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Introduction
The real world, compared to simulated models, contains massive amounts
of information. The amount of information itself is not complexity, but the
way this information comes together is referred as environmental complexity.
After losing popularity in the 2000s, neural-network based processing has
been gathering attention again thanks to the impressive results obtained
by the Deep Learning community. Despite progress in classification and
reinforcement learning, deep learning networks sill have issues such as the lack
of robustness to noise and the difficulty to optimize hyper-parameter values.
In this work, we present two learning algorithms for two different kinds of
artificial neural networks that are unrelated to deep learning methods, but
provide promising results learning under high environmental complexity. The
first algorithm, Learning by Stimulation Avoidance (LSA), allows a spiking
network to learn a desired behaviour despite intrinsically noisy inputs and
outputs. The second algorithm is applied to a new kind of neural network
that changes its number of neurons, which we name Epsilon Network (e-
network). The e-network adapts its architecture to the complexity of a data
stream in real time.
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1 LSA
1.1 Introduction
Inspired by the work of Shahaf and Marom [1], we argue for the existence
of a principle allowing to steer the dynamics of a biologically inspired neural
network: “Learning by Stimulation Avoidance” (LSA). We show that LSA
works in a minimal network, then in a 100-neuron network, and use it in a
embodied application: learning of wall avoidance by a simulated robot.

We simulate excitatory neurons and inhibitory neurons and add a Spike
Timing Dependent Plasticity rule. The neurons receive three kinds of input:
(1) Zero-mean Gaussian noise is injected in each neuron at each time step;
(2) External stimulation, which is stopped when the network exhibits the
desired output. (3) Stimulation from other neurons: when a pre-synaptic
neuron spikes, the value of the weight is added as an input for the post-
synaptic neuron.

1.2 Results
In the first experiment we examine the weights dynamics in 3 fully connected
excitatory neurons to see how LSA works when stimulation is applied to a
network with an input neuron, a hidden neuron and an output neuron. The
minimal network dynamics follow the principle of LSA. When spiking of the
output neuron stops the stimulation in the input neuron, the weight from
input to output is increased (reinforcement). When spiking of the output
neuron starts external stimulation to the input neuron, the weight from input
to output is pruned (pruning).

In the second experiment we find that global bursts in the network can
impair learning and we suppress bursting in a 100-neuron network by reduc-
ing the number of connections and applying high internal noise. The goal is
to obtain selective learning, by increasing the weights to Output Zone A and
prune those to Output Zone B, therefore obtaining different firing rates. We
fix two experimental conditions:
(Stop Condition) Input Zone A is stimulated. After n >= 1 neurons in Out-
put Zone A spike, the external stimulation to Input Zone A is stopped. If
n >= 1 neurons do not spike in Output Zone A after 10,000 ms of stimula-
tion, the stimulation is also stopped. After a random delay, the stimulation
starts again. (Stimulus Condition) After n >= 1 neurons spike in Output
Zone B, the whole network (excluding inhibitory neurons and Output Zone B
itself) is stimulated for 10 ms. As a result of LSA, the network moves from a
state where both output zones fire at the same rate, to a state where Output

2



Zone B fires at lower rates and Output Zone A fires at higher rates.
In the last experiment we simulate a robot with distance sensors that

stimulate the network when the robot is close to walls: the more the robot
learns to avoid walls, the less stimulation it receives. As a result, the robot
learns to avoid walls. Here the stimulation is not controlled by the experi-
menter, but by the interaction between the robot and the environment. LSA
is organized by the robot in the environment, and is more robust to noise
than a standard wall avoidance algorithm.

2 Epsilon-Network
2.1 Introduction
We propose the Epsilon Network (ϵ-network, related to [2]), a network that
automatically adjusts its size (adding and removing neurons and weights)
to the complexity of a stream of data while performing online learning. We
evaluate it on simple, complex, and noisy videos and show that the final
number of neurons is a good indicator of the complexity and predictability
of the data stream.

The network is composed of binary valued neurons and 2 types of weights:
prediction weights PW and instantaneous weights IW. The IW propagate
activation through the network. The PW are only used to calculate the pre-
dicted activation of the neurons. There are no layers, and initially there are
no PW in the network, only disconnected neurons. The difference between
the prediction computed by the network and the actual input at t + 1 is
called surprise and is used to update the weight values and add neurons and
PW to minimise the value of the surprise; simultaneously, redundancy is cal-
culated by finding equivalent output probabilities on neurons, and redundant
neurons are pruned. Two neurons are fused together if they have the same
output values; their input weights are reported to the fused neuron. (Fig. 1),

2.2 Results
In the 1st experiment we perform a simple modeling task with a time se-
ries consisting frames showing a ball falling. The network starts with 1500
neurons sensitive to the pixels from the images. The network is trained by
looping on these images; we find that the number of neurons decreases until
there are only 4 neurons left. The number of weights increases at first, then
decreases proportionally with the number of neurons. At the end of the task,
the prediction is perfect and the network exactly represents the automaton
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Figure 1: Example of snapping procedure. Two neurons are fused to-
gether if they have the same output values; their input weights are reported
to the fused neuron.

describing the time series.
In the second experiment, we compare the results for a simple, repetitive

video and a complex video with the same number of frames. By the end of
the experiment, both networks achieve equally good prediction performance,
but the number of neurons and connections is much higher for the complex
video sequence. We also compare a video with and without noise, in order
to see the difference in network structures. We find that the network needs
more neurons to deal with the noisy video. Finally, we compare ϵ-network
to a state of the art Deep learning algorithm and find that although the
performance of our network is worse by a factor 10, it uses 107 times less
neurons than the Deep Learning network, trains faster, and does not require
parameter tuning.
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