FileName | FileName
DirPath — DirPath FileName "/" | FileName "/"
| DirPath "./" | "./"
| DirPath "../" | "../"
[/ o~/

FileName — "a"

Figure 3.17: The grammar of the language only supporting file-path names and
arithmetic calculations

using FilePathOperators;

public class Test {
public static void main(String[] args) {
FilePath path = a/a/.../a;
System.out.println(path.getAbsolutePath());
}
}

Figure 3.18: The input source for the experiment of ProteaJ

Figure 3.19 shows the result of the experiment. It is a semilog graph. The
vertical axis indicates the parsing or compilation time and the horizontal axis
indicates the input size. The diamond indicates an average parsing time by
JSGLR and the rectangle indicates an average compilation time (parsing time
+ code generation time) by ProteaJ. This graph is plotted for the input size
from 0 to 20. According to the figure, JSGLR parser is getting slow as the input
size is getting large. The parsing time increases exponentially. The worst-case
time complexity of a GLR parser is O(n?3) if it is implemented carefully. This
fact shows that implementing an efficient scannerless GLR parser is difficult.
Moreover, JSGLR could not parse when the input size is more than 20, due to a
lack of memory. From this result, the naive method, in which a parser generates
all possible trees and a semantic analyzer determines the most suitable one, is
not fast enough to implement user-defined literals.

The compilation time by ProteaJ increases linearly with the input size. Fig-
ure 3.20 presents the compilation time by ProteaJ against the input size. The
vertical axis indicates the compilation time and the horizontal axis indicates the
input size. This figure presents the same data as Figure 3.19 but at a different
scale. The graph is plotted with the input size from 0 to 1000. The vertical axis
of Figure 3.19 is at a logarithmic scale while that of Figure 3.20 is at a linear

3.5. EXPERIMENTS 59

100000 v

time (ms)
@ JSGLR

Hprotea) ©
10000

1000

o

F § §E E F E E EE E g g E EEgEEgEERE

&
@
@

100 -

input size

0 2 4 6 8 10 12 14 16 18 20

Figure 3.19: Comparison between generating all possible trees by JSGLR and
our method by the ProteaJ compiler

scale.

3.5.2 User-Defined Literals and Identifiers

We have conducted an experiment for showing composability of protean opera-
tors; the parsing time does not increase as a number of operators are imported.
A user-defined literal that looks like an identifier is a useful construct of an
internal DSL. In the SQL DSL shown in Section 3.4.5, for example, a select-
expression is written as follows:

select name from students where age < 20

In this expression, students is a table name in a database and name and age
are column names of the table. They look like identifiers but they are user-
defined literals. Similarly, a number of user-defined literals share the same
syntax with normal identifiers in Java. If we use a naive parsing method, these
literals introduce syntactical ambiguity and slow down parsing. In Proteal,
these literals do not cause ambiguity and do not slow down parsing. This
experiment aims to watch the change of the parsing/compilation time when
changing the number of user-defined literals. We compared the compilation
time by ProteaJ and the parsing time by JSGLR just like the experiment in
Section 3.5.1. The experiment setting is also the same as in 3.5.1.

We measured the parsing/compilation time while changing the number of
different kinds of user-defined literals from 1 to 20. The base grammar given
to JSGLR is simplified Java statement syntax shown in Figure 3.21. The full
version of the grammar can be obtained from our github page mentioned in
Section 3.4.5. The grammar of the user-defined literal is as follows:

60 CHAPTER 3. PROTEAN OPERATORS

1000

time (ms)

il
900 w“»vvﬂy}u&
o .
o 0000%0000e¥
700 Fed 00
el
600 W\w
ol
500 N«»\E

400
300
200

100
input size

0 100 200 300 400 500 600 700 800 900 1000

Figure 3.20: The compilation time by ProteaJ

Primary — ID;
ID; — Identifier

Here, i indicates the kind of the user-defined literal. It is a non-negative integer
number less than the number of the kinds of user-defined literals n. For Proteal,
we defined user-defined literals as follows:

operators AmbIDsOperators {
readas IDg id (Identifier id) { return new IDg(id); }

readas ID,_; id (Identifier id) { return new ID,_;(id); }
}

The input of this experiment contains local variable declarations like:
IDg id; = a;

The right-hand side of the declaration is ambiguous because a can be parsed
as an IDg literal, an ID; literal, an IDy literal, and so on. The number of the
possible parsing results is n. The literal of type IDq is finally selected since
the type of id; is IDy. The source code given to JSGLR contains variable
declarations as shown below:

{
IDO ido = a;

IDp idmm—1 = a;
}

The source code given to Proteal contains a class declaration with only one
method:

using AmbIDsOperators;
class Test, {

3.5. EXPERIMENTS 61

S — SingleStmt

Stmits — Stmits Stmt | Stmt

Stmt — SingleStmt | LocalVarDecl

SingleStmt — "{" Stmts "}" | Expr ";" | IfStmt

LocalVarDecl — Type Identifier "=" Ezxpr ";" | Type Identifier ";"
Ezpr — Ezprl

FExpr9 — Primary

Primary — " (" Exzpr ")" | Variable | IntLiteral | StringLiteral
Type — Identifier

Variable — Identifier

Figure 3.21: Simplified Java statement syntax

public static void main (String[] args) {
IDp ido = a;

IDO idm_1 = a;
}
}

The input length m is the number of local variable declarations in the source
code. For different m, 1000, 2000, ..., 10000, we measured the average parsing/-
compilation time after running ProteaJ or JSGLR ten times.

Figure 3.22 shows the result of the experiment with JSGLR. The vertical axis
denotes the parsing time and the horizontal axis denotes the number of the kinds
of user-defined literals n. Each line denotes the parsing time with a different m.
The numbers at the right side indicate m. According to the figure, the parsing
time increases linearly with the number of user-defined literals. Figure 3.23
shows the compilation time by the ProteaJ compiler. The vertical axis denotes
the compilation time and the horizontal axis denotes the number of user-defined
literals. The figure reveals that the number of different kinds of user-defined
literals does not affect the compilation time.

The compilation time by ProteaJ is 3 to 10 times longer than the parsing
time by JSGLR. Although the compilation time by ProteaJ does not slow down
as the number of user-defined literals increases, its absolute speed is not fast.
At least part of the problem is due to the fact that the current ProteaJ compiler
is a prototype and not well tuned. On the other hand, JSGLR parser is fast
since SGLR parsing is efficient when the grammar has only a few ambiguities.
Unlike the experiment in Section 3.5.1, the ambiguities in this experiment do not
exponentially explodes because there is no operator taking multiple ambiguous
operands.

62 CHAPTER 3. PROTEAN OPERATORS

5000

time (ms) 10000

4500
9000

4000
8000

3500
7000

3000
2500 6000
5000

2000
4000

1500
3000
1000 /—_/,~——/—/_§/ -
500 1000

the number of user-defined literals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.22: The parsing time by JSGLR of the source code containing user-
defined literals

3.5.3 Parsing Java Source code

Although the proposed parsing method is flexible and runs efficiently, it is slower
than the parser of a normal Java compiler. If any user-defined operators are
not used, the flexibility of our method is just a performance penalty. We hence
conducted an experiment for measuring the speed of parsing normal Java source
code. We measured the compilation time of Apache log4j 1.2 [21], which is an
open source project in Java. It consists of 213 Java source files and 21050 lines
of code. We compared the compilation time by the ProteaJ compiler, javac of
Oracle JDK, and the JastAddJ [16] compiler. The reason we chose JastAddJ
is that it is a compiler developed as a research product. It is a mechanically
generated compiler and its implementation is not hand-optimized. Note that
ProteaJ does not support inner classes and some other constructs available in
Java. Thus we modified some source files of log4j for the experiment. We
substituted 1472 lines of code for 1134 lines of code including 89 declarations
of inner classes. In this experiment, our compiler generated Java source files
and compiled them by javac because of a bug of the backend compiler of the
ProteaJ compiler. The experiment setting is the same as in Section 3.5.1 but in
the experiment with JastAddJ, we used OpenJDK 1.7.0_51 since the JastAddJ
compiler did not work with JDK 1.8. We measured the average of the total
compilation time for ten compilations by each compiler.

Figure 3.24 shows the average compilation time of log4j by the Proteal
compiler, javac in Oracle JDK, and the JastAddJ compiler. The vertical axis
indicates the compilation time. The bar of Proteal is divided into two bars; the
lower one expresses the translation time by the ProteaJ compiler and the upper

3.6. RELATED WORK 63

18000
time (ms)
16000
10000

14000
9000
12000

8000

10000
7000

8000
6000

6000
5000

4000
4000

3000
2000 2000
1000

the number of user-defined literals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.23: The compilation time by the ProteaJ compiler of the source code
containing user-defined literals

one expresses the compilation time by javac. A vertical line on each column
represents an error based on standard deviation. According to the figure, the
ProteaJ compiler is six times slower than javac and four times slower than the
JastAddJ compiler. The compilation time by Protead is about 18 seconds. It is
not fast but acceptable in practice.

3.6 Related Work

Macros

Syntactic macros are a common language facility to extend language semantics.
They are based on Abstract Syntax Tree (AST) transformation. We can use
them for implementing a new language construct. Lisp is the most famous lan-
guage that supports syntactic macros. Syntactic macros are powerful especially
in Lisp since Lisp programs are represented by simple syntax, S-expressions. We
can define any kinds of special form if the syntax is an expression surrounded
with parentheses. A drawback of syntactic macros is that they cannot lexically
extend the syntax of the host language since they are applied after parsing a
program. There are many languages supporting syntactic macros, besides Lisp.
For instance, Dylan [3], MetaML [60], Template Haskell [61], Nemerle [64], and
Scala [51] support syntactic macros. They have the same drawback as Lisp
mMacros.

Common Lisp has syntactic macros and it also has a syntax extension system

64 CHAPTER 3. PROTEAN OPERATORS

20
time (s)

18 I
16
14
12

10

Proteal javac JastAdd)

Figure 3.24: The compilation time of log4j

that is known as reader macros. Reader macros switch the scanner and the
parser to user-defined ones when a special token is read. We can define a
new syntax by using reader macros and we can define the semantics of it by
using syntactic macros. A drawback of reader macros is lack of composability.
Multiple syntax definitions in different reader macros cannot be used at the
same time. User-defined scanners and parsers used in reader macros may be
implemented by different programmers. Since it is difficult to merge them, the
syntax defined in them would be difficult to be used together. Template Haskell
[61] and Converge [71] have the same facilities.

Honu [57] provides syntactic macros with binary infix syntax. Macros with
binary infix syntax improve the drawback of syntactic macros. Just like a lan-
guage supporting user-defined binary infix operators, they can express various
domain specific syntax. However, the drawback of syntactic macros still remains;
they cannot express syntax that cannot be expressed in the host language syntax
or binary infix syntax.

C/C++ provides traditional macro system, called lexical macros. They are
based on text transformation. Unlike syntactic macros, they can extend syntax
but they are not safe. For example, the hygiene problem is famous problem of
lexical macros. Furthermore, they are not composable; macros cannot share the
same syntax since each macros is identified by its first token.

Mixfix Operators with Empty Syntax

Isabelle [55] and Maude [12] are programming languages supporting mixfix oper-
ators with empty syntaz. The empty syntax supports a nameless operator syntax
like the protean operator [_:Regex _:Regex]:Regex. Arbitrary context-free
grammars (CFGs) can be expressed by mixfix operators with empty syntax.
Although mixfix operators with empty syntax have good expressiveness, they
cannot express user-defined literals. Their naive extension by using a scannerless

3.6. RELATED WORK 65
parser is not practical due to the inefficiency of parsing as we mentioned.

External Tools

JastAdd [17] and Silver [72] are language construction systems based on at-
tribute grammars [43]. These systems allow us to describe a language definition
in declarative and modular fashion. We can extend an existing language by
defining a new language extension module. Since they are systems for language
developers to implement a new or extended language, they are not suitable in
our case; as far as we know, there is no system where programmers can reflec-
tively extend the underlying parser.

Metaborg [9] is a meta-programming toolkit that enables us to create syntax
extensions. Since Metaborg uses SGLR parser, programmers can define both of
user-defined expressions and user-defined literals in the same way. Metaborg is
designed to be used for creating an extended language that has new language
features. It is not designed to combine a number of language extensions that
are selected by users (not language developers).

SugarJ

Sugar] [18] is a language that supports sugar libraries. A sugar library is a
library that provides DSL syntax as syntax sugar. Programmers can use any
context-free grammars for DSL syntax. A sugar library can be used with another
sugar library together. However, ambiguities might arise in composed grammar
when composing multiple sugar libraries. In such case, additional glue code
might be necessary to integrate the libraries.

Type-Oriented Island Parsing

Type-oriented island parsing [62] is a parsing algorithm based on island pars-
ing [66], which is a parsing algorithm for CFG, but uses type information for
efficient parsing. It can efficiently parse expressions including composable user-
defined operators even if the operators introduce a number of ambiguities into
the grammar. It uses static type information to prune parsing paths that will
make ill-typed parse trees. However, it is unclear whether or not type-oriented
island parsing can be applied to a scannerless parser since it uses heuristics for
parsing tokens.

Type-Specific Language

A type-specific language [53] is a language that allows programmers to define
literals of a given type. The syntax of literals is arbitrary. The compiler uses
type information for parsing literals. Programmers can write literals only in
a body of a generic literal. Grammar ambiguities do not occur since the host
language only provides a delimitation strategy. A literal body is parsed during
type-checking phase. It is parsed by a parser associated with the expected

66 CHAPTER 3. PROTEAN OPERATORS

type of the literal. The main difference between type-specific languages and
our work is where DSL syntax is available. A protean operator can be used in
any expression whose expected type is statically determined before parsing the
expression. Special syntax such as a general literal is not needed for escaping
from the host language.

3.7 Conclusion

In this chapter, we proposed new composable user-defined operators, named
protean operators. They can express various language extensions including user-
defined literals as well as user-defined expressions. They can have any number of
operator names and operands, and their order is arbitrary. Protean operators
have two important features for efficient parsing: overloading by return type
and parsing precedence. Overloading by return type enables a parser to resolve
grammar ambiguities by using type information at parse time. The parsing
precedence resolves the remaining ambiguities after resolving ambiguities by
a return type. Since these features resolve all the grammar ambiguities at
parse time, protean operators that express user-defined literals can be parsed in
pragmatic time. We showed an efficient parsing method for protean operators
based on packrat parsing supporting left recursion. This parsing method is a
recursive descent parsing with backtracking and it considers type information.
A drawback of protean operators is a limited kind of places where an operator is
available. A protean operator is available only in an expression whose expected
type is statically determined before parsing the expression.

We have developed ProteaJ, which is a subset language of Java but supports
protean operators. Protea provides a module system called operator module
to implement and modularize user-defined operators. An operator module im-
plements a DSL. Programmers can use the DSL by importing the module by
using declaration. ProteaJ also provides two kinds of precedence rules: oper-
ator precedence and parsing precedence. Operator precedence is a convenient
feature for avoiding redundant type declarations. The entire operator prece-
dence is determined by the order of using declarations. This feature improves
composability of DSLs since operator precedence of each DSL is independent.
ProteaJ supports subtype relationship in Java. To handle subtype relationship,
the ProteaJ compiler automatically generates operators that express subtype
relationship and translates the return types of user-defined operators. Evalua-
tion of the module system and the translation for subtype relationship is our
future work. We implemented the compiler of ProteaJ in Java. It is available
from our github page mentioned in section 3.4.5. We have conducted an experi-
ment for demonstrating that ProteaJ can efficiently parse expressions including
user-defined literals even though a naive parsing method cannot parse them in
pragmatic time. We have also conducted experiments for measuring the parsing
speed of programs written in syntax with a limited number of ambiguities. The
experiments revealed that our parsing method has relatively large performance
overheads when parsing a program written in simple syntax that traditional

3.7. CONCLUSION 67

parsing methods can efficiently deal with. The current ProteaJ compiler was 4
to 6 times slower than a normal Java compiler.

68

CHAPTER 3. PROTEAN OPERATORS

Chapter 4

Context-Sensitive
Expressions

4.1 Introduction

Currently, programmers can implement libraries that look like new language
constructs. These libraries can be used as if they were built-in language con-
structs [69]. Modern languages such as Scala and Ruby provide features that
enable us to define such libraries. Programmers can implement these libraries
by defining functions, methods, or operators so that they will appear to be a
built-in construct. For example, we can define unless in Scala as follows:

def unless (cond: Boolean) (body: => Unit): Unit = { if (!cond) body }
We can use it as follows:
unless (a < 100) { println("a is smaller than 100") }

Our unless looks like a built-in language construct if. User-defined language
constructs can make a program shorter and hopefully easier to understand. In
particular, they are useful for improving the readability of code written in an
embedded domain specific language (EDSL).

Syntactic macros [44, 29] are well-known functionality for implementing new
language constructs. A syntactic macro is a translation rule from one abstract
syntax tree (AST) to another. We can implement a new language construct by
defining a syntactic macro that translates the language construct into a code
snippet that uses predefined language constructs. Syntactic macros are widely
used in Lisp since a Lisp program consists of only S-expressions. Programmers
can easily modify an AST since the AST is very simple. Furthermore, a macro
call looks like a built-in language construct. Syntactic macros have also been
implemented in non-Lisp languages, such as Java and Haskell [4, 61].

Although syntactic macros themselves do not extend syntax, they are some-
times used as the back-end of a syntax extension system [18]. Nemerle [64]

69

70 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

provides a powerful syntax extension system based on syntactic macros. For
example, we can define a language construct foldfor as follows:

macro FoldForMacros (idl, r, id2, list, body)
syntax ("foldfor", "(", idl, "assign", r, ";", id2, "of", list ")", body) { <[
mutable $idl = $r;
foreach ($id2 in $list) { $body }
$id1
1>}
Line 2 in this definition declares the syntax of the language construct. The
first token foldfor is a unique identifier to distinguish this syntax from other
user-defined syntax. The rest of the syntax consists of operators or identifiers
expressed by string literals and the names of parameters. The semantics of the
syntax is defined by a syntactic macro. Lines 3 to 5 define the macro expansion
rule. This syntax can be used as follows:

def sumOfSquare = foldfor (a assign O ; i of xs) {a=a+1i* i}

Syntactic macros are not the only approach to syntax extension systems.
Another approach is to use user-defined operators. A user-defined operator is a
function that has its own syntax. In Scala, for example, programmers can define
an operator that has arbitrary binary infix syntax. An advantage of user-defined
operators over user-defined syntactic macros is that an operator can be stati-
cally typed. The compiler can find bugs in the definition of an operator before
the operator is used. Our previous work, called ProteaJ [Ichikawa2014], is
an extended Java language. It provides user-defined operators that can express
the arbitrary syntax of parsing expression grammars (PEGs) [20]. Although
ProteaJ can express various kinds of syntax found in many programming lan-
guages, it cannot express language constructs such as foldfor. This is because
ProteaJ user-defined operators cannot support name binding. Name binding is
the association of names with values. A user-defined operator is just a function
with custom syntax and hence it does not have the ability to customizing name
binding. In fact, a compiler resolves name bindings after the parsing or syntac-
tic analysis processes are complete. While the resolution of name bindings is
not part of parsing, a user-defined operator in ProtealJ is just a mechanism for
customizing the parser.

To enable a user-defined operator with custom name binding, we proposes
context-sensitive expressions, which are a variant of lambda expressions. A
context-sensitive expression looks like a normal expression but it is a lambda-
like expression implicitly taking parameters. These parameters are accessed
through public members such as methods or operators of one parameter object
instead of through parameter names. We can emulate name binding by using
such public members; for example, we can emulate a variable named ''it'' by
a nullary operator ''it'' and a unary operator ''it = _''. We have devel-
oped ProteaJ2, which is a programming language based on Java but supports
context-sensitive expressions. ProteaJ2 supports turnstile types, DSL classes,
and generic names to express context-sensitive expressions for syntax extension
with name binding. To efficiently parse a program using a context-sensitive

4.2. MOTIVATION 71

expression, the parser of ProteaJ2 adopts eager disambiguation using expected
types.

In the rest of this chapter, we first show existing approaches for implementing
user-defined language constructs with custom name binding. Then we propose
context-sensitive expressions and present our language design for supporting
them in Section 4.3. Section 4.4 explains a parsing method and the restrictions
of our language for efficient parsing. In Section 4.5, we discuss the time com-
plexity of our parsing method and show several examples to demonstrate the
expressiveness of our proposal. Section 4.6 is on related work. We conclude in
Section 4.7.

4.2 Motivation

4.2.1 User-Defined Operators

Powerful user-defined operators can be used for implementing user-defined lan-
guage constructs with a user-friendly syntax. For example, the following code
uses a user-defined language construct "p":

p "hello, world!";

This code displays “hello, world!” to the user. The language construct "p" is
defined as a unary operator as follows:

void "p" _ (String s) { System.out.println(s); }

This is a code snippet in ProteaJ, shown in the previous chapter. ProteaJ has
Java-like syntax and supports powerful user-defined operators. In this chap-
ter, as in Proteal, we assume that we can define an operator with an arbitrary
name like "p". The above code snippet is a definition of a user-defined operator.
void at the beginning of the snippet is the return type of the operator. The
following "p" _ indicates the syntax of the operator. The double-quoted string
"p" expresses a name part of the operator and the underscore _ expresses an
operand of the operator. A name part is a symbol for identifying the operator.
An operand takes an expression with the corresponding type that is specified
in the parameter list of the operator. The parameter list is a parenthesized
part following the syntax definition. According to the parameter list, the corre-
sponding type of the operand is String. The curly braced code is an operator
body that is evaluated when the operator is called.

An advantage of user-defined operators over user-defined syntax extensions
based on macros is that an operator can be statically typed. The compiler can
find type errors in the definition of an operator before the operator is used. In
addition, it allows for another useful feature: the compiler can resolve syntactic
ambiguities by using type information. User-defined syntax extensions such
as user-defined operators often conflict with another syntax extension. This is
because the authors of different syntax extensions do not know about extensions
created by each other. In such a case, the parser might generate multiple valid
abstract syntax trees (ASTs) for single fragment of source code. We call such

72 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

fold-for (acc = {}; n : list) {
if-exists (acc[n]) it = it + 1
else acc[n] =1

}

Figure 4.1: Code snippet using user-defined control flow statements fold-for
and if-exists

source code ambiguous. To resolve these ambiguities, the compiler should infer
the user’s intention: which AST represents the user’s intent. The compiler can
exploit type information to infer the user’s intention.

4.2.2 Name Binding

A disadvantage of user-defined operators is that it is difficult to implement lan-
guage constructs involving name binding. Name binding is the association of
data with identifiers. Language constructs, especially control-flow statements,
often have name binding. For example, Figure 4.1 shows a code snippet us-
ing user-defined operators, which implement control flow statements fold-for
and if-exists. This code snippet traverses a list and calculates the number
of occurrences of each identical item in the list. The control flow statement
fold-for introduces two names, acc and n, and they are available in the body
of fold-for. acc expresses an accumulator and n expresses an element of the
given list. Here, acc is a Map and n is a key of the Map. The initial value of acc
is {}, which is an empty Map. The accumulator acc is updated for each element
of the given list according to the body of fold-for. The control flow statement
if-exists also introduces a name, it. it expresses a reference to the value of
acc[n] if it exists. it is available only in the body of if-exists, in which it
behaves as a mutable variable that corresponds to the given key n in the given
Map acc. Note that if-exists takes three arguments rather than two: acc and
n are different arguments of if-exists. It is because if-exists can modify
the entry of the given Map, acc, by the assignment operator it = _

If we do not need custom syntax, name binding can be expressed using a
lambda expression. Higher-order abstract syntaz (HOAS) [56] is a generalized
technique of this idea. For example, the following code snippet using the lan-
guage construct let:

let x = 10
x=x+1
println(x)

is represented in HOAS as follows:

let (10, (x) —> {
x.set(x.get() + 1)
println(x.get())

4.2. MOTIVATION 73

fold-for (Collections.emptyMap(), list, (acc, n) -> {
if-exists (acc.get(), n.get(), (it) -> {
it.set(it.get() + 1)
}, O > {
acc.get() .put(n.get(), 1)
1))
b

Figure 4.2: Code snippet using fold-for and if-exists represented by higher-
order abstract syntax

b

In the HOAS representation, a variable name is encoded into a parameter name
of a lambda expression and the variable value is given by the application of the
lambda expression. If we use HOAS representation, we can represent arbitrary
language constructs having name binding. For example, Figure 4.2 shows the
HOAS representation of a code snippet in Figure 4.1. According to line 1 of
Figure 4.2, the language construct fold-for is expressed as a function with
three arguments. The first argument is the initial value of the accumulator
and the second argument is the target list. The last argument is the body
of fold-for, which is represented as a lambda function with two arguments.
The arguments of the lambda expression expresses bound names, acc and n.
if-exists is also represented in the same manner.

Recaf [5] supports a limited form of user-defined syntax based on HOAS.
In Recaf, programmers can define a new language construct with one of the
supported forms of syntax such as syntax similar to for or while statement.
The new language construct is transformed into its HOAS representation. The
programmer only implements a method that corresponds to the name of that
language construct. The following code snippet is a definition of the let state-
ment in Recaf, which has the same syntax as for statement:

public <U> IExec Let (ISupply<U> v, Function<U, IExec> body) {
return (s) -> { body.apply(v.get()).exec(null); };
}

The let statement can be used as follows:

let (String s : "hello, world!") {
System.out.println(s);
}

Unfortunately, Recaf cannot translate every possible syntax into a HOAS rep-
resentation. To transform a code snippet into a HOAS representation, the com-
piler has to know which code snippets introduce names and where the names
are available. In Recaf, such knowledge only comes from Java, so programmers
can only define language constructs that have similar syntax and the same name

74 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

binding rule as predefined language constructs in Java. The language construct
fold-for cannot be defined in Recaf since there is no language construct in
Java that has similar syntax and name binding to fold-for.

If we use a syntax extension system based on syntactic macros, we can
translate arbitrary syntax into its HOAS representation. However, this approach
is known to be dangerous. It is difficult to verify that a syntactic macro always
generates correct code. When a syntactic macro causes an error after expansion,
programmers cannot know whether the usage of the macro is wrong or the macro
definition is wrong. Furthermore, syntactic macros make it difficult to cooperate
with external tools such as integrated development environments (IDEs).

4.3 Proposal : Context-Sensitive Expressions

HOAS can represent name binding but its syntax extensibility is weak without
support for syntactic macros since HOAS uses lambda expressions as a primitive
for representing name binding. We present a variant of a lambda expression,
which we call a context-sensitive expression, as another primitive for representing
name binding. A context-sensitive expression takes several parameters as a
lambda expression does but the individual parameters are not explicitly given.
They are given through the visible members, such as methods and operators,
of a few parameter objects. They are available within the expression as if they
are local variables. This enables more natural syntax for name binding. We
have developed ProteaJ2, which is a programming language based on Java but
supports context-sensitive expressions. ProteaJ2 supports turnstile types, DSL
classes, and generic names to express context-sensitive expressions for syntax
extension with name binding. The source code of the compiler is available from
our github repository!.

4.3.1 Context-Sensitive Expressions

A context-sensitive expression looks like a normal expression but it implicitly
takes parameters. These parameters are accessed through public members of
one parameter object. For example, consider the following code snippet:

if-exists (acc[n]) it = it + 1
else acc[n] =1

This code snippet is a part of Figure 4.1. The expression it = it + 1 is an
argument of the language construct if-exists. This expression can be regarded
as a context-sensitive expression that implicitly takes a reference to each entry

of the given Map. This expression can be also written with a lambda expression
as follows:

(it) -> it.set(it.get() + 1)

With a context-sensitive expression, we can write it as follows:

Thttps://github.com/csg-tokyo/proteaj2

4.3. PROPOSAL : CONTEXT-SENSITIVE EXPRESSIONS 75

set(get() + 1)

As you can see this code, the declaration of the parameter ''it'' and the
receiver of set and get are omitted. This is similar to the omission of this
(or self) in an instance method. What is different from the this omission is
that the implicit receiver is given by the context; here, it is given by if-exists.
The code snippet set(get() + 1) does not look natural but programmers can
change the syntax of the getter and setter by using user-defined operators. If
programmers define the getter syntax is ''it'' and the setter syntax is ''it
= _'', the code snippet is written as follows?:

it = it + 1

Since a context-sensitive expression is a variant of a lambda expression, the
value of a context-sensitive expression is an anonymous function. The language
construct if-exists can be defined as following pseudo code:

def "if-exists" "(" _ "[" _ "1" ")" _ "else" _ (map, key, thn, els) {
if (map.contains(key)) thn.apply(new MapEntryRef (map, key));
else els.apply(new Lazy());

}

This implements a new operator. Here, thn is a parameter taking a context-
sensitive expression. The value of thn is an anonymous function that takes an
argument expressing an implicit receiver of the getter ''it'' and the setter
"'it = _'' here, a MapEntryRef object. thn.apply(...) denotes a call of
the anonymous function thn.

Note that a context-sensitive expression is lazily evaluated. If an object
passed to a context-sensitive expression does not have a method or an operator,
the context-sensitive expression is just for lazy evaluation. The parameter els
above is an example of such a context-sensitive expression. A Lazy object passed
to els by apply does not have any members, and hence any operators such as
"'it'' and ''it = _'' are not available within the expression that els refers
to. The expression is just a normal expression although it is treated as a lambda
expression and lazily evaluated.

If context-sensitive expressions are nested, public members of the implicit
receiver of the outer expression can also be used in the inner expression. For ex-
ample, if the language construct fold-for and if-exists are defined by using
context-sensitive expressions, we can write the program shown in Figure 4.1.
The body of fold-for is a context-sensitive expression in which the operators
acc and n are available and the body of if-exists is also a context-sensitive
expression as mentioned above. The operators acc and n are also available in
the body of if-exists. If we nest if-exists, multiple identical operators are
visible from the inner expression. In this case, the operator of the innermost
expression is available there.

211it'" can be regarded as a nullary operator and ''it = _'' as a unary operator taking

an assigned value

76 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

4.3.2 Turnstile Types

To give a type to context-sensitive expressions and distinguish from normal ex-
pressions, ProteaJ2 provides turnstile types. A turnstile type is written as S +
T, which read as “a type T under the assumption S”. A turnstile type cannot
be used everywhere; it is only available as a parameter type. If a turnstile type
is specified as a parameter type, an argument of the parameter is a context-
sensitive expression. For example, the following code defines the language con-
struct if-exists by using turnstile types:

<K, V> void "if—exists" u(n _ u[n _ u]u ll)ll _ "else" _
(Map<K, V> map, K key, MapEntryRef<K, V> |- Void thn, Lazy |- Void els) { ... }

The body is the same as one shown in the previous pseudo code. In this code,
the third parameter and the fourth parameter have turnstile types. Assuming
MapEntryRef defines getter and setter operators, ''it'' and ''it = _'', we
can write the following program using if-exists:

if-exist (acc[n]) it = it + 1
else acc[n] =1

The argument passed to thn is the expression it = it + 1. Because of its
type, Void is the type of the resulting value of the expression under the as-
sumption that MapEntryRef<K,V> is the type of the implicit receiver object
of "'it'" and ''it = _''. The compiler will type-check the expression (and
also thn.apply(...) in the body of if-exists) to ensure that it satisfies this
assumption.

As mentioned above, a context-sensitive expression is an anonymous func-
tion. In ProteaJ2, a value of turnstile type S F T is implemented by a function
object Function<S, T>. For example, thn is an object of type Function<MapEntryRef<K,
V>, Void> in the body of if-exists. Hence, the context-sensitive expression
it = it + 1 is compiled into the following lambda expression:

(ref) -> ref.set(ref.get() + 1)

In other words, a program with context-sensitive expressions can be regarded
as being translated into its HOAS representation using lambda expressions.

4.3.3 DSL Classes

A DSL class is a module system for user-defined operators. It is similar to a
normal class in an object-oriented language like Java but it contains operators
rather than methods. When a DSL class type appears on the left-hand side of
a turnstile type, the operators declared in that DSL class are available in the
context sensitive expression of that turnstile type. The instance operators are
invoked on an instance of the DSL class passed to that expression. Figure 4.3
shows the definition of the DSL class MapEntryRef. Line 2 defines the getter
operator ''it'' and line 3 defines the setter operator ''it = _''. These op-
erators are available in an expression of the turnstile type MapEntryRef<K, V>

4.3. PROPOSAL : CONTEXT-SENSITIVE EXPRESSIONS 7

dsl MapEntryRef <K, V> {
V "it" () { return map.get(key); }
void "it" "=" _ (V value) { map.put(key, value); 7}
MapEntryRef (Map<K, V> map, K key) { this.map = map; this.key = key; }
private Map<K, V> map;
private K key;

Figure 4.3: The definition of the DSL class MapEntryRef

F R. Line 4 defines a constructor of MapEntryRef. Line 5 and line 6 defines in-
stance fields of MapEntryRef. As a normal Java class, a DSL class is instantiated
by new and an instance operator can access instance fields.

A DSL class can also contain static fields and operators. In ProtealJ2, a
static operator of a DSL class is available anywhere, not only within a context-
sensitive expression. For example, if-exists is a static operator. Figure 4.4
shows the definition of the DSL class MapUtils, which contains the operator
if-exists. It also contains several other operators for accessing a Map object
such as _ [_ 1 = _. These operators are available anywhere in a source file
that imports the DSL class MapEntryRef. A DSL class is imported by an import
dsl declaration. The following code is an example using the operators defined
in Figure 4.4:

import dsl MapUtils;

Map<String, Color> colors = {};
colors["red"] = Color.RED;
Color ¢ = colors["red"]; // Color.RED

As in Python, we can use the syntax of associative arrays for Map by importing
MapUtils. In ProteaJ2, the import dsl declaration is written at the top of the
source file (at the same position as an ordinary import declaration).

4.3.4 Generic Names

To recognize arbitrary names given by users, ProteaJ2 provides generic names,
which extend generics. A generic name is a type parameter of a method or an
operator. It is used for checking whether a name is identical to a name that
appeared before. For example, in Figure 4.1, the language construct fold-for
binds two names given by the user, acc and n. These names also appear in the
body of fold-for. Generic names are used for recognizing their identity.
Figure 4.5 shows the definition of fold-for, which uses generic names for
dealing with names given by users. The generic names are idl and id2 in
the type parameters of the DSL class FoldFor (line 1) and the static operator
fold-for (line 2). Id is the type name of the generic names. The generic
names id1l and id2 can appear in an operand part of operator syntax. They

78 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

dsl MapUtils {
static <K, V> void "if-exists" "(" _ "[" _ "]")" _ "else" _
(Map<K, V> map, K key, MapEntryRef<K, V> |- Void thn, Lazy |- Void els) {
if (map.contains(key)) thn.apply(new MapEntryRef<K, V>(map, key));
else els.apply(new Lazy());

}

static <K, V> Map<K, V> "{}" () { return new HashMap<K, V>(); }

static <K, V> V _ "[" _ "]" (Map<K, V> map, K key) { return map.get(key); }

static <K, V> void _ "[" _ "]" "=" _ (Map<K, V> map, K key, V value) { map.put(key, value);

}

Figure 4.4: The definition of the DSL class MapUtils that contains the operator
if-exists

specify that all the occurrences of id1 or id2 refer to an identical expression
(i.e. name). For example, line 2 and 3 in Figure 4.5 specifies that the operand
id1 of fold-for is identical to the operands id1 of the following operators if
they occur in the context-sensitive expression f.

R idl () { return acc; }
void idl "=" _ (R r) { this.acc = r; }

This is specified by the assumption part of £’s type, FoldFor<T,R,id1,id2>.
The expression f can invoke the operators declared in FoldFor<. ..> where id1
is identical to the operand id1 of fold-for. Thus, the invocation of fold-for
in Figure 4.1 is valid. Here, id1 is bound to acc and id2 is bound to n.
FoldFor<...> declares the getter operators acc and n and the setter operator
acc = _. They are available in the expressions at line 2 and 3 in Figure 4.1.

The generic names idl and id2 refer to an expression of type Id. The
compiler recognizes that two generic names are identical if the abstract syntax
trees of their expressions are equivalent. We chose this design since we express
a name by the composition of several user-defined operators. Note that the
type Id is not a primitive or meta type. It is a type that users can define for
expressing an arbitrary sequence of alphabet letters as an expression. See the
following operators for Id values:

literal Id _ _ (Letter letter, Id rest) { return new Id(letter.toString() + rest.toString()); }
literal Id _ (Letter letter) { return new Id(letter.toString()); }
literal Letter "a" () { return Letter.a; }

literal Letter "z" () { return Letter.z; }

literal is a modifier indicating the operator is for user-defined literals in Pro-
teaJ2. The syntax of a literal operator does not recognize whitespace characters
as a separator between name parts and operands. An operand of a literal oper-
ator is an expression that consists of only literal operators. User-defined literals
defined by literal operators can be used as a normal expression. Therefore, if

4.3. PROPOSAL : CONTEXT-SENSITIVE EXPRESSIONS 79

dsl FoldFor <T, R, idil: Id, id2: Id> {
static <T, R, idil: Id, id2: Id> R "fold-for" "(" id1 "=" _ ";" id2 ":" _ ")" _
(R ini, List<T> list, FoldFor<T, R, idl, id2> |- Void f) {
FoldFor<T, R, idl, id2> env = new FoldFor<T, R, idil, id2>(ini);
for (T t : list) {
env.elem = t;
f.apply(env);
}
return env.acc;
}
R id1l () { return acc; }
T id2 () { return elem; }
void idl "=" _ (R r) { this.acc =r; }
FoldFor (R ini) { this.acc = ini; }
private R acc;
private T elem;

Figure 4.5: The definition of fold-for in ProteaJ2

we import the operators above, the following code is valid:
Id id = acc;

The right-hand side of = is the composition of operators. It is parsed like
toId(a(), toId(c(), toId(c()))). Asin our previous work ProteaJ [Ichikawa2014],
a and c are recognized as operators since the expected type of the expression

is Id. If a generic name refers to an expression like acc, the expression is not
evaluated at runtime or at compile time. It is compiled out to be a unique
identifier.

4.3.5 Operator Priorities

ProteaJ2 supports operator priorities for helping users to define and use oper-
ators. Figure 4.6 shows a definition of the DSL class MapUtils with operator
priorities. Line 2 in the figure is a declaration of priorities. This declaration
declares three priority names pl, p2, and p3, and the order of each. Note that
pl is a short-hand name; its qualified name is MapUtils.pl. We can use a
qualified priority name of another DSL class in the declaration as follows:

priorities pl, p2, p3 { pl < p2 < PredefOperators.add < p3 }

The order of priority names p1 < p2 indicates that an operator with the priority
pl can take as an operand an expression of an operator with the priority p2.
Conversely, an operator with the priority p2 cannot take an expression of an
operator with the priority p1. A priority name can be given to an operator
and its operands by attaching the name enclosed by brackets. For example,

80 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

dsl MapUtils {
priorities pl, p2, p3 { pl < p2 < p3 }
static <K, V> void [p1] "if-exists" "(" _ "[" _ "1™ ")" _ "else" _[pi]
(Map<K, V> map, K key, MapEntryRef<K, V> |- Void thn, Lazy |- Void els) {
if (map.contains(key)) thn.apply(new MapEntryRef<K, V>(map, key));
else els.apply(new Lazy());

}

static <K, V> Map<K, V> [p3] "{}" () { return new HashMap<k, V>(); }

static <K, V> V [p2] _ "[" _ "]1" (Map<K, V> map, K key) { return map.get(key); }

static <K, V> void [p2] _ "[" _ "]1" "=" _ (Map<K, V> map, K key, V value) { map.put(key, val

}

Figure 4.6: The definition of the DSL class with operator priorities

the operator if-exists has the priority p1 and the right-most operand of the
operator has the priority p1 in the figure. This specifies that if-exists is right-
associative and if-exists can be used as an operand that has a priority lower
than or equal to p1. An operand without a priority name takes an expression
with a higher priority than its own operator priority. Therefore, the first operand
of if-exists can take an expression of the operator ''it = _'' but cannot
take an expression of if-exists.

Operator priorities declared in a DSL class are a partial order. The total
order is determined at each call site of operators. When a user imports multiple
DSL classes, the compiler sorts all the priority names in the DSL classes in the
declared orders. If priorities are cyclic, the compiler fails to compile a program
and reports invalid operator priorities. To control operator priorities between
independent DSL classes, a user can specify the order of priority names in the
DSL classes at the import declaration as follows:

import dsl MapUtils { MapUtils.p2 < PredefOperators.add < MapUtils.p3 }

4.4 Parsing

The compiler of ProteaJ2 adopts eager disambiguation for fast parsing. The
syntax of user-defined operators in ProteaJ2 might be ambiguous if we do not
consider types and operator priorities. When syntax is ambiguous, a parser may
generate a large, sometimes exponentially large, number of potentially valid
ASTs for the same source code. All these ASTs except the semantically correct
one are filtered out after parsing by applying semantic rules; in ProteaJ2, they
are filtered out by checking types and operator priorities. If multiple ASTs are
semantically correct, the language itself is ambiguous. In general, the generation
of a large number of potentially valid ASTs slows down the parsing speed. Eager
disambiguation is a technique to filter out semantically invalid ASTs while a

4.5. EVALUATION 81

parser is running. It enables faster parsing since ambiguities are resolved before
the number of ASTs exponentially increases.

For eager disambiguation, ProteaJ2 uses ezpected types and operator prior-
ities. The ProteaJ2 compiler parses a source program with a top-down parsing
algorithm. Before parsing an expression, it prunes away syntax rules not in effect
in the context of that expression so that the number of generated ASTs will be
reduced. If the expression expects a turnstile type D F T, the compiler tries to
parse it as an expression with the expected type T where the syntax of instance
operators of D are in effect. Such operators are also in effect in sub-expressions
of the expression. Static operators are effective everywhere if the DSL class that
declares them has been imported. When the compiler tries to parse an expres-
sion with the expected type T (which is not a turnstile type), it examines only
the syntax of operators that are in effect and that return the expected type T.
For example, when the compiler parses an expression on the right-hand side of
the assignment operator =, it examines the syntax of the operators that return a
subtype of the left-hand side of the assignment. A bottom-up parsing algorithm
is not suitable for such eager disambiguation. It is difficult to determine what
type is expected at the expression.

Due to this approach, user-defined operators are available in an expression
whose expected type is statically determined during top-down parsing. For
example, user-defined operators are available in the following locations: the
argument of a method call, the right-hand side of an assignment, the condition
expression of an if statement, an operand of another user-defined operator, and
so forth. On the other hand, they are not available at the receiver of a method
call or the left-hand side of an assignment. Details of this restriction has been
mentioned in our previous manuscript [Ichikawa2014].

After parsing each (sub-)expression, if ambiguities still remain, they are re-
solved with heuristics; the compiler selects the AST that consumes the maximum
number of characters in source code. Note that the compiler completely resolves
ambiguities at every sub-expression. In other words, the compiler selects the
partially optimal AST. If users define and use a dangling-else like construct,
for example, the else belongs to the innermost if. This is because the compiler
selects the longest match choice, if-else, for the sub-expression of outer if.
This approach is similar to parsing expression grammar (PEG) [20] and packrat
parsers [19]. PEG adopts the heuristics in which if there are multiple choices,
the parser selects the left-most choice. The ProteaJ2 parser is based on packrat
parsing supporting left recursion [79].

4.5 Evaluation

4.5.1 Time Complexity

The time complexity of our parsing algorithm is O(N « L) if the grammar is not
left-recursive, where N is the length of an input and L is the number of languages
that can possibly be used in parsing. In ProteaJ2, programmers can introduce

82 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

String "begin" _ "endl" (D1 |- String f) {...}
String "begin" _ "end2" (D2 |- String f) {...}
String "begin" _ "endP" (DP |- String f) {...}

Figure 4.7: Operators that could cause compilation time to increase faster than
linear time

local syntax within an expression by using a context-sensitive expression. It
can be regarded as changing a language in the local scope. The compiler should
use a different parser for each language, so the time complexity of our parsing
algorithm is in proportion to the number of languages L. The base complexity
of our parser is derived from the complexity of packrat parsing [19]. The time
complexity of packrat parsing is O(N) where N is the length of the input.

The number of languages L can be approximated to a constant in normal
cases. In some cases, however, L could increase faster than linear in the length
of an input N. Figure 4.7 shows a definition of operators that might increase
compilation time faster than linear time. The definitions of these operators
might look ambiguous. They have the same return type and the same syntax
except their postfix name. Each of them has a parameter with the turnstile type
like Dx F String. Such a type indicates that its argument is an expression of
type String and the expression is written in a language including instance
operators of Dx. If the operators in the figure are nested as follows, the number
of languages exponentially increases:

begin begin begin ... begin "hello" endP endP endP ... endP

When the compiler reads the first begin, it cannot yet determine which of
the operators in Figure 4.7 is used. In the worst case, the compiler should
use a number of languages equal to P to parse the argument of the outermost
begin-end. Similarly, the compiler also cannot determine which of begin-end
operators is used when it reads the next begin. Hence, for each P languages for
the first begin, it should examine P languages to parse the expression following
the second begin. The number of languages L is PM in the worst case where
M is the number of begin operators. Since M is in proportion to the length of
the input, the time complexity of our parsing algorithm might be an exponent
of N.

The cause of this problem is that the parser cannot determine which operator
is used before it parses deeply nested operands. This case would rarely occur
since the authors of the operators would likely design the syntax so that the
operator could be uniquely determined after just reading the operator prefix
such as begin.

We have conducted two micro benchmarks to examine the performance of our
compiler. The first benchmark was an experiment to show that the compilation
time complexity could be square or cubic time in the number of operators in

4.5. EVALUATION 83

unfavourable cases. The second benchmark shows that the number of operators
has little impact on compilation time in normal cases. The machine used for the
benchmarks had a 2.6 GHz Core i5 processor and 16 GB DDR3 memory. The
operating system of the machine was Mac OS X 10.11.5.

The first benchmark uses the operators shown in Figure 4.7. We measured
the compilation time of programs including each of the following lines while
changing the number of the declared begin-endX operators P:

1. begin "hello, world!" endP
2. begin begin "hello, world!" endP endP
3. begin begin begin "hello, world!" endP endP endP

The rest of the input program includes the import declaration of the DSL class,
a class declaration, and a main method. According to the discussion above, the
number of the languages L of code 1 is in proportion to P, that of code 2 is
in proportion to P2, and that of code 3 is in proportion to P3. If this is true,
the parsing time of code 2 increases faster than code 1 and the parsing time of
code 3 increases faster than code 2 as the number of operators P increases. Fig-
ure 4.8 (1) shows the result of the benchmark. The vertical axis represents the
compilation time and the horizontal axis represents the number of begin-endX
operators P. According to this figure, the parsing time of code 2 increases as
the number of begin-endX operators P does and it increases faster than the
parsing time of code 1. The parsing time of code 3 increases faster than code 2.

The second benchmark ran different operators, whose syntax rule can be
uniquely determined after just reading the prefix. Their definitions are as fol-
lows:

String "beginl" _ "endl1" (D1 |- String £) {...}
String "begin2" _ "end2" (D2 |- String f) {...}
String "beginP" _ "endP" (DP |- String f) {...}

The input of this benchmark includes one of the following lines. Note that the
prefix is not begin but beginP.

1. beginP "hello, world!" endP
2. beginP beginP "hello, world!" endP endP
3. beginP beginP beginP
"hello, world!" endP endP endP

Since the operators can be determined by their prefix, the number of the lan-
guages L is a constant. Hence the parsing time of codes 1, 2, and 3 do not show
notable differences even if the number of beginX-endX operators P increases.
Figure 4.8 (2) shows the result of this benchmark. The vertical axis repre-
sents the compilation time, and the horizontal axis represents the number of
beginX-endX operators P. According to this figure, the number of beginX-endX
operators P has little impact on the compilation time.

84 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

(1) (2)

60 35
compilation 1 compilation
time (s) . 3 time (s)
50 N L) L] (]
P]
*3 25 e, .
40 r
N 2
30 *
15 1
* !
20 ? Ja
* 1
° e
10 ?ir - ﬁnﬂ!ﬁi‘ﬂ’bgL“’os o
0 + T T T T 0 T T T T
0 20 40 60 80 0 20 40 60 80
the number of operators the number of operators

Figure 4.8: The result of the micro benchmarks

4.5.2 Case Study

In the rest of this section, we show several use cases of our proposal. Although
ProteaJ2 does not currently support anonymous classes, we use anonymous
classes for simplifying a program shown in this section.

Lambda Expressions

We can implement lambda expressions in ProteaJ2. Lambda expressions are
a common feature of modern programming languages and they have also been
introduced in Java. They create an anonymous function as a first-class object.
Figure 4.9 shows the implementation of lambda expressions. The operator "{"
var "->" _ "}" takes a parameter name as a generic name var. The operator
var (declared at line 7) is available as the operand of the operator "{" var
"->" _ "}" since the operand type is the turnstile type Lambda<A, var>
B. Here, the operator "{" var "->" _ "}" and the operator var refer to the
same generic name. Therefore, this definition correctly expresses name binding
of a lambda expression. The value bound to the name is given when the apply
method of the returned object (defined in line 4) is called. When we import this
definition, we can write the following code snippet:

Function<String, String> £ = { s -> s + "I" };

We can also implement a variant of lambda expressions in ProteaJ2; although
a typical lambda expression consists of a single function, we can implement a
lambda-like expression that consists of multiple functions. Figure 4.10 shows
a DSL class that implements such syntax for KeyListener. It can be used as
follows:

Component ¢ = ...;
c listens key {
pressed -> System.out.println(key name + " pressed!")

100

4.5. EVALUATION 85

dsl Lambda <A, var: Id> {

static <A, B, var: Id> Function<A, B> "{" var "->" _ "}" (Lambda<A, var> |- B body) {

return new Function<A, B> {

B apply (A a) { return body.apply(new Lambda<A, var>(a)); }
};
}
A var () { return value; }
Lambda (A a) { value = a; }
private A value;

}

Figure 4.9: The implementation of lambda expressions

released -> System.out.println(key name + " released!")
typed -> key_typed(key)
};

This code registers a KeyListener that prints a key name when the key is
pressed or released and also invokes the key_typed method when a key is typed.
On the right-hand side of each ->, key acts as a variable of the type KeyEvent.
Note that key name acts as a variable of the type String. We can provide
multiple accessors to obtain the same underlying value as values of different

types.

The Loan Pattern

The loan pattern is a design pattern to avoid explicitly releasing resources. It is
useful for expressing I/O processing. Several languages support the loan pattern
as a language construct, for example, using in C# and try-with in Java. The
following code uses try-with in Java:

try (BufferedReader reader = new BufferedReader (new FileReader(file))) {
System.out.println(reader.readLine());

}

It is guaranteed that reader is closed at the end of the try statement.

In ProteaJ2, we can implement this as if it is a built-in language construct.
Figure 4.11 shows the definition of the DSL class TryWith, which implements
the language construct try-with. Similar to a lambda expression, the operator
try declares the name id and this name is available in the body of try. The
name id is bound to the given resource from the first operand of try. It is
guaranteed to release the resource at the end of the try since the close method
is called in the finally clause from line 7 to line 9.

86 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

dsl KeyListenerDSL {
static void
|l1istensll llkeyll ll{'l

Ilpressedll ll_>ll _

"released" "->" _

"typed" II_>II _
ll}ll

(Component c, KeyListenerDSL |- Void f1,
KeyListenerDSL |- Void f2, KeyListenerDSL |- Void £3) {
c.addKeyListener (new KeyListener {
void keyPressed (KeyEvent e) { fl.apply(new Key(e)); }
void keyReleased (KeyEvent e) {...}
void keyTyped (KeyEvent e) {...}
b;
}
KeyListenerDSL (KeyEvent e) { keyEvent = e; }
KeyEvent "key" () { return keyEvent; }
String "key" "name" () { return KeyEvent.getKeyText (keyEvent.getKeyCode()); }
private KeyEvent keyEvent;

Figure 4.10: The definition of the DSL class that implements syntax like lambda
expressions for KeyListener

Hiding Resources

In ProteaJ2, we can develop a much safer DSL than try-with for managing
resources. With the loan pattern, users directly access a resource object, which
is dangerous since users can assign the resource object to a variable in an external
scope. In ProteaJ2, we can encapsulate the resource object as a field of a DSL
class and provide instance operators only within a context-sensitive expression.
Figure 4.12 shows the definition of such the DSL class that encapsulates a
BufferedReader object3. We can write the following code snippet if we import
that DSL class:

open "file.txt" {
while (has next) { System.out.println(read line); }
};

The users cannot directly access a BufferedReader object but they can use
operators has next or read line in the body of the operator open. Here, while
statement appears in the body of the operator open. In Proteal]2, a turnstile
type like D F Void is a special type that can take a block of statements as its

3Technically, this code does not work in the current version of ProteaJ2 since we implement
a turnstile type by using java.util.function.Function. ProteaJ2 does not allow checked ex-
ceptions, so the value of the turnstile type FileRead F Void cannot throw checked exceptions.

4.5. EVALUATION 87

dsl TryWith <R extends AutoCloseable> {

static <R extends AutoCloseable, id: Id> void "try" "(" R id "=" _ ") n{" _ "}
(Lazy |- R resource, TryWith<R> |- Void body) throws Exception {
R r = resource.apply(new Lazy());
try { body.apply(new TryWith<R>(r)); }
finally { if (r != null) r.close(); }

}

R id () { return resource; }

TryWith (R r) { resource = r; }

private R resource;

Figure 4.11: The definition of the DSL class for implementing try-with

argument. Since the body of the operator open has the turnstile type FileRead
F Void, it can take a block that contains while statement.

Dynamic Scoping

ProteaJ2 provides a requires clause for implementing a method or an operator
that is only available within an operand of a user-defined operator. A method or
an operator with the requires clause becomes available if all the specified types
in the required clause are assumptions (i.e., within a context-sensitive expres-
sion of a turnstile type containing the specified DSL type as the assumption).
The following code uses a method with a requires clause:

List<String> alllLines = open "file.txt" { getLines() };
List<String> getLines() requires FileRead {
List<String> lines = new ArrayList<String>();
while (true) {
String line = read line;
if (line == null) return lines; else lines.add(line);

1}

The getLines method is available only within the second operand of open.
In the method body of getLines, the operator read line is available since
FileRead is the assumption there. We can regard a required clause as an
emulation of a dynamic scope since getLines can access the operators available
in the caller’s scope.

Pattern Matching

In ProteaJ2, programmers can implement expressions involving more complex
name binding. For example, they can implement a simple pattern matching
mechanism, which is a common language construct in functional programming
languages such as Haskell and Scala. Figure 4.13 shows part of its definition.

88 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

dsl FileRead {

static void "open" _ _ (String fileName, FileRead |- Void body) throws IOException {
BufferedReader reader = new BufferedReader (new FileReader(fileName));
try { body.apply(new FileRead(reader)); }
finally { if (reader != null) reader.close(); }

}

String "read" "line" () throws IOException {
String res = nextLine;
this.nextLine = reader.readLine();
return res;

}

boolean "has next" () { return nextLine != null; }

FileRead (BufferedReader reader) throws IOException {
this.reader = reader;
this.nextLine = reader.readLine();

}

private BufferedReader reader;

private String nextLine;

Figure 4.12: The definition of the DSL class that encapsulates BufferedReader

The complete definition is available from our github repository.® It can be used
as follows:

String s = "hello, world" match {
| "hello" + xs => "goodbye" + xs
| Empty => "empty string"
| otherwise => otherwise

};

This code displays ''goodbye, world'' to the user. In this code, xs and
otherwise act as variables. The names of the variables are bound by the oper-
ator defined at line 16 in Figure 4.13. Note that a variable name is restricted
here to be an identifier that starts with a lower case letter. This restriction is
borrowed from the pattern matching mechanism in Scala.

4.6 Related Work

SugarJ [18] is a programming language that supports user-defined syntax ex-
tensions based on macros. Programmers can define any context-free syntax in
SDF [30] and any AST transformation rules in Stratego [75, 10]. The defined
syntax and AST transformation rules are modularized as a sugar library. Users
can import the sugar library and use the defined syntax. The users can also use

4https://github.com/csg-tokyo/proteaj2

4.6. RELATED WORK 89

multiple sugar libraries in the same source file. Unfortunately, the compiler does
not have the capability to handle ambiguous syntax. This limitation breaks the
composability of libraries, as several libraries cannot be used together. Sev-
eral languages such as Nemerle [64] also support user-defined syntax extensions
based on macros but their capabilities are more limited. In the case of Nemerle,
the users can only define the syntax where the first token is an identifier. More-
over, terminal symbols must be selected from a specific set of identifiers and
operators.

Type-specific languages (TSLs) [53] and typed syntax macros (TSMs) [52]
are a language feature that supports composable user-defined syntax exten-
sions. Here, composable means that users can use several syntax extensions in
the same source file. When the users use the multiple syntax extensions to-
gether, syntactic ambiguities might occur. The compiler resolves such syntactic
ambiguities by the expected type information. TSLs are similar to our previous
work, Protead, because they can give custom syntax to a function. TSMs are
similar to SugarJ since they are based on syntactic macros, but they are more
limited since each macro is statically typed. TSLs and TSMs can implement
various syntax extensions and the extensions are safe to compose, however, they
do not have the capability to define custom name binding. Since T'SLs are just
a function with custom syntax, they cannot extend name binding rules. TSMs
are focused on the composability of syntactic macros. Hence they only handle
hygienic macros [44], which are syntactic macros that do not affect name bind-
ing. Metamorphic syntax macros [6] are also syntactic macros that guarantee
type safety. They do not affect name binding for the same reason as TSMs.
TSLs and TSMs partially adopt eager disambiguation to parse a program in ac-
ceptable time. They provide several literal forms for using user-defined syntax.
The compiler initially skips parsing such literal forms until after type checking
the surrounding code. When parsing the literal, only syntax extensions that
return the expected type in that position are considered.

Mixfix operators [13] are another kind of user-defined operator. They were
adopted in several languages such as Coq [67] and Isabelle [55]. Unlike ProteaJ2,
to reduce syntactic ambiguities, mixfix operators only allow users to use partic-
ular forms of syntax: prefix, postfix, infix, or outfix syntax. Several languages
also allow programs to define operators without a name part. Since mixfix
operators are user-defined operators, it is difficult to use them to implement
language constructs involving name binding. Generalized method names [31]
extend multi-part method names, which are found in several languages such as
Smalltalk, so that they take regular expressions instead of a fixed name. They
can express various syntax similar to user-defined operators. They also have
the same problem with name binding as user-defined operators since they just
extend the syntax of method calls.

Implicit parameters in Scala [51] are a similar idea to our proposal. An im-
plicit parameter is a method parameter whose argument is given implicitly if the
argument is not explicitly specified at the call site of the method. The actual
argument is found among implicit values visible in the current scope. The dif-
ference is that the arguments of our context-sensitive expression are given from

90 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

the outer method or operator. Implicit parameters enable a context-sensitive
expression to express syntax available only within a local scope. We propose
a turnstile type for expressing such an expression. The Glasgow Haskell Com-
piler (GHC) has an extension named ImplicitParams based on [48]. It enables
programmers to use variables with a dynamic scope in a type safe fashion. Im-
plicitParams is similar to our requires clause mentioned in section 4.5.2.

Kotlin provides “function literals with receiver”, which enables calling a
function literal with a specified receiver object. It is used for writing type-
safe Groovy-style builders in Kotlin. Function literals with receiver provides
similar capability as a context-sensitive expression. A major difference from
our proposal is Kotlin does not aim to implement name binding, so it does
not have the functionality to support syntax extension with name binding such
as DSL classes and generic names. instance_eval in Ruby is also related to
context-sensitive expressions. instance_eval evaluates the given block as if it
is an instance method of the given receiver. instance_eval can be regarded
as a context-sensitive expression implemented in a dynamically typed language.
Since name binding is resolved at runtime, instance_eval is not safe.

Type-oriented island parsing [62] is a parsing technique to efficiently parse
a source program. It is an extension of island parsing [66], which is an efficient
bottom-up parsing algorithm using heuristics. The type-oriented island parsing
performs eager disambiguation for a completed child AST by using type infor-
mation. The paper also shows that they have implemented a syntax extension
system with name binding (called variable binders in that paper). To express
name binding, they adopted labeled symbols [36] and a scoping construct [11].
Labeled symbols are similar to generic names in our system, and a scoping
construct is similar to the left-hand type of a turnstile type. However, these
constructs express a variable naively and the variable is not encapsulated. They
cannot change the syntax of names or publish a different interface for accessing
a variable. In other words, a DSL class is a module system that reorganizes
and generalizes labeled symbols and a scoping construct to integrate them with
an object-oriented language. Furthermore, as far as we know, it is not clear
whether or not the type-oriented island parsing can be applied to scannerless
parsers since type-oriented island parsing uses heuristics for parsing tokens. If
it cannot be applied to scannerless parsers, programmers cannot extend literal
syntax.

4.7 Conclusion

This chapter proposes a variant of a lambda expression, named a context-
sensitive expression, for implementing user-defined language constructs with
custom name binding. A context-sensitive expression looks like a normal ex-
pression, but it implicitly takes parameters. These parameters are accessed
through public members such as methods and operators of a parameter object
instead of through parameter names. We have developed ProteaJ2, which is
a programming language based on Java but supports context-sensitive expres-

4.7. CONCLUSION 91

sions. Proteal2 supports turnstile types, DSL classes, and generic names to
express context-sensitive expressions for syntax extension with name binding.
The parser of ProteaJ2 adopts eager disambiguation using expected types to effi-
ciently parse a program. We showed several micro benchmarks to illustrate that
compilation time is acceptable. We also showed several case studies to demon-
strate our system can implement various language constructs with custom name
binding.

92 CHAPTER 4. CONTEXT-SENSITIVE EXPRESSIONS

dsl MatchDSL {
static <T, R> R _ "match" "{" _+ "}" (T t, Case<T, R>... cases) {
for (Case<T, R> c : cases) {
Optional<R> result = c.apply(t);
if (result.isPresent()) return result.get();
}

return null;

}
static <T, R> Case<T, R> "|" _ "=>" _ (MatcherO<T> m, Lazy |- R f) {
return new Case<T, R> ({ t -> m.ifMatch(t, f) });
}
static <T, A, name: Id_Lower, R> Case<T, R>
wjm _ w=>" (Matcheri<T, A, name> m, Var<A, name> |- R f) {
return new Case<T, R> ({ t -> m.ifMatch(t, f) });
}
static <T> MatcherO<T> "_" () { return new MatcherO <T> ({ t => Boolean.TRUE }); }

static <A, name: Id_Lower> Matcheri<A, A, name> name () {
return new Matcherl <A, A, name> ({ a -> Optional.<A>of(a) });

}
static Id_Lower _ _* (LowerCase lc, Letter... letters) {
return new Id_Lower(lc, letters);
}
}

dsl StringMatchers {
static MatcherO<String> "Empty" () {
return new MatcherO <String> ({ t -> Boolean.valueOf(t.isEmpty()) });
}
static <A, name: Id_Lower> Matcher1<String, A, name>
_ "+" _ (String prefix, Matcheri<String, A, name> m) {
return new StringPrefixMatcher <A, name> (prefix, m);
}
}
dsl Var <A, name: Id_Lower> {
Var (A a) { this.a = a; }
A name () { return a; }
private A a;

}

Figure 4.13: Part of the definition of pattern matching

Chapter 5

User-Defined Declaration
Statements

In the previous chapter, we proposed context-sensitive expressions and turnstile
types, which enable users to declare language constructs involving name binding
such as let expressions. However, users still cannot declare “declarations”,
which declares something and enables to use it after the declaration. To be
precise, users can implement such the declarations but the compiler cannot
statically check the implementation and its usage. Most programming languages
adopt declarations as language features; for example, Java has local variable
declarations and class declarations. In this chapter, we propose a language
feature for declaring a certain kind of declarations.

5.1 Declarations and Scopes

In the rest of this chapter, we use QML as an example that is a DSL having
declarations. Figure 5.1 is a program in QML. This program declares two rect-
angles, rectl and rect2. rectl has size property and the value is 100. The
width of rect1l is the same value as the size property and the height of rect1
is the same as the width of rectl. The width of rect?2 is a half of the size of
rectl. The height of rect2 is the same as the width of rect2.

Line 3 of this program declares size. Note that users can access to size
in two ways; size and rectl.size. The expression size can be used only
within the declaration of rectl. Therefore, its scope is from the declaration
(Line 3) to the end of the Rectangle block (Line 6). The expression rectl.size
can be used anywhere after the declaration, so its scope is from the declaration
(Line 3) to the end of the QML program (Line 11). width and height are
default properties of Rectangle. Similar to size, they can be accessed in two
ways; width and rectl.width. The expression width is available within the
Rectangle declaration (Line 1 - 6) and it returns the value of width of the
declared rectangle. The expression rectl.width can be used anywhere, so its

93

94 CHAPTER 5. USER-DEFINED DECLARATION STATEMENTS

Rectangle {
id : rectl
property int size : 100
width : size
height : rectl.width
}
Rectangle {
id : rect2
width : rectl.size / 2
height : width
X

Figure 5.1: A QML program

scope is from the declaration of rect1 (Line 2) to the end of the QML program
(Line 11).

It is difficult to implement such the DSL as an embedded DSL. There are
two reasons for this difficulty. First, the declared thing is available not only
within arguments of the declaration. let expressions are easy to implement
because their scope is only within the argument of themselves. However, the
scopes of size and rectl.size in Figure 5.1 are after the declaration. Hence
such the declaration cannot be implemented by only using local analysis; for
example, syntactic macros are difficult to implement such the declaration since
they translate an AST into another AST without considering contexts. Second,
scopes do not take a nested structure. For example, the scope of rectl.size
is from Line 3 to Line 11 but the scope of width is from Line 1 to Line 6. The
name binding rules of the host language are difficult to simulate such the scopes.
Higher-order abstract syntax (HOAS) cannot simulate the scope rules since
HOAS uses lambda expressions for expressing name binding and the lambda
expressions take a nested structure.

5.2 Context Activation within a User-Defined
Scope

We propose activate statements, which take a DSL object and make its visible
members available without a receiver in the rest of the program. The scope of
visible members does not follow the scope rules for variables in the host language.
If the activate statement is used in the body of an operator/method, the visible
members are also available at the call-site of the operator/method. Hence we
can implement an operator that simulates a variable declaration; if the operator
activates an DSL object that contains getter operator and setter operator for
X, programmers can write a code as if variable x is available after calling the
operator. This is because the visible members of the activated DSL object are

5.2. CONTEXT ACTIVATION WITHIN A USER-DEFINED SCOPE 95

Rectangle rectl {
property int size : 100
width : size
height : rectl.width

}

Rectangle rect2 {
width : rectl.size / 2
height : width

}

Figure 5.2: A program in simplified QML

also available at the expressions and statements after the declaration. In this
section, we also introduce activates clauses for static typing.

To express scopes that have a non-nested structure, we also propose scope
for clauses. A scope for clause is specified to an operand of an operator (or
a parameter of a method). It takes a type of DSL objects and the operand
works as a scope of DSL objects of the given type. scope for clauses allow
programmers to use different scope rules for each type of DSL objects.

5.2.1 Simplified QML

To simplify out explanation, we slightly modify the QML syntax. Figure 5.2
shows a program in simplified QML. This program is almost same as Figure 5.1
but it does not have id property. Instead, it takes a name as an argument of
Rectangle. This is because id property is special property and it has different
scope rule from other properties. We thought it is better that every property of
Rectangle has the same scoping rules.

5.2.2 Activate Statements

An activate statement takes a DSL object and it turns the given DSL object
into active. Here, ’a DSL object X is active’ means ’visible members of X are
available without a receiver’. For example, see the following DSL class:

dsl SizeDSL {
SizeDSL (Rectangle rect) { this.rect = rect; }}
int "size" () { return (int)rect.get("size"); }
void "size" ":" _ (int x) { rect.set("size", x); }
private Rectangle rect;

}

this DSL class has two operators: one is a getter operator for size (Line 3)
and one is a setter operator for size (Line 4). If you activate an instance of
SizeDSL, you can use these operators after the activation. The following code
shows an example code using an activate statement:

96 CHAPTER 5. USER-DEFINED DECLARATION STATEMENTS

void declare_size () {
// inactive
Rectangle rect = ...;
activate new SizeDSL(rect);
// active
}
void func () {
// inactive
{
// inactive
declare_size()
// active
}
// active

}

Figure 5.3: A pseudo code showing the scope of activated DSL object

Rectangle rect = ...;

activate new SizeDSL(rect);

size : 100;

System.out.println(size); // print 100

Line 2 activates an instance of SizeDSL, so the getter and setter operators are
available at Line 3 and Line 4. Actually, Line 3 uses the setter operator and Line
4 uses the getter operator. You can find that the activate statement works as
a declaration of a variable size.

The scope where an activated DSL object is active does not follow the scope
rules for variables in the host language. If an DSL object is active at the end
of a block, it is also active at the code following the block. Similarly, if an DSL
object is active at the end of the body of an operator/method, it is also active
at the code following a call of the operator/method. Figure 5.3 is a pseudo
code showing the scope of activated DSL object. Since an instance of DSL
class SizeDSL is active at the code following the method call declare_size()
(Line 12), we can use getter and setter operators for size there. Therefore, the
method call declare_size() works as a variable declaration.

To determine which DSL object is active at compile time, we introduce
activates clauses. An activates clause is attached to an operator/method
where DSL objects that activated at the inside of its body are active at the end
of its body. An activates clause takes types of activated DSL objects. The
relation between activate statements and activates clauses is similar to the
relation between throw statements and throws clauses in Java.

Now, we can implement property declaration in Figure 5.2. Figure 5.4 is a
definition of property declaration specialized for size. This program declares
a DSL class named RectangleDSL. RectangleDSL contains an instance operator

5.2. CONTEXT ACTIVATION WITHIN A USER-DEFINED SCOPE 97

dsl RectangleDSL {

void "property" "int" "size" ":" _ (int value)
activates SizeDSL
{
activate new SizeDSL(self);
}

RectangleDSL (Rectangle self) { this.self = self; }
private Rectangle self;

Figure 5.4: A definition of property declaration specialized for size

that starts with property (Line 2 - 6), a constructor (Line 7), and an instance
field named self (Line 8). The property operator activates a DSL object of
type SizeDSL at Line 5 and the DSL object is also active at the end of the
body. Hence it has activates clause taking SizeDSL. We can use this operator
as follows:

property int size : 100;
System.out.println(size); // print 100

The property declaration in Figure 5.2 declares not only size but also
rectl.size. To simulate this, we should implement a DSL class as follows:

dsl QualifiedSizeDSL<rectName: Ident> {
QualifiedSizeDSL (Rectangle rect) { this.rect = rect; }}
int rectName "." "size" () { return (int)rect.get("size"); }
private Rectangle rect;

}

and then, we should modify the definition of RectangleDSL in Figure 5.4. Fig-
ure 5.5 is a modified definition of property declaration supporting rectl.size.
The name of a rectangle rect1 is expressed as a generic name rectName. Since
the property operator activates not only a DSL object of type SizeDSL a DSL
object of type QualifiedSizeDSL<rectName>, we can use instance operators of
QualifiedSizeDSL after the property declaration. Therefore, we can use an
expression such as rectl.size after the property declaration as Figure 5.2.

5.2.3 Scoping Rule for Activated DSL Objects

To express scope rules for activated DSL objects, we propose scope for clauses.
A scope for clause is specified to an operand of an operator (or a parameter of
a method). It takes a type of DSL objects and the operand works as a scope of
DSL objects of the given type. By specifying scope for clauses, programmers
can apply different scope rules for each type of DSL objects. See Figure 5.2. To
simulate the property declaration in this figure, programmers should designate
the argument of Rectangle declaration as the scope rule for size. Similarily,

98 CHAPTER 5. USER-DEFINED DECLARATION STATEMENTS

dsl RectangleDSL <rectName: Ident> {

void "property" "int" "size" ":" _ (int value)
activates SizeDSL, QualifiedSizeDSL<rectName>
{

self.defineProp("size", value);
activate new SizeDSL(self);
activate new QualifiedSizeDSL<rectName>(self);

}
RectangleDSL (Rectangle self) { this.self = self; }
private Rectangle self;

}

Figure 5.5: A definition of property declaration supporting rectl.size

they should designate the whole QML program as the scope for rectl.size.
Since the expression size is a call of the instance operator of SizeDSL, the scope
rule for size can be specified by scope for SizeDSL.

Figure 5.6 is a definition of Rectangle declaration that works as a scope
for size. This defines an operator starts with Rectangle. The operator takes
an operand with the type RectangleDSL<rectName> I Void. Here, the type
RectangleDSL<rectName> F Void is a turnstile type proposed in the previous
chapter. A type T F Void is a special type of a parameter that takes a block as
its argument. The operand has a scope for clause with the type SizeDSL. This
specifies that if a DSL object of SizeDSL is activated in this argument, the DSL
object is not active at the outside of the argument. Therefore, programmers can
use the Rectangle operator, property operator, and size operator as follows:

Rectangle rectl {
// System.out.println(size); // compile error
property int size : 100;
System.out.println(size); // print 100
};
// System.out.println(size); // compile error
Since the scope of SizeDSL is the argument of the Rectangle operator, the
expression size cannot be used at the outside of the Rectangle declaration.
Since the scope of rect1.size is the whole QML program, a region delimiter
that separates the inside and outside of QML program is needed. Figure 5.7 is
a definition of a DSL class that contains a static operator expressing the QML
region delimiter. An operator starts with QML is the QML region delimitor (Line
2 - 4). It takes an operand with the turnstile type QUL + Void. It expresses
that users can write a QML program in the operand. The operand has a scope
for clause with the type QualifiedSizeDSL<7>. 7 is a wildcard argument. The
scope of rectl.size is the operand since it is a call of the instance operator of
QualifiedSizeDSL. From the above, users can write the following program:

QML {

5.2. CONTEXT ACTIVATION WITHIN A USER-DEFINED SCOPE 99

<rectName: Ident> void "Rectangle" rectName _
(RectangleDSL<rectName> |- Void body scope for SizeDSL)
{

Rectangle rect = new Rectangle();
body.apply(new RectangleDSL<rectName>(rect););
declareRectangle(rect);

}

Figure 5.6: A definition of Rectangle declaration that works as a scope for size

dsl QML {
static void "QML" _ (QML |- Void program scope for QualifiedSizeDSL<?>) {

program.apply(new QML(Q));
}

<rectName: Ident> void "Rectangle" name _
(RectangleDSL<rectName> |- Void body scope for SizeDSL)

{ ...}
}

Figure 5.7: A definition of a DSL class that contains an operator expressing the
QML region delimiter

Rectangle rectl {

// System.out.println(rectl.size); // compile error
property int size : 100;
System.out.println(rectl.size); // print 100
};
System.out.println(rectl.size); // print 100
I
// System.out.println(rectl.size); // compile error

Note that rectl.size is available at the outside of the declaration of rectl.
This is because the scope of rectl.size does not follow the scope rules for
variables but follows the scope rule of QualifiedSizeDSL<7>.

5.2.4 Implementation

We have implemented our proposal by modifying the compiler of Proteal2,
which is introduced in the previous chapter. The source code of the compiler
is available from our github repository'. We have modified environments that
manage local variables to also manage active DSL objects. Local variables and
each active DSL objects have different scope rules and they are non-nested.

Thttps://github.com/csg-tokyo/proteaj2

100 CHAPTER 5. USER-DEFINED DECLARATION STATEMENTS

Therefore, an enviroment copies its active DSL objects into its parent environ-
ment when a program exits a block. activate statements and calls of opera-
tors/methods that have activates clauses add the given types of active DSL
objects into the environment. The activated DSL objects are removed from the
environment at the end of an argument of a parameter that has a scope for
clause with the corresponding type. Operands with a turnstile type also add
the given types of DSL objects into the environment. Since the turnstile type
make several operators available at the operand, the activated DSL objects are
removed from the environment at the end of the argument.

5.2.5 Definition of simplified QML

By using activate statements, activates clauses, and scope for clauses, we
can implement simplified QML shown in Figure 5.2 in ProteaJ2. Figure 5.8
shows a definition of simplified QML. When we use this DSL, we can write the
following code:

QML MyQMLProgram {
Rectangle rectl {
property int size : 100;
width : size;
height : rectl.width;
};
Rectangle rect2 {
width : rectl.size / 2;
height : width;
};
I

You can find that this code looks very similar to the code in Figure 5.2.

Figure 5.8 defines Prop1DSL and Prop2DSL instead of SizeDSL and QualifiedSizeDSL.
Prop1DSL and Prop2DSL are more general than SizeDSL and QualifiedSizeDSL
because they take a generic name propName for a property name instead of
the fixed property name size. Similarly, the property operator defined in
RectangleDSL also takes a generic name propName and it activates Prop1DSL
and Prop2DSL that take the generic name propName as their type argument.
Hence users can define properties with their own names and access the proper-
ties by their names. Prop1DSL and Prop2DSL have a field id, which is an iden-
tifier of the property at runtime. The value of id is not the same as propName
since programmers cannot get the value of a generic name at runtime in the
current definition of ProteaJ2.

RectangleDSL in Figure 5.8 has getter and setter operators for width and
height in addition to the property operator. These operators are available at
the body of Rectangle declarations since the Rectangle operator defined in the
DSL class QML takes a parameter with the turnstile type RectangleDSL<progName,
rectName> - Void. Hence the expressions width and height are available
at the body of Rectangle declarations. The expression rectl.width is also

5.3. DISCUSSION 101

available at the body of Rectangle declarations for the same reason, and fur-
thermore, it is also available at the outside of the Rectangle declarations. The
Rectangle operator activates RectanglePropsDSL<progName, rectName>. Since
the DSL class RectanglePropsDSL defines getter operators for width and height
by qualified name such as rect1.width, the expression rect1.width is available
after the definition of the rectangle rectl.

5.3 Discussion

5.3.1 Contributions

Our proposal enables to implement embedded DSLs that have declarations.
Most programming languages have declarations such as local variable declara-
tions, so our proposal enables programmers to implement various programming
languages as embedded DSLs. In our proposal, a declaration is expressed by an
activation of a DSL object with activate statements. If a DSL object is active,
the instance operators of the DSL object are available there without a receiver.
The instance operators simulate syntax that is available at the local scope.

The important feature of our proposal is that scope of activated DSL objects
is not the same as the scope of local variables. The scope of activated DSL
objects is specified by scope for clauses for each type of DSL objects. This
enables programmers to define a kind of namespaces of DSLs. Programmers can
control visibility of operators (i.e. syntax) by using scope for clauses without
considering the scope of local variables of the host language.

5.3.2 Limitations

In our proposal, size and rectl.size are expressed by calls of different opera-
tors. Similarly, x.y and x.y.z are expressed by calls of different operators. This
implies that the nesting level of DSL namespaces has limitation. Programmers
should define similar operators for each nesting level.

Our proposal cannot implement arbitrary declarations. For example, it can-
not implement class declarations in Java. This is because activate statements
can enable several syntax locally but cannot define new types.

5.3.3 Future Work

In the current design, programmers cannot define the scope rules of if-like
statement for a DSL object. If programmers define their own if statement and
users activate a DSL object in the then block in the if statement, the activated
DSL object is active in the else block. This is because current design does not
consider lazy evaluation or function literals. To resolve this problem, we should
be able to specify activates clauses as a part of a type. This makes it possible
to express an activation of a DSL object after execution of the function object.

102 CHAPTER 5. USER-DEFINED DECLARATION STATEMENTS

dsl QML <progName: Ident> {
static void "QML" progName _
(QML<progName> |- Void program
scope for Prop2DSL<progName, ?, 7, 7>, RectanglePropsDSL<progName, 7>) {
program.apply(new QML<progName>());

<rectName: Ident> void "Rectangle" rectName _
(RectangleDSL<progName, rectName> |- Void body scope for ProplDSL<rectName, 7, 7>)
activates RectanglePropsDSL<progName, rectName>

{
Rectangle rect = new Rectangle();
body.apply (new RectangleDSL<progName, rectName>(rect););
declareRectangle(rect);
activate new RectanglePropsDSL<progName, rectName>(rect);
}
}
dsl RectangleDSL <scope: Ident, rectName: Ident> {
<propName: Ident, T> void "property" T propName ":" _ (T value)
activates ProplDSL<rectName, propName, T>, Prop2DSL<scope, rectName, propName, T>
{

String id = genSym();
self.defineProp(id, value);
activate new PropiDSL<rectName, propName, T>(self, id);
activate new Prop2DSL<scope, rectName, propName, T>(self, id);
}
int "width" () { return self.getWidth(); }
int "height" () { return self.getHeight(); }

int rectName "." "width" () { return self.getWidth(); }
int rectName "." "height" () { return self.getHeight(); }
void "width" ":" _ (int w) { self.setWidth(w); }

void "height" ":" _ (int h) { self.setHeight(h); }

RectangleDSL (Rectangle self) { this.self = self; }
private Rectangle self;

}

dsl RectanglePropsDSL <scope: Ident, rectName: Ident> {
int rectName "." "width" () { return self.getWidth(); }
int rectName "." "height" () { return self.getHeight(); }

RectanglePropsDSL (Rectangle self) { this.self = self; }
private Rectangle self;
}
dsl PropiDSL <scope: Ident, propName: Ident, T> {
Prop1DSL (Rectangle rect, String id) {
this.rect = rect;
this.id = id;

}
T propName () { return (T)rect.get(id); }
void propName ":" _ (T x) { rect.set(id, x); }

private Rectangle rect;
private String id;
}
dsl Prop2DSL <scope: Ident, namel: Ident, name2: Ident, T> {
Prop2DSL (Rectangle rect, String id) {
this.rect = rect;
this.id = id;
}
T namel "." name2 () { return (T)rect.get(id); }
private Rectangle rect;
private String id;

Figure 5.8: A definition of simplified QML

Chapter 6

Concluding Remarks

In this dissertation, we propose

1. user-defined operators for composable syntax extensions, named protean
operators

2. a variant of lambda expressions for expressing user-defined language con-
structs involving name binding, named context-sensitive expressions,

3. and language constructs for defining user-defined declarations, named
activate statements, activates clauses, and scope for clauses.

We also show programming languages named ProteaJ and ProteaJ2, which sup-
port our proposals. The source code of the compiler of ProteaJ and ProteaJ2
is available from our github repository!.

Protean operators are user-defined operators whose syntax consists of oper-
ator names and operands. The characteristic property of protean operators is
that a protean operator is overloaded by operators that have the same syntax
but have different return type or operand types. This means that static types
work as if they are non-terminal symbols because a protean operator is available
only at an expression where its return type is expected. Hence programmers
can define various syntax by declaring protean operators and using their return
type and operand types as non-terminal symbols. Actually, programmers can
define any parsing expression grammars (PEGs) in ProteaJ. Protean operators
can also express user-defined literals. Furthermore, protean operators are fully-
composable because the compiler can distinguish operators even if they have the
same syntax except types. Users can use operators without care about conflicts
of syntax.

Context-sensitive expressions are a variant of lambda expressions, for ex-
pressing name binding and scope rules. They take parameters but the param-
eters are not explicitly written. Since the parameter names are not given, the
parameters cannot be accessed via the parameter names. Instead, instance

Thttps://github.com/csg-tokyo/proteaj and https://github.com/csg-tokyo/proteaj2

103

104 CHAPTER 6. CONCLUDING REMARKS

members of the parameters are available without receivers in context-sensitive
expressions. In ProteaJ2, protean operators can be instance members. This
means that we can express syntax that is available only at context-sensitive ex-
pressions. Hence we can express name binding and scope rules by using context-
sensitive expressions. ProteaJ2 supports turnstile types, which express the types
of context-sensitive expressions. ProteaJ2 also supports generic names to rec-
ognize arbitrary names given by end-users. User-defined language constructs
implemented by using context-sensitive expressions can be safely composed be-
cause the scope of protean operators is expressed by turnstile types.

An activate statement takes an object as its argument and enables its
members after the statement without receivers. The scope of activated mem-
bers does not follow the scope of local variables in the host language. If the
activate statement is used in the body of an operator/method, the visible
members are also available at the call-site of the operator/method. Hence we
can implement an operator that simulates a variable declaration. The scope of
activated members is given by scope for clauses. A scope for clause takes
several types and it expresses the scope of activated members of given objects.
Programmers can implement different scope rules for each embedded DSLs. To
statically check which members are activated, Protead also provides activates
clauses. Since the compiler can check what members are available by checking
signatures of methods/operators, user-defined declarations and their scope rules
can be safely composed.

The contributions of this dissertation are that we show that we can construct
a langauge supporting a syntax extension system named protean operator, which
are fully-composable and flexible. Then, we also show that we can extend the
language to support user-defined language constructs involving name binding
by introducing context-sensitive expressions and their types. And then, we
show that our language can also support user-defined declarations by activate
statements, activates clauses, and scope for clauses. Table 6.1 shows the
positions of ProteaJ and ProtealJ2.

105

|| composability | syntax | name binding
Spoofax uncomposable
MPS uncomposable
ProteaJ
Proteal2

string embedding
fluent interfaces
mixfix operators
Scala-virtualized
Recaf
C / C++ macros
reader macros
hygienic macros
anaphoric macros
SugarJ
Wyvern

partially
partially
partially
partially
partially
bounded

Cedalion

host syntax
mixfix syntax

host syntax

host syntax

function call syntax
starts with macro character

host syntax

host syntax

Table 6.1: Positions of ProteaJ and ProteaJ2

106 CHAPTER 6. CONCLUDING REMARKS

Bibliography

Michael D. Adams. “Principled Parsing for Indentation-sensitive Lan-
guages: Revisiting Landin’s Offside Rule”. In: Proceedings of the 40th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’13. Rome, Italy, 2013, pp. 511-522. pDO1: 10. 1145/
2429069.2429129

Ulf Norell et al. Agda’s documentation. 2016. URL: https : //agda .
readthedocs.io (visited on 05/29/2017).

Jonathan Bachrach and Keith Playford. D-expressions: Lisp power, Dylan
style. 1999. URL: https://people.csail .mit.edu/ jrb/Projects/
dexprs.pdf (visited on 05/25/2017).

Jonthan Bachrach and Keith Playford. “The Java Syntactic Extender
(JSE)”. In: Proceedings of the 16th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. OOPSLA
'01. Tampa Bay, FL, USA, 2001, pp. 31-42. por: 10 . 1145 /504282 .
504285.

Aggelos Biboudis, Pablo Inostroza, and Tijs van der Storm. “Recaf: Java
Dialects As Libraries”. In: Proceedings of the 2016 ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and Fx-
periences. GPCE 2016. Amsterdam, Netherlands, 2016, pp. 2-13. DoTI:
10.1145/2993236.2993239.

Claus Brabrand and Michael I. Schwartzbach. “Growing Languages with
Metamorphic Syntax Macros”. In: Proceedings of the 2002 ACM SIGPLAN
Workshop on Partial Fvaluation and Semantics-based Program Manipu-
lation. PEPM °02. Portland, Oregon, 2002, pp. 31-40. por: 10. 1145/
503032.503035.

Edwin Brady and Kevin Hammond. “Resource-Safe Systems Program-
ming with Embedded Domain Specific Languages”. In: Practical Aspects
of Declarative Languages: 14th International Symposium, PADL 2012,
Philadelphia, PA, USA, January 23-24, 2012. Proceedings. Ed. by Claudio
Russo and Neng-Fa Zhou. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 242-257. 1SBN: 978-3-642-27694-1. DOI: 10.1007/978-3-642-
27694-1_18.

107

108 BIBLIOGRAPHY

[8] Mark G. J. van den Brand et al. “Disambiguation Filters for Scannerless
Generalized LR Parsers”. In: Compiler Construction, 11th International
Conference, CC 2002, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002, Grenoble, France, April
8-12, 2002, Proceedings. Ed. by R. Nigel Horspool. Vol. 2304. Lecture
Notes in Computer Science. Springer, 2002, pp. 143-158. poI: 10.1007/3-
540-45937-5_12.

[9] Martin Bravenboer and Eelco Visser. “Concrete Syntax for Objects: Domain-
specific Language Embedding and Assimilation Without Restrictions”. In:
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. OOPSLA
'04. Vancouver, BC, Canada, 2004, pp. 365-383. DOI: 10.1145/1028976.
1029007.

[10] Martin Bravenboer et al. “Stratego/XT 0.17. A language and toolset
for program transformation”. In: Science of Computer Programming 72.1
(2008), pp. 52-70. DOI: 10.1016/j.scico.2007.11.003.

[11] Luca Cardelli, Florian Matthes, and Martin Abadi. Eztensible syntaz with
lexical scoping. Tech. rep. SRC-RR-121. Systems Research Center, Feb.
1994. URL: http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-
RR-121.pdf (visited on 03/14/2017).

[12] M. Clavel et al. “Maude: specification and programming in rewriting logic”.
In: Theoretical Computer Science 285.2 (2002), pp. 187-243. po1: 10.
1016/50304-3975(01) 00359-0.

[13] Nils Anders Danielsson and Ulf Norell. “Parsing Mixfix Operators”. In:
Proceedings of the 20th International Conference on Implementation and
Application of Functional Languages. IFL’08. Hatfield, UK, 2011, pp. 80—
99. DOI: 10.1007/978-3-642-24452-0_5.

[14] F. L. Deremer. Practical translators for LR(k) languages. Tech. rep. Cam-
bridge, 1969. URL: http://publications.csail.mit.edu/lcs/pubs/
pdf /MIT-LCS-TR-065.pdf (visited on 04,/12/2017).

[15] Jay Earley. “An Efficient Context-free Parsing Algorithm”. In: Commun.
ACM 13.2 (Feb. 1970), pp. 94-102. 1ssN: 0001-0782. pOI: 10 . 1145/
362007 .362035.

[16] Torbjorn Ekman and Gorel Hedin. “The Jastadd Extensible Java Com-
piler”. In: Proceedings of the 22Nd Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems and Applications. OOPSLA ’07.
Montreal, Quebec, Canada, 2007, pp. 1-18. DOI: 10 . 1145/ 1297027 .
1297029.

[17] Torbjorn Ekman and Goérel Hedin. “The JastAdd System — Modular Ex-
tensible Compiler Construction”. In: Sci. Comput. Program. 69.1-3 (Dec.
2007), pp. 14-26. poI: 10.1016/j.scico.2007.02.003.

BIBLIOGRAPHY 109

[18] Sebastian Erdweg et al. “SugarJ: Library-based Syntactic Language Ex-
tensibility”. In: Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’11. Portland, Oregon, USA, 2011, pp. 391-406. pO1: 10.1145/
2048066.2048099.

[19] Bryan Ford. “Packrat parsing:: simple, powerful, lazy, linear time, func-
tional pearl”. In: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming. ICFP ’02. Pittsburgh, PA, USA,
2002, pp. 36-47.

[20] Bryan Ford. “Parsing Expression Grammars: A Recognition-based Syn-
tactic Foundation”. In: Proceedings of the 81st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’04. Venice,
Italy, 2004, pp. 111-122. DOL: 10.1145/964001.964011.

[21] Apache Software Foundation. Apache logfj 1.2. (This software is end of
life but we can get the source code yet.) 1999. URL: http://logging.
apache.org/log4j/1.2/ (visited on 05/29/2017).

[22] Martin Fowler. FluentInterface. Dec. 2005. URL: https://www.martinfowler.
com/bliki/FluentInterface.html (visited on 04/12/2017).

[23] Martin Fowler. Language Workbenches: The Killer-App for Domain Spe-
cific Languages? 2005. URL: https://wuw.martinfowler.com/articles/
languageWorkbench.html (visited on 05/26/2017).

[24] Martin Fowler. ProjectionalEditing. Jan. 2008. URL: https://martinfowler.
com/bliki/ProjectionalEditing.html (visited on 05/24/2017).

[25] Inc. Free Software Foundation. The C Preprocessor. 1987. URL: https:
//gcc.gnu.org/onlinedocs/cpp/index.html (visited on 05/23/2017).

[26] R. Frost and J. Launchbury. “Constructing Natural Language Interpreters
in a Lazy Functional Language”. In: Comput. J. 32.2 (Apr. 1989), pp. 108—
121. poI: 10.1093/comjnl/32.2.108.

[27] S. Ginsburg and S. Greibach. “Deterministic context free languages”. In:
6th Annual Symposium on Switching Circuit Theory and Logical Design
(SWCT 1965). Oct. 1965, pp. 203-220. DOI: 10.1109/F0CS.1965.7.

[28] Albert Graf. The Pure Manual. 2009. URL: https://puredocs.bitbucket.
io/pure.html (visited on 05/29/2017).

[29] Paul Graham. On LISP: Advanced Techniques for Common LISP. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1994. 1sBN: 9780130305527.

[30] J. Heering et al. “The Syntax Definition Formalism SDF — Reference Man-
ual —". In: SIGPLAN Not. 24.11 (Nov. 1989), pp. 43-75. DOIL: 10.1145/
71605.71607.

[31] Michael Homer, Timothy Jones, and James Noble. “From APIs to Lan-
guages: Generalising Method Names”. In: Proceedings of the 11th Sym-
posium on Dynamic Languages. DLS 2015. Pittsburgh, PA, USA, 2015,
pp- 1-12. DOI: 10.1145/2816707.2816708.

110 BIBLIOGRAPHY

[32] Paul Hudak. “Modular Domain Specific Languages and Tools”. In: Pro-
ceedings of the 5th International Conference on Software Reuse. ICSR
'98. Washington, DC, USA: IEEE Computer Society, 1998, pp. 134—. DOTI:
10.1109/ICSR.1998.685738.

[33] Graham Hutton. “Higher-order functions for parsing”. In: Journal of Func-
tional Programming 2.3 (July 1992), pp. 323-343. DOI: 10.1017/S0956796800000411.

[34] Graham Hutton and Erik Meijer. Monadic Parser Combinators. Technical
Report NOTTCS-TR-96-4. Department of Computer Science, University
of Nottingham, 1996. URL: http://www.cs.nott.ac.uk/ ~pszgmh/
monparsing.pdf (visited on 04/12/2017).

[35] JetBrains. Meta Programming System. URL: https://www.jetbrains.
com/mps/ (visited on 05/24/2017).

[36] Trevor Jim, Yitzhak Mandelbaum, and David Walker. “Semantics and
Algorithms for Data-dependent Grammars”. In: Proceedings of the 37th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL '10. Madrid, Spain, 2010, pp. 417-430. DOI: 10.
1145/1706299.1706347.

[37] Stephen C Johnson. Yacc — Yet another compiler-compiler. Computer Sci-
ence Technical Report 32. Murray Hill, NJ, USA: AT&T Bell Laboratories,
1975. URL: http://dinosaur . compilertools.net/yacc/index .html
(visited on 04/12/2017).

[38] JSGLR: An SGLR Parse Table Evaluator for Java. URL: http://strategoxt.
org/Stratego/JSGLR (visited on 05/29/2017).

[39] Tadao Kasami. An Efficient Recognition and Syntaz-Analysis Algorithm
for Context-Free Languages. Coordinated Science Laboratory Report R-257.
Coordinated Science Laboratory, Mar. 1966. URL: http://hdl.handle.
net/2142/74304 (visited on 05/29/2017).

[40] Lennart C. L. Kats and Eelco Visser. “The Spoofax language workbench:
rules for declarative specification of languages and IDEs”. In: Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2010. Ed. by
William R. Cook, Siobhin Clarke, and Martin C. Rinard. Reno/Tahoe,
Nevada, 2010, pp. 444-463. DOI: 10.1145/1869459.1869497.

[41] Donald E. Knuth. “Backus Normal Form vs. Backus Naur Form”. In: Com-
mun. ACM 7.12 (Dec. 1964), pp. 735-736. 1SSN: 0001-0782.

[42] Donald E. Knuth. “On the translation of languages from left to right”. In:
Information and Conitrol 8.6 (1965), pp. 607-639. DOI: 10.1016/30019-
9958(65)90426-2.

[43] Donald E. Knuth. “Semantics of context-free languages” In: Mathematical
systems theory 2.2 (1968), pp. 127-145. DOI: 10.1007/BF01692511.

BIBLIOGRAPHY 111

[44]

[45]

[54]

Eugene Kohlbecker et al. “Hygienic Macro Expansion”. In: Proceedings of
the 1986 ACM Conference on LISP and Functional Programming. LFP
'86. Cambridge, Massachusetts, USA, 1986, pp. 151-161. po1: 10.1145/
319838.319859.

Gabriél D. P. Konat et al. “Declarative Name Binding and Scope Rules”.
In: Software Language Engineering, 5th International Conference, SLE
2012, Dresden, Germany, September 26-28, 2012, Revised Selected Papers.
Ed. by Krzysztof Czarnecki and Gorel Hedin. Vol. 7745. Lecture Notes in
Computer Science. Springer, 2012, pp. 311-331. po1: 10.1007/978-3~-
642-36089-3_18.

Daan Leijen and Erik Meijer. Parsec: Direct Style Monadic Parser Com-
binators For The Real World. Technical Report UU-CS-2001-35. Departe-
ment of Computer Science, Universiteit Utrecht, July 2001. URL: https:
//www.microsoft.com/en-us/research/wp-content/uploads/2016/
02/parsec-paper-letter.pdf (visited on 04/12/2017).

John Levine. Flex € Bison: Text Processing Tools. 1st ed. O’Reilly Media,
Aug. 2009. 1SBN: 9780596155971.

Jeffrey R. Lewis et al. “Implicit Parameters: Dynamic Scoping with Static
Types”. In: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’00. Boston, MA, USA,
2000, pp. 108-118. por: 10.1145/325694.325708.

David H. Lorenz and Boaz Rosenan. “Cedalion: A Language for Language
Oriented Programming”. In: SIGPLAN Not. 46.10 (Oct. 2011), pp. 733—
752. 18SN: 0362-1340. DOI: 10.1145/2076021.2048123.

Simon Marlow. Haskell 2010 Language Report. 2010. URL: https://www.
haskell.org/onlinereport/haskell2010/ (visited on 04/12/2017).

Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala:
A Comprehensive Step-by-Step Guide, 2nd FEdition. 2nd. USA: Artima
Incorporation, 2011. 1SBN: 9780981531649.

Cyrus Omar, Chenglong Wang, and Jonathan Aldrich. “Composable and
Hygienic Typed Syntax Macros”™. In: Proceedings of the 30th Annual ACM
Symposium on Applied Computing. SAC ’15. Salamanca, Spain, 2015,
pp- 1986—-1991. DoOI: 10.1145/2695664 .2695936.

Cyrus Omar et al. “Safely Composable Type-Specific Languages”. In: Pro-
ceedings of the 28th European Conference on ECOOP 2014 — Object-
Oriented Programming - Volume 8586. 2014, pp. 105-130. DOI: 10.1007/
978-3-662-44202-9_5.

Terence Parr and Kathleen Fisher. “LL(*): The Foundation of the ANTLR
Parser Generator”. In: Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI ’11.
San Jose, California, USA, 2011, pp. 425-436. DOIL: 10.1145/1993498.
1993548.

[57]

[59]
[60]

[61]

[62]

[63]

[65]

BIBLIOGRAPHY

Lawrence C. Paulson. Isabelle: a Generic Theorem Prover. Lecture Notes
in Computer Science. Springer-Verlag Berlin Heidelberg, 1994. DOI: 10.
1007/BFb0030541.

F. Pfenning and C. Elliott. “Higher-order Abstract Syntax”. In: Pro-
ceedings of the ACM SIGPLAN 1988 Conference on Programming Lan-
guage Design and Implementation. PLDI ’88. Atlanta, Georgia, USA,
1988, pp. 199-208. DOL: 10.1145/53990.54010.

Jon Rafkind and Matthew Flatt. “Honu: Syntactic Extension for Alge-
braic Notation Through Enforestation”. In: Proceedings of the 11th Inter-
national Conference on Generative Programming and Component Engi-
neering. GPCE ’12. Dresden, Germany, 2012, pp. 122-131. poI1: 10.1145/
2371401.2371420.

Tiark Rompf et al. “Scala-Virtualized: linguistic reuse for deep embed-
dings”. In: Higher-Order and Symbolic Computation 25.1 (2012), pp. 165—
207. por: 10.1007/s10990-013-9096-9.

ScalaTest. URL: http://www.scalatest.org/ (visited on 05/29/2017).

Tim Sheard. “Using MetaML: A Staged Programming Language”. In:
Advanced Functional Programming: Third International School, AFP’98,
Braga, Portugal, September 12-19, 1998, Revised Lectures. Ed. by S. Doaitse
Swierstra, José N. Oliveira, and Pedro R. Henriques. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 207-239. DO1: 10.1007/10704973_5.

Tim Sheard and Simon Peyton Jones. “Template Meta-programming for
Haskell”. In: Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell.
Haskell ’'02. Pittsburgh, Pennsylvania, 2002, pp. 1-16. por: 10. 1145/
581690.581691.

Erik Silkensen and Jeremy Siek. “Well-Typed Islands Parse Faster”. In:
Trends in Functional Programming: 13th International Symposium. TFP
"12. St. Andrews, UK, 2013, pp. 69-84. DOI: 10.1007/978-3-642-40447~
4 5.

Charles Simonyi. The Death of Computer Languages, The Birth of In-
tentional Programming. Technical Report MSR-TR-95-52. Microsoft Re-
search, Sept. 1995. URL: https://www.microsoft.com/en-us/research/
publication/the-death-of - computer -languages-the-birth-of -
intentional-programming/ (visited on 05/24/2017).

Kamil Skalski, Michal Moskal, and Pawel Olszta. Meta-programming in
Nemerle. 2004. URL: http://camlunity.ru/swap/Library/Computery
5C% 20Science / Metaprogramming / Macros / Meta - programming % 5C %
20in%5C%20Nemerle.pdf (visited on 05/30/2017).

Michael Sperber et al. Revised® Report on the Algorithmic Language Scheme.
Sept. 2007. URL: http://www.rérs.org/final/html/r6rs/r6rs.html
(visited on 05/25/2017).

BIBLIOGRAPHY 113

[66] Oliviero Stock, Rino Falcone, and Patrizia Insinnamo. “Island Parsing and
Bidirectional Charts”. In: Proceedings of the 12th Conference on Compu-
tational Linguistics - Volume 2. COLING ’88. Budapest, Hungry, 1988,
pp. 636-641. DOL: 10.3115/991719.991768.

[67] The Coq Development Team. The Coq Proof Assistant Reference Manual.
Version 8.6. INRIA. Dec. 2016. URL: https://coq. inria.fr/refman/
(visited on 03/14/2017).

[68] The Rust Programming Language. URL: https://doc.rust-lang.org/
book/README . html (visited on 05/26,/2017).

[69] Sam Tobin-Hochstadt et al. “Languages As Libraries”. In: Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI "11. San Jose, California, USA, 2011, pp. 132—
141. poI: 10.1145/1993498.1993514.

[70] Masaru Tomita. “An Efficient Context-free Parsing Algorithm for Natu-
ral Languages”. In: Proceedings of the 9th International Joint Conference
on Artificial Intelligence - Volume 2. IJCAT’85. Los Angeles, California:
Morgan Kaufmann Publishers Inc., 1985, pp. 756-764. 1SBN: 0-934613-02-
8, 978-0-934-61302-6.

[71] Laurence Tratt. “Domain Specific Language Implementation via Compile-
time Meta-programming”. In: ACM Trans. Program. Lang. Syst. 30.6 (Oct.
2008), 31:1-31:40. pOI: 10.1145/1391956.1391958.

[72] Eric Van Wyk et al. “Silver: An Extensible Attribute Grammar System”.
In: Electron. Notes Theor. Comput. Sci. 203.2 (Apr. 2008), pp. 103-116.
DOI: 10.1016/j.entcs.2008.03.047.

[73] Vlad A. Vergu, Pierre Néron, and Eelco Visser. “DynSem: A DSL for
Dynamic Semantics Specification”. In: 26th International Conference on
Rewriting Techniques and Applications, RTA 2015, June 29 to July 1,
2015, Warsaw, Poland. Ed. by Maribel Ferndndez. Vol. 36. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 365-378. DOI: 10.
4230/LIPIcs.RTA.2015.365.

[74] Eelco Visser. Scannerless Generalized-LR Parsing. Tech. rep. P9707. Pro-
gramming Research Group, University of Amsterdam, July 1997. URL:
http://researchr.org/publication/Vis97.sglr (visited on 05/29/2017).

[75] Eelco Visser. “Stratego: A Language for Program Transformation Based
on Rewriting Strategies”. In: Proceedings of the 12th International Confer-
ence on Rewriting Techniques and Applications. RTA ’01. 2001, pp. 357—
362. DOT: 10.1007/3-540-45127-7_27.

[76] Philip Wadler. “Comprehending Monads”. In: Proceedings of the 1990
ACM Conference on LISP and Functional Programming. LEFP 90. Nice,
France, 1990, pp. 61-78. DOI: 10.1145/91556.91592.

(78]

[79]

BIBLIOGRAPHY

Philip Wadler. “How to Replace Failure by a List of Successes”™. In: Proc.
of a Conference on Functional Programming Languages and Computer
Architecture. Nancy, France, 1985, pp. 113-128. por: 10.1007/3-540-
15975-4_33.

Martin P Ward. “Language-oriented programming”. In: Software-Concepts
and Tools 15.4 (1994), pp. 147-161. URL: http://www.cse.dmu.ac.uk/
~mward/martin/papers/middle-out-t.pdf (visited on 04/12/2017).

Alessandro Warth, James R. Douglass, and Todd Millstein. “Packrat Parsers
Can Support Left Recursion”. In: Proceedings of the 2008 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipu-
lation. PEPM °08. 2008, pp. 103-110. DOI: 10.1145/1328408.1328424.

Niklaus Wirth. “What Can We Do About the Unnecessary Diversity of No-
tation for Syntactic Definitions?” In: Commun. ACM 20.11 (Nov. 1977),
pp. 822-823. DOL: 10.1145/359863 . 359883.

Daniel H. Younger. “Context-free language processing in time n3”. In: 7th
Annual Symposium on Switching and Automata Theory (swat 1966). Oct.
1966, pp. 7-20. DOL: 10.1109/SWAT.1966.7.

