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Chapter 1

Introduction

Macroscopic responses observed in solids have always been supported by the sym-

metry breaking in a state of matter. For example, piezoelectricity and natural op-

tical activity emerge in spatial-inversion symmetry (SIS) broken materials. Time-

reversal symmetry (TRS) breaking induces the Hall effect and Faraday effect. It

turned out recently that there is a class of systems that require the breaking of

both SIS and TRS in materials. The breakthrough is provided by the discovery of

the magnetically induced ferroelectrics (multiferroics)[1, 2]. Several developments

followed such as magnetoelectric effect[3], a variation of the magnetization induced

by the electric field and the electric polarization controlled by the magnetic field.

The breaking of both SIS and TRS also affects the dynamics of elementary excita-

tions; the energy and decay rate of wave vector +k become not equivalent to those

of −k. This phenomenon is non-reciprocity. The non-reciprocity is nontrivial,

because the origin is intrinsic interactions appearing only in both SIS and TRS

broken materials such as the spin-orbit interaction. This thesis is devoted to the

non-reciprocal phenomena relevant to magnon excitation.

The contents of this thesis are as follows:

In Ch. 1, we review previous studies about non-reciprocal phenomena related

to magnon excitations.

In Ch. 2, we explain our experimental methods, which include the microwave

measurement setup and the crystal growth.

In Ch. 3, we show the magnon non-reciprocal propagation in a chiral ferro-

magnet LiFe5O8. Its non-reciprocity originates from the relativistic asymmetric
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magnon band.

In Ch. 4, we demonstrate the magnetoelectrical control of non-reciprocal mi-

crowave propagation in a ferroelectric helimagnet Ba2Mg 2Fe 12O 22.

In Ch. 5, we show the magnon modes in a non-centrosymmetric antiferromag-

net Ba 2MnGe 2O 7, and quantitatively explain the microwave non-reciprocity of

one mode by using spin wave theory, Kubo formula, and metal-ligand hybridization

mechanism.

In Ch. 6, we summarize this thesis and state prospects for the future.
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1.1 Non-reciprocal phenomena

Let us consider the electron band dispersion in order to discuss the relation between

the non-reciprocal phenomena and the symmetry breaking. When TRS and SIS

are both preserved, the dispersion is symmetric and spin-degenerated as shown in

Fig. 1.1(a). In a system with SIS but without TRS the energy splitting depending

on the spin state is realized as shown in Fig. 1.1(b). In this case, the energy disper-

sion is symmetric with respective to k. This corresponds to the Zeeman splitting

with a magnetic field. On the other hand, in a SIS-broken but TRS-preserved

system, the energy dispersion is horizontally shifted depending on the spin mo-

mentum as shown in Fig. 1.1(c). The examples are the Rashba effect[4] and the

Dresselhaus effect[5]. Then, in a system without TRS and SIS, the band dispersion

is asymmetric regardless of spin state as shown in Fig. 1.1(d). In this case, it is

expected that an electron non-reciprocally propagates. In fact, the non-reciprocal

electron propagation has been reported in systems without TRS and SIS, such

as a chiral material with magnetic field[6], a material with electric and magnetic

fields[7], and the edge of topological insulator with magnetic field[8]. Because the

relation between the symmetry and energy dispersion is applicable to the other

elementary excitations such as photons and magnons, the non-reciprocity is also

expected for these excitations in SIS and TRS simultaneously broken systems.

For microwave, the non-reciprocal device was designed by the asymmetric

configuration of macroscopic ferromagnetic component, such as the isolator [Fig.

1.2(a) and 1.2(b)]. The non-reciprocity due to material symmetry breaking can be

controlled by the external fields. This seems useful for the further functionalization

of non-reciprocal microwave device.

In this thesis, we focus on the non-reciprocal phenomena relevant to magnon

excitations in microwave region. Specifically, there are two topics; one is non-

reciprocal microwave propagation around magnon excitations and the other is

non-reciprocal magnon excitations. Following Sections 1.2 and 1.3 describe the

overview of electromagnetic wave (including light and X-ray) and magnon non-

reciprocities, respectively.
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fig:electronband

Figure 1.1: Electron band dispersions with several symmetry breaking.

(a)-(d) Electron band dispersions (a) in a material that has TRS and SIS, (b) in a

material with SIS without TRS, (c) in a material with TRS without SIS, and (d)

in a material without SIS and TRS.

1.2 Non-reciprocal directional dichroism in mul-

tiferroics

Magnetochiral effect and Optical magnetoelectric effect

Electromagnetic wave propagation in symmetry-broken material has been studied

for long time, since Arago discovered the optical activity in a solution of quartz[9].

Then Faraday discovered the similar rotational effect due to the magnetic field[10].

Pasteur found that the optical activity microscopically originated from the molec-

ular structure[11]. The Faraday effect and the optical activity can be explained

by the off-diagonal elements of dynamical electric susceptibility tensor χee
αβ and

the diagonal elements of dynamical magnetoelectric susceptibility tensors χem
αα and
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fig:FaradayFigure 1.2: Non-reciprocal phenomena in electromagnetic wave. (a) The

Faraday rotation in linearly polarized light is used for the isolator or circulator

with a ferrite rod. (b) Microwave is non-reciprocally absorbed due to the classi-

cal non-reciprocal magnon mode on the coplanar waveguide[12]. (c)-(d), (c) The

magnetochiral and (d) the optical magnetoelectric effects are non-reciprocal even

in the unpolarized light.

χme
αα (for example, see [13]). Here the dynamical susceptibilities are defined as

Bω = µ0

[
1̂ + χmm

]
Hω +

√
ε0µ0χ

meEω,

Dω = ε0 [1̄ + χee]Eω +
√
ε0µ0χ

emHω, (1.1)

where χmm is the dynamical magnetic susceptibility tensor, Bω and Dω are dy-

namical magnetic induction and dynamical electric induction, Eω and Hω are the

electric and magnetic fields of a plane wave at a position r and time t with an angu-

lar frequency ω and a wave vector k, Eω,Hω ∝ exp(−iωt+ik·r), and µ0 and ε0 are

the magnetic permeability and permittivity in vacuum, respectively. The Faraday

effect is the non-reciprocal phenomenon of the linear polarized light, whereas the

non-reciprocal phenomena of the unpolarized light was introduced as the higher

order effect by Wagnière and Meire[14, 15], and Barron and Vrbancich[16]. They

showed that the off-diagonal elements of the dynamical magnetoelectric suscepti-

bility χem
αβ , χ

me
βα provided the non-reciprocal directional dichroism (NDD). For ex-
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ample, in magnetoelectric media, which shows the magnetoelectric effect such as

multiferroics, the Maxwell’s equation are described as a function of the dynamical

susceptibilities

k× Eω = ω
{
µ0

[
1̂ + χ̂mm(ω)

]
Hω +

√
ε0µ0χ̂

me(ω)Eω
}
, (1.2)

k×Hω = −ω
{
ε0
[
1̂ + χ̂ee(ω)

]
Eω +

√
ε0µ0χ̂

em(ω)Hω
}
. (1.3)

For example, in a linearly polarized light, k ∥ x, Hω ∥ y and Eω ∥ z, the complex

refractive index is expressed as

n(k±) =

√
(χme

yz − χem
zy )

2

4
+ (1 + χee

zz)(1 + χmm
yy )∓

χme
yz + χem

zy

2
, (1.4)

where k+ and k− are wave vectors parallel and anti-parallel to x-axis, respectively.

From the above form of the complex refractive index, the difference of the absorp-

tion coefficients ∆α is depending on the imaginary parts of the off-diagonal terms

of the dynamical magnetoelectric susceptibilities.

∆α = ω
√
ε0µ0Im [n(k+)− n(k−)] = −ωε0µ0Im [χem

xz + χme
zx ] (1.5)

On the other hand, in a linearly polarized light, k ∥ x,Hω ∥ z and Eω ∥ y, the

difference of the absorption coefficients is also finite.

∆α = ωε0µ0Im
[
χme
zy + χem

yz

]
(1.6)

In this way, the absorption coefficient is depending on the direction of the wave

vector even in the unpolarized light. For the unpolarized light in a chiral material

that has the chiral point groups such as 222, 422, 622, 32, 23, 432, 1, 2, 3, 4, and 6,

NDD appears in the Faraday geometry where a wave vector k and a magnetization

M are parallel to each other (k ∥ M), which is the magnetochiral (MCh) effect

(Fig. 1.2c). In addition the similar NDD was predicted in the Voigt geometry (k ⊥
M) with the magnetization perpendicular to the electric polarization P of a polar

material that has the polar point groups such asm,mm2, 3m, 4mm, 6mm, 1, 2, 3, 4,

and 6[17], which is the optical magnetoelectric (OME) effect. The MCh effect is

expressed as the change of complex refractive index ∆N ∝ γ(k · M) and the

OME effect is expressed as ∆N ∝ k · (P × M), where γ symbolizes chirality.

The microscopic origin of NDD is expressed as the dynamical magnetoelectric
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susceptibilities introduced by the linear response theory or Kubo formula (see

Appendix ??).

χme
βγ =

NV

h̄

√
µ0

ε0

∑ ⟨0 |∆Mβ|n⟩ ⟨n |∆Pγ| 0⟩
ω − ωn + iδ

(1.7)

χem
βγ =

NV

h̄

√
µ0

ε0

∑ ⟨0 |∆Pβ|n⟩ ⟨n |∆Mγ| 0⟩
ω − ωn + iδ

(1.8)

χmm
βγ =

NV

h̄
µ0

∑ ⟨0 |∆Mβ|n⟩ ⟨n |∆Mγ| 0⟩
ω − ωn + iδ

(1.9)

χee
βγ =

NV

h̄

1

ε0

∑ ⟨0 |∆Pβ|n⟩ ⟨n |∆Pγ| 0⟩
ω − ωn + iδ

(1.10)

HereN is the number of unit cell, V is the volume of unit cell, ∆M is the dynamical

magnetization, and ∆P is the dynamical electric polarization, |0 > is the ground

state and |n > is the excited state. Thus, the microscopic origin of NDD is the both

finite excitations of magnetization and polarization. These excitations depend on

the material properties, such as the lattice and magnetic structures. Although we

can predict the possible of NDD from the material symmetry, in order to obtain

the details, it is necessary to calculate χem and χme in each material.
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ig:Rikken

Figure 1.3: Observation of magnetochiral effect and optical magnetoelec-

tric effect via optical transition. (a) Rikken et al. observed NDD in the chiral

molecular Eu((±)tfc)3 with the external magnetic field. g indicates the difference

of luminescence intensity between the magnetic field parallel to the wave vector

and antiparallel to the wave vector. The inset figure shows the field dependence of

the magnetochiral anisotropy and the inset sketch expresses the molecular struc-

ture of Eu(tfc)3. Reprinted figure from [18]. Copyright c⃝1997, Rights Managed

by Nature Publishing Group. (b),(c) the difference of absorption coefficient in ±E

was measured by the Lock-in amplifier in the AC electric field as the amplitude

∆αMEA. ∆αMEA was plotted as a function of amplitude of (b) magnetic field B and

(c) electric field E. Reprinted figure from [19]. Copyright 2002 by the American

Physical Society.

NDD in optical region

After the prediction of NDD by Wagnière and Meire, and Barron and Vrbancich,

NDD was first observed by Rikken et al. in visible region[18]. They utilized the

luminescent transition in Eu((±)tfc)3 and showed the magnetochiral luminescence

anisotropy in unpolarized light as shown in Fig. 1.3(a). They observed the NDD

depending on the sign and magnitude of magnetic field in the situation where the
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wave vector was parallel to the magnetic field. Five years after the observation

of the MCh effect, Rikken et al. also observed the OME effect[19] by using the

optically isotropic cubic crystal Er1.5Y1.5Al5O12 (ErYAG) which has narrow and

relatively strong optical transitions. They observed the finite difference of absorp-

tion coefficient of unpolarized light in the ErYAG crystal with the magnetic field

H ⊥ the AC electric field at 1.4 kHz E ⊥ k as shown in Fig. 1.3(b). Their results

show that the amplitude and sign of the OME effect depend on the direction and

amplitude of the electric and magnetic fields. A considerable number of studies

have been conducted on NDD in a wide variety of energy regions since Rikken et

al. observed the NDD due to the MCh and OME effects ( Tables 1.1 and 1.2).

Table 1.1: Non-reciprocal directional dichroism owing to the MCh effect observed

in several energy regions.

Energy Controllable by H Controllable by H&E

Hard X-Ray {Tb[Ni(pro)2]6}3+[20] -

20-100 keV [Mn-NIT]∞, [Co-NIT]∞[21]

(5-25 EHz)

UV H4TPPS4[22] -

3.3-124 e)

(0.8-4 PHz)

Visible Eu(tfc)3[18] -

1.7-3.3 eV [N(CH3)(n-C3H7)2(s-C4H9)][MnCr(ox)3][23]

(425-825 THz) CuB2O4[24]

H4TPPS4[22]

Terahertz Ba2CoGe2O7[25, 26] -

0.4-40 meV X2CoSi2O7(X=Ca,Sr)[26]

(0.1-10 THz) CuFe1−xGaxO2[27]

Microwave metamaterial(Cu chiral wire w/ ferrite)[28] -

4-400 µeV Cu2OSeO3[29]

(1-100 GHz) CuB2O4[30]
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Table 1.2: Non-reciprocal directional dichroism owing to the OME effect observed

in several energy regions.

Energy Controllable by H Controllable by H&E

X-Ray - GaFeO3[31]

2-20 eV

(0.5-5 PHz)

Visible GaFeO3[32] -

1.7-3.3 eV CuB2O4[33, 24, 34]

(425-825 THz)

Infrared SL(LaMnO3/SrMnO3/LaAlO3) [35] ErYAG[19]

1.2 meV-1.7 eV N2 Gas[36]

(0.3-425 THz)

Terahertz Ba2CoGe2O7[37] (Eu,Y)MnO3[39]

0.4-40 meV BiFeO3[38] (Gd,Tb)MnO3[40]

(0.1-10 THz) MnWO4[41]

Microwave Cu2OSeO3[42] -

4-400 µeV

(1-100 GHz)

NDD owing to the magnon excitations in terahertz and mi-

crowave regions

NDD has been observed owing to the optical transitions in optical regions (∼ eV).

On the other hand, in the terahertz and microwave regions the NDD around the

magnetic resonance excitations has been discerned. In particular, the electromagnon[43,

44], which is the electrically active magnon mode, shows notable NDD owing to

the large electromagnetic coupling. Miyahara and Furukawa[45, 46] show that the

origin of NDD in the Nambu-Goldstone magnon modes is the toroidal magnon

which is the dynamical toroidal moment Td = (∆P∗ × ∆M − ∆M∗ × ∆P)/2,

where ∆M and ∆P are the fluctuations of M and P, respectively. It indicates

that the NDD of Nambu-Goldstone mode is not directly related to the finite P×M

but the finite ∆P×∆M is essential for the NDD of Nambu-Goldstone mode.
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In 2011, Kézsmárki et al.[37] and Takahashi et al.[39] first observed the OME

effect owing to the electromagnon excitation in multiferroics with large magnetic

fields in the terahertz region, respectively. Kézsmárki et al. studied the multifer-

roic antiferromagnet Ba2CoGe2O7 which has the magnetoelectric coupling caused

by the metal ligand hybridization mechanism[47] as shown in Fig. 1.4(a). Figure

1.4(a) shows that the absorption coefficients are dependent on the sign of the mag-

netic field. The absorption coefficients are also shown to depend on the sign of the

polarization in their paper. In the magnetic field along [100], Ba2CoGe2O7 has the

chiral point groupmm′2′. Bordács and Kézsmárki et al.[25] also observed the MCh

effect by using Ba2CoGe2O7 under the large magnetic field in the terahertz region

[Fig. 1.4(b)]. Miyahara and Furukawa calculated the dynamical susceptibilities in

Ba2CoGe2O7, and they are consistent with the experimental results[48].

fig:NDDBa2CoGe2O7

ω ω

Figure 1.4: Non-reciprocal directional dichroism owing to electromagnon

in Ba2CoGe2O7 in terahertz region. (a),(b) The absorption coefficient of the

polarized terahertz light is presented in Ba2CoGe2O7 with (a) k ∥ P×H[37] and

(b) the magnetic field Bdc ∥ k[25] in antiferromagnetic state. (a) Reprinted figure

from [37]. Copyright 2011 by the American Physical Society. (b) Reprinted figure

from [25]. Copyright c⃝2012, Rights Managed by Nature Publishing Group.

On the other hand, Takahashi et al. utilized the multiferroic helimagnet

Eu0.55Y0.45MnO3 with the polarization induced by the spiral spin structure[49]
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which can be controlled by the poling electric field. Miyahara and Furukawa

calculated the dynamical susceptibilities in a multiferroics with the spin current

mechanism, and suggested the possibility of completely non-reciprocal (one-way)

absorption of electromagnetic waves[46].

A few years after the observation of NDD in the terahertz region, NDD has

been reported in the microwave region by using magnon excitations in multifer-

roics Cu2OSeO3[42, 29], CuB2O4[30], and the metamaterial[28]. Okamura et al.

observed the non-reciprocal microwave absorption depending on the chirality and

the sign of the magnetic field in the multiferroic helimagnet Cu2OSeO3 in which

the magnetoelectric effect can be induced by the metal ligand hybridization mech-

anism as shown in Fig. 1.5(a)[42]. They obtained the NDD owing to the conical,

skyrmion and ferromagnetic magnon excitations. In Voigt geometry, NDD was ob-

served in Cu2OSeO3 [Fig. 1.5(b)] and they indicated that the amplitude of NDD

depended on P/M as shown in Fig. 1.6. Mochizuki calculated the dynamical sus-

ceptibilities in Cu2OSeO3, and they are almost consistent with the experimental

results[50]. Recently, Nii et al. reported the MCh effect owing to the paramagnetic

resonance in CuB2O4 and they clarified the difference of the magnetic field direc-

tional dependence of NDD between the MCh effect and the classical non-reciprocal

magnon mode[30]. They explained their results from the classical calculation of

the dynamical magnetoelectric susceptibilities, χem
zy ∝ ∂∆Pz

∂Hω
y
, by using the Landau-

Lifshitz-Gilbert equation[52].

Thus, the MCh and OME effects can be observed also in the microwave re-

gion. Nevertheless, there are still several issues to be explored for NDD in the

microwave regime owing to the magnetic excitations. The magnetic excitations

in the microwave region are the paramagnetic or ferromagnetic resonance. The

excitations in long period magnetic structures such as the conical or skyrmion

lattice are also discerned as mentioned above. The microwave NDD owing to the

staggered antiferromagnetic magnon excitation has never been reported, because

the antiferromagnetic magnon excitation energy tends to be so higher than the

microwave region in almost antiferromagnets. Incidentally, while the magnetic

control of the microwave NDD has been reported, the electrical control of the

microwave NDD is not reported so far.

12



fig:NDDCu2OSeO3

Figure 1.5: Non-reciprocal directional dichroism in Cu2OSeO3 in mi-

crowave region. (a),(b) Microwave absorption spectra ∆S are plotted as a

function of frequency and the difference of microwave absorption ∆S12 − ∆S21

which indicates NDD is also plotted in Cu2OSeO3 with (a) k ∥ P×M[42] and (b)

k ∥ M[29] in the ferrimagnetic state. (a) Reprinted figure from [42]. Copyright

c⃝2013, Rights Managed by Nature Publishing Group. (b) Reprinted figure from

[29]. Copyright 2015, by the American Physical Society.
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fig:NDDCu2OSeO32

Figure 1.6: Magnetic field dependence of NDD in Cu2OSeO3 in microwave

region. The amplitude of NDD 2(∆S12 − ∆S21)/(∆S12 + ∆S21) is plotted as

a function of the magnetic field. The variation of P/M is also shown in the

same figure for comparison. Reprinted figure from [29]. Copyright 2015, by the

American Physical Society.

1.3 Non-reciprocal magnon propagation in non-

centrosymmetric ferromagnets

In this section, let us consider the non-reciprocity of magnon propagations. The

large difference from the non-reciprocity of electromagnetic waves is the interac-

tions which form the waves. While electromagnetic waves are described by the

Maxwell’s equations, the magnon propagates via the exchange interaction, the

magnetic dipole-dipole interaction and other magnetic interactions, so these two

are basically different physics.

For instance, magnetostatic waves, which are the classical magnetic waves via

the magnetic dipole-dipole interactions in ferromagnets (see Appendix A.2), have

the non-reciprocity when they propagate on the surface of the sample. On the

surface, SIS is broken and it has polar symmetry. Thus the non-reciprocity of

magnetostatic waves has the same symmetry to the OME effect [Fig. 1.7(a)].

However, the magnetostatic waves are the classical waves that obey the Maxwell’s

equations in the magnetostatic limit, so it is reasonable to suppose that the both
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non-reciprocities have the same symmetry.

ig:Nonrecimagnon1

�

Figure 1.7: Non-reciprocal magnon propagation modes. (a) The surface

magnetostatic wave or the Damon-Eshbach mode (DEM)[53] propagates along one

direction parallel to M × n, where n is the normal vector of the surface. (b),(c)

The magnon excitation energy in the IFMS is plotted in the wave number space

with (b) k ∥ P×M in a polar magnet and (c) k ∥ M in a chiral magnet.

On the other hand, both SIS and TRS breaking modifies the magnon band dis-

persion asymmetric[54, 55] owing to the antisymmetric exchange interactions such

as the Dzyaloshinskii-Moriya (DM) interaction[56, 57]. Therefore the asymmet-

ric magnon band dispersion may provide the non-reciprocal magnon propagation.

The DM interaction originates from the relativistic spin-orbit interaction, so the

magnon non-reciprocity is regarded as the relativistic band effect. Here, one ques-

tion is whether the magnon modes via the quantum magnetic interactions, such as

the exchange interaction and the DM interaction, have a non-reciprocal mode like

the DEM. In fact, it has been theoretically predicted so far that the non-reciprocity

due to the asymmetric band has been realized without TRS and SIS. Kataoka[55]

introduced the asymmetric magnon band dispersion in the induced ferromagnetic

state (IFMS) of a cubic and chiral helimagnet as shown in Fig. 1.7(b) by the
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Hamiltonian in the form of continuum approximation

H =

∫
dr

[
J

2a
(∇S)2 − D

a2
S · (∇× S)

]
+HA +HZ , (1.11)

where S is the spatially dependent spin moment divided by h̄ (Plank constant

divided by 2π), J is the ferromagnetic exchange interaction, D is the DM inter-

action, a is the lattice constant, and HA and HZ are the magnetic anisotropy

and Zeeman energy, respectively. From the above Hamiltonian he obtained the

following magnon dispersion with k ∥ M.

h̄ω(k) ≃ Ja2S(k − D

Ja
)2 +Hex (1.12)

Here Hex is an external magnetic field. Why is the magnon state at finite wave

number the smallest excitation energy state? This mechanism can be easily un-

derstand as the following. The DM interaction favor the right angle between the

two adjoining spins. The competition of the ferromagnetic exchange interaction

and the DM interaction results in the spiral spin structure as shown in Fig. 1.8(a).

When the magnetic anisotropy or external magnetic field is strong enough, collinear

ferromagnetic state is favored but the asymmetric magnon band is realized as a

remnant of spiral structure.

fig:DMI

�

�

Figure 1.8: DM interaction makes chirality in static and dynamical spin

states. (a) In the magnetic field, the conical magnetic state appears as the ground

state owing to the ferromagnetic exchange interaction and the DM interaction. The

pitch of spiral is depending on the ratio of D and J . (b) In the IFMS, the smallest

excited state at a given moment has the similar spiral structure, the pitch of which

is also dependent on the ratio of D and J .
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Table 1.3: Non-reciprocal magnon propagation owing to the asymmetric band.

Method Polar Chiral

SPEELS [Film] Fe/W(110)[58, 59] -

BLS [Film] Pt/CoFeB[60] -

[Film] Py/Pt[61, 62]

Microwave antennae [Film] YIG/GGG[63] -

Recently, the non-reciprocal magnon propagations in the polar magnetic mono-

layer or multilayer film have been reported by using the specific methods as shown

in Table 1.3. Zakeri et al. observed the non-reciprocal magnon propagation by

using the spin polarized electron energy loss spectroscopy (SPEELS) in 2 atomic-

layers Fe film on W (110) substrate[58, 59] [Fig. 1.9]. SPEELS detects the magnon

propagation energy (∼ THz) and wave vector (∼ Å−1) by the interaction be-

tween the spin polarized electron and magnon. They showed that the asymmetric

magnon band appeared by the interfacial DM interaction on the film [Fig. 1.9(a)]

and that the magnon life time depends on the structure of the asymmetric magnon

band [Fig. 1.9(b)]. The interfacial DM interaction makes the magnon band asym-

metric like the DM interaction in a polar material as shown in Fig. 1.7b. Af-

ter the observation by Zakeri et al., many research groups started to detect the

non-reciprocal magnon propagation by other methods. Half year ago of our re-

port, three groups independently observed similar non-reciprocal propagation of

magnon due to the interfacial DM interaction in magnetic multilayers by using the

Brillouin light scattering (BLS) method[60, 61, 62]. Nembach et al. found that

the difference of magnon frequencies with fixed k depended on the thickness of the

film as shown in Fig. 1.10. Its thickness dependence indicates the amplitude of the

DM interaction changes with the film thickness. On the other hand, Zhang et al.

observed the non-reciprocal magnon propagation in the centrosymmetric ferrimag-

net Y3Fe5O12 (Yttrium Iron Garnet, YIG) film on the Gd3Ga5O12 (Gadolinium

Gallium Garnet, GGG) substrate owing to the electric field which worked as like

the DM interaction in a polar material[63].
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fig:SPEELSFigure 1.9: Asymmetric magnon band dispersion obtained by SPEELS in

Fe/W(110). (a) The asymmetric magnon band dispersion obtained by SPEELS

in 2 atomic-layers Fe film on W(110) substrate. (b) From the analysis of the

SPEELS data the magnon damping distance is predicted. Reprinted figures from

[59]. Copyright 2012, by the American Physical Society.
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fig:BLS

Figure 1.10: Asymmetric magnon band dispersion obtained by BLS in

Py/Pt. (a)-(c) BLS spectra in the Py/Pt films with |k| =16.7 µm−1 are plotted

as a function of frequencies of Stokes and anti-Stokes processes. (d) The thickness

t dependence of the difference of peak frequencies −∆fDMI obtained from the

results in (a)-(c). Reprinted figures from [61]. Copyright c⃝2015, Rights Managed

by Nature Publishing Group.
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The studies of the non-reciprocal magnon propagation are far from sufficient.

In particular, the non-reciprocities in a chiral material have never been reported

so far. In ferromagnetic films or a polar material, it is difficult to discriminate the

non-reciprocal magnon propagation due to the asymmetric band from the DEM

caused by the magnetic dipole-dipole interaction. In contrast, the magnon non-

reciprocity of the chiral asymmetric band could be clearly identified, because it is

expected that the chiral magnon band is asymmetric along k ∥ M. Therefore the

observation of the magnon non-reciprocity is anticipated by using even the chiral

bulk magnet.

1.4 Purpose

As mentioned above, the non-reciprocal responses in the microwave region ow-

ing to the magnon excitation has been performed for the materials which has the

strong magnetoelectric coupling such as multiferroics. Nevertheless, some prob-

lems, which are interesting basically and for application, remain unanswered. In

order to resolve them, we studied the following three researches in this thesis.

1. We try to electrically control the microwave non-reciprocity by using the

type-II multiferroic helimagnet Ba2Mg2Fe12O22, where the electric polariza-

tion is induced by the inverse DM mechanism.

2. We observe the antiferromagnetic magnon modes in the microwave region

by using the multiferroic antiferromagnet Ba2MnGe2O7 where it is expected

that the exchange interaction and the magnetic anisotropy constant are

weak. We demonstrate that the Ba2MnGe2O7 provides the microwave non-

reciprocity under low magnetic fields to consider the difference of the non-

reciprocity in the two antiferromagnetic magnon modes. While NDD for

antiferromagnetic resonance in a high magnetic field was reported in the

terahertz region, our study uncovers the detail magnetic field dependence

of the energy dependent NDD of the classical (textbook-type) antiferromag-

netic resonance in a non-centrosymmetric antiferromagnet.

3. The magnon non-reciprocal propagation has been only reported in the film

with the polar-type DM interaction. The non-reciprocal magnon propagation
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due to the bulk crystal symmetry breaking and that with the chiral-type DM

interaction have never been studied so far. In this thesis I observe the non-

reciprocal magnon propagation by using a bulk single crystal of the chiral

ferrimagnet LiFe5O8 and the micro-fabricated microwave antennae.
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Chapter 2

Experimental method
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2.1 Microwave measurement

2.1.1 Coplanar wave guide

The microwave electric field and magnetic field distributions of the coplanar waveg-

uide (CPW)[12] are shown in Fig. 2.1, which is the transverse electric and magnetic

(TEM) mode. The characteristic impedance of the CPW depends on the dielectric

constant of the dielectric substrate and the ratio of the strip line width and the

gap between the strip line and the ground plane. We calculated the characteristic

impedance to set it 50 Ω by using the App CAD (Hewlett Packard).

fig:CPW

Figure 2.1: Electromagnetic fields distribution of TEM mode in CPW.

(a) The CPW has one strip center line (width w) and two ground plane (gaps

s) in the same plane (thickness t). (b) The alternating current propagates in the

strip line and provides the AC magnetic field Hω like the Oersted-field and the

AC electric field Eω perpendicular to the direction of the AC magnetic field and

the alternating current.
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2.1.2 Micro-fabricated microwave antenna

The Spatial distribution of the AC magnetic field in waveguides depends on the

structure of waveguides. For example, if the sample on the center of the CPW

is smaller than the slot line w, the sample is affected by the uniform microwave

magnetic field and the uniform magnon is excited. In contrast, if the sample

is larger than w, the microwave magnetic field is modulated in the sample and

the excited magnon is the superposition of several magnon modes with different

wave numbers. The wave number of the coupled magnon mode is analyzed by

the Fourier transformation of the amplitude of the microwave electric current[64].

Figure 2.2(a) illustrates the meander-type antenna which was designed by the

author to observe the non-reciprocal magnon propagation in Section 3.3. The

conducting path goes upward and turns back repeatedly 20 times in the antenna.

The magnetic field that the electric current along the meander-line provides is

spatially oscillated. Vlaminck and Bailleul calculated the wave number dependence

of the microwave magnetic field of coupled mode in the meander-type antenna by

the Fourier transformation of the microwave current[64]. We follow their method

and gain the wave number of the coupled mode in the simpler meander antenna

designed by the author. The width and the space of the electric path in the

antenna are a = 5 µm and the height of the antenna is 2b ≃ 1 mm, so the wave

length of meander structure is 20 µm. At the center of the antenna (y = 0), the

electric current only flows along the y direction. The y-direction electric current

is alternating along the horizontal x direction with the wave length λ = 20 µm

[Fig. 2.2(b)]. The Fourier transformation of the amplitude of y-direction current

shows that the y-direction electric current has the broad peak around k = 2π/(20

µm) = 0.314 µm−1 as shown in Fig. 2.2(c). Its HWHM (Half-width at half-

maximum) is about 0.007 µm−1. The magnetic field induced by the y-direction

electric current has the x and z components, so the spatially oscillating magnetic

field of the coupled mode at y = 0 also has the x and z components. On the

other hand, at the edge of the antenna (y = ±b), the x-direction electric current

only flows uniformly as shown in Fig. 2.2(d). The Fourier transformation of the x-

direction electric current provides a broad peak of the amplitude of the x-direction

electric current around k = 0 as shown in Fig. 2.2(e). Its HWHM is also about

0.007 µm−1. The magnetic field of coupled mode at the edge of antenna has the
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y and z components. Thus this microwave antenna can couple and excite the

magnon mode with wave number k ∼ 0 and k ∼ 2π/λ.

fig:meanderFT

Figure 2.2: Microwave current properties in wave number space at

meander-type microwave antenna. (a) Sketch of the meander antenna used

for the experiment in Section 3. The gray thick line shows the electric path. The

arrows along the electric path indicate the microwave current. (b) y-direction cur-

rent jy as a function of x at y = 0. (c) Square of Fourier transformed current

|jy(k)|2 at y = 0. (d) The microwave current along x, jx, as a function of x at

y = −b. (e) Square of Fourier transformed current |jx(k)|2 at y = −b. Reprinted

figures from [65]. Copyright 2015, by American Physical Society.

2.1.3 Probes of microwave measurement

We fabricated the two microwave measurement probes for the ranges DC-20 GHz

(probe-I)[Fig. 2.4(c)] and DC-40 GHz (probe-II)[Fig. 2.5(b)]. The probes should

be long forms, because the sample in the microwave device was measured in the
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magnetic field in a wide temperature range (1.8 - 300 K) by using the He4 super-

conducting magnet (Split Pair Magnet) with VTI system (OXFORD INSTRU-

MENTS Spectromag) as shown in Fig. 2.3. I used the two types of measurement

setup, which is connected to the measurement probe [Fig. 2.3]. Figure 2.3 shows

the broad band ESR (electron spin resonance) system by using the Network An-

alyzers for 0.3 MHz-20 GHz (Agilent Technologies E5071C) and for 10 MHz-40

GHz (Agilent Technologies N5230A). In this system we can measure the reflective

signals of port 1 S11 and of port 2 S22 and the transmittance signals from port 1

to port 2 S21 and from port 2 to port 1 S12. Sij is defined by

Sij[dB] = 10 log
Ain,porti[W]

Aout,portj[W]
, (2.1)

where Ain,porti is the amplitude of transmission wave in port i and Aout,portj is the

amplitude of incident wave from port j. We utilized the semi-flexible cables for

DC-20 GHz (HUBER+SUHNER SUCOFLEX 104) and for DC-40 GHz (Waka

R2BKMKM) to connect the instruments and probes.

fig:setmicroFigure 2.3: Setup of microwave measurement in magnetic field at liquid

Helium temperature. Sketch of the measurement system that we used in this

thesis. We measured the microwave response of two ports by utilizing the Network

Analyzer.
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Next, we introduce the details of the probes and devices. Firstly, we explain

the detail of the probe-I. The probe-I has the microwave semi-rigid cable for DC-20

GHz (KEYCOM ULT-04), of which the length is about 1.2 m. It consists of the 1

m hollow pipe (SUS304), the four coaxial cables for applying the electric field and

measuring the electric current, the four copper wires for the temperature control,

and the sample holder. Secondly, we show the detail of the probe-II. It is formed

by the 1 m hollow pipe (SUS304) with the thermal anchors, the microwave semi-

rigid cable for DC-40 GHz (Waka SP-22) which is 1.3 m, the three coaxial cables

for applying the electric field and measuring the electric current, the four copper

wires for the temperature control, and the sample holder. The all connectors

used in the interface between the cryostat and the outer space are closely sealed

by a hermetic seal. The connectors on the sample holder only consist of the

non-magnetic materials such as BeAu. The characteristic impedance of all the

connectors and cables for microwave is 50 Ω. The both probes can be connected

to the two types of sample holders for the measurement in the in-plane magnetic

field [Fig. 2.4(a) and 2.4(b)] and in the magnetic field perpendicular to surface

[Fig. 2.5(a)].

Finally, we show the details of microwave devices that we used in the current

thesis. We designed the microwave devices to observe the amplitude of the mi-

crowave transmission or reflection through samples [Fig. 2.4(a) and 2.5(a)] and

the amplitude of the magnon propagation as the microwave transmittance by us-

ing the micro-fabricated antenna [Fig. 2.4(b)]. In order to measure the simple

microwave absorption due to magnon excitations, we measure the reflection signal

S11 with the sample on the edge of the short CPW as shown in Fig. 3.4(a). The

CPW patterned devices are designed by the author and made by Kansai electron-

ics Co., Ltd.. It consists of the glass-epoxy substrate sandwiched between copper

films (Panasonic R-5775, dielectric constant ϵr = 3.38). In order to measure the

non-reciprocal microwave propagation, we measure the transmission signals S21

and S12 along the CPW through samples as shown in Fig. 4.1(c). For the mea-

surement of the nonreciprocal magnon propagation micro-fabricated pattern is

needed as shown in Fig. 2.4(b). We patterned the meander-type antennae to the

sapphire substrate (dielectric constant ϵr = 9.4) by using the photo-lithography

and the electron beam evaporation and I attached the sapphire substrate to the
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glass-epoxy substrate by using the Al wire bonding. The photomask was made by

Toyo Precision Parts MFG.CO.,LTD and designed by the author.

fig:probe1Figure 2.4: Microwave devices for applying in-plane magnetic field and

measurement probe for DC-20 GHz. (a),(b) The CPW patterned microwave

devices with microwave connectors. The distance of two connectors is 16.2 mm.

One device has only the macro CPW which is the open or (a) short waveguide. In

contrast (b) the other device can be attached to the other substrates with micro-

fabricated patterns by the wire-bonding. (c) The sample space of the microwave

measurement probe-I that we used in Chapters 3 and 4.
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fig:probe2

Figure 2.5: Microwave devices for applying magnetic field perpendicular

to surface and measurement probe for DC-40 GHz. (a) The CPW pat-

terned microwave devices with microwave connectors. (b) The sample space of the

microwave measurement probe-II that we used in Chapter 5.

2.2 Preparation of single crystal samples

We prepared the single crystals, LiFe5O8, Ba2Mg2Fe12O22 and Ba2MnGe2O7, for

microwave measurements by using the Flux method and the Floating Zone (FZ)

method. Both methods are widely used for the single crystal growth. The Flux

method takes a long time (∼ one month) and makes small crystals (∼ mm) com-

pared with the FZ method (∼ one week, ∼ cm). However it provides the higher

quality crystal than the FZ method. We characterized the obtained crystals by

using the Laue and the Diffractometer methods of X-ray diffraction and the mag-

netization measurement by MPMS (Quantum Design). The crystal axis was found

by the Laue method and the crystals were cut and shaped by the diamond cutter.

2.2.1 LiFe5O8

The single crystals of LiFe5O8 were prepared by the Flux method. According to

the Beregi et al.’s paper[66], We chose the PbO-B2O3 flux and the Pt crucible.
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The chemical formula and the mixing molar ratio that I used are the following.

3Li2CO3 + 10Fe3O4 +
5

2
O2 → 2LiFe5O8 + CO2 ↑ (2.2)

Li2CO3 Fe3O4 B2O3 PbO

1.17 mol% 0.97 mol% 2.94 mol% 4.43 mol%

First, we increased the temperature at rate 50 ◦C/hour up to 1100 ◦C, and kept

in 12 hours, then decreased the temperature at rate −1◦C/hour to 600 ◦C. We

got the mm-scale single crystals of LiFe5O8 by crushing the obtained crystals to

separate the LiFe5O8 and Flux materials.

2.2.2 Ba2Mg2Fe12O22

The single crystals of Ba2Mg2Fe12O22 were also prepared by the Flux method.

Following the Ishiwata et al.’s paper[67], we chose the Na2O-Fe2O3 flux and the

Pt crucible. The chemical formula and the mixing molar ratio that we used are

the following.

2BaCO3 + 6Fe2O3 + 2MgO → Ba2Mg2Fe12O22 + 2CO2 ↑ (2.3)

BaCO3 MgO Fe2O3 Na2CO3

16.33 mol% 16.33 mol% 55.10 mol% 12.24 mol%

First, we increased the temperature at rate 50 ◦C/hour up to 1420 ◦C, and kept

in 20 hours, then decreased the temperature at rate −0.8 ◦C/hour to 1000 ◦C. we

obtained the mm-scale single crystals of Ba2Mg2Fe12O22.

2.2.3 Ba2MnGe2O7

We prepared the single crystals of Ba2MnGe2O7 by using the FZ method in

Hanasaki lab of Osaka university with the help of Dr. Murakawa. Following

the Murakawa et al.’s paper[68], we mixed the powders of BaCO3, Mn3O4 and

GeO2. After four times of the O2 annealing for 2 days at 1000 ◦C in the alumina

crucible, we obtained the cm-scale single crystal rod by the FZ method in flowing

O2 gas with the growth speed of 0.7 mm/hour.
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Chapter 3

Non-reciprocal magnon

propagation in a chiral

ferromagnet

In this chapter, we show the observation of the non-reciprocal magnon propagation

in the bulk chiral ferromagnet LiFe5O8 where the lattice structure of the bulk

breaks SIS.
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3.1 Fundamental properties

LiFe5O8 is crystallized into a spinel-type crystal structure as shown in Fig. 3.1(a).

This crystal has the similar structure of magnetite, but in this material Li ions

are substituted for the one-fourth of Fe ions at the B site of the spinel struc-

ture and the ordered Li ions break the mirror symmetry (space group P4132)[69].

The magnetic moments of Fe ions are ferromagnetically (more precisely, ferrimag-

netically) ordered by the ferromagnetic exchange interaction around 900 K[70].

Thus the uniform DM interaction works in the LiFe5O8 sample, and the effective

Hamiltonian can be obtained as follows[55]:

H =

∫
dr

[
J

2a
(∇S)2 − D

a2
S · (∇× S)

]
+HA +HD +HZ . (3.1)

Here HD is the magnetic dipole-dipole interaction. In above Hamiltonian without

HA, the helical magnetic structure is realized due to the DM interaction at zero

magnetic field as observed in MnSi[71]. Nevertheless, the ferromagnetic state

appears in this material, because the DM interaction is weaker than HA. However

we should notice that the magnetic anisotropy is also not so large. Figure 3.1(b)

shows the magnetization curves of the LiFe5O8 sample, which is utilized in this

study, for various magnetic field directions. We see from Fig. 3.1(b) that the

magnetic anisotropy is small in the LiFe5O8 sample, because all the magnetization

curves do not show hysteresis and saturate in a small magnetic field (∼ 0.2 T).

The small anisotropy affected the magnetization curves as the diamagnetic field.

The effect of the weak DM interaction can be observed from the viewpoint of the

magnon excitation.

As Kataoka theoretically suggested[55], the uniform DM interaction modulates

the magnon band asymmetric as shown in Fig. 1.7(c). Therefore the non-reciprocal

magnon propagation is expected in this system. However, we must draw attention

to the effect of HD that is dominant in the magnon propagation around k = 0,

which is known as the magnetostatic waves. For the plate-like sample with the in-

plane magnetic field, the magnetostatic wave propagation along the magnetization

direction have the negative group velocity and symmetric dispersion relation (for

the detailed calculation, see Appendix A.2). HD is more dominant than the ferro-

magnetic exchange and the DM interactions up to k ∼ 1/t, where t is the thickness

of the sample. Thus, in order to observe the non-reciprocal magnon propagation
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it is necessary to prepare the microwave which can excite the magnons with large

k. In this study, we have measured the microwave response of the chiral ferromag-

net LiFe5O8 and the centrosymmetric ferromagnet Y3Fe5O12 for reference on the

micro-fabricated microwave antennae and demonstrated that the magnon propa-

gation along the magnetization direction is non-reciprocal in LiFe5O8 due to the

DM interaction. The Y3Fe5O12 single crystal was grown by Crystal Systems Cor-

poration. The dimensions of the samples are both 2×0.9×0.6 mm3. For both the

samples, the widest surface is the (110) plane and the longest direction is [11̄0].

Fig

Figure 3.1: Fundamental properties of LiFe5O8. (a) Chiral crystal structure

of LiFe5O8. (b) Magnetization curves of the sample LiFe5O8 for various magnetic

field directions. Inset shows the sample figure and crystal orientations. (c) Sketch

of the expected asymmetric magnon band dispersion of LiFe5O8 in the IFMS. The

ferromagnetic exchange and the DM interactions are dominant in the ”exchange”

region for magnon propagation, whereas the magnetic dipole-dipole interaction is

dominant in the ”dipolar” region. Reprinted figures from [65]. Copyright 2015, by

American Physical Society.
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3.2 Ferromagnetic magnon excitation in uniform

microwave

Magnetic field dependence of magnon with small wave num-

ber

First, let us consider the magnetic excitation in a spatially uniform microwave.

We measured the microwave absorption of LiFe5O8 by using the macro microwave

guide line as antenna (see Fig. 3.2 and Section 2.1.1), the superconducting magnet

and a vector network analyzer at room temperature. The sample is placed at the

edge of the shorted CPW. The macro waveguide makes the spatially uniform mi-

crowave magnetic field, such field excites the small wave number (k ∼ 0) magnon

mode (uniform mode). Figures 3.2(b) and 3.2(c) show the microwave absorption

spectra under the magnetic fields (0.1, 0.2, 0.3 T). Microwave absorption spec-

tra ∆S11 is normalized reflectance S11 with the background 1 T, ∆S11(µ0H) =

S11(µ0H)−S11(1 T), similar to the previous paper[72]. For Y3Fe5O12, the absorp-

tion spectrum shows a sharp peak around 4.9 GHz and broad continuum above

5 GHz at 0.10 T. While the spectra keep the almost same spectral shape, their

frequencies shifted with increase of the magnetic field. Such similar spectra were

already reported by An et al.[73]. They identified the origin of the sharp spec-

tra and the continuum as the FMR and the Damon-Eshbach mode, respectively

(see Appendix A.2). In the case of LiFe5O8, they denoted the same tendency of

the spectral shape and the magnetic field dependence in Y3Fe5O12, whereas the

frequency scale is higher than that for Y3Fe5O12. We plot the magnetic field

dependence of the FMR frequency for LiFe5O8 and Y3Fe5O12 in Fig. 3.2(d).

The solid lines are the results of fitting with the theoretical formula Eq.(A.26),

where the saturation magnetization Ms and the first-order magnetic anisotropy

constant K1 are, respectively, 2.96× 105 A/m and −9× 103 J/m3 for LiFe5O8[74],

and 1.4 × 105 A/m and −6 × 102 J/m3 for Y3Fe5O12[75, 76]. The used fitting

parameters are the demagnetization factors for [111], [1̄1̄2], and [11̄0] direction,

N111 = 0.71, N1̄1̄2 = 0.237 and N11̄0 = 0.053 for both the LiFe5O8 and Y3Fe5O12

samples. They approximately consistent with the sample figure.
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fig:setup1LFO

Figure 3.2: Uniform ferromagnetic resonance modes in LiFe5O8 and

Y3Fe5O12. (a) Sketch of experimental setup for the absorption of the uniform

microwave magnetic field. (b) and (c) Microwave absorption spectra ∆S11 for (b)

YIG and (c) LiFe5O8 in various magnetic fields along [11̄0] at room temperature.

(d) Magnetic field dependence of peak frequency for LiFe5O8 (open circle) and

Y3Fe5O12 (closed circle). Solid lines are the results of fitting with the theoretical

formula Eq. (A.26). Reprinted figures from [65]. Copyright 2015, by American

Physical Society.

Mean free path of ferromagnetic magnon

The spectral shape of the FMR absorption has an information about the mean free

path of magnetostatic waves. It is important for the experiment of the magnon

propagation with two antennae discussed in the next section. The mean free path
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lfree is expressed as

lfree = vgτ =
vg

2π∆f
, (3.2)

where vg, τ , and ∆f are group velocity, relaxation time, and peak width of ab-

sorption spectra, respectively. The group velocity is proportional to the slope of

the magnon dispersion curve. The magnon dispersion around k = 0 is dominated

by the dipole-dipole interaction and its shape is sensitive to the boundary con-

dition, which is mentioned in Appendix A.2 for details. The group velocity of

k = 0 magnetostatic wave is zero in the metalized boundary condition but finite

in the free boundary condition. In this case, the sample was on the metal plate

in vacuum, so this situation is like intermediate between the metalized and free

boundary conditions. We measured the non-reciprocal magnon propagation in the

same condition. Therefore, the real group velocity at k = 0 is smaller than that

in the free boundary condition, but the order remains the same. Of course, the

rough estimation here is just only in order to compare the mean free path and

the antenna-antenna distance (1 mm). For these reasons, we utilized the group

velocity formula in the free boundary condition for the estimation of mean free

path:

vg =
dω

dk
=

γµ2
0H0Mst

4
√

µ2
0H

2
0 − µ0

K1H0

Ms
− 2K2

1

M2
s
+ µ2

0H0Ms

. (3.3)

By using Eq. (3.3), we obtained the group velocity as 8.2×105 m/s for LiFe5O8 and

5.0× 105 m/s for Y3Fe5O12. From the shape of absorption spectra in Figs. 3.2(b)

and 3.2(c), the peak width of absorption spectra ∆f is 0.051 GHz for LiFe5O8 and

0.016 GHz for Y3Fe5O12 at µ0H = 0.15 T. The mean free path is obtained by using

Eq. (3.2) with these parameters as 2.6 mm for LiFe5O8 and 5.0 mm for Y3Fe5O12.

Therefore, the mean free path is larger than the antenna-antenna distance.
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3.3 Non-reciprocal ferromagnetic magnon prop-

agation

Observation of magnon propagation using the micro-fabricated

antennae

Magnon propagations were measured by the two microwave antennae. We prepared

the micro-fabricated microwave circuit with meander-type antennae by using the

photo-lithography. The two meander-type antennae made of Au 200 nm / Ti 50

nm thin film are fabricated on a sapphire substrate. The width and the space

of slot line is a = 5 µm and the height of the antenna is 2b ≃ 1 mm. The

number of meander is 20, which means the slot line goes upward and turns back

repeatedly 20 times in the antenna. As illustrated in Fig. 3.3(b), the spatially

oscillating magnetic field is induced by the electric current along the conduction

line. Thus, the center part of antenna has microwave magnetic field with wave

number k = 2π/(20 µm) = 0.314 µm−1 as shown in Fig. 2.2(c). More details are

discussed in Section 2.1.2.
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fig:setup2LFO

Figure 3.3: Experimental setup for measurement of magnon propagation

with finite wave number. (a) Experimental setup of the non-reciprocal magnon

propagation. The colored region indicates the Au/Ti electrodes. Meander-type

microwave antennae are connected to two ports of the network analyzer. The

rectangular sample is put on the top of the two antennae. (b) Sketch of the spatially

oscillating magnetic fields induced by the microwave current in the meander-type

antenna. Reprinted figures from [65]. Copyright 2015, by American Physical

Society.
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fig:S12LFOYIG

Figure 3.4: Signal of magnon propagation and microwave cross-talk be-

tween two antennae. (a) The microwave transmittance S12 of the LiFe5O8

sample-placed microwave circuit shown in Fig. 3.3(a) at 0.15 T and 1.0 T at room

temperature (θ = 0). (b) The microwave transmittance owing to magnon prop-

agation ∆S12 at 0.15 T deduced from the difference of S12 from the 1.0 T data.

The inverted triangle indicates the FMR mode and the same symbol are shown in

(a) at the same frequency. (c) The microwave transmittance S12 of the Y3Fe5O12

sample-placed the circuit shown in Fig. 3.3(a) at 0.15 T and 1.0 T (θ = 0). (d)

The microwave transmittance owing to the magnon propagation ∆S12 at 0.15 T

deduced from the difference of S12 from 1.0 T data. The inverted triangle shows

the FMR mode, which is the same in (c). Reprinted figures from [65]. Copyright

2015, by American Physical Society.

SIS breaking are necessary for the non-reciprocal phenomena, and our purpose

is to observe the non-reciprocal magnon propagation originated from the DM inter-

action. For this reason, the structure of microwave circuit has mirror symmetry at

the center as indicated by the dashed line in Fig. 3.3. We put the sample, LiFe5O8

and Y3Fe5O12 which are the same as ones used in Fig. 3.2, on the center of two
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antennae with crystal orientation as shown in Fig. 3.3. For Y3Fe5O12 the device

with sample has even mirror symmetry. Figure 3.4(a) shows the microwave ad-

mittance S12 in the microwave circuit shown in Fig. 3.3. The obtained microwave

signal reflects the details of the microwave circuit and magnetic resonance from

the sample, but we want to get the signal only related to the magnon propagation.

From Fig. 3.2(d), at 1.0 T all magnetic excitations are far above 10 GHz, so S12

at 1.0 T reflects the details of the microwave circuit except for the sample. In con-

trast, S12 at 0.15 T is influenced by the both the details of the microwave circuit

and the sample. Therefore S12 at 1.0 T is thought to be the background signal.

To estimate the microwave transmittance only due to the magnon propagation, we

deduced the difference of S12 from the 1.0 T data, ∆S12. Figure 3.4(b) shows the

normalized transmittance ∆S12 for LiFe5O8. In the same way, for the Y3Fe5O12

sample, the normalized transmittance ∆S12 was obtained as shown in Figs. 3.4(c)

and 3.4(d).

The asymmetric magnon band provides the non-reciprocal magnon propaga-

tion along the magnetization as discussed in Section 1.3. Thus we observed the

microwave transmittance with magnetic field angle θ = 0 [Figs. 3.5(a) and 3.5(c)]

and 180◦ [Figs. 3.5(b) and 3.5(d)] for LiFe5O8 and Y3Fe5O12 at 0.15 T at room

temperature. The spectral shapes of normalized transmittance ∆S12 and ∆S21 for

LiFe5O8 in Figs. 3.5(a) and 3.5(b), which show the magnon propagation, are ob-

viously different as shown in Fig. 3.5(e). It shows the microwave non-reciprocity.

In contrast, the non-reciprocity is almost negligible for Y3Fe5O12 (see Figs. 3.5(c),

3.5(d) and 3.5(f)). In order to understand what this result indicates, first of all,

we focus our attention on the mode determination of obtained peaks.

Theoretical determination of magnon modes

For LiFe5O8 we observed peaks at 8.3 and 7.3 GHz, and a broad band between 5

and 6.3 GHz. These spectra should be owing to the propagation of magnon modes,

so we have to determine the magnon band dispersion. The Hamiltonian in LiFe5O8

are composed of the ferromagnetic exchange interaction, the DM interaction, the

dipole-dipole interaction, the magnetic anisotropic term and the Zeeman term as

shown in Eq. (3.1). The effective exchange field caused by the ferromagnetic

exchange interaction is µ0λexk
2Ms = 5× 10−6 T at k = 2π/(20 µm) for Y3Fe5O12
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(λex is the spin stiffness constant, λex = 3×10−16 m2, and Ms = 1.4×105 A/m for

Y3Fe5O12 [75, 77]). Indeed, the effective exchange field for LiFe5O8 is expected to

be larger but the order is the same as that for Y3Fe5O12. Thus, the ferromagnetic

exchange interaction can be negligible in this wave number range. For this reason,

the magnon dispersion relation can be described by the sum of the k-dependent

energy of the magnetostatic wave and the k-linear energy dispersion derived from

the DM interaction in this wave number region[78]. While the non-reciprocity

is caused by the small DM interaction as discussed later, the spectral shape is

largely determined by the dominant magnetostatic wave. From the calculation in

Appendix A.2 and the experimental data, we can find that the theoretical analysis

gives a good account of the experimentally observed spectrum. The comparison of

frequencies is summarized in Table. 3.1. The micro-fabricated microwave antenna

can induce and detect the magnon modes with k = 0 and k = 2π/(20 µm). We

assign the 8.3 GHz peak to the k ∼ 0 mode and the broad band between 5 and 6.3

GHz to the combination of the large k modes (k ∼ 2π/(20 µm)). The assignment

of the k = 0 mode is consistent with the experimental result of the microwave

absorption in the uniform microwave magnetic field shown in Section 3.2. Although

the experimentally observed data (8.3 GHz) and the theoretical value (8.0 GHz)

of excitation energy at k = 0 are not completely same, this slight difference comes

from that the calculation does not contain the magnetic anisotropy owing to the

sample shape. Here we roughly estimated the frequencies of magnetostatic waves

avoiding the complex calculation to approximately determine the magnon modes.

The magnetostatic backward volume wave mode at k = 2π/(20 µm) depends on

the index n which shows the spatial distribution along the normal direction to the

substrate plane. The n is ordinary related to the shape of antenna, but the mode

determination is difficult. Tentatively assuming 1 ≤ n ≤ 30 modes are excited,

the frequency ranges between 4.5 and 5.4 GHz. The maximum value of n was

determined by the sample height 0.6 mm and the wave length of antenna 20 µm.

The experimentally observed 7.3 GHz mode seems to be the standing wave mode

of which the wavelength is twice the sample length. This wave number is smaller

than the width of k = 0 peak in the antenna Fourier transformation pattern [Fig.

2.2(e)]. The standing wave of the magnon with asymmetric dispersion is nontrivial.

However, the effect of asymmetry is negligible in this case because the difference
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of frequency between the standing wave modes at +k and −k are very small.

For Y3Fe5O12 sample, the frequency of the magnetostatic wave at k = 0 is little

different from that at large k. For this reason, these modes are not well separated

and observed as a continuum between 4 and 6.3 GHz (see Fig. A.2(d)).

Let us now return to the discussion about microwave non-reciprocity again.

Figure 3.5(e) shows that not all modes have the non-reciprocity in the chiral fer-

rimagnet LiFe5O8. The large non-reciprocity is observed for the large k mode

whereas the k = 0 mode is reciprocal. When the magnetic field is reversed, the non-

reciprocity is also reversed [Fig. 3.5(b)]. It is consistent with the non-reciprocity

caused by the DM interaction which works as k-linear along the magnetization in

the chiral ferromagnet. On the other hand, in the centrosymmetric ferrimagnet

Y3Fe5O12, the transmittance spectra are reciprocal in all frequency region. The

result clearly shows that the measurement circuit with the centrosymmetric fer-

rimagnet Y3Fe5O12 sample does not induce the microwave non-reciprocity. It is

a piece of evidence which shows that our obtained microwave non-reciprocity is

caused by the non-reciprocal magnon propagation due to the DM interaction.
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fig:DS12DS21LFO
Figure 3.5: Non-reciprocal magnon propagation and reciprocal magnon

propagation in ferromagnets. (a)-(d) Microwave transmittances owing to the

magnon propagation from port 2 to port 1 (∆S12) and from port 1 to port 2 (∆S21)

for (a) and (b) LiFe5O8 and (c) and (d) Y3Fe5O12 are plotted as a function of the

microwave frequency at room temperature. Magnitude of the magnetic field is 0.15

T and the direction of the magnetic field is indicated by θ defined in Fig. 3.3(a).

The field direction θ = 0 in (a) and (c) and θ = 180◦ in (b) and (d). FMR signals

are represented by inverted triangles. (e) and (f) Non-reciprocity of microwave

transmission S12 − S21 of (e) LiFe5O8 and (f) Y3Fe5O12 at ±0.15 T and θ = 0◦.

Reprinted figures from [65]. Copyright 2015, by American Physical Society.

Magnetic field directional dependence of non-reciprocity

In order to more clearly show the microscopic origin of the non-reciprocity, we plot

∆S12 and ∆S21 at various magnetic field directions around θ = 0 for LiFe5O8 [Fig.

3.6(a)] and Y3Fe5O12 [Fig. 3.6(b)]. For Y3Fe5O12, the non-reciprocity is sensitive

to the magnetic field angle θ. While at θ = 0 the transmittance is reciprocal,

with increasing θ, it gradually becomes non-reciprocal. It reflects the breaking of
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Table 3.1: Comparison of magnon frequencies with various k determined by ex-

perimental data and theoretical analysis for LiFe5O8.

Experiment Theory

k = 0 mode 8.3 GHz 8.0 GHz

Standing 7.3 GHz 7.0 GHz (free)-

wave mode 7.7 GHz (metallized)

Large k mode 5.0-6.3 GHz 4.5-5.4 GHz (n = 1− 30)

mirror symmetry in the experimental system by applying a magnetic field with

angle tilted from θ = 0. The non-reciprocity is reversed when the titling direction

is reversed. For LiFe5O8, a similar angle dependence of the non-reciprocity is

observed at k = 0 mode around 8 GHz. In contrast, the non-reciprocity of the

large k modes of LiFe5O8 (between 5 and 6 GHz) is rather insensitive to θ. The

angular dependence of all modes of Y3Fe5O12 and k = 0 mode of LiFe5O8 seems

to be almost same from the rough estimation in Fig. 3.6.
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fig:HangleDS12LFOFigure 3.6: Magnetic field directional dependence of magnon propaga-

tion. (a) and (b) angular dependence of ∆S12 and ∆S21 for (a) LiFe5O8 and (b)

Y3Fe5O12 at 0.15 T at room temperature. Reprinted figures from [65]. Copyright

2015, by American Physical Society.

To discuss the angular dependence more quantitatively, we plot as a function

of θ the integrated intensities of the non-reciprocity

∆I12 =

∫
(S12 − S21)df,

for the large k modes of LiFe5O8 and Y3Fe5O12 in Fig. 3.7, here f is the mi-

crowave frequency. The integrated intervals are 5 ≤ f ≤ 6 GHz for LiFe5O8 and

4.3 ≤ f ≤ 5.3 GHz for Y3Fe5O12. The ∆I12 for Y3Fe5O12 is negligible at θ = 0

and increases linearly with θ. This character of the non-reciprocity can be de-

scribed by the magnetostatic surface wave mode (Damon-Eshbach mode). The

Damon-Eshbach wave non-reciprocally propagates perpendicular to the magne-

tization, which depends on the boundary condition of top and bottom surfaces.
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In principle, the both non-reciprocity for Y3Fe5O12 and LiFe5O8 should contain

the non-reciprocity caused by the Damon-Eshbach mode. On the other hand, the

non-reciprocity derived from the asymmetric band dispersion originating from the

DM interaction is expected to show the maximum around θ = 0 and decrease with

increasing or decreasing θ. Based on the above consideration, the θ dependence of

∆I12 for LiFe5O8 is explained by the combination of the DM interaction and the

Damon-Eshbach mode. In conclusion, the origin of the large non-reciprocity at

θ = 0 for LiFe5O8 is ascribed to the DM interaction caused by the lack of inversion

symmetry in this material.

fig:DILFO
Figure 3.7: Magnetic field directional dependence of non-reciprocity. In-

tegrated intensities of non-reciprocity ∆I12 for LiFe5O8 (open circle) and Y3Fe5O12

(closed circle) are plotted as a function of the angle of the magnetic field. The

solid lines are merely guides to eyes. Reprinted figures from [65]. Copyright 2015,

by American Physical Society.

Lastly, the magnitude of the DM interaction will be examined by using the

experimental result. According to the paper by Cortés-Ortuño and Landeros[78],

the magnon band dispersion in the presence of the DM interaction is a simple

summation of the symmetric dispersion of the magnetostatic wave and k-linear

dispersion 2DSak if the ferromagnetic exchange interaction is neglected[55]. In

our experiment [Fig. 3.5], the difference of the average frequency of large k modes
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between ∆S12 and ∆S21 is ∼0.1 GHz, which corresponds to DS ∼ 0.4 meV. We

roughly estimate the ferromagnetic exchange interaction constant J ∼ 0.1 eV

from the transition temperature. From these values, we deduce D/J is order of

10−2 − 10−3, which is within the expected range for transition metal oxides.

3.4 Summary

In conclusion, we observed the non-reciprocal magnon propagation in a bulk chi-

ral ferromagnet LiFe5O8 by using the micro-fabricated microwave antennae. We

clearly showed that our newly observed magnon non-reciprocity has different mag-

netic field dependence from the classical magnon non-reciprocity owing to the

DEM. This magnon non-reciprocity is consistent with the asymmetric band effect

caused by the DM interaction in the IFMS of chiral materials. This result indicates

the potentials of the magnon non-reciprocity caused by the bulk crystal structure

and of the observation method by the micro-fabricated microwave antenna. In

fact, after our report[65], other groups also reported the non-reciprocal magnon

propagation in the IFMS of the other chiral materials by using the similar micro-

fabricated microwave antennae[79, 80] and by using the neutron scattering[81],

and other groups reported the non-reciprocal magnon propagation in thin film by

using the micro-fabricated microwave antennae[82, 83]. In this way the concern

with the magnon non-reciprocity owing to the relativistic asymmetric band has

been growing.
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Chapter 4

Magnetoelectrical control of

non-reciprocal microwave

propagation in a multiferroic

helimagnet

The control of physical properties by external fields is essential in many contem-

porary technologies. For instance, optical phenomena caused by the electric field,

such as electroluminescence and electrochromism, are useful for the display and

other technologies. Microwave non-reciprocity has been utilized for the isolator

from long ago, so it is also important phenomenon for application. However the

external field control of the conventional microwave isolator is difficult in prin-

ciple. Thus the non-reciprocal response owing to different principle is required.

Microwave non-reciprocity was previously observed in a chiral magnet, whereas

the non-reciprocity originated in the crystal chirality so it is difficult to control the

non-reciprocity by electric field[42]. In this chapter, we suggest it as one solution

to use the multiferroic helimagnet Ba2Mg2Fe12O22 that has magnon excitation in

the microwave region and the polarization controllable by the poling electric field.

Recently, the controllable optical non-reciprocity has been reported for magnon

excitation in the terahertz region in high magnetic fields of 3 ≤ µ0H ≤ 7 T[39],

which is ascribed to the toroidal magnon mode. Here we show controllable non-

reciprocity in ubiquitous frequency (10-15 GHz) and magnetic field (160 mT)
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ranges in the multiferroic helimagnet Ba2Mg2Fe12O22. This approach offers a new

avenue for the electrical control of microwave properties.

fig:setuphexa

Figure 4.1: Electrical control of non-reciprocal microwave transmission.

(a),(b) Sketch of non-reciprocal microwave transmission in ferroelectric helimag-

nets. The strong magnetoelectric coupling of a toroidal magnon in the transverse

conical magnetic state provides the microwave non-reciprocity, which is the dif-

ference in the refractive indices between oppositely propagating microwaves. The

microwave non-reciprocity as well as spin helicity can be controlled by the electric

field. (c) Experimental setup of the microwave measurement. (d) Cross-section

view of the (001) plane and the alternating magnetic field Hω and electric field Eω

of microwaves in the experimental setup. Reprinted figures from [84]. Copyright

c⃝2017, Rights Managed by Nature Publishing Group.

4.1 Fundamental properties

Ba2Mg2Fe12O22 is a ferrite with hexagonal structure, which is denoted as hexafer-

rite. Hexaferrite has six types depending on their chemical formula. Especially

Ba2Mg2Fe12O22 is classified into the Y-type hexaferrite (Ba,Sr)2Me2Fe12O22 where

Me means divalent metal ion[85]. The Y-type hexaferrite has the long period of

helical spin structure and small magnetic anisotropy. Therefore it is expected that
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the Y-type hexaferrite has the magnon excitation in microwave region. Indeed,

other materials of hexaferrite family show the magnetoelectric effects above room

temperature[85].

The crystal structure of Ba2Mg2Fe12O22 is composed to two types of alternately

stacked blocks denoted as S and L blocks as shown Fig. 4.2(a). The magnetic

moments of Fe ions are ferrimagnetically ordered within each block. As a result,

the S and L blocks have small and large net magnetic moments, respectively.

Figure 4.2(b) indicates the magnetization curve as a function of magnetic field

perpendicular to the [001] axis at 6 K for Ba2Mg2Fe12O22. The dimensions of the

sample were 1.1 × 1. × 0.3 mm3. The largest plane was perpendicular to the [11̄0]

direction, and the two longer sides were parallel to the [110] and [001] directions.

Below 190 K, the magnetic moments of S and L blocks showed the conical magnetic

orderings where the wave vector of spin structure was q0 = (0, 0, 0.59)[86, 87].

Thus Ba2Mg2Fe12O22 has a spontaneous magnetization. Figure 4.2(b) shows that

the magnetization curve has several kinks reflecting magneto structural transitions

which are indicated by inverted triangles. The helical plane is parallel to the [001]

axis at zero magnetic field, whereas it was slanted and a spontaneous electric

polarization is induced parallel to the [11̄0] axis in a small magnetic field along the

[110] axis while maintaining q0 = (0, 0, 0.59). The ferroelectricity is caused by the

spin current mechanism[67]. When the magnetic field was increased furthermore,

the helical plane became perpendicular to the [110] axis, and a transverse conical

state with q0 = (0, 0, 3/4) appeared around 60 mT. Moreover a transverse conical

state with q0 = (0, 0, 3/2) became dominant above 200 mT[87]. Figure 4.2(a)

shows the magnetic structure in the q0 = (0, 0, 3/4) state. The phase transitions

between helimagnetic structures are first-order transitions, and phase coexistence

is observed around the phase boundaries. In particular, there is the q0 = (0, 0, 3/2)

state over the wide range of magnetic field indicated as shown in Fig. 4.2(b). The

magnetic structure of q0 = (0, 0, 3/2) state slightly changes around 200 mT[87].

Above 4.5 T, all the magnetic moments are forced to be ferrimagnetically ordered

and the ferroelectricity is quenched. The spontaneous electric polarization was

obtained by the integration of measured displacement currents. In order to increase

the electric polarization, we utilized the poling procedure in a manner to a previous

study[67]. After cooling the sample to 50 K without external fields, the electric
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field was applied along [11̄0], and then the magnetic field as large as 5 T was

applied parallel to [110]. Next, the magnetic field was decreased to 1 T, followed

by cooling to 6 K. Finally, the electric field was removed. The displacement current

was measured while sweeping the magnetic field. The obtained polarization curves

are plotted as a function of magnetic field with several poling electric fields as

shown in Fig. 4.3. Figure 4.3 indicates the amplitude of polarization is controlled

and the sign of polarization is also reversed by the poling field.

fig:prophexa

Figure 4.2: Crystal structure and magnetic properties of Ba2Mg2Fe12O22.

(a) Crystal structure of Ba2Mg2Fe12O22 and the magnetic structure in the

q0 = (0, 0, 3/4) state, where the magnetoelectric control of the microwave non-

reciprocity is demonstrated . (b) Magnetization curve of Ba2Mg2Fe12O22 at 6 K

with the magnetic field along [110]. (c) Microwave absorption spectra ∆S12 ob-

tained in the experimental setup [Fig. 4.1(c)] in several magnetic fields along [110]

at 6K. Reprinted figures from [84]. Copyright c⃝2017, Rights Managed by Nature

Publishing Group.
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fig:Phexa

Figure 4.3: Electric polarization of Ba2Mg2Fe12O22. The spontaneous elec-

tric polarization was obtained by the measurement of displacement currents with

several poling electric fields.

4.2 Magnetic field dependence of microwave ab-

sorption via magnon excitation

We measured the microwave absorption through the Ba2Mg2Fe12O22 sample in

the experimental setup as shown in Fig. 4.1(c). The aluminum electrodes were

attached to the largest sample planes for applying the electric field. The width of

the strip line was 0.2 mm, and the gap between the slot line and ground planes

was 0.05 mm. The Ba2Mg2Fe12O22 sample was placed on the CPW where the

[001] direction was parallel to the wave vector of the microwave. A Teflon sheet

with a thickness of 20 µm was inserted between the sample and waveguide to

electrically protect the device. The spatial distribution of the magnetization and

polarization of the sample and the microwave electric and magnetic fields are

shown in Fig. 4.1(d). Figure 4.2(c) shows ∆S12 spectra at various magnetic

fields at 6 K. Here the microwave absorption ∆S12 owing to magnetic excitations

is defined as |S12(5T)| − |S12(µ0H)|, because the magnetic resonance frequency

was high enough in the entire measurement range at 5 T. Microwave absorption

was almost absent at zero magnetic field, whereas a small and broad peak ap-

peared at ∼ 12 GHz when the magnetic field was applied along the [110] direction.
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When the magnetic field was increased above the phase transition between the

q0 = (0, 0, 0.59) and q0 = (0, 0, 3/4) states (≃ 60 mT), the frequency and intensity

were slightly increased. For a detailed comparison of frequency in low magnetic

field, we show the details of magnetic field dependence of microwave absorption

spectra in Figs. 4.4(a) and 4.4(b). The absorption peak at ∼ 12 GHz disappeared

and the other peak at ∼ 19 GHz became larger above the phase transition be-

tween the q0 = (0, 0, 3/4) and q0 = (0, 0, 3/2) states (≃ 200 mT). Two peaks were

simultaneously observed around the phase boundary because of the phase coexis-

tence. The high-frequency peak increased with the magnetic field and disappeared

at the measurement frequency range above 500 mT. The high-frequency peak was

suppressed below 200 mT, but it remained being observed with the low-frequency

peak. This result indicated the phase coexistence of the q0 = (0, 0, 3/2) state.

We demonstrated the control of microwave non-reciprocity mainly for the low-

frequency peak in the q0 = (0, 0, 3/4) state, because the measurement sensitivity

in the frequency range of 9-14 GHz was better than that in the high-frequency

region in our experimental setup.
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fig:magnonhexa

Figure 4.4: Details of magnetic field dependence of microwave absorption

spectra. (a) Data from 0 to 1 T measured at 6 K. The inverted triangles indi-

cates the absorption peaks and the solid lines are merely guides for the eyes. (b)

More detailed data in the low magnetic field region. Reprinted figures from [84].

Copyright c⃝2017, Rights Managed by Nature Publishing Group.

4.3 Magnetoelectrical control of non-reciprocal

microwave absorption

Figure 4.5 shows the magnetoelectrical control of non-reciprocal microwave absorp-

tion. The microwave absorption with the opposite wave vector ∆S21 was obtained

by a similar procedure to ∆S12. We performed the poling procedure to fix the

spin helicity and control the sign of the polarization. After the poling procedure,

we set the magnetic field at measured points, then we measured ∆S12 and ∆S21

at 6 K in the magnetic field without the electric field. Figures 4.5(a) and 4.5(c)

show the microwave absorption spectra measured after the poling procedure with

the electric field E = +0.5 MVm−1, and Figs. 4.5(b) and 4.5(d) show the spec-
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tra measured after the poling procedure with E = −0.5 MVm−1. The measured

magnetic field µ0H was +160 mT for Figs. 4.5(a),(c) and −160 mT for Figs.

4.5(b),(d). It is clear that the absorption spectra are different for each case. This

result indicates the microwave non-reciprocity. The non-reciprocity was reversed

by reverse of either E or H, but the non-reciprocity was unchanged by the reverse

of the both fields.

fig:nonrecihexa1Figure 4.5: Magnetoelectrical control of microwave non-reciprocity. (a)-

(d) Microwave absorption spectra ∆S12,∆S21 at 6 K in ±160 mT (+160 mT

in (a),(b) and −160 mT in (c),(d)). The poling electric fields were E = ±0.5

MVm−1 (+0.5 MVm−1 in (a),(c) and −0.5 MVm−1 in (b),(d)). Inset illustrates

the directional relation between the polarization, magnetization and wave vectors k

for ∆S12 and ∆S21 measurements. Reprinted figures from [84]. Copyright c⃝2017,

Rights Managed by Nature Publishing Group.

We will now examine the effect of an external field more closely. For this

purpose, we investigated the poling electric field dependence of microwave non-

reciprocity ∆S12 − ∆S21 at µ0H = 160 mT and the magnetic field dependence

by using the poling fields E = ±0.5 MVm−1. The results are shown in Figs.

4.6(a) and 4.6(b), respectively. The sign of the non-reciprocity depended on the

sign of the electric field E and the magnitude of the non-reciprocity monotonously
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increased with E. When the magnetic field was increased, the frequency of the

non-reciprocity was also increased, corresponding approximately to the increase

of the absorption peak frequency (see also Fig. 4.7). Figure 4.6(c) indicates

the integrated intensity of the non-reciprocity I12 between 9 and 14.4 GHz at

µ0H = ±160 mT as a function of E. The sign of I12 depended on the sign of EH

and the magnitude of I12 gradually increased in the low-E region and tended to be

saturated at ∼ 0.5 MVm−1. A similar E dependence was seen in the polarization

results. It was clearly shown by plotting the polarization of Fig. 4.3 into Fig.

4.6(c) as a function of E. Thus, these field dependences are dominated by the

ferroelectric domain population.
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fig:nonrecihexa2

Figure 4.6: Electric field and magnetic field dependences of microwave

non-reciprocity. (a) Poling field dependence of microwave non-reciprocities,

∆S12 − ∆S21, at ±160 mT at 6 K. The data of positive poling fields are plot-

ted as solid lines and the data of negative poling fields are plotted as dashed lines.

(b) Magnetic field dependence of microwave non-reciprocities is plotted in the same

frequency range to (a) after electric field poling E = +0.5 MVm−1 (Solid lines)

and E = −0.5 MVm−1 (dashed lines). (c) Integrated intensities of the microwave

non-reciprocity I12 at ±160 mT (open squares) and −160 mT (closed circles) are

plotted as a function of the poling electric field E. The polarization at +160 mT

(open triangles), which was obtained by Fig. 4.3, is also plotted as a function of E

for comparison. The solid lines are merely guides for the eyes. Reprinted figures

from [84]. Copyright c⃝2017, Rights Managed by Nature Publishing Group.
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fig:nonrecihexa3
Figure 4.7: Details of magnetic field dependence of microwave non-

reciprocity. (a) Magnetic field dependence of microwave absorption spectra

∆S12,∆S21 at 6 K measured after the poling with E = −0.5 MVm−1. (b) Mag-

netic field dependence of microwave non-reciprocities ∆S12−∆S21 at 6 K measured

after the poling with E = ±0.5 MVm−1. Reprinted figures from [84]. Copyright

c⃝2017, Rights Managed by Nature Publishing Group.

Discussion

We observed controllable microwave non-reciprocity for the lowest-energy magnetic

resonance modes in the transverse conical states. The obtained non-reciprocity

cannot be ascribed to the effect of the magnetic dipole-dipole interaction, because

the non-reciprocity should not be changed by the poling electric field in the case

of the magnetic dipole-dipole interaction. As mentioned in Section 1.2, the lowest-

energy magnon excitation in the transverse conical state, which is the toroidal

magnon mode, provides the large non-reciprocity in the wave vector parallel to

P×M for the Voigt geometry. This is quite consistent with the obtained result.

Similar magnon modes were previously reported at large magnetic fields in the
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terahertz region for perovskite RMnO3 [39, 40], whereas we have observed it in this

thesis at a low magnetic field in the microwave region. RMnO3 and Ba2Mg2Fe12O22

are both helimagnets, but the period and the magnetic anisotropy are largely

different. For TbMnO3, which is a typical material of perovskite helimagnets, the

period is 2 nm, and the magnetic anisotropy constant K1 is 6 × 107 erg cm−3,

whereas for Ba2Mg2Fe12O22, the period is 23 nm and the magnetic anisotropy

constant K1 + 2K2 is −6× 105 erg cm−3[88, 89, 90, 91]. The frequency difference

reflects the differences in the magnetic anisotropy[92] and helical period. The

magnitude of the microwave non-reciprocity in this study was as large as 6-8 %,

which is smaller than that observed in the terahertz region. One of the reasons

is that the intensity of pure magnetic excitation becomes relatively large, so the

relative non-reciprocity becomes small in the case of the spontaneous conical state.

4.4 Summary

We demonstrated the controllable microwave non-reciprocity by using the mul-

tiferroic helimagnet Ba2Mg2Fe12O22. We showed that the sign and amplitude of

the microwave non-reciprocity can be controlled by the poling electric field. In

addition, the difference of the non-reciprocity in helimagnet between the tera-

hertz and the microwave regions was discussed. From the discussion, we found

that the difference of the magnetic anisotropy and the helical period are related

to the conical magnon excitation frequency and that in the low magnetic field

the intensity of toroidal magnon is smaller than the intensity of conical magnon.

The former indicates the index for searching the new candidates that show the

controllable microwave non-reciprocity. One of the advantages of the microwave

non-reciprocity is compatibility with other microwave technologies. For exam-

ple, the non-reciprocity can be adequately enhanced by using a high-Q resonator.

The electrical control of microwave properties has been extensively investigated

for multiferroic heterostructures with the use of mechanical strain-mediated mag-

netoelectric coupling[93], whereas controllable microwave non-reciprocity in the

transverse conical state seems to be more useful. Hence, our study indicates that

the controllable microwave non-reciprocity is a new microwave functionality and

has a large potential for practical applications.
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Chapter 5

Non-reciprocal microwave

propagation in a multiferroic

antiferromagnet

Antiferromagnetic spintronics has been attracting much attention, because it does

not have large magnetization and appropriate for nano-devices. In contrast to the

magnon excitations in magnets with the finite magnetization, such as ferromag-

nets and conical magnets, the antiferromagnetic magnon excitation tends to need

high frequency and high field for observation. In order to scrutinize the magnetic

field dependent antiferromagnetic magnon modes and their NDD, here we chose

Ba2MnGe2O7, which has the low Néel temperature TN and small anisotropy, as a

sample and have investigated the magnon excitations in the microwave region.
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5.1 Fundamental properties

Multiferroic properties

Ba2XGe2O7 (X =Mn, Co) are non-centrosymmetric antiferromagnets (Space group:

P 4̄21m)[68]. Figures 5.1(a) and 5.1(b) show the crystal and magnetic structures,

respectively. Ba2XGe2O7 are the easy-plane-type antiferromagnets and weak fer-

romagnetic owing to the DM interaction. While Ba2CoGe2O7 is ferromagnetically

ordered along [001] direction below 7 K[94], in Ba2MnGe2O7 the net magnetization

in one layer is opposite to those of the neighboring layers below 4 K[95]. Hence

Ba2CoGe2O7 has the net magnetization but Ba2MnGe2O7 does not have in zero

magnetic field. Ba2XGe2O7 has the chiral magnetic point group (m′m2′) or the

polar magnetic point group (22′2′) in the magnetic field [Fig. 5.2]. Ba2MnGe2O7

has the electric polarization as shown in Fig. 5.3(c)[68]. This multiferroic property

is explained by the metal ligand hybridization mechanism.
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(Fig.1 Y. Iguchi et al.)

0

0

0

Figure 5.1: Magnetic properties of Ba2MnGe2O7. (a) Crystal structure of

Ba2MnGe2O7. The two Mn ions are denoted as Mn(A) and Mn(B). (b) Mag-

netic structure in the magnetic field along the [1̄10] direction of Ba2MnGe2O7.

(c),(d) Illustrations of two magnon modes ((c) mode 1, (d) mode 2) in the in-

plane magnetic field for an easy-plane antiferromagnet. m0
A, m

ω
A, m

0
B, and mω

B

are the static and dynamical magnetic moments at the sublattice A and sublattice

B, respectively. m0 and mω are the static and dynamical parts of total magnetic

moment, respectively. (e) Sketch of experimental setup. The sample is put at the

center of coplanar wave guide. The microwave propagates along the center signal

line. The alternating magnetic field Hω and the alternating electric field Eω are

perpendicular to the microwave wave vector k.
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fig:BMGOsymmetry

Figure 5.2: Spatial inversion symmetry breaking depending on magne-

tization in Ba2MnGe2O7. Effective magnetizations parallel to [100] and [110]

directions break the spatial inversion symmetry as 22′2′ and m′m2′, respectively.

Ba2MnGe2O7 has the polarization Pz and the chirality γ.

fig:MIP BMGO

Figure 5.3: Magnetization and Polarization of Ba2MnGe2O7. (a)-(c) The

observed (a) magnetization, (b) the displacement current, and (c) the polarization

of Ba2MnGe2O7 measured in the magnetic field (1 T) applied along the [110]

direction[68]. Reprinted figure from [68]. Copyright 2012 by the American Physical

Society.
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Magnetic excitations

Magnetic excitations of Ba2CoGe2O7 have been observed in the neutron scattering[94]

and the terahertz light measurement[96]. In the magnetic field along the magnetic

easy plane of Ba2CoGe2O7, the lowest energy mode and some gap modes were ob-

served. The lowest energy mode is the precession mode of spins of each sublattice

with same phases and corresponds to the quasi Nambu-Goldstone mode in zero

field. It is called ω1 mode [Fig. 5.1(c)]. In contrast, the lowest energy mode of

gap modes is the precession mode of spins of each sublattice with phase shifted

by π, where the effective magnetic moment is stretching. This mode is called

ω2 mode [Fig. 5.1(d)]. Magnon modes specific to antiferromagnets, such as ω2

mode, has the gap energy that depends on the exchange interaction and magnetic

anisotropy[97]. Almost antiferromagnets have gap magnon modes in the terahertz

region.

In Ba2MnGe2O7, Mn ion has a spin S = 5/2 with no orbital degrees of freedom.

For this reason, it is likely that Ba2MnGe2O7 has weaker magnetic anisotropy than

that of Ba2CoGe2O7. The Néel temperature is TN =4 K so that the exchange

interaction constant J between the nearest neighbor Mn ions is also small[95].

Therefore we expected that Ba2MnGe2O7 has the antiferromagnetic magnon ex-

citations in the microwave region. On the other hand, for Ba2CoGe2O7, NDD

of the terahertz light has been reported in ω1 and ω2 modes in large magnetic

fields (4-12 T)[37, 25, 26]. In the microwave region, NDD has been only observed

via the excitation of conical magnetic[42, 29, 84] and ferromagnetic[42, 28, 29]

and paramagnetic magnon modes[30]. The observation of the antiferromagnetic

magnon modes of Ba2MnGe2O7 in the microwave region indicates the microwave

non-reciprocity owing to the antiferromagnetic magnon excitations in the low mag-

netic field (∼ 100 mT). Here we measured the microwave response of Ba2MnGe2O7

in the range of 10 MHz - 40 GHz at the antiferromagnetic state (T = 1.8 K) and

we observed the two antiferromagnetic magnon excitations within the microwave

range. Indeed, we observed the non-reciprocal microwave response, the MCh and

OME effects, of each mode.
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5.2 Experimental details

We prepared single crystals of Ba2MnGe2O7 by using the Floating zone method[68].

We measured the microwave absorption on the coplanar waveguide, which was de-

signed so that the characteristic impedance coincides 50 Ω. The width of the signal

line was 0.2 mm, and the gap between the signal line and ground planes was 0.05

mm. The single crystal was put on the center of waveguide and measured the mi-

crowave absorption in the external magnetic field (H). The microwave absorption

spectra ∆S12 was deduced by the difference of S12(H) from the zero field value.

Here, S12 is the transmittance coefficient from port 2 to port 1 (The two ports

are connected to the two terminals of waveguide). In this case, we used the zero

field data as the background because the present antiferromagnetic samples show

negligible microwave absorption at H = 0. ∆S21 is the absorption of microwave

for the wave vector opposite to the case of ∆S12. The alternating magnetic field

of microwave (Hω) is induced in the plane perpendicular to the wave vector k.

Hereafter, we specify which crystal axes are along H and perpendicular to Hω in

order to describe the experimental geometry. All the experimental data in this

paper were taken at T = 1.8 K.

5.3 Results and discussions

Figure 5.4(a) shows the microwave absorption spectra at various magnetic fields

for H ∥ [11̄0] and Hω ⊥ [110]. We have identified two peaks in the absorption

spectra. One peak is observed in the low frequency region at a low magnetic field.

The peak frequency and intensity increase with the magnetic field. This mode is

denoted as ω1 mode. The other mode is observed around 26 GHz in the low field

region. The peak frequency is almost unchanged below 1 T but gradually decreases

with the magnetic field above 1 T. This magnon mode is denoted as ω2 mode. The

peak frequencies are plotted as a function of magnetic field in Fig. 5.4(d). While

the frequency of ω1 mode increases linearly with the magnetic field, that of ω2

mode gradually decreases as the magnetic field is increased. To examine the origin

of these magnon modes, we measured the polarization dependence of absorption

spectra. We have found that the absorption peak for ω2 mode is absent for H ∥

68



µ0H=0.9 T

0.1 T0.1 T

1.2 T

2 T

µ0H=5 T
µ0H = 0.5 T

H [100]

H [110]

H || [110],H [110]

H || [001],H [110]

H || [110]

H || [100]

0.5 T 0.5 T

Magnetic Field[T]

   
       

   
       

H || [110],H [110]

1

2

||

H || [001],H [110]

H || [110],H [110]

1

2

||

H || [001],H [110]

Fig.2 Y. Iguchi et al.)

   
       

Figure 5.4: Antiferromagnetic magnon modes. (a) The microwave absorption

spectra ∆S12 at various magnetic fields in the experimental geometry with H ∥
[11̄0] and Hω ⊥ [110]. (b) Comparison of ∆S12 at 0.5 T in the two geometries,

H ∥ [100],Hω ⊥ [100] and H ∥ [11̄0], Hω ⊥ [110]. (c) ∆S12 at various magnetic

fields for H ∥ [001] and Hω ⊥ [110]. (d) Experimentally observed and theoretically

obtained magnon frequencies. Squares and triangles indicate the peak frequencies

of experimentally observed magnon ω1 mode and ω2 mode for H ∥ [11̄0], Hω ⊥
[110], respectively, and circles the experimentally observed magnon mode for H ∥
[001], Hω ⊥ [110]. The corresponding theoretical curves [Eqs. (5.1)-(5.3)] are

plotted as solid lines.
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[100] and Hω ⊥ [100] as shown in Fig. 5.4(b). This indicates the alternating

magnetization in ω2 mode is along the external static magnetic field. Actually such

a polarization dependence is expected for the conventional magnon modes in easy-

plane antiferromagnet in the in-plane magnetic field. Figures 5.1(c) and 5.1(d)

illustrate the conventional magnon modes. The one mode is uniform oscillation

of magnetic moment with keeping the relative angle of magnetic moments [Fig.

5.1(c)]. The other mode is the anti-phase oscillation of two magnetic moments in

a unit cell [Fig. 5.1(d)]. The oscillation of total magnetic moment is along the

external magnetic field. The ω2 mode seems to correspond to the latter magnon

modes judging from the polarization dependence while the ω1 mode seems the

former magnon mode. Theoretically, the frequencies of ω1 mode and ω2 mode are

expressed as

ω1 = γµ0H

√
1 +

HA

2HE

, (5.1)

ω2 = γµ0

√
2HEHA − HA

2HE

H2. (5.2)

Here γ, µ0, HA, and HE are the gyromagnetic ratio, the magnetic permeability in

vacuum, the magnetic anisotropy field, and the exchange field, respectively. As

shown in Fig. 5.4(d), these theoretical formula are quite consistent with the exper-

imental observation. To further examine the theory-experiment correspondence,

we study the magnon in the magnetic field along [001] direction. In this case, one

mode is zero frequency rotation of magnetic moments around the [001] direction.

Therefore, only one mode is expected in the finite frequency regime. We certainly

observe only one magnon peak in this experimental geometry [Fig. 5.4(c)]. The

magnetic field dependence of frequency is theoretically expressed as follow[97];

ω∥ = γµ0

√
2HE

2HE +HA

(2HE −HA)2
H2 + 2HEHA. (5.3)

The experimental data of peak frequency is reproduced with the same parameters

as the in-plane-field case. From the fittings of experimental data to the theoretical

formula, we obtained µ0HA ≃ 0.09 T and µ0HE ≃ 4.67 T, which are corresponding

to the exchange interaction constant J ≃ 27 µeV and the single ion anisotropyK ≃
2 µeV, respectively. While the estimated exchange interaction almost coincides

with that estimated by the previous neutron scattering study[95], the magnitude
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of magnetic anisotropy in this system was not reported previously. Reflecting

the isotropic S = 5/2 state, the magnetic anisotropy is much smaller than the

isostructural Ba2CoGe2O7 (1.4 meV)[48, 96].

As mentioned above, microwaves are expected to show the non-reciprocity in

time reversal and spatial inversion symmetries simultaneously broken systems. We

tried to observe the microwave non-reciprocity in two experimental geometries.

The first geometry is H ∥ ⟨100⟩, Hω ⊥ H. In this case, only the ω1 mode is

observable. In the magnetic field along [100], the magnetic symmetry is chiral[25]

and expected to show the non-reciprocity for counter-propagating microwave along

the magnetic field direction. We show the microwave absorption spectra ∆S12 and

∆S21 at 0.4 T for H ∥ [100] in Fig. 5.5(a). We have found that ∆S12 and ∆S21 are

different from each other. The difference of absorptions ∆S12−∆S21 indicates the

microwave non-reciprocity. It was reversed in the reversal magnetic field as shown

in Fig. 5.5(b). It should be noted that the 90 degree rotation of sample around the

[001] direction corresponding to the spatial inversion operation, and the chirality

and microwave non-reciprocity should be reversed whenH ∥ k ∥ [010][25]. In order

to discuss the effect of spatial inversion on the microwave non-reciprocity, we show

the microwave non-reciprocity for H ∥ k ∥ [010]. As shown in Figs. 5.5(c) and

5.5(d), the microwave non-reciprocity is reversed by the spatial inversion. When

the magnetic field is increased, the magnitude of non-reciprocity increases as shown

in Fig. 5.5(e).

Let us move on to the second geometry of microwave non-reciprocity mea-

surement, where H ∥ [11̄0] and Hω ⊥ [110]. In this case, the sample has an

electric polarization along [001], and both the ω1 mode and the ω1 mode are ob-

servable. Figures 5.6(a)-(c) and 5.6(d)-(f) show the microwave absorption spectra

around the ω1 mode and the ω2 mode, respectively. One can see that the non-

reciprocities in this low magnetic field are almost negligible in this experimental

geometry. It should be noted that the non-reciprocity caused by the magnetic

dipolar interaction[30], which is distinct from the non-reciprocity due to the mate-

rial symmetry breaking, becomes dominant in the high magnetic field region above

0.5 T. The dipolar non-reciprocity was not reversed by the 90 degree rotation of

sample around the [001] direction, which is equivalent to the spatial inversion.

Finally, let us compare the observed microwave non-reciprocity with the the-
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(Fig.3 Y. Iguchi et al.)Figure 5.5: Microwave non-reciprocity for H ∥ [100] and Hω ⊥ [100]. (a)

Microwave absorption spectra ∆S12 and ∆S21 for H ∥ [100] and Hω ⊥ [100]. (b)

Microwave non-reciprocity ∆S12 −∆S21 at ±0.4 T for H ∥ [100] and Hω ⊥ [100].

(c) ∆S12 and ∆S21 for H ∥ [010] and Hω ⊥ [010]. (d) ∆S12 − ∆S21 at ±0.4 T

for H ∥ [010] and Hω ⊥ [010]. (e) ∆S12 −∆S21 for H ∥ [010] and Hω ⊥ [010] at

various positive and negative magnetic fields.
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(Fig.4 Y. Iguchi et al.)

µ0H = 0.4 T µ0H = 0.4 T

µ0H = 0.3 T µ0H = 0.3 T

µ0H = 0.2 T µ0H = 0.2 T

H || [110],H [110] H || [110],H [110]

Figure 5.6: Microwave non-reciprocity for H ∥ [11̄0] and Hω ⊥ [110]. (a)-

(f)Microwave absorption spectra ∆S12 and ∆S21 for H ∥ [11̄0] and Hω ⊥ [110].

(a), (b), and (c) show the spectra around the frequency of ω1 mode at 0.4 T, 0.3

T, and 0.2 T, respectively. (d), (e), and (f) around the frequency of ω2 mode at

0.4 T, 0.3 T, and 0.2 T, respectively.
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oretical calculation. Theoretically, the relative non-reciprocity for the linearly

polarized microwave with k ∥ x and Hω ∥ z, and Eω ∥ y can be expressed as(see

Appendix B)

∆S12 −∆S21

∆S12 +∆S21

=
Im
[
χme
zy + χem

yz

]
2Im

[√
(1 + χmm

zz )
(
ε∞ + χee

yy

)] , (5.4)

where χme
ij , χem

ij , χee
ij , χ

mm
ij , ε∞ are magnetoelectric, electromagnetic, electric, and

magnetic susceptibility tensors and high frequency relative dielectric constant, re-

spectively. According to the Kubo formula, these susceptibilities are obtained by

the following relations(see Appendix B);

χme
ij =

NV

h̄

√
µ0

ε0

∑
n

⟨0 |∆Mi|n⟩ ⟨n |∆Pj| 0⟩
ω − ωn + iδ

, (5.5)

χem
ij =

NV

h̄

√
µ0

ε0

∑
n

⟨0 |∆Pi|n⟩ ⟨n |∆Mj| 0⟩
ω − ωn + iδ

, (5.6)

χmm
ij =

NV

h̄
µ0

∑
n

⟨0 |∆Mi|n⟩ ⟨n |∆Mj| 0⟩
ω − ωn + iδ

, (5.7)

χee
ij =

NV

h̄

1

ε0

∑
n

⟨0 |∆Pi|n⟩ ⟨n |∆Pj| 0⟩
ω − ωn + iδ

, (5.8)

where ∆M and ∆P are, respectively, the dynamical polarization and magneti-

zation induced by the magnon. The matrix element of ∆M can be deduced by

using spin wave theory. For the calculation of ∆P, we assume the metal ligand hy-

bridization type magnetoelectric coupling and the coupling constant is determined

by the fitting of dc magnetoelectric response measured by Murakawa et al [68].

For the detail of theoretical calculations, see Appendix B. In Fig. 5.7, we plot

the theoretically calculated and experimentally observed relative non-reciprocity

(∆S12−∆S21)/(∆S12+∆S21) for the ω1 mode. Both the microwave absorption and

the difference of ∆S12 and ∆S21 decrease with decreasing the magnetic field. The

relative non-reciprocity gradually increases as the magnetic field is decreased. The

theoretical calculation of relative non-reciprocity coincides with the experimental

data with respect to both the magnitude and the field dependence. On the other

hand, the theoretical value of non-reciprocity in the second experimental geometry

is quite small compared with the first one, similarly to the experimental result. In
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Figure 5.7: Relative microwave non-reciprocity. The relative microwave non-

reciprocity (∆S12−∆S21)/(∆S12+∆S21) for H ∥ [100], Hω ⊥ [100] for the mode 1

is plotted as circles. Solid line stands for the corresponding theoretical calculation.

The relative microwave non-reciprocities for H ∥ [11̄0], Hω ⊥ [110] for ω1 mode

and ω2 mode are plotted as triangles and squares, respectively. Dashed and dotted

lines show the theoretical calculation of microwave non-reciprocity of ω1 mode and

ω2 mode for H ∥ [11̄0], Hω ⊥ [110], respectively.

this geometry, the static polarization shows a maximum as a function of angle of

H[68], and the alternating electric polarization due to magnon excitation becomes

quite small. For this reason, the non-reciprocity due to the dynamical ME effect is

also quite small in this case. Thus, the microwave non-reciprocity in this system

is quantitatively explained by the theoretical calculation, which give rise to the

satisfactory understanding of microwave non-reciprocity in Ba2MnGe2O7.

5.4 Summary

In summary, we observed the antiferromagnetic magnon modes of Ba2MnGe2O7 in

the microwave region. The notable microwave non-reciprocity was observed for the

ω1 mode for H ∥ [100] and Hω ⊥ [100]. On the other hand, it is negligible for both

the ω1 mode and ω2 mode when H ∥ [11̄0] and Hω ⊥ [110]. The presence /absence
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and magnitude of non-reciprocity are explained by the theoretical analysis based

on the spin wave theory and Kubo formula. These quantitative experiment-theory

correspondences adequately ensure the validity of background physics such as non-

reciprocal microwave response and the metal ligand hybridization mechanism.
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Chapter 6

Conclusions

We have demonstrated the non-reciprocity of the microwave and the magnon prop-

agations in the non-centrosymmetric magnets. We have obtained the new knowl-

edge about the non-reciprocal microwave response related to magnon excitations

as follows.

• Magnon non-reciprocally propagates along the magnetization in a bulk ferro-

magnet with chiral crystal structure. This non-reciprocity can be explained

by the asymmetric magnon dispersion owing to the Dzyaloshinskii-Moriya

interaction which is only finite in the system with simultaneous breaking of

time-reversal symmetry and space-inversion symmetry. This conclusion is

supported by the results in Section 3.3.

• The non-reciprocity derived from the Dzyaloshinskii-Moriya interaction in a

chiral ferromagnet is clearly discriminated from the non-reciprocities origi-

nated from the Damon-Eshbach mode. This is because the former propagates

parallel to the direction of the magnetic field, whereas the latter propagates

perpendicular to the direction of the magnetic field. This conclusion is based

on the results in Section 3.3.

• The multiferroic helimagnet Ba2Mg2Fe12O22 has the conical magnon excita-

tion in the microwave region. In the microwave region, the type-II multifer-

roics Ba2Mg2Fe12O22 shows the optical magnetoelectric effect. In addition,

the amplitude and the sign of the non-reciprocity of microwave can be con-
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trolled by the poling electric field. This conclusion is introduced by the

results in Chapter 4.

• The multiferroic antiferromagnet Ba2MnGe2O7 has the conventional anti-

ferromagnetic magnon modes with easy plane anisotropy in the microwave

region. The fitting of experimentally observed magnetic field dependence

of these modes to the theoretical equation provides the exchange interac-

tion constant and the magnetic anisotropy of Ba2MnGe2O7. We observed

the microwave non-reciprocity of one of the magnon modes. The microwave

non-reciprocity is quantitatively explained by using the spin wave theory,

the Kubo formula, and the metal ligand hybridization mechanism. This

conclusion is drawn by the results and discussion in Chapter 5.

From what has been discussed and newly obtained as mentioned above, we can

conclude the following.

One goal of the non-reciprocal response is the realization of completely non-

reciprocal (one-way) propagation or isolator. We need to build theories of non-

reciprocal response for that. Our study reveals the following two points as the basic

theory. One is ”In a non-centrosymmetric bulk ferromagnet, the Dzyaloshinskii-

Moriya interaction makes non-reciprocal magnon propagation.” In order to realize

the magnon-isolator by using a bulk magnet, studying other bulk magnets, such

as ferroelectric ferromagnets and centrosymmetric conical magnets, and increasing

the magnitude of the non-reciprocity will become issues in the future. The other

is ”The non-reciprocal microwave propagation is so small that the observation is

difficult near the typical antiferromagnetic magnon excitations, but the not small

non-reciprocal microwave propagation is observed only in the low magnetic field

(∼100 mT) in the ω1 mode.” Although antiferromagnetic magnon excitations have

been studied mostly in the high magnetic field (>1 T), from the point of view of

the non-reciprocal response, our study suggests that it is necessary to study them

in the lower magnetic field. On the other hand, our study suggests that the hexa-

ferrite has the potential of the electrically controllable microwave-isolator as a new

microwave function. While the poling procedure is needed to control the electric

polarization in Ba2Mg2Fe12O22 at present, the electrical switching of polarization

is, in principle, possible after resolving the problem of electrical leakage due to
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residual carriers. In fact, some research groups succeeded in switching the ferro-

electric polarization in a related material[?, ?]. In addition, hexaferrite has many

kinds of materials including the room temperature multiferroics. The future issues

are to realize the non-reciprocal microwave propagation at room temperature, to

increase the magnitude of non-reciprocity and to accelerate the switching speed of

the polarization.

80



　

81



Appendix A

Theory of magnon

A.1 Magnon modes in ferromagnets

In this section, we would like to review the magnon theory in ferromagnets and

calculate the magnetic field dependence of magnon frequency for Section 3.2. For

the details of magnon theory, see the standard texts[97, 75].

A.1.1 Uniform magnetic resonance mode in ferromagnets

Vibration of the spin or the magnetic moment propagates as the wave in material,

which is denoted as spin wave. The magnetic interactions between the moments,

such as the exchange interaction and the magnetic dipole-dipole interaction, pro-

vide the spin wave. The spin wave was first introduced by Bloch using the mi-

croscopic model with the exchange interaction[98] in 1930, and in this paper he

derived the T 3/2 law which is the law about the temperature variation of saturation

magnetization in ferromagnets at low temperature. This shows that the sponta-

neous magnetization decreases with the three-halves power of T via the spin wave

excited by thermal energy, and it was observed six years after by Fallot[99]. The

semiclassical derivation of spin wave was first published by Heller and Kramers

in 1934[100], after that Herring and Kittel reviewed clearly[101]. On the other

hand, after ten years of the proposal of spin wave, Holstein and Primakoff derived

the quantized spin wave, which is called magnon, from the second quantization

with the exchange interaction, the dipole interaction and the Zeeman interaction
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between a magnetic field and spin[102]. Here we show the equation of motion of

magnetization which is used for the semiclassical approach.

Equation of motion of magnetization

Let us consider the time variation of spin momentum S with the external magnetic

field µ0H by using the Heisenberg picture.

dS

dt
= − i

h̄
[S,H] = −µ0(S×H), (A.1)

where h̄ is the Planck constant divided by 2π. Here we used the Hamiltonian

H = µ0H · S. The time derivative of the angular momentum shows the torque,

so the right-hand side in Eq.(A.1) indicates that the external field provides the

torque to the spin momentum. From this equation, we can find that the spin

continues precessing around the magnetic field. On the other hand, by considering

the magnetization as the classical vector, the following equation expresses the time

variation of magnetization.

dM

dt
= −γµ0(M×H) (A.2)

Here, γ = gµB is the gyromagnetic ratio and g is the g-factor and µB is the Bohr

magneton. This phenomenological equation is the lossless form of the Landau-

Lifshitz (LL) equation of motion for the magnetization. If the magnetization

followed the equation, when the magnetization began to precess around the field,

it kept the state of motion as the stationary state. However in real materials

the magnetization interacts with the phonon and the magnon, and its energy

dissipation works to the magnetization motion as the damping term. As a result,

the magnetization gradually becomes to be parallel to the field. This dissipation

mechanism was introduced by Landau and Lifshitz in 1935 in the following way[51].

dM

dt
= −γµ0(M×H) + λM× (M×H) (A.3)

This is the loss form of the Landau-Lifshitz equation. Here the λ is the damping

constant of LL equation, and this equation only offers an indication of the mag-

netization motion when the λ is much less than γ. In contrast, in 1955 Gilbert

introduced the new equation of motion of magnetization by using the time deriva-

tive of magnetization as the damping term[52].

dM

dt
= −γµ0(M×H) +

α

Ms

M× dM

dt
(A.4)
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Here, the Ms is the saturation magnetization and the α is the Gilbert damping

constant. This equation holds without dependence on the amplitude of the damp-

ing constant. This is called the Landau-Lifshitz-Gilbert equation or shortly the

LLG equation. Today when we consider the magnetization motion we use the LLG

equation in a lot of cases and it is the easiest way for the uniform magnon mode,

where the all magnetization oscillate with the same phases. Such magnon mode

at wave number k = 0 is called the ferromagnetic resonance (FMR) or simply the

uniform mode.

Magnon energy with magnetic anisotropy

Firstly, considering the magnetic anisotropy of the sample shape, we introduce the

relation of the magnon energy in uniform mode and the saturation magnetization

and magnetic fields. Assuming that the time-dependent magnetization M(t) =

M0 + m(t) and the time-dependent magnetic field µ0H(t) = µ0H0 + µ0h(t) and

its time-dependent terms m(t) ∝ eiωt and h(t) ∝ eiωt , we substitute them in the

LLG equation [Eq.(A.4)].

iωm+ γm× µ0H0 +
iαω

Ms

m×M0 = −γM0 × µ0h (A.5)

Here, we used the linear approximation that the second or higher order time-

dependent terms are ignored. As the following, the magnetic shape anisotropy is

introduced as the demagnetizing tensor Ñ.

Ñ =


N11 N12 N13

N12 N22 N23

N13 N23 N33

 (A.6)

And the magnetic fields get the additional term of the tensor Ñ.

µ0H0 = µ0He0 − Ñ ·M0 (A.7)

µ0h = µ0he − Ñ ·m (A.8)

Substituting them in the linearized LLG equation, we obtain the following equa-

tion.

iωm+γm×(µ0He0−Ñ·M0)+γ(Ñ·m)×M0−
iαω

Ms

m×M0 = −γM0×µ0he. (A.9)
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Here, supposing that the static magnetic field and the saturation magnetization is

parallel to the z axis and that the time variation of the external field he = 0 and

that the damping of magnetization α = 0, the magnon frequency ω0 is

ω0 =
√

(ωH + γN11Ms)(ωH + γN22Ms)− γN2
12M

2
s (A.10)

ωH = γ(He0 −N33Ms). (A.11)

Furthermore, considering the principal axis respectively diagonalizes the demag-

netizing tensor.

ω0 = γµ0

√
(He0 + (Nx −Nz)Ms)(He0 + (Ny −Nz)Ms) (A.12)

It is the famous formula introduced by Kittel[103], so the FMR mode is sometimes

also called the Kittel mode. If the shape of magnetic material is plate-like which

the widest plane is in the yz space [Fig. A.1(a)], the demagnetization coefficients

are respectively

Nx = 1, Ny = Nz = 0. (A.13)

Thus, the magnon frequency is

ω0 = γµ0

√
He0(He0 +Ms). (A.14)
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Figure A.1: Coordinate axes for calculation of diamagnetic field ef-

fect against magnon energy. (a)Coordinate axes for the plate-like sample,

(b)Coordinate axes for the case of the rotated magnetization.

Secondly, let us consider the magnetocrystalline-anistropy as the diamagnetic

field to obtain the magnon frequency in more detail. For example in cubic, when
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we only consider the first order of anisotropic constant K1, the magnetocrystalline-

anisotropy energy is

Uan =
1

4
K1(sin

2 2θ + sin4 θ sin2 2φ). (A.15)

The coordinate axes of the rotational magnetization is as shown in Fig. A.1(b).

Here, the directional cosines of magnetization are written as

sin2 θ = (1− M2
z′

M2
s

), cos2 θ =
M2

z′

M2
s

sin2 φ =
M2

y′

M2
s

(1− M2
z′

M2
s

)−1, cos2 φ =
M2

x′

M2
s

(1− M2
z′

M2
s

)−1. (A.16)

From these expression, Uan = K1(1−
M2

z′
M2

s
)
M2

z′
M2

s
+

M2
x′

M2
s

M2
y′

M2
s
and the effective field of

magnetocrystalline-anisotropy is

µ0Han = −∂Uan

∂M
, (A.17)

in the form

µ0Han = −Ñ
an
M. (A.18)

Here the goal is obtaining the magnon frequency with Mx ∥ [111] and My ∥ [1̄1̄2]

and Mz ∥ [11̄0]. This calculation is preparation for Chapter 3. In the case that

the direction of magnetization is [11̄0] direction, substituting θ = π
2
and φ = −π

4

in the form of magnetization with x′− y′− z′ coordinate leads to that the effective

field of magnetocrystalline-anisotropy is

µ0Han = µ0


Hanx

Hany

Hanz

 =
K1

2M4
s


2Mx(M

2
s −M2

x)

4(2M3
y −M2

sMy)

−2Ms(M
2
s −M2

x)

 . (A.19)

When we use the approximation M2
x ,M

2
y ∼ 0 because of Mx,My ≪ Mz ≃ Ms,

µ0Han = −K1

M2
s


-1 0 0

0 2 0

0 0 1




MX

My

Ms

 = −Ñ
an ·M. (A.20)

Next, changing the coordinate rotated around the z axis leads to that the effective
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field is

µ0Han = (ex, ey, ez)
tŨŨÑ

t
ŨŨ


MX

My

Mz



= (e
′′

x, e
′′

y , e
′′

z )Ñ
′′


M

′′
X

M
′′
y

M
′′
z

 , (A.21)

where the Ũ is the rotation matrix and the inverse matrix Ũ
−1

is the same as the

transposed matrix tŨ. In the case of the M
′′
x ∥ [111] and M

′′
y ∥ [1̄1̄2], the rotation

matrix is

Ũ =
1√
3


−
√
2 1 0

-1 −
√
2 0

0 0
√
3

 , (A.22)

so the demagnetizing tensor of magnetocrystalline-anisotropy is

Ñ
an

=
K1

M2
s


0

√
2 0

√
2 1 0

0 0 1

 . (A.23)

Finally, combining the obtained demagnetizing tensors, we obtain the total

demagnetizing tensor Ñtotal.

Ñtotal = Ñ+ Ñ
an

=


a 0 0

0 b 0

0 0 1− a− b

+
K1

M2
s


0

√
2 0

√
2 1 0

0 0 1

 . (A.24)

From this result, the magnon frequency is

ω0 =
√
(ωH + γaMs)(ωH + γ(b+ α1)Ms)− 2γα2

1M
2
s

ωH = γ(He0 − (1− a− b+ α1)MS), (A.25)

where the K1

M2
s
= α1. When we substitute a = N111 and b = N1̄1̄2 in Eq.(A.25), the

magnon frequency is

ω0 = γ

√
[µ0H + (N111 −N11̄0)µ0Ms −

K1

Ms

][µ0H0 + (N1̄1̄2 −N11̄0)µ0Ms]2
K2

1

M2
s

(A.26)
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where N111, N1̄1̄2, and N11̄0 are the demagnetization factor for [111], [1̄1̄2], and

[11̄0] direction, respectively.

A.1.2 Ferromagnetic magnon mode with finite wave num-

ber

The interactions which propagate the magnon are the exchange interaction and

the magnetic dipole-dipole interaction. The exchange interaction is dominant in

the large wave number region, in contrast the dipolar interaction is dominant in

the small wave number region, so the magnon modes are classified in the wave

number space. The quantum magnon mode via the former is usually called the

exchange magnon, the classical magnon mode via the latter is usually called the

dipolar magnon, and the intermediate mode is usually called the dipolar-exchange

magnon[104, 105].

The dipolar magnon is mentioned in detail in the next section, so here I ignore

the dipolar interaction in Hamiltonian. For example in the simple cubic lattice

structure with the lattice constant a, the continuum approximation of Hamiltonian

is

H = − 1

V0

∫
dr

{
J
∑
i

S(r) · S(r+ aei)− µ0H · S(r)

}

= − 1

V0

∫
dr

{
J
∑
i

[−1

2
S(r+ aei)− S(r)2 + S2]− µ0H · S(r)

}

=
1

V0

∫
dr

{
Ja2

2

∑
i

(
∂S(r)

∂ei
)2 − µ0H · S(r)

}

=
1

V0

∫
dr

{
Ja2

2
(∇S(r))2 − µ0H · S(r)

}
, (A.27)

where S is the spatially dependent spin moment divided by h̄, J is the exchange

interaction constant and V0 is the volume of the unit cell. By using the approximate

Holstein-Primakoff transformation[102], in the induced ferromagnetic state (IFMS)
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with the magnetic field H ∥ z the S(r) is

Sx = i

√
S

2
[a(r)− a(r)+]

Sy =

√
S

2
[a(r) + a(r)+] (A.28)

Sz = S − a(r)+a(r),

where the a(r) and a(r)+ are the free magnon operators, which satisfy [a(r), a(r′)+] =

δ(r− r′). Indeed the Fourier transform of a(r) is defined by

a(r) =
∑
k

ak exp(ik · r). (A.29)

From these results, the Hamiltonian is expressed as following[55].

H =
∑
k

(2JSk2 + µ0H)a+k ak (A.30)

Thus, the magnon energy is

h̄ωk = 2JSk2 + µ0H (A.31)

The above calculations clearly show that the magnon gains the Zeeman energy

and increases with the square of wave number with the exchange interaction and

the external dc magnetic field. Without the magnetic field, the magnon at k = 0

is the massless mode, which is known as the Nambu-Goldstone (N-G) magnon

mode[106, 107, 108]. The branches of the N-G mode are sometimes called the N-G

magnon mode in the broad sense or the quasi N-G mode.

A.2 Dipolar magnon modes

In this section, we introduce the dipolar magnon mode so-called the magnetostatic

wave modes by the limit of long wavelength of the Maxwell’s equations for Section

3.3. The magnetostatic wave modes are classical modes, so they are completely

different from the exchange magnon mode. We show that the magnetostatic waves

are excited by the external AC magnetic field with a long wavelength.
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A.2.1 Gyrotropy of ferromagnets

First, let us consider the interaction of the magnetization motion and the elec-

tromagnetic wave. From substituting the time-dependent magnetization m(t) =

m0e
iωt and the time-dependent magnetic field h(t) = h0e

iωt in the LLG equation

without damping term [Eq.(A.2)], the magnetic susceptibility tensor χ̃ is obtained.

m = χ̃ · h

χ̃ =


χ −iκ 0

iκ χ 0

0 0 0

 , (A.32)

where

χ =
ωMωH

ω2
H − ω2

, κ =
ωMω

ω2
H − ω2

(A.33)

ωH = γµ0H0, ωM = γµ0Ms. (A.34)

The magnetic susceptibility was first calculated by Polder[109] in 1949, so this

tensor is called Polder tensor or Polder susceptibility tensor. The elements of

Polder tensor diverge at the frequency ω = ωH and its property provides the fer-

romagnetic resonance. As a general rule, the ac magnetic field h can only oscillate

the magnetization parallel to h. However the Polder tensor has the non-diagonal

components, so the ac field h also can oscillate the magnetization perpendicular

to h with a phase shift of π/2. Such property owing to the nonsymmetry of the

magnetic susceptibility tensor is called magnetic gyrotropy. On the other hand,

properties owing to the nonsymmetry of the electric susceptibility, such as Faraday

effect, is called electric gyrotropy. From the magnetic susceptibility, we get the

time variation of magnetic flux density b and the permeability tensor µ̃ as the

following.

b = µ0h+ µ0m

= µ0(Ĩ+ χ̃) · h = µ̃ · h (A.35)

b = µ̃ · h, µ̃ = µ0


1 + χ −iκ 0

iκ 1 + χ 0

0 0 1

 (A.36)
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The diagonal element of permeability is negative in the frequency region from ωH

to
√

ωH(ωH + ωM). This resonance frequency dependence of permeability is first

observed by Griffiths[110]. He put the Ni film (0.025 mm) into the two cylin-

drical microwave cavity with different resonance frequencies and he measured the

magnetic field dependence of the product of permeability and electric resistivity,

and he discovered the relation of the magnetic field and the resonance frequency.

Such resonance absorption of microwave owing to the magnetization dynamics in

ferromagnet is called ferromagnetic resonance absorption.

A.2.2 Magnetostatic wave modes

Let us consider the introduction of the magnetostatic wave (MSW) mode from the

Maxwell’s equations in the magnetostatic limit ∥k∥ ≫ ∥k0∥, where k0 is the wave

vector of light. From the Maxwell’s equations in this limit, we obtain the following

equations.

∇× h = 0

∇ · b = 0 (A.37)

∇× e = iωb,

where e is the time variation of electric field and e = e0e
iωt. These equations

are called magnetostatic equations and the waves expressed by them are called

magnetostatic waves. When we introduce the magnetostatic scalar potential φ

by the equation h = −∇φ, from the magnetostatic equations and the magnetic

susceptibility tensor we obtain the following equation at the dc magnetic field

H0 = H0z.

(1 + χ)

[
∂2φ

∂x2
+

∂2φ

∂y2

]
+

∂2φ

∂z2
= 0 (A.38)

This equation was first introduced by Walker[111] in 1957, so it is called Walker’s

equation. Using the Walker’s equation with φ ∝ eik·r and H = H0z+h, we obtain

the frequency of MSW with θ which is the angle of k and H0.

ω =
√

ωH(ωH + ωM sin2 θ) (A.39)

From the above equation, we get the frequency range of MSW as below.

ωH ≤ ω ≤
√
ωH(ωH + ωM) (A.40)
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Such frequency region is called magnetostatic wave manifold, and it equals the

region of the negative permeability. The MSW was first observed by White and

Solt using the experiment of cavity resonance with ferrite[112].

The MSW has a lot of unique dispersions depending on the condition of mag-

netic field and sample shape. Here we only show the case of thin plate-type sample

with in-plane magnetic field as shown in Fig. A.2(a). At the in-plane field there

are two types of MSW modes. One mode propagates parallel to the magnetic

field and the other mode propagates perpendicular to the magnetic field. The

former mode is called magnetostatic backward volume wave (MSBVW) mode and

the latter is called magnetostatic surface wave (MSSW) mode or Damon-Eshbach

mode (DEM) derived from the name of theorists who first introduced the DEM[53].

First, consider the MSW mode propagating parallel to the magnetic field and z

axis. Here the magnetostatic scalar potential is expressed as

φ = (A sinκx+B cosκx) exp ikz, (A.41)

where A and B are real constants, κ is the x component of the wave number, and k

is the z component of the wave number. The Walker’s equation with the boundary

condition provides the dispersion relation of MSBVW[113]. For preparation of the

experiment in Chapter 3, let us consider the case of the ferrite film where the

surface is attached to the metallic ground of the microwave circuit while the top

surface is free. First, we solve the walker equation assuming both the top and

bottom surface are attached to metal. Then we show the solution for the free

boundary condition and suggest the difference of the boundary condition is not

critical for the comparison with the experiment. If the surfaces are attached to the

metal, the normal component of magnetic induction is zero at the surface. Thus,

(1 + χxx)
∂φ

∂x
= 0, (A.42)

at x = 0 and x = t, where the χxx is the xx component of the magnetic suscepti-

bility tensor. Putting Eq. A.41 into the above formula, we obtain

A = 0, (A.43)

κ =
nπ

t
, (A.44)

φ = B cos(
nπ

t
x) exp ikz, (A.45)
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where n is a positive integer. Depending on n, the magnetic field distribution

along x direction is different. Substituting Eq. A.44 into the walker equation, we

get

(1 + χxx)
(nπ)2

t2
+ k2 = 0. (A.46)

The explicit form of χxx in this configuration is expressed as

χxx =
µ2
0H0Ms

µ2
0H

2
0 − µ0

K1H0

Ms
− 2K2

1

M2
s
− (ω/γ)2

. (A.47)

The higher-order magnetic anisotropy is neglected. Then we get the following

dispersion relation:

ω = γ

√
µ2
0H

2
0 − µ0

K1H0

Ms

− 2K2
1

M2
S

+
µ2
0H0Ms

1 + (kt/nπ)2
(A.48)

Figure A.2(b) indicates the dispersion of MSBVW at µ0H =0.15 T for LiFe5O8.

In addition, we calculated the MSBVW with parameters of the lithium ferrite

(LiFe5O8) and the yttrium iron garnet (Y3Fe5O12) for preparation of the experi-

ment in Chapter 3.
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Figure A.2: Magnetostatic backward volume modes for famous ferrites.

(a) Illustration of the geometry used in the calculation of MSBVW. The plate

shows the figure of crystal and [111], [1̄1̄2], and [11̄0] are the crystal orientation.

(b) The dispersion relations of MSBVW in lithium ferrite (LiFe5O8) in the case of

metalized boundary condition. The index n classifies the magnon mode branches

with different spatially oscillating patterns along the normal direction of the crys-

tal plate. The arrow shows the wavelength that can be excited by the antenna

which was used for the experiment in Chapter 3, k = 2π/(20µm). (c) Compar-

ison of the n = 1 dispersion relations of MSBVW in lithium ferrite for free and

metalized boundary conditions. The arrow shows the momentum k excited by

the microwave antenna, k = 2π/(20µm). Inset shows the dispersion relation in

the low k region. (d) The n = 1 dispersion relations of LiFe5O8 (solid lines) and

yttrium iron garnet (Y3Fe5O12) (dashed lines). The metalized boundary condition

is employed. Reprinted figures from [65]. Copyright 2015, by American Physical

Society.
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Appendix B

Microwave non-reciprocity in

Ba2MnGe2O7

B.1 Magnetic structure in magnetic fields

In this chapter, we theoretically discuss the magnetic excitation and the microwave

non-reciprocity in order to compare with the experimentally observed data. Similar

calculations were already done in literatures[25, 26, 48]. We assume the Hamilto-

nian in Ba2MnGe2O7 is

H = J
∑
<i,j>

Si · Sj +K
∑
i

(Sz
i )

2 + gµB

∑
i

Si · (µ0H) . (B.1)

Here, g is a g value, and µB is the Bohr magneton. µ0 is the magnetic perme-

ability in vacuum. J is the nearest-neighbor exchange interaction constant. The

nearest-neighbor exchange interaction is antiferromagnetic (J > 0). The interplane

magnetic interaction is small compared with the intraplane one[95], therefore ig-

nored here for simplicity. Dzyaloshinskii-Moriya interaction is also ignored. The

single-ion anisotropy K > 0 indicates the easy-plane-type magnetic anisotropy.

Si = (Sx
i , S

y
i , S

z
i ) is the spin operator at i sublattice (i = A,B), the magnetic

moment is mi = −gµBSi.

In this section, we deduce the magnetic structure in magnetic fields at T = 0

K with use of classical approach. We assume two-sublattice magnetic structure.

The magnetic field is applied in the tetragonal plane. Therefore, the magnetic field
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vector can be expressed as

H = H (cos θH, sin θH, 0) . (B.2)

In this case, the spins for each sublattice are vector along the tetragonal plane

expressed as

Si = S (cos θi, sin θi, 0) , (B.3)

where θi(i = A,B) stands for the angle of spin for the i sublattice. Then the

energy is estimated as

E

N
= 4JS2 cos 2θ + hS {cos (θA − θH) + cos (θB − θH)} , (B.4)

where 2θ = θA − θB (θA > θB) , h = gµBµ0H. N is the number of unit cell.

Neglecting the finite temperature effect, the spins are ordered so that the energy

is minimized. From the condition, we obtain the directions of spins as follows;

cos θ =
h

8JS
, (B.5)

θA = θH + θ + π, θB = θH − θ + π. (B.6)

The obtained magnetic structure is shown in Fig. B.1(a).

A

B

2

FigAFM.eps

Fig.S1 Y. Iguchi et al.)
Figure B.1: The ground state of easy-plane-type antiferromagnets in the inplane

magnetic field H.

B.2 Electric polarization

The electric polarization of Ba2MnGe2O7 can be induced by the metal ligand

hybridization mechanism. The local electric dipole moment at i sublattice is de-

scribed as

pi = λ
∑
j

(Si · eij)2eij, (B.7)
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where λ is a constant and eij = (exij, e
y
ij, e

z
ij) is the unit vector along the bond con-

necting Mn ion at i sublattice and jth coordinated oxygen ion. For Ba2MnGe2O7,

the lattice constants are a = b = 8.5022 Å and c = 5.5244 Å. In the unit

cell, the Mn ions are located at the positions (0,0,0) and (0.5a, 0.5a, 0). The

four coordinated oxygens around the Mn A ion are at (0.0825a, 0.187a, 0.2117c),

(−0.0825a,−0.187a, 0.2117c), (−0.187a, 0.0825a,−0.2117c), and (0.187a,−0.0825a,−0.2117c).

On the other hand, The coordinated oxygens around Mn B are at (0.687a, 0.5825a, 0.2117c),

(0.313a, 0.4175a, 0.2117c), (0.4175a, 0.687a,−0.2117c), (0.5825a, 0.313a,−0.2117c).

From these informations, we obtained

eA1 = (0.33487, 0.75903, 0.55833) = (d, f, l),

eA2 = (−d,−f, l),

eA3 = (−f, d,−l),

eA4 = (f,−d,−l),

eB1 = (f, d, l),

eB2 = (−f,−d, l),

eB3 = (−d, f,−l),

eB4 = (d,−f,−l).

The polarization is estimated as the summation of local electric dipole moments

divided by the volume as follows;

P =
λ

2NV

2N∑
i

4∑
j

(Si · eij)2 eij

=
λ

2V

4∑
j=1

[{
(SA · eAj)

2 + (SB · eAj)
2} eAj

+
{
(SA · eBj)

2 + (SB · eBj)
2} eBj

]
=

8dflλ

V


Sy
AS

z
A + Sy

BS
z
B

Sx
AS

z
A + Sx

BS
z
B

Sx
AS

y
A + Sx

BS
y
B

 . (B.8)
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The effect of inter layer antiferromagnetic stacking is included in this formula. We

introduce the ferromagnetic vector SF and the antiferromagnetic vector SAF;

SF =


Sx
A + Sx

B

Sy
A + Sy

B

Sz
A + Sz

B

 , (B.9)

SAF =


Sx
A − Sx

B

Sy
A − Sy

B

Sz
A − Sz

B

 . (B.10)

With these vectors, the polarization can be expressed as

P0 =
4dflλ

V


Sy
FS

z
F + Sy

AFS
z
AF

Sx
FS

z
F + Sx

AFS
z
AF

Sx
FS

y
F + Sx

AFS
y
AF

 . (B.11)

In order to compare with the experimentally observed polarization and estimate

the coupling constant λ, we calculate the magnetic structure at finite temperature

with use of molecular field approach. The magnitude of spin is expressed as the

thermodynamical average ⟨SA⟩ and ⟨SB⟩.

⟨Si⟩ = S̄ (cos θ′i, sin θ
′
i, 0) (B.12)

Here i = A,B and |⟨SA⟩| = |⟨SB⟩| = S̄. From the mean-field approximation, the

Hamiltonian is

H = HA +HB, (B.13)

HA =
∑
i

(4J ⟨SB⟩+ gµBµ0H) · SA, (B.14)

HB =
∑
i

(4J ⟨SA⟩+ gµBµ0H) · SB. (B.15)

The effective magnetic fields are

Heff,A =
4J

gµB

⟨SB⟩+ µ0H, (B.16)

Heff,B =
4J

gµB

⟨SA⟩+ µ0H. (B.17)
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Because the magnetic torques are zero at steady state,

Heff,A × gµB ⟨SA⟩ = Heff,B × gµB ⟨SB⟩ = 0. (B.18)

Thus the direction of spins is determined as follows;

2θ′ = θ′A − θ′B (θ′A > θ′B) , (B.19)

cos θ′ =
h

8JS̄
, (B.20)

θ′A = θH + θ′ + π, θ′B = θH − θ′ + π. (B.21)

The thermodynamical average of magnitude of spin S̄ is expressed as follows;

S̄ = SBs

[
Heff,A · gµB ⟨SA⟩

kBT

]
= SBs

[
−
4J
{
2 (h/8J)2 − S̄2

}
− h2/8J

kBT
S

]
. (B.22)

Here kB is the Boltzmann constant and Bs[x] is the Brillouin function,

Bs [x] =
2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

( x

2S

)
. (B.23)

From Eq. (B.22), we can numerically obtain the h dependence of S̄. The h

dependence of θ′ is also obtained by Eq. (S20). In the magnetic field along [110]

(θH = π/4),

⟨SA⟩ =
S̄√
2


− cos θ′ + sin θ′

− cos θ′ − sin θ′

0

 , ⟨SB⟩ =
S̄√
2


− cos θ′ − sin θ′

− cos θ′ + sin θ′

0

 , (B.24)

⟨SF⟩ = −
√
2S̄ cos θ′


1

1

0

 , ⟨SAF⟩ =
√
2S̄ sin θ′


1

−1

0

 . (B.25)

Thus the polarization is

P =
8dflλ

V
S̄2


0

0

2 cos2 θ′ − 1

 . (B.26)

Figure B.2 compares the obtained polarization and experimental data[3]. Here we

used parameters, S = 5/2, T = 1.8 K, V = 8.5022× 8.5022× 5.5244× 10−30 m3,

and 4JS/gµB = µ0HE = 4.67 T. The h-dependences are similar to each other.

From the comparison, we obtained |λ| is estimated as 9× 10−35Cm.
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FigP .eps

Fig.S2 Y. Iguchi et al.)
Figure B.2: Polarization experimentally obtained by Murakawa et al.[68] and cal-

culated polarization based on Eq. (B.26) with |λ| = 9× 10−35 Cm.

B.3 Antiferromagnetic magnon modes

In this section, we discuss the antiferromagnetic magnon modes. Finite tempera-

ture effect is neglected for simplicity. First, we introduced the coordinate system

along the spin direction. The spin coordinate system is rotated so that the x-axis

is aligned with the direction of ordered spin moments by the unitary operator

U = exp

(
−i
∑
i

θiS
z
i

)
. (B.27)

The spin moments in the rotated system (S̃i) are

U †SiU ≡ S̃i = Rz (θi)Si, (B.28)

where

Rz (θi) =


cos θi − sin θi 0

sin θi cos θi 0

0 0 1

 . (B.29)

The Hamiltonian (Eq. (B.1)) is transformed by U into

H̃ = J
∑
<i,j>

{(
S̃x
i S̃

x
j + S̃y

i S̃
y
j

)
cos (θi − θj) + S̃z

i S̃
z
j +

[
S̃i × S̃j

]z
sin (θi − θj)

}
+K

∑
i

(
S̃z
i

)2
+ h

∑
i

{
S̃x
i cos (θi − θH)− S̃y

i sin (θi − θH)
}
.

(B.30)
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In the rotated system, the Holstein-Primakoff (H-P) transformations are

S̃x
i = S−a†iai, S̃y

i =

√
S

2

(
ai + a†i

)
+O

(
S− 1

2

)
, S̃z

i = −i

√
S

2

(
ai − a†i

)
+O

(
S− 1

2

)
,

(B.31)

S̃x
j = S−b†jbj, S̃y

j =

√
S

2

(
bj + b†j

)
+O

(
S− 1

2

)
, S̃z

j = −i

√
S

2

(
bj − b†j

)
+O

(
S− 1

2

)
.

(B.32)

Here ai, bj and a†i , b
†
j are the boson annihilation and creation operators, respec-

tively. In this chapter, we discuss the magnon modes coupled to the microwave.

The microwave wavelength is fairly long compared with the atomic distance. The

coupled magnon modes can be regarded as spatially uniform. Therefore, we as-

sume that ai,a
†
i , bi, and b†i are independent of atomic site indicated by suffix i.

Hereafter, we omit the suffix. Then the H-P transformed Hamiltonian becomes

H̃ = Ē +
1

2
Ψ†HMΨ+O

(
S

1
2

)
. (B.33)

Here,

Ē = 4JNS (S + 1) cos 2θ − hN (2S + 1) cos θ, (B.34)

Ψ† =
(
a†, b†, a, b

)
, (B.35)

HM =


4JS +KS 4JS cos2 θ −KS −4JS sin2 θ

4JS cos2 θ 4JS +KS −4JS sin2 θ −KS

−KS −4JS sin2 θ 4JS +KS 4JS cos2 θ

−4JS sin2 θ −KS 4JS cos2 θ 4JS +KS

 . (B.36)

The magnon energy ωn is obtained by the secular equation

ΣzHMun = ωnun, (B.37)

where

Σz =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (B.38)

The eigenvalues are obtained as:

ω1 = 8JS cos θ

√
1 +

K

4J
= gµBµ0H

√
1 +

HA

2HE

, (B.39)
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ω2 =
√
16JSKS (1− cos2 θ) = gµBµ0

√√√√2HEHA

(
1−

(
H

2HE

)2
)
. (B.40)

Here the exchange field HE and the magnetic anisotropy field HA are defined as

HE =
4JS

gµBµ0

, HA =
2KS

gµBµ0

. (B.41)

The diagonalized Hamiltonian is obtained by the Bogoliubov transformation
a

b

a†

b†

 =
1√
2


coshϕ2 coshϕ1 − sinhϕ2 sinhϕ1

− coshϕ2 coshϕ1 sinhϕ2 sinhϕ1

− sinhϕ2 sinhϕ1 coshϕ2 coshϕ1

sinhϕ2 sinhϕ1 − coshϕ2 coshϕ1




α

β

α†

β†

 , (B.42)

where

coshϕ2 =

√
4JS (1− cos2 θ) +KS

2ω2

+
1

2
, (B.43)

sinhϕ2 =

√
4JS (1− cos2 θ) +KS

2ω2

− 1

2
,

(
h ≤ 8JS

√
1− K

4J

)
, (B.44)

coshϕ1 =

√
4JS (1 + cos2 θ) +KS

2ω1

+
1

2
, (B.45)

sinhϕ1 =

√
4JS (1 + cos2 θ) +KS

2ω1

− 1

2
. (B.46)

H̃ = Ē + ω2

(
α†α +

1

2

)
+ ω1

(
β†β +

1

2

)
+O

(
S

1
2

)
, (B.47)

With use of creation and annihilation operators, we can expressed SA and SB as

SA = mAS −mAa
†a+

√
S

2

{
∂mA

∂θA

(
a+ a†

)
− iẑ

(
a− a†

)}
+O

(
S− 1

2

)
, (B.48)

SB = mBS −mBb
†b+

√
S

2

{
∂mB

∂θB

(
b+ b†

)
− iẑ

(
b− b†

)}
+O

(
S− 1

2

)
, (B.49)

mA = (cos θA, sin θA, 0) , mB = (cos θB, sin θB, 0) . (B.50)

In the case of θH = 0,

∂mA

∂θA
=


sin θ

− cos θ

0

 ,
∂mB

∂θB
=


− sin θ

− cos θ

0

 , (B.51)
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SF = SA + SB

=

√
S

N


sin θ (coshϕ2 − sinhϕ2)

(
α + α†)

− cos θ (coshϕ1 + sinhϕ1)
(
β + β†)

−i (coshϕ1 − sinhϕ1)
(
β − β†)



−2S


cos θ

0

0


+(2nd order terms of α, β) +O

(
S− 1

2

)
. (B.52)

The dynamical and static components of SF (Sω
F and S0

F ) are, respectively, ex-

pressed by the first and second terms as follows:

Sω
F =

√
S

N


sin θ (coshϕ2 − sinhϕ2)

(
α + α†)

− cos θ (coshϕ1 + sinhϕ1)
(
β + β†)

−i (coshϕ1 − sinhϕ1)
(
β − β†)

 , (B.53)

S0
F = −2S


cos θ

0

0

 . (B.54)

Similarly,

SAF = SA − SB

=

√
S

N


sin θ (coshϕ1 + sinhϕ1)

(
β + β†)

− cos θ (coshϕ2 − sinhϕ2)
(
α + α†)

−i (coshϕ2 + sinhϕ2)
(
α− α†)



−2S


0

sin θ

0


+(2nd order terms of α, β) +O

(
S− 1

2

)
. (B.55)
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The dynamical and static components of SAF (Sω
AF and S0

AF ) are, respectively,

defined by the first and second terms as follows:

Sω
AF =

√
S

N


sin θ (coshϕ1 + sinhϕ1)

(
β + β†)

− cos θ (coshϕ2 − sinhϕ2)
(
α + α†)

−i (coshϕ2 + sinhϕ2)
(
α− α†)

 , (B.56)

S0
AF = −2S


0

sin θ

0

 . (B.57)

In the case of θH = 3π/4,

∂mA

∂θA
=

1√
2


cos θ − sin θ

cos θ + sin θ

0

 ,
∂mB

∂θB
=

1√
2


cos θ + sin θ

cos θ − sin θ

0

 , (B.58)

SF =

√
S

2N
×

− sin θ (coshϕ2 − sinhϕ2)
(
α + α†)+ cos θ (coshϕ1 + sinhϕ1)

(
β + β†)

sin θ (coshϕ2 − sinhϕ2)
(
α + α†)+ cos θ (coshϕ1 + sinhϕ1)

(
β + β†)

−
√
2i (coshϕ1 − sinhϕ1)

(
β − β†)



+
√
2S cos θ


1

−1

0


+(2nd order terms of α, β) +O

(
S− 1

2

)
, (B.59)

SAF =

√
S

2N
×

cos θ (coshϕ2 − sinhϕ2)
(
α + α†)− sin θ (coshϕ1 + sinhϕ1)

(
β + β†)

cos θ (coshϕ2 − sinhϕ2)
(
α + α†)+ sin θ (coshϕ1 + sinhϕ1)

(
β + β†)

−
√
2i (coshϕ2 + sinhϕ2)

(
α− α†)



+
√
2S sin θ


1

1

0

 . (B.60)
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B.4 Microwave non-reciprocity

B.4.1 Dynamical Susceptibility tensors

In this section, we discuss dynamical susceptibility tensors for the estimation of

microwave non-reciprocity in the later section. For the magnetoelectric substance,

the oscillating electric and magnetic flux densities (Dω = (Dω
x , D

ω
y , D

ω
z ),B

ω =

(Bω
x , B

ω
y , B

ω
z )) in oscillating electric and magnetic fields (Eω = (Eω

x , E
ω
y , E

ω
z ), H

ω =

(Hω
x , H

ω
y , H

ω
z )) can be expressed as:

Dω
i = ε0(ε∞ + χee

ij )E
ω
j +

√
ε0µ0χ

em
ij Hj, (B.61)

Bω
i = µ0(1 + χmm

ij )Hω
j +

√
ε0µ0χ

me
ij Ej, (B.62)

where χmm, χee, χem and χme are magnetic, electric, electromagnetic, and magne-

toelectric dynamical tensors, respectively. ε0 is the permittivity in vacuum. ε∞ is

the relative permittivity at high frequency. According to ref. [116], ε∞ ≈ 14. The

nonzero component of these dynamical susceptibility tensors can be determined by

the symmetry analysis[114, 115]. Let us discuss them under H ∥[100] and H ∥[11̄0]
corresponding to the experiments. The magnetic point groups are 22′2′ and m′m2′

for H ∥[100] and H ∥[11̄0], respectively. Therefore, for H ∥[100],

χmm =


χmm
xx 0 0

0 χmm
yy χmm

yz

0 −χmm
yz χmm

zz

 , χee =


χee
xx 0 0

0 χee
yy χee

yz

0 −χee
yz χee

zz

 ,

χme =


χme
xx 0 0

0 χme
yy χme

yz

0 χme
zy χme

zz

 , χem =


−χme

xx 0 0

0 −χme
yy χme

zy

0 χme
yz −χme

zz

 , (B.63)

where x ∥ [100],y ∥ [010] and z ∥ [001]. For H ∥[11̄0],

χmm =


χmm
xx 0 χmm

xz

0 χmm
yy 0

−χmm
xz 0 χmm

zz

 , χee =


χee
xx 0 χee

xz

0 χee
yy 0

−χee
xz 0 χee

zz

 ,

χme =


0 0 χme

xz

0 0 χme
yz

χme
zx χme

zy 0

 , χem =


0 0 −χme

zx

0 0 χme
zy

−χme
xz χme

yz 0

 , (B.64)
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where x ∥ [110],y ∥ [001] and z ∥ [11̄0].

The dynamical susceptibility tensors at T = 0 are obtained by the Kubo for-

mula as follows;

χme
βγ =

NV

h̄

√
µ0

ε0

∑
n

⟨0 |∆Mβ|n⟩ ⟨n |∆Pγ| 0⟩
ω − ωn + iδ

, (B.65)

χem
βγ =

NV

h̄

√
µ0

ε0

∑
n

⟨0 |∆Pβ|n⟩ ⟨n |∆Mγ| 0⟩
ω − ωn + iδ

, (B.66)

χmm
βγ =

NV

h̄
µ0

∑
n

⟨0 |∆Mβ|n⟩ ⟨n |∆Mγ| 0⟩
ω − ωn + iδ

, (B.67)

χee
βγ =

NV

h̄

1

ε0

∑
n

⟨0 |∆Pβ|n⟩ ⟨n |∆Pγ| 0⟩
ω − ωn + iδ

, (B.68)

where |0⟩ is the ground state and |n⟩ is the magnon excited state. Here, ∆M and

∆P are, respectively, the dynamical polarization and magnetization induced by

the magnons expressed as follows;

∆M = − 1

2NV

2N∑
i

gµB∆Si ≃ − 1

V
gµBS

ω
F, (B.69)

∆P =
λ

NV

2N∑
i

4∑
j

(Si · eij) (∆Si · eij) eij

=
4dflλ

V


S0
F,yS

ω
F,z + Sω

F,yS
0
F,z + S0

AF,yS
ω
AF,z + Sω

AF,yS
0
AF,z

S0
F,xS

ω
F,z′ + Sω

F,xS
0
F,z′ + S0

AF,xS
ω
AF,z′ + Sω

AF,xS
0
AF,z

S0
F,xS

ω
F,y + Sω

F,xS
0
F,y + S0

AF,xS
ω
AF,y + Sω

AF,xS
0
AF,y

 . (B.70)

B.4.2 Microwave non-reciprocity in coplanar waveguide

In order to theoretically obtain the microwave non-reciprocity, we should esti-

mate the damping rate of microwave in the microwave coplanar waveguide with

sample. We assume that x′y′z′-coordinate is fixed to the microwave wave guide.

The x′-direction is along the microwave propagation direction. y′ is parallel to

the coplanar pattern but perpendicular to x′. The z′ direction is perpendicu-

lar to the coplanar pattern. In our experimental setup, the microwave is com-

posed of two linearly polarized waves (polarization 1: Eω ∥ z′, Hω ∥ y′) and
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(polarization 2: Eω ∥ y′, Hω ∥ z′). For simplicity, we assume the two polariza-

tions are equally mixed. We also assume that the linear polarization is approx-

imately maintained in the substance. In order to estimate the refractive index

for the polarization 1 (Eω ∥ z′,Hω ∥ y′), We put Eω
x′ = Eω

y′ = Hω
x′ = Hω

z′ = 0,

Eω
z′ = |Eω

z′| exp [i(kx′ − ωt)], Hω
y′ =

∣∣Hω
y′

∣∣ exp [i(kx′ − ωt)] into the Maxwell equa-

tions, and obtain

−kEω
z′ = ω

{(
1 + χmm

y′y′

)
µ0H

ω
y′ + χme

y′z′
√
ε0µ0E

ω
z′

}
, (B.71)

kHω
y′ = −ω

{
(ε∞ + χee

z′z′) ε0E
ω
z′ + χem

z′y′
√
ε0µ0H

ω
y′

}
. (B.72)

From the requirement of existence of solution other than Eω
z = Hω

y = 0, we get

k = ω
√
ε0µ0

(
−
χme
y′z′ + χem

z′y′

2
±
√
(ε∞ + χee

z′z′)
(
1 + χmm

y′y′

))
. (B.73)

The magnitude of second term is much larger than that of first term. Therefore,

the upper sign is corresponding to the k > 0 solution while the lower sign to the

k < 0 solution. The difference of refractive indices n for positive and negative k is

∆n = −
(
χme
y′z′ + χem

z′y′

)
. (B.74)

The average of refractive indices is

n̄ =
√

(ε∞ + χee
z′z′)

(
1 + χmm

y′y′

)
. (B.75)

Because the absorption coefficient α is expressed as ωIm [n] /c, the difference of

absorption coefficient is

∆α1 = −ω

c
Im
[
χme
y′z′ + χem

z′y′

]
, (B.76)

and the average of absorption coefficient is

ᾱ1 =
ω

c
Im

[√
(ε∞ + χee

z′z′)
(
1 + χmm

y′y′

)]
. (B.77)

The suffix ”1” stands for the first polarization (Eω ∥ z, Hω ∥ y).

On the other hand, for the polarization Eω ∥ y′,Hω ∥ z′ (polarization 2), the

microwave non-reciprocity and the average of microwave absorption are, respec-

tively,

∆α2 =
ω

c
Im
[
χme
z′y′ + χem

y′z′

]
, (B.78)

ᾱ2 =
ω

c
Im

[√(
ε∞ + χee

y′y′

)
(1 + χmm

z′z′ )

]
. (B.79)

107



We assume the relative magnitude of the microwave non-reciprocity in our exper-

iment is corresponding to
∆α

ᾱ
≃ ∆α1 +∆α2

ᾱ1 + ᾱ2

. (B.80)

The microwave absorption spectrum is obtained from the absorption coefficients

as follows;

∆S12 +∆S21 = −2ᾱL× 20 log10 e, (B.81)

∆S12 −∆S21 = −∆αL× 20 log10 e. (B.82)

Here L is the propagation length of microwave in a sample. Thus the relative mag-

nitude of the microwave non-reciprocity is equivalent to the experimental value.

2
∆S12 −∆S21

∆S12 +∆S21

=
∆α

ᾱ
(B.83)

B.4.3 Microwave non-reciprocity for H ∥ [100] and Hω ⊥
[100]

In this subsection, we theoretically estimate the non-reciprocity for H ∥ [100],

Hω ⊥ [100]. The real and imaginary part of the dynamical susceptibilities are
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expressed as follows:

Im
[
χme
y′z′ + χem

z′y′

]
=

NV

h̄

√
µ0

ε0

∑
n

−2δ ⟨0 |∆My′ |n⟩ ⟨n |∆P ′
z| 0⟩

(ω − ωn)
2 + δ2

, (B.84)

Im
[
χme
z′y′ + χem

y′z′

]
=

NV

h̄

√
µ0

ε0

∑
n

−2δ ⟨0 |∆Mz′ |n⟩
⟨
n
∣∣∆P ′

y

∣∣ 0⟩
(ω − ωn)

2 + δ2
, (B.85)

Im [χee
z′z′ ] =

NV

h̄

1

ε0

∑
n

−δ ⟨0 |∆P ′
z|n⟩ ⟨n |∆P ′

z| 0⟩
(ω − ωn)

2 + δ2
, (B.86)

Re [χee
z′z′ ] =

NV

h̄

1

ε0

∑
n

(ω − ωn) ⟨0 |∆P ′
z|n⟩ ⟨n |∆P ′

z| 0⟩
(ω − ωn)

2 + δ2
, (B.87)

Im
[
χee
y′y′

]
=

NV

h̄

1

ε0

∑
n

−δ
⟨
0
∣∣∆P ′

y

∣∣n⟩ ⟨n ∣∣∆P ′
y

∣∣ 0⟩
(ω − ωn)

2 + δ2
, (B.88)

Re
[
χee
y′y′

]
=

NV

h̄

1

ε0

∑
n

(ω − ωn)
⟨
0
∣∣∆P ′

y

∣∣n⟩ ⟨n ∣∣∆P ′
y

∣∣ 0⟩
(ω − ωn)

2 + δ2
, (B.89)

Im
[
χmm
y′y′

]
=

NV

h̄
µ0

∑
n

−δ ⟨0 |∆My′|n⟩ ⟨n |∆My′| 0⟩
(ω − ωn)

2 + δ2
, (B.90)

Re
[
χmm
y′y′

]
=

NV

h̄
µ0

∑
n

(ω − ωn) ⟨0 |∆My′|n⟩ ⟨n |∆My′| 0⟩
(ω − ωn)

2 + δ2
, (B.91)

Im [χmm
z′z′ ] =

NV

h̄
µ0

∑
n

−δ ⟨0 |∆Mz′|n⟩ ⟨n |∆Mz′| 0⟩
(ω − ωn)

2 + δ2
, (B.92)

Re [χmm
z′z′ ] =

NV

h̄
µ0

∑
n

(ω − ωn) ⟨0 |∆Mz′|n⟩ ⟨n |∆Mz′| 0⟩
(ω − ωn)

2 + δ2
. (B.93)
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Figure B.3: (a),(b) Experimental setups for the microwave non-reciprocity mea-

surements (a) for H ∥ [100], Hω ⊥ [100] and (b) for H ∥ [11̄0], Hω ⊥ [110].
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The matrix elements of ∆M and ∆P are

⟨0 |∆My′ |α⟩ = ⟨α |∆My′ | 0⟩ = 0, (B.94)

⟨0 |∆My′| β⟩ = ⟨β |∆My′| 0⟩ =
gµB

V

√
S

N
cos θ (coshϕ1 + sinhϕ1) , (B.95)

⟨0 |∆Mz′ |α⟩ = ⟨α |∆Mz′ | 0⟩ = 0, (B.96)

⟨0 |∆Mz′| β⟩ = −⟨β |∆Mz′| 0⟩ = i
gµB

V

√
S

N
(coshϕ1 − sinhϕ1) , (B.97)

⟨0 |∆Py′ |α⟩ = ⟨α |∆Py′| 0⟩ = 0, (B.98)

⟨0 |∆Py′| β⟩ = −⟨β |∆Py′ | 0⟩ = i
8dflSλ

V

√
S

N
cos θ (coshϕ1 − sinhϕ1) , (B.99)

⟨0 |∆Pz′ |α⟩ = ⟨α |∆Pz′| 0⟩ = 0, (B.100)

⟨0 |∆Pz′| β⟩ = ⟨β |∆Pz′ | 0⟩ =
8dflSλ

V

√
S

N
(2 cos2 θ − 1) (coshϕ1 + sinhϕ1) ,

(B.101)

where |α⟩ = α† |0⟩ and |β⟩ = β† |0⟩. At ω = ω2 (n = α), the microwave absorption

is zero. The relative microwave non-reciprocity at ω = ω1 (n = β) is

∆α

ᾱ
=

16dflS2λgµB

V h̄δ

√
µ0

ε0

{
cos θ

(
2 cos2 θ − 1

)
(coshϕ1 + sinhϕ1)

2 − cos θ (coshϕ1 − sinhϕ1)
2}

×
√
2

 Y1√
X1 +

√
X2

1 + Y 2
1

+
Y2√

X2 +
√

X2
2 + Y 2

2


−1

, (B.102)

where

X1 = ε∞ −
(
8dflS2gµBλ

h̄V δ

)2
µ0

ε0

(
2 cos2 θ − 1

)2
cos2 θ (coshϕ1 + sinhϕ1)

4 , (B.103)

X2 = ε∞ −
(
8dflS2gµBλ

h̄V δ

)2
µ0

ε0
cos2 θ (coshϕ1 − sinhϕ1)

4 , (B.104)

Y1 =

(
8dflS

3
2λ
)2

h̄V ε0δ

(
2 cos2 θ − 1

)2
(coshϕ1 + sinhϕ1)

2 + ε∞
µ0gµ

2
BS

h̄V δ
cos2 θ (coshϕ1 + sinhϕ1)

2 ,

(B.105)

Y2 =

(
8dflS

3
2λ
)2

h̄V ε0δ
cos2 θ (coshϕ1 − sinhϕ1)

2 + ε∞
µ0gµ

2
BS

h̄V δ
(coshϕ1 − sinhϕ1)

2 . (B.106)

The magnetic field dependence at ω1 is plotted in Fig. B.4(a). Here the value of

δ was estimated as δ = 1.4 GHz by the comparison of measured and calculated

absorption spectra.
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Figure B.4: (a),(b) Relative microwave non-reciprocity ∆α/2ᾱ =

(∆S12 −∆S21) / (∆S12 +∆S21) (a) at ω = ω1 for H ∥ [100], Hω ⊥ [100]

and (b) for H ∥ [11̄0], Hω ⊥ [110] at ω = ω1 (solid line) and ω = ω2 (dashed line).

B.4.4 Microwave non-reciprocity for H ∥ [11̄0], Hω ⊥ [110]

For H ∥ [11̄0] and Hω ⊥ [110], the matrix elements of ∆M and ∆P are

⟨0 |∆My′|α⟩ = ⟨α |∆My′ | 0⟩ = 0, (B.107)

⟨0 |∆My′ | β⟩ = −⟨β |∆My′| 0⟩ = i
gµB

V

√
S

N
(coshϕ1 − sinhϕ1) , (B.108)

⟨0 |∆Mz′|α⟩ = ⟨α |∆Mz′ | 0⟩ =
gµB

V

√
S

N
sin θ (coshϕ2 − sinhϕ2) ,(B.109)

⟨0 |∆Mz′ | β⟩ = ⟨β |∆Mz′| 0⟩ = 0, (B.110)

⟨0 |∆Py′ |α⟩ = ⟨α |∆Py′ | 0⟩ =
16dflSλ

V

√
S

N
sin θ cos θ (coshϕ2 − sinhϕ2) ,(B.111)

⟨0 |∆Py′| β⟩ = ⟨β |∆Py′ | 0⟩ = 0,

(B.112)

⟨0 |∆Pz′ |α⟩ = ⟨α |∆Pz′ | 0⟩ = 0, (B.113)

⟨0 |∆Pz′| β⟩ = −⟨β |∆Pz′ | 0⟩ = i
8dflSλ

V

√
S

N
cos θ (coshϕ1 − sinhϕ1) .(B.114)
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The relative microwave non-reciprocity at ω = ω1 (n = β) is

∆α

ᾱ
=

16dflS2λgµB

V h̄

√
µ0

ε0
cos θ

{
δ

(ω2 − ω1)2 + δ2
(coshϕ2 − sinhϕ2)

2

+
2 sin2 θ

δ
(coshϕ1 − sinhϕ1)

2

}

×
√
2

 Y1√
X1 +

√
X2

1 + Y 2
1

+
Y2√

X2 +
√

X2
2 + Y 2

2


−1

, (B.115)

where

X1 = ε∞ − µ0

ε0

(
8dflS2λgµB

h̄V

)2
1

δ2
cos2 θ (coshϕ1 − sinhϕ1)

4 , (B.116)

X2 = ε∞ + ε∞
(gµB)

2 Sµ0

h̄V

ω2 − ω1

(ω2 − ω1)2 + δ2
sin2 θ (coshϕ2 − sinhϕ2)

2

+
(16dflλ)2 S3

h̄V ε0

ω1 − ω2

(ω1 − ω2)2 + δ2
cos2 θ (coshϕ2 − sinhϕ2)

2

−µ0

ε0

(
16dflS2λgµB

h̄V

)2(
δ

(ω1 − ω2)2 + δ2

)2

sin4 θ cos2 θ (coshϕ2 − sinhϕ2)
4 ,

(B.117)

Y1 =
(8dflλ)2 S3

h̄V ε0

cos2 θ

δ
(coshϕ1 − sinhϕ1)

2

+ε∞
µ0g

2µ2
BS

h̄V

1

δ
(coshϕ1 − sinhϕ1)

2 , (B.118)

Y2 = ε∞
(gµB)

2µ0S

h̄V

δ sin2 θ

(ω1 − ω2)2 + δ2
(coshϕ2 − sinhϕ2)

2

+
S3(16dflλ)2

h̄V ε0δ

δ sin2 θ cos2 θ

(ω1 − ω2)2 + δ2
(coshϕ2 − sinhϕ2)

2

+2
µ0

ε0

(
gµB8dflS

2λ

h̄V

)2

cos2 θ
δ(ω1 − ω2)

(ω1 − ω2)2 + δ2
(coshϕ1 − sinhϕ1)

4 . (B.119)

The relative microwave non-reciprocity at ω = ω2 (n = α) is

∆α

ᾱ
=

16dflS2λgµB

V h̄

√
µ0

ε0
cos θ

{
2 sin2 θ

δ
(coshϕ2 − sinhϕ2)

2

+
δ

(ω2 − ω1)2 + δ2
(coshϕ1 − sinhϕ1)

2

}

×
√
2

 Y1√
X1 +

√
X2

1 + Y 2
1

+
Y2√

X2 +
√

X2
2 + Y 2

2


−1

, (B.120)
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where

X1 = ε∞ + ε∞
(gµB)

2 Sµ0

h̄V

ω2 − ω1

(ω2 − ω1)2 + δ2
sin2 θ (coshϕ2 − sinhϕ2)

2

+
(8dflλ)2 S3

h̄V ε0

ω2 − ω1

(ω2 − ω1)2 + δ2
cos2 θ (coshϕ1 − sinhϕ1)

2

−µ0

ε0

(
8dflS2λgµB

h̄V

)2(
δ

(ω2 − ω1)2 + δ2

)2

cos2 θ (coshϕ1 − sinhϕ1)
4 ,

(B.121)

X2 = ε∞ − µ0

ε0

(
16dflS2λgµB

h̄V

)2
sin4 θ cos2 θ

δ2
(coshϕ2 − sinhϕ2)

4 ,

(B.122)

Y1 =
(8dflλ)2 S3

h̄V ε0

δ

(ω2 − ω1)2 + δ2
cos2 θ (coshϕ1 − sinhϕ1)

2

+ε∞
µ0g

2µ2
BS

h̄V

δ

(ω2 − ω1)2 + δ2
(coshϕ1 − sinhϕ1)

2

+2
µ0

ε0

(
gµB8dflS

2λ

h̄V

)2

cos2 θ
δ(ω2 − ω1)

(ω2 − ω1)2 + δ2
(coshϕ1 − sinhϕ1)

4 ,

(B.123)

Y2 = ε∞
(gµB)

2µ0S

h̄V δ
sin2 θ (coshϕ2 − sinhϕ2)

2

+
S3(16dflλ)2

h̄V ε0δ
sin2 θ cos2 θ (coshϕ2 − sinhϕ2)

2 . (B.124)

∆α/2ᾱ at ω1 and ω2 are plotted in Fig. B.4(b). These are quite small compared

with the case of H ∥ [100],Hω ⊥ [100].
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