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Abstract 

 

Ethylene is one of the most important petrochemicals due to its extensive use as 

feedstock for the production of a vast array of chemicals. Catalytic dehydrogenation of 

ethane is considered efficient technology for producing ethylene with hydrogen as a 

byproduct, an important reagent in refineries. A membrane reactor combined the 

reaction has advantages not only separate products, but also overcome the equilibrium 

limitation of the reaction by extracting hydrogen continuously from the catalyst bed.  

This dissertation describes preparation and characterization of silica-based 

inorganic membranes and their application in membrane reactor for dehydrogenation of 

ethane, which is equilibrium limited reaction and required enhancement of ethylene 

yield.  First, silica-based membranes were developed to improve their permeability and 

hydrothermal stability by modifying precursors using chemical vapor deposition (CVD) 

method. The morphology and structure of prepared silica-based membranes were 

discussed, and permeance mechanisms of small and large gases through the membranes 

were studied with experimental and simulated data.  Second, the effect of various 

reaction conditions, including feed flow rates, pressures and temperatures on 

dehydrogenation of ethane over Cr/ZSM-5 catalyst were investigated in a conventional 

packed-bed reactor (PBR) and in a membrane reactor (MR) fitted with modified silica 

membranes. A performance of membrane reactor was evaluated by model simulation 

with various H2 permeances and H2/C2H6 selectivities.   
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Chapter 1 

General Introduction 

 

1.1. Global ethylene production 

Ethylene is an important petrochemical compound which is extensively used as 

feedstock for production of several chemicals, including polymers (e.g., polyethylene, 

polyester, and polystyrene), oxygenates (e.g., ethylene oxide, ethylene glycol, and 

acetaldehyde), and chemical intermediates (e.g., ethyl benzene and ethylene dichloride). 

The global ethylene capacity has been steadily increasing across the world, rising from 

80 million tons in 1995 to 165 million tons in 2015, as shown in Figure 1.1 [1]. 
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Figure 1.1. Ethylene production capacity 
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Typically, two types of catalysts, noble metal (Pt) and metal oxides (CrOx, GaOx, 

VOx, MoOx, and InOx), have been extensively studied for the general dehydrogenation 

reaction. Platinum is the most effective metal due to its superior activity for the 

activation of paraffinic C-H bonds and low activity for C-C bond cleavage [2]. However, 

re-adsorption of ethylene on pure Pt surface results in low ethylene selectivity and rapid 

coke deposition, leading to catalyst deactivation [3]. For that reason, Pt is alloyed with a 

second metal, such as Sn, Ga, In, etc. to make the catalyst less prone to deactivation by 

coke deposition. The group of Bell recently studied various Pt-based bimetallic catalysts, 

including PtSn/Mg(Al)O [4], PtGa/Mg(Al)O [5,6], and PtIn/Mg(Al)O [7] for ethane 

dehydrogenation. The authors reported that  the activity and selectivity of a novel 

Pt/Mg(In)(Al)O catalyst are strongly affected by In/Pt ratio, in which a In/Pt ratio of 

0.48 presented the highest activity (29 µmol s-1 gcat.
-1) and selectivity (100 %) [7]. Both 

geometric and electronic effects of the second metals have been proposed to explain 

their roles in modifying the catalyst surface and changing the surface chemistry 

involved in ethane dehydrogenation [8]. Their recent study about effect of metal particle 

size of platinum catalysts suggests that small and Sn-promoted catalyst should be used 

to avoid coke formation [9]. This result was supported by quantum calculations by the 

same group, which revealed that the presence of Sn on the surface of Pt enhances the 

dissociative adsorption of ethane but suppresses the adsorption of ethylene [10]. 

Chromium oxides have also been reported as effective catalysts for ethane 

dehydrogenation by several researchers, and are also employed for commercial process 

by Universal Oil Products (UOP) [2]. Rao et al. [11] reported that pore-expanded 

mesoporous MCM-41 silica-supported chromium oxide showed moderate ethane 

conversion (23%) and high ethylene selectivity (∼99 %) at 823 K. The reaction is 
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[18], Fe−Cr/ZrO2 [19], Ga2O3/TiO2 [20,21], Mo2C/SiO2 [22], and VOx/Al2O3 [23]. 

Cheng et al. studied ethane dehydrogenation with CO2 on a series of submicron ZSM-5-

supported chromium oxide catalysts and found high activity (conversion: 65 %, 

ethylene yield: 49 %) without significant deactivation for 50 h [24]. Wang et al. studied 

the effects of Cr2O3 loading and various supports for ethane dehydrogenation with CO2, 

and found the optimal Cr2O3 loading to be 8 wt. % and the activity of different 

supported catalysts follows the order: Cr2O3/SiO2 > Cr2O3/ZrO2 > Cr2O3/Al2O3 > 

Cr2O3/TiO2, due to the influence of the support influence on the nature of chromium 

species and redox properties [15]. Indeed, Mimura et al. [25] used Fourier transform 

infrared spectroscopy and X-ray desorption fine structure measurements to propose 

redox reactions mechanism for the highly active Cr species for CO2-assisted ethane 

hydrogenation, and found that ethane pretreatment reduced Cr6+  species to Cr3+ 

species, while CO2 pretreatment reoxidized Cr species to the Cr6+ species. Therefore, 

the Cr redox cycle is important for a high dehydrogenation rate. 

 

1.2. Hydrogen selective inorganic membrane 

Membrane technology has been developed in the field of water treatment, air 

separation, nature gas sweetening and hydrogen recovery from ammonia pure gas with 

advantages of energy-efficiency, cost-effective and environmental compatibility. As 

emerging hydrogen economy, membranes with high permeability and selectivity could 

contribute to the development of new hydrogen separation technology, and have been 

researched extensively. 
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1.2.1. Silica-based membranes 

Silica-based membranes are promising materials for high purity hydrogen 

production and separation with high chemical resistance and thermal stability. They are 

easily fabricated into an ultra-microporous thin layer that exhibits an excellent 

molecular sieving property [26].  

Silica-based membranes have been prepared on porous supports by gol-gel methods 

and chemical vapor deposition (CVD) methods. Generally, sol-gel routes provide 

membrane with relatively high gas permeation, but the low selectivity because the pore 

structure of the material is based on particle packing [27]. The CVD methods generally 

provide denser structures resulting in lower permeance. However CVD-derived 

membranes have been reported higher selectivities and better stability and durability 

than sol-gel derived membranes. In addition, the process of the CVD method is easier 

than the sol-gel method.   

Since the first reports of silica-based membranes by Okubo and Inoue and the 

group of Gavalas, tetraethylorthosilicate (TEOS)-derived silica-based membranes have 

been prepared by sol-gel methods and chemical vapor deposition (CVD) methods. 

Morooka et al. [28] reported that the modified membrane prepared by thermal 

decomposition of TEOS exhibited high H2 permeance (10−8 mol m−2 s−1 Pa−1) and low 

N2 permeance (10−11 mol m−2 s−1 Pa−1). Gu et al. [29] developed an ultrathin (20–30 nm) 

silica layer membrane which exhibited a high H2/CO2 ideal selectivity of 1500 with the 

H2 permeance of about 5×10−8 mol m−2 s−1 Pa−1 at 1 atm and 873 K. However, the 

instability of silica materials, especially in the presence of steam, limits their use in 

applications such as high temperature membrane reactors. Prolonged exposure of the 

silica to water vapor at elevated temperatures causes rapid densification that leads to a 
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decrease in the permeability of the membranes.  

 

1.2.2. Hydrothermal stability of silica-based membranes 

An approach to improve the hydrothermal stability of silica membranes is the 

formation of mixed silicates with other inorganic oxides such as alumina, titania, 

zirconia, cobalt, and nikel. Gu et al. [30] studied the silica–titania membranes and it was 

found that  after 130 h exposure in 75 mol% H2O at 923 K, the H2 permeance was 

reduced by only 30 %, compared to a pure silica membrane which suffered a loss of 

90 %. Fotou et al. [31] reported the alumina-doped silica membranes and improved 

hydrothermal stability because of the network modification which led to more resistant 

to densification in the presence of steam. Liu et al. [32] studied cobalt silica membranes 

for hydrothermal stability investigation on steam exposure to 25 mol% vapor at 823 K 

for 100 h. Gu et al. [ 33 ] reported that silica-alumina membrane enhanced the 

hydrothermal stability for periods in excess of 500 h at 873 K in 16% steam, allowing 

the H2 permeance to remain above 10−7 mol m−2 s−1 Pa−1.  

 

1.2.3. Pore size controlled silica-based membranes 

Furthermore, the small size of the openings and low hydrothermal stability of 

TEOS-derived pure silica membranes have limited the widespread applications of the 

membranes, and hence development of a controllable silica network size and 

improvement of hydrothermal stability are highly desirable [34,35]. Precursors in which 

the siloxanes are substituted with large pendant groups give rise to a connected pore 

structure and enhanced permeance in certain cases [36]. In addition, the organic 

moieties can improve hydrothermal stability because of their hydrophilicity [37,38,39].  
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Since Raman and Brinker first proposed a novel template method to control the 

pore size of microporous silica membranes by the sol-gel method [40], there have been 

a number of reports on the tuning of the network size of silica membranes by using 

various silica precursors via both the sol-gel and CVD methods.  Kanezashi et al. 

prepared organic-inorganic hybrid silica membranes by the sol-gel method using 

bridged alkoxides such as bis(triethoxysilyl)methane (BTESM), bis(triethoxysilyl)-

ethane (BTESE) as silica precursors [41,42]. The pore size distribution determined by 

fitting to a normalized Knudsen-based permeance (NKP) suggested that the average 

pore size was in the following order: BTESE-derived silica (0.64 nm) > BTESM-

derived silica (0.55 nm) > TEOS-derived silica (0.34 nm). It should be noted that the 

BTESM-derived membranes showed a high C3H6 permeance of 6.32 × 10-7 mol m-2 s-1 

Pa-1 with a selectivity over C3H8 of 8.8 at 323 K indicating reasonably good pore size 

control. Lee et al. prepared silica membranes by the sol-gel method using 

disiloxanealkoxides such as tetraethoxydimethyldisiloxane (TEDMDS) and 

hexaethoxydisiloxane (HEDS) [43,44]. The order of estimated pore size was TEDMDS-

derived silica (0.70 nm) > HEDS-derived silica (0.50 nm) > TEOS-derived silica (0.32 

nm). The TEDMDS-derived membrane had high H2 permeance of the order of 10-6 mol 

m-2 s-1 Pa-1, but low H2/N2 selectivity below 20 indicating that permeance occurred 

through the pores. Kusakabe et al. prepared silica membranes by the sol-gel method 

using mixtures of TEOS and pendant-type alkoxides with carbon chain substitution such 

as octyltriethoxysilane, dodecyltriethoxysilane (DTEOS) and octadecyl-triethoxysilane. 

The TEOS-DTEOS-derived membrane showed a higher pore size distribution than the 

TEOS-derived membrane of around 0.3-0.4 nm, which was estimated based on single 

gas permeation tests [45]. Nomura et al. prepared a silica membrane by the counter 
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diffusion CVD method using tetramethoxysilane (TMOS) and O2 [46]. The membrane 

had H2 permeance of 1.5 × 10-7 mol m-2 s-1 Pa-1 and H2/N2 selectivity over 1000, and 

was stable under the typical steam-reforming conditions of methane (76 kPa of steam at 

773 K) for 21 h. Nomura et al. also prepared silica membranes using various pendant 

type alkoxides such as methyltrimethoxysilane (MTMOS), trimethylmethoxysilane 

(TMMOS), propyltrimethoxysilane (PrTMOS), phenyltrimethoxysilane (PhTMOS) [47]. 

The membranes prepared using methyl substituted precursors had H2 permeance of 0.6-

1.4 × 10-7 mol m-2 s-1 Pa-1 and H2/N2 selectivity over 200 with estimated pore sizes of 

about 0.3 nm. The membranes prepared using larger functional group (PrTMOS, 

PhTMOS) showed an order of magnitude higher H2 permeance but smaller H2/N2 

selectivity below 40 with maximum pore sizes around 0.5 nm. Thus, the authors 

concluded that the pore size of the silica membranes can be controlled by changing the 

type of silica precursors. Nakao and collaborators prepared silica membranes by the 

counter-diffusion CVD method using methoxysilanes with different numbers of 

substituted phenyl groups such as phenyltrimethosysilane (PTMS), 

dimethoxydiphenylsilane (DMDPS) and triphenylmethoxysilane (TPMS) at 873 K 

[48,49]. The order of estimated pore size based on the normalized Knudsen-based 

permeance was TPMS-derived silica (0.486 nm) > DPDMS-derived silica (0.42 nm) > 

PTMS-derived silica. The DMDPS and TPMS-derived membranes had high H2 

permeances of the order of 10-6 mol m-2 s-1 Pa-1 and high H2/SF6 selectivity of over 6800 

and 12000, respectively. However, SF6 is a large species and high selectivities are 

expected. Generally it was demonstrated that the silica network size was enlarged when 

the number of phenyl groups on the silicon source increased because larger spaces 

surrounded the aromatic moieties. However, in this study and many others cited above 
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the measurement of He, H2 and Ne were not carried out, and this determination is 

crucial for determining the permeation mechanism [50]. 

 

1.3. Mechanisms of gas permeation through inorganic membranes 

An investigation of the gas permeation mechanism is important to understand the 

nature and structure of the membranes. This is necessary for developing efficient gas 

separation membranes. Generally gas transport in inorganic membranes can occur 

through a number of possible mechanisms such as bulk Poiseuille flow for large pores, 

Knudsen fusion for intermediate size pores, size-restricted diffusion and surface 

diffusion for small pores, and bulk diffusion for very small pores or no pores [51,52,53]. 

The combination mechanism also can be considered as the conditions and the properties 

of the permeating molecules.  

 

1.3.1. Hagen-Pouisselle mechanism 

The Hagen-Pouisselle mechanism takes place when the pore diameter is larger (0.1-

10 μm) than the mean free path of the molecules. Gas transport occurs by bulk fluid 

flow through the large pores (Figure 1.4 (a)). The Hagen-Pouisselle permeability, PM 

[mol m-1 s-1 Pa-1], is given by Eq. (1.1). 

   

                     (1.1) 

 

where ρ is the density of the gas molecules [kg m-3], ε the porosity of the membrane,   

μ the viscosity [kg m s-1], τ the tortuosity of the membrane, av the pore area per 

membrane volume.  
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1.3.2. Knudsen diffusion mechanism 

The Knudsen diffusion occurs when pore diameter is smaller than the mean free 

path of the gas molecules, and transport is mainly by collisions between gas molecules 

and the pore wall rather than between the gas molecules themselves (Figure 1.4 (b)). 

The Knudsen permeance,  [mol m-1 s-2 Pa-1], is expressed by Eq. (1.2). 

⁄
                    (1.2) 

 

where dp is the pore diameter [nm], R the gas constant, T the temperature [K], L the 

thickness of the membrane [m], M the molecular weight of the diffusion gas [g mol-1] 

and others are same as above.   

 

1.3.3. Surface diffusion mechanism  

The surface diffusion occurs when the interaction between the gas molecules and 

the inner surface becomes strong compared to their kinetic energy at low temperature 

range. Gas transport occurs by adsorbing the gas molecules onto the surface onto the 

pore entrance, diffusing through the membrane and desorbing at the pore exit (Figure 

1.4 (c)). The permeance of surface diffusion model,  [mol m-1 s-2 Pa-1], is written by 

Eq. (1.3). 

 

∆ ∆
             (1.3) 

 

where K0 is the adsorption equilibrium constant, D0 the diffusion coefficient [m2 s-1], 

∆  the enthalpy of adsorption [J mol-1], ∆  the energy barrier for moving to the 
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other adsorption site [J mol-1] and others are same as above.   

 

1.3.4. Gas-translational mechanism 

The gas-translational mechanism occurs in small pore sizes (order of 0.2-5 nm), and 

transport is a combination of the Knudsen diffusion model and the surface diffusion 

model (Figure 1.4 (d)). The permeance of gas-translation model,  [mol m-1 s-2 Pa-1], 

can be expressed by Eq. (1.4).  

 

⁄ ∆
             (1.4) 

 

where ∆  is the kinetic energy to overcome the diffusion barrier [J mol-1] and others 

are same as above.   

 

1.3.5. Solid-state diffusion mechanism 

The solid-state diffusion occurs in dense membrane materials when the gas interacts 

strongly with the membrane material. Gas transport occurs by the gas molecules jumps 

between solubility sites, and the behavior is similar to that in the surface diffusion 

except here is not through the pore (Figure 1.4 (e)). The permeance of solid-state 

diffusion through the silica-based material,  [mol m-1 s-2 Pa-1], is expressed by Eq. 

(1.5).  

 

	 	
⁄

	
⁄

∗⁄ ∗⁄
	 ∆ ⁄     (1.5) 
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where d is the jump distance, mi the mass of the species i, h Planck’s constant, k 

Boltzmann’s constant, NA Avogadro’s number, α an exponent accounting for incomplete 

loss of rotation (0 for He and Ne, and 0.2 for H2), σ the symmetry factor of the species 

(2 for H2), I the moment of inertia, Ns the number of solubility sites per m3 of membrane 

volume, ν* the vibrational frequency of the species in the passageways between the 

sorption sites, ∆Ea the activation energy of diffusion. 

 

1.4. Catalytic membrane reactor for ethane dehydrogenation 

Interest in the development of catalytic membrane reactors has intensified due to its 

unique capability to combine two separate unit operations, reaction and separation 

processes, into a single operation. The main feature of the membrane is to selectively 

remove products, which will enhance reaction performance over its equilibrium 

conversions, and consequently allow for mild operation conditions. 

There has been limited previous work on the dehydrogenation of ethane in 

membrane reactors. Jiang et al. [55] reported a novel coupling strategy to produce 

hydrogen and ethylene in a perovskite BaCoxFeyZr1-x-yO3-δ hollow-fiber membrane 

reactor and achieved high ethylene yield (55 %) and hydrogen production rate (1.0 cm3 

min-1 cm-2) at 1073 K. Avila et al. [56] studied ethane dehydrogenation on neutral 

mordernite membrane disk coupled to a Pt/Al2O3 packed bed reactor and achieved an 

increase in ethane conversion and ethylene yield compared to their equilibrium values. 

Champagnie et al. [ 57 ] studied a high temperature catalytic membrane reactor, 

containing a Pt impregnated alumina ceramic membrane tube, for ethane 

dehydrogenation and found 6 times higher conversions than the equilibrium conversions. 

Gonina et al. [58] reported that a membrane consisting of a thin layer of Pd-23 wt% Ag 
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on porous Vucor glass attained 8 times higher ethane conversion than conventional 

fixed-bed reactor while using high sweep flow rates. Most of the studies have concluded 

that the enhancement of the performance is attributed to the exclusive and continuous 

permeation of hydrogen via the membrane.  

Furthermore, it has been reported that catalytic membranes are used not only for H2 

separation but also for oxygen supply to the reaction. Wang et al. [59] applied a material 

(Ba0.5Sr0.5Co0.8Fe0.2O3−δ) as oxygen permeable membrane as well as catalysts for 

oxidative dehydrogenation of ethane and it attained 90 % ethylene selectivity at 923 K. 

Coronas et al. [60] reported a ceramic membrane reactor with Li/MgO catalyst for the 

oxidative dehydrogenation of ethane and this gave higher yield up to 57 %. Akin et al. 

[61] studied selective oxidation of ethane in a dense tubular ceramic membrane 

prepared by oxygen ion conducting fluorite structured Bi1.5Y0.3Sm0.2O3 and it achieved 

56 % ethylene yield and 80 % selectivity at 1148 K. 

 

1.5. Outline of the dissertation 

This thesis deals with the study of hydrogen selective silica-based membranes with 

application in a catalytic membrane reactor.  The reaction studied is ethane 

dehydrogenation to ethylene over a Cr/ZSM-5 catalyst, a typical reaction for hydrogen 

generation where the net number of moles increases. In order to enhance the ethylene 

yield in the catalytic membrane reactor, high H2 permeance and moderate H2/C2H6 

selectivity are required. First, silica-based membranes were developed to improve their 

permeability and hydrothermal stability by modifying their composition (Chapter 2) and 

using and organic functional group (Chapter 3).  Specifically, the effect of alloying 

silica with zirconia (Chapter 2) and the effect of adding a vinyl substituent (Chapter 3) 
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were studied.  The method of membrane synthesis was chemical vapor deposition 

(CVD). The morphology and structure of prepared membranes were determined, and 

the permeance mechanisms of small and large gases through the membranes were 

studied with experimental and simulated data.  Second, the dehydrogenation reaction 

of ethane over the Cr/ZSM-5 catalyst was studied by examining the effect of various 

reaction conditions, including feed flow rates, pressures and temperatures.  The 

reaction was carried out in a conventional packed-bed reactor (PBR) and in a membrane 

reactor (MR) fitted with silica membranes in described earlier (Chapters 2 and 3) 

Importantly, the reaction was studied at a range of pressures above atmospheric pressure.  

The performance of the membrane reactor was evaluated by model simulation with 

experimentally determined kinetics and H2 permeances and H2/C2H6 selectivities.  

Chapter 2 described zirconia modified silica membranes prepared on porous 

alumina substrates by employing CVD with varying molar ratios Zr and Si.  The 

precursors used were zirconium (IV) tert-butoxide (ZTB) and tetraethylorthosilicate 

(TEOS). This is the first report of the use of the ZTB precursor, and considerable 

enhancements in performance were obtained over previous reports.  The permeation 

properties, hydrothermal stability, and permeation mechanism of the prepared 

membranes are discussed in detail.  

Chapter 3 described silica membranes prepared on porous alumina substrates (60 

nm) by employing the CVD of vinyltriethoxysilane (VTES), a precursor that has not 

been studied before, to investigate the effect of the vinyl group on the silica structure 

and stability of the membrane. Scanning electron microscopy (SEM) and in situ Fourier 

transform infrared (FTIR) measurements were used to characterize the morphology and 

structure of the membrane after CVD. This is the first time an in situ spectroscopic 
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method has been used to study functional groups in silica membranes. The permeation 

properties, including those of He, H2, and Ne, hydrothermal stability, and permeation 

mechanism of the prepared membranes are discussed in detail. 

Chapter 4 described the dehydrogenation of ethane conducted over a 5 wt% 

Cr/ZSM-5 catalyst coupled to a H2 selective silica membrane. Various reaction 

conditions were varied such as feed flow rates (20-100 cm3 min-1), total pressures (0.1-

0.5 MPa) and temperatures (723-823 K) and were applied to a packed bed reactor (PBR) 

and a membrane reactor (MR). A general parameter, the operability level coefficient 

(OLC), the ratio between the actual permeation rate and the actual formation rate of a 

H2 in a membrane reactor, was used to correlate the performance of the membrane 

reactor.  High pressure studies of membrane reactors are rare, and this is the first time 

that high pressure was employed to study the ethane dehydrogenation reaction. 

Chapter 5 describes general conclusions of the thesis, including the findings of the 

modified silica-based membranes and ethane dehydrogenation in membrane reactor 

with the prepared hydrogen selective silica-based membranes. The use of the silica-

zirconia and vinyl-substituted membranes allowed a broad parameter space to be 

explored for the obtention of general results.  Important conclusions were that high 

pressure is beneficial for membrane reactors even for reactions such as dehydrogenation 

reactions where the net number of moles increase, and that a product selectivity of 100 

is sufficient to get good enhancements.  It also presents suggestions for future work, 

which would lead to the improvement of the performance of membrane reactors for 

ethane dehydrogenation. 
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Chapter 2 

Permeation Properties of Silica-Zirconia 

Composite Membranes Supported on Porous 

Alumina Substrates 

 

This chapter is a modified version of a paper published in the Journal of Membrane 

Science: S.J. Ahn, A. Takagaki, T. Sugawara. R. Kikuchi, S.T. Oyama, Permeation 

properties of silica-zirconia composite membranes supported on porous alumina 

substrates, J. Membr. Sci. 526 (2017) 409-416. 

 

 

 

2.1. Introduction  

Hydrogen is an important feedstock which is used extensively in chemicals 

production and refinery operations, and has potential in fuel cell applications. It is 

considered a promising fuel for the future as it offers the possibility of reducing 

environment pollution [1,2]. Membranes with high permeability and selectivity could 

contribute to the development of new hydrogen separation technology, and have been 

researched extensively. Hydrogen selective membranes include organic polymers, 

microporous ceramics, dense metals, and silica glasses [3,4,5]. The silica-based 

materials are promising for high purity hydrogen production and separation with high 

chemical resistance and thermal stability, as well as moderate cost [6]. However, the 

instability of silica materials, especially in the presence of steam, limits their use in 

applications such as high temperature membrane reactors. Prolonged exposure of the 
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silica to water vapor at elevated temperatures causes rapid densification that leads to a 

decrease in the permeability of the membranes [7,8]. An approach to improve the 

hydrothermal stability of silica membranes is the formation of mixed silicates with other 

inorganic oxides such as alumina, titania, zirconia, cobalt, and nikel. These combination 

materials have been prepared by sol-gel techniques [9,10,11,12] or chemical vapor 

deposition (CVD) [13,14]. 

Since the first reports of silica-based membranes by Okubo and Inoue [15] and the 

group of Gavalas [ 16], many silica-alloys have been studied, among them silica-

zirconia membranes. Table 2.1 summarizes the work done with zirconia. Ohya et al. 

[17,18] prepared a 60 mol% of ZrO2-SiO2-Y2O3 composite membrane, which included 

1.8 mol% of Y2O3, by a sol-gel method for use in thermochemical water decomposition 

processes. Tsuru et al. [19,20] prepared a 10% ZrO2-SiO2 membrane by a sol-gel 

method and studied its properties for nanofiltration in non-aqueous solutions of ethanol 

and methanol. Gu et al. [21] reported a pure ZrO2 membrane prepared by a sol-gel 

method that was more hydrothermally stable than the pure γ-Al2-O3 and silica 

membranes with only 5% reduction of H2 permeance with exposure to 3 mol% water 

vapor at 423 K for 70 h. Urtiaga et al. [22] and Araki et al. [23] prepared a 50% ZrO2-

SiO2 membrane by a sol-gel method and a CVD method, and studied their properties for 

pervaporation of water-propanol mixtures. Choi et al. [24] reported a 50% ZrO2-SiO2 

membrane prepared by CVD method at 923 K for application in the HI decomposition 

reaction with H2 permeance of 7.3 × 10-8 mol m-2 s-1 Pa-1 and H2/N2 selectivity of 25 

that was stable in water vapor for 105 h. Li and Qi [25] reported a pure ZrO2 membrane 

prepared by a sol-gel method for use in steam-reforming of hydrocarbons and the water-

gas shift reaction with H2 permeance of 2.4 × 10-8 mol m-2 s-1 Pa-1 and H2/CO2 
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selectivity of 28 that was stable in 100 kPa of steam for 1250 h. In spite of the efforts to 

improve the permeance properties and hydrothermal stability of silica-zirconia 

composite membranes, they still remain poorly understood and improvements are 

needed to enhance their permeance properties. Especially there are few publications 

about silica-zirconia composite membranes prepared by the CVD method. 

This chapter describes zirconia modified silica membranes prepared on porous 

alumina substrates by chemical vapor deposition (CVD) with varying molar ratios of Zr 

and Si.  Precursors used in the synthesis were zirconium (IV) tert-butoxide (ZTB) and 

tetraethylorthosilicate (TEOS) delivered by vaporization from bubblers. The objectives 

were to improve the H2 permeability and stability of the silica-based membranes and to 

apply them in a catalytic membrane reactor. The permeation properties, hydrothermal 

stability, and permeation mechanism of the prepared membranes are discussed in detail. 

The present study can be distinguished from previous work for the obtention of high 

permeance and selectivity (Table 2.1), as well as for providing an understanding of the 

mechanism of permeation.  
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Table 2.1. Past work on silica-zirconia membranes 

Composition 
mol% 
ZrO2 

Comment 

ZrO2 
Precursor 

Thickness
/ μm 

Separation
T 

/ K
Permeance 

/ mol m-2s-1Pa-1 
Selectivity 

/ - 
Year
Ref.

60%  
ZrO2/ceramic 

Zr-n-
propoxide 

2.6-3.3 HBr/H2O 
423

- 
773

HBr 1.5× 10−8 

/ mol m-2 s-1 
36 

1994
[17]

10% 
ZrO2/-Al2O3 

Aqueous 

Zr-tetra-
butoxide 

NR 

Molecules 
with 

different 
weight 

298 H2O 6.2 × 10−10 NR 
1998
[19]

100% 
ZrO2/-Al2O3 

3 kPa Steam 70 h 

Zr-n-
propoxide 

NR H2/CO2 423 H2 4.9 × 10−6 6 
2003
[21]

50%  
ZrO2/-Al2O3 
pervaporation 

Zr-n-
butoxide 

0.5 
Isopropanol 
(or acetone)

/water 
323

H2O 0.093 
/ mol m-2 s-1 

NR 
2006
[22]

50%  
ZrO2/-Al2O3 
pervaporation 

Zr-n-
butoxide 

0.9 
Isopropanol

/water 
348

H2O 0.021 
/ mol m-2 s-1 

62 
2011
[23]

50% 
ZrO2/-Al2O3 
Steam 105 h 

Zr-n-
propoxide 

0.75-1 H2/N2 873 H2 7.3 × 10−8 25 
2013
[24]

100%  
ZrO2/-Al2O3 

100 kPa Steam 1250 h 

Zr-n-
propoxide 

NR H2/CO2 473 H2 2.4 × 10−8 28 
2015
[25]

10% 
ZrO2/-Al2O3 

16 kPa Steam 48 h 

Zr-tert-
butoxide 

0.03 H2/N2 923 H2 1.5 × 10−7 5700 
This
work

NR: Not reported 
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2.2. Experimental 

2.2.1. Preparation of γ-alumina intermediate layer 

A γ-alumina intermediate layer was prepared on a macroporous α-alumina support 

by a dipping-calcining method. The preparation involved several steps. First, a 

commercial α- alumina tube (Noritake Corporation, O.D.= 6 mm, I.D.= 4 mm) with 

nominal pore size of 60 nm was cut to a length of 30 mm with a diamond cutter and 

connected to non-porous alumina tubes using glass joints (Nippon Electric Glass Co., 

Ltd) by heating at 1273 K for 10 min. After cooling to room temperature, the outside of 

the support was wrapped with Teflon tape to treat only the inside of the support. Second, 

the support was dipped into a dipping solution containing boehmite sols for 10 s and 

dried in air for 6 h. Third, the dried support was heated to 923 K in air at a rate of 1.5 K 

min-1 and calcined at 923 K for 3 h. The dipping-calcining process was repeated two 

times using different dipping solutions with 80 nm and 60 nm particle size of boehmite 

sols to produce a uniform and defect free membrane surface.  

The dipping solutions were synthesized by mixing the boehmite sols with a 

polyvinyl alcohol (PVA, Polysciences, Inc. M.W. ~78,000) solution and diluting with 

distilled water to obtain a 0.15 M concentration of the sol and a 0.35 wt. % 

concentration of the PVA. This procedure was similar to that described previously by 

the group of Oyama [26]. The boehmite sols were synthesized using a sequence of 

hydrolysis of aluminum alkoxides and acid peptization, with first 0.13 mol of aluminum 

isopropoxide (Aldrich, 98%) added to 200 ml of distilled water at 371 K, and stirred 

with 550 rpm for 24 h. Then, a quantity of nitric acid (Wako, 60%) was slowly added to 

the mixture to give a molar ratio of H+/alkoxide of 0.025 or 0.07 and was then stirred 

for 24 h. 
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2.2.2. Preparation of silica-zirconia composite membranes 

The silica-zirconia composite membranes were prepared on the γ-alumina 

intermediate layer by the CVD method. A schematic of the CVD apparatus is shown in 

Figure 2.1 (a). The apparatus shows a back-pressure regulator, but that was used only 

for permeance measurements described in the next section, not for the syntheses of the 

steam stability measurements, which were conducted at 101 kPa (atmospheric pressure). 

The system also incorporates a bubbler, which is a commom means of vaporizing 

liquids [27]. The CVD procedure was carried out in a concentric tubular apparatus with 

an outer stainless steel tube using tetraethylorthosilicate (TEOS, Aldrich, 98 %) as silica 

precursor, zirconium (IV) tert-butoxide (ZTB, Aldrich, 99.999 %) as zirconia precursor. 

Argon was used as carrier, dilution and balance gas. After heating the apparatus to 923 

K at a rate of 1.5 K min-1, 13 cm3 (NTP) min-1 (9.7 μmol s-1) of balance gas was 

introduced to the outside of the support and 13 cm3 (NTP) min-1 (9.7 μmol s-1) of 

premixed gas, which included 3.5 cm3 (NTP) min-1 (2.6 μmol s-1) of carrier gas and 6 

cm3 (NTP) min-1 (4.5 μmol s-1) of dilution gas, was introduced to the inside of the 

support with the ZTB/TEOS molar ratio varied from 0 to 0.15. The CVD was conducted 

at 923 K with the TEOS bubbler temperature at 298 K and the ZTB bubbler temperature 

at 306-319 K. The CVD parameters are summarized in Table 2.2. The CVD was 

interrupted periodically to check the H2 permeance and H2/N2 selectivity of the 

membrane, and was conducted until an adequate H2 permeance and H2/N2 selectivity 

were obtained.  
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2.2.3. Characterization 

The particle size of the boehmite sols in the dipping solutions were measured by a 

dynamic light scattering analyzer (Horiba Model LB-550). The analyzer was calibrated 

using standard polystyrene latex microsphere solutions with mean diameter of 50 nm 

and 100 nm (Polysciences, Inc.).  

The morphology of the membranes was obtained using a field emission scanning 

electron microscope (FE-SEM, Hitachi S-900). The samples were lightly coated with 

Pt-Pd by ion sputtering (E-1030, Hitachi) with a current of 15 mA for 15 s.  

For permeance calculations gas flow rates over 0.2 ml min-1 were measured by a 

flow meter (Agilent Technologies, AD1000), and concentrations for gas flow rates 

below 0.2 ml min-1 were measured using a micro gas chromatograph (micro GC, 

Agilent Technologies, 490 micro GC, A molecular sieve 5A column was used for N2 and 

a Porapak Q column was employed for CO2 and CH4).  

 

2.2.4. Permeance and hydrothermal stability measurements 

The gas permeance measurements were carried out using gases such as He, Ne, H2, 

CO2, N2 and CH4 at 923 K. A pure gas was introduced to the inside of the support at a 

pressure of around 0.3 MPa, and the inside of the support was pressurized by closing a 

backpressure regulator (BPR), and then the flow rate of permeate gas was measured on 

the outside (Figure 2.1 (b)). The permeance of gases was calculated by using Eq. (2.1): 

∆
																																																																 2.1 					 

where  is the permeance of species i [mol m-2 s-1 Pa-1],  is the molar flow rate of 

the gas i [mol s-1], A is the surface area of the membrane [m2] and ∆  is the partial 

pressure difference of gas i between the inner and the outer side of the membrane tube 
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[Pa].  

The ideal selectivity was defined as the ratio of the single-gas permeances as given 

by Eq. (2.2). 

∗ 																																																																	 2.2 					 

where ∗  is the ideal selectivity of a species i over j [-],  and  are the 

permeances of species i and j, respectively [mol m-2 s-1 Pa-1]. 

A hydrothermal stability test was conducted under an Ar flow containing 16 mol% 

of water vapor at 923 K for 48 h. For this condition, 10 cm3 (NTP) min-1 (7.4 μmol s-1) 

of Ar flow was passed through a heated bubbler containing distilled water at 329 K, and 

the gas was introduced to the inside of the support while flowing 10 cm3 (NTP) min-1 

(7.4 μmol s-1) of Ar on the outside of the support. The H2 permeance was measured 

periodically during the test.  

 

2.3. Results and discussion 

2.3.1. Preparation of silica-zirconia composite membranes 

In order to investigate the effect of zirconia content on the permeation properties of 

the silica-zirconia composite membranes, the permeances of H2 and N2 were measured 

with different molar ratios of ZTB/TEOS (0-0.15) by changing ZTB bubbler 

temperature (Table 2.2), and the ideal selectivity of H2/N2 was calculated from the 

individual H2 and N2 permeances. Figure 2.2 (a-e) show the changes of H2 and N2 

permeance and H2/N2 ideal selectivity as a function of the CVD time through the pure 

silica membrane and silica-zirconia composite membranes, which were prepared with 

molar ratios of ZTB/TEOS of 0.025, 0.05, 0.1 and 0.15 at 923 K. Before the CVD, the 

prepared γ-alumina intermediate layer substrate had high H2 and N2 permeances of the 
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order of 10-6 mol m-2 s-1 Pa-1 but low H2/N2 ideal selectivity of 3.4, which was close to 

the value of 3.7 predicted by Knudsen diffusion. 

In order to investigate the effect of zirconia content on the permeation properties of 

the silica-zirconia composite membranes, the permeances of H2 and N2 were measured 

with different molar ratios of ZTB/TEOS (0-0.15) by changing ZTB bubbler 

temperature (Table 2.2), and the ideal selectivity of H2/N2 was calculated from the 

individual H2 and N2 permeances. Figure 2.2 (a-e) show the changes of H2 and N2 

permeance and H2/N2 ideal selectivity as a function of the CVD time through the pure 

silica membrane and silica-zirconia composite membranes, which were prepared with 

molar ratios of ZTB/TEOS of 0.025, 0.05, 0.1 and 0.15 at 923 K. Before the CVD, the 

prepared γ-alumina intermediate layer substrate had high H2 and N2 permeances of the 

order of 10-6 mol m-2 s-1 Pa-1 but low H2/N2 ideal selectivity of 3.4, which was close to 

the value of 3.7 predicted by Knudsen diffusion.  

The CVD was carried out for different amounts of time that depended on the 

permeation properties of the membranes. The properties were measured periodically by 

interrupting the CVD process, and measuring the H2 and N2 permeance and obtaining 

the corresponding H2/N2 selectivity. The CVD was completed at a level where the H2 

permeance was above 10-7 mol m-2 s-1 Pa-1, and where the H2/N2 selectivity was high. 

The progress of the synthesis for various Zr/Si ratios is shown in Figure 2.3. The figure 

shows that for the silica membrane the CVD required only 30 min, while for the low Zr 

content membranes the time required rose to 45 min, and for the high Zr content 

membranes the time needed increased to 60 min. This indicates that the reactivity of the 

Zr precursor was smaller than that of the TEOS, or that the presence of Zr inhibited the 

growth of silica chains.  
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Figure 2.2. Changes in H2 and N2 permeance and H2/N2 selectivity with CVD time (923 K, ΔP = 0.24 MPa). (a) Pure silica membrane (b) 

025Si-Zr (c) 05Si-Zr (d) 10Si-Zr (e) 15Si-Zr  
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Figure 2.3. Permeation properties of membranes with the different molar ratios of 

ZTB/TEOS of 0-0.15 (923 K, ΔP = 0.24 MPa) 

 

Although the deposition rates on the membrane support decreased slightly with 

increasing molar ratio of ZTB/TEOS, the permeation properties of the membranes 

showed a similar behavior. At the beginning of the CVD, the H2 and N2 permeance 

decreased slowly, with the H2/N2 selectivity almost unchanged. With further progress of 

the CVD, the H2 permeance continued to decrease slowly but the N2 permeance dropped 

rapidly, resulting in an increase in the H2/N2 selectivity.  

To compare the permeation properties of the prepared membranes in detail, the H2 

and N2 permeances and H2/N2 selectivity are shown as a function of molar ratio of 

ZTB/TEOS in Figure 2.3. The H2 permeance of the pure silica membrane prepared on 

the γ-alumina intermediate layer substrate after 30 min of CVD was 1.4 × 10-7 mol m-2 

s-1 Pa-1 and the selectivity was 1950, which are similar to values reported in previous 

studies [28,29,30]. For a molar ratio of ZTB/TEOS of 0.025, the H2 and N2 permeances 

increased slightly with a faster increase of the N2 permeance than the H2 permeance, 
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was prepared by sequentially placing coatings of boehmite sols of 80 nm and 60 nm of 

particle sizes, was well formed on the macroporous α-alumina support without visible 

cracking or infiltration. The overall thickness of the intermediate layer was around 3μm. 

After 60 min of CVD on the alumina multilayer substrate, a thin and dense layer of 

silica-zirconia was formed on the top of the multilayer substrate, as observed in Figure 

2.4 (b). The thickness of the composite top layer was measured to be around 30 nm. 

Figure 2.4 (c) shows that the surface of silica-zirconia composite layer is smooth and 

defect-free.  

 

2.3.3. Permeation mechanism through silica-zirconia membrane  
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Figure 2.5. Permeance of various gases as a function of kinetic diameter at 923 K and 

ΔP = 0.24 MPa 

 

To investigate the permeation mechanism through the silica-zirconia composite 

membrane, permeance tests were conducted on the 10Si-Zr membrane, which was 

prepared by CVD for 60 min at 923 K with a molar ratio of ZTB/TEOS of 0.1, with 
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various pure gases such as He, Ne, H2, CO2, N2 and CH4 at 923 K. Figure 2.5 shows the 

permeance of the various gases as a function of their kinetic diameter. The order of 

permeance generally followed the molecular sizes of the gases. Smaller species such as 

He, Ne and H2 had high permeance, while larger molecules like CO2, N2 and CH4 had 

low permeance. However, the permeance of gases with molecular size smaller than 0.3 

nm did not follow species size (H2 = 0.289 nm, Ne = 0.275 nm, He = 0.26 nm) nor 

molecular weight (Ne = 20 g/mol, He = 4 g/mol, H2 = 2 g/mol). This unusual order was 

also found in silica-based membranes, and was explained by the occurrence of a solid-

state permeation mechanism involving jumps of permeating molecules between 

solubility sites [13,32]. The solubility and transport of small gaseous species in silicious 

materials is well known [33,34,35]. However, it was not until the solubility site 

mechanism was developed that the permeance in these materials could be fully 

understood.   
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Figure 2.6. Temperature dependence of the permeances of He, Ne and H2 through the 

10Si-Zr membrane (solubility site model) 
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The experimental temperature dependence of the permeance of He, H2 and Ne 

through this composite membrane is shown in Figure 2.6 as points. The permeance of 

the all gases increased with temperature, indicating an activated diffusion transport 

mechanism through the membrane for these small gases.  

In order to quantitatively explain the mechanism of permeation of the small-sized 

gases through the silica-zirconia composite membrane, use was made of Eq. (2.3), 

derived earlier [36] using statistical mechanics. The equation has as parameters the 

number of solubility sites per m3 of membrane volume (Ns), the vibrational frequency of 

the species in the passageways between the sorption sites (ν*), the activation energy of 

diffusion (∆Ea) and the jump distance (d). 

	 	
⁄

	
⁄

∗⁄ ∗⁄
	 ∆ ⁄        (2.3) 

where  is the permeance of the gas i through the silica-zirconia composite top 

layer [mol m-2 s-1 Pa-1], L the thickness of the top layer, mi the mass of the species i, T 

temperature [K], h Planck’s constant, k Boltzmann’s constant, NA Avogadro’s number, 

R the gas constant, α an exponent accounting for incomplete loss of rotation (0 for He 

and Ne, and 0.2 for H2), σ the symmetry factor of the species (2 for H2), I the moment of 

inertia. The membrane thickness was 30 nm as obtained from the SEM image in Figure 

2.4 (b). The permeance of the silica-zirconia composite layer was obtained by 

subtracting the resistance of γ-alumina intermediate layer (before CVD) from the 

resistance of silica-zirconia composite layer on the alumina substrate (after CVD): 

1

	
	

1

	

1

	
																																		 2.4  

 The calculated permeance is shown in Figure 2.6 as curves, and fits well the 

experimental points. The fitted parameters are summarized in Table 2.3. The number of 
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solubility sites NS is in the order He>Ne>H2, which follows the species size. This result 

is understandable since on average smaller molecules will fit into more solubility sites. 

The order of activation energy ∆Ea has an inverse relation with NS because the larger 

molecules must overcome a larger barrier to squeeze through the silica-based rings. 

However, size is not the only factor that determines the permeance order. Another 

property that affects permeance is the jump frequency between sites and this has an 

inverse relationship with the mass of the species. This can be understood from 

consideration of the vibrational frequency of a harmonic oscillation,	ν 	, which 

decreases as the reciprocal of the square root of the mass. As captured in Eq. (2.3), the 

permeance depends on both species size and mass, and gives rise to the order observed. 

 

Table 2.3. Calculated parameters for the silica-zirconia composite membrane (solubility 
site model) 

 

The activation energies in Table 2.3 are in the order He < Ne < H2. This follows the 

order of sizes of He, Ne, and H2, and make sense, as the species have to squeeze 

through openings between the solubility sites, and this is more difficult for the larger 

species. The activation energies are low, and this agrees with earlier results for silica 

membranes [13,14,32], and for vitreous glasses [33,34] and fused quartz [37]. Even for 

H in palladium it is found that activation energies for solid-state diffusion are small (30 

Gases 
Kinetic 

diameter / nm 
Weight 
/ a.u. 

Ns 
/ site m-3

ν* 
/ s-1 

∆Ea 
/ kJ mol-1

d 
/ nm 

Regression
coefficient

He 0.260 4 9.32×1026 6.70×1012 6.0 0.8306 0.962 

Ne 0.275 20 9.20×1026 3.90×1012 12.1 0.8308 0.999 

H2 0.289 2 9.10×1026 7.03×1012 15.8 0.8309 0.992 
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kJ/mol) compared to those for adsorption or dissociation [38,39]. 

An alternative analysis for the permeance in silica-zirconia composite membrane 

has been recently proposed by Kanezashi et al. [40] using Eq. (2.5), which is based on a 

modified gas translation (GT) model [41].  

3
8 ,  

, , 																																																																														 2.5  

, 3
8

a 																																										 2.6  

where ε is the porosity, τ the tortuosity,  the pore size,  the molecular size of 

component i, and the others symbols are the same as above.  
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Figure 2.7. Temperature dependence of the permeances of He, Ne and H2 through the 

10Si-Zr membrane (gas translational model) 

 

Although there is good fit between the experimental points and the calculated 
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permeance as shown in Figure 2.7 as curves, which are almost as good as those obtained 

by the statistical model above, the calculated parameters are not physically realistic. In 

particular, the pre-exponential factor ,  are expected from Eq. (2.6),  to increase 

with decreasing species size, since it should be easier for smaller species to fit through 

the presumed pored. However, this is not observed, and the calculated factor ,  

decrease with decreasing species size. Kanezashi et al. suggested that this unusual order 

is related to an effective molecular size, but this would result in molecular sizes that are 

impossible physically and would have no basis on theory. The failure to account for the 

species properties leads to the conclusion that the analysis by Kanezashi et al. is 

incorrect [32]. The interpretation of past work [42,43], which was based on the belief on 

a connected porous structure is brought into question. Our studies here show that jumps 

between solubility sites are involved in the mechanism of permeation of compact silica 

structures, and that this can be assessed by measurements of He, Ne, and H2 permeance.  

 

Table 2.4. Activation energy and pre-exponential factor, , , for silica-zirconia 

composite membrane (gas translational method) 

Gases 
∆Ea 

/ kJ mol-1 
,  

/- 
Regression 
coefficient 

He 12.6 2.2×10-5 0.968 

Ne 18.7 1.3×10-5 0.999 

H2 21.2 2.5×10-5 0.988 

 

The activation energies from the gas translational model (Table 2.4) follow the 

order He < Ne < H2, which agree with the solubility site mechanism. 
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2.3.4. Hydrothermal stability of silica-zirconia composite membranes 

Figure 2.8 (a) shows the H2 permeance and Figure 2.8 (b) shows the N2 permeance 

of the pure silica membrane and the silica-zirconia composite membranes as a function 

of exposure time to 16 mol% water vapor in Ar at 923 K. The H2 permeance of the 

silica membrane decreased continuously to 68 % of the original value over the studied 

period of 48 h and showed no evidence of stabilization. Past work [13,14] indicated that 

this was due to densification which opens up pores. For the 10Si-Zr and 05Si-Zr 

membranes, the H2 permeances decreased to 56 % and 67 %, respectively, which are 

slightly smaller levels of decrease than the pure silica membrane. However, the 

permeance curves are seen to be leveling off, which indicates that the membranes have 

hydrothermal stability. In particular, the H2 permeance of the 10Si-Zr membrane was 

still above the order of 10-7 mol m-2 s-1 Pa-1, which is the threshold level for practical 

applications [44]. Importantly, in contrast to the H2 permeance, N2 permeance decreased 

considerably with the increase of ZTB/TEOS molar ratio (Figure 2.8 (b)), so that the 

H2/N2 selectivity of the 10Si-Zr membrane showed the highest value of 5700 while the 

H2/N2 selectivity of the silica membrane showed the lowest value of 800.  
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Figure 2.8. Effect of water upon H2 and N2 permeances. Pure silica and silica-zirconia 

composite membranes prepared using different molar ratios of ZTB/TEOS. Exposure to 

16 mol% of water vapor at 923 K and 101 kPa for 48 h. (a) Changes of H2 permeance 

(top) (b) Changes of N2 permeance (bottom) 
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2.4. Conclusions 

Hydrogen selective and hydrothermally stable silica-zirconia composite membranes 

were successfully prepared on a macroporous alumina support by chemical vapor 

deposition (CVD) with various molar ratios of zirconium (IV) tert-butoxide (ZTB) and 

tetraethylorthosilicate (TEOS) (0-0.15) at 923 K. With increase of the molar ratio of 

ZTB/TEOS, the H2 and N2 permeance increased slightly to a plateau, while the H2/N2 

selectivity decreased slightly, and leveled off because of the more rapid increase of the 

N2 permeance than the H2 permeance.  

Studies of the 10Si-Zr membrane, which was prepared with a molar ratio of 

ZTB/TEOS of 0.1, were carried out to determine the mechanism of permeance. Levels 

of H2 permeance of 3.9 × 10-7 mol m-2 s-1 Pa-1 and H2/N2 selectivity of 780 were 

attained. The thickness of this membrane was around 30-35 nm as measured by SEM. 

Results of permeation tests of He, H2, and Ne as a function of temperature were well 

described by a solid-state permeation mechanism involving jumps between solubility 

sites. The fitting parameters were physically realistic, and described the results well. An 

alternative theory based on a gas-translational method was shown not to be valid 

because it gave physically incorrect parameters and trends. To determine the mechanism 

of permeance in silica membranes it is essential to analyze the results of He, H2, and Ne 

probes.  

After exposure to 16 mol% water vapor at 923 K for 48 h, the H2 permeance 

through 10Si-Zr membrane decreased by 56 %, but stabilized at an order of 10-7 mol m-2 

s-1 Pa-1. Thus, hydrothermally stable membranes were achieved by the formation of 

silica-zirconia composite membranes. 
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Chapter 3 

Synthesis and Characterization of Hydrogen 

Selective Silica Membrane Prepared by Chemical 

Vapor Deposition of Vinyltriethoxysilane 

 

3.1. Introduction 

Gas separation membrane technology has been receiving increasing attention 

because of its inherent advantages in energy-efficiency, cost-effectiveness and 

environmental compatibility over other methods like distillation or pressure swing 

adsorption [1,2]. Among gas separation membranes, inorganic silica membranes are 

promising materials at high temperatures due to their excellent hydrogen separation 

properties with high chemical resistance and thermal stability, as well as moderate cost 

[3]. Since the first reports of silica-based membranes by Okubo and Inoue [4] and the 

group of Gavalas [5], tetraethylorthosilicate (TEOS)-derived silica-based membranes 

have been intensely studied and synthesis by sol-gel methods [6,7,8,9] and chemical 

vapor deposition (CVD) methods [10,11,12,13] have been reported. From previous 

studies TEOS-derived membranes are comprised of a silica network with isolated 

solubility sites of about 0.3 nm that allow only small molecules such as helium (0.260 

nm), neon (0.275 nm) and hydrogen (0.289 nm) to permeate by a solid-state hopping 

mechanism, resulting in high hydrogen selectivity over large molecules such as nitrogen 

(0.364 nm) and methane (0.380 nm) [14,15]. For that reason TEOS-derived membranes 

have been used in various applications, such as methane-steam reforming, where 
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hydrogen separation is important [16,17]. However, the small size of the openings and l

ow hydrothermal stability of TEOS-derived pure silica membranes have limited the 

widespread applications of the membranes, and hence development of a controllable 

silica network size and improvement of hydrothermal stability are highly desirable 

[18,19]. Precursors in which the siloxanes are substituted with large pendant groups 

give rise to a connected pore structure and enhanced permeance in certain cases [20]. In 

addition, the organic moieties can improve hydrothermal stability because of their 

hydrophilicity [21,22,23].  
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Figure 3.1. Comparison of H2 permeance for various silica membranes as a function of 

their estimated pore size  

 

Although H2-selective, pure silica membranes prepared by CVD consist of a 

continuous silicious network with pores only present as defects, it is possible to design 

materials with pores useful for the separation of larger gaseous molecules.  Raman and 
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Brinker first proposed a method to control the pore size of microporous silica 

membranes by using templates in the sol-gel method [24], and since then there have 

been a number of reports on the tuning of the network size of silica membranes by using 

various silica precursors via both the sol-gel and CVD methods. Figure 3.1 shows the 

H2 permeance of silica membranes derived from different silica precursors as a function 

of their estimated pore size. Kanezashi et al. prepared organic-inorganic hybrid silica 

membranes by the sol-gel method using bridged alkoxides such as 

bis(triethoxysilyl)methane (BTESM), bis(triethoxysilyl)ethane (BTESE) as silica 

precursors [25,26]. The pore size distribution determined by fitting to a normalized 

Knudsen-based permeance (NKP) suggested that the average pore size was in the 

following order: BTESE-derived silica (0.64 nm) > BTESM-derived silica (0.55 nm) > 

TEOS-derived silica (0.34 nm). It should be noted that the BTESM-derived membranes 

showed a high C3H6 permeance of 6.32 × 10-7 mol m-2 s-1 Pa-1 with a selectivity over 

C3H8 of 8.8 at 323 K indicating reasonably good pore size control. Lee et al. prepared 

silica membranes by the sol-gel method using disiloxanealkoxides such as 

tetraethoxydimethyldisiloxane (TEDMDS) and hexaethoxydisiloxane (HEDS) [27,28]. 

The order of estimated pore size was TEDMDS-derived silica (0.70 nm) > HEDS-

derived silica (0.50 nm) > TEOS-derived silica (0.32 nm). The TEDMDS-derived 

membrane had high H2 permeance of the order of 10-6 mol m-2 s-1 Pa-1, but low H2/N2 

selectivity below 20 indicating that permeance occurred through the pores. Kusakabe et 

al. prepared silica membranes by the sol-gel method using mixtures of TEOS and 

pendant-type alkoxides with carbon chain substitution such as octyltriethoxysilane, 

dodecyltriethoxysilane (DTEOS) and octadecyl-triethoxysilane. The TEOS-DTEOS-

derived membrane showed a higher pore size distribution than the TEOS-derived 
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membrane of around 0.3-0.4 nm, which was estimated based on single gas permeation 

tests [29]. Nomura et al. prepared a silica membrane by the counter diffusion CVD 

method using tetramethoxysilane (TMOS) and O2 [ 30 ]. The membrane had H2 

permeance of 1.5 × 10-7 mol m-2 s-1 Pa-1 and H2/N2 selectivity over 1000, and was stable 

under the typical steam-reforming conditions of methane (76 kPa of steam at 773 K) for 

21 h. Nomura et al. also prepared silica membranes using various pendant type 

alkoxides such as methyltrimethoxysilane (MTMOS), trimethylmethoxysilane 

(TMMOS), propyltrimethoxysilane (PrTMOS), phenyltrimethoxysilane (PhTMOS) [31]. 

The membranes prepared using methyl substituted precursors had H2 permeance of 0.6-

1.4 × 10-7 mol m-2 s-1 Pa-1 and H2/N2 selectivity over 200 with estimated pore sizes of 

about 0.3 nm. The membranes prepared using larger functional group (PrTMOS, 

PhTMOS) showed an order of magnitude higher H2 permeance but smaller H2/N2 

selectivity below 40 with maximum pore sizes around 0.5 nm. Thus, the authors 

concluded that the pore size of the silica membranes can be controlled by changing the 

type of silica precursors. Nakao and collaborators prepared silica membranes by the 

counter-diffusion CVD method using methoxysilanes with different numbers of 

substituted phenyl groups such as phenyltrimethosysilane (PTMS), 

dimethoxydiphenylsilane (DMDPS) and triphenylmethoxysilane (TPMS) at 873 K 

[32,33]. The order of estimated pore size based on the normalized Knudsen-based 

permeance was TPMS-derived silica (0.486 nm) > DPDMS-derived silica (0.42 nm) > 

PTMS-derived silica. The DMDPS and TPMS-derived membranes had high H2 

permeances of the order of 10-6 mol m-2 s-1 Pa-1 and high H2/SF6 selectivity of over 6800 

and 12000, respectively. However, SF6 is a large species and high selectivities are 

expected. Generally, it was demonstrated that the silica network size was enlarged when 
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the number of phenyl groups on the silicon source increased because larger spaces 

surrounded the aromatic moieties. However, in the latter investigation and many others 

cited above, the measurement of He, H2 and Ne were not carried out, and this 

determination is crucial for determining the permeation mechanism and whether pores 

are actually present [34]. 

This chapter describes the preparation of silica membranes on porous alumina 

substrates (60 nm) by chemical vapor deposition (CVD) of vinyltriethoxysilane (VTES), 

a precursor containing a vinyl group that has not been studied before.  The objectives 

were to investigate the effect of the vinyl group on the H2 permeance and H2/C2H6 

selectivities. Scanning electron microscopy (SEM) and in situ Fourier transform 

infrared (FTIR) measurements were used to characterize the morphology and structure 

of the membrane after CVD. The permeation properties, including those of He, H2, and 

Ne, hydrothermal stability, and permeation mechanism of the prepared membranes are 

discussed in detail. 

 

3.2. Experimental 

3.2.1. Preparation and characterization of VTES-derived silica membrane 

The VTES-derived silica membrane in this work consisted of three layers: a 

macroporous α-alumina support, a γ-alumina intermediate layer and a VTES-derived 

silica layer. A commercial porous α-alumina support was used (Noritake Corporation, 

O.D.= 6 mm, I.D.= 4 mm, length = 30 mm, nominal pore size = 60 nm) which was 

attached to non-porous alumina tubes using glass joints obtained by melting a glass 

paste (Nippon Electric Glass Co., Ltd) at 1273 K for 10 min. 

The γ-alumina intermediate layer was prepared by a dipping-calcining method on 
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polyvinyl alcohol (PVA, Polysciences, Inc. M.W. ~78,000) solution and diluting with 

distilled water to obtain a 0.15 M concentration of the sol and a 0.35 wt. % 

concentration of the PVA. This procedure is similar to that described previously by the 

group of Oyama [35]. The boehmite sols were synthesized using a sequence of 

hydrolysis of aluminum alkoxides and acid peptization, with first 0.13 mol of aluminum 

isopropoxide (Aldrich, 98%) added to 200 ml of distilled water at 371 K, and stirred 

with 550 rpm for 24 h. Then, a quantity of nitric acid (Wako, 60%) was slowly added to 

the solution to give a molar ratio of H+/alkoxide of 0.025 or 0.07, after which the 

mixture was stirred for 24 h. The mean diameters of the sols were measured by a 

dynamic light scattering analyzer (Horiba Model LB-550), which was calibrated using 

standard polystyrene latex microsphere solutions with mean diameter of 50 nm and 100 

nm (Polysciences, Inc.): the measured mean diameters were 80 nm and 60 nm for molar 

ratios of H+/alkoxide of 0.025 and 0.07, respectively.  

The VTES-derived silica layer was prepared by the CVD method on the γ-alumina 

intermediate layer. Figure 3.2 (a) shows a schematic of the CVD apparatus. The CVD 

was conducted using vinyltriethoxysilane (VTES, TCI, 98 %) as silica precursor at 873 

K and 0.1MPa with the VTES bubbler maintained at room temperature. After heating 

the apparatus to 873 K at a rate of 1.5 K min-1, 13 cm3 (NTP) min-1 (9.7 μmol s-1) of 

0.14 mol% VTES gas, which included 3.5 cm3 (NTP) min-1 (2.6 μmol s-1) of VTES 

containing carrier gas and 9.5 cm3 (NTP) min-1 (7.1 μmol s-1) of dilution gas, was 

flowed on the inside of the support and 13 cm3 (NTP) min-1 (9.7 μmol s-1) of balance 

gas was introduced to the outside of the support. The CVD was conducted until an 

adequate H2 permeance and H2/N2 selectivity were obtained by interrupting the CVD 

and checking the performance of the membrane periodically. The permeance was 
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Ar. After the CVD, 16 mol% of water was treated to the cell for 1 h in the same manner 

as the hydrothermal stability test. Spectra were recorded in the absorbance mode at 873 

K with a resolution of 4 cm-1 using 200 scans in the region of 4,000–700 cm-1. 

 

3.2.3. Permeability and hydrothermal stability test for VTES-derived silica membrane 

The permeance of various gases such as He, Ne, H2, CO2, N2, CO, and CH4 were 

measured at temperatures ranging from 573 K to 873 K. The temperature was varied 

downward and upward in the order: 873, 673, 473, 573 and 773 K to verify that the 

membrane was not changing in the course of the measurements. After purging the inside 

of the support under a flow of the corresponding pure gas for 10 min, the inside of the 

support was pressurized to around 0.35 MPa by closing a backpressure regulator (BPR) 

(Figure 3.2 (b)). Then the flow rate of permeate gas was measured directly with a flow 

meter (Agilent Technologies, AD1000) for large flow rates or with a micro gas 

chromatograph (micro GC, Agilent Technologies, 490 micro GC, a molecular sieve 5A 

column was used for N2 and CO and a Porapak Q column was employed for CO2 and 

CH4) for small flow rates, where the concentration of the permeate in a known flow of 

carrier was measured.  

A hydrothermal stability test was carried out with 16 mol% of water vapor diluted 

in Ar flow at 873 K and 0.1 MPa for 72 h. For this condition, 10 cm3 (NTP) min-1 (7.4 

μmol s-1) of carrier gas, which was passed through a heated bubbler containing distilled 

water at 329 K and 0.1 MPa, was introduced to the inside of the support while flowing 

10 cm3 (NTP) min-1 (7.4 μmol s-1) of Ar on the outside of the support. The permeances 

of H2 and N2 were measured periodically during the test.  

The permeance of pure gases was calculated by using Eq. (3.1): 
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∆
     (3.1) 

where  is the permeance of species i [mol m-2 s-1 Pa-1], A is the surface area of the 

membrane [m2],  is the molar flow rate of the gas i [mol s-1] and ∆  is the partial 

pressure difference of gas i between the inner and the outer side of the membrane tube 

[Pa].  

The ideal selectivity was defined as the ratio of the single-gas permeances as given 

by Eq. (3.2). 

,      (3.2) 

where ,  is the ideal selectivity of a species i over j,  and  are the permeances 

of species i and j, respectively [mol m-2 s-1 Pa-1]. 

 

3.3. Results and discussion 

3.3.1. Preparation of VTES-derived membrane 
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Figure 3.4. Changes in H2 and N2 permeance and H2/N2 selectivity with CVD time 

(CVD conditions: 873 K, 0.25 MPa) 
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The CVD was conducted on the alumina substrate using VTES as silica precursor 

at 873 K, and the changes in the H2 and N2 permeances and the H2/N2 ideal selectivity 

as a function of CVD time are shown in Figure 3.4. Before the CVD, the alumina 

substrate had high H2 and N2 permeances of the order of 10-6 mol m-2 s-1 Pa-1 with a 

H2/N2 selectivity of 3.5, which was close to the value of 3.7 predicted for Knudsen 

diffusion. For the first 1 h, the H2 and N2 permeances decreased and the H2/N2 

selectivity increased slightly. With further progress of the CVD, the H2 permeance 

became almost stable but the N2 permeance decreased rapidly, resulting in an increase in 

the H2/N2 selectivity. This trend is usually observed in silica-based membranes prepared 

using the CVD method and the result indicates that passageways through which the N2 

could pass were blocked out that the H2 selective layer was successfully formed on the 

support. After 130 min of CVD, the VTES-derived silica membrane had a higher H2 

permeance of 5.4 × 10-7 mol m-2 s-1 Pa-1 than the TEOS-derived pure silica membrane of 

1.4 × 10-7 mol m-2 s-1 Pa-1 but lower H2/N2 selectivity of 150 versus 1950 [34]. This is 

probably caused by the presence of the vinyl groups, which do not allow the formation 

of a continuous network of siloxy bonds. Still, a selectivity above 100 is sufficient for 

practical applications in membrane reactors [36]. 

 

3.3.2. Morphology and structure of VTES-derived membrane 

Scanning electron microscopy (SEM) images of a cross-section of the VTES-

derived membrane are shown in Figure 3.5 (a, b). The γ-alumina intermediate layer, 

which was prepared by sequentially depositing coatings of boehmite sols of 80 nm and 

60 nm of particle sizes, was well formed on the macroporous α-alumina support without 

visible cracking or infiltration (Figure 3.5 (a)). After 130 min of CVD on the γ-alumina 
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are easily hydrolyzed but not Si-C bonds. After 1 h thermal stability test in Ar flow, 

peaks of the vinyl groups at 1566 and 1456 cm-1 were slightly decreased, but still 

remained in the silica structure. After 1 h hydrothermal stability test with 16 mol% of 

steam exposure, the peaks at 1566 and 1456 cm-1 decreased, and this result indicates 

that some vinyl groups were removed by steam at the test conditions.  
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Figure 3.6. Infrared spectra of the calcined γ-alumina disk before and after CVD, after 

1h exposure Ar and 1 h exposure 16 mol% water. All treatments and measurements 

were carried out at 873 K. 

 

3.3.3. Hydrothermal stability of the VTES-derived membrane 

Figure 3.7 shows the H2 and N2 permeance of the VTES-derived membrane (a) and 

the TEOS-derived membrane (b) as a function of exposure time to 16 mol% water vapor 

in Ar at 873 K. For the VTES-derived membrane, the H2 permeance decreased to 57 %, 
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which are slightly smaller levels of decrease than for TEOS-derived silica membranes 

[34,39]. However, the permeance curves are seen to be leveling off, which indicates that 

the membranes reach a point of hydrothermally stability. The H2 permeance of the 

VTES-derived membrane was still above the order of 10-7 mol m-2 s-1 Pa-1, which is the 

threshold level for practical applications [40]. In contrast, the N2 permeance increased 

considerably with the exposure time, and as a consequence the H2/N2 selectivity of the 

membrane decreased to 40 during the test. 
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Figure 3.7. Changes in the H2 and N2 permeances of the VTES-derived silica 

membrane with exposure to 16 mol% of water vapor at 873 K for 72 h. 
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3.3.4. Permeation mechanism through the VTES-derived membrane before and after 

hydrothermal stability test 
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Figure 3.8. Temperature dependence of the permeances of various gases through the 

VTES-derived membrane before (a) and after (b) the hydrothermal stability test at 873 

K with 16 mol% of water vapor 

 

To investigate the permeation mechanism through the VTES-derived silica layer, 

permeance tests were conducted before and after the hydrothermal stability test with the 

pure gases He, Ne, H2, CO2, N2, CO and CH4 at different temperatures in the range 473-

823 K. The experimental temperature-dependent values of the permeance through the 

VTES-derived silica layer are shown in Figure 3.8 as points, which were obtained by 

subtracting the resistance of the γ-alumina intermediate layer (before CVD) from the 

resistance of the VTES-derived silica layer on the alumina substrate (after CVD): 
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	    (3.3) 

Figure 3.8 (a) shows the permeance of the various gases through the VTES-derived 

silica layer before the hydrothermal stability test. Smaller species such as He, Ne and H2 

had high permeance, while larger molecules like CO2, N2, CO and CH4 had low 

permeance. The permeance of the smaller species increased with temperature, indicating 

an activated diffusion transport mechanism through the membrane. The permeance of 

the larger gases exhibited similar behavior as the smaller species, except that of CH4 

which decreased as temperature increased.  

The permeance of the various gases was also tested after exposure to 16 mol% 

water vapor at 873 K for 72 h as shown in Figure 3.8 (b). The smaller gases followed a 

similar trend before and after the hydrothermal stability tests with the permeance 

increasing with temperature, but with the overall permeance declining. This was due the 

densification of silica which led to compaction of the silica structure, making it difficult 

for small gases to pass through the silica structure. The larger gases did not follow the 

same trend before and after the hydrothermal exposure. Overall, their permeance 

increased, probably because the densification of the silica structure also formed defect 

pores. Moreover, the pores became larger in size so that the mechanism of permeation 

changed, with the permeance of all large gases decreasing with temperature.  

In order to quantitatively explain the mechanism of permeation the transport of 

various gases through the VTES-derived silica layer was measured and analyzed using a 

solid-state diffusion model for small gases and surface diffusion and gas-translation 

models for large gases. First the data for the small-sized gases will be discussed. The 

analysis was conducted using Eq. (3.4), derived earlier [14] using statistical mechanics. 

The equation has as parameters the number of solubility sites per m3 of membrane 
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volume (Ns), the vibrational frequency of the species in the passageways between the 

sorption sites (ν*), the activation energy of diffusion (∆Ea) and the jump distance (d). 

	
⁄

	
⁄

∗⁄ ∗⁄
∆ ⁄   (3.4) 

where  is the permeance of species i through the VTES-derived silica layer [mol m-2 

s-1 Pa-1], L the thickness of the top permselective layer, mi the mass of the species i, T the 

temperature [K], h Planck’s constant, k Boltzmann’s constant, NA Avogadro’s number, R 

the gas constant, I the moment of inertia, α an exponent accounting for incomplete loss 

of rotation (0 for He and Ne, and 0.2 for H2), σ the symmetry factor of the species (2 for 

H2). The membrane thickness was 200 nm as obtained from the SEM image in Figure 

3.5 (b). Use was also made of the polynomial relationship previously found [14] 

between d and NS as shown in Eq. (3.5): 

d	 nm c      (3.5) 

where a = 0.84649, b = -1.74523 10-29, c = 5.60055 10-58, and d = -7.66678 10-87. 

The calculated permeance is shown in Figure 3.8 as curves, and the fitted 

parameters are summarized in Table 3.1. Before discussing the values in detail it should 

be noted that the quantities obtained are physically realistic. The number of sites are of 

the order of 1027 m-3 and the inverse cube root is 1×10-9 m or 1 nm, which is of the order 

of the distance between solubility sizes d. The vibrational frequency of 1012 s-1 

corresponds to that expected for molecular vibrations and the activation energies of the 

order of 10 kJ mol-1 which is reported for passage of small gases through vitreous 

glasses [41,42]. 

Before and after the hydrothermal stability test, the number of solubility sites NS are 

in the order He > Ne > H2, which follows the species size. This result is understandable 
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since on average smaller molecules will fit into more solubility sites. The order of 

activation energy ∆Ea has an inverse relation with NS because the larger molecules must 

overcome a larger barrier to squeeze through the silica-based rings. However, size is not 

the only factor that determines the permeance order. Another property that affects 

permeance is the jump frequency between sites and this has an inverse relationship with 

the mass of the species. This can be understood from consideration of the vibrational 

frequency of a harmonic oscillatator,	ν , which decreases as the reciprocal of 

the square root of the mass. As captured in Eq. (3.4), the permeance depends on both 

species size and mass, and gives rise to the order observed. 

 

Table 3.1. 

Calculated parameters for the VTES-derived membrane based on the solubility site 

model. 

 
Gas 

Ns 
/ site m-3 

ν* 
/ s-1 

∆Ea 
/ kJ mol-1

d 
/ nm 

Regression
coefficient 

SiO2(V) 
Before HTS 

He 0.475×1027 2.21×1012 3.4 0.8382 0.973 

Ne 0.391×1027 1.08×1012 6.8 0.8397 0.955 

H2 0.335×1027 2.39×1012 7.3 0.8407 0.982 

SiO2(V) 
After HTS 

He 0.885×1027 2.94×1012 7.3 0.8311 0.978 

Ne 0.665×1027 2.06×1012 9.6 0.8351 0.966 

H2 0.396×1027 3.03×1012 12.5 0.8396 0.961 

 

In comparison with the case before water exposure, the permeances of He, H2 and 

Ne were lower after the steam treatment. The activation energies of the membrane after 

exposure water vapor were higher and the jump distances were smaller, resulting in a 
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larger number of solubility sites. This result indicates that the silica structure, which 

allows small species to permeate through, shrank after hydrothermal stability test due to 

densification caused by condensation of silanol groups (Si-OH). The mode of 

permeation here is the major contributor to transport as it involves the entire silica 

network through a solid-state jump mechanism not involving pores. 

The large molecules are considered to permeate through a few small passageways 

in the silica-based layer with a surface flow process such as surface diffusion or gas-

translation. From the experimental results, the permeances of CO2 and CH4 before the 

water exposure were fitted to a surface diffusion model using Eq. (3.6), and the 

calculated permeances are shown in Figure 3.8 (a) as lines. For the other gases, which 

are not condensable, the permeances were fitted to a gas-translational model using in Eq. 

(3.7) and the calculated permeances are shown in Figure 3.8 as dotted lines. The 

experimental data at 773 K show deviations (Figure 3.8) and were omitted from the 

calculations. The calculated parameters are summarized in Table 3.2 and 3.3.  

 

Surface diffusion model:   

	 ∆ ∆
      (3.6) 

where  is a pre exponential factor, ∆  [J mol-1] enthalpy of adsorption, ∆  the 

energy barrier for moving to an adjacent adsorption site, and the others symbols are the 

same as above. 

 

Gas-translational model: 

∆ 					where		C     (3.7) 
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where ε is the porosity, τ the tortuosity,  the pore size,  a pre-exponential factor, 

 the molecular weight of component i, and the others symbols are the same as above. 

 

Table 3.2. 

Calculated parameters for the VTES-derived membrane based on the surface diffusion 

model. 

 
Gas

M 
/ g mol-1 

Kinetic 
diameter

/ nm 

P0 
/ mol m-2 s-1Pa-

1 

∆ ∆  
/ kJ mol-1 

Regression
coefficient

Before 
water 

exposure 

CH4 16 0.38 7.2 × 10-10 2.9 0.9693 

CO2 44 0.33 8.0 × 10-9 -2.5 0.9491 

 

Table 3.3. 

Calculated parameters for the VTES-derived membrane based on the gas-translational 

model. 

 
Gas

M 
/ g mol-1 

C 
∆  

/ kJ mol-1
Regression
coefficient

Before 
water 

exposure 

CO 28 2.5 × 10-7 12.4 0.9268 

N2 28 3.2 × 10-7 14.5 0.9456 

After water 
exposure 

CH4 16 4.9 × 10-8 -1.0 0.9903 

CO 28 3.3 × 10-8 -2.8 0.9409 

N2 28 3.4 × 10-8 -2.3 0.9911 

CO2 44 2.5 × 10-8 -6.3 0.9725 

 

Before the water exposure in Figure 3.8 (a), the order of permeance was CO2 > N2 

≈ CO > CH4 which follows the kinetic diameter of the molecules at high temperature, 

but the order was changed to CO2 > CH4 > N2 ≈ CO at low temperature. This result 
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indicates that condensable gases such as CO2 and CH4 followed a surface diffusion 

mechanism, and N2 and CO followed a gas-translational mechanism. Again it should be 

noted that these mechanisms are minority contributors to the permeance and involve a 

few connected pores that are defects in the silica structure.  

After the water exposure in Figure 3.8 (b), the small pores were enlarged and the 

permeances of the large-sized gas species increased. These permeances decreased with 

increasing temperature, which can be well described by the gas-translational mechanism. 

This makes sense since as the pores grew in size their associated surface area decreased 

and surface diffusion became less important. The order of the permeance was CO2 > 

CH4 > N2 ≈ CO at low temperature, but the order was changed to CH4 > N2 ≈ CO > CO2 

which follows inverse mass. This result indicates that the gas-translational mechanism 

transitions to a Knudsen-like behavior at high temperature as shown by the crossing of 

the permeation curves (Figure 3.8 (b)). This crossover in curves is not observed with 

pure silica membranes derived from TEOS [43] and indicates a structural difference 

between the two types of membranes. In the VTES-derived membrane those are likely 

to be the polarizable vinyl groups in the small defect pores, with the groups having 

strong interactions between CH4 and CO2 and leading to the surface diffusion 

mechanism.   

 

3.4. Conclusions 

Hydrogen selective VTES-derived silica membranes were successfully prepared on 

a macroporous alumina support with pore size 60 nm by chemical vapor deposition 

(CVD) of pure vinyltriethoxysilane (VTES) at 873 K. The membrane had a high H2 

permeance of 5.4 × 10-7 mol m-2 s-1 Pa-1 with selectivities over CO2, N2, CO and CH4 of 
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95, 170, 170 and 480, respectively. The thickness of this membrane was around 200 nm 

as measured by scanning electron microscopy (SEM). Analysis by Fourier transform 

infrared spectroscopy demonstrated that vinyl groups were retained in the silica network 

after CVD, but not ethoxy groups. Results of permeation tests of He, H2, and Ne as a 

function of temperature were well described by a solid-state permeation mechanism 

involving jumps between solubility sites. The fitting parameters were physically 

realistic, and described the results quantitatively.  

The hydrothermal stability of the membrane was studied by exposure to 16 mol% 

water vapor at 872 K for 72 h.  The H2 permeance (major path way: solid-state 

diffusion through the silica-) decreased 57 %, which was less than the 68 % reduction 

observed for a pure silica membrane. However the N2 permeance (major path way: gas-

translation through small defect pores) increased considerably with exposure time, and 

resulted in a decrease of the H2/N2 selectivity to 40. The temperature dependence of the 

permeance of various molecules before and after hydrothermal exposure gave 

information about the mechanism of transport. For large species the mechanism 

changed from surface diffusion to gas-translation. Overall the silica-based structure 

shrunk, while small-pore defects grew after with vapor exposure. 
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Chapter 4 

Dehydrogenation of Ethane over Cr/ZSM-5 

Catalyst in a Hydrogen Selective Silica 

Membrane Reactor 

 

4.1. Introduction 

Ethylene is one of the most important petrochemicals due to its extensive use as 

feedstock for the production of a vast array of chemicals, including polymers (e.g., 

polyethylene, polyester, and polystyrene), oxygenates (e.g., ethylene oxide, ethylene 

glycol, and acetaldehyde), and chemical intermediates (e.g., ethyl benzene and ethylene 

dichloride) [1]. The current worldwide production of ethylene amounts to 160 million 

tons per year [2]. Ethylene is commercially produced by steam cracking and fluid 

catalytic cracking of naphtha, light diesel, and other oil byproducts, but these processes 

require high-energy and are not selective, producing substantial quantities of methane 

and coke as byproducts.  

Catalytic dehydrogenation of ethane provides an alternative for producing ethylene 

with hydrogen as a byproduct, an important reagent in refineries. One of the drawbacks 

of catalytic dehydrogenation of ethane is the thermodynamic constraint in the ethane 

conversion. To alleviate this problem, membrane reactors are considered possible 

solutions because they can overcome the equilibrium limitation of the reaction by 

extracting H2 continuously from the catalyst bed [3,4]. There have been a number of 

studies of alkane dehydrogenation. Gobina et al. reported ethane dehydrogenation over 

0.5 wt% Pd/Al2O3 in a membrane reactor incorporating a hydrogen selective Pd-Ag 
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membrane at 660 K and 129 kPa [5].  They also developed a two-dimensional 

mathematical model to describe the performance of the membrane reactor [6].  Avila et 

al. studied ethane dehydrogenation over 1 wt% Pt-Sn/Al2O3 in a membrane reactor with 

a hydrogen selective natural mordenite membrane disk using pure ethane at 773-823 K 

and 0.1 MPa [4]. Collins et al. reported propane dehydrogenation over Pd-based catalyst 

in membrane reactor with microporous silica-based membranes and a palladium 

membrane at 773-848 K and 0.1 MPa [ 7 ]. Medrano et al. studied propane 

dehydrogenation over a Pt-Sn/MgAl2O4 catalyst in a Pd-Ag membrane coupled to two-

zone fluidized bed reactor with different reactor configurations at 848 K and 0.1 MPa 

[8]. The propylene yield in reactor with membrane was higher than other reactor 

configurations.  Previous studied mainly focused on Pd-based or Pt-based catalyst with 

Pd-based membrane, and there has been limited previous work using Cr-based catalyst 

and hydrogen selective silica-based membrane on the dehydrogenation of ethane in 

membrane reactors. Especially, there is very limited studies considered pressure effect 

on catalytic membrane reactors for ethane dehydrogenation.   

In this study the dehydrogenation of ethane was conducted over a 5 wt% Cr/ZSM-5 

catalyst coupled to a H2 selective silica membrane. Various reaction conditions were 

varied such as feed flow rates (20-100 cm3 min-1), total pressures (0.1-0.5 MPa) and 

temperatures (723-823 K) and were applied to packed bed reactor (PBR) and membrane 

reactor (MR) modes of operation. A general parameter, the operability level coefficient 

(OLC), the ratio between the actual permeation rate and the actual formation rate of a 

H2 in a membrane reactor, was used to correlate the performance of the membrane 

reactor.  
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4.2. Experimental 

4.2.1. Preparation and characterization of the silica membrane 

The silica membranes used in this work were prepared as described before [9]. First 

a γ-alumina intermediate layer was prepared on a tubular macroporous α-alumina 

support by a sol-gel method. Then a silica layer was placed on top of the γ-alumina 

intermediate layer by a chemical vapor deposition (CVD) method. The CVD was 

conducted using vinyltriethoxysilane (VTES, TCI, 98 %) as the silica precursor at 873 

K and 0.1 MPa with the VTES bubbler at room temperature. The CVD was conducted 

until an adequate H2 permeance and H2/N2 selectivity were obtained by interrupting the 

CVD and checking the performance of the membrane periodically. After CVD, the 

permeances of various gases such as He, Ne, H2, CO2, N2, CH4, C2H6 and C2H4 were 

measured at 573 K and 0.25 MPa. A low temperature of 573 K was chosen for the 

permeance measured in order to avoid reaction of ethane and decomposition of ethylene.   

 

4.2.2. Preparation and characterization of Cr/ZSM-5 catalyst 

A 5 wt% Cr/ZSM-5 was synthesized by the incipient wetness impregnation method. 

The 4 g of ZSM-5 (SiO2/Al2O3 = 1900, Tosoh) support was impregnated with an 

aqueous solution of chromium (III) nitrate, which was prepared by stirring 1.55 g of 

chromium (III) nitrate nonahydrate (Alfa Aesar, 98.5 %) with 3 ml of deionized water 

for 10 min at room temperature, followed by drying at 393 K overnight and calcination 

at 1023 K for 5 h. The powder precursor was pelletized and sieved to particles of 650-

1180 μm diameter. 

The calcined catalyst was characterized by X-ray diffraction (Rigaku RINT 2400) 

using CuKα radiation (λ=1.5418Å) at 40 kV and 100 mA. The sample was scanned 
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from 2θ values of 10º to 80º with a step size of 0.02º and a dwell time of 1.0 s.  

The specific surface area of the samples was calculated from the linear portion of 

BET plots (P/Po = 0.01 - 0.20) obtained from N2 adsorption isotherms at 77 K using a 

BELSORP mini II micropore size analyzer. Prior to the measurements, the sample was 

dried and evacuated at 393 K overnight. 

The X-ray absorption fine structure (XAFS) spectra were measured at the BL-9C 

beam line of the Photon Factory (PF) in the Institute of Materials Structure Science, 

High-Energy Accelerator Research Organization (KEK-IMSS-PF). The synchrotron 

ring was operated at 2.5 GeV with 450 mA of ring current. The Cr K-edge absorption 

spectra were recorded in transmission mode using ionization chambers for the detection 

of the incident X-ray beam (I0, 70% He in N2) and transmitted beam (IT, 15% Ar in 

N2). The calcined disk sample (20 mg) was set in the middle of an in situ cell equipped 

with Kapton windows, and treated at 823 K for 1 h under a He flow in the same manner 

as for the activity tests. The EXAFS data were analyzed by REX software (Rigaku, 

Tokyo, Japan). Phase shift and amplitude functions of Cr were calculated by FEFF8.  

 

4.2.3. Reactivity test with catalytic membrane reactor 

A schematic diagram of the catalytic membrane reactor is shown in Figure 4.1. 

Reactions were carried out in a quartz up-flow tubular reactor (O.D.= 16 mm, I.D.= 14 

mm, length = 250) equipped with a hydrogen selective VTES-derived silica membrane, 

which had a H2 permeance of 2.7 × 10-7 mol m-2 s-1 Pa-1 with H2/C2H6 selectivity of 250 

at 573 K and 0.25 MPa. Prior to testing, 0.4 g of 5 wt% Cr/ZSM-5 was heated at 1.5 K 

min-1 to 823 K in Ar flow and maintained for 2 h. In order to reach the steady-state of 

reaction, 20 % C2H6 diluted in Ar was fed into the reactor at a flow rate of 20 cm3 min-1 
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The conversion, yield, H2 permeance and productivity were calculated according to 

the following equations: 

 

Conversion	 100		 %     (4.1) 

Yield	 100		 %      (4.2) 

Permeance	 	 	

	∆
	 	    (4.3) 

Productivity	 	 	

	 	
	 	    (4.4) 

 

where  is the molar flow rate of the gas i [mol s-1], A is the surface area of the 

membrane [m2] and ∆  is the partial pressure difference of H2 between the inner and 

outer side of the membrane tube [Pa]. 

The ethylene yield enhancement was defined from quantities obtained experimental

ly in the MR and PBR.  

Ethylene	yield	enhancement	 % 	 	

	
  (4.5) 

 

The operability level coefficient (OLC) is defined as the ratio of the actual permeati

on rate and the actual formation rate of a critical product in a membrane reactor (Eq.4.6)

 [10]. The critical product is usually the one for which the membrane is permselective, i

n this case hydrogen. The product formation rate is the total production rate, including t

hat which permeates.  

OLC 	 	

	 	

	 	 	 	 	

	 	 	 	 	
   (4.6) 
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The kinetic rate expression for the ethane dehydrogenation and parameters used in 

the simulation were summarized in Table 4.2. The calculations were conducted by using 

Polymath program.  

 

Table 4.2 

Reaction rate expression and kinetic parameters for ethane dehydrogenation  

Reaction rate, ri  

Reaction rate constant, k  0.0225 s-1  (calculated based on Power Law) 

Equilibrium constant, Ke 0.0003  at 823 K and 0.1MPa  

Total concentration, Ctot  0.0148 mol dm-3 
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4.3. Results and discussion 

4.3.1. Permeance of VTES-derived silica membrane 
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Figure 4.3. Permeance of various gases before and after CVD (CVD temperature: 873 

K, measurement temperature: 573 K) 

 

Figure 4.3 shows the permeance of various gases (He, Ne, H2, CO2, N2, CH4, C2H4, 

C2H6) through the alumina multilayers (before CVD) and VTES-derived silica 

membrane (after CVD) as a function of kinetic diameter of the species. The CVD was 

conducted at 873 K and 0.1 MPa, and the permeance measurements were conducted at 

573 K and 0.25 MPa. Before CVD, all gases showed high permeance in the range of 10-

6 mol m-2 s-1 Pa-1, and the order of permeances followed inverse of their mass (H2 > He 

> CH4 > C2H4 > C2H6 > Ne > N2 > CO2). After 130 min of CVD, the permeance of all 

gases decreased, and the order of permeances generally followed their size. This 

indicated a transition from Knudsen diffusion to molecular sieving. The permeance of 
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H2 was 2.7 × 10-7 mol m-2 s-1 Pa-1 and the selectivity of H2/C2H6 was 250 and H2/C2H4 

was 240 at 573 K. These values were considered to be high enough for successful 

application in a catalytic membrane reactor [11]. The exact permeance of H2 at the 

reaction conditions will be discussed in section 4.3.3.  

 

4.3.2. Characterization of catalyst 
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Figure 4.4. XRD patterns of ZSM-5 support, fresh and spent Cr/ZSM-5 catalysts 

 

Figure 4.4 shows the XRD patterns of the ZSM-5 support, and the fresh and spent 5 

wt% Cr/ZSM-5 catalysts. All samples exhibit diffraction peaks that are typical for 

crystalline ZSM-5. The XRD pattern of fresh Cr/ZSM-5 catalyst clearly shows 

additional small peaks at 2θ = 34º, 42º, 51º, and 56º, which is attributed to Cr2O3 

(PDF#38-1479). Those peaks remained in the XRD pattern of the spent Cr/ZSM-5 

catalyst, indicating that the catalyst was stable during reaction. However, it cannot be 

ruled out that Cr2O3 was a spectator species.  
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Table 4.3. 

BET surface areas, pore volumes and crystallite size of the ZSM-5 support, and the 

fresh and spent Cr/ZSM-5 catalyst samples 

Sample Condition SBET /m2g-1 VPore /cm3g-1 
Crystallite size 

/ nm 

ZSM-5 As received 339 0.171 - 

Cr/ZSM-5 
Fresh 279 0.144 29 

Spent 260 0.131 35 
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Figure 4.5. (a) XANES spectra of the Cr/ZSM-5 catalyst after He treatment at 298-823 K 

and (b) EXAFS spectra after He treatment at 823 K. Spectra were taken at 

room temperature. 

 

The surface areas and pore volumes of the support, the fresh and spent catalysts are 

also presented in Table.4.3. After loading the chromium metal, the surface area 
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decreased with a reduction in pore volume due to the presence of Cr2O3 phase on the 

support. 

 

Table 4.4. 

Curve-fitting results for Cr/ZSM-5 catalyst after pretreatment at 823 K 

 
N R dE DW R 

Cr-O 5.993 1.987 0.291 0.067 
1.305 

Cr-Cr 3.221 2.971 3.163 0.099 

 

Figure 4.5 (a) shows the X-ray absorption near edge spectroscopy (XANES) results 

of the Cr/ZSM-5 catalyst during He treatment at 298-823 K. These temperatures were 

the same as those used in the pretreatment step before reactivity measurements, and can 

give evidence for the state of Cr species. The spectrum at 298 K displayed a small pre-

edge peak at 5993 eV corresponding to a terminal Cr6+=O species with tetrahedral 

structure [12]. Interestingly, as temperature increased in He flow, the intensity of the 

pre-edge gradually decreased. The shape of the XANES spectra changed slightly with a 

peak at 6008 eV increasing and a peak at 6010 eV decreasing. After the thermal 

treatment the overall shape of the spectrum was similar to that of a reference Cr2O3 

spectrum as reported in previous work [13]. Figure 4.5 (b) shows the extended X-ray 

absorption fine-structure (EXAFS) of the Cr/ZSM-5 catalyst at 823 K and a calculated 

curve of Cr2O3, with the results of curve-fitting of the spectrum summarized in Table 

4.4. Only two paths were used (Cr-O at ~ 0.1987 nm and Cr-Cr at ~ 0. 297 nm) but 

good fits were obtained. There were two main peaks in the Fourier transforms located at 

0.1987 nm for a Cr-O distance and 0.297 nm for a Cr–Cr distance. The coordination 

number was 6 for Cr-O and 3.2 for Cr-Cr. These values are similar to those of a Cr2O3 
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reference sample suggesting that after pretreatment in He at 823 K, the Cr2O3 phase was 

fully formed. The phase is known to be effective for alkene dehydrogenation [14]. 

 

4.3.3. Catalytic performance of 5 wt% Cr/ZSM-5 in the dehydrogenation of ethane 
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Figure 4.6. Conversion of C2H6 and yields of C2H4, H2 and CH4 as a function of time 

for the dehydrogenation of ethane in the PBR with 20 cm3 min-1 of 20% 

C2H6 diluted in Ar at 823 K and 0.1 MPa. 

 

Ethane dehydrogenation over the 5 wt% Cr/ZSM-5 catalyst was carried out at 823 

K and 0.1 MPa with 20 cm3 min-1 of 20 % ethane diluted in Ar and was allowed to run 

for 2 h to stabilize the catalyst. Figure 4.6 shows the conversion of C2H6 and yields of 

products such as C2H4, H2 and CH4 as a function of time on stream. The catalyst 

exhibited a rapid loss in conversion during the first 30 min of time on stream, but 

attained almost constant conversion and yield during the test period. After 2 h of 

reaction the C2H6 conversion was stabilized to 28 % and the ethylene selectivity was 

88 %. Theoretically the H2 yield should be the same as the C2H4 yield, but the H2 yield 
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was higher than the C2H4 yield. This is because of a side reaction where absorbed C2H4 

on catalyst was decomposed to produce CH4, H2 and coke [15,16].  

 

4.3.4. Effect of feed flow rate on ethane dehydrogenation in the PBR and MR 

The effect of various reaction was studied over the 5 wt. % Cr/ZSM-5 catalyst in 

the PBR and the MR. Figure 4.7 (a, b) show the conversion of C2H6 and yields of C2H4, 

H2 and CH4 with various feed flow rates in the PBR and the MR at 823 K and 0.1 MPa. 

In the PBR (Figure 4.7 (a)), the C2H6 conversion decreased with increasing feed flow 

rate from 28 % for 20 cm3 min-1 to 10 % for 100 cm3 min-1 due to the lower contact 

time of ethane on the catalyst. However, the selectivity of C2H4 increased slightly with 

decreasing CH4 yield with increasing feed flow rate from 89 % for 20 cm3 min-1 to 92 % 

for 100 cm3 min-1 because of the decrease in side reactions such as coking and cracking.  

In the MR (Figure 4.7 (b)), the trends of the conversion of C2H6 and yields of C2H4 

and H2 were the same as in the PBR, but the values were higher in the MR than in the 

PBR. The enhancement of the C2H4 yield in the MR, which is defined as the difference 

between the C2H4 yield in the MR and the PBR divided by the C2H4 yield in the PBR, 

increased with decreasing feed flow rate (Figure 4.7 (c)). The H2 permeance at these 

reaction conditions increased with decreasing feed flow rate (Figure 4.7 (c)), but the 

values were in a similar range as the single gas permeance results presented before. 

Figure 4.7 (d) shows the C2H4 yield enhancement as a function of the operability level 

coefficient (OLC), which is defined as the ratio of the actual permeation rate and the 

actual formation rate of the H2 in the reaction condition. The C2H4 yield enhancement 

increased with increasing OLC as the feed flow rate was decreased. This indicates that 

the OLC is a useful parameter for describing the performance of a membrane reactor.  
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Figure 4.7. Conversion of C2H6 and yields of C2H4, H2 and CH4 for dehydrogenation of ethane at feed flow rates in the range of 20-100 

cm3 min-1 at 823 K and 0.1 MPa using 20 % C2H6 diluted in Ar. (a) PBR (b) MR (c) Yield enhancement and H2 permeance as feed flow fate 
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Figure 4.8. Conversion of C2H6 and yields of C2H4, H2 and CH4 for dehydrogenation of ethane at various total pressures 0.1-0.5 MPa and 

823 K. (a) PBR (b) MR (c) Yield enhancement and H2 permeance as feed total pressure 
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4.3.5. Effect of total pressure on ethane dehydrogenation in PBR and MR 

The effect of pressure on the dehydrogenation of ethane in the PBR and the MR 

was investigated at 823 K at various pressures (0.1 – 0.5 MPa) with 20 cm3 min-1 of 20 % 

ethane diluted in Ar. In order to keep the residence time constant, the feed was 

continuously supplied to the reactor with the overall feed flow rate increasing in 

proportion to the pressure. Figure 4.8 (a, b) shows the conversion of C2H6 and the yields 

of C2H4, H2 and CH4 as a function of the pressure in the PBR and the MR. In the PBR 

(Figure 4.8 (a)), the conversion and yields decreased with increasing pressure from 24 % 

for 0.1 MPa to 14 % for 0.5 MPa, and this is in accordance with Le Chatelier’s principle 

since the stoichiometry of ethane dehydrogenation results in a net increase in moles, 

which is disfavored with increasing pressure.  

The trends of the conversion and yields in MR were similar to these in the PBR, but 

the conversion and yields were higher in the MR at all pressures (Figure 4.8 (b)). This is 

also explained by Le Chatelier’s principle, since selective removal of the product 

hydrogen through the membrane shifts the equilibrium of the reaction and increases the 

conversion and yields. The H2 permeance at the reaction conditions was in a similar 

range as the permeances that were obtained in the single gas permeance measurements , 

but the permeance decreased even though the pressure increased (Figure 4.8 (c)). This 

result could be due to the constant flow rate of sweep gas (100 cm3 min-1), which was 

used at all reaction conditions and which may not here been sufficient at higher pressure. 

From the result of activity and the H2 permeance, the enhancement of the C2H4 yield in 

the MR mode decreased with increasing total pressure (Figure 4.8 (c)). A relation 

between the C2H4 yield enhancement and the OLC is shown in Figure 4.8 (d). The C2H4 

yield enhancement increased with increasing OLC as the total pressure decreased. 



94 

0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

PBR

Pressure / MPa

P
ro

du
ct

iv
ity

 o
f H

2 / 
m

ol
H

2 k
g ca

t-1
 h

-1

MR

 

Figure 4.9. Productivity of H2 for dehydrogenation of ethane in the MR and PBR at 

various total pressures 0.1-0.5 MPa and 823 K.  

 

Figure 4.9 shows the productivity of H2, obtained from the molar flow rate of 

produced H2 normalized by the weight of catalyst, in the PBR and MR as a function of 

total pressure. Although the conversion of C2H6 and the yields of C2H4 and H2 

decreased with increasing total pressure (Figure 4.8), the productivity of H2 increased 

with increasing pressure in the PBR and MR. This is because the decrease in conversion 

is more than affect by the increase in inlet flow rate. In addition, the productivity of H2 

was higher in the MR than in the PBR, especially at high pressure.  

 

4.3.6. Effect of temperature on ethane dehydrogenation in PBR and MR 

The effect of temperature on the dehydrogenation of ethane in the PBR and the MR 

was also investigated in temperature range of 723-823 K at 0.1 MPa with 20 cm3 min-1 

of 20 % ethane diluted in Ar, and the conversion of C2H6 and yields of C2H4, H2 and 

CH4 are shown in Figure 4.10 (a, b). In both reactors, the conversion of C2H6 and yields 
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of C2H4 and H2 increased with increasing temperature because the dehydrogenation of 

ethane is an endothermic reaction. However, the yield of CH4, which is the side product, 

also increased with increasing temperature due to the coking and cracking as side 

reactions. In the MR, the C2H4 yield increased at all temperatures and the C2H4 yield 

enhancement rose and was highest at 823 K at 7 % (Figure 4.10 (c)). The H2 permeance 

was very stable during the activity tests showing a permeance of 2-3 × 10-7 mol m-2 s-1 

Pa-1. Figure 4.10 (d) shows that the C2H4 yield enhancement correlates well with the 

OLC with changes of temperature, again indicating that the OLC is a useful descriptor 

of the reactor performance. 

 

4.3.7. Effect of membrane properties on yield enhancement  

The effect of membrane properties on the enhancement of C2H4 yield for the 

dehydrogenation of ethane was investigated with different hydrogen selective 

membranes at 823 K and 0.1 MPa with 20 cm3 min-1 of 20 % ethane over 0.2 g of 5 wt.% 

Cr/ZSM-5 catalyst. In the present study VTES-derived silica membranes were mostly 

used in the membrane reactor studies, but this section describes a silica-zirconia 

composite membrane for comparison. The silica-zirconia membrane has lower H2 

permeance but larger H2/C2H6 selectivity. The H2 permeance and H2/C2H6 selectivity of 

the membranes at reaction conditions and the enhancement of C2H4 yield are 

summarized in Table 4.5. Comparison of enhancements of C2H4 yield shows that a 

higher H2 permeance is more important than selectivity for the enhancement of the C2H4 

yield from 7.3 to 12.1 %. This supports earlier findings that selectivity about 100 did not 

affect membrane reactor performance [11]. 
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Figure 4.10. Conversion of C2H6 and yields of C2H4, H2 and CH4 for dehydrogenation of ethane at various temperatures from 723 K to 823

 K and 0.1 MPa. (a) PBR (b) MR (c) Yield enhancement and H2 permeance as temperature
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Table 4.5. 

Enhancement of C2H4 yield for dehydrogenation of ethane in membrane reactor with 

different membranes at 823 K and 0.1 MPa with 20 cm3 min-1 of 20 % ethane 

Membrane 
H2 permeance 

/ mol m-2 s-1 Pa-1
H2/C2H6 Selectivity

/ - 
OLC 

/ - 
Enhancement of
C2H4 yield / %

SiO2-ZrO2
[9] 1.9 × 10-7 4300 0.34 7.3 

VTES-derived SiO2 4 × 10-7 240 0.47 12.1 

 

The enhancement of C2H4 yield was also obtained by simulation with a 1-

dimensional model using various H2 permeances and H2/C2H6 selectivities. Fig. 4.11 

(top) shows the C2H4 yield as a function of contact time with different H2 permeances. 

Here, the H2 permeance was varied from 0 to 10-6 mol m-2 s-1 Pa-1, and the selectivity of 

H2/C2H6 was fixed at infinity in all cases. The points are experimental values and the 

lines are calculated values. Comparison with the experimentally obtained H2 permeance 

in the range of 2-3 × 10-7 mol m-2 s-1 Pa-1, the calculated values showed good agreement 

with the experimental values. The C2H4 yield increased with the increase of H2 

permeance, and the yield was 51 % at a H2 permeance of 10-6 mol m-2 s-1 Pa-1.  Figure 

4.11 (bottom) shows the enhancement of C2H4 yield as a function of the OLC value, 

which is the ratio of the permeation rate and the formation rate of hydrogen. The points 

are experimental values, which were shown in Table 4.5, and the lines are calculated 

values. The simulated values agreed well with the experimental values. The 

enhancement of C2H4 yield increased with the increase of H2 permeance and H2/C2H6 

selectivity. When the H2/C2H6 selectivity was higher than 100, the enhancement of C2H4 

yield was higher than 25 % at a H2 permeance of the order of 10-6 mol m-2 s-1 Pa-1. 

However, when the selectivity was 10, the enhancement of C2H4 yield decreased after 
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the H2 permeance of 5 × 10-7 mol m-2 s-1 Pa-1 because the increasing C2H6 reactant 

permeance resulted in loss of the reactant on the reaction side. The results show that a 

selectivity of 100 is sufficient to achieve high membrane reactor performance. 
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Figure 4.11. Experimental and calculated values of the C2H4 yield as a function of 

contact time (top) and the enhancement of C2H4 as a function of OLC (bottom)  
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4.4. Conclusions 

The dehydrogenation of ethane was conducted over a 5 wt% Cr/ZSM-5 catalysts in 

a conventional packed-bed reactor (PBR) and in a membrane reactor (MR) fitted with 

hydrogen selective silica membranes. The silica membrane was prepared by the 

chemical vapor deposition of vinyltriethoxysilane (VTES) at 873 K, and the membrane 

had a high H2 permeance of 4 × 10-7 mol m-2 s-1 Pa-1 with H2/C2H6 selectivity of 240 at 

823 K, respectively. The H2 permeance at reaction conditions was similar to that 

obtained with single gas permeance measurement in the range of 3×10-7 mol m-2 s-1 Pa-1.  

Cr/ZSM-5 catalysts were successfully synthesized, which were characterized by 

Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and X-ray absorption fine-

structure (XAFS) measurements. The analyzed results showed that a large proportion of 

the catalyst was Cr2O3. 

The effect of various reaction conditions including feed flow rates, total pressures 

and temperatures on the dehydrogenation of ethane were investigated in the PBR and 

the MR. At all conditions, conversion of C2H6 and yields of C2H4 and H2 in the MR 

were higher than those in the PBR. Another result was that the productivity in H2 

formation increased with increasing pressure even though the conversion of C2H6 and 

yield of C2H4 and H2 decreased.  

 A C2H4 yield enhancement and an operability level coefficient (OLC) were used to 

evaluate the MR, and C2H4 yield enhancement was correlated with the OLC values. The 

enhancement of C2H4 yield was obtained from modeling simulation with various H2 

permeances and H2/C2H6 selectivities. The enhancement of C2H4 yield was higher than 

25 % at a H2 permeance of the order of 10-6 mol m-2 s-1 Pa-1 and a H2/C2H6 selectivity of 

100.
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Chapter 5 

General Conclusions 

 

This thesis deals with the study on hydrogen selective silica-based membranes for 

ethane dehydrogenation over Cr/ZSM-5 catalyst.  First, silica-based membranes were 

developed to improve their permeability and hydrothermal stability by modifying 

precursors.  

A hydrogen-selective silica-zirconia composite membrane was prepared on a 

macroporous alumina support by chemical vapor deposition of tetraethylorthosilicate 

(TEOS) and zirconium (IV) tert-butoxide (ZTB) at 923 K. The resulting membrane had 

a high H2 permeance of 3.8 × 10-7 mol m-2 s-1 Pa-1 with selectivities over CO2, N2 and 

CH4 of 1100, 1400 and 3700, respectively. Studies of the temperature dependence of the 

permeance of He, H2, and Ne demonstrated that the permeation mechanism was similar 

to that of dense silica membranes, involving solid-state diffusion with jumps of the 

permeating species between solubility sites. Parameters such as the site density, jump 

distance, and jump frequency were calculated and were physically plausible, and varied 

in reasonable manner with the mass and size of He, H2, and Ne. An alternative 

mechanism involving an activated gas translational mechanism was shown to fit the 

data but to give physically unrealistic parameters. The silica-zirconia membrane showed 

hydrothermal stability over a limited testing period of 48 h. After exposure to 16 mol% 

water vapor at 923 K for 48 h, a pure silica membrane showed a 68 % decline with a H2 

permeance 4.5 × 10-8 mol m-2 s-1 Pa-1 and a H2 over N2 selectivity of 800, both of which 

continued to deteriorate. In comparison, a 10 % ZrO2-SiO2 membrane showed a decline 
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of 56 % but to a level of 10-7 mol m-2 s-1 Pa-1 with a H2 over N2 selectivity of 5700. 

Importantly, the deterioration largely stabilized at that point.  

Hydrogen-selective silica membranes were prepared on a macroporous alumina 

support by chemical vapor deposition (CVD) of vinyltriethoxysilane (VTES) at 873 K 

at atmospheric pressure. The membrane had a high H2 permeance of 5.4 × 10-7 mol m-2 

s-1 Pa-1 with H2 selectivity over CO2, N2, CO and CH4 of 95, 170, 170 and 480, 

respectively. In situ Fourier transform infrared (FTIR) measurements after CVD on an 

alumina disk at the same conditions as for the membrane preparation showed that the 

vinyl groups remained in the silica structure. The temperature dependence of the 

permeance of various molecules (He, Ne, H2, CO2, N2, CO, CH4) before and after 

hydrothermal treatment gave information about the mechanism of permeance and the 

structure of the membrane. The membrane was composed of a contiguous silica 

network through which small species permeated by a solid-state mechanism and a small 

number of pores through which the large molecules diffused. The silica-based structure 

became more compact after hydrothermal treatment with decreasing permeance of small 

molecules (He, Ne, H2), while small pores were enlarged increasing permeance of large 

molecules (CO2, N2, CO, CH4). Calculation results for the small species based on a 

mechanism involving jumps of the permeating species between solubility sites showed 

lower activation energy and larger jump distances than those of a TEOS-derived silica 

membrane. The retention of the vinyl groups in the structure mostly associated with the 

defect pores resulted in interactions with CH4 and CO2, so that these species permeated 

by a surface diffusion mechanism.  

Finally, the dehydrogenation of ethane (C2H6→C2H4+H2) over 5 wt% Cr/ZSM-5 

catalysts was studied in a conventional packed-bed reactor (PBR) and in a membrane 



105 

reactor (MR) fitted with the hydrogen selective silica-based membranes at various feed 

flow rates, total pressures and temperatures. The membranes were prepared by chemical 

vapor deposition (CVD) of vinyltriethoxysilane (VTES) at 873 K and had a high H2 

permeance of 2.7 × 10-7 mol m-2 s-1 Pa-1 with a H2/C2H6 selectivity of 250 and a 

H2/C2H4 selectivity of 240 at 573 K. The presence of a Cr2O3 phase in the 5 wt% 

Cr/ZSM-5 catalysts was confirmed by X-ray diffraction (XRD) and X-ray absorption 

fine-structure (XAFS) measurements. At all reaction conditions, conversion of C2H6 and 

yields of C2H4 and H2 in the MR were higher than those in the PBR. The yield 

enhancement of C2H4 and an operability level coefficient (OLC) were used to evaluate 

the MR, and the C2H4 yield enhancement was well correlated with the OLC values. The 

enhancement of C2H4 yield was also obtained from the experiment and modeling 

simulation with various H2 permeances and H2/C2H6 selectivities. The enhancement of 

C2H4 yield was higher than 25 % at H2 permeance of the order of 10-6 mol m-2 s-1 Pa-1 

and the H2/C2H6 selectivity of 100, but considered both the H2 permeance and H2/C2H6 

selectivity the enhancement would be lower than the estimated values.  

Based on the overall results in this thesis, several future works can be considered: 

- Model simulation for ethane dehydrogenation would be improved by considering 

kinetic rate expressions based on Lanmuir-Hinshelwood and using 2- or 3-

dimenssional model.  

- The enhancement of ethylene yield could be enhanced by applying high H2 

permeance of around 10-6 mol m-2 s-1 Pa-1 and the H2/C2H6 selectivity over 100.  

- The carbon dioxide-assisted dehydrogenation of ethane in membrane reactor could 

be effective process with solving coke formation and improvement of ethylene 

yield.  
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