
論	文	の	内	容	の	要	旨	

	

	

	

論文題目		

A Platform for Composable and Statically-Checkable Domain-Specific Languages 

（合成可能かつ静的検査可能なドメイン専用言語のためのプラットフォーム）	

	

									 	 	 氏	 	 名				市川	 和央	

	

	

	

	

This	dissertation	proposes	ProteaJ,	which	is	a	programming	language	supporting	

composable	and	flexible	user-defined	operators	and	user-defined	scope	rules	for	

them.	User-defined	operators,	named	protean	operators,	are	procedures	with	their	

own	syntax.	Protean	operators	are	overloaded	by	operators	that	have	the	same	syntax	

but	have	different	return	type	or	operand	types.	An	operator	is	available	only	

at	an	expression	where	its	return	type	is	expected.	In	other	words,	programmers	

can	regard	return	type	and	operand	types	as	non-terminal	symbols.	Programmers	can	

define	 various	 syntax	 as	 user-defined	 operators	 by	 exploiting	 types	 as	

non-terminals.	 This	 helps	 programmers	 implementing	 embedded	 domain	 specific	

languages	(embedded	DSLs).	Users	can	safely	use	multiple	such	the	embedded	DSLs	

that	different	programmers	developed	even	if	the	embedded	DSLs	have	operators	that	

have	similar	syntax.	Programmers	do	not	have	to	care	about	conflicts	of	syntax	

since	 protean	 operators	 are	 distinguished	 by	 types.	 We	 call	 this	 property	

composability.	Composability	is	important	for	software	development	style	that	

uses	multiple	DSLs	together.	

ProteaJ	also	supports	context-sensitive	expressions,	which	are	a	variant	of	

lambda	 expressions,	 for	 expressing	 name	 binding	 and	 scope	 rules.	

Context-sensitive	 expressions	 take	 parameters	 but	 the	 parameters	 are	 not	

explicitly	written.	Since	the	parameter	names	are	not	given,	the	parameters	cannot	

be	accessed	via	the	parameter	names.	Instead,	the	members	of	a	parameter	are	

available	without	receivers	in	context-sensitive	expressions.	In	ProteaJ,	protean	

operators	can	be	instance	members.	This	means	that	we	can	express	syntax	that	is	

available	only	at	context-sensitive	expressions.	Hence,	we	can	express	name	



binding	and	scope	rules	by	using	context-sensitive	expressions.	ProteaJ	supports	

turnstile	 types,	 which	 express	 the	 types	 of	 context-sensitive	 expressions.	

ProteaJ	 also	 supports	 generic	 names	 to	 recognize	 arbitrary	 names	 given	 by	

end-users.	 User-defined	 language	 constructs	 implemented	 by	 using	

context-sensitive	expressions	can	be	safely	composed	because	the	scope	of	protean	

operators	is	expressed	by	turnstile	types.	

Additionally,	ProteaJ	allows	programmers	to	define	declarations	with	their	own	

scope	rules.	A	declaration	declares	something	and	enables	to	use	it	after	the	

declaration.	ProteaJ	provides	an	activate	statement	that	takes	an	object	as	its	

argument	and	enables	its	members	after	the	statement	without	receivers.	The	scope	

of	activated	members	does	not	follow	the	scope	of	local	variables	in	the	host	

language.	If	the	activate	statement	is	used	in	the	body	of	an	operator/method,	

the	visible	members	are	also	available	at	the	call-site	of	the	operator/method.	

Hence,	we	can	implement	an	operator	that	simulates	a	variable	declaration.	The	

scope	of	activated	members	is	given	by	scope for	clauses.	A	scope for	clause	

takes	several	types	and	it	expresses	the	scope	of	activated	members	of	given	

objects.	Programmers	can	implement	different	scope	rules	for	each	embedded	DSLs.	

To	statically	check	which	members	are	activated,	ProteaJ	also	provides	activates	

clauses.	Since	the	compiler	can	check	what	members	are	available	by	checking	

signatures	of	methods/operators,	user-defined	declarations	and	their	scope	rules	

can	be	safely	composed.	

	


