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Neural mechanisms of locomotion in humans and non-human vertebrates have been studied 

from more than a century ago (Sherrington, 1910; Shik et al., 1966; Andersson et al., 2012). So 

far, the studies have revealed that control of locomotor muscle activity is achieved by 

complicated interactions in central nervous system (Shik et al., 1966; Sinnamon, 1993; 

Orlovsky et al., 1999; Goulding, 2009; Arber, 2012; Kiehn, 2016). Based on a large number of 

experimental studies on animal models, it has been established that the spinal cord has critical 

roles for the generation of basic locomotor muscle activity patterns (Grillner, 1981; Kiehn, 

2016). In addition, unlike quadruped animals, recent studies have suggested that the cortex is 

also largely involved in human bipedal locomotion (Wagner et al., 2012; Danner et al., 2015; 

Enders and Nigg, 2016).  

     In the present Chapter 1, I review a series of studies from past to present regarding the 

neural mechanisms underlying control of locomotion in vertebrates. Then, based on the review, 

I will raise research questions to be answered in this thesis, and present the purpose of this 

thesis. 

 

1. 1. Three processes for control of locomotion 

Takakusaki and Okumura (2008) proposed that locomotor behavior is controlled through the 

following three processes: “initiation”, “regulation” and “execution” processes. 

First, the “initiation” process works as a trigger of locomotion. The trigger drive is 

derived from voluntary commands from the cerebral cortex and emotional commands from the 

limbic systems and the hypothalamus (Takakusaki, 2008). 

Second, the “regulation process” contributes to achievement of adaptive locomotion. 

The cerebellum and the basal ganglia are involved in the process. The cerebellum receives 

locomotor commands as an efferent copy from the cortex and feedback sensory information as a 

result of locomotor movement. The cerebellum compares the two signals, calculates an error, 

and modulates the locomotor movement based on the error (Orlovsky, 1972a, b; Udo et al., 
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1979). On the other hand, the basal ganglia modulates the locomotor movement based on the 

volitional reference from the cerebral cortex, emotional information from the limbic system and 

reward information from the dopamine neurons in the midbrain (Schultz, 1998; Takakusaki et 

al., 2006). 

Finally, the “execution process” is a center of rhythm and pattern generation for 

locomotor behavior. The process is deeply associated with the brainstem and the spinal cord. 

The signals arriving from the “initiation process” and “regulation process” are integrated and 

transmitted to the brainstem and the spinal cord. The spinal cord has been regarded as a center 

of locomotor control, because it can generate coordinated rhythmic patterns of locomotor 

muscle activity without any descending and afferent inputs (Grillner, 1981; Kiehn, 2016). The 

brainstem triggers the generation of patterned locomotor muscle activity from the spinal 

locomotor networks. In addition to these neural systems, in humans, the cortex has been 

suggested to be involved in the generation of locomotor muscle activity based on significant 

corticomuscular connectivity between the motor cortex and lower limb muscles during walking 

(Petersen et al., 2012; Artoni et al., 2017). 

Since the brainstem, the spinal cord and the cortex are key neural bases of locomotor 

muscle control as mentioned above, I will describe the detailed functions of the brain regions 

for locomotor control in the following sections.  

 

1. 2. Mesencephalic locomotor region in the brainstem 

Using decerebrate cats (resected at the precollicular-postmammillary level), Shik et al. (1966) 

found that electrical stimulation to the cuneiform nucleus at the ventral inferior colliculus could 

elicit walking behavior. The stimulated region was named “Mesencephalic Locomotor Region 

(MLR)”. Additionally, they also demonstrated that increment of the stimulation intensity could 

accelerate the speed and induced gait transitions (i.e., walk to trot, and trot to gallop). The 

results indicated that the MLR has roles for a trigger of gait initiation and regulation of the 
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locomotion modes.  

It has been demonstrated that the MLR comprises the pedunculopontine (PPN) and 

cuneiform nuclei (CuN) in cat studies (Garcia-Rill, 1986, 1991, 1997). The MLR was also 

found in primates and the details of PPN and CuN have been explored by recent studies (Goetz 

et al., 2016; Sébille et al., 2017). In humans, clinical and electrophysiological results from 

studies using deep brain stimulation (DBS) of the PPN strongly suggest that the PPN works as a 

MLR also in humans (Jenkinson et al., 2009; Thevathasan et al., 2012).  

 

1. 3. Spinal control of locomotion 

1. 3. 1. Spinal central pattern generators (CPGs) 

 Sherrington (1910) found that the extension of hip flexor muscles could elicit the 

alternate activity between flexors and extensors in spinalized cats and dogs. Based on the 

findings, he proposed that alternate locomotion movement is generated by reciprocal spinal 

reflex between flexors and extensors. However, Graham-Brown (1911) showed that alternate 

contraction between flexors and extensors occurred even in the absence of sensory input. He 

proposed a hypothesis that the flexors and extensors are controlled by two systems of neurons 

(“half-center”) mutually inhibiting each other during locomotion. More than half a century later, 

Grillner (1981) conceptualized the built-in hardwired neural circuit in the spinal cord for 

locomotion as central pattern generator (CPG) consisting of unit burst generators (UBG) (Fig. 

1-1); a module generating rhythmic contraction individually existed in flexors and extensors in 

each segment and the modules control each other’s activities. Recently, Hägglund et al. (2013) 

demonstrated the existence of UBG-like modular organization in the spinal cord using 

optogenetic approaches. Firstly, they demonstrated that blue light stimulation to the lumbar 

spinal cord could induce coordinated locomotor-like rhythmic activity of motoneurons of 

flexors and extensors in both left and right sides (Fig. 1-2a). Additionally, the light stimulation 

to focal area demonstrated that rhythmic activity was induced unilaterally or independently in 



Chapter 1: Introduction                                                      

 15 

flexor or extensor networks (Fig. 1-2b).  

Regarding organization of the spinal CPG, recent studies using computational 

modeling proposed a novel organization consisted of two distinct layers: rhythm generation 

layer (upper layer) and pattern formation networks (lower layer) (McCrea and Rybak, 2008). In 

the two-level CPG, the rhythm generation layer controls the activation of the pattern formation 

networks that generate synergistic activation patterns of motoneuron pools for multiple muscles 

(Fig. 1-3). 

 

Figure 1-1. Schematic representation of the unit-burst-generator (UBG) model formulated by 

Grillner (1975, 1981). Each joint muscle group is activated by its own rhythm-generating unit 

(black squares). Functional synergistic units are connected with each other by mutual 

excitation, while functional antagonistic units are connected with each other by mutual 

inhibition. HE: hip extensor, HF: hip flexor, KE: knee extensor, KF: knee flexor, AE: ankle 

extensor, AF: ankle flexor, FE: foot extensor, FF: foot flexor, EDB: extensor digitorumbrevis 

(short toe flexor).  

(Cited and modified from Grillner 1981) 
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Figure 1-2.  Locomotor-like activity induced by an optogenetic method. (a) Blue light 

stimulation to the ventral surface of the lumbar spinal cord evokes locomotor-like activity. 

Blue circles denote areas of light stimulation. Waveforms denote active motoneuron pools. 

Crossbars denote silent motoneuron pools. (b) Stimulation to a unilateral limited area elicits 

unilateral locomotor-like activity on the same side (1 and 2). Stimulation to a limited area at 

the rostral or caudal lumbar spinal cord can evoke locomotor-like activity separately in the 

flexor motoneurons or extensor motoneurons, respectively (3 and 4). Waveforms denote that 

motoneuron pools are active. Crossbars denote that motoneuron pools are silent. (Cited and 

modified from Hagglund et al., 2013) 
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 1. 3. 2. Interneurons constituting the spinal central pattern generator 

The spinal interneurons have been assumed to constitute the locomotor CPG from early times 

(Grillner, 1981; Grillner and Wallen, 1985). Nevertheless, the details of the components of 

spinal CPG remained unclear until recent years. Over the past decade, the roles of individual 

types of spinal interneurons regarding locomotor control have been revealed thanks to the  

advent of novel molecular and genetic techniques (Goulding, 2009; Garcia-Campmany et al., 

Figure 1-3. Control of locomtor muscle activity through two-layerd CPGs consisting of 

rhythm generator layer and pattern formation networks in the spinal cord. (Cited and 

modified from Lacquaniti et al., 2012) 
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2010; Kiehn, 2016). 

Recently, differentiation processes of the spinal neurons involving locomotor control 

have been revealed in studies using embryonic mice (Goulding, 2009). In the dorsal half of the 

Figure 1-4. Spinal interneurons and motoneurons of embryonic mice. (a) Eleven early types 

of spinal neuron are represented in the embryonic spinal cord. Upper half of the neuron types 

are involved in transmission of senseory information (dl1−dl5). Lower half of the neuron 

types are involved in transmission of motor commands. (b) The mature cell types of 

embryonic neurons and those connections and functions. MN: motoneuron, IN: interneuron. 

(Cited and modified from Goulding 2009) 
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neural tube, six progenitors produce embryonic dI1-dI6 interneurons according to the 

dorsoventral position. The dI1-dI6 interneurons play a role in transmission of sensory 

information. In the ventral half of the neural tube, the motoneurons and four types of 

interneurons (V0-V3 interneurons) are generated. These spinal neurons are involved in 

transmission of motor information (Fig. 1-4a, lower half). Of these spinal interneurons, dI6 and 

V0-V3 interneurons have crucial roles regarding control of locomotion (Lanuza et al., 2004; 

Gosgnach et al., 2006; Kimura et al., 2006; Kimura et al., 2008; Zhang et al., 2008; Betley et al., 

2009; Goulding, 2009; Kyriakatos et al., 2011; Andersson et al., 2012; Rabe Bernhardt et al., 

2012; Talpalar et al., 2013). Therefore, these interneurons are regarded as “core” CPG 

interneurons (Goulding, 2009). The roles of each type of interneuron are summarized in Figure 

1-4b. 

 

1. 3. 3. Speed-dependent recruitments of spinal interneurons and motoneurons 

In recent years, the various roles of different types of spinal neurons for locomotion have been 

revealed. In particular, the roles of spinal interneurons in locomotor speed control is attracting 

attention (El Manira, 2014). Recently, type-specific recruitment of the spinal interneurons 

depending on locomotor speed has been frequently reported in zebrafish swimming (McLean et 

al., 2007; McLean et al., 2008; Zhong et al., 2011; Ausborn et al., 2012; Ampatzis et al., 2013, 

2014) and mice walking (Gosgnach et al., 2006; Crone et al., 2009; Zhong et al., 2011; Talpalar 

et al., 2013).  

For example, Talpalar et al. (2013) found that two subtypes of V0 interneurons 

(commissural interneurons) distinctly contributed to left-right alternation depending on step 

frequency by using selective elimination of the two subtypes of V0 interneurons. Mice, which 

was ablated both types of V0 interneurons, lacked the ability to generate normal alternate limb 

movements. The mice hopped like a rabbit (Fig. 1-5a and Fig. 1-5b second row). Deletion of 

V0V interneurons caused deficits in the left-right alternation under fast step frequency (Fig. 1-5b, 
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third row). On the other hand, deletion of V0D interneurons caused deficits in left-right 

coordination at slow step frequency (Figure 1-5b, fourth row). Thus, this finding indicated that 

although slow walking and fast walking have been defined as the same locomotor mode, the 

neural mechanisms underlying slower and faster walking are clearly different in mice. 

 

1. 4. CPGs in human locomotion 

Knowledge about human locomotor CPG is limited compared with those in animal models due 

to the difficulty of access to the spinal neuronal networks. Nevertheless, studies on patients with 

spinal code injury (SCI) demonstrated several evidences that CPG-like neural networks are 

phylogenetically preserved in humans (Calancie et al., 1994; Dimitrijevic et al., 1998; Calancie, 

Figure 1-5. Speed dependency of V0 interneurons in left–right alternative locomotion. (a) 

Schematic of the limb movement of wild type (upper) and V0 ablated mice (lower).  (b) 

Schematic of the limb movement of wild type and mutant mice. Wild type mice (first row) 

walk alternately and V0-ablated mice (second row) perform hopping across all speeds. V0V 

deficient mice have deficits in performing left–right alternation in slow speeds but not in fast 

speeds. V0D ablated mice have deficits in left–right cooordination in fast speeds but not in 

slow speeds. (Cited and modified from Talpalar et al., 2013) 
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2006). Calancie et al. (1994) reported that involuntary step-like movements were observed in a 

patient with spinal cord injury to the cervical spinal cord. Dimitrijevic et al. (1998) 

demonstrated more direct evidence using epidural spinal cord stimulation. They demonstrated 

that stimulation at the L2 spinal segment induced locomotor-like movements in the bilateral 

legs in patients with complete SCI. Also in healthy peoples, it was demonstrated that 

involuntary locomotor-like activity could be induced by repetitive spinal electromagnetic 

stimulation (Gerasimenko et al., 2010). 

Recently, it was demonstrated that complex activities of multiple muscles during 

walking are generated by a small set of locomotor modules, which generate synergistic 

locomotor muscle activity (Ivanenko et al., 2004; Dominici et al., 2011). The locomotor 

modules were extracted from multi-muscle electromyographic recordings using decomposition 

techniques, such as non-negative matrix factorization (NMF) and principal component analysis 

(PCA). A locomotor module consists of temporal pattern component and muscle weighting 

component, and it is regarded as a fundamental unit generating functionally relevant patterns of 

muscle activity (Neptune et al., 2009; Clark et al., 2010). The two different components of 

human locomotor modules, temporal pattern component and muscle weighting component, are 

considered to be corresponding to the two distinct layer of the CPG organization, rhythm 

generation layer and pattern formation networks, respectively (Fig. 1-3). This idea has been 

supported by a study, which suggested that the modules are encoded in a multi-layered 

organization of spinal interneuron networks using the module extraction and spinal electrical 

stimulation to spinalized animals (Hart and Giszter, 2010).  

Existence of the locomotor module in the human spinal cord was strongly suggested 

by a recent study on complete-SCI patients (Danner et al., 2015). This study firstly showed that 

tonic drive to the lumber spinal cord of complete-SCI patients by epidural electrical stimulation 

could induce coordinated muscle activities in lower limb muscles. Then they demonstrated that 

the induced coordinated muscle activity is explained by outputs of a combination of few 
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locomotor modules extracted by NMF (Danner et al., 2015).  

Although it has been strongly suggested existence of the locomotor modules in 

human spinal cord, the majority of the mechanisms remains unknown. Therefore, it is still 

unclear whether the neural mechanisms recently revealed in animal models is shared with 

human locomotor circuits. As for the commonality of the CPG mechanisms among vertebrates, 

previous studies in various species based on electrophysiological (Quinlan and Kiehn, 2007; 

Jankowska, 2008), genetic (Lanuza et al., 2004; Satou et al., 2012; Ljunggren et al., 2014), and 

neurochemical (Reith, 1990; Kehne et al., 1996) approaches demonstrated several common 

principles in the organization of CPG across species. In particular, the core components of CPG 

(interneurons related to locomotor control) are largely shared among different species, even 

between fish and rodents (Goulding, 2009). Dominici et al. (2011) showed the similarity of the 

temporal characteristics of the locomotor modules among humans and vertebrate animals. 

Based on the knowledge, there is a high possibility that the CPG mechanisms recently revealed 

in animals are phylogenetically conserved in human spinal circuits. 

 

1. 5. Cortical involvement in locomotion  

Several cat studies have showed that significant involvement of the motor cortex and 

the corticospinal tract during challenging walking tasks, such as ladder walking and obstacle 

avoidance (Drew et al., 2008; Drew and Marigold, 2015). Nevertheless, many studies have 

suggested that cortical activity is not generally required for control of the steady state walking 

in quadruped animals (Lundberg, 1979; Grillner and Wallen, 1985; Jordan, 1998; Rossignol, 

2000).  

On the other hand, neuroimaging studies in humans suggest that the cortical regions 

related to motor control are largely activated even during stereotyped walking. In recent two 

decades, brain imaging studies during walking demonstrated walking-related activations of 

several cortical (primary sensory-motor cortex for leg area, supplementary motor area, and 
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premotor cortex) and subcortical (basal ganglia and cerebellar vermis) structures using single 

photon emission computed tomography (SPECT) (Fukuyama et al., 1997), positron emission 

tomography (PET) (Tashiro et al., 2001; La Fougere et al., 2010) and near-infrared spectroscopy 

(NIRS) (Miyai et al., 2001). More recent studies using functional magnetic resonance imaging 

(fMRI) with MRI-Compatible treadmill devices have also demonstrated the cortical activity in 

motor-related regions during locomotor-like stepping task (Dalla Volta et al., 2015; Martínez et 

al., 2016). However, these neuroimaging techniques have a lack of the time resolution to 

examine relationships between the cortical activity and locomotor muscle activity dynamically 

changing within a stride.   

Compared with the above mentioned neuroimaging methods, 

Electroencephalography (EEG), a method for recording electrical activity of the brain, has 

significantly higher temporal resolution. So far, EEG has rarely been used in dynamic 

movement task, because the EEG is very sensitive to movement of participants. Recently, 

however, two new technical developments have made EEG recordings during dynamic 

movement more feasible (Enders and Nigg, 2016). First, developments of novel artifact 

removing methods allow us to detect and remove artifact components such as movement, 

blinking and muscle activity artifacts, from raw EEG signals using independent component 

analysis (ICA) or principal component analysis (PCA) (Gwin et al., 2010; Mullen et al., 2013). 

Second, recent small and active EEG electrodes have become more robust to artifacts compared 

with traditional passive electrodes (Reis et al., 2014). 

The above mentioned improvements of EEG measurements have made substantial 

progress in studies regarding human cortical activity during walking (Gwin et al., 2011; 

Presacco et al., 2011; Petersen et al., 2012; Presacco et al., 2012; Wagner et al., 2012; Bulea et 

al., 2015; Enders and Nigg, 2016; Artoni et al., 2017). I summarized the important studies using 

EEG measurement during walking in table 1-1. These studies examined cortical activity during 

walking from following three viewpoints: 1) identifying specific brain components (i.e., cortical 
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regions) that are activated during walking (Gwin et al., 2010, 2011; Wagner et al., 2012; Bulea 

et al., 2015; Wagner et al., 2016), 2) characterizing the time–frequency oscillation patterns of 

the observed cortical components with respect to the gait pattern (Gwin et al., 2011; Wagner et 

al., 2012; Bulea et al., 2015; Wagner et al., 2016), and 3) examining relationships between the 

identified brain activity and other biomechanical or physiological data (Presacco et al., 2011; 

Petersen et al., 2012; Artoni et al., 2017). Most commonly, the cortical activity during walking 

was identified from frontal and sensorimotor areas (Gwin et al., 2011; Wagner et al., 2012; 

Bulea et al., 2015; Wagner et al., 2016). The identified cortical components had oscillation 

patterns synchronized to gait cycle events in α (8–12 Hz) and β (12–30 Hz) bands.  

Although recent EEG studies on humans revealed the walking-related cortical 

components, the knowledge of relationships between the identified cortical activity and 

locomotor muscle activity is still limited. Regarding cortico-muscular connectivity, Petersen et 

al., (2012) demonstrated significant coherence between EEG signal of Cz electrode (leg 

sensorimotor area) and EMG signal of tibias anterior muscle during steady-speed walking. The 

significant coherence was observed in α (8−12 Hz) and β to low γ bands (24−40Hz) prior to heel 

contact. Additionally, a most recent study demonstrated the causal connectivity from the motor 

cortex to leg muscles during walking (Artoni et al., 2017). These previous studies strongly suggested 

cortical involvement in control of muscle during steady state walking in humans. However, the 

following two points should be explored for further understanding of cortical control of locomotor 

muscle activity in humans : 1) relationships between the cortical activity and spinal locomotor 

networks, 2) cortical involvement in voluntary modification of muscle activity during challenging 

walking.  
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Table 1-1. Human walking studies utilizing EEG mesurement. 
Author (year) 
 

EEG  
channel 
No. 

Task EEG analysis Observed EEG 
oscillation  

Observed  
Connectivity 

Gwin et al. (2010) 248 Walking 
and 
jogging 

1) Development of a movement 
artifact removal method based 
on ICA. 
2) ERP of sensorimotor cortex 
components. 

  

Gwin et al. (2011) 248 Walking 
and 
jogging 

ERSP of identified cortical 
components by ICA. 

Fluctuations of neural 
activity during the gait 
cycle in α (8-12 Hz), β 
(12-30 Hz), and high γ 
(50-150 Hz). 

 

Petersen et al. (2012) 28 Walking Corticomuscular coherence 
between the motor cortex and 
the tibialis anterior muscle 

 Corticomuscular 
coherence between 
Cz and ankle flexor  
before heel contact (α 
[8–12 Hz] and β [24–
40 Hz]) 

Presacco et al. (2011) 60 Walking Decoding of human walking 
kinematics from bandpass 
filtered EEGs (0.1–2 Hz). 

  

Wagner et al. (2012) 120 Active 
and 
passive 
robot 
assisted 
stepping 

ERSP of identified cortical 
components by ICA 

Oscillations of 
motor-related cortical 
activity during the gait 
cycle for α (8–12 Hz), 
β (18–21 Hz), low γ 
(25–40 Hz). 
Differences between 
active and passive 
walking in 
sensorimotor areas. 

 

Mullen et al. (2013) 64 Walking Development of a movement 
artifact removal method based 
on a sliding-window principal 
componet analysis (PCA). 

  

Bulea et al. (2015) 64 Speed 
control 
of 
walking 

ERSP and power spectram of 
identified cortical components 
by ICA. 

Oscillations of 
identified cortical 
activity during the gait 
cycle in α (8–13Hz), β 
(14–30Hz), and low γ 
(30–50Hz).  
Enhanced prefrontal 
synchronizations in 
fast walking in entire 
gait cycle. 

 

Kline et al. (2015) 256 Walking Isolating gait-related movement 
artifacts from EEGs by 
blocking electrophysiological 
signals using a nonconductive 
layer (silicone swim cap).  

Oscillations of artifact 
signals were mainly 
observed in lower than 
10Hz. 

 

Artoni et al. (2017) 64 Walking Information flow direction 
between brain (EEG signals) 
and muscles (EMGs) by using a 
causality analysis. 

 Causal unidirectional 
commands from 
contralateral motor 
cortex to leg muscles 
in the swing phase 

ICA: independent component analysis, ERP: event-related potential, and ERSP: event-related spectral pertubation. 
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1. 6. Purpose and contents of this thesis 

The review of the previous studies regarding neural mechanisms of vertebrate locomotion 

revealed that the spinal cord and the cortex have critical roles in generation of muscle activity in 

human bipedal locomotion. As for spinal control, the available evidences strongly suggest that 

humans possess CPG-like neural networks in the spinal cord, which are capable of generating 

the basic rhythmic activity for walking. In addition, recent neuroimaging studies suggested that 

the human motor cortex significantly involves in locomotor muscle control even during 

stereotyped walking, unlike other quadruped animals. Nevertheless, although the neural control 

of human bipedal locomotion has gradually been become clear, it has not been fully explained 

yet. Therefore, remaining questions, described below, regarding characteristics of spinal CPGs 

and cortical control of the spinal cord and muscles are needed to be solved for a better 

understanding of human locomotor control. The answers to the questions would advance our 

knowledge of neural control of in particular locomotor muscle activity in humans. Moreover, 

integrating the new findings for human locomotor control with the previously known animal 

neural mechanisms would make differences in locomotor control between them clearer, and 

therefore should provide important insights into the evolution of vertebrate locomotion. 

Additionally, elucidating cortical control of the spinal circuits and muscles also opens up for 

novel perspectives on the field of brain–machine interfaces for gait rehabilitation. The above 

mentioned remaining questions are as follows: 

 

・	
 Spinal level: The detail characteristics of human spinal locomotor CPG is remain 

unclear. Are the neural mechanisms, which were revealed in animal models, conserved 

in human locomotor circuits?  

・	
 Cortical level: 1) Whether and how does the cortex control activation of the spinal 

CPG? 2) How does the cortex modify the muscle activity under conditions that require 
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voluntary adjustment of walking behavior? 

 

 Therefore, the purpose of the thesis is to investigate role of the spinal cord and the 

cortex in muscle control of human bipedal locomotion by solving the questions. For this 

purpose, I did five separate studies. In study 1−3 (Chapter 2−4), using several indirect methods 

to explore the spinal neural networks from EMG signals, I examined whether neural 

mechanisms in the spinal locomotor networks recently reveled in animal studies are shared with 

humans. I examined the spinal locomotor networks at three different levels of locomotor CPG 

components (Fig. 1-3): pattern formation networks (Study 1), rhythm generation layer (Study 3), 

and motoneuron activity as an output of the CPGs (Study 2). Specifically, the objectives of 

these studies are to: 

 

(1) Investigate speed- and mode-dependency in the locomotor modules consisting of 

pattern formation networks in the spinal CPGs (Study1, Chapter 2). 

・	
 Research Question: Does mode- and/or speed-dependency in the pattern formation 

networks exist in human locomotor networks, as revealed in mice (Talpalar et al., 2013)? 

・	
 Hypothesis: Different numbers and types of locomotor modules are extracted during 

walking and running, and also at different speeds in the same locomotor mode. 

 

(2) Investigate speed dependency in motoneuron (MN) activity during walking.	
 (Study 2, 

Chapter 3). 

・	
 Research Question: Are MN activations in the lumber segments of the spinal cord 

required to achieve a high speed locomotion, as demonstrated in mice (Cazalets and 

Bertrand, 2000; Talpalar and Kiehn, 2010)? 

・	
 Hypothesis: MN activity in the lumber segments becomes larger compared with that in 



Chapter 1: Introduction                                                      

 28 

the sacral segments with increasing locomotion speed.  

 

(3) Investigate temporal regulation mechanisms in human locomotor spinal networks.	
 

(Study 3, Chapter 4). 

・	
 Research Question: Does rostrocaudally traveling wave of neural activity, which is 

considered to be one of mechanisms in temporal layer of CPGs founded in animal models 

(Cuellar et al., 2009; Saltiel et al., 2015), exist in human spinal networks?  

・	
 Hypothesis: If the traveling wave of activation exists in the human spinal circuits for 

recruitment of locomotor modules, the locomotor modules extracted from EMGs are 

sequentially recruited from rostral to caudal regions in the spinal cord during a step. 

 

 

 Then, in study 4 and 5 (Chapter 5 and 6), I examined cortical involvement in the 

control of locomotor muscle activity using a brain decoding method and a causal connectivity 

analysis. Specifically, the objectives of the studies are to: 

 

(4) Investigate how the cortex controls locomotor modules (Study 4, Chapter 5). 

・	
 Research Question: 1) Does the cortex involve control of spinal locomotor modules? 2) 

What cortical information (e.g., frequencies and regions) contributes control of the 

locomotor modules? 

・	
 Hypothesis: 1) Activations of locomotor modules can be decoded from EEG signals. 2) 

The decoding are based on cortical information from leg sensorimotor regions inβband, 

because these are considered to be deeply related to the leg motor control (Engel and Fries, 

2010). 

 

(5) Investigate causal connectivity between the cortex and muscles when voluntarily 



Chapter 1: Introduction                                                      

 29 

modifying locomotor muscle activity (Study 4, Chapter 5). 

・	
 Research Question: How does the cortex modify the muscle activity under conditions that 

require voluntary adjustment of walking behavior? 

・	
 Hypothesis: The causal connectivity from motor cortex to lower limb muscles is 

strengthened during a skilled walking task than that during normal walking.  

 

 Then, in Chapter 7, I integrate the results at spinal and cortical levels obtained from 

the five studies and discuss the neural control systems for muscle activity in human bipedal 

locomotion. Finally, I describe the future directions and the clinical implication of the present 

findings. 
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Chapter 2 study 1 

Distinct sets of locomotor modules control the speed and modes 

of human locomotion 

 

 

 

 

This study has been published as: 

Yokoyama H., Ogawa T., Kawashima N., Shinya M., Nakazawa K. “Distinct sets of 

locomotor modules control the speed and modes of human locomotion ”. Scientific Reports 

6, 36275, 2016. 
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2. 1. Introduction 

In locomotion, both animals and humans use several different locomotor modes to meet the 

demand for different movement speeds. In animals, for example, larval zebrafish exhibit both 

“slow swim” and “burst swim” modes by modifying their movement frequencies and kinematics 

(Budick and O'Malley, 2000). Locomotion modes in horses have more variety, i.e., walk, trot, pace, 

canter and gallop, on the basis of different patterns of ground contact (Robilliard et al., 2007).  

Regarding the neural mechanisms underlying locomotion, experimental studies using 

animal models in the last few decades have provided explicit evidence for the existence of spinal 

CPGs, and have revealed that these CPGs consist of spinal interneuron networks that are 

responsible for generating locomotor rhythms and patterns (Grillner, 1981; Kiehn, 2011). In 

humans, recent studies on spinal cord-injured (SCI) patients (Calancie et al., 1994; Dimitrijevic et 

al., 1998; Calancie, 2006; Danner et al., 2015) and on healthy participants (Gerasimenko et al., 

2010) have provided indirect evidence of the existence of CPGs. 

Among various types of spinal interneurons related to CPGs, recent molecular and 

genetic techniques have revealed the existence of several subgroups depending on the functional 

requirement (McLean and Dougherty, 2015). In larval zebrafish, for example, different types of 

spinal neurons are recruited depending on swimming frequency (as reflections of different 

locomotion modes) (McLean et al., 2008; Ausborn et al., 2012; Ampatzis et al., 2014). Moreover, 

in mice, focal lesions in specific subgroups of spinal interneurons impair the natural stepping 

(walking) patterns in a speed-specific manner, even within the same locomotion mode (Zhong et al., 

2011; Talpalar et al., 2013). Thus, these animal studies using newly developed genetic techniques 

have demonstrated that there are distinct spinal neuronal groups, which are recruited independently 

in different locomotor modes and even at different speeds in the same locomotor mode. Thus, the 

question arises if there are similar spinal neuronal groups that are recruited independently during 

walking and running in humans. This is the primary research question I aim to answer in a series of 

studies. In previous studies by my laboratory using the well-established locomotor adaptation 
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paradigm with a split belt treadmill, they demonstrated that locomotor patterns newly acquired in 

walking rarely transfer to running (Ogawa et al., 2012; Ogawa et al., 2015b, a), suggesting that the 

neural mechanisms underlying walking and running are not shared, but independent. This result 

was in line with Vasudevan and Bastian (2010), who showed limited transfer of newly acquired 

walking patterns across different speeds in the same locomotor adaptation paradigm. These 

behavioural-based results suggest that similar mode- and/or speed-specific neural mechanisms to 

those shown in animal studies are shared in humans, which I think are phylogenetically possible. 

To further explore this possibility in the present study, I applied the EMG signal decomposition 

technique (NMF) for extracting motor modules (Tresch et al., 1999; Ting and Macpherson, 2005), 

i.e., spatially fixed locomotor muscle synergies (Fig. 2-1). It has been suggested that the locomotor 

modules are encoded in spatial pattern formation networks, which activate multiple motor neuron 

pools, in spinal CPGs (McCrea and Rybak, 2008). 

Using decomposition techniques, such as NMF, and principal component analysis 

(PCA), complex activities of various muscles in human walking have been revealed to be generated 

by the flexible combination of a small set of modules (Ivanenko et al., 2004; Dominici et al., 2011), 

i.e., a locomotor module as a functional unit generating functionally relevant patterns of muscle 

activity (Neptune et al., 2009; Clark et al., 2010). A recent study on complete-SCI patients has 

demonstrated that tonic drive to the lumber spinal cord by epidural electrical stimulation can induce 

coordinated muscle activities in lower limb muscles, which are considered to be generated by a 

combination of multiple locomotor modules (Danner et al., 2015). This result was consistent with 

recent animal studies using spinalized vertebrates, which demonstrated that extracted modules were 

organized in the spinal neural circuits (Saltiel et al., 2001; Saltiel et al., 2005; Hart and Giszter, 

2010).  
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Regarding speed- and mode-dependency of locomotor modules, previous studies in 

humans have examined those characteristics from the following aspects: 1) mode-dependency (i.e., 

differences between walking and running); 2) speed-dependency in walking; and 3) 

speed-dependency in running. As to mode-dependency, a previous study showed changes in muscle 

weighting of a trunk muscle module (Cappellini et al., 2006). In contrast to the mode-dependency, 

it is generally accepted that the similar modules are utilized regardless of walking speed (Ivanenko 

et al., 2004; Cappellini et al., 2006; Clark et al., 2010; Chvatal and Ting, 2012). Although the 

majority of walking modules were certainly shared at a wide range of speeds (Ivanenko et al., 

2004; Cappellini et al., 2006; Chvatal and Ting, 2012), some differences in the components of the 

modules were found between different walking speeds in these previous studies (Ivanenko et al., 

2004; Chvatal and Ting, 2012). For example, more than half of the participants used at least one 

different muscle weighting component of modules between slow walking and self-selected speed 

Figure 2-1. Schematic model of EMG reconstruction by the sum of muscle activation generated 

by different modules (five muscles and two modules, for example). The output of each module 

(areas filled with blue or red in the right panel) is explained by the product of the muscle 

weighting component (bars in the left panels; showing activation level of each muscle) and the 

temporal pattern components (lines in the middle panels). Consequently, the total muscle 

activation (black lines in the right panel) is explained by the sum of muscle activations generated 

by each module (filled areas). 
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walking (Chvatal and Ting, 2012). Regarding speed-dependency in running, although it has been 

shown that similar temporal activity patterns of modules were utilized in a slow speed range 

(Cappellini et al., 2006) (5–12 km/h [1.39–3.33 m/s], considered as jogging (Keller et al., 1996; 

Greiwe and Kohrt, 2000)), the differences in the organization of modules (i.e., muscle weightings) 

are not well established. Thus, it remains unknown whether walking modules are truly unchanged 

regardless of the speed, and more specifically, whether or not there are faster running modules in 

humans. Therefore, the present study was designed to reveal whether different locomotor modules 

are recruited with speed changes in walking and running. In the present study, I extracted 

locomotor modules from EMGs in walking and running over a wide range of speeds. Although the 

presence of speed-dependency in human locomotor modules has been debatable, based on the 

existence of the mode- and/or speed-dependent neural mechanisms of locomotion in animals, I 

hypothesize that different numbers and types of modules would be extracted from EMGs during 

walking and running, and also at different speeds in the same locomotor mode. The acceptance of 

this working hypothesis would provide indirect evidence of mode- and/or speed-dependency of 

neural networks in human locomotion. 

 

2. 2. Methods 

2. 2. 1. Participants 

Eight healthy volunteers (ages 20–31 yr, all male) participated in the study. In addition, to examine 

faster running speeds, eight well-trained college runners (ages 20–24 yr, all male, experience of 

intensive running training for 5–11 yr) were also recruited. Each participant gave written informed 

consent for his participation in the study. The study was in accordance with the Declaration of 

Helsinki and was approved by the local ethics committee of the National Rehabilitation Center for 

Persons with Disabilities and Graduate School of Arts and Sciences, The University of Tokyo. 

 



Chapter 2 (Study 1): Distinct sets of locomotor modules control the speed and modes of 
human locomotion                                      

 35 

2. 2. 2. Experimental setup and design 

All participants walked or ran on a treadmill (Bertec, Columbus, OH, USA) with linearly 

increasing speed (ramp speed condition, acceleration was set to 0.01 m/s2). The speed range was 

adjusted to each group safely but as widely as possible (0.3–4.3 m/s in the non-runner group, 0.3–

5.0 m/s in the runner group). These speed-ranges were set as fast as possible within the safe limits 

ascertained in preliminary experiments. Participants were instructed to either walk or run on the 

basis of their preference under the given speed. The transition speed from walking to running for 

all participants ranged from 1.9 to 2.3 m/s. Because the acceleration was very small and the 

maximum speeds were set as safe per group separately, locomotor movements in all participants 

were always stable during the experiment. 

 

2. 2. 3. Data collection 

Three-dimensional ground reaction force (GRF) data were recorded at 1000 Hz from force plates 

under each belt of the treadmill. Surface EMG activity was recorded from the following 16 muscles 

on the right side of the trunk and leg as that for kinematic recording: tibialis anterior (TA), 

gastrocnemius lateralis (LG), gastrocnemius medialis (MG), soleus (SOL), peroneus longus (PL), 

vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (long head, BF), 

semitendinosus (ST), adductor magnus (AM), tensor fascia latae (TFL), gluteus maximus (GM), 

gluteus medius (Gmed), rectus abdominis (RA), erector spinae (ES). The EMG activity was 

recorded with a wireless EMG system (Trigno Wireless System; DELSYS, Boston, MA, USA). 

The EMG signals were bandpass filtered (20–450 Hz), amplified (with 300 gain preamplifier), and 

sampled at 1000 Hz. 

 

2. 2. 4. Analysis of general gait parameters 

GRF data were low-pass filtered with a zero-lag Butterworth filter (5-Hz cut-off). The times of 

foot-contact and toe-off were determined on a stride-to-stride basis from the vertical component of 
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GRF. Based on the timing of foot-contact and toe-off, stance duration, swing duration, stride 

duration and double support duration were calculated. Walking and running were defined by the 

presence and absence of double support time, respectively.  

 

2. 2. 5. EMG processing and extraction of locomotor modules 

The EMG data were divided into 0.1 m/s bins based on the treadmill speed. As the treadmill speed 

was continuously increasing and the acceleration was set at 0.01m/s2, each speed bin contained 10 

seconds’ data. Therefore, there were 40 and 47 speed ranges for non-runners and runners, 

respectively. In each speed range, the first five to eight consecutive gait cycles (as many as possible 

in the range, almost eight except at the very slow speed) of the EMG data were used for extraction 

of locomotor modules. The EMG data were digitally full-wave rectified, smoothed 

low-pass-filtered with a zero-lag Butterworth filter. The low-pass cut-off frequency influences the 

smoothing of EMG patterns and thus influences the number of extracted modules (Hug, 2011). To 

adequately compare EMG envelopes (i.e., EMG patterns with the same smoothing) of movements 

performed at different speeds, the low-pass cut-off frequency must be adjusted to each speed 

condition (Shiavi et al., 1998; Hug, 2011). Therefore, the cut-off frequency was adapted to the 

stride rate in each speed range for each individual to obtain the same pattern smoothing across each 

speed (Hug et al., 2011; Ivanenko et al., 2013) according to the following formula: 10 × stride rate 

(Hz). The low-pass cut-off frequency ranged between 4.5 to 13.1 Hz. The smoothed EMG data 

were then time-interpolated over a time base with 200 points for each gait cycle. Then, the EMG 

amplitude of each muscle was normalized to the maximum value for that muscle over all speeds.  

By using NMF, locomotor modules were extracted for each participant from the two 

types of EMG datasets: each speed range EMG matrix was composed of 16 muscles × (number of 

stride × 200) variables (i.e., time points) and whole-speed EMG matrices composed by each speed 

range EMG matrices connected in the direction of time points (i.e., the matrices were composed of 

16 muscles × the summation of time points of all 40 [or 47] speed range EMG matrices). NMF has 
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previously been described as a linear decomposition technique (Lee and Seung, 1999; Ting and 

Macpherson, 2005; Tresch et al., 2006), according to equation (2-1):   

𝑀 = 𝑊・𝐶 + 𝑒,   (2-1) 

where M (m × t matrix, where m is the number of muscles and t is the number of samples, with the 

spatiotemporal profiles of muscle activity) is a linear combination of muscle weighting components, 

W (m × n matrix, where n is the number of modules), and temporal pattern components, C (n × t 

matrix), and e is the residual error matrix. Before the extraction of modules, each muscle data 

vector was normalized to have unit variance (i.e. standard deviation of each muscle data vector = 1) 

so as to equally weight the EMG activity across all muscles (Chvatal and Ting, 2012). This 

normalization was removed after module extraction to rescale the data to the original scaling and to 

present small activation of muscle as small. The normalization before module extraction and the 

removal of normalization is reasonable to reflect small activation of muscles on locomotor modules 

and provide small but clear patterns (Chvatal and Ting, 2012; Hagio and Kouzaki, 2014).  

The module extraction was iterated 10 times for each possible n from 1 to 12, and the 

variance accounted for (VAF) by the reconstructed EMG (M) was calculated at each iteration. The 

iteration with highest VAF was kept. VAF was defined as 100 × uncentered Pearson’s correlation 

coefficient (Zar, 1999; Torres-Oviedo et al., 2006). Then, I defined the optimal module number n 

as the number fulfilling the following three criteria. First, n was selected as the smallest number of 

modules that accounted for > 90% of VAF (Torres-Oviedo et al., 2006). Second, n was the smallest 

number to which adding an additional module did not increase VAF by > 5% of VAF (Frere and 

Hug, 2012). Third, n was selected using the “cusp” method, as named by Cheung et al. (2009) . The 

cusp method selects the smallest n such that the increase of VAF derived from an additional 

module is lower compared with the increase of 75% of the almost constant VAF slope calculated 

for random EMG data (i.e., the number beyond which any further increase in the number of 

extracted synergies yields a VAF increase <75% of that expected from chance). In brief, the VAF 
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curve (a plot of the VAF against the number of modules from 1 to 12) was created from both the 

original EMG matrix and an unstructured EMG matrix generated by randomly shuffling the 

original data matrix across muscles and times (i.e., the unstructured EMG dataset has no regularity). 

Then, n was selected as the number at cusp, at which the slope of the original VAF curve falls 

below 75% of the slope of the shuffled VAF curve. The selected number n, beyond which any 

greater increase in the number of modules contributes to an increase in VAF smaller than 75% of 

that likely stemming from chance, may be regarded as a reasonable selection for the number of 

modules.  

The number of modules were compared among the whole speed and the six 

representative speeds in each participant group (nearest speed to 20%, 50%, and 80% of the 

walking and running speed range in each participant, for the “slow walk”, “moderate walk”, “fast 

walk”, “slow run”, “moderate run”, and “fast run”, respectively, corresponded to 0.60 ± 0.53, 1.18 

± 0.64, 1.69 ± 0.64, 2.49 ± 0.64, 3.19± 0.64, and 3.85 ± 0.53 m/s in non-runners, and 0.70 ± 0.00, 

1.28 ± 0.35, 1.79 ± 0.35, 2.74 ± 0.52, 3.60 ± 0.00, and 4.40 ± 0.00 m/s in runners). 

 

2. 2. 6. Clustering the modules across participants 

To quantify the similarity of modules among participants at each speed, I sorted the extracted 

modules using hierarchical clustering analysis (Ward’s method) (Ward 1963) of muscle weighting 

components. The sorting was performed for all participants for each speed condition (the whole 

speed and the six representative conditions) per group separately. The optimal number of clusters 

was determined by the gap statistic (Tibshirani et al., 2001). Subsequently, the muscle weighting 

components in each cluster were averaged across participants. If two components from a 

participant were put in a same cluster, we retained only one of them (that which had the higher 

similarity to the cluster average) in that cluster (Hagio and Kouzaki, 2014). Although the module 

having a lower similarity to the cluster average was excluded from the analysis about sorting across 

participants, these modules were used for the other analyses (EMG reconstruction [described later] 
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and number of modules). Then, correlations were calculated for all pairs of the averaged muscle 

weighting components between those at the whole speed and for each representative speed. A pair 

was regarded as the same type of components if it had an r-value larger than 0.623 (Chvatal and 

Ting, 2012).  

In addition, corresponding temporal pattern components were also grouped based on the 

results of the clustering of muscle weighting components. To evaluate activation pattern 

modulation within a gait cycle, each temporal activation pattern component was averaged across 

strides. Then, these activation patterns within a gait cycle were averaged across participants with 

each cluster. Finally, to quantify the similarity between the averaged temporal pattern components 

among speeds and between modes, the timing of the main peak was calculated for the muscle 

weighting components. 

 

2. 2. 7. Reconstruction of EMG across all speeds with a set of modules 

The above-mentioned analyses can evaluate changes in the number of modules and the components 

of modules (i.e., differences among each module). However, it remains unclear that the quantitative 

differences between sets of modules among speeds and modes. For example, in my study, the 

number and types of extracted modules were different between slow walking and fast walking, 

while only the types of modules were different between fast walking and slow running (described 

later in the Results section). However, it was difficult to determine which difference is greater 

using only the evaluation based on the number and component of characteristics. To evaluate 

differences between sets of motor modules among different conditions, some previous studies 

(d'Avella et al., 2006; Clark et al., 2010; Berger et al., 2013; Oliveira et al., 2014) assessed how 

well a set of modules in one condition reconstructed muscle activities in other conditions. In the 

present study, I performed EMG reconstruction analysis to evaluate quantitative differences 

between sets of modules among different locomotor modes and speeds. A detailed schema of this 

method is shown in Figure 2-2. First, I reconstructed EMG activity across all speeds by fixing one 
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set of muscle weighting components extracted from one speed and while optimizing only temporal 

pattern components to reduce the error between the original and reconstructed EMG for each speed 

(Fig. 2-2a). Then, the reconstruction accuracy was evaluated based on the VAF between the 

original and reconstructed EMG (Fig. 2-2a, right panels). In this analysis, EMGs had to be 

reconstructed with a high VAF among the speeds where similar modules were recruited. The 

procedure was iterated for all speed EMGs for one module set at a certain speed; that is, 40- (or 

47-) dimensional reconstruction accuracy vectors were calculated for each module set at 40 (or 47) 

speeds. Next, reconstruction accuracy matrices (Fig. 2-2b, heat map) were constructed by vertically 

combining the reconstruction accuracy vectors as row vectors for each speed (Fig. 2-2b, an 

example vector is surrounded by a white dotted line). In the heat map, one line of values on the 

x-axis indicates the reconstruction accuracy to all speed EMGs of one module set. Subsequently, 

the matrices were averaged across participants separately for each participant group. Here, 

assuming that homogeneous module sets have similar trends in EMG reconstruction accuracy, I 

evaluated changes of modules among speeds and modes based on the extent to which a component 

set at a certain speed can reconstruct all speed EMGs. If a specific set of modules is recruited for a 

certain range of speeds, the reconstruction accuracy vectors should change at the border between 

the ranges of the speeds (Fig.2-2b, arrows denote speed ranges of a specific set of modules). 

Therefore, to quantify the changes in the reconstruction accuracy vectors among speeds, the vectors 

were grouped by hierarchical clustering (Ward’s method). The optimal number of clusters was 

determined by the gap static method (Tibshirani et al., 2001). 
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Figure 2-2. Schematic of the EMG reconstruction method (a) and the evaluation of shifts in 

components of modules based on reconstruction accuracy vectors (b). (a) EMG reconstruction 

was accomplished by fixing muscle weighting components (blue and red bars in the left panels) 

while optimizing the temporal pattern components (blue and red rectangles in the left panels) to 

reduce the error between the original EMG (black waveforms in the right panels) and 

reconstructed EMG (areas filled with blue or red in the right panels). Then, variance accounted 

for (VAF) was calculated between the original and reconstructed EMG. If the components are 

able to reconstruct the EMG signal with high accuracy, the VAF represents high value (at speed 

A, left waveforms and filled area). Otherwise, the VAF represents low value (at speed B, 

waveforms and filled area). This procedure was performed for one set of components at all 

speeds. That is, a 40- (or 47-) dimensional reconstruction accuracy vector was created for 40 (or 

47) speeds. (b) The reconstruction matrices (heat maps) were created from the reconstruction 

accuracy vectors across all speeds. Values in a line along the horizontal axis (surrounded by a 

white dotted line) represent a reconstruction accuracy vector. The shifts of components of 

modules (at 0.9 m/s in this example; a grey dashed crossbar between two arrows) were assessed 

by cluster analysis applied to the overall speeds of reconstruction vectors. 



Chapter 2 (Study 1): Distinct sets of locomotor modules control the speed and modes of 
human locomotion                                      

 42 

2. 2. 8. Statistics 

Differences in the number of modules were compared among seven speed conditions (whole speed 

and six representative speeds) per participant group using the non-parametric Kruskal–Wallis 

one-way analysis of variance (ANOVA) test with the Steel–Dwass post hoc test (nonparametric 

Tukey’s test). Data are presented as the mean and standard error of the mean (mean ± SE). 

Statistical significance was accepted at p < 0.05. 

 

2. 2. 9. Validation of the effect of criterion for the number of modules 

In previous studies, criteria to select the module number are broadly classified into two types: 

“global” and “local” criteria. The “global” criteria is based on the R2 (coefficient of determination) 

or the VAF between the overall reconstructed EMG matrix and the overall original EMG matrix 

and should be greater than some threshold (e.g., global VAF > 90% (Frere and Hug, 2012)). The 

“local” criteria is based on the R2 or VAF between reconstructed EMG and original EMG for each 

individual muscle and needs to be greater than some threshold (e.g., all each muscle VAF > 75% 

(Chvatal and Ting, 2012)). A large number of studies, including the present study, used the “global” 

criterion (Ivanenko et al., 2005b; Ting and Macpherson, 2005; Dominici et al., 2011; Frere and 

Hug, 2012; Danner et al., 2015). While many other studies use a combination of “global” and 

“local” criteria (Clark et al., 2010; Chvatal and Ting, 2012; Hagio and Kouzaki, 2014). It has been 

reported that different criteria may lead to different module numbers and components (de Rugy et 

al., 2013). Therefore, I determined whether the present results would be the same using the 

criterion combined with global and local VAF. Locomotor modules were extracted from the 

above-described EMG data based on the same criteria used in a study by Chvatal and colleagues 

(Chvatal and Ting, 2012) (global VAF > 80% and all each muscle VAF > 75%). Using these 

extracted modules, I performed the above-mentioned analyses (i.e., comparison of the number of 

modules, and clustering the modules based on weighting components and EMG reconstruction). In 

addition, it should be noted that there is a possibility that there is less variability in the EMG 
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patterns in slow walking and that all modules used in faster walking are not extracted from slow 

walking EMG, especially at the same criterion. Thus, I extracted five locomotor modules at all 

speeds (five modules condition) and tested whether the same modules were extracted among the 

different modes and speeds. First, five locomotor modules were extracted from the above-described 

EMG at all speeds. Then, using these extracted modules, the same analyses (i.e., clustering the 

modules based on weighting components and EMG reconstruction) were performed. 

 

2. 3. Results 

2. 3. 1. Changes in EMG pattern depending on locomotor speed and mode 

I recorded EMG activities from the 16 muscles on one side of the trunk and leg. The EMG activity 

from a typical participant is shown in Figure 2-3. Changes in the EMG patterns depending on 

locomotor speed and mode were roughly divided into three types based on visual inspection, with 

the exception of a few others (TA, RF, and AM). In the first type, the peak activation level 

gradually increased with increasing speed regardless of locomotor mode, while the activation 

timing was nearly constant throughout the majority of proximal leg muscles (GM, VL, VM, BF, 

and ST) and the trunk muscles (RA and ES). In the second type, the activation level increased with 

increasing speed regardless of locomotor mode, while the activation timing abruptly shifted to an 

earlier phase at the walk-to-run transition in the triceps surae (SOL, MG, and LG) and the PL. In 

the third type, clear activity was seen from the slowest walking speed, and the activation durations 

were gradually shortened with acceleration regardless of locomotor mode in the Gmed and the 

TFL. 

 

2. 3. 2. Extracted locomotor modules at different speeds 
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Using NMF, locomotor modules were extracted in each participant from the two types 

of EMG datasets: a whole-speed EMG matrix and each speed range EMG matrix. Here, I found 

that (1) the number of extracted modules changed depending on the locomotor mode and speed 

(Fig. 2-4), and (2) different sets of modules, which were extracted from the whole-speed dataset, 

were recruited depending on locomotor mode and speed (Table 2-1 and Figs 2-5 and 2-6). 

Figure 2-4 shows the number of extracted locomotor modules in each speed range. 

Approximately four to five modules were extracted over the range of 1.0–5.0 m/s (Fig. 2-4a), while 

there were nearly three modules in the slow walking speed range (0.3–1.0 m/s, Fig. 2-4a). 

Subsequently, I compared the number of modules among the whole-speed and six representative 

Figure 2-3. Muscle activation patterns during gait cycles over the course of speeds. Each 

waveform represents the ensemble average of the first six gait cycles in each speed range in a 

single participant (runner). The amplitude is normalized to the maximal value for each muscle 

over all speed ranges in this participant. The waveforms shown in blue and red represent walking 

and running, respectively.  
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speeds (i.e., slow, moderate, and fast walk and slow, moderate, and fast run) independently in 

non-runners and runners. As the ranges of speeds in walking and running were different among 

participants, the six representative speeds were defined individually for each participant (see 

Methods, section 2.2.5.). The number of locomotor modules was significantly different among the 

six representative speeds in non-runners and runners (p < 0.001 for both groups, Kruskal–Wallis 

one-way ANOVA). Specifically, the number of modules in slow walking was significantly lower 

than that in moderate run, fast run, and whole speed in non-runners, and the number of modules in 

slow walking for runners was significantly lower than that in all other conditions (Fig. 2-4b; p = 

0.074 [0.030], 0.056 [0.031], 0.11 [0.036], 0.036 [0.021], 0.036 [0.014], and 0.0079 [0.0081] for 

moderate walk, fast walk, slow run, moderate run, fast run, and whole speed in non-runners 

Figure 2-4. Number of modules over the course of speeds, (a) all speed and (b) at six 

representative speeds in non-runners and runners. (a) Average number of modules across 

participants in all speeds per group (thick lines) and their standard errors (SE, dotted lines) are 

represented. Translucent areas represent walk-run transition speed range for non-runners (blue) 

and runners (red). (b) The average number of modules at six representative speeds 

(corresponding to the speeds nearest to 20%, 50%, and 80% over the course of speeds for 

walking and running in each participant, respectively, for the “slow walk”, “moderate walk”, 

“fast walk”, “slow run”, “moderate run”, and “fast run”) for non-runners (blue) and runners 

(red). Ranges of speed of each representative speed in all participants are shown below the 

condition names. Error bars indicate the SE. SW: slow walking, MW: moderate walking, FW: 

fast walking, SR: slow running, MR: moderate running, FR: fast running, Whole: whole speed. 
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[runners], respectively; post hoc Steel–Dwass test). Additionally, the number of modules in the 

whole-speed dataset was significantly higher than those at all other conditions except in moderate 

walking in runners (Fig. 2-4b; p = 0.0079 [0.0081], 0.013 [0.074], 0.049 [0.044], 0.0069 [0.0091], 

0.018 [0.0091], and 0.018 [0.0081] for slow walk, moderate walk, fast walk, slow run, moderate 

run, and fast run in non-runners [runners], respectively).  

Figure 2-5 shows a typical example of the extracted components of locomotor modules 

(muscle weighting components [Fig. 2-5, bars] and their corresponding temporal activation patterns 

[Fig. 2-5, waveforms]) in the six representative speed and whole-speed conditions from a 

representative participant. In this participant, seven types of modules were extracted in the 

whole-speed condition, and different sets of the whole-speed modules were extracted for the six 

speeds. 

Next, I examined whether the same types of modules were used among participants and 

speeds using the hierarchical clustering method. As a result, seven types of modules were extracted 

from the whole-speed datasets in both groups (Table 2-1 and Fig. 2-6). For the six representative 

speeds, different sets of the whole-speed modules were extracted with changing speed (Table 2-1 

and Fig. 2-6). Figure 2-6 shows each type of muscle weighting component of the modules from the 

whole-speed datasets (bars on the left column) and their corresponding temporal activation patterns 

for each representative speed (waveforms on the right of the muscle weighting components). As the 

speed increased, the temporal activation patterns of each module increased in amplitude. Although 

sorted based on the similarity of muscle weighting components, the peak timings of temporal 

activation patterns in the same types of modules were also similar among participants (grey 

waveforms) and speeds (displayed in the same colour). Nevertheless, there were some differences 

in the peak timings of M3 and M7 depending on mode and speed. In M3, the peak timing was 

substantially shifted from a peak at around 45% of the cycle during walking to around 20% of the 

cycle during running. Although M7 has two clear peaks (at initial stance and initial swing) during 

slow running in runners, the intensity of the first peak diminished during fast running. 
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Figure 2-5. Extracted muscle weighting components and corresponding temporal patterns in 

whole speed and each representative speed in a representative participant. Each bar height 

represents the relative level of activation of each muscle within the muscle weighting 

components. Correlation coefficients between modules for the whole speed and for the 

representative speed in the same row are shown. The same types of components are represented 

by the same colour (r > 0.623, p < 0.01). One module indicated with a grey background has r > 

0.497 (p < 0.05), but < 0.623. An enlarged view of the x-axes is shown in the bottom left corner. 

Temporal pattern components (waveforms) are placed in the corresponding position to their 

muscle weighting components. The speed for the representative participant is shown below the 

condition names. The underbars denote stance phase (black) and swing phase (grey) in a gait 

cycle. The dotted lines denote the transition timing from stance phase to swing phase. 
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Figure 2-6. Seven types of muscle weighting components from whole-speed datasets in all 

participants per group, and shifts in the active components depending on speed and mode and their 

corresponding temporal pattern components. The averages of each cluster of muscle weighting 

components from whole-speed datasets are shown in the left column (M1–M7). An enlarged view of 

the x-axes of these components is shown in the bottom left corner. If the components are used in the 

representative speeds (see Table 2-1), corresponding temporal pattern components are shown to the 

right of these components. The peak timings (% cycle) are shown just above each temporal 

component. Ranges of speed of each representative speed for all participants are shown below the 

condition names. The underbars denote average stance phase (black) and swing phase (grey) in a 

gait cycle across participants. The dotted lines indicate the average transition timing of stance phase 

to swing phase across participants. 
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Table 2-1. Characteristics of modules and number of participants within the clusters of module 

 
 
2. 3. 3. EMG reconstruction 

The above-presented results demonstrate that the number and the components of modules changed 

depending on locomotor speed and mode. To further quantify the speed- and mode-dependent 

differences among sets of modules, I performed EMG reconstruction	
 and cluster analysis. Figure 

2-7a shows heat map representations of the reconstruction accuracy matrices for representative 

participants in non-runners and runners, and Fig. 2-7b shows the averaged data across participants 

in each group. Because walk-run transition speed was different in each participant, the data at 

transition speed (non-runner: 1.9–2.1 m/s, runner: 2.0–2.2 m/s) were excluded from these averaged 

data (Fig. 2-7b). These heat maps show that the reconstruction accuracy vector of set of modules at 

each speed (i.e. one line of values on x-axis) changed depending on mode and speed. In the 

averaged heat maps, the reconstruction vectors were divided into walking and running as two large 

clusters in both groups (Fig. 2-7c). The walking cluster was divided into three sub-clusters in both 

groups, and the running cluster was divided into two and three sub-clusters in non-runners and 

runners, respectively (Fig. 2-7c). The  structures of the clusters indicate the quantitative 

differences among sets of locomotor modules. Thus, the results indicate that locomotor modules 

      Number of participants within clusters 

       (non-runners/runners) 

  Timing Major Muscles Whole  SW MW FW SR MR FR 

M1 Early stance TFL, Gmed 7/8 5/6 4/7 -/4 7/- -/4 -/- 

M2 Initial stance/Mid swing TA 8/8 8/8 8/8 8/8 8/8 6/5 6/- 

M3 Mid-late stance MG, LG, SOL, PL 8/8 8/8 8/8 8/8 8/8 -/7 8/8 

M4 Late swing-Early stance BF, SM 8/7 -/4 8/7 4/6 7/7 8/7 8/8 

M5 Early stance RF, VL, VM, GM, Gmed, TFL 4/6 -/- -/- 8/7 -/8 8/6 -/6 

M6 Late stance/Mid swing  ES, RF  5/8 -/- 4/4 8/- -/- 5/5 6/8 

M7 Initial swing AM, RA, ES 4/6 -/- -/- -/- -/4 6/- 7/8 

  

Whole: whole speed, SW: slow walking, MW: moderate walking, FW: fast walking, 

SR: slow running, MR: moderate running, FR: fast running 
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change greatly between walking and running, and change within the same locomotor mode (i.e., 

depending on speed). 

 

 

Figure 2-7. Reconstruction accuracy matrices for representative participants (a), averaged data 

for each participant group (b), and results of cluster analysis applied to the averaged data (c). (a), 

(b) VAF values in a line along the horizontal axis represent a reconstruction accuracy vector for 

a particular speed. Changes of the values of the vector indicate changes in the components of 

modules. A colour scale denotes the VAF value. The data in the walk-run transition speed range 

were excluded when averaging data. (c) Dendrograms represent the results of cluster analysis 

(Ward’s method, Euclidian distance) applied to the averaged data. The line charts show the 

optimal cluster number based on the gap statistic values. Error bars indicate the SE. The red 

circles indicate the optimal cluster number. The same clusters are indicated with the same 

colour. SW: slow walking; MW: moderate walking; FW: fast walking; SR: slow running; MR: 

moderate running; FR: fast running. 
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2. 3. 4. Validation of the effect of criterion on the number of modules 

Additionally, I tested whether the above-presented results (Figs 2-4 to 2-7) are observed in 

different criteria for selection of module number. Figures 2-8 to 2-10 show the number of modules, 

extracted module types, and reconstruction accuracy vectors in the case of criteria combined with 

global and local VAF. As this criterion was more severe compared with those for the above results, 

on average across participants, 6 to 11 modules were extracted in all speeds (Fig. 2-8a). When 

comparing the six representative speeds and whole speed conditions, the number of modules was 

different among speeds (Fig. 2-8b). The types of extracted locomotor modules were changed 

among six representative speeds (Fig. 2-9). In addition, the reconstruction accuracy vectors were 

divided into three clusters in non-runners (slow and fast walking and running clusters), and four 

clusters in runners (slow and fast walking clusters and slow and fast running clusters) (Fig. 2-10). 

Figure 2-11 and 2-12 show the extracted module types and reconstruction accuracy 

vectors in the case of five locomotor modules at all speeds. Seven types of modules similar to the 

above results (Table 2-1 and Fig. 2-6) were extracted, and different types of modules were used 

among six representative speeds except between moderate and fast running in non-runners, and 

between slow and fast running in runners (Fig. 2-11). The reconstruction accuracy vectors were 

divided into four clusters in both groups (slow and fast walking clusters and slow and fast running 

clusters, Fig. 2-12). 

Together, the results obtained under the two different conditions indicate that, although 

some results were different to the results presented in the above section (Figs 2-4 to 2-7), the main 

findings were the same regardless of the module number selection method: 1) different locomotor 

modules were used depending on mode and speed; and 2) reconstruction accuracy vectors differed 

with changes in mode and speed. 
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Figure 2-8. Number of modules determined by Chvatal’s criterion. (a) Average number of 

modules across all speeds in each group (thick lines) and their standard errors (SE, dotted lines) 

are represented. Translucent areas represent walk-run transition speed range for non-runners 

(blue) and runners (red). (b) The average number of modules at six representative speeds 

(corresponding to the speeds nearest to 20%, 50% and 80% over the course of speeds for 

walking and running in each participant, respectively, for the “slow walk”, “moderate walk”, 

“fast walk”, “slow run”, “moderate run” and “fast run”) for non-runners (blue) and runners (red). 

The number of modules was significantly different among the six representative speeds in 

non-runners and runners (p = 0.017 and 0.0045 for non-runners and runners, respectively; 

Kruskal–Wallis one-way ANOVA). In both non-runners (left) and runners (right), compared 

among the six representative speeds and whole speed condition, the number of modules in slow 

walking and slow running was significantly lower than that of the whole-speed condition (p = 

0.047 [0.039] and 0.034 [0.040] for slow walking and slow running in non-runners [runners], 

respectively; post hoc Steel–Dwass test). The range of speeds for each representative speed in all 

participants are shown below the condition names. Error bars indicate the SE. SW: slow 

walking, MW: moderate walking, FW: fast walking, SR: slow running, MR: moderate running, 

FR: fast running, Whole: whole speed. 
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Figure 2-9. Extracted weighting components per group, and change in the extracted components 

depending on speed and mode in the case of the number of modules determined by Chvatal’s criterion. 

The average of each cluster of muscle weighting components from whole-speed datasets are shown in the 

left column (m1–m10 in non-runners, m2–m11 in runners). An enlarged view of the x-axes of these 

components is shown in the bottom left corner. The range of speeds for each representative speed for all 

participants are shown below the condition names. 
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Figure 2-10. Reconstruction accuracy matrices of each component for averaged data for each 

participant group (a), and results of cluster analysis applied to the averaged data (b) in the case of 

the number of modules determined by Chvatal’s criterion. (a) VAF values in a line along the 

horizontal axis represent a reconstruction accuracy vector for a particular speed. Changes in the 

values of the vector indicate changes in the components of modules. A colour scale denotes the 

VAF value. Data in the walk-run transition speed range were excluded when averaging data. (b) 

Dendrograms represent the results of cluster analysis (Ward’s method) applied to the averaged 

data. The line charts show the optimal cluster number based on the gap statistic values. Error bars 

indicate the SE. The red circles indicate the optimal cluster number. The same clusters are 

indicated with the same colour. SW: slow walking; FW: fast walking; SR: slow running; FR: fast 

running. 
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Figure 2-11. Changes in the extracted modules depending on speed and mode in cases where the 

number of modules was assumed to be five (five modules condition). The modules in the left 

column (M1–M7) are the different types of modules extracted from whole speed data using VAF 

based criterion (i.e. same modules presented in Fig. 2-6). Based on these modules, modules under 

the five modules condition at six representative speeds were sorted in the same way as Fig. 2-6. 

The range of speeds for each representative speed for all participants are shown below the 

condition names. An enlarged view of the x-axes of these components is shown in the bottom left. 
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2. 4. Discussion 

In the present study, assuming that human locomotor networks have speed- and mode-dependency 

as demonstrated in other vertebrates, I tested the following hypothesis using the motor module 

extraction methods: recruitment patterns of locomotor modules would shift depending on 

locomotor mode and/or speed. The main results were: (1) the number of modules changed 

depending on the mode and speed; (2) different types of modules were extracted among all six 

representative speeds; and (3) the reconstruction vectors were divided into two large clusters of 

walking and running, and both the walking and running clusters were divided into two or three 

sub-clusters. The structures of the clusters indicate the quantitative differences among sets of 

Figure 2-12. Reconstruction accuracy matrices of each component for averaged data for each 

participant group (a), and results of cluster analysis applied to the averaged data (b) in cases 

where the number of modules was assumed to be five. (a) VAF values in a line along the 

horizontal axis represent a reconstruction accuracy vector for a particular speed. Changes in the 

values of the vector indicate changes in the components of modules. A colour scale denotes the 

VAF value. The data in the walk-run transition speed range were excluded when averaging data. 

(b) Dendrograms represent the results of cluster analysis (Ward’s method) applied to the 

averaged data. The line charts show the optimal cluster number based on the gap statistic values. 

Error bars indicate the SE. The red circles indicate the optimal cluster number. The same clusters 

are indicated with the same colour. SW: slow walking; FW: fast walking; SR: slow running; FR: 

fast running. 
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locomotor modules. In summary, these results suggest that different locomotor modules are 

probably recruited depending on locomotor speed and mode, which confirms my working 

hypotheses. The present results provide indirect evidence for mode- and speed-dependency in the 

neural networks underlying human locomotion. 

In the present study, based on mathematically extracted motor modules, I tested speed- 

and mode-dependency in neural networks for human locomotion. The validity of the procedure is 

strongly supported by direct evidence that spinal neural networks encode locomotor modules, 

which has been obtained from spinalized animals (Tresch et al., 1999; Saltiel et al., 2001; Hart and 

Giszter, 2010; Roh et al., 2011) and SCI patients (Danner et al., 2015). In studies applying 

factorization algorithms to spinalized animals, it has been suggested that the locomotor modules are 

encoded in the spinal neural networks (Tresch et al., 1999; Saltiel et al., 2001; Hart and Giszter, 

2010; Roh et al., 2011). For example, using a spike-triggered averaging method, Hart and Giszter 

(2010) revealed direct relationships between the spiking of the spinal interneurons and the output of 

modules extracted by factorization algorithms. Likewise, it has been suggested that locomotor 

modules exist in spinal cord using cutaneous (Roh et al., 2011), electrical (Tresch et al., 1999) and 

neurochemical (Saltiel et al., 2001) stimulation combined with factorization algorithms. Similarly, 

a study that applied epidural electrical stimulation to the lumbar spinal cord of complete-SCI 

patients combined with factorization algorithms showed that rhythmic muscle activities of the 

lower limb were generated by a combination of multiple modules (Danner et al., 2015). Based on 

these previous studies, mathematically extracted locomotor modules most likely represent spinal 

neural networks, which underlie coordinated patterns of muscle activity. Therefore, speed- and 

mode-dependent changes in extracted modules found in the present study strongly suggest that 

active spinal locomotor networks shift in a speed- and mode-dependent manner. 

Assuming that the locomotor modules are encoded in the spinal cord, the speed- and 
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mode-dependent recruitment of locomotor networks observed in the present study is supported by 

evidence from some animal studies. Recently, studies using genetic and electrophysiological 

methods have revealed that spinal interneurons are important components of CPGs, and each 

interneuron play particular roles in controlling locomotion (Goulding, 2009; Garcia-Campmany et 

al., 2010). Some vertebrate studies have reported that specific sets of spinal interneurons are 

recruited depending on locomotion speed and/or mode (McLean et al., 2008; Talpalar et al., 2013; 

Ampatzis et al., 2014; Bellardita and Kiehn, 2015). For walking in mice, it was demonstrated that 

two subtypes of interneurons regulating left-right limb alternation could be identified, and 

differences were found in their contribution to left-right alternation depending on walking speed 

(Talpalar et al., 2013). Namely, although slow walking and fast walking have been defined as the 

same locomotor mode, the neural mechanisms underlying slower and faster walking are clearly 

different in mice. In addition, the larval zebrafish exhibits two different locomotor modes 

depending on swimming frequency (Budick and O'Malley, 2000), and different classes of spinal 

interneurons are recruited depending on swimming frequencies corresponding to different 

locomotor modes (McLean et al., 2008; Ausborn et al., 2012; Ampatzis et al., 2014). Together, 

these previous results show that appropriate interneuronal locomotor modules are selected and 

combined within hard-wired modules depending on speed and mode based on the on/off switching 

of active modules. In the present study, active modules at certain speeds consisted of a combination 

of parts of modules extracted from whole-speed EMG datasets (Table 2-1 and Fig. 2-6). The results 

are similar to the characteristics of interneuronal modules in other vertebrates as regards to the 

recruitment of locomotor modules for speed and mode control. Although it is not clear whether 

such mode- and speed-dependent recruitment mechanisms of spinal interneurons can be extended 

to humans, the characteristics of core components of CPGs, which have been mainly derived from 

a set of embryonic interneurons, are remarkably conserved across different species, even between 

fish and rodents (Goulding, 2009). In fact, there is substantial evidence that CPG-like neural 

networks are preserved in humans, and they have been mostly observed in patients with chronic 
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SCI  (Calancie et al., 1994; Calancie, 2006; Danner et al., 2015). Also, as in quadrupeds, long 

projecting propriospinal neurons connect the cervical and lumbar enlargements in humans (Nathan 

et al., 1996). Additionally, during gait, coordination and patterns of reflex mediated at the spinal 

cord are quite similar in humans (Berger et al., 1984) and cats (Gorassini et al., 1994). Based on 

these observations, the coordination of human gait seems to be controlled by the spinal neural 

mechanisms in much the same way as gait in other vertebrates. Similarly, if the mode- and 

speed-dependent recruitment mechanisms of spinal interneurons for locomotion are 

phylogenetically preserved in humans, this would explain the speed- and mode-dependent 

specificity of locomotor modules found in the present study. 

Some previous studies on human locomotion compared locomotor modules among 

modes and speeds (Ivanenko et al., 2004; Cappellini et al., 2006; Clark et al., 2010; Chvatal and 

Ting, 2012). Between walking and running, a study of them changes in the muscle weighting 

component of trunk extensors/adductors (correlation of the modules between walking and running: 

r = 0.38, p > 0.05) (Cappellini et al., 2006). Conversely, regarding speed-dependency, some prior 

studies have argued that similar locomotor modules have been extracted while walking in various 

speeds, in contradiction to my results (Ivanenko et al., 2004; Clark et al., 2010; Chvatal and Ting, 

2012). Nevertheless, a study extracting locomotor modules from self-selected (1.2–1.5 m/s) and 

slow walking speeds (0.6 m/s) reported that one locomotor module was only used at one walking 

speed in six out of nine participants (Chvatal and Ting, 2012). Thus, minor differences in 

locomotor modules that depended on speed and mode were found in these previous studies.  

Methodological differences may have caused the differences in the results between the 

previous studies and this study. It has been proposed that the extracted modules are affected by the 

number of muscles, and which muscles are recorded (de Rugy et al., 2013). Some of the previous 

studies did not record Gmed (Ivanenko et al., 2004) or TFL (Clark et al., 2010) activities, which are 

major muscles in a module mainly extracted in slow and moderate walking (Fig. 2-6, M1). 

Therefore, it might not have been possible to sufficiently demonstrate the differences between slow 
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(or moderate) walking and fast walking modules in these studies. In addition, the criteria used to 

determine the number of modules may also be a factor in the differing results. Indeed, it has been 

reported that different criteria lead to different module numbers and structures (de Rugy et al., 

2013). Therefore, differences in the criteria adopted between the previous and present studies might 

lead to the difference in the results related to speed dependency. Nevertheless, my findings were 

consistently observed under the three different conditions for selecting the number of modules 

global VAF criterion (Figs 2-3 to 2-7), criterion combining global and local VAF (Figs 2-8 to 2-10) 

and the five modules condition (Figs 2-11 and 2-12). Based on the results, my findings are most 

likely not methodology-dependent. 

Regarding the speed-dependency of locomotor modules, the present method that uses 

EMG reconstruction with clustering provides additional information about the quantitative 

differences between the sets of modules among speeds and modes. In some previous studies 

(Ivanenko et al., 2004; Chvatal and Ting, 2012), the differences among speeds at each module level 

(i.e., the number of modules and the characteristics of components) were the main targets of 

analysis. Using these parameters, it has been difficult to compare the quantitative differences 

among sets of modules, particularly in cases where two sets have a different number of modules. In 

the present study, using EMG reconstruction methods, one set of modules at a speed was evaluated 

by reconstruction accuracy to muscle activities of wide speed locomotion. The reconstruction 

accuracy vectors were divided into walking and running as two large clusters, then the walking and 

running clusters was divided into two or three sub-clusters (Fig. 2-7). The structure of the clusters 

indicates quantitative differences among sets of modules, thus the results mean that the locomotor 

modules greatly differed between walking and running, and were also different among the same 

locomotor mode because they depended on speed. Conversely, in many previous studies, the 

similarity of the modules has been evaluated based on the correlation coefficient between each 

module. If two different behaviours use multiple similar modules just barely exceeding the criteria 

of similarity, the modules of the two behaviours would have been different as a whole set of 
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modules. By using the present EMG reconstruction method combined with clustering, the 

qualitative difference of component sets can be identified. Therefore, if my method had been used 

in previous studies (Ivanenko et al., 2004; Chvatal and Ting, 2012), the walking modules might 

have been divided into different clusters depending on speed. 

Regarding the speed-dependency of locomotor modules, a previous study (Clark et al., 

2010) performed a similar EMG reconstruction method to my method. The study reconstructed the 

walking EMGs over a wide range of speeds (0.3–1.8 m/s) with a high accuracy, using only one 

module set extracted from a self-selected speed (1.25 m/s on average). They assumed that “if the 

reconstruction of Y by using X is conducted with a high accuracy, then that generally means that X 

and Y recruit the same modules”, and therefore they concluded that the same locomotor modules 

are recruited in various walking speeds. In my EMG reconstruction method, I did not assume the 

same principle because it is inappropriate for my results. For example, as the moderate speed 

walking modules contained almost all of the modules in slow walking (Fig. 2-6 and Table 2-1), the 

moderate walking speed modules could reconstruct EMGs at slow walking with a high accuracy 

(Fig. 2-7b). On the contrary, as the slow walking modules contained only some of the modules 

used in moderate speed walking (Fig. 2-6 and Table 2-1), these modules could not well reconstruct 

EMGs in moderate speed walking (Fig. 2-7b). Therefore, I evaluated the reconstruction vectors 

from another viewpoint. Assuming that homogeneous module sets have similar trends in EMG 

reconstruction accuracy, I evaluated the changes of modules among speeds and modes based on the 

extent to which a module set at a certain speed can reconstruct all speed EMGs by using 

hierarchical clustering. This method enabled evaluating important information about the similarity 

of modules among speeds and modes in the reconstruction vectors. For example, the sets of 

modules in slow walking (0.3–0.8 m/s) reconstructed running EMGs with only low accuracies 

(about 60% VAF) (Fig. 2-7b). On the other hand, those of fast walking (1.3–1.8 m/s) reconstructed 

running EMGs with fairly high accuracies (about 80% VAF) (Fig. 2-7b). This means that modules 

in fast walking contained those required in running, and suggests that there are clear differences 
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between slow walking modules and fast walking modules. In this method, although the clusters of 

reconstruction vectors were divided mathematically (Fig. 2-7c), each set of modules in each 

representative speed, which corresponded to speed range of each cluster, had different sets of 

locomotor modules (Fig. 2-6). For example, fast walking modules contained a large portion of slow 

walking modules (2/3 modules in non-runners, 4/4 modules in runners, Table 2-1 and Fig. 2-6), 

while slow walking modules did not contain many fast ones (2/5 modules in non-runners, 4/5 

modules in runners, Table 2-1 and Fig. 2-6). It has been shown that each type of motor module has 

a particular biomechanical function, and it has been suggested that the modules act as basic neural 

control elements (Tresch et al., 1999; Ting and Macpherson, 2005; Neptune et al., 2009). Thus, as 

discussed in previous studies at each muscle level (den Otter et al., 2004b; Neptune et al., 2008), 

the results suggest that the different modules were recruited among different walking speeds to 

presumably meet additional functional demands with a speed increase (e.g., deceleration of the leg 

in late swing [M4] and large loading response in initial stance [M5]). Therefore, it is considered 

that the differences among the clusters of reconstruction vectors have important physiological 

relevance to the speed-dependent recruitment of locomotor modules. 

Although the present study mainly focused on the muscle weightings of modules (i.e., 

spatially fixed muscle synergies), Ivanenko and colleagues have extensively studied the timing 

patterns of locomotor modules with regard to speed dependency and mode dependency (Ivanenko 

et al., 2004; Cappellini et al., 2006). Their studies showed that the peak timing shift of the 

locomotor module activities depended on the speed and mode. One of their studies indicated a peak 

timing shift of a temporal pattern component of ankle extensors between walking and running 

(~45% of the cycle during walking, 20%–30% of the cycle during running) (Ivanenko et al., 2004; 

Cappellini et al., 2006). Concerning speed dependency, another study showed a main activity peak 

of a type of temporal component mainly controlling BF and ST shifted from the late swing phase at 

2, 3, and 5 km/h (0.56, 0.83, and 1.39 m/s) to the early stance phase at 1 km/h (0.28 m/s) (Ivanenko 

et al., 2004). In addition, the activity peaks of all types of temporal components shifted earlier 
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about 9% on average, depending on acceleration from 1 to 5 km/h (0.28–1.39 m/s) (Ivanenko et al., 

2004). Similarly, in my study, some changes in the timing patterns of the modules were found (Fig. 

2-6). The peak timing of M3 was substantially shifted from a peak at around 45% of the cycle 

during walking to around 20% of the cycle during running. Additionally, M7 had two clear peaks 

(at initial stance and initial swing) during slow running in runners; however, the intensity of the 

first peak diminished during fast running. In addition, as the speed increased, the temporal 

activation patterns of each module increased in amplitude (Fig. 2-6). Thus, on the basis of the prior 

studies and present results, the temporal activity patterns of each type of spatially fixed locomotor 

modules are adjusted depending on speeds and modes. These results suggest that the temporal and 

spatial aspects of locomotor pattern generation are separately and hierarchically organized, and the 

observation is consistent with a simulation study of locomotor CPGs that demonstrate that temporal 

rhythm generators in the spinal cord control the networks of spatial pattern formation (McCrea and 

Rybak, 2008). 

Between non-runners and runners, different sets of modules were extracted at all 

representative speeds (Fig. 2-6, Table 2-1). In addition, another faster running sub-cluster of EMG 

reconstruction accuracy vectors was observed in runners compared with non-runners (Fig. 2-7). 

Although locomotor networks have inherent neural mechanisms (Dominici et al., 2011), plastic 

changes occur in the networks with locomotor training (Reisman et al., 2005; van den Brand et al., 

2012). The present participants in the runners group have undergone intensive locomotive training 

for at least 5 years. Therefore, the possibility remains that long-term training causes plastic changes 

in locomotor modules. In a study targeting chronic stroke patients, it was demonstrated that 

alterations of modules in the stroke-affected arm reflect a fractionation of the unaffected-arm 

modules (Cheung et al., 2012). It was also demonstrated that the use of existing modules is an 

efficient way to adapt to perturbations in a study of upper-limb movement (Berger et al., 2013). 

Likewise, in the present study, specific sets of modules in runners were constructed using the 

modules extracted at other speeds or from non-runners (Fig. 2-6, Table 2-1). It is possible that the 
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acquisition of novel locomotor movement following long-term training is achieved via the 

reorganization of locomotor networks consisting of existing locomotor modules. However, one 

possible limitation is that the two groups were compared under different speed ranges. As the 

maximum speed for runners was set to faster (5.0 m/s) compared with non-runners (4.3 m/s) to 

examine faster speed running, the representative fast running speed differed greatly between 

non-runners and runners. However, the representative slow walking, fast walking, and slow 

running were approximately the same speed between the two groups. Therefore, it seems valid to 

conclude that extracted modules in the two groups were different at these three representative 

speeds. 

In conclusion, my results revealed that different numbers and types of modules are 

utilized depending on the speed and the mode. This result strongly suggests the existence of mode- 

and speed-specificity in neural networks for human locomotion. 
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3. 1. Introduction 

Locomotor muscle activity is generated by a vast number of motoneurons (MNs) in the spinal cord. 

Spinal CPGs play a critical role in producing the coordinated MN activity during locomotion 

(Goulding, 2009; Kiehn, 2016). Recently, evidence for the existence of CPGs consisting of spinal 

interneurons has been demonstrated by experimental studies using animal models based on 

electrophysiological, genetic and neurochemical techniques (Goulding, 2009; Kiehn, 2016). Also, 

in humans, some studies on human spinal cord-injured (SCI) patients (Dimitrijevic et al., 1998) and 

on healthy participants (Gerasimenko et al., 2010) have demonstrated the ability of the human 

spinal cord to generate rhythmic and synergistic lower limb muscle activity.  

      In Chapter 2, I reported that different combinations of locomotor modules, which generate 

specific combinations of muscle activity (i.e., spatially fixed locomotor muscle synergies), are 

activated depending on speed and mode of locomotion in humans. The locomotor modules are 

considered to be encoded in spatial pattern formation networks, which activate multiple MN pools, 

in the spinal CPGs (McCrea and Rybak, 2008). Thus, Chapter 2 suggests that the CPG output 

changes in a manner dependent on locomotion speed and mode. Recently, to estimate how the CPG 

output is directed to the MN pools within each spinal segment, EMG signals were used to map the 

spatiotemporal MN activity in the lumbosacral enlargement (segments L2–S2) along the 

rostrocaudal direction (Fig. 3-1a; see the “Methods” for further details) (Ivanenko et al., 2006; 

Ivanenko et al., 2008). Using this method, previous studies have shown some changes in 

spatiotemporal MN activity depending on speed and mode in humans (Ivanenko et al., 2006; 

Ivanenko et al., 2008). For example, at non-preferred speed walking and running, the MN 

activation patterns demonstrated additional locus of activation compared with those at comfortable 

speed (Ivanenko et al., 2008). Additionally, mode-dependent MN activation patterns were observed 

during multiple locomotor modes (walking, running, backward stepping, and skipping) (Ivanenko 

et al., 2008). In these previous studies (Ivanenko et al., 2006; Ivanenko et al., 2008), relationships 

between the MN activity and timing pattern of locomotor modules have been extensively 
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investigated. However, relationships between the MN activation patterns and the muscle 

weightings of modules (i.e., spatially fixed muscle synergies) remain unclear.  

     Regarding locomotor speed control by the spinal CPGs, previous studies in animal models 

demonstrated two interesting characteristics. The first is the rostrocaudal gradient of rhythmogenic 

capacity in the spinal CPGs. Although rhythmogenic capability is widely distributed along the 

lumbosacral enlargement, the upper segments have a higher rhythmogenic capability (Kjaerulff and 

Figure 3-1. Procedures of reconstruction of spatiotemporal activation patterns of motoneurons 

(MNs) along the rostrocaudal axis of the lumbosacral enlargement from EMGs (a) and 

locomotor modules (b–d). (a): Activation patterns of MNs in each segment (L2–S2, left vertical 

scale) were reconstructed by mapping recorded muscle activities (EMGs) based on Kendall’s 

myotomal charts (Table 3-1). (b): Locomotor modules were extracted using non-negative matrix 

factorization (NMF). The output of each module is explained by the product of the muscle 

weighting component (bars; specifying activation level of each muscle) and the temporal pattern 

component (waveforms). The sum of outputs from the modules is approximately equivalent to 

those of the EMGs. (c): MN activity generated by each module was reconstructed from the 

output of each module. (d): Activity patterns generated from individual modules were summed 

into a whole activation pattern. The bar underneath denotes the stance phase (black) and swing 

phase (grey) in a gait cycle. 
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Kiehn, 1996; Cazalets and Bertrand, 2000; Talpalar and Kiehn, 2010). The second is the specific 

combination of individual classes of interneurons and MNs called a “locomotor spinal microcircuit” 

(Ampatzis et al., 2014). Ampatzis et al. (2014) showed that three distinct types of these 

microcircuits are sequentially activated, from slow to intermediate and then fast, with increasing 

speed. So far, these speed control mechanisms in spinal circuits have not been confirmed in 

humans. 

     It has been suggested that CPGs in legged vertebrates emerged during evolution from a 

common ancestral circuit (Grillner and Jessell, 2009), and a recent EMG-based study showed that 

the locomotor modules of humans and those of other mammals and birds evolved from similar 

circuitry (Dominici et al., 2011). As spinal CPG mechanisms are phylogenetically conserved at a 

cellular level across different species, and even between fish and rodents (Goulding, 2009), the 

speed control mechanisms of CPGs are probably conserved in humans. Based on the hypothesis 

that common speed control mechanisms are shared by humans and other vertebrates, I established 

working hypotheses as follows. 1) MN activity in rostral segments becomes higher compared with 

in caudal segments with increasing locomotion speed. Additionally, 2) if the MN activation 

patterns are changed with increasing speed, the distinct MN activation patterns are generated by 

different locomotor modules. To test the hypothesis, here I mapped the recorded EMG patterns 

onto the approximate corresponding segments of the MN pools in the spinal cord (Ivanenko et al., 

2006; Ivanenko et al., 2008) and extracted locomotor modules using non-negative matrix 

factorization (NMF) (Dominici et al., 2011) during walking and running over a wide speed range. 

The acceptance of this working hypothesis would provide indirect evidence that the speed control 

mechanisms of spinal locomotor circuits are conserved in humans. 

 

3. 2. Methods 

3. 2. 1. Participants 

Seventeen healthy male volunteers (ages 19–31 yr.) participated in the study. EMGs and 
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GRF data of 16 participants (eight non-runners and eight runners) out of 17 participants were taken 

from Study 1 (Chapter 2), which focused on a different topic (namely, on the recruitment of motor 

modules for different locomotion modes and speeds, in contrast with the present topic: the 

proportion of the MN activity in rostral and caudal segments). Each participant gave written 

informed consent for his participation in the study. The study was in accordance with the 

Declaration of Helsinki and was approved by the local ethics committee of the National 

Rehabilitation Center for Persons with Disabilities (Tokorozawa, Japan). 

 

3. 2. 2. Experimental setup and design 

Participants walked or ran on a treadmill (Bertec, Columbus, OH, USA). The belt speed was 

linearly increased from 0.3 m/s to 4.3 m/s with an acceleration of 0.01 m/s2. This speed-range was 

set as fast as possible within the safe limits checked in Chapter 2. The participants were asked to 

change their locomotion mode (from walk to run) on the basis of their preference under the given 

speed. The participants’ observed walk–run transition speed ranged from 1.9 to 2.3 m/s.  

 
3. 2. 3. Data collection 

Three-dimensional GRF were recorded from force plates under the right and left belts of the 

treadmill (1000 Hz). Surface EMGs were recorded from the following 14 muscles on the right leg 

for analysing MN activity patterns and locomotor modules: TA, LG, MG, SOL, PL, VL, VM, RF, 

BF, ST, AM, TFL, GM, Gmed. I targeted muscles innervated by MNs located in the lumbosacral 

enlargement, where locomotor CPGs are known to exist (Dimitrijevic et al. 1998). The EMGs were 

recorded with a wireless EMG system (Trigno Wireless System; DELSYS, Boston, MA, USA). 

The EMG signals were band-pass filtered (20–450 Hz) and sampled at 1000 Hz. GRF data were 

smoothed by a low-pass filter (a zero-lag Butterworth filter, 5-Hz cutoff). The timings of 

heel-contact (HC) and toe-off (TO) were determined based on the vertical component of GRF. 
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Then the stance time, swing time, and stride time were calculated. Locomotion mode (walk or run) 

was defined by the presence and absence of double support time. 

 

3. 2. 4. EMG processing 

The recoded EMGs were divided into 0.1 m/s bins based on the treadmill speed. Thus, the EMGs 

data of each participant were divided into 40 speed ranges. As the treadmill speed was accelerated 

at 0.01m/s2, each bin contained 10 seconds of data. Then, the EMG data were rectified and 

low-pass filtered with a zero-lag Butterworth filter. The low-pass cutoff frequency was adjusted to 

each speed condition according to the following formula: 10 × stride frequency (Hz) as in Chapter 

2. Subsequently, the smoothed envelopes were time-interpolated so that they had 200 points for 

each gait cycle. 

 

3. 2. 5. Spatiotemporal activation patterns of MNs along a rostrocaudal direction 

within the spinal cord 

To characterise the spatiotemporal patterns of the spinal MN activity, the processed EMGs were 

mapped onto the estimated rostrocaudal location of the MN pools in the spinal cord from the L2 to 

S2 segments. I adopted Kendall’s myotomal charts (Kendall et al., 1993) as in previous studies 

(Ivanenko et al., 2006; Ivanenko et al., 2008; Ivanenko et al., 2013; La Scaleia et al., 2014). In 

Kendall’s charts, the weight coefficients of innervation level are expressed as x (0.5) or X (1) 

(Table 3-1). Based on the charts, the MN activity patterns of the jth spinal segment Sj was 

estimated according to the following formula (3-1):  

𝑆𝑗 =   
𝑘!" ∙

!!
!!! 𝐸𝑀𝐺!

𝑛!
, (3-1) 

where nj is the number of EMGi corresponding to the jth segment, EMGi is the ith EMG activity 

and kij is the weighting coefficient of the ith muscle for the jth spinal segment. Subsequently, the 
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activity of each spinal segment (Sj) was normalized based on the estimated number of MNs in this 

segment (Table 3-2) (Ivanenko et al., 2013) as in previous studies (Tomlinson and Irving, 1977; La 

Scaleia et al., 2014). Namely, Sj was multiplied by the number of MNs in this segment and was 

divided by the maximum number of MNs across six segments (i.e., 12,765 in L3). To visualise 

smooth spatiotemporal activation in the rostrocaudal segments of the spinal cord, I used a filled 

contour plot (Ivanenko et al., 2006; Ivanenko et al., 2008; Ivanenko et al., 2013). 

 

Table 3-1. Muscle innervation charts. 
 GM Gmed TFL AM RF VL VM BF ST LG MG SOL PL TA 
L2    x X X X        
L3    X X X X        
L4  X X X X X X  x    x X 
L5 x X X x    x X    X X 
               
S1 X X X x    X X X X X X X 
S2 X       X X X X X   
Data are adopted from Kendal et al. (1993). The innervation level is expressed as X (high) and x 
(low). X and x are weighted with kij = 1 and kij = 0.5, respectively in equation (2).  

 
 

Table 3-2. Mean number of lower-limb motoneurons in each segment of the human spinal cord 
(13–40 years, 12 cases). 
Segment height motoneuron number 
L2 5146 
L3 12765 
L4 12069 
L5 12674 
S1 10372 
S2 4216 
Data are adopted from Tomolinson and Irving (1977)  
 

To compare the spatiotemporal activation patterns of MNs among speeds, the patterns 

across all 40 speed ranges were grouped with hierarchical clustering analysis. First, the activation 

patterns were averaged across participants at each speed. Then, each data matrix corresponding to 

200 time points × 6 segments was transformed into a vector corresponding to 1200 variables. Based 

on the vectors for each speed, hierarchical cluster analysis (Ward's method, correlation distance) 
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was performed for the 40 speed ranges. The optimal number of clusters was determined by the gap 

statistic method (Tibshirani et al., 2001). The MN activation patterns were divided into three speed 

ranges [slow walking (0.3–1.1 m/s), fast walking (1.1–1.9 m/s) and running (2.2–4.3 m/s), detailed 

in “Results”], and data in subsequent analyses described below were compared among the middle 

speeds of each speed range (i.e., 0.7–0.8, 1.5–1.6 and 3.2–3.3 m/s for slow walking, fast walking 

and running, respectively). Hereinafter, these speeds referred to as "representative speeds". 

We checked inter-individual variability of MN activation patterns at the representative 

running speed, because high inter-individual variability of EMGs during running (Guidetti et al., 

1996) may raise a question whether the averaged MN activation patterns during running show 

representative patterns among participants. To evaluate similarity of the MN activation patterns 

among participants, we calculated correlation coefficients between individual and averaged data at 

representative running speed. Firstly, each participant and averaged data matrix corresponding to 

200 time points × 6 segments was transformed into a vector corresponding to 1200 variables. Then, 

the correlation coefficients (r) were calculated between the individual and averaged data vectors. 

 

3. 2. 7. Activation ratio between lumbar segments and sacral segments 

To evaluate the relative activation between the lumbar and sacral segments, I calculated the ratio 

between mean MN activity in the main part of the lumbar (sum of activity from L3 to L4) and the 

sacral segments (sum of activity from S1 to S2) (Ivanenko et al., 2013). The activation ratios were 

compared among the representative speeds for each type of MN activation pattern. 

 

3. 2. 8. Spatiotemporal activation patterns of MNs of each locomotor module 

Locomotor modules (Fig. 3-1b) were extracted from the processed EMGs in the representative 

speeds for each type of MN activation pattern, using same method of motor module extraction used 

in Chapter 2 (see section 2.2.5. for details). Then, spatiotemporal activation patterns of MNs were 

reconstructed from each extracted modules. First, the motor output of each module was calculated 
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from the product of the muscle weightings and the corresponding temporal activation patterns (Fig. 

3-1b). Then, spatiotemporal activation patterns of MNs generated from individual modules were 

reconstructed from the motor output of each module (Fig. 3-1c). These activation patterns of 

individual modules were summed into a whole activation pattern of MNs over a gait cycle at each 

representative speed (Fig. 3-1d). 

 

3. 2. 9. Statistics 

Differences in the activation ratio between the sacral and lumbar segments among the three 

representative speeds for each MN activation pattern (slow walking, fast walking and running) 

were compared using one-way ANOVA with Holm’s post-hoc test (an updated version of 

Bonferroni’s test). In addition, I compared the number of modules among the three representative 

speeds by using the non-parametric Kruskal–Wallis one-way ANOVA with the Steel–Dwass post 

hoc test (nonparametric Tukey’s test). Data are presented as the mean and standard error of the 

mean (mean ± SE). Statistical significance was accepted at p < 0.05. 

 

3. 3. Results 

3. 3. 1. Spatiotemporal activity patterns of MNs along a rostrocaudal direction in the 

spinal cord 

Using recorded EMGs (typical examples shown in Fig. 3-2) and the myotomal charts, we 

reconstructed the spatiotemporal activation patterns of MNs along the rostrocaudal direction in the 

spinal cord over the step cycle. The averaged activation patterns across participants from slow 

walking to fast running are presented in Fig. 3-3. These patterns were grouped by hierarchical 

clustering to evaluate the speed-dependent changes (Fig. 3-4a). The activation patterns were 

grouped into three speed ranges: slow walking (0.3–1.1 m/s), fast walking (1.1–1.9 m/s) and 
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running (2.2–4.3 m/s) (Fig. 3-4a).  

 

 

 

 

 

 

 

 

Figure 3-2. Muscle activation patterns during a gait cycle at all speeds. Each waveform shows 

the ensemble average of the first five to eight consecutive gait cycles (as many as possible in the 

range, almost eight except at the very slow speed) in each speed range from a single participant. 

The blue and red waveforms represent walking and running data, respectively. 
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Figure 3-3. Averaged activation patterns of MNs across all participants at all speeds. The speed range 

and the maximum value of each map are displayed. Colour scale denotes amplitude normalized to the 

maximum value in each activation pattern. Light blue, deep blue and orange sections the indicate three 

speed ranges (“slow walking”, “fast walking” and “running”, respectively) divided by cluster analysis 

based on the spatiotemporal activation patterns of the MNs shown in Fig. 3-4. 
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Specifically, in slow walking (all data shown in Fig. 3-3, light blue section; 

representative pattern shown in Fig. 3-4b, left), the patterns showed long-lasting synchronous 

activation of the lower part of the lumbar (L4 and L5) and sacral (S1 and S2) segments during most 

parts of the stance phase of the cycle (0–50% of the gait cycle). In addition, weak activation in 

Figure 3-4. Cluster analysis for activity pattern of MNs across all speeds (a) and the 

representative data from each cluster (b). (a): Dendrograms represent the results of cluster 

analysis applied to the activation patterns of MNs across all speeds shown in Fig. 3-3. The 

optimal number of clusters was determined by gap statistics. Three distinct clusters are indicated 

by light blue, deep blue and orange (“slow walking”, “fast walking” and “running”, 

respectively). (b): MN activation maps at the middle speed of each speed range for the three 

clusters are shown as representative data for the clusters. The bars underneath denote the stance 

phase (black) and swing phase (grey) in a gait cycle. 
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segments from L4 to S1 occurred during most parts of the swing phase (60–85% of the gait cycle). 

At the end of the swing phase (90–100% of the gait cycle), preceding heel contact, segments from 

L4 to S1 were re-activated with a stronger intensity.  

However, in fast walking (all data shown in Fig. 3-3, deep blue section; representative 

pattern shown in Fig. 3-4b, middle), the stance phase activation was separated into distinct bursts of 

the whole lumbar [L2 to L5, at around foot contact (0–20% of the gait cycle)] and the sacral 

segments [S1 and S2, at around toe off (40–55% of the gait cycle)]. Weak activation of segments 

from L4 to S1 occurred in the first half of the swing phase (60–80% of the gait cycle). At the end of 

the swing phase (90–100% of the gait cycle), segments from L4 to S1 were also activated as in 

slow walking.  

In running (all data shown in Fig. 3-3, orange section; representative pattern shown in 

Fig. 3-4b, right), the activity of the lumbar and the sacral segments were synchronous in the stance 

phase (0–30% of the gait cycle). During the initial swing (30–45% of the gait cycle), weak activity 

of the rostral lumbar segment (mainly in L3) occurred. Following this narrow segment activation, 

weak activity in the wide lumbar segments (L2 to L5) occurred in the middle of the swing phase 

(45–70% of the gait cycle). During the end of the swing phase (90–100% of the gait cycle), the 

activity of the segments from L4 to S1 occurred similarly to that in slow walking and fast walking. 

Inter-participant variability in EMGs during running (reported in [Guidetti et al., 1996]) may raise a 

question about the averaged data of the reconstructed MN activation patterns obtained from 

individuals. As seen by visual inspection, inter-participant differences in MN activation patterns 

were quite small at the representative running speed (all individual data are shown in Fig. 3-5). 

This similarity is supported by high correlation coefficients between individual and averaged data 

(0.95 ± 0.024 [mean ± SD], Fig. 3-5). Therefore, the averaged running data represent the general 

trends in the individual data. 
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3. 3. 2. Activation ratio between lumbar and sacral segments 

As locomotion changes from slow walking to fast walking or running, MN activity in the rostral 

segments was increased relative to that in the caudal segments. This was statistically confirmed by 

comparing the activation ratio between the lumbar (L3 + L4) and sacral (S1 + S2) segments (Fig. 

3-6; ANOVA: F(2,48) = 18.3, p < 0.001, post-hoc Holm’s test: p < 0.01). 

 

 

 

 

 

Figure 3-5. Averaged and all individual data of spatiotemporal activation patterns of motoneurons 

(MNs) at speeds representative of running (3.2–3.3 m/s). Colour scale denotes amplitude normalized 

to the maximum value in each activation pattern. Correlation coefficients between individuals and 

averaged data are shown. 
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3. 3. 3. Spatiotemporal activation patterns of MNs generated from individual modules 

To examine the relationships between the locomotor modules and the activation patterns of the 

MNs, the modules were extracted from representative speeds lying within the three clusters. The 

number of extracted locomotor modules was significantly lower during slow walking compared 

with running (Kruskal-Wallis one-way ANOVA: H2 = 7.40, df = 2, p < 0.05; post hoc Steel–Dwass 

test: p < 0.05, Fig. 3-7). Six types of modules were extracted from the combined dataset of the three 

representative speeds (M1–M6, Table 3-3, bars in Fig. 3-8 upper row). From these six types of 

modules, different combinations of modules were used among the three representative speed 

datasets (Table 3-3). 

Figure 3-6. Mean activity ratios of lumbar versus sacral segments at three representative speeds. 

Error bars indicate the SE. 



Chapter 3 (Study 2): Speed dependency in α-motoneuron activity and locomotor modules in 
human locomotion                                                        

 80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 3-3. Characteristics of extracted locomotor modules. 

 
 
 

Figure 3-8 shows the spatiotemporal activation patterns of MNs reconstructed from 

individual locomotor modules at the three representative speeds. Each module activated the MN 

pools in somewhat narrow segments (2–4 segments) at a specific timing point in the gait cycle (Fig. 

3-8, the third to the sixth columns from the left). The MN activation patterns of individual modules 

at each speed were summed into a total activation pattern over a gait cycle at each speed (Fig. 3-8, 

the second column from the left). The original patterns were reconstructed with high accuracy by 

   Extracted modules  

Module 
type 

Major muscles Timing 
Slow walking 
(0.7–0.8 m/s) 

Fast walking 
(1.5–1.6 m/s) 

Running 
(3.2–3.3 m/s) 

Peak activation 
segment 

M1 TFL, Gmed Early stance ○ ○  L4 

M2 MG, LG, SOL, PL Mid–late stance ○ ○ ○ S1 

M3 TA 
Initial stance/Mid 
swing 

○ ○ ○ L4 

M4 BF, SM 
Late swing–Early 
stance 

 ○ ○ L5 

M5 
VL, VM, GM, 
Gmed 

Early stance   ○ L3 

M6 AM, RA Initial swing   ○ L3 

Figure 3-7. Number of modules at three representative speeds for “slow walking”, “fast 

walking” and “running”. Error bars indicate the SE. 
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summation of the activation from individual modules (r = 0.91–0.98). The most strongly activated 

segments by each module were located at rostral segments, in most cases, of the newly recruited 

module types as speed increased (Table 3-3). Specifically, in slow walking, one of the three 

modules (M2) innervated the MN pools in a sacral segment (peak segment: S2). In addition, the 

other two modules (M1 and M3) activated a lower lumbar segment (peak segment: L4). In fast 

Figure 3-8. Spatiotemporal activation patterns of MNs generated by individual locomotor modules at 

three representative speeds. The output of an individual module is explained by the product of a 

muscle weighting component (top bars) and its corresponding temporal pattern component (same 

colour waveform). Based on the output, MN activity generated by an individual module was 

reconstructed. The activity patterns generated by the same modules are shown in the same column, 

while those at the same speeds are shown in the same row. These activity patterns at the same speed 

were summed into a total activation pattern over a gait cycle (the second column from the left). 

Correlation between the pattern directly reconstructed from the EMGs (the first column from the left) 

and the pattern reconstructed from the modules is shown just above these two patterns. An enlarged 

view of the x-axes of muscle weightings is shown in the upper right. The bars underneath denote the 

stance phase (black) and swing phase (grey) in a gait cycle. 
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walking, the newly recruited modules (M4) mainly innervated lower lumbar and upper lumbar 

segments, respectively (peak segment: L4). During running, M5 and M6 were newly recruited and 

they innervated the MN pools in an upper lumbar segment (peak segment: L3). 

 

3. 4. Discussion 

The present results confirmed my working hypotheses and demonstrated that (1) MN activity in the 

rostral segments increased compared with the caudal segments with increasing locomotion speed, 

and (2) the three different MN activation patterns used in a wide range of speed are generated by 

distinct combinations of locomotor modules. These results are consistent with the characteristics of 

the speed control of the spinal CPGs observed in other vertebrates (Kjaerulff and Kiehn, 1996; 

Cazalets and Bertrand, 2000; Talpalar et al., 2011; Ampatzis et al., 2014). Therefore, my results 

support the hypothesis that similar basic locomotor neural circuits are used among different 

vertebrate species even though they have significant morphological differences and exhibit 

different locomotion styles (e.g., aquatic or terrestrial, non-legged or legged) (Wainwright, 2002; 

Grillner and Jessell, 2009). Thus my results indicate a possibility that the commonality of the spinal 

locomotor circuits can be extended to humans. 

The present results showed that the MN activation patterns were divided into three speed 

ranges (slow walking, fast walking and running, Fig. 3-4a). In the fast walking pattern (Fig. 3-4b), 

two clear bursts occurred at around foot contact (0–20% of the gait cycle) in the lumbar segments 

and at around toe off (40–55% of the gait cycle) in the sacral segments. This activation pattern was 

similar to those presented as normal speed walking patterns in many studies (Ivanenko et al., 2006; 

Ivanenko et al., 2008; Ivanenko et al., 2013; La Scaleia et al., 2014). Additionally, as natural 

self-selected walking speed is approximately 1.2–1.5 m/s (Chvatal and Ting, 2012; Ivanenko et al., 

2013), this activity pattern would be most frequently used as an ordinary pattern in our daily life. 

Conversely, in the slow walking pattern (Fig. 3-4b), long-lasting synchronous activations of the 
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lower part of the lumbar segments (L4 and L5) and the sacral segments (S1 and S2) were observed 

during most parts of the stance phase of the cycle (0–50% of the gait cycle). Such MN activation 

patterns have been found in several studies at slow speeds (0.28 m/s [Ivanenko et al., 2006]) and 

low step frequencies (40 steps/min and 40–80 steps/min in young and older adults, respectively 

[Monaco et al., 2010]). Additionally, the long-lasting synchronous activations of the lower lumbar 

and sacral segments were also observed in toddlers while stepping (Ivanenko et al., 2013). It has 

been demonstrated that posture control is an important aspect for the control of locomotion as a 

common characteristic in slow speed walking (Bauby and Kuo, 2000) and toddler walking 

(Ivanenko et al., 2005a). Thus, both may represent similar MN activation patterns. Regarding 

running, to my knowledge, only one previous study (Ivanenko et al., 2008) examined the MN 

activation pattern in slow speed running (1.38–3.33 m/s, considered as jogging). In the present 

study, we examined those at a faster speed (–4.3 m/s). As a result, the MNs activation patterns 

during faster running were almost the same patterns as those during slower running (Figures 3-3 

and 3-4a).   

Among the three different MN activation patterns, MN activity in the rostral segments 

was increased relative to that in the caudal segments as the speed increased (Fig. 3-6). Also, the 

locomotor modules extracted in faster speed (fast walking and running) innervated rostral segments 

(Table 3-3 and Fig. 3-8). Previous studies demonstrated several functional differences among 

lumbosacral segments considered to be related to the observed speed-dependent change in MNs 

activation ratio between the lumbar and sacral segments. A previous study showed that vertebrates 

have multiple rhythmogenic modules in their entire lumbosacral enlargement (Hägglund et al., 

2013). However, rostral segments have a high capacity to generate rhythmic activity of MNs than 

do caudal segments (Kjaerulff and Kiehn, 1996; Cazalets and Bertrand, 2000). Therefore, although 

the function of generation of rhythmic MN activity is widely scattered in the lumbosacral 
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enlargement, the capacity is graded along the rostrocaudal direction. In addition, rostral segments 

of the lumbar cord play a crucial role in the function of the CPG as a leading oscillator that 

propagates motor bursts to caudal segments (Saltiel et al., 2015). Also, in humans, the rostral 

segments have been suggested to work as a leading oscillator (Dimitrijevic et al., 1998; 

Gerasimenko et al., 2010). From the viewpoint of the rostrocaudal functional gradient, in fast 

locomotion, high activity of the rostral rhythm generator may be required to achieve a high step 

frequency. Indeed, non-NMDA receptors, which are responsible for receiving glutamatergic input 

to the locomotor CPG, exist in more rostral lumbar segments and are indispensable for achieving 

high frequency locomotor behaviour (Talpalar and Kiehn, 2010). This glutamatergic mechanism 

for faster locomotion might explain the higher activation in the caudal segments at faster speed 

locomotion presented in the present study. However, slower locomotion may not require strong 

locomotor drive from the rhythm generator in the upper segments. Indeed, it has been demonstrated 

that posture control is an important aspect of the control of locomotion at slow speeds (Bauby and 

Kuo, 2000). In addition, another study suggested that the locomotor generator in the sacral 

segments is related to body support through sensory inputs to the foot during walking (Selionov et 

al., 2009). Therefore, in contrast to the lumbar segment, sacral segment activity might play an 

important role for posture control, especially in slow walking. Therefore, it is plausible that the 

observed speed-dependent change in MNs activation ratio between the lumbar and sacral segments 

reflected these functional differences of the spinal segments.  

In the present study, focusing on the relationships between the MN activation patterns 

and extracted locomotor modules, I found that three different MN patterns were generated by 

distinct combinations of locomotor modules (Table 3-3 and Fig. 3-8). It is suggested that the 

locomotor CPG may consist of a timing structure and a spatial pattern formation network (McCrea 

and Rybak, 2008). The locomotor modules are considered to be encoded in the spatial pattern 
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formation networks of the spinal CPGs, which activate multiple MN pools (McCrea and Rybak, 

2008). Recent molecular and genetic techniques have revealed that CPGs consists of spinal 

interneurons, and each type of interneuron plays a particular role in controlling locomotion 

(Goulding, 2009; Kiehn, 2016). In addition, spinalized vertebrate studies have shown that 

mathematically extracted locomotor modules, like those in the present study, are organized in the 

spinal interneuronal circuits (Hart and Giszter, 2010; Saltiel et al., 2015). Thus, assuming that the 

locomotor modules consist of spinal interneurons, my results suggest that each interneuronal 

locomotor module has specific connectivity with MN pools. Indeed, a recent study in zebrafish 

revealed the existence of a specific combination of individual classes of interneurons and MNs 

called a “locomotor spinal microcircuit” (Ampatzis et al., 2014), which has interesting 

characteristics regarding speed dependency. The authors identified three distinct microcircuits with 

separate interneuron types innervating slow, intermediate, or fast MNs. Furthermore, the 

microcircuits are sequentially activated from slow to intermediate and fast with increasing speed 

(Ampatzis et al., 2014). Thus, this principle of spinal circuit organization represents a neural 

mechanism to modulate the locomotor speed by stepwise recruitment of different microcircuits. In 

addition, a study in mice (Bikoff et al., 2016) showed specific connectivity (i.e. microcircuits) 

between motoneuron subtypes and V1 interneuron subtypes, which regulate locomotor speed 

(Gosgnach et al., 2006). It is not clear to what extent these findings can be extended to humans. 

Nevertheless, the greater part of the spinal locomotor networks are conserved across vertebrates 

(Goulding, 2009; Kiehn, 2011), thus, it is probable that the recruitment patterns of spinal neurons 

might also be conserved in humans. If the speed-dependent recruitment mechanisms of the 

microcircuits for locomotion are phylogenetically preserved in humans, this would explain the 

present result that the different MNs activation patterns were generated by different locomotor 

modules.  
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In human walking, generation of muscle activity is largely affected by sensory input 

(Van de Crommert et al., 1998). In slow walking, as discussed above, large sacral activity in 

mid-stance is presumably derived from foot-support interactions through load feedback. This sacral 

activity is most likely related to constancy in triceps surae activity over the speed range and to 

negative speed dependency in PL activity with regard to load information in slow-speed walking, 

as discussed in a study by Den Otter et al. (2004). At higher speeds, changes in locomotor muscle 

activity are clearly related to reinforcement of sensory feedback depending on speed increases. It is 

assumed that extensor activity during early stance phase (M5 activity and forward shift of 

activation timing of M2 in running) was related to reinforcing load feedback (i.e. extensor 

reinforcing reflex) (Duysens, 2002), and hamstring activity at the end of swing (M4 activity) was 

related to an increase in knee-extension speed (i.e. stretch reflex) (Duysens et al., 1998). Although 

there was no doubt about the contributions of these reflex-driven muscle activities to control speed 

in human locomotion, a modelling study showed that reflex-based muscle activity alone without 

CPGs cannot control locomotor speed (Dzeladini et al., 2014). In addition to reflex control of 

locomotion, it has been shown that sensory feedback affects lumbar burst generators in CPGs 

(Gerasimenko et al., 2010; Lev‐Tov et al., 2010). Vibration of leg muscles facilitated 

locomotor-like muscle activity evoked by spinal electromagnetic stimulation to the lumbar segment 

(Gerasimenko et al., 2010). A study in mice demonstrated more direct evidence that ascending 

afferent pathways from the sacral segments to the lumbar segments enhance locomotor bursts 

(Lev‐Tov et al., 2010). Assuming that similar mechanisms are shared between mice and humans, 

strong afferent feedback at higher speeds may powerfully facilitate the lumbar burst generators of 

the CPGs.  

Regarding the organization of locomotor networks, Hof et al. (2002) showed that 
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locomotor EMGs in the speed range of 0.75–1.75 m/s could be estimated by two simple functions, 

one constant and one proportionally increasing with walking speed (i.e. fixed CPG networks). 

Nevertheless, this model cannot explain the large activity in the triceps and PL at mid-stance in 

slow walking or the rapid increase of extensor activity after the walk-run transition. Instead, as 

Pearson (2004) proposed, CPG networks would be flexibly reorganized by sensory feedback. 

Reorganization of CPG networks depending on changes in locomotor speed have been revealed in 

fishes and mice by recent molecular studies (Kiehn, 2016). Thus, regarding speed control in 

locomotion, sensory input would be related to not only reflex-driven muscle activity, but also 

rhythmic burst generation and reorganization of CPGs, probably contributing to the 

speed-dependency of MN activity and locomotor modules observed in the present study. 

There are several limitations regarding the method reconstructing the spinal MNs 

activations. EMG cross-talk is always a potential issue with recordings of surface EMGs. In a 

previous study, it was demonstrated by modelling the potential effect of different levels of 

cross-talk in the EMGs that the cross-talk has little effect on the estimation of MN activity patterns 

(Ivanenko et al., 2013). The study showed that the level of the cross-talk from adjacent muscles 

increased incrementally (from 10% to 100%); nevertheless, the appearance of a new location of 

activity or notable temporal shifts of the activity did not occur. Additionally, the number of 

muscles and the muscle type are also important variables. Regarding this point, it has been 

demonstrated that the activity patterns, analysed with two different sets of muscles (12 muscles and 

20 muscles), are relatively robust (La Scaleia et al., 2014). Presumably, this result stemmed from 

the fact that each segment in the spinal cord innervates multiple muscles and each muscle is 

innervated by several segments to the contrary. The activity patterns in the present study were 

similar to those in previous studies using various sets of muscles (Ivanenko et al., 2006; Ivanenko 

et al., 2008; Monaco et al., 2010; Ivanenko et al., 2013; La Scaleia et al., 2014). However, it should 

be kept in mind that the sets of muscles analysed would affect the extraction of locomotor modules 



Chapter 3 (Study 2): Speed dependency in α-motoneuron activity and locomotor modules in 
human locomotion                                                        

 88 

by NMF (Zelik et al., 2014).  

Although this study showed the high similarity about spinal locomotor networks humans 

and quadruped vertebrates by reconstructing MN activation patterns for lower leg muscles, there is 

high possibility that locomotor networks for forelimbs/upperlimbs are different between them due 

to difference in biomechanical roles of the forelimbs and upper limbs during walking. Nevertheless, 

regarding interaction between the fore/upper and hind/upper limb networks, some evidence for 

similarity between quadruped vertebrates and humans was observed (Dietz 2002). Therefore, even 

in the level of whole spinal locomotor networks including fore/upper and hind/upper limb networks, 

it might be that some similar mechanisms are shared by humans and quadruped animals.  

In conclusion, I found the following spinal activation patterns regarding speed control of 

human locomotion: (1) MN activity in the rostral segments increased compared with the caudal 

segments with increasing locomotion speed; and (2) different MN activation patterns are generated 

by distinct combinations of locomotor modules. These results are consistent with the speed control 

characteristics of vertebrate CPGs. This commonality supports the hypothesis that basic locomotor 

neural circuits are highly conserved across significant morphological differences and phylogenetic 

distances in vertebrates (Wainwright, 2002; Grillner and Jessell, 2009). Thus, my results provide 

important insight into not only human locomotor control but also the evolution of vertebrate 

locomotion. 
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4. 1. Introduction 

The timing and pattern of locomotor muscle activities in vertebrates are generated by spinal 

neural networks referred to as spinal CPGs (Grillner, 1981; Kiehn, 2016). Recent animal studies 

combining electrophysiology with molecular genetics demonstrated that the CPGs consisted of 

multiple types of spinal interneurons (Kiehn, 2016). In humans, indirect evidence of the 

existence of CPGs has been demonstrated by several studies in patients with SCI (Calancie et al., 

1994; Dimitrijevic et al., 1998; Danner et al., 2015).  

Regarding spinal motor control, the anatomical positions of the MNs, which receive 

inputs from CPGs, are logically arranged according to the biomechanical characteristics of their 

target muscles (Romanes, 1964; Jessell et al., 2011). Generally, each muscle is innervated from 

several spinal segments and each spinal segment innervates several muscles. The anatomical 

grouping at each segment may reflect synergistic functions at a given hindlimb joint along the 

rostrocaudal axis of the spinal cord (Romanes, 1964). In addition, MN columns that innervate 

antagonist muscles are separated spatially along the mediolateral axis of the spinal cord 

(McHanwell and Biscoe, 1981). Recently, such stereotyped organization of MNs was suggested 

to simplify the connectivity between MNs and pre-motor inputs for locomotor control in the 

mouse (Hinckley et al., 2015). In human bipedal walking, specificity in the MN arrangement 

along the mediolateral axis depending on gait phase (i.e., stance and swing phase) has been 

suggested (Ivanenko et al., 2008).  

Regarding the control of locomotor muscle activity, a small number of motor modules 

(also referred as muscle synergies) generate complex activities of various muscles (Tresch et al., 

1999). The motor modules are encoded in spatial pattern formation networks, which activate 

multiple MN pools, in the spinal CPGs (McCrea and Rybak, 2008). The CPGs are considered to 

consist of the pattern formation networks and temporal regulation networks, which send 

activation commands to the pattern formation networks (McCrea and Rybak, 2008). A recent 

study by Saltiel et al. (2015) demonstrated that a focal neurochemical stimulation to the frog 
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spinal cord elicited specific types of motor module activities similar to those used in intact frog 

locomotion. Interestingly, the locomotor modules exhibited partially overlapping 

representations along the rostrocaudal direction. Further, the order from rostral to caudal 

segments corresponded to the activation sequence in a gait cycle. The relationships between the 

activation sequence of locomotor muscle synergies and their spinal cord topography suggests 

that the locomotor muscle activity is generated by a wave of neural activation, traveling in the 

rostrocaudal direction, in the lumbosacral spinal cord. The traveling wave is assumed to be 

derived from rostrocaudal propagation of electrical activity of dorsal horn neurons and relevant 

to the temporal regulation networks of CPGs (Cuellar et al., 2009). A simulation model 

demonstrated that sequentially spacing motor modules from the rostral to caudal regions and the 

rostrocaudal traveling wave, acted as the pattern formation networks and the temporal 

regulation networks, respectively, to reproduce actual motor outputs in frogs (Saltiel et al. 

2015). 

 The travelling wave of motor output has been observed among different vertebrates, 

especially in animals using undulating locomotion, including Lamprey (Wallén and Williams, 

1984), fish (Grillner, 1974), and tadpoles (Roberts et al., 1998). Although there is still debate 

about whether the traveling wave mechanisms exist in legged animals (AuYong et al. 2011; 

Cuellar et al. 2009; Pérez et al. 2009), evidence for its existence has been observed in frogs 

(Saltiel et al., 2015), rodents (Cazalets, 2005), and cats (Cuellar et al., 2009; Pérez et al., 2009). 

However, thus far, the traveling wave has not yet been confirmed in human locomotion. Based 

on myotomal charts (Kendall et al., 1993), a previous study reconstructed the MN activation 

during walking in humans (Ivanenko et al., 2006). They demonstrated the rostrocaudal 

movement of MN activations in the lumbosacral enlargement during a gait cycle based on the 

locus of the center of activity (CoA) of the MN activity. Although the CoA demonstrated the 

rostrocaudally traveling wave-like activation of MNs from upper lumbar to lower sacral 

segments in a swing-stance cycle, the CoA shifted rostrally toward the upper lumbar segments 
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at foot contact in the middle of the rostrocaudal propagation. The rostral shift of the CoA was 

induced by a motor module activating the quadriceps and TA muscles at foot contact related to 

loading response (Ivanenko et al., 2006). A comparative study between humans walking and 

animal locomotion demonstrated that the large activity of quadriceps and TA at foot contact 

related to loading response is unique to human upright walking (Vilensky, 1987).  

Generally, a large part of the spinal CPGs mechanisms is phylogenetically conserved 

across different species (Goulding, 2009). Based on the commonality of the locomotor circuits, 

it is quite possible that the traveling wave of activation exists in the human spinal circuits. The 

traveling wave of activation in the spinal cord may not have been observed in the previous 

human walking study (Ivanenko et al. 2006) due to it being masked by the muscle activity 

induced by loading response at foot contact The air-stepping task has been previously used to 

examine human locomotor control under the conditions without foot-contact interactions, thus, 

eliminating body-weight loading (Ivanenko et al., 2002; Ivanenko et al., 2007). By removing 

foot-contact interactions, the motor output of air-stepping might represent more endogenous 

activity in the spinal CPGs compared with that during normal walking. Thus, in the present 

study, by adopting an air-stepping task I examined whether the traveling wave of activation 

exists in the human spinal circuits based on activation sequence of motor modules and their 

innervation locations in the lumbosacral enlargement during air stepping. Here, assuming that 

the traveling wave of activation exists in the human spinal circuits and recruits motor modules 

during air-stepping, I hypothesized that motor modules would be sequentially recruited from 

rostral to caudal regions of the spinal cord during each step. The acceptance of this working 

hypothesis would provide indirect evidence that the traveling wave mechanisms are conserved 

in humans. My results would contribute to better understanding the human locomotor system 

and commonality of locomotor neural systems among vertebrates. 
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4. 2. Methods 

4. 2. 1. Participants 

Nine healthy male volunteers (age ± standard deviation [SD], 26.1 ± 2.7 years) participated in 

this study. Each participant gave written informed consent for his participation in the study. 

This study was carried out in accordance with the Declaration of Helsinki and with the approval 

of the Ethics Committee of the Graduate School of Arts and Sciences, the University of Tokyo. 

 

4. 2. 2. Experimental setup and design 

Participants stepped with the right leg in the air while standing on a stool on the left leg and 

holding a vertical pole with the left hand for stabilization (Fig. 4-1a). They were instructed to 

perform 30 strides of one-leg air-stepping at a comfortable cadence as if they walked on the 

ground. In this condition, all participants performed the step at a pace of 1.34 ± 0.12 s/step 

(mean ± SD). The step frequency was approximately equivalent to the stride time of slow 

walking (1.38 sec/stride at 0.83 m/s) (Murray et al., 1984). Prior to the experiment, the 

participants practiced the task for 5 min. 
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Figure 4-1. Experimental setup of one-leg air stepping and the kinematics pattern. (a) 

Experimental setup of one-leg air stepping movement. Participants stepped with the right leg 

in the air while standing on a stool on the left leg and holding a vertical pole with the left 

hand for stabilization. In accordance with the research ethics of the journal, the individual 

gave written consent for the publication of this image. (b) An example of kinematics of 

one-leg air stepping movement. Averaged kinematics patterns over 20 consecutive step 

cycles are shown at every 10% gait cycle for a single participant. Blue line indicates the 

trajectory of the toe marker over the 20 consecutive step cycles. (c) Ensemble averages 

across participants (± standard deviation) of the hip, knee, and ankle angles in an 

extension-flexion cycle based on the hip angle. 
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4. 2. 3. Data collection 

Surface EMG was recorded from the following 14 muscles on the right leg: TA, MG, SOL, PL, 

VL, RF, BF, ST, adductor longus (AL), sartorius (SART), iliopsoas (ILIO), TFL, GM, and 

Gmed. Electrodes were placed in accordance with the recommendation of Criswell and Cram 

(2011). Although the ILIO is a deep muscle, the superficial area of the ILIO is adequately large 

for surface EMG recording (Jiroumaru et al., 2014). Nevertheless, EMG signals of the ILIO can 

be corrupted by cross talk from adjacent hip flexors. Thus, to minimize cross-talk from adjacent 

muscles, I carefully checked location of the ILIO by manual palpation as outlined by Muscolino  

(2008) and performed cross-talk tests suggested by Criswell and Cram (2011). The EMG was 

recorded with a wireless EMG system (Trigno Wireless System; DELSYS, Boston, MA, USA). 

The EMG signals were band-pass filtered (20–450 Hz) and sampled at 1,000 Hz with the EMG 

system and a multichannel data-recording unit (PowerLab System, AD Instruments, Sydney, 

Australia), respectively. Kinematic data were recorded at 100 Hz by using an optical motion 

capture system (OptiTrack: V100R2, Natural Point, OR, USA) with six cameras. Five spherical 

markers were placed over the right side of the fifth metatarsal head (toe), lateral malleolus 

(ankle), lateral femoral epicondyle (knee), greater trochanter (hip), and acromion process 

(shoulder). 

 

4. 2. 4. Kinematic analysis 

The kinematic signals were digitally smoothed with a zero-lag low-pass Butterworth filter (6-Hz 

cutoff, fourth order). From the marker coordinates, the joint angles at the ankle, knee, and hip 

were calculated (Definition: Fig. 4-1c, stick diagram). The beginnings of step cycles were 

defined as the peak flexion timing of the hip joint angle. Of the recorded 30-step cycles, I used 

20 cycle data (EMG and kinematics signals) excluding the first and the last five cycles for 
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subsequent analysis. 

 

4. 2. 5. EMG processing 

The EMG data were demeaned, rectified, and smoothed with a zero-lag low-pass Butterworth 

filter (6-Hz cutoff, fourth order) to obtain the EMG envelopes (Walter et al., 2014). 

Subsequently, the processed EMG data were time-interpolated so that they had 200 points for 

each gait cycle. 

 
4. 2. 6. Extraction of motor modules from the EMG data 

Motor modules were extracted from the processed EMG data using the NMF methods used in 

Chapters 2 and 3 (Fig. 4-2a, see section 2.2.5. for details). In this study, Motor modules were 

extracted in each participant from an EMG dataset organized as a matrix with 14 muscles × 

4,000 variables (i.e., 20-step cycles × 200 time points). After the extraction of motor modules, I 

clustered the extracted motor modules using hierarchical clustering analysis to examine their 

types (Ward’s method, correlation distance) based on the muscle weightings. The clustering 

analysis was performed for all participants of all motor modules. The optimal cluster number 

was selected by the gap statistic (Tibshirani et al., 2001). 

 

4. 2. 7. Spatiotemporal activation patterns of MNs within the spinal cord generated 

by each motor module 

Based on the muscle activity generated from each module (i.e., the product of the muscle 

weightings and the corresponding temporal activation, Fig. 4-2b), spatiotemporal activation 

patterns of MNs were reconstructed from individual modules of all participants (Fig. 4-2c). The 

muscle activity generated from each module was mapped onto the estimated rostrocaudal 

location of the MN pools in the spinal cord from the L1 to S2 segments. I used Kendall’s 

myotomal charts (Table 4-1)(Kendall et al., 1993) to reconstruct MN activation patterns. The 
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details of the methods for MN activation estimation are descried in Chapter 3 (see section 3.2.5. 

for details).  

 

 

 

 

 

 

 

 

 

Figure 4-2. Procedures of the reconstruction of the spatio-temporal activation patterns of 

motoneurons (MNs) along the rostrocaudal axis of the lumbosacral enlargement for individual 

motor modules from the EMGs. (a) Motor modules were extracted using non-negative matrix 

factorization (NMF) from EMGs. (b) The output of each module is explained by the product of 

the muscle weighting component (bars: specifying activation level of each muscle) and the 

temporal pattern component (waveforms). The sum of outputs from the modules is 

approximately equivalent to that of the EMGs. (c) The MN activity in each segment (L2–S2, 

left vertical scale) generated from each module was reconstructed by mapping the output of 

each module based on Kendall’s myotomal charts (Table 1). 
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Table 4-1. Muscle innervation charts. Data are adopted from Kendal et al. (1993).  

 ILIO GM Gmed TFL SART AL RF VL BF ST MG SOL PL TA 

L1 x              

L2 X    X X X X       

L3 X    X X X X       

L4 x  X X  x X X  x   x X 

L5  X X X     x X   X X 

               

S1  X X X     X X X X X X 

S2  X       X X X X   

The innervation level is expressed as X (high) and x (low). X and x are weighted with kij = 1 

and kij = 0.5, respectively in equation (2). 

 

 

To evaluate the spatial characteristics of the MN activation patterns of each module, 

the peak activity segment height of the seven (from L1 to S2) lumbosacral segment was 

calculated in each module. In addition, to evaluate the temporal characteristics of the MN 

activation patterns of the module, peak timings of the temporal activations were analyzed by 

using circular statistics (Batschelet et al., 1981; Berens, 2009). Then, the means of the peak 

timing of temporal activations across participants are calculated in each module type. 

 

4. 2. 8. Effects of normalization methods 

Since the number of MNs among each spinal segment is different (Table 4-2) 

(Tomlinson and Irving, 1977), the spatiotemporal activation patterns of MNs were normalized 

to the number of MNs in few previous studies (Ivanenko et al., 2013; La Scaleia et al., 2014). 

This normalization probably affects comparisons of peak activity segment height among each 

module type. To assess the effects of normalization, the activity of each spinal segment was 
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normalized based on the estimated number of MNs in the respective segment, according to a 

previous study (Ivanenko et al., 2013). Namely, the activity of each spinal segment was 

multiplied by the number of MNs in the respective segment and divided by the maximum 

number of MNs across seven segments (i.e., 12,765 in L3). From the normalized MNs 

activation patterns, the peak activity segment height of the seven lumbosacral segments (from 

L1 to S2) was calculated for each module. 

 

Table 4-2. Mean number of motoneurons in each segment of the human spinal cord (13–40 
years, 12 cases) 
Segment height Motoneuron number 
L1 806 
L2 5146 
L3 12765 
L4 12069 
L5 12674 
S1 10372 
S2 4216 
Data are adopted from Tomolinson and Irving (1977) 
 

 

Since the activity of some muscles (e.g. triceps surae muscles) during air-stepping was 

lower than that during walking (Ivanenko et al., 2002; Gerasimenko et al., 2010), their relative 

activation differed from normal walking. Since the differences in the EMG amplitude affect 

module extraction by NMF, I assessed whether the results obtained in this study were just 

derived from the imbalance of EMG amplitude among muscles. Specifically, the EMG 

amplitude of each muscle was normalized to the maximum value for that muscle over the 

air-stepping task. Using the normalized EMGs, motor modules were extracted, and then MNs 

activation patterns were reconstructed using the same methods mentioned above. 

 

4. 2. 9. Statistics 

Differences in the peak activity segment height among each module type were compared using 
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a Kruskal-Wallis test (non-parametric one-way analysis of variance [ANOVA] test) with the 

Steel-Dwass post hoc test (nonparametric Tukey’s test). In addition, differences of peak 

activation timings (i.e., mean angles of circular observations) among module types were tested 

by the Watson-Williams test. The p-values were adjusted by Holm’s correction for multiple 

comparisons. Statistical significance was accepted at p < 0.05. 

 

4. 3. Results 

4. 3. 1. Kinematic data 

Figure 4-1b shows a typical example of kinematic pattern of the one-leg air stepping in a single 

participant. Figure 4-1c shows ensemble averages across participants of hip, knee, and ankle 

angles of the one-leg air-stepping. In the extension-flexion cycle, the average terminal extension 

timing (i.e., peak timing of the hip extension angle) was 52.6 ± 1.2%. The temporal 

characteristics of these joint movements were generally similar to those of walking (Winter et 

al., 1974; Murray et al., 1984; Kadaba et al., 1990). Nevertheless, there were some differences 

between air-stepping and walking as described below. In hip joint angle, the maximum flexion 

angle (83.3 ± 13.2°) was larger compared with that of walking (approximately 45°). The 

maximum flexion angle of the knee joint (115.4 ± 4.0°) was greater than that of walking 

(approximately 60°). Additionally, although a small knee flexion occurs after foot contact in 

level walking (corresponding to the early extension phase in air-stepping), it was absent during 

air-stepping. In ankle joint angle, the magnitude of the range of motion between air-stepping 

(36.3 ± 16.5°) and level walking (approximately 30°) was similar, while the central angle in 

air-stepping was shifted toward plantar flexion compared with that in level walking (39.2 ± 8.0° 

[planter flexion] in air-stepping, approximately 5° [planter flexion] in level walking). 

Additionally, the ankle was continuously dorsiflexing during the stance phase and rapidly 

plantarflexed at the transition timing from the stance to swing phase in level walking; 

continuous plantar flexion was observed during the extension phase in air-stepping. 
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4. 3. 2. Motor modules extracted from EMGs 

Figure 4-3 shows the EMG patterns generated during the one-leg air-stepping task. From the 

recorded EMGs (Fig. 4-3), 3.22 ± 0.83 (mean ± SD) motor modules were extracted from each 

participant. The extracted motor modules were grouped into four types by cluster analysis (Fig. 

4-4, upper and middle rows). Module A was activated at the early-mid flexion phase of hip joint 

angle and mainly recruited the ILIO. Module B was activated at the mid-late flexion phase and 

mainly recruited the RF, SART, and TA. Module C was activated at twice (i.e., at the early-mid 

extension and early-mid flexion phases) and mainly recruited the TFL. Module D was activated 

at the last flexion-initial extension phase and mainly recruited the ST, PL, and MG. 

 

 

 

 

Figure 4-3. Muscle activation patterns during step cycles. Ensemble averaged activity 

patterns across participants (black lines) and their standard deviations (SD, gray lines) are 

shown. 
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4. 3. 3. Spatio-temporal activation patterns of MNs generated from individual 

modules 

The spatio-temporal activation patterns of MNs were reconstructed from each motor module 

(Fig. 4-4, lower row). Based on visual inspection, each module activated the MN pools in 

specific segments at a specific timing point in the gait cycle. To quantify the differences in the 

activated segments, the peak activity segment heights of in the seven lumbosacral segments 

Figure 4-4. Muscle weightings, temporal activation patterns, and motoneuron (MN) 

activation patterns of extracted motor modules. Average muscle weightings across 

participants in each type of modules are shown. Each bar height represents the relative level 

of activation of each muscle within the muscle weighting components. Lines indicate the 

temporal pattern components of the modules. Average patterns across participants (thick 

lines) and their standard deviations (thin lines) are represented. Heat map indicates MN 

activity patterns generated by each module. The bars underneath denote the extension phase 

(black) and flexion phase (grey) of hip joint angle in a step cycle. 
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were calculated for each module (Fig. 4-5). Among the four module types, the segment heights 

of the CoA were high in the order of module A, B, C, and D (Kruskal–Wallis one-way 

ANOVA: p < 0.001; post hoc Steel–Dwass test: p < 0.05). Additionally, using the circular 

statistic, I quantified the differences in peak timings of the temporal activations among modules 

(Fig. 4-6). As module C had two activation peaks as shown in Fig. 4-4, we separately evaluated 

the first and second peaks as C1 and C2, respectively. The peak activation timings were 

different among the module types (p < 0.05), except for a pair between modules A and C2. Thus, 

the sequence of the motor modules during the one-leg air-stepping was in the following order: 

C1, D, C2+A, and B in the extension-flexion cycle. 

 

 

 

 

 

 

Figure 4-5. Group-averaged peak activity segment height of the MN activity in the seven 

(from L1 to S2) lumbosacral segments for each motor module. Error bars indicate the 

standard errors. 
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4. 3. 4. Effects of normalization methods 

Figure 4-7 shows the spatiotemporal MN activation patterns (Fig. 4-7a) and peak 

activity segment (Fig. 4-7b) for each module type after normalization to the MN number. 

Compared with the non-normalized data (Fig. 4-4), the MN activation patterns were moved 

toward the center of lumbosacral enlargement. The normalization especially affected to the 

modules representing MN activations at the end of the lumbosacral enlargement (i.e., module A 

and D). Although there was no significant difference in the peak activity segment between 

modules A and B, all the other comparisons showed significant differences (p < 0.05) (Fig. 

4-7b), which was the same as the non-normalized data (Fig. 4-5). 

 I extracted modules from amplitude normalized EMGs. As a result, 3.80 ± 0.75 

(mean ± SD) motor modules were extracted from each participant, and the modules were 

Figure 4-6. Motor module sequence in air stepping. Colored lines in the circular data indicate 

mean peak activation timings across participants. Translucent areas represent their standard 

errors.  
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grouped into four types by the cluster analysis, which was the same as in the non-normalized 

data. Figure 4-8 shows the muscle weightings, temporal activations, and MN activation patterns 

of the motor modules extracted from the amplitude normalized EMGs. Compared with 

non-normalized data (Fig. 4-4), the muscle weightings (upper row) of several muscles were 

highly weighted in modules A–C. The temporal patterns (middle row) represented quite similar 

patterns. Regarding the MN activation patterns of the modules (Fig. 4-8), the activated segments 

in module A shifted from L1 (non-normalized data, Fig. 4-4) to L2–L3 (normalized data, Fig. 

4-8). 

 

 

 

 

Figure 4-7. (a) MN activation patterns of motor modules normalized to MN numbers in each 

segment. The bars underneath denote the extension phase (black) and flexion phase (grey) of 

hip joint angle in a step cycle. (b) Group-averaged peak activity segment height of the 

normalized MN activation patterns. Error bars indicate the standard errors. 
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4. 4. Discussion 

In the current study, four different types (module A–D) of motor modules were extracted from 

muscle activity during air-stepping. Among the module types, the peak activity segment height 

in the lumbosacral enlargement was high in the order of module A > B > C > D. In addition, the 

activation sequence of motor modules during the one-leg air-stepping was in the following 

order: C1, D, C2+A, and B in the extension-flexion cycle. The order can be sorted as 

“C2+A-B-C1-D” in the flexion-extension cycle. The “A-B-C1-D” sequence corresponded to the 

Figure 4-8. Muscle weightings, temporal activation patterns, and MN activation patterns of 

the motor modules extracted from amplitude-normalized EMGs. Average muscle weightings 

across participants in each type of modules are shown. Each bar height represents the relative 

level of activation of each muscle within the muscle weighting components. Lines indicate 

the temporal pattern components of the modules. Average patterns across participants (thick 

lines) and their standard deviations (thin lines) are presented. Heat map indicates MN activity 

patterns generated by each module. The bars underneath denote the extension phase (black) 

and flexion phase (grey) of hip joint angle in a step cycle. 
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order of the activated segment heights, i.e., “A > B > C > D”. Comparing the activation 

sequence with the topography of the motor modules in the spinal cord suggests the existence of 

a rostrocaudally traveling wave of activation in human locomotor spinal circuits. 

 

4. 4. 1. Comparisons of bipedal walking and airstepping 

Based on the myotomal charts (Kendall et al., 1993), a previous study (Ivanenko et al., 2006) 

examined the activation of lumbosacral MNs from EMGs during walking in humans. Although 

Ivanenko et al. (2006) observed rostrocaudal wave-like activation, the activation was shifted 

rostrally toward the upper lumbar segments around the time of the foot contact timing. 

Consequently, the MN activations showed rostrocaudal movements with two cycles in a gait 

cycle. The motor module mainly activated the knee extensor muscles and was considered to be 

related to the loading response at foot contact.  

Therefore, the present study aimed to examine the activation of the lumbosacral spinal 

cord in a stepping movement, without foot-contact interactions, using an air-stepping task 

(Ivanenko et al., 2002; Ivanenko et al., 2007). From the muscle activity during air-stepping, four 

types of motor modules were extracted (Fig. 4-4). As expected, the motor module for the 

loading response at foot contact (corresponding to the initial extension phase) was not extracted. 

The four extracted motor modules in the present study were similar to those extracted in 

previous studies examining motor modules during human locomotion (Cappellini et al., 2006; 

Neptune et al., 2009; Chvatal and Ting 2012; Yokoyama et al., 2016).  

Module A activated at the time of early-mid flexion phase of the hip joint, and it mainly 

recruited the ILIO (Fig. 4-4). This module acts to accelerate the leg forward in the early swing 

(Neptune et al. 2009) and showed the highest amplitude activation among the four module types 

during air-stepping (Fig. 4-4). This characteristic is not seen in walking and would be caused by 

the greater hip flexion during air-stepping as mentioned in the Results. Module B activated at 

the time of mid-late flexion phase, and mainly recruited the RF, SART, and TA. This module 
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was related to toe clearance and leg acceleration in the mid-late swing phase (Neptune et al., 

2009). Module C activated at twice (i.e., during the early-mid extension and early-mid flexion 

phases), and mainly recruited the TFL. During walking, this module activated during walking at 

one peak timing, i.e., at the early stance (corresponding to early-mid extension), to stabilize the 

pelvis (Yokoyama et al., 2016). The TFL, major muscle of the module C, was almost inactive at 

the swing phase of normal walking (Cappellini et al., 2006). However, it would act at the initial 

swing for additional pelvic stability and supplementary thigh acceleration under a large hip 

flexion angle during the air-stepping as demonstrated in up-ramp and up-stair walking 

(Gottschall et al., 2012). Module D activated at the last extension-initial flexion phase of hip 

joint angle, and it mainly recruited the ST, PL, and MG. During walking, this module play a 

role in plantar flexion/body support and propulsion at late stance (Chvatal and Ting, 2012).  

 

4. 4. 2.Topography and temporal sequences of MN activations in air-stepping 

The difference of the peak activity segment among the modules A > B > C > D (Fig. 4-5) 

corresponded with the with specificity of encoding locations of motor modules in the spinal 

cord of frogs (Saltiel et al., 2015) and mice (Caggiano et al., 2016). Regarding the temporal 

sequence of modules, “C2+A-B-C1-D” (Fig. 4-6), although the peak timings of A, B, C1, and D 

were consistent with those observed in level walking (Cappellini et al., 2006; Neptune et al., 

2009; Chvatal and Ting 2012), C2 is not seen in level walking. If evaluating only the module 

activations related to level walking (i.e., A, B, C1, D), the order of the activated segment height, 

“A > B > C > D”, and the activation sequence, “A-B-C1-D”, indicate that motor modules were 

sequentially activated from the anatomically upper module to the lower module. The locomotor 

CPG is considered to consist of temporal structures and pattern formation networks, and the 

motor modules may underlie the pattern formation networks (McCrea and Rybak, 2008). 

Therefore, the sequential rostrocaudal activation of the motor modules suggests the possibility 

that rostrocaudally traveling waves of activation exist in human locomotor spinal circuits as a 
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temporal structure to activate motor modules in proper sequences. 

Although the topography and temporal order was corresponded in flection-extension 

cycle, the temporal order depended on the onset of the gait cycle. Regarding onset of gait cycle, 

it has been well known that swing onset is regulated by two types of sensory information force 

afferents of the ankle extensor muscles (Duysens and Pearson, 1980; Whelan et al., 1995) and 

position afferents from the hip flexor muscles (Grillner and Rossignol, 1978; Kriellaars et al., 

1994; Hiebert et al., 1996). Therefore, I consider that the gait cycle is initiated from onset of hip 

flexion from the viewpoint of neural control. Additionally, my results are consistent with the 

traveling wave of activations that occurred during the swing-stance cycle in flogs (Saltiel et al., 

2015). 

 

4. 4. 3. Traveling wave of activations in the spinal cord in nonhuman vertebrates 

The rostrocaudal distribution organization of CPG is supported by theoretical studies (Kaske et 

al., 2003; Ijspeert et al., 2007) and experimental studies on EMG activity, spinal MNs, and 

interneurons among many vertebrates including Lamprey (Wallén and Williams, 1984), fish 

(Grillner, 1974), tadpoles (Roberts et al., 1998), frogs (Saltiel et al., 2015), rodents (Cazalets, 

2005), and cats (Cuellar et al., 2009; Pérez et al., 2009). For example, Cuellar et al. (2009) 

demonstrated a traveling wave of cord dorsum potentials by interneuronal recordings during the 

fictive cat scratch, indicating the rostrocaudal interneuronal activation in the mammalian spinal 

locomotor circuits. In rodents, rostrocaudal propagation of MN activation was optically imaged 

(Bonnot et al., 2002; O'donovan et al., 2008), and the traveling waves were also 

electrophysiologically recorded from the ventral roots (Cazalets, 2005). In addition, a study by 

Saltiel et al. (2015) demonstrated a traveling wave in the spinal cord in frog locomotion based 

on motor module temporal sequences and topography in the spinal cord, which is similar to my 

results. 

Regarding the neural origin of the traveling wave of activation in the spinal cord, 
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rostrocaudal propagation of spontaneous electrical activity of dorsal horn neurons in the layers 

III–VI (i.e., cord dorsum potentials) is considered as a temporal structure of CPG networks 

(Cuellar et al., 2009; Pérez et al., 2009; Kato et al., 2013). Namely, the MN clusters 

corresponding to each motor modules are probably sequentially recruited from rostral regions to 

caudal regions by the rostrocaudal propagation of the cord dorsum potentials. In rodents, 

neurons in the layer III–V have interesting anatomical features that may play a role in 

propagating the traveling wave (Schneider, 1992). The neurons have an axon running in the 

rostrocaudal direction, with perpendicular collateral branches that are intermittently spaced 

apart. If this type of neurons is also present in humans, then it is possible that cord dorsum 

potentials of the neurons are an underlying mechanism of the traveling wave of activations in 

the spinal cord, which control locomotion. 

 

4. 4. 4. Possibility of traveling waves in human locomotor circuits 

To date, the traveling wave of activation has not been confirmed in human locomotion. 

Nevertheless, it has been suggested that CPGs in legged vertebrates have evolved from common 

ancestral circuit for undulatory locomotor behaviors, such as fish and lamprey (Grillner and 

Jessell, 2009). In addition, EMG-based studies strongly suggested that the motor modules of 

humans and those of other legged vertebrates share similar circuitries (Dominici et al., 2011). 

Based on the commonality of spinal locomotor circuits, it is conceivable that traveling waves 

are the neural mechanisms underlying the motor module sequence and the topography of the 

motor modules presented in the current study. 

In human walking, in addition to the MN activations, which are thought to be related to 

the traveling wave, MNs in the rostral lumbosacral enlargement are activated around foot 

contact (Ivanenko et al., 2004). The additional MN activation mainly recruits two modules 

(Ivanenko et al. 2004), which have essential biomechanical functions to support and decelerate 

the body during the loading response (Ivanenko et al., 2004; Neptune et al., 2009; Chvatal and 
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Ting, 2012). One of the modules, which mainly recruits the quadriceps, may be recruited by 

loading afferent inputs, because the activation of the quadriceps decrease depending on the 

amount of relief under body-weight supported walking (Ivanenko et al., 2002; Klarner et al., 

2010). Another module, which mainly recruits the TA, may be mainly recruited by cortical 

commands, because the TA has significant connectivity with motor cortex prior to foot contact 

(Petersen et al., 2012) and the amplitude is not correlated with the amount of body weight relief 

(Ivanenko et al., 2002; Klarner et al., 2010). Thus, combined motor module activations derived 

from rostrocaudally traveling waves, sensory inputs and cortical commands may contribute to 

the generation of coordinated muscle activity during walking.  

 

4. 4. 5. Effect of different normalization methods 

Some previous studies normalized the spatiotemporal activation patterns of MNs based on the 

number of MNs in each segment (Ivanenko et al., 2013; La Scaleia et al., 2014). I examined the 

effects of this normalization to the peak activity segment (Fig. 4-7). The peak activity segment 

was significantly different among motor module types in non-normalized data (Fig. 4-4), while 

the significant difference between module A and B was lost after the normalization (Fig. 4-7). 

This could be attributed to the fact that this normalization mainly affected on the end segments 

of the lumbosacral enlargement (L1, L2 and S2), which contained considerably lower numbers 

of MNs than other segments (Table 4-2). Although there was no significant difference of the 

peak activity segment between module A and B, the fact remains that activation locations of 

both modules were upper lumber regions at initial flexion phase. Thus, since MNs activated 

from rostral region to caudal region during the activation sequence, “A-B-C1-D”, the 

normalized results still do not refute the existence of a traveling wave of activation in human 

spinal circuits. 

I also examined the effects of EMG amplitude normalization on the motor module 

extraction and MN activity reconstruction (Fig. 4-8). Compared to the non-normalized data (Fig. 
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4-4), although the temporal patterns were similar, the muscle weightings were different in 

modules A–C. Although there was a slight shift in the activated segments in module A, from L1 

(non-normalized data) to L2-L3 (normalized data), overall, the MN activation patterns of the 

other modules (Fig. 4-8) were qualitatively similar to that of the non-normalized data (Fig. 4-4). 

Even after the normalization, the activation location of module A was the upper lumbar region, 

indicating that the MNs were activated from rostral region to caudal region during the module 

sequence. Therefore, the normalized results also do not refute the hypothesis that traveling 

waves of activation exist in human spinal circuits. 

 

4. 4. 6. Methodological considerations 

There are several limitations in this study, which must be noted. I demonstrated the possible 

existence of the traveling wave in human spinal circuits, using voluntary leg movement. Human 

locomotor muscle activity is suggested to be generated by the spinal CPGs (Duysens and Van 

de Crommert, 1998). However, because the cortex controls walking, the possibility that the 

sequential activation of motor modules in the rostrocaudal direction are independently activated 

by each corresponding voluntary descending drive cannot be ruled out in humans (Artoni et al. 

2017; Petersen et al. 2012). To examine the neural origin of traveling wave, studies on 

individuals with SCI would provide more direct evidence with eliminating the effects of 

descending drives. A recent study on SCI showed that the epidural electrical stimulation to the 

lumbar spinal cord could elicit coordinated rhythmic activities of multiple lower leg muscles 

innervated from a wide range of lumbosacral segments (Danner et al., 2015). Consistent with 

my results, this study also showed that four motor modules acting at different peak timings were 

extracted from the coordinated muscle activities generated by spinal circuits (Danner et al., 

2015). Thus, the examination of the topography of the motor modules extracted from patients  

with SCI would provide more direct evidence of the traveling wave in the human spinal cord.  

Another limitation of my study is that I examined locomotor networks using unilateral 
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leg movements. Although locomotor CPGs have bilateral couplings for left-right coordination 

(Butt and Kiehn, 2003; Maclellan et al., 2014), unilateral coupling for controlling unilateral leg 

has been also shown in electrophysiological (Hägglund et al., 2013) and behavioral (Yang et al., 

2004; Choi and Bastian, 2007) studies. Therefore, the spinal locomotor CPGs consist of 

bilateral and unilateral components (Kiehn, 2016). The traveling wave of activation in the spinal 

cord has been shown as a mechanism for the temporal regulation in the unilateral component of 

the CPGs (Cuellar et al., 2009; Saltiel et al., 2015). Thus, the results in the present study would 

reflect the characteristics of the unilateral component of the locomotor circuits in the human 

spinal cord. 

Another important methodological concern is the potential issue of EMG cross-talk. 

The issue of cross-talk is particularly applicable to the EMG signal of the ILIO muscle in the 

current study. Although the ILIO is one of the deep muscles, a recent MRI study demonstrated 

that the superficial region of this muscle in the femoral triangle immediately under the inguinal 

region is adequately large for surface EMG recordings (Jiroumaru et al., 2014). In the present 

study, to adequately attach the electrodes on the superficial region, we carefully checked the 

location by manual palpation (Muscolino, 2008) and cross talk tests (Criswell and Cram 2011). 

Nevertheless, I cannot completely rule out the possibility that the EMG signal of the ILIO was 

still contaminated by cross-talk from adjacent muscles, such as the sartorius muscle (SA) and 

the internal oblique muscle (IO). In this study, as the ILIO was mainly recruited by module A, 

which was activated from upper lumber segments (Fig. 4-4). Since the SA and the IO are 

innervated from upper lumber segments and thoracic segments (SA: L2–L3, IO: T7-L1) 

(Kendall 1993), the module A would be activated from more upper region if the EMG signal of 

the ILIO was contaminated by the SA and the IO activity. Thus, we believe that the cross-talk in 

the EMG signal of the ILIO had little effect on the rostrocaudally traveling waves of activation 

in this study.  
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4. 4. 7. Conclusions 

	
 	
 	
 In summary, I examined whether the traveling wave of activation existed in the human 

spinal circuits by extracting motor modules and reconstructing the MNs activity of the modules 

during air-stepping. The present results suggest the possibility that neural mechanisms of 

rostrocaudally traveling waves of activation are conserved in human spinal locomotor circuits. 

This neural mechanism would take advantage of activating motor modules in proper sequences 

to generate locomotor muscle activity in humans. The results would also provide novel 

information on the spatial arrangement of MNs for movement control, which has been studied 

over many years (Romanes, 1964; Jessell et al., 2011). In addition, the commonality about the 

traveling waves of activation between humans and other vertebrates supports the hypothesis that 

fundamental locomotor networks are conserved across phylogenetic and morphological 

differences in vertebrates (Grillner and Jessell, 2009; Dominici et al., 2011). Therefore, I 

believe that the results of the present study advance our understanding of human locomotor 

control mechanisms, and provide important insights into the evolution of locomotor networks in 

vertebrates. 
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5. 1. Introduction 

 Locomotion behavior is achieved by complex activations of multiple muscles. In 

quadruped animals, the locomotor muscle activity is mainly generated by subcortical regions 

and spinal neural networks, while the cortex is considered to have little involvement in the 

muscle control during steady state walking (Armstrong, 1988). Several studies demonstrated 

significant involvement of the cortex in locomotor control during visually-guided locomotion 

and stepping for obstacles avoidance (Armstrong, 1988; Armstrong and Marple-Horvat, 1996; 

Drew et al., 2004; Drew et al., 2008). Therefore, the motor cortex in quadruped vertebrates has 

been considered to play a role for only volitional modification during walking when adjusting 

the stepping movement (Armstrong, 1988). 

 On the other hand, in humans, neuroimaging studies using functional NIRS and PET 

indicated that the cortical regions related to motor control have greater activation even during 

stereotyped walking. The functional NIRS studies demonstrated that oxygenated hemoglobin 

level is increased in the frontal, premotor, and supplementary motor regions of the cortex during 

walking (Miyai et al., 2001; Suzuki et al., 2004; Suzuki et al., 2008; Harada et al., 2009). A PET 

study, which compared imagination and execution of walking, demonstrated that the primary 

motor and somatosensory cortex were activated during the execution, while the supplementary 

motor cortex and basal ganglia were activated during the imagination (La Fougere et al., 2010). 

The task specific differences in brain activity suggested that the direct corticospinal pathway has 

a role for execution of steady state walking, while indirect motor pathway via a supplementary 

motor cortex and basal ganglia is involved in planning and modulation of walking (la Fougere 

et al., 2010). Nevertheless, although these neuroimaging methods revealed large activation of 

the cortex during walking in humans, they were not able to examine the relationships between 

the detected locomotor related cortical activity and locomotor muscle activity, which 

dynamically changes in a stride, because of their limited time resolution. 

EEG is a non-invasive brain imaging method which has high temporal resolution 
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enough to examine the corticomuscular relationship. So far, EEG measurement during dynamic 

movements has been considered to be difficult, because the EEG signals are easily 

contaminated by artifacts caused by participant movements. Nevertheless, recently developed 

artifact removal methods based on ICA (Gwin et al., 2010) and PCA (Mullen et al., 2013) allow 

EEG measurement during walking. An EEG study on human walking demonstrated significant 

EEG-EMG coherence between leg sensorimotor area and TA muscle before heel-contact during 

steady speed walking (Pertersen et al., 2012). In addition, most recent study indicated that 

causal connectivity from motor cortex to leg muscles during steady state walking (Artoni et al., 

2017). These two studies strongly suggested cortical involvement in locomotor muscle control. 

Regarding control of locomotor muscle activity, experimental studies using 

decomposition techniques suggested that the complex locomotor muscle activity is generated 

from a small set of locomotor modules, which generate basic synergistic activity in multiple 

muscles (Ivanenko et al., 2004; Dominici et al., 2011). The locomotor modules are considered 

to be encoded in spinal locomtor networks (McCrea and Rybak, 2008; Danner et al., 2015). 

Cortical involvement in control of the locomotor modules has been suggested based on 

discrepancy of the module activations in healthy adults from those in complete patients SCI 

(Danner et al., 2015) and toddlers (Dominici et al., 2011), who have injured and immature 

corticospinal system, respectively. However, there is no study showing evidences of the 

cortico-locomotor module relationships, which is observed from simultaneously recorded 

cortical activity and locomotor module activity. Moreover, if the cortex is involved in control of 

locomotor modules, it should be clarified which cortical information is involved in the module 

control for better understanding of the human locomotor system. 

 Recently, advances of brain decoding technic, which predict the mental or motor 

state of a human based on the recorded brain signals, have accelerated for development of 

brain–machine interfaces (BMIs), particularly as a means for repairing or assisting deficits in 

cognitive or sensory-motor functions (Patil and Turner, 2008; Lebedev and Nicolelis, 2017). 
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Regarding locomotor control, previous studies on humans performed decoding of the walking 

kinematics from the EEG signals (Presacco et al., 2010; 2011). Cortical processing for decoded 

behavior can be estimated based on contribution of cortical information to the decoding 

(Nicolelis, 2003). Therefore in this study, applying a brain decoding method, I examined the 

relationships between the cortical activity and the locomotor module activity. Assuming that the 

cortex controls multiple muscle activities through a few locomotor modules based on above 

mentioned indirect evidences (Clark et al., 2010; Dominici et al., 2011), I hypothesized the 

following working hypotheses: 1) activations of locomotor modules can be decoded from EEG 

signals, and 2) the decoding accuracy for locomotor modules is greater than that for locomotor 

muscle activity. The acceptance of the working hypotheses provides indirect evidences for the 

cortical involvement in control of locomotor modules. Additionally, I examined which cortical 

information is involved in control of locomotor modules based on the decoding model 

parameters. 

 

5. 2. Methods 

5. 2. 1. Participants 

Thirteen healthy male volunteers (age, 22−31 years) participated in this study. Each participant 

gave written informed consent for his participation in the study. The experiments were 

performed in accordance with the Declaration of Helsinki and with the approval of the ethics 

committee of the National Rehabilitation Center for Persons with Disabilities (Tokorozawa, 

Japan). 

 

5. 2. 2. Experimental setup and design 

Participants walked on a treadmill (Bertec, USA) at 0.6 m/s in 7.5 minutes. The slow walking 

speed was chosen based on two previous studies examining effects of walking speed on 

movement artifacts of EEGs (Kline et al., 2015; Nathan and Contreras-Vidal, 2016). A study by 
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Kline et al. (2015), which used an experimental method to isolate and record independently 

movement artifact with silicone swim cap (nonconductive material), showed large movement 

artifact in walking speed faster than 0.8 m/s. Another study, which analyzed relationships 

between head acceleration and motion artifact of EEGs, indicated EEG recording is robust at 

gait speeds no faster than 3.0 km/h (0.83 m/s) (Nathan and Contreras-Vidal, 2016).  

In addition to the walking task, as a static baseline condition, participants sit on a 

chair in 2 minutes. 

 

5. 2. 3. Data collection 

Three-dimensional GRF was recorded from force plates under the right and left belts of the 

treadmill (1000 Hz). GRF data was smoothed by a low-pass filter (a zero-lag Butterworth filter, 

5-Hz cutoff). The timings of heel-contact (HC) and toe-off (TO) were determined based on the 

vertical component of GRF. 

Surface EMGs were recorded from the following 15 leg and trunk muscles on the 

right side using a wireless EMG system (Trigno Wireless System, DelSys Inc., USA): TA, MG, 

SOL, PL, VL, VM, RF, BF, ST, AM, TFL, GM, Gmed, RA, ES. The EMGs were amplified 

(with 300 gain preamplifier), band-pass filtered (20–450 Hz) and sampled at 1000 Hz. 

EEGs were recorded at sampling frequency of 1000 Hz and high pass filtered at 0.1 

Hz using 31ch spike-shaped active dry electrodes (g.SAHARA, g.tec medical engineering 

GmbH, Austria) and a wireless EEG amplifier (Livo, Toyota Technical Development 

Corporation, Japan). The 31ch EEG electrodes were fixed to an EEG electrode cap 

(g.GAMMAcap, g.tec medical engineering GmbH, Austria) and gathered around the sensory 

motor area based on the international 10/5 System (Fig. 5-1, the montage) (Oostenveld and 

Praamstra, 2001), because cortical activity has been identified mainly in sensorimotor area 

during walking (Wagner et al., 2012; Bulea et al., 2015; Bradford et al., 2016) and 

cortico-muscular connectivity has been observed between the sensorimotor area and lower leg 
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muscles (Petersen et al., 2012; Artoni et al., 2017). The EEGs were referenced to the right 

mastoid, and the ground was placed on the left mastoid. 

 

 

 

5. 2. 4. EMG processing and Extraction of Locomotor modules 

Figure 5-2 shows an overview of my decoding methodology. From the recorded EMG signals, 

EMG envelopes and locomotor modules were used for the neural decoding analysis.  

 Firstly the recoded EMG data were high-pass filtered (zero-lag fourth-order 

Butterworth at 30 Hz), demeaned, full-wave rectified, and smoothed with a low-pass (zero-lag 

fourth-order Butterworth at 6-Hz cutoff) to obtain EMG envelopes (Walter et al., 2014). Then, 

the EMG envelopes were resampled at 200 Hz. The amplitude of EMG envelopes for each 

muscle was normalized to the maximum value for that muscle during the walking task. Then, 

locomotor modules were extracted from the processed EMG envelopes using the NMF as in 

Chapter 2 (see section 2.2.5. for details). In this study, locomotor modules were extracted from 

an EMG dataset organized as a matrix with 15 muscles × 90000 variables (i.e., 200 Hz × [7.5 

Figure 5-1. EEG electrode montage corresponding to the international 10/5 system 

(Oostenveld & Praamstra, 2001). 
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min]) in each participant.  

Then, I clustered the extracted locomotor modules using hierarchical clustering 

analysis (Ward’s method) to examine types of extracted locomotor modules based on the 

muscle weightings, as in Chapter 2 (see section 2.2.5. for details). The time series activation of 

each EMG envelope and each locomotor module was then normalized, to produce a standard 

z-score by subtracting its average value and then dividing by its standard deviation. 

 

 

 

Figure 5-2.  Schematic diagram depicting the neural decoding of EMG envelopes and 

locomotor module activations from simultaneously recorded EEG signals. Examples of 

simultaneous 8 seconds of raw EMG signals, EMG envelopes, locomotor modules, pre- and 

post-artifact removal EEG signal from an electrode, and spectral power of the electrode at 

three frequency bands (α, β and γ) are shown. 
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5. 2. 5. EEG pre-processing 

In this study, from the recorded EEG signals, spectral powers in 3 different frequency bands (α: 

8–13 Hz, β: 15–25 Hz, and γ: 30–40 Hz) were used for the neural decoding analysis (Fig. 5-2) 

as in the previous study by Chao et al. (2010). EEG data analysis was performed using 

custom-written programs in MATLAB 2016b (The MathWorks, Natick MA) incorporating 

functions of EEGLAB 14.1b (Delorme and Makeig, 2004). The EEG signals were high-pass 

filtered at 1 Hz by zero-phase FIR filter (order 7500), and low pass filtered at 200 Hz by 

zero-phase FIR filter (order 36) (Wagner et al., 2016). Power line noise (50 and 100Hz) was 

removed using the “cleanline” function in EEGLAB. The EEG data was resampled to 200Hz. 

Then, I checked noisy EEG channels based on following two criteria adopted from a previous 

study (Gwin et al., 2011) :1) standard deviation greater than 1000µV, and 2) kurtosis of more 

than 5 standard deviations from the mean. In this study, no EEG electrode satisfied the criteria 

in all participants. Then, the EEGs were re-referenced to a common average reference. Then, to 

remove artifact derived from walking movement, eye blinks, muscle and heart activity, I used 

an artifact rejection method named Artifact Subspace Reconstruction (ASR) (Mullen et al., 

2013) in EEGLAB. Briefly, using a sliding window method, the ASR decomposes EEG data in 

each window by principal component analysis (PCA). Then, each decomposed components are 

compared statistically with data from a baseline data which have nominal-variance principal 

components (in this study, EEG data during sitting). In each sliding window, the principal 

components, which show significant higher variance, compared to the calibration data are 

identified as artifact components. The identified artifact components are removed and 

reconstructed based on the nominal-variance components. 

 

5. 2. 6. EEG scalogram 

Spectral power in 3−50 Hz (every 1 Hz) of EEG signals was estimated with Morlet wavelet 

(“newtimef” function in EEGLAB) at every time points (window size: 149 data points [745 
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ms]). The wavelet contained 2 cycles at the lowest frequency (3 Hz) and the number of cycles 

was increasing up to 16.7 cycles at highest frequency (50 Hz). To adjust the data length between 

the scalogram and the data to be decoded (EMG envelope and locomotor module data), 74 data 

points (370 ms) at both ends of the EMG envelope and locomotor module data were trimmed. 

The power of the scalogram was normalized by calculating the standard z-score at each 

frequency bin. Scalograms were then averaged in three frequency bands: α (8–13 Hz), β (15–25 

Hz), and γ (30–40 Hz). That is, a scalogram consisted of 3 frequency bands × time points was 

calculated for each channel for each participant. Finally, the power of the scalogram were 

normalized by calculating the standard z-score at each frequency band. Namely the same scale 

was shared among different frequency band. 

 

5. 2. 7. EEG Decoding of locomotor module and muscle activity 

To continuously decode activations of EMG envelopes and muscle synergies from the 

scalogram, I designed a time-embedded (10 lags, corresponding to from -10 ms to -100 msec) 

linear decoding model for each EMG and locomotor module data (Carmena et al., 2003; 

Bradberry et al., 2010; Presacco et al., 2011). The linear model was given by: 

𝑦(𝑡)   =   𝑏   +    𝑎!!,!"#$,!"#  
!"#!"#$!!

∙   𝑆𝑐𝑎𝑙𝑜𝑔𝑟𝑎𝑚!!,!"#$,!"#  (!)  !  !(!), (5-1) 

where y(t) is predicted time series activations of each EMG envelope or locomotor module, b is 

the intercept, Scalogramch,freq,lag(t) is the normalized spectral power at electrode ch, frequency 

band freq, and time lag lag. ach,freq,lag is the weight for the scalogram component at electrode ch, 

frequency freq, and time lag lag, and e(t) is the residual error. The parameters of the model were 

calculated by generalized linear regression using “glm” function in MATLAB (Gaussian 

distribution condition). Neural decoders were designed separately for each participant and each 

decoded parameter (i.e., each muscle and locomotor module). 
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To assess the predictive accuracy of each decoder, a seven-fold cross-validation 

procedure was performed. That is, the data recorded during the 7 min of the walking task were 

divided into 7 segments (1 min each). Six segments were used for training data, while the 

remaining 1 segment was used for testing the decoding model. This procedure was repeated for 

all the possible combinations (i.e., 7 times). I calculated correlation coefficient (r) between the 

real activation and the decoded activation at each decoder in each procedure. In addition, to 

compare overall decoding accuracy between two types of decoders (EMG envelope decoders 

and locomotor module decoders), overall correlation values in each decoder type were 

calculated as averaged correlation values across all decoders in each type of decoder separately 

par participants. To prevent the effect of skewness of sampling distributions in correlation 

coefficients, each individual correlation coefficient value was averaged after Fisher’s 

Z-transformation (Corey et al., 1998). Then back-transformed to the scale of Pearson’s r value. 

 

5. 2. 8. Spatio-spectro-temporal contributions of cortical activity to the decoding 

To assess the spatio-spectro-temporal contributions of cortical activity to predict muscle activity 

parameters, I calculated the following three different quantities from the weights of each 

decoding model (ach,freq,lag) according to a previous study (Chao et al., 2010): 

𝑊!(𝑐ℎ)   =   
𝑎!!,!"#$,!"#!"#!"#$

𝑎!!,!"#$,!"#!"#!"#$!!
; (5-2) 

𝑊!(𝑓𝑟𝑒𝑞)   =   
𝑎!!,!"#$,!"#!"#!!

𝑎!!,!"#$,!"#!"#!"#$!!
; (5-3) 

𝑊!(𝑙𝑎𝑔)   =   
𝑎!!,!"#$,!"#!"#$!!

𝑎!!,!"#$,!"#!"#!"#$!!
, (5-4) 

where Ws(ch) is the percentage spatial contribution of each EEG electrode (ch) across all 

frequency bins and time lags, Wf(freq) is the percentage spectral contribution of each frequency 

band (freq) across all EEG electrodes and time lags, and Wt(lag) is the percentage temporal 
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contribution of each time lag (lag) across all EEG electrodes and frequency bands.  

 

5. 2. 9. Statistics 

The difference between overall correlation value (i.e., decoding accuracy) between two types of 

decoders (locomotor module decoder and EMG envelope decoder) was tested by a two-tailed 

paired t-test. For this significance testing, the correlation values were transformed into Z-values 

using Fisher’s Z-transformation and t-test was conducted on the Fisher’s Z-values.  

Differences in contributions to the decoding among three frequency bands (α, β, and 

γ) were compared by one-way analysis of variance (ANOVA) test with Tukey’s post hoc test 

separately in each decoder type. Contributions to the decoding in electrodes and time lags were 

compared to their median values with ANOVA followed by Dunnett's test separately in each 

decoder type. Statistical significance was accepted at p < 0.05. 

 

5. 3. Results 

5. 3. 1. Extracted locomtor modules  

From the measured EMGs, 3.78 ± 0.60 (mean ± SD) locomotor modules were extracted from 

each participant. The extracted locomotor modules were grouped into five types by cluster 

analysis (module A−E, Fig. 5-3). Module A was activated at initial stance phase and throughout 

swing phase and mainly recruited the TA. Module B was activated at the last swing to early 

stance phase and mainly recruited the ST, and BF. Module C was activated at the transition 

timing from stance to swing and mainly recruited the ES and RA. Module D was activated at 

latter half of the stance phase and mainly recruited the MG, SOL, and PL. Module E was 

activated at mid stance phase and mainly recruited the TFL, Gmed, and GM. 
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Figure 5-3. Extracted 5 types of locomotor modules. Average muscle weightings (bars) and 

correspoonding temporal activation patterns (waveforms) across participants in each type of 

locomotor module are shown. Each bar height represents the relative level of activation of 

each muscle within a muscle weighting component. An enlarged view of the x-axes is shown 

in the bottom. Lines indicate temporal activation patters of the locomotor modules. Thick 

lines indicate average temporal activation patterns, and thin lines indicate their standard 

deviations (SD). 
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5. 3. 2. Neural decoding of locomotor module activations and EMG envelopes from 

EEG signals 

Figure 5-4 shows examples of the real and reconstructed locomotor module activations (Fig. 

5-4a) and EMG envelopes (Fig. 5-4b), respectively, from a participant. In this participant, all 

locomotor module activations were well reconstructed (Fig. 5-4a). On the other hand, in each 

muscle activity level, amplitude modulation was not sufficiently reconstructed in some muscles, 

such as MG, BF and RA (Fig. 5-4b). 

To quantify the decoding accuracy, I computed the Pearson’s correlation coefficients 

(r) between the real and reconstructed activations. Figure 5-5 shows the decoding accuracy 

(correlation coefficients) for each locomotor module type and each muscle. The mean values 

across participants were ranged from 0.36 to 0.51 in locomotor module decoders and from 0.21 

to 0.47 in EMG envelope decoders. The overall accuracy of the locomotor module decoder was 

higher than that of the EMG envelop decoder (p = 0.001, paired t-test, Fig. 5-6). 
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Figure 5-4. Examples of simultaneous 8 seconds of decoded and actual locomotor module 

activations (a), and EMG envelopes (b) from a participant. Red and blue waveforms indicate 

decoded and actual activation patterns, respectively. Bars represent the muscle weighting 

components. 

Figure 5-5. Decoding accuracy (correlation coefficient) for each of locomotor module type 

(left) and EMG envelope of individual muscle (right). The mean and standard error (SE) 

across participants are shown. 
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5. 3. 3. Spatio-spectro-temporal Contributions of cortical activity to the decoding 

Figure 5-7 indicates spatio-spectro-temporal contributions of the EEG signals to the decoding. 

Spatial contributions, Ws(ch), were significantly greater at Cz and CCP1h (i.e., sensorimotor 

regions for right leg) than their median in both decoder types (ANOVA: F31,384 = 2.73, p < 

0.001 in locomotor module decoder, F31,384 = 2.83, p < 0.001 in EMG envelop decoder; post 

hoc Dunnett’s test: p < 0.05; Fig. 5-7a). Regarding spectral contributions, Wf(freq), that in α 

and β bands were significantly greater than that in	
 γ  band in both decoder types. (ANOVA: 

F2,36 = 14.1, p < 0.001 in locomotor module decoder, F2,36 = 12.0, p < 0.001 in EMG envelop 

decoder;  post hoc Tukey’s test: p < 0.05; Fig. 5-7b). As for temporal contributions, Wt(lag), 

time lags from -40 to -70 ms from decoded activity (EMG envelope or locmotor module 

activity) were significantly greater than their median (ANOVA: F10,132 = 143.2, p < 0.001 in 

Figure 5-6. Overall decoding accuracy (correlation coefficients) for locomotor module 

decoders and EMG envelope decoders. The mean and SE across participants are shown. 

Asterisk indicate significant difference (p < 0.05) 
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locomotor module decoder, F10,132 = 263.8, p < 0.001 in EMG envelop decoder; post hoc 

Dunnett’s test: p < 0.05; Fig. 5-7c) 

 

 

 

5. 4. Discussion 

In this study, assuming that the cortex controls locomotor muscle activity through locomotor 

modules, I tested the following hypotheses using a neural decoding method: 1) activations of 

Figure 5-7. Characteristics of the decoding models for locomotor modules and EMG 

envelopes. (a) Contribution of each electrode. The electrodes with contributions significantly 

greater than their median (p < 0.05) are surrounded by lines. (b) Contributions of each 

frequency band. Asterisks indicate significant differences (p < 0.05). (c) Contribution of each 

time lag. The time lags with contributions significantly greater than their median (p < 0.05) 

are indicated by asterisks, while those significantly less than their median are indicated by 

daggers. 
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locomotor modules can be decoded from EEG signals, and 2) its decoding accuracy is greater 

than that for locomotor muscle activity. As a result, locomotor module activations were decoded 

reasonably well from EEG signals (Fig. 5-5), and the accuracy of the synergy decoder was 

higher than that of the EMG decoder (Fig. 5-6). In addition, the decoding was mainly 

contributed by cortical information 40 to 70 ms ahead of the module or muscle activity on leg 

motor area in α and β bands (Fig. 5-7). These results confirmed my working hypotheses, and 

therefore suggest that the cortex is involved in control of locomotor modules mainly using the 

specific cortical information, which had large contribution to the decoding.  

 

5. 4. 1. Cortical control of locomotor muscle activity through locomotor modules 

The overall decoding accuracy for locomotor module decoders was greater than that for in EMG 

envelope decoders (Fig. 5-6). The result suggests cortical control of locomotor muscle activity 

through locomotor modules. Regarding cortical influences on locomotor module activation, a 

study on stroke patients demonstrated that the patients use fewer modules resulted from 

merging of the normal modules observed in healthy adults (Clark et al., 2010), suggesting that 

the cortex has a role for recruitment of the modules. Other evidences for the cortical control of 

locomotor modules have been obtained from comparisons of the module activations in healthy 

adults with those in complete patients SCI (Danner et al., 2015) and toddlers (Dominici et al., 

2011), who have injured and immature corticospinal system, respectively. Healthy adults utilize 

four to five locomotor modules accurately timed around gait cycle events (Ivaneko et al., 2004; 

Neptune et al., 2009). Nevertheless, the modules extracted from toddlers (Dominici et al., 2011) 

and complete SCI patients with spinal epidural electrical stimulation (Danner et al., 2015) 

showed smooth sinusoidal-like activation patterns rather than sharply timed activations. These 

differences suggest that the cortical descending commands modulate the basic module 

activation patterns generated by the spinal cord into the sophisticated patterns for human 

bipedal walking. Thus, based on my results and previous studies, there is a high probability that 
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the cortex involves in control of locomotor modules in humans. 

The decoded locomotor module activations have moderated correlation with the 

actual activations (Fig. 5-5). This moderate decoding accuracy would have been derived from 

motor module recruitment via multiple neural pathways, such as the brainstem, the spinal cord 

and sensory feedbacks (Chvatal et al., 2013; Saltiel et al., 2015; Ting et al., 2015), in addition to 

the cortex. Namely, although the cortex would be involved in the control of locomotor modules, 

the contribution may be not dominant. The partial contribution of the cortex in the control of 

locomotor module would explain the moderate decoding accuracy in this study. Other possible 

reasons for the not high decoding accuracy are low spatial resolution of EEG and signal 

contamination between control signals for the legs and upper limbs accompanying the spatial 

resolution issue.  

 

5. 4. 2. Cortical information involved in the control of locomotor modules 

Regarding spatial contribution, the Cz and CCP1h electrodes (i.e., sensorimotor regions for 

right leg) had large contribution to the decoding in both decoder types (Fig. 5-7a). Similar to the 

present results, a neural decoding study on non-human primate walking demonstrated that the 

leg kinematics and EMGs could be decoded from cortical signals from the leg area of the 

primary somatosensory (S1) and primary motor (M1) cortex (Fitzsimmons et al., 2009). In 

humans, significant corticomuscular coherence was observed between the leg sensorimotor 

regions and the TA during walking (Petersen et al., 2012). Although the motor cortex to muscle 

connectivity during walking has been reported as mentioned above, to my knowledge, the 

relationships between motor cortex and locomotor modules have been unclear in humans so far. 

Thus, the present results provide first experimental evidence suggesting that the leg 

sensorimotor area is involved in control of locomotor modules in humans. 

Regarding the frequency domain, the contribution of α and β bands was larger than γ 

band (Fig. 5-7b). It has been known for a long time that movement related cortical activity in 
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the α and β bands, which are considered to be related to motor execution and preparation for 

voluntary movement (Chatrian et al., 1959; Salenius et al., 1997; Feige et al., 2000; Jurkiewicz 

et al., 2006). In the α and β band frequencies, many walking studies demonstrated spectral 

modulations depending on the gait cycle phases (Gwin et al., 2011; Chéron et al., 2012; 

Bradford et al., 2016; Oliveira et al., 2017). In addition, significant corticomuscular coherence 

in the α and β bands was observed between the leg sensorimotor regions and an ankle flexor 

muscle during walking (Petersen et al., 2012). Therefore, based on the evidences of 

sensorimotor related roles in α and β bands, it is possible that cortical activity in α and β bands 

contain much information regarding control of locomotor modules, and therefore they largely 

contributed to the decoding.  

 As for the temporal contribution, cortical information 40 to 70 ms ahead of muscle or 

module activity had the large contribution (Fig. 5-7c). The time lags were about the same or a 

little longer compared to latency time of motor evoked potentials (MEP) in leg muscles evoked 

by transcranial magnetic stimulation (about 35−40 ms), which reflect neural transmission time 

in the corticospinal tract to muscles (Nielsen et al., 1995; Terao et al., 2000). The difference 

between the major contributing time lags (40−70 ms) and the latency of MEP for leg muscles 

(about 35−40 ms) would be explained by involvement of indirect pathways from the cortex to 

spinal motoneurons through subcortical regions, such as the reticular formation and the basal 

ganglia, in addition to the direct corticospinal pathways, as suggested by Takakusaki et al. 

(2008). 

 

5. 4. 3. Methodological considerations 

Although the EEG is a suitable brain imaging method to examine brain activity during walking 

because of the high temporal resolution and the mobility, the potential issue of movement 

artifact must be noted. Recently, a study examined the gait-movement related artifacts in EEGs 
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by not allowing to record electrophysiological signals (brain, eye, heart and muscle activity) 

using a nonconductive layer (silicone swim cap) (Kline et al., 2015). They demonstrated that 

artifact signals were observed only in δ (0−3 Hz) and θ (4−7 Hz) bands in slower walking, 

however in the speed faster than 0.8 m/s, the movement artifact occurred up to around β band 

(−30 Hz). In addition, the artifact was smaller in the electrodes located in the central region (i.e., 

vertex) than in the peripheral regions, because the movement artifacts were caused by the 

vertical head acceleration. In the present study, I used EEGs in frequency upper than α band (8 

Hz−), at slow walking speed (0.6 m/s), and from electrodes near the vertex for the decoding. 

Therefore, the movement artifact would not have had major impact to the results. 

 Additionally, I used a PCA-based artifact rejection algorithm (ASR) to remove the 

movement artifact, and other artifacts derived from muscle, heart and eye activity. The ASR 

removes high-variance artifact components from a dataset by comparison to a resting dataset 

(Mullen et al., 2013). This method has been utilized in studies recoding EEGs during walking to 

remove the artifacts, and its effectiveness has been demonstrated (Bulea et al., 2014; Nathan and 

Contreras-Vidal, 2016). Thus, I believe that my decoding results would have been derived not 

from movement artifact but from cortical signals. 

 

5. 4. 4. Applications to Bran-Machine-Interfaces  

The decoding methodology and results in this study could contribute development of more 

effective locomotor rehabilitation approaches for patients with neural disorders. Recently, 

brain-machine Interface (BMI) systems, which control stimulators that activate their own 

muscles through functional electrical stimulation (FES) based on cortical signals, have been 

used to allow patients for restoring their impaired movement (Bouton et al., 2016). FES is a 

clinical technique which electrically stimulate patients’ muscles to generate functional muscle 

contractions (Peckham, 1987). As a new stimulation pattern of FES, the effectiveness of a 

motor module based stimulation pattern has been suggested in upper limb reaching (Muceli et 
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al., 2010) and locomotion (Alibeji et al., 2015). The present results showed that EEGs contain 

information about control of locomotor modules, thus providing fundamental information for 

effective neuroprostheses systems based on a novel concept (e.g., BMI-FES with motor 

module-based stimulation patterns) to restore locomotion. 

 

5. 4. 5. Conclusions  

I found that locomotor module activations was decoded reasonably well from EEG signals, and 

its decoding accuracy was greater than that for EMG envelope. Additionally, the decoding was 

mainly contributed by cortical information 40 to 70 ms ahead of the module or muscle activity 

on leg motor area in α and β bands. These data suggest that the cortex would control activity of 

multiple muscles through a few locomotor modules mainly using the specific cortical 

information. The novel knowledge in this study advances our understanding of neural control of 

human bipedal locomotion. Additionally, the results demonstrate the feasibility of neural 

decoding of locomotor module activity, suggesting its future contribution to the development of 

effective brain-muscle neuroprostheses for restoring walking. 



Chapter 6 (Study 5): Strengthening of causal connectivity from the cortex to muscles 
during voluntary gait modification in humans                                        

 136 

 

 

 

 

 

 

Chapter 6 study 5 

Strengthening of causal connectivity from the cortex to 

muscles during voluntary gait modification in humans 

 

 

 

  



Chapter 6 (Study 5): Strengthening of causal connectivity from the cortex to muscles 
during voluntary gait modification in humans                                        

 137 

6. 1. Introduction 

Walking behavior is a very complicated movement which needs coordinated activity of multiple 

muscles and its modification to fit changes in walking condition. Modification of the walking 

movement requires accurate control during the execution and proper motor planning to quickly 

modify one’s gait movement fitting the situation (Drew and Marigold, 2015). 

 It has been established that the cortex has crucial roles for achieving the gait 

modification by studies in cat locomotion (Liddell and Phillips, 1944; Beloozerova and Sirota, 

1988; Drew et al., 1996; Drew et al., 2002; Drew et al., 2008; Krouchev and Drew, 2013; 

Roemmich et al., 2016). Lesion studies demonstrated that, although cats with damage of the 

motor cortex can still perform stereotyped walking without any particular problem, they have 

critical difficulty in performing more challenging walking, such as beam or ladder walking 

(Liddell and Phillips, 1944; Jiang and Drew, 1996; Drew et al., 2002). Additionally, increased 

activity of the motor cortex neurons during skilled walking tasks was demonstrated by studies 

utilizing single-unit recordings (Drew, 1988; Amos et al., 1990; Drew, 1993; Roemmich et al., 

2016). The motor cortex is considered to mainly contribute to the execution of the walking 

modifications rather than its motor planning, because activity of the motor cortex neurons is 

increased only in the short term during the modification of limb movement (Drew et al., 2008). 

Moreover, analysis of temporal activation patterns of muscle activity and motor cortical unit 

activity demonstrated their temporal synchronization during skilled walking, suggesting that the 

motor cortex would be involved in modification of the timing and amplitude of locomotor 

muscle activity (Drew et al., 2008). 

 Regarding cortical activity during gait modification in humans, an EEG study 

showed large event-related potential in the prefrontal cortex when stepping over obstacles 

during walking compared to steady state walking (Haefeli et al., 2011). Another EEG study 

using a cued walking task, which require adjustment of step timing to auditory cue, showed two 

distinct β band oscillatory cortical networks: decreased β-band power in the parietal and 
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sensorimotor regions and increased β-band power in the prefrontal cortex (Wagner et al. 2016). 

These previous studies strongly suggested that the cortical activity significantly involved in 

walking modification in humans. However, it is still unclear whether and how the cortical 

activity during walking modification contributes to adjustments of locomotor muscle activity. 

Up to now, corticomuscular connectivity during walking has been examined only in 

steady state walking in humans (Petersen et al., 2012; Artoni et al., 2017). Significant coherence 

was found in β band frequency between EEG signals of leg motor area and the EMG signals 

from the TA muscle prior to heel contact (Petersen et al., 2012). Most recent study 

demonstrated causal connectivity from motor cortex to leg muscle during walking (Artoni et al., 

2017). It has been suggested that large parts of corticospinal system for walking control are 

shared between humans and cats based on fundamentally anatomical and physiological 

commonality of the corticospinal motor tracts (Drew et al., 2002). Based on this view, assuming 

that the cortical activity during skilled walking contributes to modification of muscle activity as 

observed in cat studies (Drew et al., 2008), I established the following working hypothesis: The 

causal connectivity from the cortex to muscle is enhanced during skilled walking task compared 

with that during steady state walking. The acceptance of this working hypothesis would provide 

indirect evidence that cortical activity during skilled walking is involved in the precise lower 

limb control by modifying muscle activity in humans. It also suggests that strength of cortical to 

the muscle connectivity is linked to degree of voluntary effort and complexness of the walking 

behavior.  

 

6. 2. Methods 

6. 2. 1. Participants 

Thirteen healthy male volunteers (age, 22−30 years) participated in this study. Each participant 

gave written informed consent for his participation in this study. The experiments were 

performed in accordance with the Declaration of Helsinki and with the approval of the ethics 
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committee of the University of Tokyo. 

 

6. 2. 2. Experimental setup and design 

The participants performed following two different walking tasks on a treadmill (Bertec, 

Columbus, OH, USA): 1) normal walking at 0.6 m/s and 2) precision stepping at 0.6 m/s that 

forced the participants to step on pre-specified positions on the treadmill. Each task duration 

was 7 minutes.  

 Figure 6-1 illustrates the experimental setup for the precision stepping task. An ultra 

short throw LED projector (PH450UG, LG Electronics, Korea), that can project from oblique 

angles, was placed beside the treadmill, and it presented “stepping bars” (length×width: 15×5 

cm) specifying the stepping positions. The participants asked to adjust their heel position to 

center of the stepping bar. During all tasks, a projection board (1.2 m) with the similar 

appearance to the treadmill surface was attached to the front of the treadmill. This procedure 

was adopted from Koenraadt et al. (2014). Step length and step width was randomly varied 

based on 5 and 3 predetermined positions in the anteroposterior and mediolateral directions, 

respectively. The positions in the anteroposterior direction were defined based on the step 

length of each participant that was premeasured in a 1-minute treadmill walking task before the 

precision stepping task. The anteroposterior position was randomly adjusted to −30%, −15%, 

−0%, +15% or +30% of the individual step length. Position of the stepping bars in the 

mediolateral direction was defined based on a average step width in humans, approximately 30 

cm, demonstrated in previous walking study (Donelan and Kram, 2001). The distance between 

two consecutive bars in the frontal plane was randomly set to 15, 30 and 45 cm for every step. 

Once a stepping bar was projected on the projection board, the bars moved synchronized to the 

belts.  
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6. 2. 3. Data collection 

Three-dimensional ground reaction forces (GRF) of left and right legs were separately measured 

from two force plates under the right and left belts of the treadmill (1000 Hz). The GRF data 

was smoothed by a low-pass filter (5-Hz cutoff, a zero-lag Butterworth filter, 4th order). The 

heel-contact (HC) and toe-off (TO) timings were detected based on the vertical component of 

GRF. 

Surface EMGs were recorded from the following 12 muscles on the right leg using a 

wireless electrode system (Trigno Wireless System, DelSys Inc., USA): Gmed, GM, SART, BF, 

ST, RF, VL, AM, TA, PL, SOL, and MG. The EMG data was sampled at 1000 Hz. The 

recorded EMG data were demeaned, and then digitally full-wave rectified. The EMG data were 

Figure 6-1. (a) Experimental setup for a precision stepping task. (b) An example of 

experiment view. Participant asked to step on the bar from the heel. 
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then resampled to 500 Hz. 

EEG signals were recorded using a portable EEG system (eego Sports system, ANT 

Neuro, Enschede, Netherlands) with 63 Ag/AgCl electrodes mounted in a cap according to the 

international 10/10 system (waveguard cap, ANT Neuro, Netherlands). The reference electrode 

was placed on CPz, and the ground electrode was AFz. The electrode impedances were kept 

lower than 20 kΩ, which was substantially lower than the recommended impedance for the EEG 

system (50 kΩ). The EEG signals were sampled at 500 Hz. 

  
6. 2. 4. EEG analysis 

6. 2. 4. 1. Preprocessing 

Analysis of EEG data was performed using custom-written programs in MATLAB 2016b (The 

MathWorks, Natick MA) with functions of EEGLAB 14.1b (Delorme and Makeig, 2004). The 

signal processing methodology for causal connectivity analysis between the cortex and muscles 

is shown in Fig. 6-2. The recorded EEGs were high-pass filtered (1 Hz cutoff, zero-phase FIR 

filter, order 7500), and then low pass filtered (200 Hz cutoff, zero-phase FIR filter, order 36) 

(Wagner et al., 2016). AC power line noise (50 and 100Hz) was eliminated using the “cleanline” 

function in EEGLAB. The EEG data were then resampled to 200Hz. Then, I checked noisy 

EEG channels based on following two criteria adopted from a previous study (Gwin et al., 

2011) :1) standard deviation greater than 1000µV, and 2) kurtosis of more than 5 standard 

deviations from the mean. In this study, no EEG electrode satisfied the criteria in all participants. 

Then, the EEG data were divided into epochs of interest of 800 ms prior and after foot contact 

of right leg (i.e., an epoch period: 1.6 s). Outlier Epochs were excluded based on the probability 

distribution of the values over the epochs (mean ±5 SD) (Wagner et al., 2012). 
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6. 2. 4. 2. Removal of non-brain artifact by adaptive mixture ICA and dipole fitting 

  Then, to identify non-brain source artifacts mixing in the EEGs, the pre-processed 

EEG data were decomposed using adaptive mixture independent component analysis (AMICA) 

(Palmer et al., 2006; Palmer et al., 2008). AMICA is a generalization method of the Infomax 

ICA (Bell and Sejnowski, 1995; Makeig et al., 1996) and multiple-mixture ICA (Lee et al., 

Figure 6-2. Flow-chart indicating the EEG and EMG processing pipeline for corticomuscular 

connectivity analysis during walking. 
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1999; Lewicki and Sejnowski, 2006) to separate EEG data into independent components (ICs) 

assumed to be spatially static and maximally temporally independent (Palmer et al., 2006, 2008). 

It has been demonstrated that AMICA is a most effective method to reduce mutual information 

between components (sources) among many blind source separation methods (Delorme et al., 

2012). I performed one AMICA analysis for each participant over both normal walking and 

precision stepping tasks. 

Next, using a standardized three-shell boundary element head model in the DIPFIT 

toolbox in EEGLAB, the position of a best-fitting single equivalent current dipole was 

calculated for the scalp projection of each ICs (Oostenveld and Oostendorp, 2002; Delorme et 

al., 2012; Wagner et al., 2012). The EEG electrode placements were aligned to fit a standard 

brain model (MNI model). For subsequent analyses, I retained only ICs if the corresponding 

dipoles were positioned in the head (Wagner et al., 2012; Wagner et al., 2016) and explained at 

least 80% of variance of their scalp projection (Bulea et al., 2015). 

Then, additional artifacts ICs were identified from the remaining ICs based on visual 

inspection of the scalp maps, time series activity, and power spectrum according to the 

characteristics of artifact components reported in previous studies (eye and muscle artifact [Jung 

et al., 2000], walking related movement artifact [Castermans et al., 2014; Kline et al., 2015]). 

Finally, the identified artifact ICs were removed, and remaining ICs were projected back onto 

the original scalp channel space. 

 
 
6. 2. 5. Directed Transfer Function Analysis between EEG and EMG 

To investigate causal connectivity (i.e., directional information flow) between EEG and EMG 

signals, I applied the Directed Transfer Function (DTF), which is a frequency-domain estimator 

of causal interaction utilizing a multivariate autoregressive (MVAR) model. Signals from a leg 

sensorimotor EEG electrode (Cz), a non-motor area EEG electrode (AF5), and 12 EMGs from 

leg muscles were used for the connectivity analysis.  
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The MVAR model is expressed as:              

𝑋(𝑡) = 𝐴(𝑖)𝑋(𝑡 − 𝑖) + 𝐸(𝑡)
!

!!!

, (6-1) 

where X(t) is a multidimensional vector of k source signals (2 EEG and 12 EMG signals) at time 

t, E(t) is a vector of multivariate zero-mean uncorrelated white noise process, A(i) is the k × k 

matrix of model coefficients, and m is the model order. The model order was determined based 

on Akaike’s information criterion (AIC). 

To examine the frequency domain connectivity between the signals, the MVAR 

model was transformed into frequency domain based on z-transformation. The transformed 

model is expressed as: 

𝑋(𝑓) = 𝐴!!(𝑓)𝐸(𝑓) = 𝐻(𝑓)𝐸(𝑓), (6-2) 

where H(f) is the inverse of the frequency-transformed coefficient matrix (A(f)) and is called a 

transfer matrix of the system, f denotes frequency. From the H(f), the DTF, which quantify 

interrelations between two signals in relation to all other signals of the analyzed system, can be 

given by (Kaminski and Blinowska, 1991): 

𝜒!"! (𝑓) =   
𝐻!"(𝑓)

!

𝐻!"(𝑓) !!
!!!

  , (6-3) 

where n is the number of signals. The DTF Values, χ2
ij (f) (describing information flow from j to 

i), close to 1 indicate that most of the signal i consists of signal j, while values of DTF close to 0 

show that there was no flow from signal j to signal i at a certain frequency. The definition of the 

DTF as a ratio of transmitted activity is related to its spectral properties. Namely, the DTF 

values depend on the denominator (formula (6-3)), which specifies inflows to a signal at a 

certain frequency and varies among frequencies. Therefore, it is difficult to compare the 

connectivity strength across different frequencies from the DTF values. To overcome the 

problem, an updated version of the DTF, the full frequency DTF (ffDTF) was proposed 
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(Korzeniewska et al., 2003). It can be given by:  

𝜂!"! (𝑓) =   
𝐻!"(𝑓)

!

𝐻!"(𝑓) !!
!!!!

, (6-4) 

where n is the number of signals. The ffDTF, η2
ij (f), quantifies the directed causality from 

signal j to signal i. Since the inflow to signal i was summed across all frequency (1–50 Hz, in 

this study) in the denominator, the denominator were same among different frequencies. 

Therefore, ffDTF can evaluate outflow from given signal not depend on the frequency. 

Although the ffDFT estimation with MVAR modeling assumes stationarity of the 

signals, the EEG and EMG activity change dynamically within a gait cycle (i.e., highly 

non-stationery signals). In the present study, to adapt the nonstationality, the ffDTF was 

calculated by using a segmentation based (sliding-window) MVAR model (i.e., time-varying 

ffDTF). Figure 6-3 shows the schematic representation of the time-varying ffDTF with a 

sliding-window MVAR model. To obtain sufficient data samples for precisely estimating the 

MVAR model, the analysis utilize multiple epoch data in a same segment timing for calculating 

the model. In this study, I used 400 ms time window with 5 ms step size. The time-varying 

ffDTF was computed using SIFT toolbox in EEGLAB (Delorme et al., 2011; Mullen, 2014). 
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6. 2. 6. Comparisons of corticomuscular connectivity 

Statistical significance of causal connectivity (ffDTF value) was evaluated by a non-parametric 

bootstrapping method using the SIFT toolbox (Delorme et al., 2011). I tested the significance in 

four types of the connectivity (i.e., motor cortex (Cz)→muscle, muscle→motor cortex, 

non-motor cortex (AF5)→muscle, and muscle→non-motor cortex) in two walking tasks 

separately (normal walking and precision stepping). 

 Then, I examined differences in the connectivity strength between motor cortex→

muscle connectivity and non-motor cortex→muscle connectivity, because any significant 

connectivity was not observed in muscle→cortex connectivity in all participants (see Results 

section, for detail). To examine overall directional corticomuscular connectivity across muscles, 

the peak ffDTF values over frequency and time were averaged across muscles in each 

participant per connectivity type. Then, the averaged connectivity strength was compared 

Figure 6-3. Schematic representation of calculation of time-varying ffDTF with sliding 

window MVAR modeling. W is the window length, N is the number of epoch, M is the 

number of sources (EEG and EMG signals).  
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between the two connectivity types by paired t-test. 

 As a result, motor cortex→muscle connectivity was stronger than non-motor cortex

→muscle connectivity (see Results section, for detail). Thus, subsequent analyses were 

performed only on the motor cortex→muscle connectivity. To quantify the differences 

depending on the two walking tasks (normal walking and precision stepping), peak ffDTF 

values in each three frequency bands (α [8-12 Hz], β [15-25 Hz], γ [30-40 Hz]) were calculated 

in each muscle. The peak values were separately calculated in two different walking phases 

(before heel contact [from 600 ms before heel contact to heel contact] and after heel contact 

[from heel contact to 600 ms after heel contact]). Then, to compare overall trend of connectivity 

across muscles between two walking tasks, the peak values were averaged across muscles, and 

the averaged values were compared between two walking tasks by paired t-test. Then, each peak 

value at individual muscle was compared between two walking tasks by paired t-test. 

 

6. 3. Results 

6. 3. 1. Comparisons of directional connectivity strength among different 

connectivity types 

Order of the MVAR model (i.e., m in the equation 6-1) was 23.5±2.6 (mean±SD) and 23.9±

2.9 in normal walking and precision stepping conditions, respectively. Since the sampling rate 

was 500 Hz, the MVAR model predicted future parameters based on past parameters from 

approximately 40-50 msec before in many cases. 

Figure 6-4 shows examples of directional corticomuscular connectivity during 

normal walking and precision stepping from a typical participant. Significant connectivity was 

observed in motor cortex→muscle and non-motor cortex→muscle connectivity, while not in 

muscle→motor cortex and muscle→ non-motor cortex connectivity. This difference in 

significance among the connectivity types was same in all participants. In addition, based on	
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visual inspection, the motor cortex→muscle connectivity showed larger strength in frequency 

higher than approximately 8 Hz in all muscles in both walking tasks compared to the non-motor 
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Figure 6-4. Examples of directional corticomuscular connectivity during normal walking and 

precision stepping from a participant. The following four types of connectivity values of 12 leg 

muscles are presented: motor cortex (Cz)→muscle (first row), muscle→motor cortex (second row), 

non-motor cortex (AF5)→muscle (third row), and muscle→non-motor cortex (fourth row). Time 0 

means heel contact timing. Non-significant connectivity are masked in gray 
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cortex→muscle connectivity. The larger connectivity strength of the motor cortex→muscle 

connectivity than non-motor cortex→muscle connectivity was statistically confirmed by 

comparing the averaged peak connectivity over the muscles between the two connectivety types 

(Fig. 6-5, p < 0.001 for both tasks). 

 

 

 

6. 3. 2. Comparisons in strength of motor cortex to muscle connectivity between 

normal walking and precision stepping 

Then, I examined the differences of the motor cortex→muscle connectivity between normal 

walking and precision stepping tasks. Figure 6-6 shows averaged time-frequency 

representations of motor cortex→muscle connectivity in normal walking and precision stepping 

Figure 6-5. Comparisons between two connectivity types (motor cortex (Cz)→muscle and 

non-motor cortex (AF5)→muscle) of averaged peak connectivity values over muscles in 

normal walking and precision stepping tasks. ✳ ︎✳ ︎✳ ︎: p < 0.001. 
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and the differences. Based on visual inspection, it seems that, although smaller connectivity 

during precision stepping was observed in a few muscles in specific frequency bands (γ band 

connectivity in the TA and PL and α band connectivity in the SOL), the connectivity strength 

during precision stepping were generally larger than that during normal walking, especially in β 

band connectivity. Differences in the averaged connectivity strength over muscles between 

normal walking and precision stepping in three frequency bands (α, β and γ) in two gait phases 

(before heel contact and after heel contact) are shown in Figure 6-7. The connectivity in β band 

before heel contact in precision stepping task was significantly larger than normal walking, 

while there is no significant difference in other comparisons (Fig. 6-7). 
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Figure 6-6. Mean unidirectional motor cortex (Cz) to muscle connectivity across participants in 

normal walking (upper row), precision stepping (middle row) and the differences (precision 

stepping-normal walking, bottom row). Time 0 means heel contact timing. 
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Table 6-1 shows statistical results of comparisons of the connectivity strength of 

individual muscles between normal walking and precision stepping in each frequency band and 

gait phase. The muscles, which showed the significant differences, are presented in Fig. 6-8. 

More muscles showed significant changes of the connectivity between the two tasks before heel 

contact (6 muscles at 3 frequency bands) than after heel contact (2 muscles at 1 frequency band). 

Specifically, in before heel contact phase, the connectivity increased in many muscles (TA, 

Gmed, VL, AM, and PL) in β band during precision stepping, while it decreased in VL and 

SOL in α band, and in TA and PL in γ band. Regarding after-heel contact phase, the 

connectivity increased in Gmax and ST in α band. 

 

 

 

 

Figure 6-7. Comparisons of averaged connectivity strength over muscles between normal 

walking (NW) and precision stepping (PS). The values were separately compared in three 

frequency bands (α、β and γ) in two gait phases (before heel contact (HC) and after HC). 

Gray dot lines indicate individual data. Red lines indicate mean data across participants. ✳ ︎: p 

< 0.05. 
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Table 6-1. Comparisons between normal walking (NW) and precision stepping (PS) of motor 

cortex-to-muscle connectivity in three frequency bands in two gait phases. The p values smaller 

than 0.05 are highlighted in red. 
 

Before heel contact 

 α (8−12 Hz) β (15−25 Hz) γ (30−40Hz) 

 NW PS p 
(NW 
vs. 
PS) 

NW PS p 
(NW 
vs. 
PS) 

NW PS p 
(NW 
vs. 
PS) 

Gmed 0.34(0.13) 0.33(0.096) 0.98 0.23(0.057) 0.27(0.051) 0.030 0.26(0.055) 0.25(0.051) 0.33 

Gmax 0.39(0.11) 0.39(0.11) 0.78 0.25(0.048) 0.26(0.062) 0.22 0.26(0.063) 0.24(0.039) 0.24 

SART 0.33(0.1) 0.36(0.1) 0.27 0.23(0.05) 0.25(0.075) 0.21 0.24(0.063) 0.22(0.063) 0.17 

BF 0.38(0.14) 0.32(0.095) 0.09 0.25(0.061) 0.27(0.068) 0.22 0.24(0.054) 0.27(0.059) 0.0 

ST 0.4(0.15) 0.43(0.13) 0.41 0.25(0.056) 0.25(0.068) 0.54 0.24(0.052) 0.25(0.046) 0.36 

RF 0.31(0.076) 0.34(0.093) 0.28 0.26(0.062) 0.25(0.053) 0.35 0.23(0.058) 0.23(0.057) 0.81 

VL 0.4(0.14) 0.33(0.1) 0.023 0.24(0.058) 0.26(0.054) 0.017 0.24(0.053) 0.25(0.055) 0.59 

AM 0.36(0.099) 0.37(0.11) 0.99 0.23(0.052) 0.27(0.051) 0.011 0.23(0.061) 0.23(0.061) 0.87 

TA 0.3(0.11) 0.28(0.076) 0.55 0.22(0.061) 0.27(0.055) 0.0098 0.29(0.059) 0.25(0.06) 0.0030 

PL 0.29(0.13) 0.33(0.11) 0.18 0.24(0.057) 0.27(0.051) 0.028 0.27(0.068) 0.25(0.056) 0.033 

SOL 0.42(0.093) 0.35(0.11) 0.015 0.28(0.065) 0.27(0.055) 0.54 0.23(0.065) 0.24(0.052) 0.27 

MG 0.33(0.13) 0.35(0.12) 0.71 0.25(0.072) 0.26(0.057) 0.62 0.26(0.061) 0.26(0.065) 0.85 
          

 

After heel contact 

 α (8−12 Hz) β (15−25 Hz) γ (30−40Hz) 

 NW PS p 
(NW 
vs. 
PS) 

NW PS p 
(NW 
vs. 
PS) 

NW PS p 
(NW 
vs. 
PS) 

Gmed 0.19(0.15) 0.2(0.11) 0.79 0.24(0.07) 0.23(0.073) 0.47 0.29(0.06) 0.3(0.046) 0.62 

Gmax 0.2(0.1) 0.25(0.11) 0.018 0.21(0.067) 0.23(0.068) 0.19 0.28(0.067) 0.29(0.05) 0.63 

SART 0.36(0.13) 0.37(0.1) 0.89 0.25(0.064) 0.26(0.068) 0.17 0.23(0.072) 0.22(0.048) 0.10 

BF 0.34(0.14) 0.34(0.14) 0.79 0.27(0.063) 0.28(0.06) 0.72 0.25(0.06) 0.25(0.057) 0.76 

ST 0.33(0.13) 0.4(0.14) 0.016 0.26(0.074) 0.24(0.05) 0.51 0.24(0.059) 0.24(0.061) 0.84 

RF 0.33(0.093) 0.37(0.13) 0.18 0.26(0.063) 0.27(0.062) 0.34 0.23(0.067) 0.25(0.048) 0.40 

VL 0.27(0.14) 0.33(0.13) 0.093 0.23(0.063) 0.26(0.059) 0.25 0.26(0.079) 0.26(0.057) 0.76 

AM 0.37(0.15) 0.42(0.14) 0.29 0.24(0.055) 0.27(0.052) 0.084 0.23(0.069) 0.23(0.045) 0.79 

TA 0.28(0.1) 0.29(0.075) 0.90 0.26(0.074) 0.28(0.064) 0.38 0.26(0.053) 0.27(0.044) 0.93 

PL 0.27(0.13) 0.27(0.12) 0.93 0.26(0.087) 0.27(0.051) 0.62 0.3(0.061) 0.28(0.057) 0.16 

SOL 0.3(0.098) 0.32(0.091) 0.44 0.26(0.083) 0.28(0.065) 0.56 0.27(0.063) 0.27(0.048) 0.80 

MG 0.3(0.084) 0.29(0.08) 0.59 0.28(0.067) 0.28(0.071) 0.92 0.26(0.057) 0.29(0.062) 0.094 
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Figure 6-8. Comparisons of corticomuscular connectivity strength for individual muscle 

between normal walking (NW) and precision stepping (PS). The values were separately 

compared in three frequency bands (α、β and γ) in two gait phases (before heel contact (HC) 

and after HC). Only the connectivity, which changed significantly between NW and PS (p < 

0.05), is shown. All comparison data are indicated in Table 1. Gray dot lines indicate 

individual data. Red lines indicate the mean value, which was significantly increased from 

NW to PS. Blue lines indicate the mean value, which was significantly decreased from NW 

to PS. ✳ ︎: p < 0.05. ✳ ︎✳ ︎: p < 0.01. 
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6. 4. Discussion 

Here, to reveal how the cortex voluntarily modifies locomotor muscle activity, I examined 

causal connectivity of EEG and EMG signals during normal walking and precision stepping. I 

found that large causal connectivity from motor cortex to leg muscles in both walking tasks. 

Additionally, during precision stepping, the motor cortex→muscle connectivity was enhanced 

in β band in many muscles (TA, Gmed, VL, AM, and PL) before heel contact. These results 

confirmed my working hypotheses, and therefore suggest that β band descending commands 

from the motor cortex is involved in voluntary modification of locomotor muscle activity, 

especially in the swing phase.  

 

6. 4. 1. Cortical activity during walking and its involvement in muscle control  

 In cat studies that recorded motor cortex activity, firing rate modulation depending 

on gait phase was observed during steady state walking (Armstrong and Drew, 1984: Drew et al. 

2008). The firing rate modulation in motor cortex during locomotion has also been confirmed in 

other animals, such as rodents (Rigosa et al., 2015; DiGiovanna et al., 2016) and non-human 

primates (Foster et al., 2014; Yin et al., 2014). Regarding relationships between the cortical 

activity and locomotor muscle activity, recent studies using neuronal decoding methods 

demonstrated that hindlimb muscle activity are able to be reconstructed from firing rate 

information of the motor cortex in rodents (Rigosa et al., 2015) and non-human primates 

(Fitzsimmons et al., 2009), strongly suggesting cortical involvement in control of locomotor 

muscle activity. 

In humans, regarding roles of the cortical activity during walking for muscle control, 

recent EEG studies demonstrated significant corticomuscular coherence between motor cortical 

EEG and EMG from TA muscle (Petersen et al., 2012) and directional causal relationships from 

the cortex to muscles (Artoni et al., 2017) during steady state walking. In accordance with 

previous studies, the present study demonstrated large directional connectivity from motor 
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cortex to leg muscles (Figs. 6-4 and 6-5). Artoni et al. (2017) showed that sensorimotor regions 

including primary motor area, supplementary motor area and premotor area had a strong 

connectivity with leg muscles. The cortical regions are near the EEG electrode, which showed 

strong connectivity with muscle in the present study (Cz electrode). Given the low spatial 

resolution of EEG, the Cz electrode would contain combined information from the sensorimotor 

areas, that had large conrticomuscular connectivity in the previous study (Artoni et al., 2017). In 

non-human primates, neurons in these motor areas have anatomical connectivity to the 

motoneurons (Dum and Strick, 2002). Thus, considering the high anatomical commonality of 

corticospinal systems between humans and non-human primates (Lemon and Griffiths, 2005), 

such a corticomuscular connection may contribute to the causal connectivity from the motor 

cortex to muscles in human walking. 

 

6. 4. 2. Cortical involvement in voluntary modification of locomotor muscle activity 

 In the present study, strength of the causal connectivity from motor cortex to muscles 

was different between normal walking and precision stepping (Figs. 6-6, 6-7 and 6-8). Strong 

connectivity was observed in many muscles (TA, Gmed, VL, AM, and PL) in β band before 

heel contact during a precision stepping task (Fig. 6-8). The precision stepping task can be 

regarded as a leg reaching task to a target on a treadmill. Therefore, it is considered that the 

motor cortex-to-muscle connectivity was increased in muscles that have roles in the reaching 

movement, namely forward swing of the leg and the endpoint control (VL: knee extension, TA 

and PL: toe clearance and fixation of ankle, Gmed and AM: adjustment of leg movement in 

mediolateral direction). β band cortical activity has been considered to be involved in motor 

preparation and execution (Jurkiewicz et al., 2006; Salenius et al., 1997; Pfurtscheller and 

Lopes da Silva, 1999). The involvement of motor cortex β band activity in voluntary muscle 

control has also been suggested by significant EEG-EMG coherence in the β band during 

isometric contraction of leg muscles (Mima et al., 2000; Ushiyama et al., 2010) and bilateral 
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alternate rhythmic foot movements (Raethjen et al., 2008). Based on these evidences about 

involvement of β band motor cortex activity in voluntary muscle control, modification of 

muscle activity during walking may be mainly achieved by β band descending drive from the 

motor cortex. Therefore, the connectivity strength from the motor cortex to muscles in β band 

was increased during precision stepping. 

 The changes of connectivity strength also occurred few muscles in α and γ bands 

(Fig. 6-8). In the γ band, the connectivity strength was decreased in TA and PL before heel 

contact during precision stepping (Fig. 6-8). Regarding corticomuscular connectivity in γ band, 

reciprocal relationship of EMG-EEG coherence between γ and β band coherence has been 

demonstrated (Mima et al. 1999; Omlor et al. 2007). In the present study, the decreases of 

connectivity strength in TA and PL in the precision stepping task were associated with increases 

of β band connectivity in these muscles. Thus, I speculate that the decreases of γ band 

connectivity were related to the reciprocal relationship between γ and β band. Regarding α band, 

the connectivity strength was increased in GM and ST after heel contact during precision 

stepping, while decreased in VL and SOL before heel contact. A previous study, which 

performed electrical stimulation to afferent fibers tonic, indicated that sensory feedback 

involved in generating corticomuscular coherence in the α band (Hansen and Nielsen, 2004). 

The authors considered that the afferent induced corticomuscular coherence may have been 

related to a cerebellar–thalamic–cortex circuits, based on a evidence that cerebellar nuclei 

involves in α band rhythmicity (Marsden et al., 2000). In addition, the α band cortical activity 

would be utilized for information transmissions between motor and parietal areas involving in 

visuomotor control (Pfurtscheller and Neuper, 1994; Pfurtscheller and Da Silva, 1999; Babiloni 

et al., 2002). Since the GM and ST activated initial stance phase for loading response (Winter 

and Yack, 1987), the load afferents and visual information might be integrated through the α 

band sensorimotor networks. Then, the integrated information might have transmitted to motor 

cortex, and transformed into descending motor drives. Therefore, the increase of α band 
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connectivity strength in GM and ST after heel contact during precision stepping in this study 

might have been involved in the α band sensorimotor networks. On the other hand, decreased in 

VL and SOL before heel contact in α band might be related to relative decrease of contribution 

of the α band sensorimotor networks to the muscle control in exchange for the increase of β 

band voluntary descending drive. 

 

6. 4. 3. Voluntary modification of locomotor muscle activity in quadruped animals 

Similar to the present results, the contribution of the cortex for modifying locomotor 

muscle activity during skilled walking has been presented by a number of cat studies 

(Beloozerova and Sirota, 1988; Drew, 1988; Amos et al., 1990; Beloozerova and Sirota, 1993; 

Drew, 1993; Marple‐Horvat et al., 1993; Widajewicz et al., 1994; Drew et al., 1996; Drew et 

al., 2002). In cat locomotion, although the corticomuscular connectiy during steady state 

walking has hardly been observed, temporally synchronized activity of hindlimb muscles and 

motor cortex neurons, which are inactivated during normal walking, were observed during 

skilled walking (Drew et al., 2008). In addition to the corticomuscular connectivity, cats studies 

demonstrated that the posterior parietal cortex (PPC) is deeply engaged in motor planning for 

gait modification during visually guided walking (Beloozerova and Sirota, 2003; Drew et al., 

2008; Andujar et al., 2010; Drew and Marigold, 2015). It has been demonstrated that firing rate 

of large parts of neurons in the PPC become faster during visually guided gait modifications 

(Beloozerova and Sirota., 2003, Andujar et al., 2010). When stepping over obstacles, the PPC is 

considered to integrate information regarding interaction between walkers (cats) and walking 

environment, and therefore has a role for recognition of relative position between walkers and 

the obstacles (Drew and Marigold, 2015). 

The motor cortex sends descending motor commands based on inputs from several 

cortical and subcortical regions including the PPC, somatosensory cortex, basal ganglia and 

cerebellum (Drew and Marigold, 2015). Thus, huge cortical and subcortical networks would be 
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involved in adaptive gait modification during visually guided walking. Therefore, more 

understanding of the neural control of the gait modification in humans requires detailed 

examination of information flow in whole brain in future studies. 

 

6. 4. 4. Methodological considerations 

Important methodological concern in this study is the potential issue of movement artifact of the 

EEG recording. Recent studies examining the movement artifacts during walking demonstrated 

that walking-related artifact are observed especially in lower frequencies, i.e., delta (0–3 Hz) 

and theta (4–7 Hz) bands (Castermans et al., 2014; Kline et al., 2015). Additionally, the studies 

also indicated that the artifact become serious in walking faster than 0.8 m/s. Therefore, to 

ensure reliability of the data, I adopted the slow walking speed (0.6 m/s) and focused on 

relatively high frequency bands (8Hz–).  

Additionally, I performed ICA and source localization techniques (i.e., dipole fitting) 

on the EEG signals to exclude artifact components. This procedure is an established and most 

popular artifact removal method for EEG data during walking (Gwin et al., 2010, 2011; Wagner 

et al., 2012; Wagner et al., 2014; Bruijn et al., 2015; Bulea et al., 2015; Snyder et al., 2015; 

Bradford et al., 2016; Wagner et al., 2016; Oliveira et al., 2017). To test reliability of the artifact 

removal procedure, Snyder et al. (2015) applied the ICA and dipole fitting to pure movement 

artifact signals obtained from an EEG recording set up with a silicone swim cap 

(non-conductive layer). They showed that ICA and dipole fitting accurately recognized 99% of 

the independent components as non-brain signals. Another study using the same method to 

isolate and record only movement artifact showed that the spectral modulation patterns of 

movement artifact signals are not similar to those in the actual EEG signal (Kline et al., 2015). 

These results strongly support that present results are obtained from neural activity.  
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6. 4. 5. Conclusions 

In summary, I demonstrated changes in the causal connectivity from the motor cortex 

to muscles between visually guided skilled walking and normal walking. The changes of causal 

connectivity were mainly observed in task related muscles in swing phase as the increased 

connectivity strength in the β band. The present results provide evidences that the motor cortex 

is involved in control of voluntary skilled walking through modification of muscle activity. 

Given the cortical involvement in temporally-precise control for lower limb muscle activity 

during steady state walking as demonstrated in the Study 4 (Chapter 5) and Artoni et al., (2017), 

my results further emphasize the critical importance of the cortex for control of human bipedal 

locomotion. In addition to the contribution in understanding of neural control of human walking, 

the findings of descending command regarding voluntary gait modification would provide 

fundamental knowledge for development of volitional control system of brain–machine 

interfaces for walking rehabilitation. Future studies should investigate the information flow in 

brain networks for the gait modification for further understanding the neural control of human 

walking.  
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7. 1. Summary of the results  

In the present thesis, I raised following research questions regarding muscle control of human 

bipedal locomotion based on previous studies. 

・	
 Spinal level: The detail characteristics of human locomotor CPG is remain unclear. 

Are the neural mechanisms, which were revealed in animal models, conserved in 

human locomotor circuits?  

・	
 Cortical level: 1) Whether and how does the cortex control activation of the spinal 

CPG? 2) How does the cortex modify the muscle activity under conditions that require 

voluntary adjustment of walking behavior? 

Then, I executed five separated studies to investigate role of the spinal cord and the cortex in 

muscle control of human bipedal locomotion by solving the questions. I examined the neural 

control by the spinal cord and the cortex in Studies 1−3 and Studies 4−5, respectively. The 

following findings and suggestions were obtained from these studies. 

In Study 1 (Chapter 2), I tested whether speed- and mode-dependency in the 

recruitment of locomotor networks, which was revealed in animal studies (Talpalar et al., 2013), 

exists or not in humans by extracting locomotor module. During walking and running over a 

wide speed range, locomotor modules, which generate basic patterns of muscle activities and 

are encoded in the pattern formation networks in the spinal CPGs (McCrea and Rybak, 2008), 

were extracted from EMGs. The results showed that different combinations of modules were 

recruited during walking and running, and at different speeds even during the same locomotor 

mode. These results strongly suggest that, in humans, different spinal locomotor networks are 

recruited depending on the mode and the speeds. 

In Study 2 (Chapter 3), I examined whether characteristics of MN activation for 

control of locomotion speed observed in animals (Cazalets and Bertrand, 2000; Talpalar and 

Kiehn, 2010) exist in humans or not. For this purpose, I reconstructed the spatiotemporal 
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activation patterns of MNs along the rostrocaudal direction of the spinal cord during 

varied-speed locomotion. The MN activation patterns were analyzed from EMGs. The 

reconstructed MN activity patterns were divided into the following three patterns depending on 

the speed: slow walking, fast walking and running. During these three activation patterns, the 

proportion of the activity in rostral segments to that in caudal segments increased as locomotion 

got faster. Additionally, the different MN activation patterns were generated by distinct 

combinations of locomotor modules. These results are consistent with the speed control 

mechanisms observed in vertebrates, suggesting phylogenetically conserved spinal mechanisms 

of neural control of locomotion between humans and other vertebrates. 

In Study3 (Chapter 4), I examined whether rostrocaudally traveling wave of neural 

activity in the spinal cord, which is considered to be one of components in the rhythm 

generation layer of CPGs (Cuellar et al., 2009; Saltiel et al., 2015), exists in spinal locomotor 

networks in humans as in non-human vertebrates. Assuming that the traveling wave recruits 

spinal locomotor modules from upper to lower region in the spinal cord, I examined the 

existence of traveling wave based on the activation sequence of locomotor modules and their 

topography. In this study I used an air-stepping task to explore activity of a “pure” version of 

CPG in the absence of afferent modulation derived by foot contact (Ivanekno et al., 2002). I 

identified four types of locomotor modules. MN clusters innervating each motor module were 

sequentially activated from the rostral to caudal region in the spinal cord, from the initial flexion 

to the last extension phase during air-stepping. The rostrocaudally sequential activation of MN 

clusters suggests the possibility that rostrocaudally traveling waves exist in human locomotor 

spinal circuits.  

 In Study4 (Chapter 5), to examine the relationships between cortical activity and 

spinal locomotor circuits, I performed neural decoding of the activation patterns of locomotor 

modules and EMGs from EEG signals in three frequency bands (α, β, and γ). As a result, the 

activations of locomotor modules and EMGs were decoded from EEG signals. The accuracy of 
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the synergy decoder was higher than that of the EMG decoder. The decoding were mainly 

contributed by cortical information 40−70ms ahead of the module activity from leg motor area 

in α and β bands. The higher accuracy of the synergy decoder than that of the EMG decoder 

suggests that the cortex hierarchically control the locomotor muscle activities through 

locomotor modules. 

 In Study 5 (Chapter 6), to examine cortical contribution to voluntary modification of 

muscle activity during skilled walking, I examined differences in causal connectivity of EEG 

and EMG signals between normal and skilled walking. The results showed significant causal 

unidirectional connectivity from contralateral motor cortex to muscles in both walking tasks. 

During the skilled walking, the unidirectional causal connectivity was enhanced in β band in the 

muscles related to the stepping task compared with that during normal walking. These results 

suggest that β band descending commands from the motor cortex involve voluntary 

modification of locomotor muscle activity. 

 Together, the results obtained from the five studies indicate following novel 

knowledge to answer the research questions of the thesis regarding human locomotor control by 

the spinal cord and the cortex:  

 

1) The spinal locomotor networks in humans, which generate basic locomotor muscle 

activity, have high similarity with those in non-human vertebrates (Studies 1-3). 

(Corresponding to the research question at spinal level) 

2) The cortex would be involved in hierarchical control of locomotor muscle activity 

through locomotor modules by using cortical information 40−70 ms ahead of 

module activity from leg motor area in α and β bands (Study 4). (Corresponding to 

the research question 1 at cortical level)  

3) The cortex would contribute to voluntary modification of locomotor muscle activity 
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during skilled walking via β band descending commands from leg sensorimotor area 

(Studies 5). (Corresponding to the research question 2 at cortical level) 

 

 The novel knowledge about human locomotor control strongly suggest that 

human-specific bipedal upright locomotion can be achieved even under challenging walking 

conditions by the generation of the basic patterns of muscle activity from the spinal cord and the 

cortical modification of it. The details of the above three characteristics in human locomotor 

system are discussed in following sections. Then, I also discuss the possible future direction and 

clinical implications of the present findings. 

 

7. 2. Spinal neural networks for locomotion  

In studies 1−3, I examined whether neural mechanisms in the spinal locomotor networks reveled 

in animal studies are shared in humans using several indirect methods using EMGs. The results 

in studies 1−3 consistently demonstrated the commonality of the spinal locomotor neural 

networks in humans and non-human vertebrates. In line with my findings, recent studies 

demonstrated the similarity of the spinal locomotor networks in humans and animals, focusing 

on temporal activation patterns of the spinal locomotor modules (Diminichi et al., 2011; Danner 

et al., 2015). Dominichi et al., (2011) showed activation patterns of the locomotor modules 

extracted from toddlers, whose developmental stage was considered to be before maturation of 

the corticospinal system, were significantly similar to those extracted from rat, cat, macaque, 

and guineafowl. Similarly, Danner et al., (2015) also demonstrated that the locomotor modules 

extracted from patients with complete SCI exhibit very similar activation patterns with 

non-human vertebrates. Regarding another common characteristic in the spinal CPGs, it has 

been founded that rostral regions of the lumbosacral spinal cord have a higher rhythmogenic 

capacity as burst generators for locomotor muscle activity both in mice (Kjaerulff and Kiehn, 
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1996; Cazalets and Bertrand, 2000; Talpalar and Kiehn, 2010) and humans (Dimitrijevic et al., 

1998; Gerasimenko et al., 2010; Danner et al., 2015; Gerasimenko et al., 2016). Based on my 

findings and these related recent studies, there is a high possibility that the fundamental 

mechanisms in the spinal locomotor networks are phylogenetically conserved among vertebrate 

animals including humans. 

 My findings are consistent with the idea that fundamental motor patterns (e.g. 

hunting, feeding and masticatory patterns) conserved across and morphological and 

phylogenetic differences among vertebrates even after a long period of evolution (Wainwright, 

2002). Also in locomotion behavior, spinal locomotor CPGs in legged vertebrates have been 

considered to be emerged through evolution from a common fundamental circuit for vertebrates 

performing undulating locomotion (Grillner and Jessell, 2009). Recent studies using novel 

genetic technics, the similarity of core components of spinal CPGs at the interneuron level has 

been confirmed across many non-human vertebrates even between fish and rodents (Goulding, 

2009; Kiehn, 2016). If the similarity at the spinal interneuron level is conserved in humans, this 

would explain the high commonality of the spinal locomotor networks between humans and 

non-human vertebrates.	
  

 

7. 3. Cortical involvement in control of locomotor muscle activity  

Although the spinal locomotor networks are very similar between humans and non-human 

vertebrates, there are apparent differences in the cortical control of locomotor muscle activity. 

After lesions of the cortex, although cats have critical difficulty in performing more challenging 

walking conditions such narrow beam or ladder walking, they can still perform stereotyped 

walking without any particular problem (Liddell and Phillips, 1944; Jiang and Drew, 1996; 

Drew et al., 2002). On the other hand, in humans, patients with stroke exhibit gait disturbance 

even in stereotyped walking in most cases (Perry et al., 1995). Although pure spinal locomotor 

outputs induced by epidural electrical stimulation to the spinal cord of complete SCI patients 
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was similar to locomotor muscle activity patterns of quadruped animals, human walking exhibit 

modulated muscle activation pattern from the spinal outputs (Danner et al. 2015). Based on 

these previous studies, in human locomotion, cortical tuning of basic locomotor muscle activity 

generated from spinal networks would be needed even during stereotyped walking. 

 To support this idea, my Studies 4 and 5 demonstrated greater connectivity between 

locomotor muscle activity and cortical activity even during stereotyped walking. In Study 5, the 

connectivity had a significant unidirectional causality from the motor cortex to muscles, 

suggesting that human locomotor muscle activity is largely modified by descending drives from 

the motor cortex. Additionally, Study 5 also showed that the causal connectivity was 

strengthened during visually guided walking in the muscles related to the walking task. Thus, 

my findings strongly suggest that the cortex modify locomotor muscle activity for both 

achievement of human specific bipedal locomotion and adjustment to specific tasks during 

walking, such as precision stepping and obstacle avoidance. 

Upright bipedal walking in humans and quadruped walking and exhibit different 

muscle activation patterns (Vilensky, 1987), due to difference in the biomechanical 

characteristics (Lovejoy, 1988). Namely, humans probably adapt locomotor muscle activity to 

human specific upright bipedal walking (Grillner et al. 2011). Foot-contact position of humans 

is the heel, while that of quadruped vertebrates is their toe in general (Nilsson et al., 1985; 

Vilensky, 1987). Thus, there is a possibility that genetically conserved spinal networks from 

non-human vertebrates cannot generate all the locomotor muscle activity in humans, and 

therefore, following two possible neural contributions are required for the muscle control: 1) 

developmentally reorganization of the spinal network, and 2) additional cortical involvement. 

Nevertheless, the latter contribution would be larger to the human locomotor control, because a 

study on patients with complete SCI, who were injured after 15 years old (mean±SD: 28.2±

11.8), demonstrated that their spinal motor outputs induced by spinal epidural electrical 

stimulation were similar to muscle activation patterns of non-human vertebrates (Danner et al., 
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2015).  

As a typical example, cortical involvement in human specific locomotor muscle 

activity has been observed in TA activity during walking. TA muscle is primarily activated at a 

swing phase in quadruped animal walking (Engberg, 1964), while in humans its additional 

activity occurs after heel-contact (Winter and Yack, 1987). The differences would related to the 

deference in the foot-contact positions (humans: heel, quadruped animals: toe) (Nilsson et al., 

1985; Vilensky, 1987). A recent study showed that the human specific TA activity has 

significant coherence with cortical activity in leg sensorimotor area of the cortex (Petersen et al., 

2012). Regarding the control of the TA, Study 5 also suggested that the TA activity was 

strongly modified by descending drives from the motor cortex during skilled walking. The 

human specific TA activity related to the biomechanical characteristics of upright walking and 

neural connectivity between TA and motor cortex supports the hypothesis that additional 

cortical involvement contributes to humans specific muscle activity to adapt bipedal upright 

walking. 

It is possible that mechanical instability of the upright bipedal walking due to narrow 

base of support (Kuo, 1999) also requires additional cortical involvement for locomotor control. 

Actually, an EEG study reported that the cortical activity in premotor regions differed between 

normal walking and body stabilized walking by elastic bands (Bruijn et al., 2015). Additionally, 

walking behavior of toddlers, who have immature corticospinal connections, display 

considerable postural instability (Assaiante et al., 1993; Bril and Brenière, 1993) and different 

muscle activation patterns from adults (Dominici et al., 2011), suggesting importance of the 

cortical muscular control for walking stability. Together, the above-mentioned biomechanical 

specificity of the upright bipedal walking would cause the greater cortical involvement in 

control of locomotor muscle activity.  

 In addition to humans, birds walk bipedally. However, walking posture between 

humans and birds is greatly different. Birds walk with a squatted position touching the ground 
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from the toe and the leg is bent at the foot contact timing (Alexander, 2004). On the other hand, 

humans walk erect with a heel-strike and their leg is almost completely extended at the heel 

contact timing. These different bipedal gaits have evolved independently in two vertebrate 

lineages, archosaurs and primates corresponding to birds and humans, respectively. Given the 

different evolutionary processes, for the discussion of the evolution of locomotor networks for 

mammals from fish to humans, there would be no problem without considering neural 

mechanisms for the bird bipedal walking. 

 

7. 4. Recruitment of the spinal locomotor modules by multiple neural pathways  

Although previous studies detected locmotor related cortical activations during walking (Gwin 

et al., 2011; Wagner et al., 2012; Bulea et al., 2015), relationships between the cortical activity 

and spinal locomotor networks have remained unclear so far. Regarding the relationships, study 

4 demonstrated activations of the locomotor modules can be decoded from EEG signals. The 

finding suggested that the spinal locomotor networks are activated or modified by descending 

commands from the cortex. In line with my finding, a previous study demonstrated that stroke 

patients can only utilize few number of modules due to a merging of the modules observed in 

healthy peoples, suggesting the cortical contribution in the recruitment of spinal locomotor 

modules (Clark et al., 2010). 

Regarding the recruitment of spinal locomotor modules, Study 3 suggested that the 

rostrocaudally traveling wave of activations in the spinal cord are involved in recruitment of 

locomotor modules in a proper sequence. In addition, recent rodent studies demonstrated that 

MLR neurons in the brainstem innervate the rhythm generation layer of spinal CPGs, and 

therefore, the MLR affects the recruitment of locomotor modules (Bouvier et al., 2015). It is not 

clear whether such contribution of brainstem to locomotor module recruitment can be extended 

to humans. Nevertheless, there is a possibility that the brainstem system for locomotor module 

recruitments is conserved in humans, because existence of MLR is strongly suggested (for 
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details, see section 1.2 in Introduction) (Piallat et al., 2009; Tattersall et al., 2014; Lau et al., 

2015). Additionally, comparison of extracted locomotor module types between walking (Studies 

1, 2 and 4) and air-stepping (Study 4) suggested that a locomotor module is recruited by loading 

afferent inputs related to the foot-contact.  

 Altogether, the locomotor modules can be recruited through different neural 

pathways including cortical descending drive, rhythm generation layer of the spinal CPGs, 

brainstem pathways and sensory feedback. The recruitment of locomotor modules by multiple 

neural pathways is depicted in Figure 7-1. In Study 1, small sets of locomotor modules were 

selectively recruited from multiple modules depending on locomotor speed. Therefore, 

Figure 7-1. Recruitment of locomotor modules by multiple neural pathways. For 

walking, descending commands from the spinal cord, brainstem, and cortex and 

sensory feedback are integrated to selectively recruit and modulate spinal locomotor 

modules. An appropriate combination of locomotor modules is selectively recruited 

from multiple hard-wired modules for flexible generation of locomotor muscle 

activity. Circles filled with orange indicate activated locomotor modules and open 

circles indicate inactive locomotor modules. 
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integrated command from the multiple neural pathways would selectively recruits a set of 

locomotor modules from multiple hard-wired modules to generate appropriate muscle activity 

for the situation (Fig. 7-1). Thus, I could conclude that humans can easily execute walking and 

adapt the walking behavior to ever-changing walking environment by the simplification of 

complex muscle control by spinal locomotor modules as the lower level of the motor control 

hierarchy and the flexible recruitments of the modules by multiple neural pathways. 

 

7. 5. Future Directions   

In the present studies, I examined control of locomotor muscle activity in humans focusing on 

the role of the spinal cord and the cortex. In addition to the cortex and the spinal cord, it is well 

known that subcortical regions, such as basal ganglia, limbic system, hypothalamus, brainstem 

and cerebellum involve locomotor control (Takakusaki and Okumura, 2008). Nevertheless, in 

humans, role of these subcortical regions for control of locomotor muscle activity remains 

unclear. 

 Recently, MRI-Compatible treadmill devices have been developed to examine brain 

activity during walking (Dalla Volta et al., 2015; Martínez et al., 2016). Locomotor related 

subcortical regions in humans will be gradually revealed by fMRI measurement during walking 

thanks to such treadmill devices. Nevertheless, it must be noted that limited time resolution of 

fMRI is a barrier to explore detail relationships between locomotor muscle activity and detected 

locomotor related subcortical regions. 

 Deep brain stimulation (DBS) is a neurosurgical technic which electrically stimulate 

to a specific area of the brain region. DBS to pedunculopontine nucleus (PPN), which is a MLR 

region in humans (Piallat et al., 2009; Tattersall et al., 2014; Lau et al., 2015), has recently 

attempted in Parkinson's disease patients to restore their waling behavior (Fasano et al., 2015). 

Recently, to examine the role of the PPN for walking control, extracellular single-unit 

recordings of PPN from the electrodes for DBS has been performed by several studies (Tatssall 
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et al., 2014; Lau et al. 2015). This method can record electrical signals, which has high time 

resolution enough to examine the relationships between locomotor muscle activity and 

brainstem activity. Nevertheless, it should be kept in mind that the recorded signals are obtained 

from PD patients and therefore it is possible that the recoded activity is different from those in 

healthy peoples. 

  In addition, to investigate signals from deep brain regions such as basal ganglia and 

hippocampus, source estimation from high density EEGs (more than 128 channels) has been 

utilized (Attal et al., 2007; Attal and Schwartz, 2013; Barzegaran et al., 2016). So far, this 

source estimation method has been used for static tasks. The applicability of the method to EEG 

signals recorded during dynamic movement needs further confirmation. If the source estimation 

method is robust for dynamic movement, it will advance our understanding of the role of 

subcortical regions for control of locomotor muscle activity in healthy peoples. 

 

7. 6. Clinical implications   

The present studies demonstrated the roles of the cortex and spinal circuits in the locomotor 

muscle control in healthy peoples. The understanding of the neural mechanisms of human 

locomotion would provide important fundamental knowledge to interpret gait deficits of 

patients with neural disorders such as stroke and SCI patients and to facilitate their gait 

rehabilitation. 

 Additionally, there is a possibility that my findings contribute to development of a 

novel neuroprosthesis for SCI patients in future. A recent primate study demonstrated that 

monkeys with SCI have regained the ability for walking thanks to a novel technology that 

re-establishes communication between the brain and spinal cord (Capogrosso et al., 2016). In 

this primate study, firstly, spinal electrical stimulation patterns were created based on MN 

activation patterns estimated by similar method used in my Study 2 (Chapter 3). Then, walking 

related information was decoded from cortical signals, and the information triggered the 
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patterned electrical stimulation to the spinal cord. In this present thesis, I obtained detailed 

information about MN activation patterns for each locomotor module in the spinal cord over a 

wide speed range using a method based on anatomical evidences (Kendall, 1993) (Studies 2, 

Chapters 3). Additionally, stimulation patterns based on the traveling wave of neural activation 

in the spinal locomotor networks (Studies 3, Chapters 4) may contribute to construct effective 

spinal electrical stimulation systems. In addition, I demonstrated the feasibility of using scalp 

EEG to reconstruct the locomotor module activations using a brain decoding method based on 

machine learning (Study 4, Chapter 6). Therefore, based on a similar concept of the primate 

study (Capogrosso et al., 2016), the findings and technics in the present studies could contribute 

to develop a novel neural-interface system that re-connect between the brain and spinal cord for 

patients with SCI (Fig. 7-2). 
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Figure 7-2. A conceptual scheme of a neural-interface system that enabled 

communication between the brain and spinal cord in humans. Locomotor related 

information is decoded from cortical neural activity. The decoded information is 

transmitted, as trigger signal, to an implanted stimulation device on the spinal cord 

via a wireless connection. The device sends patterned electrical stimulation that 

activated spinal locomotor modules in a proper sequence to generate locomotor 

muscle activity. In this system, the findings of Studies 2 and 4 would contributes 

development of a brain decoding technic and optimization of an electrical stimulation 

pattern, respectively. 
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7. 7. Concluding remarks 

The purpose of the thesis was to explore and describe the roles of the spinal cord and the cortex 

in muscle control of human bipedal locomoton. 

Based on the five studies, I conclude that human-specific upright biped locomotion is 

performed by cortically modifying the basic muscle activity pattern generated spinal locomotor 

circuits, which have high similarity to those for non-human vertebrates. The spinal cord 

simplifies the complex locomotor muscle activity through locomotor modules, and therefore 

would allow us to walk effortlessly. Cortical activity would be involved in activation of the 

locomotor modules for modifying muscle activity to adapt the biomechanical requirements of 

the upright bipedal gait. Additionally, the cortical involvement in muscle control is increased 

during walking under challenging environment, such as uneven terrain and slippery surface.  

 The novel findings should advance our understandings of neural control of human 

bipedal locomotion. Additionally, the commonality and differences in locomotor control 

between quadruped vertebrates and humans provide important insights into the evolution of 

vertebrate locomotion. Moreover, the brain decoding technics and detected locomotor related 

cortical activity could accelerate development of novel effective brain–machine interfaces for 

walking rehabilitation. 
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