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5.4.1 Erdös-Rényi Random Graphs . . . . . . . . . . . . . . . . . . 63
5.4.2 Scale Free Networks . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.3 Conclusion and Discussions . . . . . . . . . . . . . . . . . . . 67

Chapter 6 Stoquastic Quantum Annealing Applied to the Maximum Independent Set
Problem 69

6.1 Previous Researches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.1 The Spin-glass picture . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 The Localization Picture . . . . . . . . . . . . . . . . . . . . 71
6.1.3 Our Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 The Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 The Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.3 The Method: SSE and EMC . . . . . . . . . . . . . . . . . . 73
6.2.4 Measured Observables . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Results on the Unique Solution Ensemble . . . . . . . . . . . . . . . . 77
6.3.1 Spin-glass Order Parameter q . . . . . . . . . . . . . . . . . . 77
6.3.2 Answer Fidelity Fans . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.3 Fidelity Susceptibility χF . . . . . . . . . . . . . . . . . . . . 81
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Chapter 1

Introduction

The most important goal of physics is to understand the physical world. While this
statement may be regarded as a common claim, it is rather nontrivial what we exactly
mean by an understanding. There may be many different definitions of understanding,
but there are conditions we would certainly hope for when someone claims to understand
something (say, a system). Will she be able to predict how the system will behave?
While it may be too much to require her to predict everything about the system, it will
certainly be daft to claim she understands the system even if she can’t predict anything
about it. The ultimate form of prediction is a simulation of the system, which all possible
predictions could be derived from it. Therefore, it seems reasonable to say that the
amount/quality of the prediction/simulation someone could have for a system reflects
how much understanding she has about the system*1.

It is therefore crucial to know how far we can simulate a given physical system, and
how. A ubiquitous phenomenon regarding this point, central in physics, is the hardness
of simulation, or perhaps hardness of problems in general. Originally dating back to the
three-body problem [4], it was known that it is impossible to write down analytically the
fate of more than three interacting mass points. Obviously, this does not immediately im-
ply that it is impossible to simulate since various numerical methods have been developed.
However, for people back then, writing down the analytic form of trajectories was almost
equivalent to simulating the trajectories, since there were no computers. Even today, it
still remains a hard problem, in the sense that it requires an exponential precision of the
initial configuration due to its chaotic behavior.

Hardness of simulation does not always become an obstruction, and sometimes plays
the role of a starting point. For example, since it is already hard to simulate the motion
of three particles, it is extremely hard, in fact, may be regarded as impossible, to know
all of the trajectories of 1023 particles which we face in everyday life. Nevertheless, it is
this impossibility which actually enables us to use the framework of statistical mechanics,
a framework known to produce extremely accurate predictions. It could be seen as the
hardness plays a certain role in actually deepening our understandings of macroscopic
systems.

Hardness also arises naturally when we consider problems regarding physical systems.
For example, given a quantum spin system on a two-dimensional square lattice, will it have

*1 Here, although we are considering the ability of prediction/simulation as one basic measurement for
“understanding”, it should be noted that prediction is not the only aspect of understanding. In fact,
explaining, which is the other aspect of understanding seem more essential. However, quantitative
arguments on explanation seems far more difficult than dealing with predictions and simulations.
While the attitude of considering simulation as the measure of understanding resembles the attitude
towards intelligence in the Turing test [1], it may also be criticized to be too instrumentalistic [2]. A
computational complexity approach for making quantitative arguments of understanding has been
discussed in [3].
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a finite energy gap in the thermodynamic limit? Or given a dynamical system, will it ever
get close enough to a certain configuration? These problems are known to be undecidable,
meaning that there exists no finite procedure for correctly answering those questions in
general [5, 6]. We will also review a more subtle hardness known as NP-hardness, for
the problem of determining the ground state of a given spin-glass system, in this thesis.
All of the examples above seem to have some connection to the actual complex behavior
physicists need to tackle. More precisely, the hardness of determining the spectral gap of
quantum spin systems was one of the very reasons why the Haldane gap [7] became such
a controversy. It is tempting to understand the chaotic behaviors occurring in various
dynamical systems as a reflection of their undecidability. The very fact of the problem
of finding the ground state of a spin glass seems related to the slow relaxation of those
systems.
Computational complexity, or more broadly the theory of computation, is the mathe-

matical field which deals with these hardnesses, and quantifies them. They reveal beautiful
structures behind seemingly unrelated fields, from the perspective of hardness. The theory
also formalizes concepts such as (e.g., NP-)“completeness”, which could be regarded as the
computational complexity analogue of “universality classes” in physics, arising universally
in apparently different situations.
It would be impossible to address all the hardnesses arising in physics here. While it is

interesting to consider each case of the interrelations between hardness and physics, the
way they arise varies very much. Even for the examples we have seen so far, there were
not only cases where the hardness was a mere obstruction, but also cases where hardness
played a positive role, and even cases where hardness may be used as an explanation. The
main purpose of this Ph.D. thesis is to address those diverse relations between physics and
hardness, or computational complexity, through our main topic, Quantum Annealing.

Quantum Annealing
One topic of hardness was obviously missing from the above examples; quantum theory.
The hardness of simulations of quantum systems was originally pointed out by R. P.
Feynman [8], D. Deutsch [9], and other physicists. The revolutionary idea was to utilize
this hardness and use it to compute hard problems. This lead to the concept of quantum
computers, which is being pursued today globally. Computational complexity theory
clearly plays an important role here: distinguishing what problems are hard and what are
not; or what is quantum and what is classical.
Quantum annealing (QA) was proposed from a somewhat different motivation origi-

nally, as a quantum counterpart of the physics-inspired “simulated annealing” algorithm.
Importantly, adiabatic quantum computation (AQC) which was a physical protocol pro-
posed few years after QA, and was very close to QA*2, turned out to be equivalent to
quantum computers. This means that QA and/or AQC could be analyzed from two dif-
ferent aspects, one as a physical device, or a physical protocol/phenomena, and one as
a quantum computer. This made QA an almost ideal subject for studying the interplay
of physics and computation, since most of the ways of interactions are covered to some
extent. Some naive questions which may immediately arise considering this situation are:
can quantum computers solve the NP-hard problems which are ubiquitously found?; do
they truly exceed classical computers?; etc. Our main motivation in this Ph.D. thesis is to
answer these questions, which naturally arise when looking at QA from the computational
complexity point of view, as far as possible.
Furthermore, it should be worth mentioning that recent progress in quantum control

*2 Perhaps, “a slight extention” may be a better explanation, which we will discuss thoroughly in
chapter 3.
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technology achieved large scale (∼ 2000 qubits) implementation of QA. As we will see in
the following chapters, the quantum annealing machine which has been realized so far, is
a restricted version of the maximally powerful framework, and is believed not to be equiv-
alent to quantum computers in the strongest sense. The quantum computer on the other
hand, is under development. Experiments are proceeding actively, and announcements of
implementation up to ∼ 50 qubits seems plausible within a year time scale [10].

Structure of this thesis
As we mentioned, the main purpose of this thesis is to fully address the interrelations of
physics and computational complexity through the topic of QA. The interrelation could
be roughly classified into two types, one where physics affects computational complexity,
and other where computational complexity affects physics. We would also like to address
the hardness arising from quantumness. The three main chapters in this thesis will each
deal with one type of the relations listed above.

First, we will review computational complexity theory in chapter 2. The field serves
as the common language for describing hardness. Basic concepts such as completeness,
reductions, and complexity classes will be defined. We will see how computational com-
plexity can have implications for physics at all, by introducing the Church-Turing thesis
together with its “physical” versions, and also the NP hardness assumption, which we will
set as a standpoint in later chapters.

In chapter 3, we will explain both QA and AQC. As we mentioned, their relations
are subtle and we will explain what we mean exactly by “QA is equivalent to quantum
computers in principle”, which is a commonly used phrase. We also define “stoquasticity”
which will become one of the central concepts when we consider classical simulability of
QA.

In chapter 4, we address the question “is QA really not efficiently simulable by clas-
sical algorithms”, from the perspective of Monte Carlo methods. While the stoquastic
property of the QA Hamiltonian allows us to conduct classical simulations, we show that
the equilibration time for the simulations may grow exponentially. We review examples
called “obstructions” where it is shown that the classical Monte Carlo algorithm requires
exponential time for equilibration while QA will only need polynomial time. Then we
will provide arguments and also numerical evidence on how the obstructions may be over-
come by using slightly more sophisticated algorithms. We present the seemingly “most
likely way of proving classical simulability”, which uses the exchange Monte Carlo (EMC)
method. Then we construct an example which makes this approach fail, and numerically
demonstrate so. This chapter will contain a detailed explanation of the Monte Carlo
techniques which we will use in the later chapters. At the same time, we will be seeing
common features of such algorithms which requires stoquasticity. This chapter will serve
as making clear the fact that stoquasticity indeed lies somewhere between classical and
quantum, and demonstrate how difficult it is to prove either equivalence or separation.
This will motivate considering the setting for chapter 6, where stoquasticity may indeed
have some physically interesting property.

In chapter 5, we address the question “how does physics affect computational complex-
ity”, in a classical mechanics set up. We first review known results on physical phase
transitions which occur in problems. The phase transitions are spin-glass transitions,
which we will discuss its properties. While it may seem obvious that the spin-glass
transition induces computational hardness, this correspondence (which we will call the
RS-RSB/easy-hard correspondence) is not known to generally hold true. In this chapter,
we focus on the maximum independent set (MIS) problem which is an NP-hard problem,
which previous study suggested the break of the correspondence. We construct a new al-
gorithm, which works exponentially more efficiently in some parameter region. The novel
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algorithm will work efficiently up until the spin-glass phase transition point, exhibiting the
RS-RSB/easy-hard correspondence. This chapter will show the necessity of an adequate
algorithm to explore the relations between computational complexity and physics. This
chapter also serves as a guiding principle in the next chapter, when we want to construct
average-case hard ensembles for the MIS problem. We use knowledge of average-case
complexity introduced in chapter 2, both in this chapter and in the next.
In chapter 6, we address the question “how does computational complexity affect

physics”, or more precisely, the question “does computational complexity have any im-
plications for physics”. We first argue that the NP hardness assumption will lead to a
physical prediction for QA, namely that it predicts the existence of an exponentially small
energy gap for some Hamiltonians. This by itself is straightforwardly deduced from the
NP hardness assumption, and what makes it more interesting is the possibility that the
exponentially small energy gap may accompany some physical phenomena. If this is the
case, a computational complexity assumption will lead to a physically novel prediction.
This is totally possible, and we see this from reviewing two previously proposed phys-
ical pictures for explaining the physical backgrounds of the exponentially small energy
gaps. We use Monte Carlo techniques introduced in chapter 4 for analyzing the ideal QA
procedure in the adiabatic limit, for the MIS problem with unique solutions. Insights
and algorithms presented in chapter 5 will be used for constructing hard-on-average MIS
problem instances with unique solutions. We will find first order transitions which ac-
company exponentially small energy gaps. Furthermore, a novel quantum phase will be
detected only by the fidelity susceptibility χF. We confirm that the novel phase is com-
patible with neither of the previously proposed physical pictures. We especially see that
the novel phase is not a spin-glass phase from observing the spin-glass susceptibility for a
slightly different ensemble, which the classical limit is known from studies done in chapter
5. While this chapter will leave a big open question about the novel quantum phase, it
will show the possibility for a novel physical phase arising in a computational setting.
In chapter 7, we will go back through the chapters and discuss possible future directions,

and finally conclude this thesis.
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Chapter 2

Backgrounds from Computational

Complexity Theory

We will first start with reviewing computational complexity theory. Complexity theory
deals with how hard problems are, and enables us to compare problems both quantitatively
and qualitatively. It was in the 1930’s when the field was established with consecutive
works of A. Turing, A. Church, K. Gödel, S. Kleene, and others[11, 12, 13].

One of the most important implications to physicists from this field, even in today, is
the Church-Turing thesis, and perhaps its extended versions [14, 9, 15]. Their claims will
be explained in the following sections, and readers should realize that its nature is actually
closer to that of laws of physics, rather than mathematical statements, and thus why it
is interesting for physicists.

It should be noted that the author intends to write a minimal but sufficient review in
order to fully understand the main topics of the present thesis in this chapter. If a more
thorough review is needed, the author recommends [16, 17, 18].

2.1 Preliminaries: Classical Complexity
We first introduce basic notions of classical computational complexity, i.e. the non-
quantum part and also in the sense that we only focus on the very “classical” aspect
of it such as decision problems and worst-case analysis. Other frameworks and connec-
tions to those will be addressed in later sections.

2.1.1 Classical Computation Models

The very definition of computation is the most crucial point in computational complexity
theory. For instance, it is proven [19] that if one can add, subtract, multiply, divide, and
round up arbitrary real numbers in unit time, extremely hard problems (PSPACE-complete
problems, to be precise) become solvable in polynomial time, which is very unphysical as
we will see later in this chapter. This means that if we fail to define a physically natural
concept of computation, the results it produces are physically void.

Fortunately, numbers of natural and physically sound definitions of computation were
proposed in the 1930s, which surprisingly, all turned out to be equivalent in a precise
sense. In this section, we will only introduce the two most popular models of computation,
although other models such as lambda calculus [12], µ-recursive functions [13], and their
equivalences are interesting by their own means.

The fact that seemingly very different formulations of computation turn out to be equiv-
alent suggests that those definitions are fairly robust, and today the term “computable
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functions” implies functions computable by any of those equivalent formulations.

The Turing Machine
Turing machines were introduced by A. Turing in 1936 [11], becoming the most famous and
intuitive computation model. A Turing machine could be understood as an idealization of
a situation where a person performs a calculation using a paper and a pen. We assume that
the paper is divided into meshes where each mesh can have at most one letter written in
it *1. These letters could be additionally written or erased, depending on what the person
is thinking at that moment (the inner state of that person). Whenever the person feels
that the computation is done, i.e. when the inner state is a specified terminal state, the
protocol terminates.
All of the above intuitive protocol can be expressed mathematically, as below.

Definition 1. Turing Machine

A Turing machine is defined as a 3-Tuple {Q,Γ, δ} with each element having the
following properties.
(i) Q is a finite*2 set of inner states, including an initial state q0 and a subset F ⊂ Q

of terminal states.
(ii) Γ is a finite set of alphabets, including the blank symbol ⊔.
(iii) δ : Q× Γ → Q× Γ× {+1,−1} is a mapping.

The brilliant point of this formulation is that it distinguishes the computer itself and
the input to it. Depending on what is written on the paper initially (i.e. the input) , the
person can compute different instances of the same problem. This could be formulated as
below.

Definition 2. Input to a Turing machine

An input to a Turing machine M = {Q,Γ, δ} is defined as a mapping I : Z → Γ with
only finite support S ⊂ Z, |S| <∞ which has a non-blank symbol as the image. (i.e.
∀m ∈ Z\S, I(m) = ⊔)

Definition 3. Computation done by a Turing machine

We consider the computation done by a Turing machine M = {Q,Γ, δ} for an input
I : Z → Γ. The configuration of the Turing machine M is a 3-Tuple C = {q, x, I ′},
where x ∈ Z is the position, q ∈ Q is the current inner state, and I ′ : Z → Γ is the
mapping for the paper at the moment.
The configuration starts from C(0) = {qinit, 0, I}. If the configuration at time step t
is C(t) = {q, x, I ′}, then the configuration at time step t+ 1 would be

C(t+ 1) = {δQ(q, I(x)), x+ δ±(q, I(x)), I
′′} (2.1)

where I ′′ : Z → Γ is same as I ′ except for the image of x, which is now I(x) =
δΓ(q, I(x)). The mapping δ∗ with subscripts denotes the function δ with a projection
to the corresponding space ∗. The computation is over whenever the inner state of
the configuration at time t has a terminal state qend ∈ F as the inner state.

The function I : Z → Γ is the mathematical expression for the paper we mentioned

*1 It surely is unreasonable to assume that a person can write infinitely small letters.
*2 It is also unreasonable to assume that there are infinite numbers of inner states, since then, the

person could just calculate without the paper in the first place.
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above, and it is often called the memory *3 of the Turing machine. The assumption that
the domain of I is the entire integer Z represents that we have infinite memory. This
assumption will be later replaced by a more physically plausible one shortly.

There are mainly two different ways of interpreting the output of a Turing machine. One
way is to prepare two different terminal states, e.g., F = {qaccept, qreject}, corresponding
to outputs Yes and No. Depending on which of the two states the Turing machine is at
the end, one can decide whether its output is Yes or No. The other way is to simply
read out what is written on the memory at the end, and interpret it as the output. The
selection of the way of output depends on the formulation of the problem in interest, and
we will come back to this point later in section 2.1.2.

For now, the important point is that the Turing machine is a mathematical model of
a person calculating using a paper and a pencil, and it uses some amount of time and
memory which can grow as large as it needs to. We should be careful that since the
above definition only provides us the procedure of the computation, meaning that one is
not guaranteed to finish in finite time necessarily. Therefore, computation defined here is
similar to a mathematical mapping, but there is an important difference between them.
While an image for a mapping is always defined as long as the input is in the domain, there
need not be any output for certain inputs for a computation, since it could be possible
that the computation runs forever on the Turing machine.

Circuits
Circuits are also intuitive models of computation, where it is no longer a model of a person
with a paper and a pencil, but closer to a digital computer in some sense. Now the input
is expressed as a string of 0s and 1s, which we call bits. Circuits are composed of gates
which is a simple mapping of bit(s) to bit(s). We could think of a circuit as a directed
graph with no directed loops *4, with each vertex being a gate. The input is put into
the input vertices, which have no incoming edges. The output is simply the final bit (or
the bit string, if there are multiple bits), for the output vertices, which have no outgoing
edges. We can either read out the entire string as the output or just focus on one bit
interpreting 1 as Yes and 0 as No (or vice-versa). These correspond to the two ways of
output for the Turing machine.

One is able to compute by designing the order and position of the gates. We usually
allow AND gates (represented by ∧), OR gates (represented by ∨), and NOT gates (rep-
resented by ¬). This set of gates is called a universal set of gates, which means that by
combining these gates appropriately, one can build circuits for arbitrary Boolean function
F : {0, 1}N → {0, 1}M . We present an example of a circuit where you can input a number
up to 7 (in binary) and the circuit outputs whether if the input is a prime number or not.

When we were considering Turing machines, the focus point was on whether if a Turing
machine computing a problem A exists or not. We cannot take the same approach for the
circuit model since as we explained above, any Boolean function has a circuit. Therefore,
we naturally have the class of circuits which have a Turing machine that outputs their
blueprint, given the problem size as input. Although there are classes for circuits where we
solely consider the existence forgetting the construction (these circuits are called nonuni-
form circuits) and is interesting for many reasons, in this thesis we will only consider
uniform circuits (circuits producible by Turing machines in the way mentioned above) as
they suffice to explain our motivations and define quantum classes.

*3 or sometimes the tape since it is one dimensional.
*4 This is contrary to the case of real circuits where there can be loops. Also, even in this case there

could be an undirected loop.
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Church-Turing Thesis
The two computation models we explained so far may seem to be somewhat artificial
and have arbitrariness. For instance, one can think of having multiple memories such as
I : Zk → Γ on a Turing machine instead of just one, or other gates for a circuit. However,
it turns out to be that those types of changes in the computation models actually do not
affect the computation power of those models. In other words, the class of “what can be
computed in finite time” is known to be very robust against those changes in details of
the computation model [18, 17]. Furthermore, the two models (and many others) actually
have the exact same power for computing, and this is called universality of computa-
tion. The class of functions computable in finite time using those models is called simply
“computable functions”. The acute reader may notice that this naming tacitly assumes
that the Turing machine cannot be extended further to compute a strictly wider class of
functions in finite time. That is true, and the assumption is called the Church-Turing
Thesis. The Church-Turing Thesis could be interpreted as a mathematical definition of
what the word computable means: computable by a Turing machine or a circuit in finite
time.
Obviously, if we drastically change the computation models, their computational power

may change. For example, we can assume that the t-th time step of a Turing machine
takes only 2−t seconds, meaning that an infinite amount of time steps could be performed
in 2 seconds. This version of the Turing machine, called a Zeno machine [20], can compute
problems which the original Turing machine takes an infinite amount of time to compute,
for example, the halting problem [11]. Such models are interesting in their own rights, but
the reason why we define computability not with them but with normal Turing machines
is simply because of physical realizability. We can in fact, actually build a physical Turing
machine with negligible differences with the mathematical model. On the other hand, the
Zeno machine would have to violate the laws of physics. Namely, if we write the maximum
speed of the machinery for a step of Turing machine to be v, the same machinery would
have to move with speed 2tv at the t-th time step, which is prohibited for t ≪ 1 by
relativity, upper-bounding any material’s speed with the speed of light.
There is no known physically sound model which is able to compute classes of functions

exceeding the “computable functions” defined by the Church-Turing thesis at present. We
can extend the Church-Turing thesis to a stronger statement that such hypercomputation
models do not exist in the physical universe. This is a claim which may be overturned,
possibly by discoveries of new physical phenomena allowing one to physically construct a
more powerful computational model than the Turing machine. Thus, from its experimen-
tal falsifiability, this is a claim closer to a physical law in nature and is called the physical
Church-Turing thesis [21].
Although the nature of the physical Church-Turing thesis is similar to that of a physical

principle, like the second law of thermodynamics, it is usually not considered in the physics
community as so. The most crucial reason for this is that the physical Church-Turing
thesis has never yielded any further insights other than the statement itself to physics.
For instance, the second law of thermodynamics, together with the other laws, can derive
many nontrivial concepts and theorems such as the thermodynamic potentials, which
enable us to predict further physical phenomena, other than the increase of entropy itself.
On the other hand, despite the fact of the physical Church-Turing thesis not being refuted
for decades, we do not yet have nontrivial physical implications from it. Two reasons for
this could be pointed out, namely that (1) simply because physicists have not been paying
attention enough, and (2) because physics usually deals with limited amount of space
and time, whereas computability only distinguishes finite and infinite. The first point is
precisely the motivation for the works done in this thesis, which we will come back again
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in chapter 6. For the second point, we must take into account further limitations on the
space and time needed for computation, entering the realm of computational complexity
theory*5, which will be explained in next section.

2.1.2 Complexity Classes and Reductions

While we have a perfectly good computation model as the Turing machines and circuits,
the “computable functions” as defined above may be not of physical interest in practice.
That is because even if a problem/function is computable in finite time, it does not mean
it’s practically solvable, since it may take extremely long time, or need extremely large
memory space. For this reason, it is natural to define a notion of “practically” possible
instead of sticking to fundamental possibility. The beautiful fact which computational
complexity theory revealed is that even if we focus on somewhat practical aspects of
computation, we still gain fundamental knowledge about problems and their hardnesses.
In the following, the class P and NP are introduced, being the most basic complexity
classes of efficiently computable and efficiently verifiable.

Problems and instances
We should first define problems in the computational complexity framework before getting
into classes of problems. The most general definition of a problem would be the following.

Definition 4. Problem and Instance, size

A problem is a mapping from an input x ∈ Γn to an output. An instance of a problem
is each of the possible inputs. We define the size of the instance as the number of
alphabets n. The output of a problem A to an instance x is denoted as A(x).

For example, Multiplication could be seen as a problem where the input is a pair
of integers (encoded in binary), and the output is their product (in binary). In that case
101, 11 is an instance of size 6 (including the comma as part of the input), with output
1111.

Usually, the time and space needed for computing increase as the instance size increases.
The focus is on how they scale with the problem size, especially in the asymptotic limit.
For instance, Addition of two n digit numbers takes at most 2n steps of summing one-
digit numbers, and thus the scaling is O(n)*6. Another example could beMultiplication
of two n digit numbers. The naive arithmetic way of calculating takes n2 steps of multi-
plying one digit numbers and then adding of at most n2+2n steps, resulting in scaling of
O(n2). It should be noted that it is possible that there are more clever algorithms than
naive arithmetic, and these scalings may improve*7. However, at least sticking to the
naive arithmetics, now we are able to qualitatively compare the hardness of Addition
and Multiplication, and claim that the latter must be harder. Notice that the frame-
work of defining the instance sizes and concentrating on the asymptotic scaling enables
this comparison.

*5 Up until this point, the topics were about computability theory.
*6 Strictly speaking, this should actually be represented in terms of the steps of a Turing machine.

However, that is an unnecessary complication, and we stick to an intuitive explanation. For now,
it suffices to assume that additions and multiplications of one digit numbers take O(1) step for a
Turing machine, and the argument holds.

*7 In fact, there are several ways to achieve better scaling than O(n2) for Multiplication. A simple
dynamic programming algorithm [22] runs in O(nlog2 3) steps, and an even better algorithm runs
in O(n1+ϵ) steps[23]. We can thus say Multiplication is only slightly harder than Addition
essentially.
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Efficiently Computable : Class P
The running time of the two examples of Addition and Multiplication had different
powers, but were both polynomial. This generalizes to the class P, but before defining P,
we first define different types of problems for later use. This is because formally, the class
P and NP are only defined for decision problems.

Definition 5. Decision problems and Function problems

Decision problems are problems which outputs are Yes/No. Instances with the
output Yes are called yes-instances.
Function problems are problems with arbitrary outputs expressed by the alphabets
Γ, e.g. integers.

Since the outputs of decision problems are more limited than function problems, it may
appear that they are relatively easy or simple. This is not necessarily the case, and we see
the connection between the two types of problems in section 5.1.2. For now, we mostly
focus on decision problems for simplicity.
Both Addition and Multiplication were function problems. An example of a deci-

sion problem could be Primes where the input is an n digit number a, and the output is
Yes if a is a prime, and No otherwise. The very definition of prime number gives a naive
algorithm called sieve of Eratosthenes, which is basically trying to divide a by all numbers
up to

√
a = O(2n/2). This algorithm requires exponentially many numbers of steps, which

is rather inefficient*8. The most intuitive explanation for why Eratosthenes’s sieve takes
exponential time is because it is basically conducting an exhaustive search trying out all
potential candidates for answering the question. Thus, if there indeed exists an algorithm
which runs in polynomial steps, it should involve some deep understanding of the problem,
and that is why we define the first complexity class as follows.

Definition 6. Polynomial Time: Class P

The definition of a Problem A to be in class P is that there exists a Turing machine
MA with the following property:
There exists a polynomial p(n), and MA stops within p(n) steps where n is the size
of the instance, with the correct output.
These problems are said to be polynomially (polynomial-time) computable.

The class P is the most simple and fundamental class of problems which could be
interpreted as “efficiently” computable (also said to be tractable). Surely, it is possible to
argue that there is a gap between polynomial time computable, and what we intuitively
perceive as efficiently computable*9. However, P has several properties which make us
believe that it is a meaningful and essential class: it is closed under many operations*10,
it is robust against minor changes in the computation model*11, a natural definition using

*8 It is true that if we encode the input a in unary (i.e. a number a is represented by a iterations
of the symbol 1) the steps only scale as the square root of the input size. Therefore, the way an
instance is encoded should be carefully defined, depending on what the focus is on.

*9 For example, polynomials with huge degrees or huge coefficients may turn out to be as worse than
an exponential for real-life instance sizes.

*10 This includes e.g. intersection, union, addition, oraclek with its self [18].
*11 Indeed, if a Turing machine with k tapes can compute something in time T , it can be simulated

with a two-tape Turing machine with time T log T [24], and a two-tape Turing machine running for
T steps can be simulated a single-tape Turing machine with time T 2. Thus it seems that powers of
polynomials may change by the computation model but the boundary of polynomial/exponential
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first-order logic very different from the one above exists[25], and finally, most of “natural-
arising” problems run in relatively small degree polynomials empirically[3].

It should be noted that the definition of P requires only the existence of such Turing
machine MA. Thus, even if a problem does not have a polynomial time algorithm at
present, it does not rule out the possibility of that problem being in P. In general, proving
a problem to be outside of class P could be extremely difficult, and the fact alone that
there does not exist any polynomial algorithm yet, should not be a convincing evidence.
In fact, conversely to expectations, it turned out to be that Primes is in P in 2002 [26].

We would also like to mention that the class if problems computable by uniform
polynomial-sized circuits, exactly coincides with P.

Efficiently Verifiable: Class NP
The class P was (one of) the classes capturing the intuitive notion of efficiently computable.
Another central complexity class is NP, which could be said that captures the notion of
efficiently verifiable instead of computable.

Definition 7. Nondeterministic Polynomial Time: class NP

A decision problem A is in class NP when there exists a decision problem V such that
A(x) =Yes ⇔ ∃v (|v|=poly(|x|)) V (x; v) =Yes, and V (x; ·) is in P.

It should be noted that NP is defined in a different manner compared to P. Instead
of looking for an efficient algorithm for solving the problem, the definition looks for an
efficient way of verifying the yes-instances. The decision problem V in the definition above
is the verification process that x is indeed a yes-instance of problem A.

To see this, let’s see the decision problem of Factorization as an example. The input
to this problem is a tuple of three integers x := (N, a, b) (in binary) and the task is to
decide whether there exists a nontrivial factor of N in the range [a, b]. This problem may
seem similar to Primes, but is slightly different. Although Primes is in P, and we can
decide whether a given number N is prime or composite in polynomial time, this does not
necessarily mean that we can actually find the factors if it is composite. In fact, there is
no known polynomial algorithm which solves Factorization*12.

Although we do not have an efficient algorithms for solving Factorization, we are
able to verify efficiently for yes-instances, once the solution is given. We can define a prob-
lem Vx :=IsFactorN ;a,b, which the input is an integer k, and the output is Yes if k is a
nontrivial factor of N in [a, b], and No otherwise. Evidently, an instance x of Factoriza-
tion, is a yes-instance if and only if there exists an instance k where IsFactorx outputs
Yes. Note that the problem IsFactor itself is very easy, and is in P, while finding the
yes-instance may be enormously hard. The yes-instance for Vx is called a proof. So we can
say that after all, Factorization is nothing but a problem of finding a yes-instance for
a P problem, namely IsFactor. This is what the definition of NP is saying, that there is
a polynomial-time proof verification algorithm for all yes-instances*13.

In short, we can say that the class NP is “the class of problems which suggested a
solution, we’re able to verify it in polynomial time”. While it seems obvious that NP is a

remains, as long as the model is natural in some sense.
*12 Actually the cryptography method we rely on today for internet payments etc. is based on the

assumption that Factorization is hard [27].
*13 The reader should not be so much bothered with the term nondeterministic. Historically, the class

NP was defined through nondeterministic Turing machines running in polynomial time. Today,
defining through a verification scheme is much more intuitive and relations with other complexity
classes becomes clear. Intuitively, a nondeterministic Turing machine can miraculously guess the
proof and just conduct the verification.
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wider class than P (NP⊇P is almost trivial), it is open whether if the inclusion is strict.
While it is widely believed among the majority of researchers in the field that P̸=NP,
and numerous mathematical results are found upon the assumption that P̸=NP, there are
few experts opposing the view [28], and resolving the problem is a central objective of
computer science.

Conjecture 1. P̸=NP

Comparing hardness: Reductions
In the last section, we saw that P̸=NP remains a conjecture. If it is generally hard to
prove that a problem is outside of P, what good does computational complexity provide
us after all? The technique of reductions, and the notion of completeness allow us to have
good reasons to believe that some problems are indeed not included in P, even though we
cannot completely prove so. This also turns out to be the first supporting evidence that
P̸=NP. Reduction enables us to compare two problems A and B in terms of hardness. We
do so by considering a mapping as follows.

Definition 8. Polynomial Time mapping reduction

A decision problem A is said to be polynomial-time (mapping) reducible to another
decision problem B when there exists a mapping f : Γ∗ → Γ∗ with the following
property.
A(x) =Yes ⇔ B(f(x)) =Yes and x 7→ f(x) is computable in polynomial time of |x|.

Let’s assume that a mapping as defined above exists for two problems A and B. In this
case, an algorithm computing problem B in polynomial time implies also an algorithm
computing problem A in polynomial time. It is not so hard to see why. If one wants
to compute A(x), the first thing you do is to compute f(x). Now that you have an
instance of B, you can use the polynomial time algorithm to compute B(f(x)). The fact
that f(x) is polynomial time computable in |x| means that the length of f(x) is also at
most polynomially long. Since a polynomial of a polynomial is also a polynomial (this
is another closure property in effect), B(f(x)) is polynomially computable in |x|. By the
assumption, the answer for B(f(x)) is equivalent to that of A(x) and we obtain the desired
computation. In contrast, the opposite does not hold: even if there is an algorithm which
computes problem A in polynomial time, that does not necessarily mean that B is also
polynomially computable. The situation could be explained as “problem B is at least as
hard as problem A”, and we write as

A ≤poly B. (2.2)

The “poly” in subscripts means that we are now forgetting about factors up to polynomial.
Thus whenever we have a polynomial mapping reduction as defined above, it could be
interpreted as problem B being expressive enough to capture the hardness of problem A.
In this case, any attempt to design an algorithm solving problem B in polynomial time
inevitably involves a polynomial time algorithm also for problem A, and thus it is said
that problem A is (polynomially) reduced to problem B.

NP-complete/hard problems
By using the concept of reductions, we are able to define the class NP-complete. We first
define one decision problem.
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Definition 9. SAT: The satisfiability problem

Input: A boolean formula ϕ(x) with N varibales x = (x1, x2, . . . , xN )
Output: Is there an assignment of {0, 1} for x such that ϕ(x) = 1 ?

This problem is indeed in NP. A problem Vϕ to output ϕ(x) for an input x is polynomi-
ally computable, and SAT is a problem asking whether this problem Vϕ has a yes-instance
at all.

Theorem 1. (Cook-Levin Theorem). ∀A ∈NP, A ≤polySAT [29, 30]

We will not go into the details for the proof of this theorem, but intuitively, the proof
shows that the definition of a problem A being in NP, could be formally expressed as a
boolean function of at most polynomial length. The significance of the above theorem is
that the single problem of SAT actually represents the hardness of all problems in NP.
In other words, just finding one polynomial algorithm which solves SAT, would imply a
polynomial algorithm for all problems in NP, and thus proving P=NP.

Soon after this theorem was found, there were an enormous amount of different problems
which had the same property as SAT of capturing the hardness of the entire class NP. For
instance, the restriction of SAT to only allow inputs in “conjunctive normal form with
each clause containing at most 3 literals”*14, now known as 3-SAT, also sufficed for the
Cook-Levin theorem. These problems are called either “NP-hard” or “NP-complete”, the
latter meaning that the problem itself is also in NP*15.

The concept of NP-completeness has a number of significances. First of all, the abun-
dance of NP-complete problems in wide range of fields was certainly unexpected, and
showed that there is a universal structure among problems in various fields which human
struggles. Secondly, the fact that all of the NP-complete problems in different fields have
resisted all the attempts to find an efficient algorithm, provides us an empirical evidence
(which of course is not a proof) that P̸=NP. Thirdly, and most important for the present
thesis, is that it enables us to guarantee hardness of a problem without proving so. More
precisely, if NP-hardness is shown for a specific problem, we can safely assume that the
problem is not in P, as long as conjecture 1 holds.

Physical Church-Turing Thesis
We have already mentioned the Church-Turing thesis, and also the attempt to extending
its claim to the physical world. The statement deals with computability, which is intrin-
sically a notion with unbounded computational time and memory. Then in the previous
section, the classes P and NP were introduced (within computable functions), charac-
terizing the practically computable and practically verifiable. It is a natural attempt to
ask if there is a natural analogue of the Church-Turing thesis considering the efficiently
computable classes instead of the class of computable.

Indeed, there are several attempts. It is tempting to think that any problems com-
putable efficiently in the physical world, is also efficiently computable by a Turing machine,
thus is in P. A very similar statement is known to be the “Strong (complexity-theoretic)
Church-Turing thesis”[31]*16, which ultimately seems to be wrong. The reason is because

*14 For example, a valid input boolean function would look like ϕ(x) = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x3 ∨
¬x4) ∧ (¬x1 ∨ x3 ∨ x4).

*15 So “NP-hard” means the problem is at least as hard as the entire class NP, and “NP-complete”
means that the problem is completely hard as it could be with NP.

*16 The actual statement claims the efficiently computable in the physical world is in BPP instead of
P. We will define the class BPP later, and for now, it suffices to know that BPP is almost the same
as P but to allow probabilistic operations, and is widely believed to be actually equal to P.[32]
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we believe some quantum processes in nature are hard to simulate efficiently by a Turing
machine, since Turing machines have intrinsically classical nature. This leads to the notion
of “Quantum strong (complexity-theoretic) Church-Turing thesis”[33] where it states the
quantum Turing machine should be able to efficiently compute any efficient computation
in the physical world.

Thesis 1. The Strong Quantum Church-Turing Thesis
Any physically efficient computational phenomena, in the sense that the physical world

allows us to build a physical computer from that phenomena, should be efficiently simu-
lable by a quantum Turing machine.

So far, we have no physical phenomena that violate this thesis. We will discuss these
quantum computations in section 2.3.
Another perspective pointed out by S. Aaronson is that, while we may be able to

gain increasingly strong computational power by mobilizing new physics*17, it is most
likely that NP-complete problems will remain intractable, due to somewhat philosophical
reasons[34]. We will avoid discussing all of his points in detail here. One point worth
mentioning, which Gödel also seemed to notice [35] is that being able to solve NP-complete
problems using some physical device will mean an automated NP solver, which could be
seen as a metaphysical consequence that we will be able to compress and understand any
structured or unstructured systems in general. Thus the “NP hardness assumption”
is stated, claiming that no physical system will be able to compute NP-hard problems
efficiently.

Assumption 1. NP hardness assumption
There is no physical phenomenon which enables us to compute NP-hard problems in

polynomial time.

Our position in this thesis is that we accept the quantum strong Church-Turing thesis,
and see what physical insights we could gain from it applying it to a situation where
we try to solve an NP-hard problem. We also believe that even quantum computers
cannot solve NP-hard problems efficiently*18, and thus it could be said that we also adopt
the NP hardness assumption. As we pointed out in the section of the Church-Turing
thesis, although these statements regarding the connection of computational complexity
and physics have been proposed (mainly from the computer science side), we still do not
have a satisfactory application to physics. All studies in this thesis are motivated by this
connection, and we will explain them at the beginning of each corresponding chapter.

2.2 Average Case Complexity and Statistical Physics
All the basic concepts introduced in the previous chapter (i.e. the classes P, NP, reductions
and completeness), were based on worst case analysis. Recall that the definition of P was
that the computation time was upper bounded by some polynomial of the instance size.
This obviously is a definition regarding the worst instances.
While the worst case analysis is relatively easier to handle mathematically and has a

nice structure, it may not always reflect the actual hardness of problems in the real world.
This is because the worst instances may have very rare appearances in reality, with typical
instances much easier.
There are mainly two different ways of coping with this matter. One is to formulate a

*17 So far, we only have quantum mechanics as the new physics but we could also think of any future
physical theories which provide us with new computational power.

*18 This could be simply stated as NP⊈BQP. We define the class BQP in section 2.3.
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similar framework for average-case analysis. However, it turns out that there is a major
obstacle in this direction, and considerably less is known about the structures of the classes
in this framework. This could be seen as a rather top-down approach for average-case.
The other way is a bottom-up approach, where we set a simple probability distribution
among the instances for a specific problem, and analyze their hardness according to the
probability distribution. The framework for statistical physics actually suits perfectly for
this approach.

In the next two subsections, we will briefly review the two approaches, and see the
connections of average-case complexity and statistical physics.

This problem was realized soon after the worst case analysis method succeeded with
the birth of the notion of NP-completeness. Levin was the first to tackle the problem and
define complexity classes for the average-case framework [36].

2.2.1 Average-case Analysis in Computational Complexity

As in the case of worst-case analysis, we first define the class of average-case efficiently
computable. L. Levin was the first to tackle the problem and define complexity classes
for the average-case framework [36], soon after his findings of NP-completeness for the
worst-case analysis. We will see this formulation in the following. In the following, we
denote the time it takes for an algorithm R to solve an instance x of a problem A as
Time[R(x)].

Formalism
It is interesting that even the attempt to define average-case tractability is nontrivial. It
may appear that simply taking the average (mean) value of the computation time,

En[R(A)] :=
1

2n

∑
|x|=n

Time[R(x)], (2.3)

would be a good measure indicating the typical complexity of problem A. However, this
naive formulation fails to capture the robust notion we expect as in P for the worst-case.

Let us see why this is, by defining an “average-P” class for all the problems having
an algorithm R with polynomially growing En[R(A)]. We then think of an algorithm R′

which is slower with a squaring factor than R for all the instances, i.e. ∀x,Time[R′(x)] =
Time[R(x)]2. Since the difference between these two algorithms is only polynomial, it
is naturally expected that if R is an “average-P” algorithm, then R′ is so as well, and
vice-versa. However, this does not hold in general. The following example illustrates this.
Let’s say that R computes all 2n instances with size n in polynomial time P (n), except
for one instance where R needs 2n time. In this case, the mean time calculated by eq.(2.3)
is polynomial for R, but is exponential for R′.

This problem essentially comes from the difficulty of evaluating instances with extremely
low appearances but with extremely long computation time, especially when the rarity and
the computation time are quantitatively comparable*19. In order to handle this, we define
a problem class of typically tractable as follows.

*19 The same type of difficulty arises in different fields. The St.Petersburg’s paradox[37] in economics
could be seen as a basic model where this difficulty of having events with very low probability
and very high profit plays a central role. We should also remember the practical problem of risk
management for disasters with immense damage but low occurrences face the same difficulty.
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Definition 10. Typically tractable: Class Avg-P

A problem A is in Avg-P when the following holds.

∃ϵ > 0, ∃P (n) : polynomial s.t.
1

2n

∑
|x|=n

Time[R(x)]ϵ = O(P (n)) (2.4)

The ϵ in the definition above plays the role of “rounding off” the exponentially small
probability of facing a hard instance. For instance, even if we only have an algorithm
like R′ for a problem A, A is in Avg-P since we can set ϵ = 1/2. This definition stands
in the position that an exponentially hard instance should be ignored as long as it only
has a comparably small probability, which sure is not a typical instance*20 A definition
which makes more clear of this viewpoint is introduced in [36], where the probability of
an instance having a running time longer than t is bounded by P (n)/tϵ with some ϵ > 0.
This definition turns out to be equivalent with Avg-P.
So far, we have implicitly assumed that the probability of each instance with size n

appearing has the same value 1/2n, but obviously this is not always the case. Thus in
average-case analysis, a problem A together with its distribution D over the instances
should be specified, and the tuple (A,D) of these two are called distributional problems.
We can naturally extend the definition of Avg-P to distributional problems by simply
taking the expectation values according to the distribution D instead of the uniform
distribution.

Current state
As average-case tractable problems were defined, we can ask if an NP-complete problem
is indeed hard on average under some distribution. Of course, proving a distributional
problem to be outside of Avg-P is even harder than proving a problem to be outside
of P ((A,D) /∈Avg-P implies A /∈P). Therefore, a natural strategy would be to find an
analogous class of NP-complete for distributional problems, and showing that a problem
to be in that class would imply intractable on average.
The class dist-NP-complete is defined in such a way*21. However, compared to the

worst-case NP-complete problems which abundant problems are known, there are only few
known dist-NP-complete problems. This is why relatively little amount of research pushes
further this direction so far. A natural distributional problem (such as k-SAT for specific
natural distributions) found to be dist-NP-complete would be a major breakthrough.

2.2.2 Average-case Analysis in Statistical Physics

As we saw in the previous section, a top-down approach such as dist-NP-completeness
seems to be hard to apply for natural arising problems. We review a bottom-up approach
from statistical physics which may be a good alternative.
Statistical mechanics for spin glasses, and random systems in general, resembles the

situation of a distributional problem. The Hamiltonian of spin glass has random variables,
and the system is set only after fixing the random variables. This is called quenched
disorder, and the systems after fixing the quenched disorder are called samples. We can
define the probability for each sample appearing. This corresponds to the distribution in
the average-case complexity, and samples correspond to the instances.

*20 Thus, “typical-case complexity” seems to be a more suited term than “average-case complexity”.
*21 In order to do that, reductions among distributional problems should be defined first, which we will

not get into the details.
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As an example, we can think of a system with Ising degrees of freedom σi ∈ {±1} with
the Hamiltonian below.

H = −
∑
i<j

Jijσiσj (2.5)

Here, Jij are the random variables, and one can think of various different distributions for
Jij . For example, if each Jij is picked from a Gaussian distribution*22, this becomes the
Sherrington-Kirkpatrick (SK) model, the most basic model for spin glasses[38]. Another
distribution could be Prob(J) = 1

3δ(J +J0)+
1
3δ(J)+

1
3δ(J － J0), which means each pair

of Ising spins have an interaction with the same strength but varying in signs.
Importantly, when we put the probability for samples aside, the following problem is

known to be NP-complete [39].

Definition 11. IsingSpinGlass

Input: N(N − 1)/2 numbers {Jij}1≤i<j≤N all from {0,+1,−1} and an integer k
Output: Is the ground state energy of H = −

∑
i<j Jijσiσj lower than k ?

Classical statistical mechanics predicts that at temperature T , a system in its equi-
librium state can be modeled as having a probability distribution over all possible con-
figurations with Prob[σ] ∝ e−βE(σ) (β is the inverse temperature 1/kBT with kB being
Boltzmann’s constant. Through out this paper we will set kB = 1.). Thus, the above
problem being NP-complete means that equilibrating at low enough temperature is as
hard as solving an NP-complete problem. If we follow the NP hardness assumption, this
means that (at least for some samples), the time for a system with the above Hamiltonian
will be exponentially long.

We also note that since NP-completeness is a notion in the worst-case analysis, we can
always generalize the problem and still have NP-completeness. For instance, an IsingSp-
inGlass problem with local fields with the Hamiltonian

H = −
∑
i<j

Jijσiσj −
∑
i

hiσi, (2.6)

will also be NP-complete.
As we state above, we can think of the varying interactions Jij as quenched disorders,

meaning that they are fixed to some value due to a random process through forming. Thus
from a physicist’s view point, we are interested in the typical behavior of such random
system. A powerful tool found in statistical physics is the replica method, which deals
systems with two different types of random variables. We will have a brief review on
this issue in chapter 5. For now, we will mention that the replica method reveals phase
transitions called replica symmetry breaking (RSB) in the SK model and other similar
models. Since this approach enables us to calculate various quantities, it is more practical
than the framework of average-case complexity. We will seek for connections in these two
frameworks in chapter 5.

2.3 Quantum Computation
So far, the computation models we have discussed were all classical. It may seem pecu-
liar to state that a computation model (and not a physical model) is quantum/classical.
However, when we face that quantum theory inevitably destroys our classical worldview

*22 The parameters are determined so that the average energy becomes extensive.
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and denies local hidden variable theories, we notice that Turing machines and circuits
were well within the worldview of classical reality, and a whole new field of quantum
computation opens up.

2.3.1 Quantum Computation Models

As we explained the quantum strong Church-Turing thesis in §1, it was recognized in the
early 1980’s that some physical phenomena are not polynomially simulable by a classical
Turing machine, pointed out by R. Feynman, D. Deutsch and others [8, 9]. While the
quantum version of a Turing machine played a central role in the early days, the quantum
circuit model is easier to handle and understand. In this section, we will introduce the
quantum circuit model for defining quantum complexity classes.
The quantum circuit model is a natural extension of the circuit model introduced before,

to a quantum setting. Remember the classical circuit model had an input of bits {0, 1}N
and transformed them accordingly to the gates, always having a local quantity for each
vertex. Since quantum mechanics allows us to have superpositions of states, we can also
think of superposition of bit strings, and we call these qubits short for quantum bits. These
qubits are realizable by using spin- 12 particles or other two-state quantum systems. We
write the two states a qubit can take to be |0⟩ and |1⟩ similarly to bits, with the vector
form

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
. (2.7)

This basis is called the computational basis, or the z-basis, interpreting it as a spin. We
allow the superposition of these two states, and write |±⟩ := 1√

2
(|0⟩ ± |1⟩) , and call

them the x-basis for later convenience. Thus we have a 2n dimensional Hilbert space for
an n qubit circuit. The difference with the classical case is that the number of qubits
always remain the same in the quantum case. This is because we only allow unitary
transformations among the qubits, which will not change the dimension of the Hilbert
space.
The quantum analogue for classical gates is unitary operators which act on at most

three operators*23. For instance, a gate operating on the ith and i + 1th qubit could be
written as Û = 1̂1⊗1̂2⊗· · · 1̂i−1⊗Ûi,i+1⊗1̂i+2 · · ·⊗1̂n, where each subscript denotes which
qubit the operator is acting on, and ⊗ is the tensor product. As in the classical case, we
need not think of all of the possible unitary operators, but a finite set suffices to achieve
an arbitrary desired unitary operator to be achieved approximately, called a universal set
of gates*24. Namely, the set of Toffoli gates and Hadamard gates is a universal set. They
can be expressed as

ÛToffoli :=
∑

a,b,c∈{0,1}

|a, b, c⊕ ab⟩⟨a, b, c|, ÛHadamard :=
1√
2

(
1 1
1 −1

)
. (2.8)

If we write down the Toffoli gate explicitly like the Hadamard gate, it will be an 8 × 8
matrix with all the diagonal elements 1 except for the last two, where they will have
elements 1 in the “swapped” position. All the other elements are 0. After all, we can
think of the computation done by a quantum circuit as a sequence of unitary operators

*23 It is possible to reduce this number to two. The situation is similar as in classical circuits which in
principle we only needed one type of gate NAND. For now, we choose three for simpler explanation.

*24 There is a difference with the classical case where it is only the universal set in the quantum case
only achieves approximate universality. However, we can show that this approximation can be made
exponentially accurate, and does not become problematic [18].
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acting on a tensor product state |000 . . . 0⟩ := |0⟩⊗n as the initial state*25. Thus, the
output state could be written as

Ûp(n)Ûp(n)−1 · · · Û1|000 . . . 0⟩ (2.9)

where each Ûl is either a Hadamard gate acting on one qubit, or a Toffoli gate acting on
arbitrary three qubits.

The final output of a quantum circuit is the result of a projective measurement on one
or more qubit(s). The basis which the measurement is done is usually the computational
basis. We provide a simple example of a quantum circuit below. Note that in order
to know what this quantum circuit computes, one will generally need to compute an
exponentially large matrix (in this case an 23 = 8 by 8 matrix).

Fig. 2.1: An example of a quantum circuit with 3 qubits. The red boxes with an H
symbolizes the Haramard gate, and the ⊕ connected with dots represent the Toffoli gate.

2.3.2 Quantum Complexity Classes

Now that we have a quantum circuit, we are able to define the analogue of P for the
quantum case. However, there is a little bit of caveat for the new complexity class, which
we will see by first defining the probabilistic analogue of P, as follows.

Definition 12. Bounded-error Probabilistic Polynomial Time: class BPP

The definition of a decision problem A to be in class BPP is that there exists a
probabilistic Turing machinea MA with the following property:
There exists a polynomial p(n), and MA stops within p(n) steps where n is the size
of the instance. The probability of having the correct output must be ≥ 2/3.

a We will not go into the details of a probabilistic Turing machine. It will be enough to know
that it is a Turing machine which is also allowed to move/write probabilistically.

While the value 2/3 itself is not so important, the fact that the above definition allows
some error is crucial. If we replace “≥ 2/3” with “= 1” in the above definition, tolerating
no error at all, the class becomes trivially equivalent to P. Thus, the most natural way
to have a complexity class with randomness is the above BPP*26, allowing some small
probability of error. Note that a different value instead of 2/3 will end up in an equivalent
class as long as the value is a constant between (1/2, 1). We can always repeat the
randomized computation for several times, and by taking the majority of the outputs,

*25 We can assume the initial state to be |000 . . . 0⟩ without loss of generality.
*26 There is another approach which instead of having a strict polynomial running time limit and

an error-tolerate class, is strict in the sense no error is allowed but now the running time can
be unbounded but with a polynomial average. This class is called ZPP (standing for Zero-error
Probabilistic Polynomial-time), and it is relatively easy to see that ZPP⊂BPP [40].
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the probability of getting the answer wrong will decrease exponentially [40]*27. In a way,
the class BPP could be seen as the natural extension of P to probabilistic algorithms,
since it has an extremely low probability of failing*28. This way of bounding the error
probability is standard in computational complexity theory, and the resulting complexity
class becomes natural*29.
Now that we have the definition of BPP, it is very easy to define the quantum analogue,

BQP.

Definition 13. Bounded-error Quantum Polynomial Time: class BQP

The definition of a decision problem A to be in class BQP is that there exists a
quantum circuit CA with the following property:
There exists polynomials p(n), q(n), and a Turing machine MC

A which outputs the
blueprint of CA given the “size of the instance” in unary as an input. MC

A stops
within p(n) steps, and CA has size q(n), where n is the size of the instance. The
probability of measuring the correct output from CA must be ≥ 2/3.

The details regarding the Turing machine is simply the uniformity condition we have
discussed for circuits in general. The important part is that we have a polynomial-sized
quantum circuit, and an error-tolerance condition same as BPP. Thus, it is clear that BQP
is the natural extension of BPP to the quantum case.
While it is believed that BQP is strictly larger than P or BPP, it is far from being proven.

For instance, Factorization is in BQP, while no BPP algorithm is found so far. Although
it is too much to hope for a rigorous proof that BPP⊊BQP, we will stand the position
that BQP is in fact stronger than BPP due to the large number of known results which
are exponentially faster than the state-of-the-art classical counterpart [43, 44, 45, 46].
These exponentially more efficient quantum algorithms will be an example of quantum
advantage*30 in computation.
Importantly, although BQP is believed to strictly contain the classes P or BPP, it is

also believed not to contain NP. While any separation results in complexity theory are
difficult, and the situation is same for NP⊈BQP, there are results which strongly suggest
so*31 [49]. This is also a statement which needs to be true if we really believe in the NP
hardness assumption. We show a picture of the (conjectured/strongly believed) relations
between the complexity classes we have introduced so far in Fig. 2.2. Furthermore, Fig.
2.3 shows the relations of complexity classes which will be introduced in the next chapter.

*27 This will not be the case if “≥ 2/3” is replaced with “> 1/2” in the above definition, since the actual
probability may be exponentially close to 1/2. In this case, we will need an exponential repetition
for the majority vote to become reliable. This class is called PP for probabilistic polynomial, which
is a way larger class even compared to NP.

*28 It sure seems meaningless to care about the exponentially small probability of failing, when it is
smaller than the probability of say, an asteroid hitting the computer.

*29 The class BPP is natural enough that we have a mathematical conjecture that P=BPP [41, 32],
very much intuitive for physicists since we model many ultimately deterministic processes as ran-
dom events. P=BPP essentially implies that there exist some deterministic processes which the
outcome is indistinguishable from that of a truly probabilistic process, as long as the distinguisher
is polynomially bounded in computational power [42].

*30 The term quantum supremacy is often used in the literature [47]. However, there are moral problems
regarding the term from historical viewpoint [48], and in this thesis, we will refer to the concept as
quantum advantage instead.

*31 Both results of NP⊈BQP and P=BPP can be shown through random oracle arguments. While
almost all results shown by a random oracle argument turns out to be correct, there is an exception,
and thus we are bound to say only “strongly suggest” regarding results from it.
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Fig. 2.2: A Venn diagram of the conjectured relations between the complexity classes. The
MIS problem will be defined in chapter 5. Jones polynomials are topological invariants
of knots, which somehow the approximation for a specific value turns out to be BQP-
complete [50]. It should be noted that even the most separated classes of P and PSPACE
in this diagram are actually not rigorously proven to be different so far. This indicates
how difficult it is to prove separation of classes in the computational complexity field.

Fig. 2.3: A schematic diagram of the relations of complexity classes which will be men-
tioned in section 3.2.2.
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Chapter 3

Quantum Annealing

Quantum Annealing (QA) has an interesting history, which started from a statistical
mechanics perspective [51] and then being connected to a computationally sophisticated
model [52], eventually leading to a large-scale implementation by a Canadian start-up
company [53].
We will first introduce the computationally sophisticated adiabatic quantum computa-

tion (AQC) in the next section and then turn to QA in the following section. The term
QA has been used in several different ways, and we avoid confusion by defining what we
mean precisely by QA later in this chapter.

3.1 Adiabatic Quantum Computation
AQC was originally introduced by E. Farhi et al. [52], utilizing the quantum adiabatic
theorem for computational use. We will first review the theorem.

3.1.1 The Quantum Adiabatic Theorem

Let us consider the quantum adiabatic theorem for systems with finite degrees of freedom
and discrete state [54]. The quantum system is described by a state vector |ψ(t)⟩, and
the time evolution obeys the Schrödinger equation

i
d

dt
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩. (3.1)

We set the units so that the Planck constant ℏ = 1.

Theorem 2. (Quantum Adiabatic Theorem). Consider the situation of smoothly chang-

ing the Hamiltonian of a system as Ĥ(t). Suppose that initially at t = 0, the system
is in the nth energy eigenstate |Ψn⟩ and that the corresponding energy eigenvalue En is

nondegenerate. Also, assume that Ĥ(t) is nondegenerate throughout the process. In this

case, if the change of Ĥ(t) is infinitely slow (i.e. adiabatic), the state vector at time t is
the instantaneous nth energy eigenstate |Ψn(t)⟩.
If we think of the ground state (n = 0), the theorem suggests that under adiabatic

changes of the Hamiltonian, the system will always remain in the instantaneous ground
state. While the above original theorem only states about the slow limit, in reality that
is not achievable, and we always have a finite time limit tfin. In this case, a condition for
the change in Hamiltonian to be effectively adiabatic becomes [54]

max
∣∣∣⟨Ψ1(t)| ˙̂H|Ψ0(t)⟩

∣∣∣
min(E1(t)− E0(t))2

= ϵ⇒ |⟨Ψ0(t)|ψ(T )|2 ≥ 1− ϵ2, (3.2)
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where the maximums/minimums are over t ∈ [0, tfin]. If we restrict all coefficients in the
Hamiltonian is polynomially bounded at all time, the numerator is at most of polynomial
scale. This means that as long as the energy gap ∆E(t) := E1(t)−E0(t) is lower bounded
by some inverse polynomial 1

p(N) throughout the process, the time needed to realize the

adiabatic transition is upper bounded by a polynomial p(N)2. This is the main idea of
the adiabatic quantum computation.

3.1.2 Formalism and Equivalence

Equipped with the quantum adiabatic theorem, we are able to formulate AQC. While it
is instructive to see AQC as a general protocol/algorithm or framework, it is also possible
to consider it as a computation model. Here, we will define AQC as an algorithm being
able to handle a broad range of problems.

Definition 14. Adiabatic Quantum Computation

1. Prepare a Hamiltonian Ĥ(t) which has the following three properties.

• The initial Hamiltonian Ĥ(t = 0) has an easily preparable ground state.

• The final Hamiltonian Ĥ(t = tfin) has a ground state corresponding to the
solution of a problem in interest.

• The energy gap ∆E(t) is finite for ∀t ∈ [0, tfin].

2. Prepare the system to be in its ground state at t = 0, i.e. |ψ(0)⟩ = |0(0)⟩.
3. Let the Hamiltonian change accordingly to Ĥ(t), and the state evolve.
4. At time tfin, the state vector of the system is close to |0(tfin)⟩.

The above formalism of AQC leaves a great deal of freedom to be further decided. For
instance, the entire construction of the Hamiltonian is left out, and we discuss this point
in the next section, relating it to QA. It is also interesting to ask what class of problems
have solutions expressible by a state vector.

For now, we focus on the aspect of computation time. The above definition only ruled
out cases where ∆Emin = 0, where we are unable to follow the adiabatic path in finite
time. We can further restrict the energy gap to be at most polynomially small ∆Emin ∼
O(p(N)−1), guaranteeing polynomial time (O(p(N)2)) computation. Here, N is the size
of the problem, which can be also thought as the number of qubits. This enables us
to consider AQC as a polynomial protocol to compute problems. Now the main issue
is how we design the adiabatic Hamiltonian Ĥ(t). QA is a straightforward and general
construction of the adiabatic Hamiltonian, which we will discuss in the next section.

AQC may appear as a method which just happens to use the adiabatic theorem for
computation, and it may even seem strange to focus on it. One of the great reason for
studying AQC is because of the following theorem [55].

Theorem 3. (Equivalence of polynomial AQC and BQP). The class of problems com-
putable by an AQC procedure of polynomially small energy gap is equivalent to BQP.

Since this theorem could be interpreted as “polyAQC”=BQP, its proof has two steps,
namely showing that polynomial AQC is efficiently simulable*1 by a polynomial-sized
quantum circuit, and then proving that polynomial-sized quantum circuits are efficiently

*1 The word simulable is an adjective of something being able to be simulated. We can find both
“simulatable” and “simulable” in literature, with the former appearing mainly in computer science
literature and the latter appeaing in physics literature. In this thesis we will use simulable, since it
seems grammatically more correct regarding the word origin.
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simulable by a polynomial AQC. The former must hold if we take the strong quantum
Church-Turing thesis seriously, and indeed was proved several years before the latter[56,
57]. The latter is more nontrivial, where the basic idea is to construct a Hamiltonian,
which the ground state is the entire history of the quantum circuit starting from the input
qubits to the output. D. Aharonov et al. [55] constructed such a Hamiltonian of N+p(N)

qubits using terms as −Ûl ⊗ 1̂1 ⊗ . . .⊗ 1̂l−1|110⟩⟨100|1̂l+3 ⊗ . . .⊗ 1̂p(N) which lowers the
energy for configurations corresponding to a valid history obeying the unitary operation
Ûl as written in eq.(2.9). Most of the difficulty of the proof comes from showing that
the Hamiltonian constructed in this way always has a polynomially lower bounded energy
gap. Notice that the above term acts on at most 3+3 qubits at once. This means that
although the quantum circuit model has at most 3-body interactions, in order to simulate
the circuit model AQC requires 6-body interactions.
The implication of the equivalence between the two quantum computation models is

considerable. The theorem tells us that whether or not a problem could be computed
efficiently using quantum circuits, could be analyzed through investigating the minimum
energy gap of Hamiltonians. This may cause temptation to call AQC as “a kind of
quantum computer”, but there is a subtlety. Circuits and AQC, both of the quantum
computation models we have introduced, assume that the physical state evolves through
a unitary dynamics. This is too much of idealization since in reality there are noises,
and the temperature is finite. For quantum circuits, fault-tolerant computation has been
investigated in depth[58, 59], and there are known ways to perform quantum computation
as long as the noise is reduced to a constant level. On the other hand, there are no known
sophisticated ways of doing the same thing for AQC so far, although several ways are
currently being studied [60]*2. In short, although we know theoretically how to build a
quantum circuit robust to realistic noise, we do not yet know how to build an AQCmachine
with the same robustness*3. We would like to, however, point out that the equivalence
itself is highly nontrivial, and in fact we can see exponentially small energy gaps for AQC
corresponding to hard problems (e.g. NP-hard problems) as if it is preventing the NP-
hard problem from being solved, violating the NP hardness assumption. Even without a
complete fault-tolerant scheme, there needs to be an exponentially small energy gap for
an AQC Hamiltonian if it is solving a hard problem (as long as we believe that NP⊈BQP).
The reason for this comes from not the universality of AQC but rather the ability of BQP
to simulate polynomial AQC. If indeed, there were at most polynomially small energy
gaps for AQC of NP-hard problems, even though we might not be able to directly solve
the problems with AQC due to the noise, we still can solve the problems through a fault-
tolerant quantum circuit simulating AQC. This would be against our belief, and thus there
should be an exponentially small energy gap for AQC dealing with NP-hard problems. This
will become the core idea for our study in chapter 6.

3.2 Quantum Annealing
While the framework of AQC was broad allowing virtually any Hamiltonian, it would be
more convenient if we have a general framework which we could automatically use for
general problems. Quantum Annealing (QA) is so far the most general strategy within
AQC, inspired from statistical mechanics, and enables us to implement any NP problems
to an AQC framework. In this section, we will review QA and its connections to statistical

*2 There are also claims that AQC is inherently robust against noise and temperature, but that seems
to be wrong so far [61].

*3 It is interesting that we have the opposite situation for building an actual annealer so far (disre-
garding robustness).
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mechanics.

3.2.1 Formalism and Physical Perspective

QA was first introduced by T. Kadowaki and H. Nishimori [51] in the context of a quantum
analogue for simulated annealing (SA), which is another statistical mechanics inspired
algorithm for optimization. We should first briefly review SA before introducing QA.

Optimization Problems
Both of SA and QA could be seen as algorithms for solving combinatorial*4 optimization
problems. A combinatorial optimization problem is a type of function problem in the
form as below.

Definition 15. Optimization problem

Optimization problems are problems which given a finite set Ω of all possible configu-
rations and a cost function f : Ω → R as inputs, the task is to output a configuration
x ∈ Ω which minimizes f(x).

The problem would be trivial and certainly in P*5 if the input of Ω is written as the list
of all the elements, and the cost function f(x) as a list of outputs for all the arguments.
In this thesis, we will focus on the most common setting where x is an N -dimensional
vector (thus the size of Ω is exponential in N), and we have a polynomial time protocol of
calculating f(x). Optimization problems with this condition are called NP-optimization
(NPO) problems, appearing in a wide range of fields just like NP problems. *6

We will discuss further on how optimization problems and NP-completeness*7 relate to
our study in chapter 5.

Simulated Annealing
According to classical statistical mechanics, physical quantities of a macroscopic system at
equilibrium can be calculated by the expectation value over the Boltzmann distribution*8

Peq[σ] =
1

Z
e−βE(σ), Z :=

∑
σ

e−βE(σ), (3.3)

where σ denotes the microscopic configuration of the system and E(σ) the corresponding
energy, and β is the inverse temperature as introduced in chapter 2.

It was realized by N. Metropolis and later generalized by W. Hastings [64, 65] that
Markov chain Monte Carlo algorithms enable us to sample from the Boltzmann distribu-
tion. Whether if the sampling could be done efficiently or not depends on the system and
parameters under consideration, and is itself an interesting problem. We will introduce
the basics of Monte Carlo algorithms in section 4.1.1. Here, it suffices to know that we

*4 There are attempts to widen the scope of SA and QA for continuous optimization problems (e.g.,
[62]), but we will only consider discrete combinatorial cases in this paper.

*5 More precisely, it would be in FP, the analogue of P for function problems.
*6 Needless to say, in practice there are many interesting optimization problems of other types as well.

e.g. in crystal structure prediction [63] even calculating f(x) seems hard.
*7 In fact, the class NPO does not straight forwardly go into NP, since it is hard to verify that a certain

configuration x is indeed the optimal. Thus, it is in the class ΣP
2 which we will not explain, but will

see relations later.
*8 This does not necessarily mean that the actual historgram of microscopic configurations over time

matches the Boltzmann distribution.
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have a (classical probabilistic) algorithm to sample the Boltzmann distribution, and the
time necessary for accurate sampling is characterized by the “relaxation time”.
Now, an important observation is that if we take the low-temperature limit i.e. β → ∞,

the Boltzmann distribution converges to the uniform distribution among all ground state
configurations. This means if we have a system with the energy function corresponding
to a cost function of an optimization problem, obtaining the equilibrium state for low
enough temperature is already computationally hard.
Indeed, the Monte Carlo method mentioned above, for systems under low temperature,

tends to have exponentially long relaxation times. In a way, this could be seen as a
computational analogue of the Arrhenius law, which states that the relaxation time τrel
in the low-temperature limit scales as

τrel ∼ eβ∆E⋆

. (3.4)

Here, ∆E⋆ is the characteristic energy scale of the energy barrier among the ground state
configurations, which does not depend on the system size or temperature. This scaling
does not hold when there is no characteristic energy scale of the energy barrier independent
of system size and is a heuristic law.
One idea to overcome the slow relaxation in the low-temperature region is annealing.

Since sampling the Boltzmann distribution for high temperature is easy (when β = 0, it
is simply the uniform distribution), gradually decreasing the temperature starting from
Monte Carlo sampling with high temperature may help. Intuitively, if the Boltzmann
distribution does not change too drastically when the temperature is lowered, annealing
should enable us to reach low temperature (therefore, phase transitions are common ob-
stacles for SA). This intuition is backed up by the convergence result proven in [66, 67]
which states that if the temperature T is decreased slower than

T (t) ∝ N

log(1 + t)
. (3.5)

Since this bound is general, and is applicable to all systems with N Ising spins, it naturally
yields an exponential upper bound on the computation time, consistent with the NP
hardness assumption. If we want the temperature to be lower than a certain value ϵ,
the necessary total time is upper bounded by tfin ≤ O(eN/ϵ), which is exponential in the
system size N .
As we written in section 2.2.2, dist-NP problems with natural distribution usually have

a spin-glass phase transition at a finite temperature, and it is this phase transition which
slows down SA.

Quantum Annealing
Quantum Annealing was first introduced by T. Kadowaki and H. Nishimori [51] for a
quantum extension of SA.
Let us consider the situation where we want to compute the IsingSpinGlass problem

defined in section 2.2.2 as an optimization problem. The original problem was to find
a classical spin configuration for all σi ∈ {±1}, which does not change its nature when
rewritten in the quantum form

ĤP = −
∑
i<j

Jij σ̂
z
i σ̂

z
j −

∑
i

hiσ̂
z
i , (3.6)

where σ̂z
i denotes the Pauli-z matrix for the ith spin now. We then add a transverse field

ĤT = −
∑

i σ̂
x
i where σ̂x

i is the Puli-x matrix for the ith spin, i.e.,

Ĥ(λ) := (1− λ)ĤP + λĤT
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= −(1− λ)

(∑
i<j

Jij σ̂
z
i σ̂

z
j −

∑
i

hiσ̂
z
i

)
− λ

∑
i

σ̂x
i . (3.7)

The resulting Hamiltonian will have the same ground state as the original one at λ = 0
and becomes a natural quantum extension of SA. In the limit of strong transverse field
(λ = 1), the ground state is the product state of all spins pointing in the x-direction,
which could be written as |+++ . . .+⟩. This is also the uniform superposition of all of
the z-basis states,

|++ . . .+⟩ = 1√
2N

∑
σ∈{|0⟩,|1⟩}⊗N

|σ⟩, (3.8)

naturally corresponding to the uniform distribution for T → ∞ for SA. Since the ground
states of both λ = 0 and λ = 1 are the same as the equilibrium states of SA at T = 0 and
T = ∞, QA focuses on the T = 0 limit with varying λ. Starting from λ = 1 and gradually
changing the annealing parameter λ is expected to have an analogous dynamics to that
of SA. This is the basic idea of QA, and as we saw in the previous section, the quantum
adiabatic theorem guarantees that the above expectation does hold if the annealing speed
is slow enough i.e. tfin ∝ ∆E−2

min.
Thus, QA could be understood as a natural restriction of AQC to the form of Eq.(3.7).

Another interpretation of QA is that it is the quantum extension of SA, utilizing quantum
fluctuations instead of thermal fluctuations. In SA, the high-temperature limit could be
seen as a classical probabilistic superposition of all configurations. As we decrease the
temperature, the probabilistic superposition is suppressed, with less thermal fluctuation.
Now in QA, since the temperature is fixed to T = 0, there is no thermal fluctuation, and
quantum fluctuation induced by the transverse field plays the same role.

Summing up the above explanation, we can formalize QA as follows.

Definition 16. (Stoquastic)*4 Quantum Annealing

1. Construct a spin Hamiltonian ĤP only using σ̂z operators. ĤP should be the cost
function of a combinatorial optimization problem.
2. Lower the temperature, and apply strong transverse field

∑
i σ̂

x
i .

3. Gradually reduce the strength of the transverse field.
4. When the transverse field is turned off, measure the spins in the z-direction.

Although general results on the minimum energy gap ∆Emin are beyond our reach of
rigorous proof, we have a general result on how unlikely it is to have a vanishing energy
gap ∆Emin = 0.

Theorem 4. (No Crossing Theorem). A d(<∞) dimensional Hamiltonian with l different
eigenvalues with gi(i = 1, 2, . . . , l) degeneracies, has d2 + l −

∑
i g

2
i degrees of freedom.

If we think of a d dimensional Hermitian matrix in general, there are d(d − 1)/2 off-
diagonal elements each having two degrees of freedom (since they are complex), and the
d diagonal elements have 1 degree of freedom (since they are real), adding up to d2. This
is the case where we set l = d and gi ≡ 1 for the above theorem. The theorem tells
us that if there is degeneracy, the degree of freedom decreases. For instance, if there
is just one degeneracy, we will have l = d − 1 and gi = 1 except for one g0 = 2, the
resulting degrees of freedom will be d2 − 3. This means that within the space of all
possible Hamiltonians acting on a d dimensional Hilbert space, which turns out to be d2

*4 The term stoquastic will be defined in the following section.
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dimensional, the subspace of the Hamiltonians with degeneracy is considerably smaller,
with only dimension d2 − 3. This suggests that the QA Hamiltonian Eq.(3.7) is unlikely
to have degeneracies, except for points λ = 0 and λ = 1 where all the terms become
commutative and the Hamiltonian can no longer be seen as typical.
The above argument for the QA Hamiltonian’s non-degeneracy incorporating the No-

crossing theorem is heuristic. There are known adiabatic cycles with crossings [68], but as
far as for QA Hamiltonians, no natural-arising crossings are known for finite systems. Also,
the theorem only applies to finite dimensional systems. This means in the thermodynamic
limit N → ∞, the energy gap may vanish at a quantum phase transition point.
Quantum phase transitions are sudden changes in the ground state of quantum systems.

Similarly to the classical phase transitions at finite temperatures, we can classify quantum
transitions either being first order or second order (continuous), by seeing discontinuity of
physical observables. It is generically known that first order and second order quantum
phase transitions have vanishing energy gaps at the transition point, which decrease ex-
ponentially and polynomially (power-law) to the system size respectively [69]. However,
this correspondence is by no means a rigorous one, and counterexamples are also known
for either side [70]. That being said, the existence of a first-order phase transition is still
a good reference of knowing that it is likely to have an exponentially long annealing time,
and is considered in many studies [71, 72].
It is also known that the first order transitions are hard for classical systems as well since

local update search takes exponential time to find the other phase in general. However,
the Wang-Landau algorithm is known to be very efficient for sampling classical systems
which undergo first order phase transitions which could be regarded easy in some sense*10

[73]. We will also see that a second order RSB will slow down the best algorithm in a
certain NP complete problem in chapter 5, in the classical setting. Thus it is hard to have
general arguments about first/second order transitions and their algorithmic barrier in
the classical case.

3.2.2 Real-world Implementation and Stoquasticity

The D-wave Machine
The Canadian company D-wave systems Inc. announced they successfully build a QA
devise in 2011 [74]. Since then, there were numerous controversies on if the announcement
is true. It was shown in 2015 [75] that the 2000 qubit quantum annealer indeed displayed
statistically similar results to the quantum Monte Carlo (QMC) simulations (explained
in chapter 4). Furthermore, simulations assuming the qubits to be classical spins had
statistically different results with the experimental demonstration. This result is thought
to be evidence that the announced quantum annealer is indeed a physical implementation
of QA. Furthermore, the paper showed that the physical quantum annealer was about 108

times faster compared to the QMC simulations. However, there are caveats to this result.
First of all, the problems that the quantum annealer tackled for the demonstration was

designed in favour of the annealing device. While the most general form of QA is written
in the form of Eq.(3.7), with arbitrary interaction for arbitrary pair of qubits, the quantum
annealer device designed by D-wave has a particular structure called chimera graph, where
only interactions on this graph are allowed. The test problems were designed to finely fit

*10 The Wang-Landau algorithm tries to sample configurations to have uniform distribution over
energy. This enables the algorithm to go “deeper into the phase” once it finds a low energy state,
e.g., the all up state in the (fully-connected) three-body Ising model among few spins will “percolate”
in order to search lower energy states. On the other hand, if the low energy state requires some
global structure and is hard to find, the Wang-Landau algorithm seems to be powerless.
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into the chimera graph structure, and whether problems in other forms, which embedding
to the chimera graph is necessary, can benefit from the annealer remains unsettled.

Secondly, while a constant factor of 108 can be of enormous benefit for practical pur-
poses, it does not imply quantum advantage we explained in section 2.3.2. Rather, the
very fact of classical computers being able to simulate the quantum annealers hints that
the device does not have quantum advantage at all in the sense it does not have bet-
ter asymptotic scaling. This gave rise to a further controversy on what should the term
quantum computer should address, since the company called the quantum annealer as the
“world’s first quantum computer”[76]. We will discuss this point in the following section.

Stoquasticity and Non-stoquastic Terms
We show again the general form of QA Eq.(3.7) here, as

Ĥ(λ) := (1− λ)ĤP + λĤT

= −(1− λ)

(∑
i<j

Jij σ̂
z
i σ̂

z
j −

∑
i

hiσ̂
z
i

)
− λ

∑
i

σ̂x
i .

A very important feature of the above Hamiltonian is that it is simulable by the QMC
method. While we leave the detailed explanation of QMC for the next chapter, we should
emphasize that not all quantum Hamiltonians are simulable by QMC.

Although the class of all quantum systems which are simulable by some QMC is out
of our current reach, we have a reasonable subclass which always allows QMC methods,
called stoquastic Hamiltonians. The term “stoquastic” is (obviously) a coined word com-
bining “stochastic” and “quantum”, implying that the Hamiltonian has both quantum
and classical probabilistic aspects. Let us first define the concept accordingly to [77].

Definition 17. Stoquastic Hamiltonian
A Hamiltonian Ĥ of an N qubit system is said to be stoquastic when the Hamiltonian

could be decomposed into terms Ĥ =
∑

i ĥi with all of the matrix terms in the z-
basis*11 are real and non-posisitve, i.e.,

⟨σ|ĥi|σ′⟩ ≤ 0 ∀i ∀σ,σ′ ∈ {0, 1}⊗N . (3.9)

All stoquastic Hamiltonians are simulable using QMC*12 without facing the “negative
sign” problem, which we will see shortly in the next chapter. An important observation
is that the QA Hamiltonian Eq.(3.7) fits into this definition of stoquastic Hamiltonians.
As we have seen in section 3.1, if we consider a more general Hamiltonian than QA, the
framework becomes capable of computing BQP-complete problems. Notice that prov-
ing equivalence mentioned in section 3.1 relied on terms as Ûl ⊗ |011⟩⟨001|clock which is
nonstoquastic in general. Thus, a polynomial time AQC with stoquastic Hamiltonians
becomes a natural restriction of AQC and is currently being studied both in the com-
putational complexity field and physics. Let us call the class of problems solvable by
the stoquastically restricted AQC in polynomial time*13 as BstoqP for “Bounded-error
Stoquastic Polynomial”*14.

*11 Obviously, equivalent classes of Hamiltonians could be defined using other local bases. Defining
stoquasticity through any possible basis becomes problematic, since the energy eigenstate basis will
trivially diagonalize the Hamiltonian with all off-diagonal elements 0.

*12 This should not be confused with if it is polynomial time simulable.
*13 Of course, allowing bounded error as in classes like BPP or BQP.
*14 An equivalent complexity class is defined in [78], as QADI-SG, but we will not use this terminology

for consistency with other classes in this thesis.
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From the computational complexity viewpoint, a dichotomy result is known for quantum
Hamiltonians [79]. It is proved that all general quantum Hamiltonian for qubits could be
classified into groups of the either four.

• The most “trivial” Hamiltonians where there are no interactions but only local
fields. For this class, the problem of determining whether the ground state energy
is below some value, which we call Local Hamiltonian*15, is in P.

• The “classical” Hamiltonians where all terms are simultaneously diagonalizable.
For this class, the problem Local Hamiltonian is NP-complete.

• The “stoquastic” Hamiltonians where all the terms could be written in the form
of Eq.(3.7) simultaneously by a rotation. For this class, Local Hamiltonian
becomes StoqMA-complete.

• The “truly quantum” Hamiltonians where none of the above applies. In this case,
Local Hamiltonian is QMA-complete.

We have not defined in this thesis the complexity classes stoqMA and QMA. Here, it
will be good enough to know that they are the stoquastic and quantum analogue of NP
respectively. The important point is that a complexity class could be naturally defined,
and a problem regarding the ground state of the Hamiltonian of QA (Eq.3.7) becomes
complete for that class. Thus if we believe that NP ̸=stoqMA, just like we believe P̸=NP,
then QA should have quantum advantage for some problems. On the other hand, while P
and NP were believed to be different for many reasons as we saw in the previous chapter,
we have only little arguments for separating NP and stoqMA. Whether if QA really has a
quantum advantage (i.e. whether if it is polynomially simulable using classical computers,
or equivalently, if BstoqP=BPP) will be discussed in the next chapter.
So far, we have only considered QA as a stoquastically restricted AQC protocol. This

is not necessarily the only interesting case, since the original idea of QA was just to have
“the quantum analogue of SA”. Changing the Hamiltonian fast ignoring the adiabatic
condition is one direction. In this case, the state does not remain in the instantaneous
ground state, and a Landau-Zener type transition occurs[80, 81]. This is called non-
adiabatic transitions to excited states. For instance, there have been studies on QA
with multiple non-adiabatic transitions, which the state ends up in the ground state [82].
There is also research direction ignoring the adiabatic condition and using QA as a way
of sampling approximate solutions [83].
Another way of extending QA is to use non-stoquastic terms. A pioneering work in this

direction was done in [72], where an antiferromagnetic term in the x-direction
∑

i<j σ̂
x
i σ̂

x
j

was introduced to reduce the intensity of a quantum phase transition from first order
to second order. While the computational value of this non-stoquastic term is currently
unknown from the complexity point of view*16, it is numerically observed that the anti-
ferromagnetic term tends to widen the energy gap [84].

*15 To be precise, it needs to be a promise problem where it is guaranteed that the ground state energy
is either above a or below b with a polynomially bounded gap b− a ≥ 1/poly(N). This applies to
all of the problems listed here. For details, see [79].

*16 It is only proved that the LocalHamiltonian problem becomes QMA-complete when we allow
terms such as

∑
i<j αij σ̂

x
i σ̂

x
j , with tunable interactions. Thus, the uniform antiferromagnetic term

only by itself does not seem sufficient for completeness (though not proved to be insufficient either).
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Chapter 4

Stoquastic Quantum Annealing and its

Simulability

In the previous chapter, we have seen that the most studied (and also the only physically
implemented) form of QA is stoquastic. The current understanding of stoquastic Hamilto-
nians is that they form a natural complexity class, which lies somewhere between classical
computation and universal quantum computation. While the possibility of where the com-
plexity class BstoqP actually lies is totally open, it is true that the stoquastic property of
the QA Hamiltonian lets us simulate QA to some extent.

In this chapter, we will discuss how the simulation is done, and see possibilities of
further determining the computational complexity position of stoquastic Hamiltonians.
We especially focus on the possibility where QMC methods might allow us to show that
stoquastic QA is always polynomially simulable in the last section.

4.1 The Quantum Monte Carlo Method
The Quantum Monte Carlo (QMC) method is a probabilistic algorithm for simulating
quantum systems. There are numbers of different ways this could be done, but the basic
idea of “transforming a quantum system into a classical one” is common among all of them.
In this section, we will explain the path integral Monte Carlo which is the most basic type
of QMC, and also the stochastic series expansion (SSE) which is a more sophisticated
algorithm which we use in the following section.

4.1.1 Basics of Monte Carlo Methods

The term “Monte Carlo method” refers to the broad class of probabilistic algorithms where
the accuracy of the algorithm increases in time (usually exponentially). While there are
also Monte Carlo algorithms for algebraic problems like Primes, in this thesis we will
only use the Monte Carlo method as a sampling method (applying it for simulations). In
this section, we will see the basic idea of Markov chain Monte Carlo (MCMC) algorithms,
which is a subclass of Monte Carlo algorithms.

It is the easiest to consider sampling states {σ} of a classical system with discrete degree
of freedom, from the Boltzmann distribution as in Eq.(3.3). The difficulty comes from
the fact that for a thermodynamically sound system, the number of all states Ω grows
exponentially to the system size N . Thus, explicitly calculating the partition function Z
(which is the normalization constant in this context) will require exponential time if we
naively add up the sums.

We consider a Markov process among the Ω states {σa}Ωa=1. Starting from any state,
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the next state is determined probabilistically, only depending on the current state. For
example, if the state at time t was σb, the probability of moving to σa is a constant which
we denote Pab. If we express the probability of being in state σa at time t as πa(t), we
can write 

π1(t+ 1)
π2(t+ 1)

...
πΩ(t+ 1)

 =


P11 P12 · · · P1Ω

P21 P22 · · · P2Ω

...
...

. . .
...

PΩ1 PΩ2 · · · PΩΩ



π1(t)
π2(t)
...

πΩ(t)

 . (4.1)

This is called the master equation of a Markov chain, and the matrix is called the transition
matrix. If we simply denote the matrix as P and the vector as π(t), we get the form

π(t) = P tπ(0). (4.2)

It is proved that the probability distribution π(t) will converge to the equilibrium dis-
tribution π(eq) from any initial distribution π(0) if the transition matrix P satisfies the
following conditions:

1. π(eq) is a right-eigen vector of P with eigen value 1.
2. ∃M ∈ N, 1 ≤ ∀i, j ≤ Ω, m > M → (Pm)ij > 0.

The existence of a distribution πeq in Condition 1 is guaranteed from the Perron-Frobenius
theorem [85], as long as if P is a valid transition matrix (i.e. ∀b

∑
a Pab = 1, Pab ≥ 0).

Condition 2 represents what is called irreducibility and aperiodicity of a Markov chain*1,
guaranteeing that the Markov chain indeed mixes the states. Without this condition, the
uniqueness of πeq does not hold. We will not go further on this condition since it will be
always satisfied in our following studies. The first condition is also known as the balance

condition stating that
∑

b π
(eq)
b Pab = π

(eq)
a . For simplicity, the tighter condition of detailed

balance
π(eq)
a Pba = π

(eq)
b Pab, (4.3)

is often considered*2, meaning that the probability flow from state a to b is equal to that
from b to a in equilibrium. The heat bath method

Pab =
π
(eq)
a

π
(eq)
a + π

(eq)
b

, (4.4)

and the Metropolis method

Pab = min[ 1 ,
π
(eq)
a

π
(eq)
b

], (4.5)

are two famous frameworks of constructing a transition probability satisfying detailed
balance, which only requires the ratio of the equilibrium distribution (and thus without
knowing the partition function Z for the statistical mechanics case) for calculation.

4.1.2 Path Integral Monte Carlo

The idea of path integral Monte Carlo (PIMC) is to transform a quantum (stoquastic)
Hamiltonian into a classical one. Let’s consider a quantum spin 1/2 system with the

*1 In the computational physics literature, these conditions may also be refferred as “ergodicity”.
*2 There has been recent progress on how breaking the detailed balance condition may enhance equi-

libration of the Markov Chain [87, 88].



4.1 The Quantum Monte Carlo Method 33

Hamiltonian in the form

Ĥ = F̂({σ̂z
i })− Γ

N∑
i=1

σ̂x
i (4.6)

where σ̂α
i denotes the Pauli matrix σ̂α

i acting on the ith spin, i.e.,

σ̂z =

(
1 0
0 −1

)
, σ̂x =

(
0 1
1 0

)
, (4.7)

and F̂ is an arbitrary function of {σ̂z
i }, e.g.

∑
i,j Jij σ̂

z
i σ̂

z
j or 1

Np−1 (
∑

i σ̂
z
i )

p etc.
According to quantum statistical mechanics, the matrix of a quantum system with

Hamiltonian Ĥ at inverse temperature β could be expressed as

ρ̂ :=
1

Z
e−βĤ , Z := Tr[e−βĤ ], (4.8)

and the expectation value of an observable Â is calculated by

⟨Â⟩ = Tr[ρ̂Â]. (4.9)

The central difficulty of calculating physical quantities from the above framework arises
from calculating Z. Especially for quantum systems, the Hamiltonian generally has non-
commuting terms (for the current example, [σ̂z

i , σ̂
x
i ] = 2iσ̂y

i ̸= 0), which complicates the

situation, since for non-commuting matrices Â and B̂, eÂ+B̂ ̸= eÂeB̂ in general.
The strategy of PIMC is to use the Lie product formula

eÂ+B̂ = lim
L→∞

(
e

Â
L e

B̂
L

)L
, (4.10)

to calculate the density matrix. By expanding the trace as sums over the z-basis states
{|σ⟩}*3, we obtain

Z = Tr[e−βĤ ]

=
∑
σ

⟨σ|e−βF̂({σ̂z
i })+βΓ

∑
σ̂x
i |σ⟩

=
∑
σ

⟨σ| lim
L→∞

(e−
β
L F̂({σ̂z

i })e
βΓ
L

∑
σ̂x
i )L|σ⟩

= lim
L→∞

∑
σ(0)

⟨σ(0)|
L∏

t=1

{
e−

β
L F̂({σ̂z

i })
(∑
σ(t)

|σ(t)⟩⟨σ(t)|
)
e

βΓ
L

∑
σ̂x
i

}
|σ(0)⟩

= lim
L→∞

∑
σ(1),σ(2),...,σ(L)

e−
β
L

∑
t F(σ(t))

( L∏
t=1

⟨σ(t)|e
βΓ
L

∑
σ̂x
i |σ(t+ 1)⟩

)
.

Here L + 1 ≡ 1 as in periodic boundary conditions. F without the hat at the last line
means it is just a classical function now. Notice that the z basis |σ⟩ passes through F .
We can use a simple relation

eασ̂
x

= (coshα)1̂ + (sinhα)σ̂x (4.11)

*3 Although we have introduced the z-basis as |0⟩ and |1⟩ in chapter 2, here we will use |σ⟩, σ ∈ {±1}
for convenience. This representation is more commonly used in physics.
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for evaluating the term ⟨σ(t)| exp(βΓL
∑
σ̂x
i )|σ(t+ 1)⟩, which becomes

⟨σ(t)|e
βΓ
L

∑N
i=1 σ̂x

i |σ(t+ 1)⟩ =
N∏
i=1

⟨σi(t)| exp
(
βΓ

L
σ̂x
i

)
|σi(t+ 1)⟩

=

N∏
i=1

(
δσi(t),σi(t+1) cosh

βΓ

L
+ δσi(t),−σi(t+1) sinh

βΓ

L

)

=

√
1

2
sinh

2βΓ

L

N N∏
i=1

(
tanh

βΓ

L

)− 1
2σi(t)σi(t+1)

= exp

[
N

2
log
(1
2
sinh

2βΓ

L

)
− 1

2
log(tanh

βΓ

L
)

N∑
i=1

σi(t)σi(t+ 1)

]
.

If we denote the σ independent term 1
2 log

1
2 sinh

2Γ
L as C, the partition function could be

written as

Z = lim
L→∞

∑
{σ(t)}

exp

(
−β
L

L∑
t=1

F (σ(t)) +NLC − 1

2
log

(
tanh

βΓ

L

) L∑
t=1

N∑
i=1

σi(t)σi(t+ 1)

)
,

(4.12)
which could be seen as a partition function of a classical Hamiltonian

HST =
1

L

∑
t

F(σ(t)) +
1

2β
log

(
tanh

βΓ

L

) L∑
t=1

N∑
i=1

σi(t)σi(t+ 1) +NLC, (4.13)

with classical Ising spins {σi(t)}t=1,2,...,L
i=1,2,...,N . The above calculation based on the Lie formula

is called Suzuki-Trotter expansion*4.
Now that an equivalent classical Hamiltonian for the original stoquastic Hamiltonian is

found, any classical Monte Carlo algorithm (e.g. the Metropolis algorithm) can be used.
The constant term NLC could be completely ignored in this case. Note that the resulting
classical Hamiltonian has a temperature dependent term which is rather pathological.
A caveat to this approach is that the equivalence is only accurate in the L → ∞

limit. In general, the Monte Carlo simulation is possible only for finite systems. Thus
an extrapolation after setting L to a finite-value is necessary, where the finite valued L is
called the Trotter number. The system represented by the classical HamiltonianHST could
be seen as the original system (expressed by Ĥ) extending in an additional dimension with
the periodic boundary condition, labelled by t = 1, 2, . . . , L. This direction is called the
Trotter direction, and we can see that the classical spins have ferromagnetic interactions
along this direction.
An important point of the Suzuki-Trotter expansion is that stoquastic Hamiltonians

are always reducible to classical Hamiltonians in the same way*5. The arbitrariness of
F corresponds to the arbitrariness of diagonal elements for the definition of stoquastic
Hamiltonians*6. If there are non-stoquastic terms in the Hamiltonian, e.g. ασ̂x

i σ̂
x
j , the

rewriting corresponding to Eq.(4.11) may yield results with negative signs. The reason

*4 M. Suzuki [86] was the first to point out that the Lie formula could be used for numerical simulation
by cutting off the supposedly infinite L.

*5 The transverse field Ising model in the form of Eq.(3.7) is known to be “stoquastic-complete” [89].
This means that any stoquastic Hamiltonian can be efficiently simulated by a Hamiltonian expressed
by Eq.(3.7) with polynomially many terms, in terms of the energy spectrum.

*6 It should be noted that the function of F must be efficiently computable for PIMC to work. More
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why the PIMC worked for the stoquastic Hamiltonian Eq.(4.6) is because the uniform
transverse field

∑
i σ̂

x
i itself will never give such negative signs.

4.1.3 Stochastic Series Expansion

The PIMC method required extrapolation to the L → ∞ limit. There are a number
of ways which directly samples the system corresponding to the L → ∞ limit [90, 91].
Stochastic series expansion (SSE) algorithm is also a Quantum Monte Carlo method
which effectively corresponds to the L→ ∞ limit. The advantage of using SSE over other
L → ∞ methods is that SSE only samples among discrete variables, which is practically
faster than computing continuous variables*7. Furthermore, the Swendsen-Wang type
update adopted in SSE avoids slowdowns which loop algorithms face when dealing with
local magnetic fields [92]. We will explain the SSE in detail, since we use this method
later in this chapter to see the robustness of “stoquastic advantage”, and also to see how
stoquasticity is dealt in this method.

Basics
Similarly to the introduction of PIMC, considering how to express the density matrix

Z = Tr[e−βĤ ] in terms of classical probability serves as a good starting point. The
essential difference with PIMC is that instead of using the Suzuki-Trotter expansion, we
rewrite the density matrix using the Taylor expansion as

Z =
∑
σ

⟨σ|
∞∑

n=0

βn

n!
(−Ĥ)n|σ⟩. (4.14)

Rewriting the trace as a simple sum over basis states is the same as PIMC. The basis
should be chosen carefully, due to reasons which will be apparent soon. The next rewriting
is crucial for executing SSE, and that is writing Ĥ as Ĥ = −

∑
k Ŵk, where we assume

that all of the eigenvalues of Ŵk are non-negative. This enables us to get rid of the
negative sign in the equation as

Z =

∞∑
n=0

∑
σ

βn

n!
⟨σ|
(∑

k

Ŵk

)n|σ⟩ = ∞∑
n=0

∑
σ

∑
k(l)

βn

n!
⟨σ|

n∏
l=1

Ŵk(l)|σ⟩. (4.15)

Now, estimating the partition function Z is reduced to a sampling problem over the basis
state |σ⟩ and the operators Ŵk (in this section, we will call them as “configurations”).
Since we required that all the eigenvalues are non-negative, all configurations have non-
negative weight accordingly to the operators. The basis should be chosen so that the
operators working on them wouldn’t mess up the states.

The weight of every operator alignments cannot grow infinitely since there is a 1/n!
factor, and we can assume that the typical value of n from a sampled configuration is
concentrated around its average value *8. If we go well above the average value of n, the

precisely, it can only contain at most polynomial numbers of terms as a polynomial. This suggests
a further restriction within stoquastic Hamiltonians (namely, locality) for QMC approaches to be
valid. On the other hand, when the function F requires exponential time for computation, there
seems to be no way of constructing such a Hamiltonian for the quantum annealer, in polynomial
time.

*7 In practice, we cannot handle true real numbers, since that will require infinite memory. Here,
we are referring to the fact that usual double-precision floating-point type of “real numbers” takes
longer time for an operation compared to integer type.

*8 We will soon see that the value of n represents the energy of the system. This means that if we are
dealing with a regular system with bounded energy, the argument of n being concentrated is valid.
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weight of that configuration would be exponentially small. Thus we can have a cut-off
value L for n. Then, we can rewrite the equation so that there are always L operators
multiplied. This is because we can think that there are L−n “null-operators” 1̂ and have
a special k = κ assigned to it. We obtain

Z =

L∑
n=0

∑
σ

∑
k(l)

βn

n!
⟨σ|

n∏
l=1

Ŵk(l)|σ⟩ =
∑
σ

∑
k′(l)

βn

n!

1

LCn
⟨σ|

L∏
l=1

Ŵk′(l)|σ⟩ (4.16)

=
∑
σ

∑
k′(l)

βn(L− n)!

L!
⟨σ|

L∏
l=1

Ŵk′(l)|σ⟩. (4.17)

Note that there is a degree of freedom where we get to choose which L − n possitions
we put in the null-operators. This should result in a LCn factor, and we get the final
equation.
As a result, we have a finite L and at the same time could be sure that the sampling

is indistinguishable from an exact one as long as the number of operators n does not
reach L. The line of operators {Ŵk′(l)}Ll=1 plays a similar role to the Trotter direction
in PIMC, with periodic boundary condition. In fact, these two could be seen equivalent
under certain transformation [93], and we will refer to the line of operators also as the
Trotter direction.

Measuring Observables
To apply SSE to measuring an observable Â, we start from the equation ⟨Â⟩ =

Tr[e−βĤÂ]/Z and then rewrite it analogously. We obtain

⟨Â⟩ =
∑

σ

∑
k′(l)

βn(L−n)!
L! ⟨σ|

∏n
l=1 Ŵk′(l)Â|σ⟩∑

σ

∑
k′(l)

βn(L−n)!
L! ⟨σ|

∏n
l=1 Ŵk′(l)|σ⟩

, (4.18)

meaning that if the basis state is an eigenstate of the observable Â, then simply taking
the average of the eigenvalues for the sampled configurations would yeild the desired value
of observable Â. We will write this as ⟨A(σ)⟩config = ⟨Â⟩. These observables are called
diagonal observables.
Measuring observables which are non-commutative with the basis is more complicated.

We first take the example of measuring the energy. By a simple rearrangement, we get

E = ⟨Ĥ⟩ = 1

Z
Tr[e−βĤĤ] =

1

Z

∑
σ

⟨σ|
∞∑

n=0

βn

n!
(−Ĥ)n+1(−1)|σ⟩

=
1

Z

∑
σ

⟨σ|
∞∑

n=0

βn

n!
(−Ĥ)n(−n

β
)|σ⟩. (4.19)

By comparing the result with Eq.(4.18), we see that taking the expectation value of n,
the number of operators that are not null-operators, gives us the energy. In other words,

E = ⟨Ĥ⟩ = −⟨n⟩config
β

. (4.20)

We can also calclulate the specific heat similarly, and we obtain

C = ⟨Ĥ2⟩ − ⟨Ĥ⟩2 = ⟨n2⟩config − ⟨n⟩2config − ⟨n⟩config. (4.21)
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Other observables which are contained in the Hamiltonian (eg. ⟨ĤA⟩ such that Ĥ =

ĤA + ĤB) could be measured analogously, namely, by counting the number of operators
corresponding to the term. By similar calculation, we obtain

EA = ⟨ĤA⟩ = −⟨nA⟩config
β

, (4.22)

where nA denotes the number of operators corresponding to ĤA in the configuration.

Example for an Ising Spin Glass
In this section, an example of SSE is presented using the Ising spin-glass model. We will
consider the following stoquastic Hamiltonian.

Ĥ = −
∑
⟨ij⟩

Jij σ̂
z
i σ̂

z
j −

∑
i

hiσ̂
z
i −

∑
i

Γiσ̂
x
i (4.23)

In this model, all operators in the Hamiltonian are either a product of σ̂z
i operators or

just a single σ̂x
i , so using the z basis is convenient. All the operators will either leave the

basis unchanged or just flip one qubit.
Other than the basis to use, there are two points which need to be considered. One is

that we will have to rewrite this in the form Ĥ = −
∑

k Ŵk as mentioned in the previous

section, making sure that all the eigenvalues of Ŵk are non-negative. This could be done
by adding adequate constants to each terms, as exemplified in the following.

Jij σ̂
z
i σ̂

z
j → Jij(σ̂

z
i σ̂

z
j ± 1̂) (4.24)

hiσ̂
z
i → hi(σ̂

z
i ± 1̂) (4.25)

Whether if we add or subtract 1 depends on the sign of the coefficients. These will result in
an extra constant term in the Hamiltonian, which does not make any physical difference*9.

Let us now consider the effect of having biased weights as above. For example,
Jij(σ̂

z
i σ̂

z
j ± 1̂) has 2 eigenvalues, namely 2|Jij | and 0. This means that the configuration

can have non-zero weight only when the operators work on states consistent with the
signs of their coefficients. More precisely, Jij(σ̂

z
i σ̂

z
j ± 1̂), depending on if Jij is positive

or negative, can only be inserted in places where |σi⟩ and |σj⟩ have same/different values

respectively. It is the same for hi(σ̂
z
i ± 1̂), and they could be inserted only in places where

the value of |σi⟩ matches hi’s sign.
The second point we need to consider is the periodic boundary of Trotter direction.

Stated more precisely, |σ⟩ needs to be exactly the same except for scalar factors after

applying the operators
∏n

l=1 Ŵk′(l) if we use an orthonormal basis (and let’s assume that
is the case). The σ̂z

i operators cast no problem in this sense, and in this model, σ̂x
i is

the problem. If there are odd numbers of σ̂x
i for a particular site i, the resulting state

would differ with |σ⟩ at site i and thus the entire weight would become 0. There are
several possible ways to avoid this problem. One is that we just ignore configurations
with odd σ̂x

i while we naively sample. However, to do this, it is hard to choose the basis
|σ⟩ according to the equilibrium distribution and we will take another approach.

*9 Since we only require the non-negativity of the eigenvalues, the constant which is added can be any
value in principle as long as if it’s greater than 1. It can also differ from site to site. While changing
the constants in these ways may result in faster convergence of the Markov chain in principle, it has
no physical meaning, and no literature is found in this direction. It appears to be an unnecessary
complication without any physical meaning, to consider this degree of freedom.
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Swendsen-Wang type cluster updates[94] are the usual solution to this problem, and it
also has the advantage of making the equilibration faster. When there are external fields
hi we need a slight modification to the basic cluster update explained in [95]. The central

idea is that we introduce another constant Γi1̂. These constants will have exactly the
same weight as Γiσ̂

x
i , and the only difference is whether if they flip the spins or not.

First, local updates are carried out by putting in or pulling out operators, without
changing the Γiσ̂

x
i operators. Here, operators Γi1̂ will be inserted with the according

probabilities (which is the same as Γiσ̂
x
i since they have the same weight) without flipping

the spins, thus not violating the periodic boundary condition. Then, cluster updates are
executed, where clusters in the configuration are defined, and get flipped with probability
1/2. Each cluster flips will be conducted so that the cluster flip will not change the weight
of the configuration. If there are no external fields hi, this is easy and we should just flip
an entire region which is connected by Jij(σ̂

z
i σ̂

z
j ± 1̂) operators and is cut by either Γiσ̂

x
i

or Γi1̂. When flipping this cluster, the edges will change from σ̂x
i to 1̂ or vice versa. Due

to the periodic boundary, a cluster may be connected via the endpoints (l = 1 and l = L).
In this case, the basis state |σ⟩ should also be flipped at the sites which are included in
the flipped clusters.
When there are external fields, there are also hi(σ̂

z
i ± 1̂) operators. They can be inserted

or removed just like other operators in the local update phase, in cluster updates however,
they play a different role. If a cluster includes an hi(σ̂

z
i ± 1̂) operator inside, the configu-

ration will have 0 weight after the cluster is flipped. Thus that particular cluster with an
hi(σ̂

z
i ± 1̂) operator in it cannot be flipped. The resulting operation would be to flip all

the clusters without hi(σ̂
z
i ± 1̂) operators with probability 1/2, and unchange the others.

Getting back to the original problem, this would always maintain the periodic boundary
condition and we would never get a configuration with odd numbers of σ̂x

i operators.

Stoquasticity
The example we considered so far for SSE had at most two-body interactions. This is not
always the case if we consider stoquastic Hamiltonians in general. However, it should be
clear how to generalize the above procedure to many-body interactions.
In fact, later on in section 4.3, we will consider an N -body interaction which is in the

form −|σ⟩⟨σ|. The basics are the same, that we insert/remove an interaction operator
(another example could be Jijk(σ̂

z
i σ̂

z
j σ̂

z
k ± 1)) so that it is consistent with the spin con-

figuration, and regard them as a connected cluster. Thus, all Hamiltonians in the form
of Eq.(4.6) could be put into the SSE formulation in principle. However, there is the
same caveat as for PIMC. The function F must be polynomially computable in order to
efficiently do the Monte Carlo computation. In the case of SSE, if there are exponentially
many terms, the necessary L becomes exponentially large.

The Actual Sampling Protocol
In this subsection, we will explain the actual protocol for a Ising spin-glass system with
examples. As we explained in the previous section, SSE is a framework wich samples
“configurations” accordingly to Eq.(4.17)

Z =
∑
σ

∑
k′(l)

βn(L− n)!

L!
⟨σ|

L∏
l=1

Ŵk′(l)|σ⟩.

The configuration here is the list of L operators {Ŵk′(l)}l=1,2,...,L together with the basis
|σ⟩ which could be expressed as an N digit binary number. Let us continue to use the
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Hamiltonian
Ĥ = −

∑
⟨ij⟩

Jij σ̂
z
i σ̂

z
j −

∑
i

hiσ̂
z
i −

∑
i

Γiσ̂
x
i ,

for explaining the two phases of the actual sampling procedure, namely the local and
global updates.

In the local update phase, we focus on one label of l ∈ {1, 2, . . . , L} at a time, and

replace the operator Ŵk′(l) with a different one with appropriate prbability. For the
current example, the operators we consider are

1. the null operator 1̂,
2. interaction operators Jij(σ̂

z
i σ̂

z
j ± 1̂),

3. transverse field operators Γiσ̂i,
4. transverse supporting operators Γi1̂i, and
5. local field operators hi(σ̂

z
i ± 1̂).

The operator string {Ŵk′(l)}Ll=1 always needs to be consistent with the basis |σ⟩. It is
convenient to imagine a diagram ofN×L classical spins corresponding to the configuration
(Fig.4.1). Here, the N spins at the edges are the same as |σ⟩, and the classical spins get
flipped along the Trotter direction whenever encountering a transverse field operator.
The interaction operators and local fields can only appear in places consistent with these
classical spins, as depicted in the following diagram.

Fig. 4.1: An example of a configuration for a 1-dimentional Ising spin glass with 5 sites and
L=31. The actual configuration only consists of the spin configuration at the edge and L
operators in order. The white(down spins)/grey(up spins) circles are there only to make

the picture clearer. I represents the transverse supporting operator Γi1̂i, X represents
the transverse field oeprator Γiσ̂

x
i , solid and dotted lines connecting the rows represnt

interaction operators Jij(σ̂
z
i σ̂

z
j ± 1̂) depending on the sign of Jij , arrows represent the local

field operator hi(σ̂
z
i ± 1̂) again depending on the sign of hi. In the example here, from

top to bottom, the sites have local external fields which are negative, positive, positive,
positive, and negative respectively. The signs of Ji,i+1 are positive, negative, negative,
and positive from the top to bottom.

The local update procedure is easier to construct as an insertion/removal process

(Fig.4.2). Namely, if Ŵk′(l) is a (non-null) operator which is not a transverse field operator,
it is removed with probability

Premove = min

[
1,

L− n+ 1

β(htot + Jtot + Γtot)

]
, (4.26)

and becomes a null operator 1̂. Here, htot := 2
∑

i |hi|, Jtot := 2
∑

i,j |Jij |, and Γtot :=∑
i |Γi|. The coefficient 2 comes from the adjustment with adding/subtracting 1̂ for those

operators, which effectively doubles their probabilistic weights. The transverse field op-
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erator is not removed in the same way, since removing only one transverse field operator
will create a configuration violating the periodic boundary condition.
On the other hand, if Ŵk′(l) is a null operator, we insert an operator (either an inter-

action, transeverse suppering, or a local field operator) with probability

Pinsert =
2|hi| or 2|Jij | or |Γi|
htot + Jtot + Γtot

, (4.27)

for each different type of operators. One should be able to see that by comparing equa-
tions (4.17), (4.26), and (4.27), the detailed balance condition Eq.(4.3) is satisfied. The
insert/remove process could be done either on random places for l, or it could be swept
from l = 1 to l = L. Both of them satisfy the balance condition*10.

Fig. 4.2: The red arrows show which operators to consider removing in a local update.
The blue lines show where we need to consider inserting an (non-null) operator. Note
that all the operators except for X (transverse field operators) has a chance of getting
removed, and Xs are untouched.

The second phase is the global update phase, where the spins in the corresponding
diagram are flipped with appropriate probability. Not only the operators but also the
basis |σ⟩ is changed, guaranteeing ergodicity of the entire Markov chain. Clusters are
defined as expressed in Fig.4.3, and “local field operator free” clusters are flipped with
probability 1/2. Since each transverse field operator and transverse supporting operator
is generally an edge of two different clusters, they change according to the situation of
the two clusters being flipped or not. If both or neither of the clusters are flipped, the
operators will not change. Conversely, if only one cluster is flipped, a transverse field
operator Γiσ̂i will become a transverse supporting operator Γi1̂i and vice-versa. This rule
simply reflects the consistency of the operators with the spin diagram. The important
point is that both operators have exactly the same probabilistic weight, and flipping the
cluster with probability 1/2 achieves the equidistribution. Also, when a cluster including a
spin on the boundary (of the Trotter direction), the basis state |σ⟩ is changed accordingly.
The two phases of local and global update compose a single Monte Carlo step. By

repeating them, we obtain the equilibrium distribution of the quantum state at inverse
temperature β.

4.2 Monte Carlo Techniques for Simulating Quantum Annealing
Both of the quantum Monte Carlo (QMC) techniques we introduced so far could be ap-
plied similarly to stoquastic systems. However, the techniques themselves are methods for
obtaining the equilibrium state of the system, which means that it does not necessarily
reflect the dynamics of the system. Since QA (and also AQC) is a framework defined by

*10 A sequential sweep is said to weakly break the detailed balance condition, and is expected to be
more efficient [96].
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Fig. 4.3: The colored regions show examples of clusters. Clusters finish at operators I or
X, and will be connected by Jij interactions as in the red cluster. If the cluster contains
arrows like in the green or yellow clusters, that cluster would not be flipped.

the dynamics of a quantum system, a simulation of it seems to require a dynamical ap-
proach. Naively using the the Schrödinger equation (Eq.3.1) however, will always require
exponential time for computation, since the Hilbert space grows exponentially in the first
place.

Here in this section, we will review several different ways of simulating QA by Monte
Carlo algorithms. Although they do not have immediate connection to the dynamics of
the system, we will review how they relate in the adiabatic limit.

4.2.1 Simulated Quantum Annealing

SQA is the most straightforward way of simulating QA (and thus the straightforward
naming). The basic idea is simply to apply the QA procedure to QMC. More precisely,
the protocol could be formalized as follows.

Definition 18. Simulated Quantum Annealing (SQA)

An SQA algorithm for a stoquastic Hamiltonian Ĥ(Γ) = F̂({σ̂z
i }) + Γ

∑
i σ̂

x
i is per-

formed in the following way.
1. Simulate the equilibrium state of Ĥ(Γ) for large enough Γ and β, using QMC.
2. After certain amount of Monte Carlo steps, decrease Γ for a finite value ∆Γ.
3. Continue this until Γ = 0, and then measure the values of each spins in the z basis.

Of course, although we used the format of Ĥ(Γ) = F̂({σ̂z
i })+Γ

∑
i σ̂

x
i , there is no problem

in considering the form of Ĥ(λ) = (1− λ)F̂({σ̂z
i }) + λ

∑
i σ̂

x
i .

One important point to mention is that SQA has a different dynamics compared to the
actual QA dynamics obeying the Schrödinger equation [97]. Therefore, a polynomial
energy gap will not imply SQA in polynomial time necessarily, although it implies
polynomial time computation for the actual annealer. It is known that when using PIMC
for SQA, the reducing speed of

Γ(t) ≳ L

β
(t+ 2)

−2c
N , (4.28)

will guarantee that the SQA dynamics will remain in the instantaneous equilibrium state
[98]. Here, c is a constant of O(N0). We can easily see that the above bound only
provides us with an exponential upper bound on the time required for SQA against general
stoquastic Hamiltonians. Whether if a polynomial energy gap implies a polynomial upper
bound for the corresponding SQA, remains an open problem.
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Finite Temperature
Another point which should be noted is that QMC simulations in general, are simulations
for finite temperature. One straightforward indicator is to set β larger than the energy
gap ∆E1 := E1 −E0 [71, 164]. This is because using the energy eigenbasis, the partition
function could be written as

Z =
∑
n

e−βEn = e−βE0(1 +
∑
n=1

e−β∆En), (4.29)

where ∆En := En−E0. Thus, if β > ∆E−1
1 , the second term becomes negligible compared

to the first term, and the equilibrium state could be seen as an approximation of the
ground state. Under this setting, as long as the minimum energy gap ∆Emin is at most
polynomially small, setting β polynomially large is sufficient for guaranteeing that the
equilibrium state is effectively the ground state.

4.2.2 Exchange Monte Carlo

Despite the similarity with the actual QA process, SQA only had a rigorous proof on its
running time assuming that the Monte Carlo algorithm always reaches the equilibrium
distribution close enough [98]. In general, the equilibration time of Monte Carlo algorithms
becomes extremely long for “Glassy” systems, which have many local optimums in the
energy landscape. The stochastic process usually gets trapped into one of the many
valleys, ending up in a long equilibration time. In this thesis, later in chapter 6, we will
consider an NP-hard problem with a unique solution, which also has the glassy property.
Therefore, a natural strategy would be to accelerate equilibration of the Markov chain*11.
The exchange Monte Carlo method (EMC; also known as parallel tempering, or replica
exchange) [99] is one such algorithm, which is simple yet powerful, and is commonly used
for accelerating equilibration of glassy systems. We will review the algorithm in this
section, and explain how it is applicable to simulating QA.

The Basics
Let’s think of a classical Ising system for the sake of simplicity. At high enough tem-
perature, Monte Carlo algorithms equilibrate fastly and thus it is easier to simulate the
equilibrium state. This is because low β suppresses the role of complex energy landscapes.
The idea of EMC is to use the fast equilibration at higher temperature, to achieve better
equilibration for lower temperature. In order to do this, we simulate the same system
with different temperature simultaneously. We call these systems replica, since they are
all identical except for the temperature (which is the parameter of interest for this case).
The most simple way to do this is to divide the temperature range [Tmin, Tmax] into R− 1
equidistributed intervals, and set R replicas with temperature corresponding to the edge
of the intervals (i.e Tr = Tmin + (Tmax − Tmin) × r

R−1 for the r th replica). During the
simulation, whenever we find adjacent replicas with “out of place configurations”, we swap
those configurations. This lets the configurations being sampled to always be “in place”
with the temperature. Intuitively, replicas with high temperature search the configura-
tions space “shallow and wide”, and once they bump into a low energy configuration, they
“promote” to lower temperature by the exchange, and start to search “deep and narrow”.
Obviously, to make the above idea work, the probability and timing of the replicas

being exchanged should be carefully tuned. It turns out that with the detailed balance

*11 Notice that SQA is a Markov chain nonuniform in time, since the transition probability varies over
time along with the annealing schedule. This becomes one obstacle for analytic studies for SQA.
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condition Eq.(4.3) in mind, the exchange probability could be calculated quite easily for
the general case. Let βa and βb two (inverse) temperature values of adjacent replicas a
and b . When σa and σb are configurations of the two replicas, the equilibrium probability
(concerning the entire R replicas) of having those two configurations is

π
(eq)
a,b (σa,σb) = π(eq)

a (σa)π
(eq)
b (σb) =

1

ZaZb
e−βaH(σa)−βbH(σb), (4.30)

due to their independence. On the other hand, the equilibrium probability of having an
exchanged configuration would be

π
(eq)
a,b (σb,σa) = π(eq)

a (σb)π
(eq)
b (σa) =

1

ZaZb
e−βaH(σb)−βbH(σa). (4.31)

Now that we have two equilibrium probabilities, we can think of the transition probability
from one to another, just as we did in section 4.1.1. Namely, if we adopt the Metropolis
method (Eq.4.5)*12, the exchange probability could be written as

Pa↔b = min

[
1,
π
(eq)
a (σb) · π(eq)

b (σa)

π
(eq)
a (σa) · π(eq)

b (σb)

]
= min[1, e∆β∆H ], (4.32)

with ∆β := βa − βb and ∆H := H(σa) − H(σb). Notice that because of the classical
setting, the equilibrium probability is in a simple for e−βH which allows the final simple
expression. Reconsideration will be needed when we apply this to the quantum case, but
the above equation is always correct up to the second expression.

Simulating QA
The EMC method provides us a sophisticated alternative to the SQA, for simulating QA.
The idea is to simply divide the annealing parameter λ ∈ [0, 1] into R − 1 intervals, and
have R replicas along the λ axis. The essence of the EMC method was to use rapid
mixing regions to accelerate equilibration in the slow region, and the picture still holds for
QA. Now the strong transverse field (λ large) region is rapidly mixing, and serves similar
role as the high temperature region as in the classical example. All QMC methods map
a quantum (stoquastic) system into some type of a classical system, whether if it is an
N × L classical spin, or if it is a string of L operators). The classical configurations have
probabilistic weight, so we can directly apply Eq.(4.32) and have exchanges along the λ
axis.

This simulation with EMC, obviously does not have an immediate connection with the
dynamics of QA. Rather, it is a direct simulation of the instantaneous ground state*13,
which QA should follow in the adiabatic limit. Since this is the “ideal” path which
obtaining the ground state is guaranteed by the adiabatic theorem, knowing properties of
the ground state provides us information about the difficulties that the QA may face, e.g.
quantum phase transitions. For instance, if an evidence of an exponentially small energy
gap is found, it shows that the ideal AQC will require exponential time.

It is known that the EMC method greatly accelerates equilibration for systems which
have multiple basins in the energy landscape [100]. As we will see in the next chapter,
hard combinatorial optimization problems are known to have rugged energy landscapes,
and thus EMC methods are used for most simulations of QA [75, 101, 102].

*12 Of course, it is possible to use the heat bath method instead. However, the heat bath method
becomes more efficient when there are multiple possible configurations as the candidate. In this
case, the random process is to decide whether to swap the configurations or not, and thus the
Metropolis method is more advantageous.

*13 Setting the temperature low enough allows us to sample the equilibrium state as an approximation
of the ground state.
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4.2.3 Population Methods

Diffusion Monte Carlo (DMC) is also a method for simulating QA, which contrary to
its naming, is quite different from other QMC methods. In this section, we will briefly
introduce one type of DMC [103].
Let us consider a stoquastic Hamiltonian as in Eq.(4.6)

Ĥ(t) = F̂({σ̂z
i })− Γ(t)

N∑
i=1

σ̂x
i =: F̂(σ)− Γ(t)

N∑
i=1

σ̂x
i ,

which by definition, only has non-positive off-diagonal elements. Adding a constant term
to the Hamiltonian does not make difference to the physics, therefore we can add NΓ −
minσ[F(σ)] as a constant, to ensure that Ĥ has the property of∑

σ′

⟨σ′|Ĥ|σ⟩ ≥ 0 (∀σ), (4.33)

which becomes important soon. Now, the imaginary time schrödinger equation

d

dτ
|ψ(τ)⟩ = −Ĥ(τ)|ψ(τ)⟩, (4.34)

is simply a rewriting of Eq.(3.1) with t = −iτ corresponding to a Wick rotation. The
strategy of DMC is to regard the above equation as a diffusion equation, and apply
numerical approachs as population algorithms to simulate the diffusion equation. The
infinitesimal imaginary time evolution for ∆τ could be written as

e−∆τĤ = 1̂−∆τĤ +O(∆τ2) (4.35)

= 1̂−∆τ F̂ +∆τΓ
∑
i

σ̂x
i +O(∆τ2). (4.36)

Because of the stoquasticity and the added constant ensuring Eq.(4.33), if we take ∆τ
sufficiently small, the matrix in Eq.(4.36) can satisfy

0 ≤ ⟨σ′|e−∆τĤ |σ⟩ ≤ 1 (∀σ,σ′) and 0 ≤
∑
σ′

⟨σ′|e−∆τĤ |σ⟩ ≤ 1 (∀σ′), (4.37)

which are the conditions of being a “substochastic” matrix. It is the same as the transition
matrix in Eq.(4.1), except for the fact that the probabilities do not add up to 1. To
simulate this diffusion equation, we first prepare “walkers” in the z basis, each of them
representing an amplitude of the basis state |σ⟩ for the stat vector |ψ(τ)⟩. Each walker in
position |σ⟩ will have the chance of either

1. staying at the same basis state |σ⟩ with prbability 1−∆τF(σ),
2. flipping one qubit to become a new basis state |σ′⟩ with probability ∆τΓ, or
3. getting erased with probability ∆τ(F(σ)−NΓ).

By this transition probability, the population of the walkers will decrease probabilistically.
Thus, normalizing the above possibility conditioned to be surviving is the actual proba-
bility used in numerical algorithms. This way, we are able to sample the amplitudes of
the imaginary-time evolving state vector |ψ(τ)⟩.
Notice that this algorithm takes advantage of the fact that the ground state of a sto-

quastic Hamiltonian could be expressed by non-negative real amplitudes in the z basis,
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i.e. |Ψ0⟩ =
∑

σ aσ|σ⟩ with ∀aσ ≥ 0. While this method simulates the imaginary time
evolution and not the real time evolution, they both end up in the ground state when the
change in the Hamiltonian is adiabatic. This means if the DMC is successful, it will have
all the walkers in the single ground state of F . This is how DMC simulates QA.

4.3 Examples: The Computational Complexity Perspective
So far, in this chapter, we have seen how stoquastic QA could be simulated using various
techniques, such as QMC or DMC. The central question is that if a stoquastic QA has
only polynomially small energy gap (and thus requires only polynomial time), would that
be simulable by these classical algorithms also in polynomial time?

Rigorously answering this question negatively will require a separation between the
class BPP and BQP, since QA is simulable in BQP. Obviously this approach is not real-
istic (since we cannot even prove the extremely intuitive separation of P̸=NP!), and an
alternative approach would be to find an example. An example problem which classical
algorithms such as QMC or DBC requires exponential time while the actual QA only
requires polynomial time will at least be a supporting material for the separation*14.

On the other hand, answering the above question positively seems within reach, since
it only requires a construction of a classical algorithm which its running time is bounded
by the inverse polynomial of the energy gap for QA*15. An important caution to mention
here is that stoquasticity (and thus mappability to classical systems) itself does not imply
polynomial simulability. This is because the running time of QMC and DMC depend on
the equilibration time, which can become exponentially long. Therefore, we need to put
in mind that constructing such a Monte Carlo algorithm will require in general a proof of
the equilibration time being polynomially bounded.

Currently, there are partial results on the simulability of stoquastic QA [104, 105, 78],
but none of them is decisive. In this section, we will see some candidate examples for
showing the separation, and address their problems. Then we consider how classical
simulability may be proved, and also provide how this attempt fails. Although the results
in this section may seem all negative, we will finally discuss what possibilities are left for
proving either the simulability or separation between stoquastic QA (BstoqP) and BPP.

4.3.1 The Topological Obstruction

Here, we will briefly review the “topological obstruction” shown in previous work [106].
The central idea is to create ground states of a stoquastic Hamiltonian which has a non-
trivial topology in theN×L configuration with the periodic boundary condition. Although
multiple examples were shown in previous study [106], we will focus only on the most basic
example, as it represents the idea clearly enough. For further details, see [106].

The Hamiltonian of the example is

Ĥ = − 1

2ma2

∑
x,y

(
|x+ a, y⟩⟨x, y|+ |x, y + a⟩⟨x, y|

)
+ h.c+

∑
x,y

V (x, y)|x, y⟩⟨x, y|, (4.38)

where x and y are discretized coordinates with mesh a in the 2 dimensional plane. Note
that unlike other Hamiltonians in this thesis, this example is not a spin system and we

*14 Of course, it is only a supporting material since the possibility of a smarter classical algorithm being
able to simulate it in polynoimal time always remains. Then again, this is the best we could do,
since separation of complexity classes is extremely difficult in general.

*15 Obviously, this is equivalent to proving BstoqP=BPP. This at least seems easier than prooving
BPP=P, since it does not require any derandomization results.
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use the position as the basis. m > 0 is the mass of the particle, and it is clear that
the Hamiltonian is stoquastic. The annealing schedule is not straight-forward for this
example, and we consider first changing the potential energy

V (x, y) = µ(x2 + y2) + (x2 + y2)2 − hx, (4.39)

by tuning the parameters µ and h, and then turning the mass m→ ∞.
The precise annealing schedule is done as follows. First, we start from µ = h = 0 and

m = 1, which the potential energy is unimodal. The ground state is a superposition of
|x, y⟩ with x2 + y2 small enough. Next, µ is turned negative, creating a wine-bottled po-
tential energy. Now the ground state is a superposition of |x, y⟩ with x2+y2 ≃ r2min where
rmin is the radius of the wine-bottle. Then, h is increased from 0 to 1, which corresponds
to tilting the wine-bottle. Finally, m is increased to ∞, analogous to decreasing transverse
field. This lets the state |x ∼ rmin, y = 0⟩ the ground state, with simply the lowest V .
The reason of QMC not being able to simulate this process efficiently is explained as

follows. After µ is turned negative, the ground state becomes superpositions of the basis
states along the circle with radius rmin. Taking the mesh a small enough, the discretization
could be ignored, and the effective Hamiltonian then becomes

Ĥeff = −k∂2θ + h′ cos θ, (4.40)

where we only focus on the basis states along the circle parameterized by θ. Now, the
classically mapped configuration of QMC becomes a torus, since the Trotter direction also
has periodic boundary condition. θ can vary along the Trotter direction, and have n ∈ Z
windings when it comes back to the boundary. This winding number cannot change once
µ is set to a large negative value, due to the barrier.
The central claim is that due to this topological number, QMC methods cannot sample

the correct ground state, which is a superposition of all the topological numbers with
appropriate amplitudes. In order for QMC to correctly sample among the different topo-
logical sectors, an exponential amount of time is needed for overcoming the energy barriers.
QA on the other hand, can always remain in the ground state efficiently, since the energy
gap of this system is confirmed to be only polynoimally small.
However, there is an unaddressed subtlety in this argument. The typical winding num-

ber ntyp could be estimated to be of O(β). This is the grounds for the Monte Carlo
sampling being trapped in the wrong (non-zero) topological sector. Nonetheless, the
probability of n = 0 could be calculated and is of O(β−1/2) meaning that it is only poly-
nomially small. This implies that if we repeat the SQA process for polynomially many
times, an O(1) fraction of the trials will be confined in the trivial topological sector, ending
up in the correct ground state at the end (which also is in the trivial topological sector).
This “parallelized Monte Carlo” could be further turned into an even more sophisticated
algorithm which is called population annealing [107]. It is currently unclear how well such
algorithms will work against the topological obstructions raised along the above example,
in general. The EMC method also may serve as a solution for this topological obstacle,
since different replicas can hold configurations with different topological sectors. With
the exchanges of replicas, the superposition of different topological sectors may be real-
ized when there are enough replicas. Furthermore, as we discuss in the next section, it
is known that the DMC method does not suffer from the topological obstructions [103].
This leads us to considering a non-topological obstruction.

4.3.2 The Non-topological Obstruction

The topological obstruction relies on the periodic boundary condition which is a feature
most of QMC methods inevitably possess. As we have seen in section 4.2.3, the DMC
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method does not have a periodic boundary condition, since it does not take the trace. This
means that the topological obstructions explained in the previous section, does not become
a problem for DMC. This brings hope for a possibility that DMC enables polynomial
simulation of a stoquastic QA with polynomial energy gaps in general. M. Jarret et al
[103] constructed an example against this possibility.

An Example for the Failure of DMC
The example presented in [103] is a fairly simple quantum spin system with a Hamiltonian

Ĥ(s) =
1

N

(∑
i

σ̂x
i + b(s)

∑
i

1 + σ̂z
i

2

)
− c(s)Ĝ, (4.41)

where the parameters b(s) and c(s) are tuned according to the annealing schedule. We
will call the operator

Ĝ = |111 . . . 1⟩⟨111 . . . 1| (4.42)

as the “golf hole potential” since it decreases the energy for one particular basis only. Here
we are using the computational notation |0⟩, |1⟩ for the z basis. The annealing schedule
starts from b(0) = c(0) = 0, where the ground state is just a uniform superposition of all
the basis states, just as in a normal QA protocol. Then, b(s) is increased linearly, letting
the spins point in the |1⟩ direction. b(s) is fixed once it reaches b(1/2) and then finally,
c(s) is increased linearly so that the “all down” state is preferred.

This simple model reveals the weakness of DMC, which is that it does not directly
sample the probability, but rather samples the amplitudes. The Hamiltonian up until
turning Ĝ on does not have any interaction, and thus the ground state could be written
in the form of |Ψ0(s)⟩ = |ψ0(s)⟩⊗N . If we carefully tune b(1/2) to be 2/ tan[2arccos(1 −
1/4N)], a straightforward calculation shows that

∣∣⟨111 . . . 1|Ψ0(s = 1/2)⟩
∣∣2 =

(
1− 1

4N

)2N

. (4.43)

This probability tends to 1/
√
e as N → ∞, while the ratio of the walkers in DMC with

|111 . . . 1⟩ is only e−1/4

e
√

N/2
which is exponentially small. This becomes a problem in the next

phase where Ĝ is turned on. Since no walker has the configuration of |111 . . . 1⟩ (as long
as there are only polynomially many walkers), none of them are susceptible to the term

Ĝ, and thus correct sampling of the ground state is not achieved.

Numerically Measuring the Equilibration Time
While the above model shows an example of where the DMC method fails and QA suc-
ceeds, it does not become an obstacle when using QMC methods. We will see this by
numerically measuring the time QMC requires for correctly sampling the ground state of
the above example.

The relaxation time τrel and mixing time τmix of a Markov chain are two major mea-
surements for quantifying the required time for equilibration. The mixing time is the time
required for the Markov chain to get close enough to the equilibrium distribution π(eq) in
the worst case, i.e.,

τmix(ϵ) := min{ t | sup
π(0)

∥P tπ(0)− π(eq)∥TV ≤ ϵ}, (4.44)
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where ∥ · ∥TV is the total variation disitance

∥µ− ν∥TV =
1

2

∑
σ

|µσ − νσ|. (4.45)

Setting ϵ < 1/2 is known to be sufficient, since for example

τmix(ϵ) ≤ ⌈log2
1

ϵ
⌉τmix(1/4), (4.46)

could be shown for arbitrary ϵ. The relaxation time is defined as

τrel :=
1

1−max |λ|
, (4.47)

where the maximum is taken from all eigenvalues of the transition matrix P except for 1.
The mixing time and relaxation time can bound each other as

(τrel − 1) log

(
1

2ϵ

)
≤ τmix(ϵ) ≤ log

(
1

ϵπ
(eq)
min

)
τrel, (4.48)

therefore they have similar scaling. This is because π
(eq)
min , the equilibrium probablity of

the configuration with smallest possible probability, is at least of order e−poly(N), which
gives at most a polynomial factor. Our central concern if the simulation could be done in
polynomial time or not, so this does not become a problem.
Calculating τrel explicitly is practically impossible since the transition matrix is expo-

nentially large. However, for our model explained above, we are able to esitmate the
relaxation time from the following argument. Let’s consider measuring ⟨Ĝ⟩ for the final
Hamiltonian of Eq.(4.41). Starting from a random configuration, after t Monte Carlo
steps, the probability distribution over configurations could be written as

P t

∣∣∣∣ 1Ω
⟩
, (4.49)

where we borrow the bra-ket notation | 1Ω ⟩ as the uniform distirbution among all possible Ω

configurations. Thus, the expectation value for the measured ⟨Ĝ⟩ after tMonte Carlo steps
is ⟨G|P t| 1Ω ⟩, where ⟨G| is the transposed vector which the element is 1 for configurations
with the basis |11 . . . 1⟩, and 0 otherwise. From the definition of the relaxation time, we
can write

P t |1/Ω⟩ ∼= |π(eq)⟩+ e
− t

τrel

(
|1/Ω⟩ − |π(eq)⟩

)
, (4.50)

at t ≫ 1. The support of the equilibrium distribution |π(eq)⟩ could be regarded as the
configurations containing the basis |11 . . . 1⟩. By multiplying ⟨G| from the left, we obtain

⟨Ĝ⟩ ∼= 1 + e
− t

τrel (⟨G|1/Ω⟩ − 1) ∼= 1− e
− t

τrel , (4.51)

since ⟨G|1/Ω⟩ is exponentially small. This allows us to estimate τrel from measuring ⟨Ĝ⟩
over different Monte Carlo steps. Similar arguments could hold for different quantities, as
long as they capture the slowest mode (e.g. the magnetization in the case of ferromagnetic

systems in the ordered phase). For the current case, ⟨Ĝ⟩ surely has the slowest mode
since it quantifies if the Markov chain has visited an exponentially small region in the
configuration space.
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Figure 4.4 shows the equilibration of ⟨Ĝ⟩ for different system size N . We are only
focusing on the final Hamiltonian s = 1 of Eq.(4.41), which means we are neither using
SQA nor EMC, and only simple QMC (in this case, we used SSE instead of PIMC). We
take the average over 100 samples for each system size, for every Monte Carlo step. The
temprature was set as β = N , since the minimum energy gap is explicitly calculated for
this system to be ∆Emin = 2

N [103], and is sufficient for observing the ground state. We
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Fig. 4.4: The equilibration of ⟨Ĝ(t)⟩ where t is the Monte Carlo step. From blue to
red, the graph represents system sizes N = 20, 40, 80, 160, . . . , 10240. The inset shows
the equilibration time assuming Eq.(4.51). The errorbars are drawn using the bootstrap
method.

clearly see that the Monte Carlo steps needed for equilibration only shifts additively as
weincrease the system size exponentially, and the Monte Carlo steps needed forequili-
bration in this case only scales logarithmically. Note that 1 Monte Carlo stepmeans an
updatefor theentire L operators (or similarly the update of the entire N×L classical spins
for PIMC), meaning that a single Monte Carlo step already takes O(N) time.

The above result has two implications. First, it shows that the simple example pre-
sented in [103], does not apply for QMC methods. This means that while DMC does not
suffer from the topological obstructions but with golf-hole potentials as in this example,
the situation is completely opposite for SQA. The problem of whether stoquastic QA can
be polynomially simulated by classical algorithms turns into a problem of whether these
two different types of obstructions could be “put together” for establishing an obstruc-
tion which both type of algorithms suffers, of if the algorithms could somehow be “put
together” overcoming both types of obstacles. This point will be discussed further in the
next section.

The second implication is that QMC methods do not necessarily suffer from the Arrhe-
nius law (Eq.3.4). This could be intuitively understood as the effect of tunneling effect in
quantum mechanics. While the Arrhenius law is derived from evaluating the time required
for a (classical) stochastic dynamics, this does not apply for quantum systems in general.
For example, the classical system which a stoquastic Hamiltonian is mapped to (Eq.4.13),

has an anomalous term which has a temperature dependence (log tanh βΓ
L )/(2β). The

forrmagnetic interaction along the Trotter direction becomes infinitely weak, when other
parameters are fixed (or even when we increase L with fixing β/L). This prevents the
Monte Carlo dynamics in the Trotter direction from freezing, avoiding the Arrhenius law.
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This point is crucial if we consider proving simulability of stoquastic QA via Monte Carlo
methods. When the system has a polynomially small energy gap, the inverse temperature
β needs to be polynomially large for sampling the effective ground state. If the Arrhe-
nius law Eq.(3.4) were to hold for QMC systems as well, this would immediately imply
exponentially long equilibration times for such systems.

Proving Simulability: What is the Most Likely Scenario?
We have so far seen that both topological and non-topological obstructions were not
powerful enough to show stoquastic advantage. More precisely, topological obstructions
[106] could be avoided by DMC methods [103], and also we argued that repeating SQA,
population annealing, or EMC can overcome topological obstructions. Non-topological
obstructions [103], on the other hand, were not a problem at all for QMC methods, as
seen in the previous section.
What implication do these examples have for the situation regarding computational

advantages of stoquastic QA? So far, both of the proposed obstacles seems to be avoidable
by using either repeated SQA, population annealing, or EMC. Obviously, whether if these
algorithms are able to polynomially simulate stoquastic QA in general remains an open
problem. Even if one algorithm among them could be proven to be able to efficiently
simulate stoquastic polynomial QA, that will imply the collapse of BstoqP to BPP.
In the following, we will present some reasons for seriously considering the possibility

of proving BstoqP=BPP by using EMC, and then demonstrate an example which the
strategy fails.

Using EMC to prove BstoqP=BPP seems a possible strategy for several reasons. Firstly,
SQA and population annealing both are not MCMC in the strict sense (the transition ma-
trix changes along time for both algorithms), and thus has intrinsic difficulty in evaluating
efficiency. EMC on the other hand, is an MCMC in the strict sense, and many results for
Markov chains could be applied. Secondly, and more importantly, the notion of exchange
probability in EMC and fidelity for quantum states seems to have similarities. For any
of the above three algorithms, one will need to discretize the annealing process λ. Let’s
assume that the annealing schedule λ : 1 → 0 is divided into R + 1 steps from λ0 = 1
to λR = 1. Since mapping to classical systems is guaranteed from stoquasticity, the re-
maining issue is the evaluation of the relaxation/mixing time. Intuitively, we expect that
“if the ground states of adjacent parameters λi and λi+1 are close enough, sampling one
efficiently should also imply efficiency for the next one”. This point seems to be able to
made rigorous using EMC and exchange probabilities. Namely, we can prove that if the
energy gap is at most polynomially small, the fidelity susceptibility will be at most poly-
nomially large *16. Then we can further show that taking R polynomially will suffice for
making the ground states of adjacent replicas arbitrarily close. With the above intuition,
this result seems to suggest that with EMC with polynomially many replicas, the adjacent
replicas become close enough for frequent “exchanges”, allowing fast equilibration for the
entire system (with all replicas).
The following example demonstrates a situation where QA could be performed in poly-

nomial time, while the EMC method takes exponential time. This shows that the above
argument is wrong, which will be discussed further in the next section. The Hamiltonian
we use has the same form as Eq.(4.41) but with an extended annealing schedule. Now
we divide the annealing schedule s : 0 → 1 is now divided into three phases, and the first
two are the same as the example before. In the third phase, after the golf-hole potential
Ĝ is turned on completely, we now decrease the longitudinal field b(s) to 0. While this

*16 The calculation, including the definition of fidelity and fidelity susceptibility will be provided in
chapter 6.
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system is not efficiently simulable by DMC methods (since it is trivially harder than the
last example), it is also evident that QMC will not be able to find the final ground state
on its own. On the other hand, since the minimum energy gap is again 2/N , QA is able to
reach the final ground state in polynomial time. The expectation is that EMC will also be
able to simulate the ground states throughout the process efficiently, since the sampling
for s = 2/3 is easy.
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Fig. 4.5: The equilibration of ⟨Ĝ(t)⟩ at s = 1 where t is the Monte Carlo step. From
blue to red, the graph represents system sizes N = 12, 13, 14, 15, . . . , 24. The inset shows
the equilibration time assuming Eq.(4.51). The errorbars are drawn using the bootstrap
method.

Contrary to the above argument, figure 4.5 clearly shows the exponential growth of the
equilibration time for the current model. We note that this result is gained after tunings of
the replicas were done. Namely, the number of replicas R, the way of dividing the interval
s ∈ [0, 1], were optimized in accordance to [108]. This immediately implies that EMC in
its most straightforward form, cannot be used for proving the claim BstoqP=BPP.

The computational complexity theoretic implication will be discussed further in the
next section. Here, we will raise few points which may be interesting on its own. First,
this example shows the case where the equilibrium time differs greatly for different replicas
despite frequent exchange. We observe that the exchange rate of the EMC method for our
example is high enough (≳0.6), meaning that the exchange procedure is accepted more
than rejections. This means that we found a concrete example which exchange does not
help. In the third phase (s > 2/3), this model changes the longitudinal field, meaning
that PIMC configurations with fewer spins pointing the |1⟩ direction will “promote” to
the large s side with exchange. This obviously does not help the final replica to find the
configuration with |11 . . . 1⟩. It is interesting that the above explanation only works for
PIMC and not necessarily for SSE, nevertheless our result shows the conclusion is same
for SSE as well. SSE only deals with operators, and configurations with less longitudinal
field operators will get exchanged to the larger s region. Here, the lack of longitudinal
field operators should be playing a similar role to the lack of |1⟩ spins in PIMC.

Secondly, this example may be regarded as the quantum version of the example pre-
sented in [100]. In [100], a classical spin system with a potential similar to that of the

golf-hole potential Ĝ in our example was presented (called the “golf course landscape”),
to explicitly see that the EMC has exponentially long equilibration time for that model.
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While the model studied in [100] is trivially hard since the ground is exponentially hard
to find, our model has the longitudinal field as a hint, which enables the equilibration
time logarithmic in N at s = 2/3. The fact that a rapid mixing parameter region is well
exchanged with a slow mixing region, and the slow mixing region remains slow shows a
new type of weakness the EMC method has.

4.3.3 Discussions

We have seen some examples so far, which exhibited difficulties which classical Monte
Carlo algorithms face for simulating stoquastic QA. The first topological obstruction pro-
vided an example of where the QMC method fails when used alone. This was not an
obstruction for DMC methods, and the situation for other algorithms such as EMC or
population annealing remains open (at least for the example we introduced, it can be
shown that both algorithms will not have a problem). The second obstruction we saw
was non-topological, designed to fail DMC. We numerically see that this example however
becomes extremely easy when we use QMC methods.
Thus we have two opposite examples, one where QMC fails but DMC does not, the other

vice-versa. If we can combine the two obstructions, it may result in an obstruction where
both algorithms fail. On the other hand, if we could somehow combine the algorithms,
that may result in an algorithm overcoming both obstructions. EMC was one of such
candidate algorithm (and indeed overcomes both of the first two obstructions), but we
presented the third example where EMC takes exponential time.
This result refutes the possibility of EMC being able to simulate all polynomial sto-

quastic QA efficiently. While EMC fails for our last example, SQA actually does not, and
the hope of proving BstoqP=BPP currently relies on algorithms with repeated SQA or
population annealing.
The fact that BstoqP=BPP cannot be proved straightforwardly in this way, together

with the existence of naturally arising stoqMA-complete problems, may hint the possibility
of BstoqP ̸=BPP. While this possibility is obviously open mathematically (even P=NP is
mathematically open!), it is arguable that the situation for BstoqP=BPP is closer to that
of believing P=BPP. There are derandomization results on MA=NP[32], where MA is the
probabilistic analogue of NP. This means that under some plausible assumptions MA is
known to equal NP while there are naturally arising MA-complete problems. Therefore,
the existence of naturally arising complete problems by themselves will not serve as strong
evidence for the complexity class being separated. Since even trying to show P=BPP which
is already believed from derandomization argument is already extremely difficult, it is not
hard to believe that BstoqP=BPP is in the same position*17.
Physically, our result may be regarded as showing the necessity of “dynamics” up to

some level for simulating QA. This is because both of the remaining algorithms for showing
BstoqP=BPP (population annealing and repeated SQA) are dynamical in the sense that
they have time-varying dynamics. While this idea is attractive since it may lead to deeper
understanding of the relationship between stochastic dynamics and statics, it remains a
speculation at this point.
While the weakness of EMC we have found in this study suggests that EMC cannot

be efficient for arbitrary stoquastic systems, we should be careful that the example we
studied was artificial. It is open whether if a similar situation could naturally arise when
the general form of QA Eq.(3.7) is considered. Furthermore, previous studies on classical

*17 While the P=BPP problem asks whether if randomness (at all) makes essential difference in com-
putation, the BstoqP=BPP problem asks if stoquastic randomness could be simulated by classical
randomness, which appears far more tractable intuitively.
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systems [100] shows that while EMC may not be so efficient for golf-hole like energy
structures, it greatly enhances equilibration in a glassy energy landscape. This Justifies
our use of EMC in chapter 6, since the NP-hard problem has an energy structure close to
that of glass rather than a golf-hole.
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Chapter 5

The Maximum Independent Set

Problem and its Classical Complexity

In this chapter, we will see how classical computational hardness appears in physical
systems, by focusing on the Maximum Independent Set (MIS) problem which is NP-hard,
in a purely classical setup. This will also become our starting point when we later see
quantum annealing results for the same MIS problem, which would be our model for
seeing how classical computational hardness appears in quantum systems. More precisely,
it is necessary to know how typical-case complexity of the MIS problem is related to the
statistical-mechanical property of the system for various ensembles.
We will first discuss the RS-RSB/easy-hard correspondence, a notion which is only

partially confirmed up until today. This relates the phase transitions (obtained from sta-
tistical mechanics viewpoints) with the average-case complexity of NP-hard problems. We
will then see that while the correspondence does not seem to hold for a rather exotic in-
stance distribution, but will be restored when we consider a more sophisticated algorithm
which we introduce. The new algorithm achieves exponential speed up for some param-
eter regions, resulting in polynomial time computation up to the precise RS/RSB phase
transition point. Finally, we will discuss what our results suggest for the average-case
complexity in statistical physics and future directions.
Our results presented in this chapter are based on the work published in [109].

5.1 The Maximum Independent Set Problem
We first introduce the MIS problem in this section.

5.1.1 Formalism and NP-completeness

In order to introduce the MIS problem, we first define what an independent set of a graph
is. A graph*1 G = (V,E) is defined by two sets, namely the vertex set V and an edge
set E which is a subset of V × V . For now we only focus on finite graphs where V is
a finite set. Furthermore, we only consider simple graphs, i.e. graphs with no multiple
edges between two vertices and no self-loops. This corresponds to not allowing multiple
elements or elements in the form of (v, v) in E.
Independent sets and the MIS problem could be formalized as follows.

*1 More precisely, an undirected finite simple graph.
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Definition 19. Independent set
An independent set I of a graph G = (V,E) is a subset of the vertices such that no
two elements are connected in graph G.
In other words, I ⊂ V, v1, v2 ∈ I → (v1, v2) /∈ E.

Definition 20. Maximum Independent Set Problem (Decision version)
Input : An undirected simple graph G = (V,E) and a positive integer m.
Output : Yes if there exists an independent set I which has size larger than m.

No if there is none.

Different versions of the MIS problem exist, and we will see the relations in the following
section. Although the MIS problem seems quite simple (it is basically just coloring as
many vertices as possible with the constraint that no adjacent vertices are colored), it is
actually NP-complete [110], which we will omit the proof.

5.1.2 Search/Decision Relations

We can easily define the search version and also the optimization version of the MIS
problem.

Definition 21. Maximum Independent Set Problem (Search version)
Input : An undirected simple graph G = (V,E).
Output : (One of) the Maximum independent set I of G.

Definition 22. Maximum Independent Set Problem (Optimization version)
Input : An undirected simple graph G = (V,E).
Output : The size of the maximum independent set kmax of G.

Since both of the versions of MIS are not a decision problem, they cannot be NP-
complete by definition*2. Clearly, the ability to solve both types of problems (search and
optimization), allows one to solve the decision version as well. Either the output kmax

itself or the size of the output I, could be compared to the inputted value k, and the
decision problem is trivially solved. Thus, similarly to the reduction explained in section
2.1.2, we can say that the optimization version and search version of MIS are at least as
hard as the decision version under Turing reduction*3. This means that both of the two
versions are NP-hard.

On the other hand, if there were a polynomial time algorithm which solves the decision
version of MIS, changing the input k adaptively will allow us to compute kmax after
polynomial number of trials (thus in polynomial time). Thus, under polynomial Turing
reduction, the decision version and optimization version has equivalent hardness.

Similarly, we can show that if there were a polynomial time algorithm which solves
the optimization version, the search version could be computed in polynomial time as
well. This is not totally apparent. The polynomial time for the search version could be

*2 It is even hard to think of the “decision version of the optimization version” which the size of the
MIS kmax is proposed in the input. This formalism is (believed to be) not in NP as well, since there
seems to be no way of verifying that an independent set is indeed the maximum in polynomial time.
This problem is in the class ΣP

2 , which is a generalization of NP.
*3 This is not exactly the same as the mapping reduction we introduced in section 2.1.2, and is called

Turing reduction. Now we are using the algorithms for solving the optimization/search version
of MIS as a subroutine. The implication is the same as the mapping reduction, that proving the
harder problem to be in P will immediately imply that the easier one is also in P (or FP for function
problems).
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constructed as follows. After computing kmax for the input G, we assume for one site
on the graph v to be included in the MIS, and remove it from G along with all adjacent
vertices (which cannot be included in the MIS). We then apply the optimization algorithm
for this new graph G′, and see if the output is kmax − 1. If so, this means that there is at
least one MIS for the original graph G which includes the vertex v, and if not, this means
that the there is no MIS for G that includes v, This provides information of whether if
there exists an MIS including the vertex v. The problem is now reduced to the search
problem of a graph which is truly smaller than G either way. We can repeat this procedure
at most N times, to fully determine the MIS, thus solving the search version of the MIS
problem.
We have seen that all three versions of MIS has equivalent hardness under Turing

reduction*4. When QA is applied for solving the MIS problem, it is natural to consider
that QA is tackling the search version. Therefore, strictly speaking, it is wrong to claim it
is dealing with an NP-complete problem, but in this thesis, with the above equivalence in
mind, we do not worry too much if a problem is NP-hard or NP-complete. Either classes
should be hard, if we assume the NP hardness assumption.

Statistical Mechanics Formulation
All of the three versions of the MIS problem could be rewritten in the language of statistical
mechanics as we explained in section 3.2. In this case of the MIS problem, the Hamiltonian
(cost function) could be written as

H(x) = −
∑
v

xv + α
∑

(v,w)∈E

xvxw, (5.1)

where the variables x = (x1, . . . , xN ) take values in {0, 1} with 1 meaning being included
in the MIS and 0 not. α is a constant larger than 1. The precise value of α does not
matter as long as we are only interested in the T → 0 limit, i.e., the ground state/optimal
solution. The results from statistical mechanics analysis uses eq. (6.2.1) as a starting
point. Note that the Hamiltonian above could be rewritten in the form

H(x) = H ′(σ) =
α

4

∑
(v,w)∈E

σiσj −
∑
i

2− αdv
4

σv, (5.2)

after the rewriting the variables xv = (σv + 1)/2 in Ising degrees of freedom. Here, dv
denotes the degree of vertex v, the number of adjacent vertices. This system only has
antiferromagnetic interactions with the same stregth, and thus could be interpreted as an
antiferromagnetic Ising model with local fields. The decision version of MIS corresponds
to asking if the ground state energy is lower than some value Einput, and the optimization
version corresponds to asking directly the ground state energy. The search version is
obviously equivalent to searching the ground state configuration itself.

5.2 Overview: Algorithms and Phase Transitions
As we mentioned in the previous section, the MIS problem is NP-complete and thus has no
known polynomial time algorithm. However, as we discussed in section 2.2, some simple
algorithms actually run typically in polynomial time for easy ensembles of instances. The

*4 This reflects the computational complexity result P=NP⇒P=PH, which is called “the collapse of the
polynomial hierarchy”, where PH is the class polynomial hierarchy, a generalization of NP including
ΣP

2 .
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field of statistical physics dealing with mean-field spin glasses could be applied for average
case complexity of optimization problems [111, 112] in order to obtain these types of
results.

It was first discovered by R. Monasson et al.[113] that optimization problems exhibit
phase transitions, resembling physical systems. They found that random SAT in the
large size limit (i.e. N → ∞ the thermodynamic limit), have probability 1 for the answer
being Yes in the “low constraint density” region, which suddenly drops to 0 in the “high
constraint density” region. While this phenomena is now known as the “SAT-UNSAT”
phase transition, statistical physics further provided a picture of a phase transition called
replica symmetry breaking (RSB), which seems even more essential [114, 115, 116].

5.2.1 Replica Symmetry Breaking

Here, we will breifly review RSB. Let us consider the SK model defined in sectoin 2.2.2,
which was the first spin-glass model explicitly studied [117]. The Hamiltonian

H = −
∑
i<j

Jijσiσj , (5.3)

has quenched disorder Jij as mentioned before, which makes the order parameter non-
trivial. For the SK model, the interaction strength is drawn from a Gaussian distribution

P (Jij) =

√
N

2πJ2
exp

{
− N

2J2
J2
ij

}
, (5.4)

where the coefficients are for normalization and additivity of physical quantities (such as
average energy). At low temperature, the SK model exhibits a phase transition where each
spin freezes in a seemingly random direction. The direction which the spins freeze obvi-
ously differs from sample to sample, and may even differ completely (no negative/positive
correlation) for the same sample with different initial configuration!*5 In order to capture
the freezing of the spins in this case, the overlap parameter (also called the spin-glass
order parameter)

q :=
1

N

N∑
i=1

σ
(a)
i σ

(b)
i , (5.5)

is defined. Here, we prepare two exactly same system a and b (with identical quenched

disroder {Jij}). σ(a)
i and σ

(b)
i represent the spin value of the i th spin for system a and b

respectively. Thus, q quantifies how similar two configurations σ(a) and σ(b) are, taking
the value between [−1, 1]. Since in thermal equilibrium, configurations appear according
to the Boltzmann distribution eq.(3.3), q becomes a random variable. RSB is defined as
a phase where the distribution of q, denoted as P (q), has a non-trivial structure. Let’s
see this through the classical Ising model as an example. In the paramagnetic phase, the
value of q is always close to 0 because of thermal fluctuation. The distribution P (q) is
concentrated at the center, and becomes δ(0) in the thermodynamic limit. In the low
temeprature phase where the magnetization

m :=
1

N

∑
i

σi (5.6)

*5 Here, we are implicitly assuming some kind of dynamics. Any valid Monte Carlo dynamics with
only local updates would have the same property.
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typically takes a non-zero value ±mtyp, P (q) becomes double peaked at two values ±qtyp.
While the expectation value of m for a finite system is always 0 due to the Z2 symmetry,
the distribution is double peaked at two values ±mtyp representing spontaneous magnti-
zation. Thus, if two random configurations are drawn from the Boltzmann distribution,
we will have two configurations with the same magnetization with probability 1/2, or
configurations with exactly the opposite magnetization with probability 1/2. We can say
that P (q) captures the spontaneous symmetry breaking for the classical Ising model.
If we apply an external field h

∑
i σi to the Ising model, the ferromagnetic transition

vanishies, and q will be concentrated in a non-zero value. This is an artifact of having a
non-zero magnetization, and we could subtract m2

typ from q, obtaining the “non-trivial”
overlap. The Edwards-Anderson order paramter [118] is defined as

qEA := max
P (q)>0:N→∞

q, (5.7)

which is equal to

qEA =
1

N

N∑
i=1

⟨σi⟩2, (5.8)

if we restrict the distribution for taking the average ⟨·⟩ to one basin*6. Now we can define
RSB as a phase transition where qEA becomes non-zero (after subtracting the trivial value),
and there is no other order parameter*7. For the ferromagnetic transition, obviously we
can capture this transition via the histogram of m, or even by ⟨m2⟩, and thus is not an
RSB.

The Spin-glass Susceptibility
Since the average magnetization ⟨m⟩ is always 0 for a finite ferromagnetic Ising model, it
may be convenient to measure ⟨m2⟩ for numerical simulations. This procedure is essen-
tially measuring the magnetic susceptibility

χl :=
∂mtyp

∂h

∣∣∣∣
h=0

=
β

N

(
⟨M2⟩ − ⟨M⟩2

)
, (5.9)

where M =
∑

i σi, and h is the strength of the uniform magnetic field −h
∑

i σi added to
the Hamiltonian. Note that for finite systems, the second term ⟨M⟩2 is 0. If χl has a non-
zero value (or equivalently if Nχl = ∂Mtyp/∂h diverges in the thermodynamic limit), this
means that the magnetization is nonzero, or equivalently, that the system is susceptible
against uniform magnetic field.
We can consider an analogous susceptibility for spin glass, which would provide us a

clearer indication of the spin-glass phase transition. By further expanding the magneti-
zation mtyp in terms of h as

mtyp = χlh+ χnlh
3 +O(h5), (5.10)

*6 This is parallel as defining the magnetization as in eq.(5.6), and claiming that the ferromagnetic
phase is where the magnetization ⟨m⟩ has non-zero value. For finite size systems, this is always 0
due to Z2 symmetry. However, in the thermodynamic limit, the system is confined in one side of
the configuration space, since the energy barrier between grows as O(N), resulting in exponential
time to reach the other. We denote this magnetization as mtyp here. We can assume the same for
qEA, where the system is confined in one of the basins.

*7 This definition becomes inaccurate when we consider systems which are not mean-field. For instance,
the Edwards-Anderson model, which is the 3 dimensional version of the SK model, seems to have
a non-trivial P (q) but not a standard RSB [119]. In this thesis, we will only deal with mean-field
models.
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we can define the nonlinear susceptibility χnl, which could be measured in experiments[120].
It is simple to calculate that

3!χnl :=
∂3m

∂h3

∣∣∣∣
h=0

=
β3

N

(
⟨M4⟩ − 4⟨M3⟩⟨M⟩ − 3⟨M2⟩2 + 12⟨M2⟩⟨M⟩2 − 6⟨M⟩4

)
(5.11)

=
β3

N

(
⟨M4⟩ − 3⟨M2⟩2

)
, (5.12)

where the last equation holds when ⟨M⟩ = 0, e.g. when there is Z2 symmetry. χnl diverges
in the RSB phase, and thus sometimes the term nonlinear susceptibility and “spin-glass
susceptibility” is sometimes used interchangeably. However, we can state this in a more
precise way.

The linear susceptibility represented fragility against weak uniform perturbations in
opposite directions. Now that in the spin-glass phase spins freeze in “random” directions,
the perturbation should be towards random directions, which could be written as a term
ϵ
∑

i siσi where si ∈ {±1} forms some arbitrary configuration s. Then, the spin-glass sus-
ceptibility should represent the fragility against two different perturbations, and defining
it as

χSG := lim
ϵ→0

1

ϵN

∑
i

Es,s′

[
(⟨σi⟩ϵ,s − ⟨σi⟩ϵ,s′)

2
]
, (5.13)

is one reasonable way. Here, ⟨·⟩ϵ,s denotes the expectation value under the Boltzmann
distribution of Hamiltonian H − ϵ

∑
i siσi and the expectation Ess′ [· · · ] is taken over

all possible configurations with Boltzmann weight of the configurations s and s′, i.e.,
e−βH(s)/Z. The definition of spin-glass susceptibility above could be related to the non-
linear susceptibility under some conditions*8,

χnl = β3

(
χSG − 2

3

)
. (5.14)

This means χnl and χSG are essentially the same, and both quantities have same diver-
gences etc. at the phase transition point. Furthermore, by expnading ⟨σi⟩ϵ,s up to first
order of ϵ, we can show

χSG =
1

N

∑
i,j

(
∂⟨σi⟩
∂hj

∣∣∣∣
hj=0

)2

=
β2

N

∑
i,j

[⟨σiσj⟩ − ⟨σi⟩⟨σj⟩]2 , (5.15)

reducing the calculation to summing the equilibrium correlation. This finally leads us to
the expression

χSG = N ×Var[q] = N
(
⟨q2⟩ − ⟨q⟩2

)
. (5.16)

This means that if there is a non-trivial structure in the overlap distribution P (q), the
spin-glass susceptibility χSG will detect it.

5.2.2 RS-RSB/Easy-Hard Correspondence

The RSB transition introduced in the last section could be found ubiquitously in combi-
natorial optimization problems [112]. While optimization problems could be seen as the

*8 The condition for eq. (5.14) to hold is the symmetry of P (Jij) = P (−Jij) and the absence of local
fields [121]. Recently, it was shown that it also holds for systems with symmetric random local

fields P̃ (hi) = P̃ (−hi) [122].
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task of finding the ground state, and thus corresponds to the T = 0 or β → ∞ limit, we
can extend problems to finite temperature and locate an RSB phase transition at some
Tc > 0. The RSB phase transition also occurs for many problems if we change the pa-
rameter of the instance ensemble. For instance, we can think of a 3-SAT ensemble where
there are N variables andM clauses. If we fix the ratio of clauses α :=M/N , and take the
thermodynamic limit N → ∞, the resulting ground state undergoes an RSB transition
at αc ∼ 3.86 [116]. For the MIS problems we consider, as we will see soon, the statistical
mechanics formulation requires local fields, and thus we have a finite magnetization m
for all finite temperatures. Therefore, we use the term “replica symmetric (RS) phase”
instead of the paramagnetic phase.
The RS phase has a smooth and connected solution space, while the RSB phase has

rugged non-ergodic solution space. In general, the RSB phase is realized in the parameter
region with more constraints, and thus is thought to be a “harder region” as an optimiza-
tion problem. We will call this perspective as the RS-RSB/easy-hard correspondence.
The RS-RSB/easy-hard correspondence has been shown rigorously for few specific mod-

els [124, 125]. More precisely, it is known that certain algorithms takes typically only
polynomial time to run in the RS phase, and requires exponentially long time in the RSB
phase. However, this does not seem to hold in general. For example, the situation is still
open for the NP-complete 3-SAT. For simple algorithms such as SA, it is known that they
only work up to the RSB transition point αc ∼ 3.86, However, more complex algorithms
such as “survey propagation” is known to work in polynomial time up to another point
αfreeze ∼ 4.254 [116]. Furthermore, it has recently been shown that this new freezing phase
transition αfreeze could be overcome as well by an even more sophisticated algorithm [123].
Since it is known that another RSB transition occurs at some αRSB > αc for 3-SAT, the
situation regarding RS/RSB and the easy/hard region remains unclear in general. An-
other example is known as the XORSAT problem [126, 127], which we will not explain in
detail but is similar to SAT. XORSAT is known to have an RSB transition but the deci-
sion version always has a polynomitl time algorithm*9. This seems to clearly violate the
correspondence, but possibility of restoring the correspondence via further analysis taking
into account of the algorithm being used. On the other hand, some natural algorithms
may fail even in the RS phase, as we will explain in the following sections. Therefore, a
suited algorithm seems necessary for establishing
Therefore, a good algorithm and a suited statistical physics analysis is needed to explore

the general validity of the correspondence. Our main motivation in this chapter is to seek
for the “correct” algorithm exhibiting the correspondence for the MIS problem.

5.3 Algorithms for the Maximum Independent Set Problem
Since the MIS problem is NP-complete, we do not have a polynomial time algorithm for
solving it. However, some simple algorithms run typically in polynomial time for easy
ensembles of instances, and here we present them.

5.3.1 The Leaf Removal Algorithm

We first introduce the leaf removal (LR) algorithm for the MIS problem.

*9 The decision version is easy because XORSAT could be seen as a system of linear equations, and
deciding if a solution exists is in P by using Gaussian elimination. The search and optimization
versions are also easy to answer if the decision version is Yes from the Turing reductions we have
seen, but no clue is gained in general if the answer isNo. This may suggest that search/optimizations
are better suited frameworks for the RS-RSB/easy-hard correspondence.
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In general, there may be multiple MISs for a given graph G, and we take advantage
of the fact that we are only required to find one of them, in either the search version or
the optimization version. The central idea for LR is that if there is a vertex v in G with
only one adjacent vertex w, there is at least one MIS which contains v. This could be
explained as follows. For any MIS configuration I, exactly one of the vertices v, w should
be included and the other should not. Having both vertices is trivially impossible for their
adjacency. An MIS configuration with neither of the vertices is also a contradiction, since
we can construct a larger independent set by simply adding v in it. Now, let us consider
an MIS configuration where the vertex w is included and v is not. The existence of such
an MIS will imply another MIS configuration with v included and w not. This is because
the size of the independent set does not change with this exchange, and no constraints
(edges) will be violated since v is only adjacent to w. Therefore, there will always be an
MIS configuration containing v.

The LR algorithm simply finds a vertex v with only one adjacent vertex (degree 1),
and label that vertex as being “included” (vertices with no adjacent vertex (degree 0)
will trivially be labeled as “included” as well.). It could be argued that this algorithm
focuses only on MIS configurations which include v. Then, the one adjacent vertex of v,
will be labeled “excluded”. Now, these two vertices are removed from the graph G, which
means vertices originally having either or both of vertices v and w as adjacent vertices
will have their degree decreased by 1 or 2. This will create additional vertices with degree
1 or 0.

The algorithm continues the above procedure until there are no longer any vertices with
degree less than 2. Fig. 5.1 shows a schematic diagram for this algorithm.
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(2)

(1)

(2)

(1)

(2)

17年4月22日土曜日

Fig. 5.1: A schematic diagram for the leaf removal algorithm. Black colored vertices are
the ones decided to be included in the independent set. The shadowed vertices are the
parts considered as the “leaves”, and are removed from the graph, becoming pale.
c⃝2017 The Physical Society of Japan (J. Phys. Soc. Jpn. 86, 073001.)

The LR algorithm could be understood as removing the leaves from the graph, that do
not contribute to the essential hardness of the MIS problem. By removing these leaves,
new leaves may arise due to the reduction of edges. If the entire graph turns out to become
a leaf, the LR algorithm successfully finds the MIS. The remainder of the graph, left after
the LR algorithm stops, is called the LR-core. Note that the LR-core is well-defined
independently of the order of the leaves being removed. Even if an LR-core remains, it
would not be a problem as long as its size is O(log(N)) or smaller, since a simple brute
force search will completely determine the MIS in polynomial time. On the other hand,
if the LR-core has size O(N), the brute force search will take exponential time, which
should be fair to say that the LR algorithm failed. In section 5.4.1 we will see that this
simple algorithm may work surprisingly well for some instance ensembles.
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5.3.2 The DPLR Algorithm

The LR algorithm had an obvious drawback where it was hopeless against graphs with
large LR cores. It is however possible that some LR-cores may actually be “fragile”, in
the sense that if we perturb the LR-core by removing some vertex from it, the remaining
graph becomes manageable by the LR algorithm. If this were the case, the LR-core
is no longer an intrinsic obstacle. While the LR-core may appear once more, we can
continually examine if the remaining LR-core is fragile or not. The idea of the Dynamic
Programming Leaf Removal (DPLR) algorithm (Fig. 5.2) which we introduce here, is to
combine the idea of dynamic programming (DP) with the LR algorithm in order to fully
attack the fragilitiy of the LR-core. Its name is also a pun for the famous Davis-Putnam-
Loveland-Logeman (DPLL) algorithm [128], which is an analogous algorithm for SAT.
Dynamic programming is a common technique in computer science [137] which the main
idea is to efficiently execute a “divide-and-conquer” algorithm by appropriately recording
the progressive results. The procedure could be described by a recursive process, and
therefore resembles to transfer matrix methods and belief propagation methods.
There is no difference between the DPLR algorithm and the LR algorithm, if the graph

does not contain an LR-core. While the LR algorithm halts when it hits an LR-core,
DPLR chooses one of the vertices with largest degree [138], and essentially undergoes a
binary search of whether to include or exclude the selected vertex in the MIS. After
fixing the label of the chosen vertex, the DPLR algorithm starts the LR protocol again.
Each time reaching the LR-core, the above branching is repeated, until all the vertices
are labelled either way, and the size of the independent set (not necessarily maximum) is
calculated. The algorithm then goes back to the unsearched branches, constantly recording
the largest-so-far independent set configuration.
The DPLR algorithm could be seen as essentially carrying out the perturbation we

argued above, until the entire graph is completely broken down into leaves. Thus the
DPLR algorithm becomes a general protocol which reveals the fragility of a given graph’s
LR-core. We will also use this algorithm for probing the hardness of a particular ensemble
in chapter 6. In the following, we will see how the DPLR algorithm works typically against
random instances, and probe the differences with simple LR.

5.4 Results on Random Ensembles
The random instances of the MIS problem are simply randomly generated graphs. This is
one reason why we chose the MIS problem for probing the RS-RSB/easy-hard correspon-
dence; because it has one of the most accessible input ensembles*10. We will first examine
the Erdös-Rényi random graph, which is one of the most simple random ensembles for
graphs. We will see that the RS-RSB/easy-hard correspondence holds good in this case,
even by only using the LR algorithm. Then, we will go to a more complex ensemble of
scale free networks, which the correspondence no longer simply holds. We will see how it
is restored by using DPLR, and finally discuss the implications.

*10 For example, a random 3-SAT instance could be seen as a random 3-uniform hypergraph with
additional 3 degrees of freedom for each edge (similar to a directed graph). This is far more
complex than a simple graph as an input.
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Fig. 5.2: A schematic diagram for the dynamic programming leaf removal algorithm. The
gray-colored vertices are where the branching occurs, represented by the arrows. The cross
mark means that the vertex is excluded from the independent set. The configuration and
the size of the (so-far) maximum independent set found is always recorded, and is replaced
whenever a larger independent set is found. In this example, there are two branches (i,ii
and a,b), resulting in three different independent set configurations (1, 2-A, and 2-B). The
second one (2-A) has the same size as the first one (1), so a replacement will not occur
until the third configuration (2-B) is found, which has the largest size.
c⃝2017 The Physical Society of Japan (J. Phys. Soc. Jpn. 86, 073001.)

5.4.1 Erdös-Rényi Random Graphs

Erdös-Rényi random graphs of size N are defined as graphs with N vertices with every
pair of vertices (v, w) having uniform probability p of having an edge. It could also be
defined as the uniform distribution among all graphs with N vertices and M = N2p/2
edges. These two ensembles match in the thermodynamic limit N → ∞, just as the
canonical ensemble and microcanonical ensemble.

The Erdös-Rényi random graph is known to show several phase transitions when the
average degree c = pN is varied. When c < 1, the graph is typically not connected,
meaning that all connected clusters have size with only O(log(N)). On the other hand,
when c > 1 the graph has a giant component meaning that O(N) vertices are connected
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as one cluster. This phase transition is known to cause the failure of a naive dynamic
programming algorithm [139], while it does not affect the LR algorithm. There is a more
interesting phase transition at the Napier’s constant c = e ≃ 2.718 [129]. This phase
transition has two aspects to be considered. From the physical perspective, it is an RS-
to-full RSB phase transition in terms of the solution of the MIS problem*11 [130]. This
means that the uniform distribution among all MISs becomes to have a nontrivial P (q)
and finite χSG. In the algorithmic sense, this phase transition is where the LR algorithm
[131] ceases to succeed, leaving an undecided LR-core of size O(N) [132]. We will write
this as cRSB = cLR = e. Furthermore, it is shown that linear relaxation, which is another
algorithm, fails at this point as well [133]. The fact that two algorithms with very different
strategy start to fail at the RS/RSB transition point can be seen as a concrete example
of the RS-RSB/easy-hard correspondence*12.
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Fig. 5.3: The median running time Tmed of DPLR on 1024 Erdös-Rényi random graphs
with different sizes and different average degree c.
c⃝2017 The Physical Society of Japan (J. Phys. Soc. Jpn. 86, 073001.)

Numerical Results
By applying the DPLR algorithm, we can further verify this scenario of the RSB causing
average-case hardness. A priori, it is possible that the LR-cores in the RSB phase is
actually fragile, and DPLR allows us to compute the MIS in polynomial time. Fig. 5.3
shows that it is not the case. We plot the median running time Tmed of the DPLR
algorithm on Erdös-Rényi random graph for 1024 samples. The running time T is defined
by the number of total decisions made for vertices to be included or excluded. The
reason for observing the median time instead of the mean time should be obvious from
arguments done in section 2.2.1. While it is difficult to claim about typical behaviours

*11 Full RSB is one of the most commonly occuring scenario of RSB. This is explained as when P (q)
has a continuous support between two δ peaks. The equilibrium state in full RSB has an infinite
ultrametric hierarchical structure, which we will not go into the details. Here, it suffices to know
that full RSB is the same type of RSB occuring at αRSB for 3-SAT, an RSB of a type even more
complex than the one at αc (1RSB), which was surmountable by sophisticated algorithms.

*12 It is also interesting that the failure of linear relaxation is quite similar to that of LR, in the way
that it gives back a “core” of O(N) undecided vertices. However, these two cores do not match.
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from the mean running time, if the median time scales exponentially, that will serve as
an evidence for typical hardness.

We can see that all graphs for c < e collapse into the common line Tmed = N . This
is the trivial lower bound, and is consistent with the fact that at c < e, LR algorithm
suffices typically, and no branching is necessary. On the other hand, we observe that
all graph lines for c > e have convex curves, implying super-polynomial growth of Tmed.
This means that the LR-cores are fairly robust inside all of the RSB region, requiring
super-polynomial numbers of branching for completely breaking down.
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Fig. 5.4: The first quartile running time Tqua of DPLR on 1024 Erdös-Rényi random
graphs with different sizes and different average degree c. Lines are expressed as the same
as Fig. 5.3. The inset shows the third quartile running time similarly.
c⃝2017 The Physical Society of Japan (J. Phys. Soc. Jpn. 86, 073001.)

We further see the size dependence of the first and third quartile of the running time Tqua
for different c in Fig. 5.4. The fact that the graphs have qualitatively similar behavior
as in Fig. 5.3 suggests that the median time Tmed sufficiently captures the average-
case complexity, without explicitly calculating accordingly to the definition introduced in
section 2.2.1. We will refer to the only quantitative difference seen in the first quartile
of c = 2.7 where Tqua = 2N later. For now, we remark that a linear-to-exponential
transition in typical computation time at cRSB was observed for the Erdös-Rényi random
graph ensemble, assuring the RS-RSB/easy-hard correspondence.

5.4.2 Scale Free Networks

The situation differs when we consider more complicated graph ensembles. The degree
distribution of Erdös-Rényi random graphs is Poisson, reflecting the fact that all vertices
are equal and independent. We can deviate from the Erdös-Rényi ensemble by considering
other degree distributions, such as power-laws. Scale free networks are such random graphs
where the degree distribution obeys power law. The Barabási-Albert model [135] provides
a natural protocol which produces scale free networks. However, these scale free networks
have degree correlation which makes replica analysis difficult. We can instead focus on
a random graph ensemble which has the exact same degree distribution but no degree
correlation. Numerically producing the ensemble is possible by following the procedure
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known as the configuration model [134]. From now, we will focus on such graph ensembles
with the degree distribution is

pk =


0 (k < m)
2(1−p)
m+2 (k = m)
2m(m+1)

k(k+1)(k+2) (1− p) + 2(m+1)(m+2)
k(k+1)(k+2) p (k > m),

(5.17)

where c is the average degree, m := ⌊c/2⌋, and p := c/2 − m. This could be seen as
a configuration model of the (linearly combined) Barabási-Albert model, and thus we
will call this ensemble the CBA random graph model. The absence of degree correlation
allows statistical-mechanics analysis, and it is known that an RS to full-RSB transition
occurs at cRSB ≃ 5.239 [136]. On the other hand, in the parameter region c ≥ cLR = 4,
all the vertices have degree ≥ 2, which makes the entire graph an LR-core. Thus, for
this graph ensemble, the easy/hard transition for the LR algorithm disagrees with the
RS/RSB transition, i.e., cLR ⪇ cRSB. As we will see in the following, this disagreement
comes from the weakness of the LR algorithm to illustrate the correspondence for CBA
random graphs. We will see in the following that DPLR achieves the correspondence.
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Fig. 5.5: The median running time Tmed of DPLR on 1024 scale-free CBA random graphs
with different sizes and different average degree c.
c⃝2017 The Physical Society of Japan (J. Phys. Soc. Jpn. 86, 073001.)

We can see from Fig. 5.5 that DPLR algorithm behaves quite differently from LR
for scale free networks. Figure 5.5 shows the median running time Tmed of the DPLR
algorithm on the CBA random graphs for 1024 samples. One remarkable point about this
figure for the CBA model is that graphs for 4 < c < cRSB ≃ 5.239, Tmed shows a linear
growth. This means that DPLR reduces typical computation time from exponential to
linear in N , which is an exponential speed up, in this parameter region when compared
with naive LR. In this region, Tmed scales as 2N asymptotically, with finite size effects for
small system sizes, letting Tmed larger than 2N . This could be understood as the effect of
“hub” vertices in scale free networks which have outstandingly high degrees. These hubs
make the LR-core fragile to DPLR-type perturbations, since they have many neighboring
vertices that will be affected when deciding the hub to be included/excluded in the
independent set. When the system size is small, there will be fewer hubs, which makes
the graphs robust against DPLR.
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We can see the trend of the finite size effect from figure 5.6, which shows when the ratio
Tmed/2N becomes smaller than a certain value, i.e., when the finite size effect disappears.
We denote this size as N∗. The fitting presented in the figure suggests that N∗ diverges
at c = 5.222 ± 0.057, which is in good agreement with cRSB ≃ 5.239. Therefore, we
can assume that the behavior for c = 5.2, although apparently seems nonlinear (slope
larger than 1) in figure 5.5, is actually a finite size effect long lasting until N ∼ 105 as
suggested by our fitting in figure 5.6. In either case, the curves for c > cRSB are convex
whereas the curve for c < cRSB are not, implying that DPLR demonstrates explicitly the
RS-RSB/easy-hard correspondence.

Another point to mention is that the scaling of Tmed shifts from N to 2N at cLR = 4,
consistent with the LR-core emerging. When cLR < c, there are no vertices with degree 1
or 0, and the DPLR algorithm is forced to branch at the very beginning. For this reason,
the running time T is always lower bounded by 2N . Therefore, the asymptotic scaling
of Tmed = 2N implies that the LR-core in this region is as fragile as is could possibly be.
The scaling we saw in the previous section at c = 2.7 for Erdös-Rényi graphs, seems to
be the same as this.

5.4.3 Conclusion and Discussions

As a conclusion, we introduced DPLR, a novel algorithm, which puts together the LR al-
gorithm and DP. The DPLR algorithm exhibits the RS-RSB/easy-hard correspondence by
exponentially improving the typical running time in the region cLR < c < cRSB compared
to the simple LR algorithm. While this further strengthens the possibility of the RS-
RSB/easy-hard correspondence generally holding, our result has several other important
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implications as well.
First, we should emphasize that neither of the algorithms which were put together

in DPLR (dynamic programming and leaf removal), were able to confirm the easy/hard
threshold induced by the RS/RSB transition. Naive DP (known as branch-and-cut) al-
ready requires exponential time within the RS phase [139] for Erdös-Rényi random graphs,
and naive LR fails completely in the RS phase for scale free networks. The fact that the
correspondence only becomes clear after putting together these algorithms suggest the
necessity of a suitable algorithm powerful enough.
Second, for most of the parameter region in the RS phase, the asymptotic scaling of

Tmed seems to be 2N , suggesting that “easiest possible LR-cores” occur quite naturally.
Furthermore, if the CBA model with c = 5.2 indeed has an asymptotically linear scaling
of Tmed, this means that the easy/hard transition is actually a linear/exponential time
transition, more severe than polynomial/exponential. It seems that “moderately hard”
LR-cores which requires nonlinear polynomial time are actually rare in naturally defined
random graphs. This situation pretty much resembles that of 3-SAT, where the state-of-
the-art algorithm always seems to work in linear time up until the SAT-UNSAT transition
point [123]. It would be interesting to seek for natural ensembles which the degree of
polynomial grows.
Thirdly, it should be emphasized that the agreement of the point where DPLR starts

to take typically exponential time and the RSB transition point is nontrivial. It has been
observed that “stochastic local search” algorithms frequently bypass 1RSB transitions, and
are able to compute other random NP-complete problems in linear time within the 1RSB
phase [140, 141]. There are also arguments on where full-RSB may be more “transparent”
for algorithms [142], and the RS-RSB/easy-hard correspondence itself may be regarded
nontrivial. The replica analysis obtaining the RSB transition does not rely at all on
concepts such as the leaves. The DPLR algorithm on the other hand, takes advantage
of the property of the MIS problem that the leaves are actually structures where the
problem could be simplified. The fact that these two very different ways of analyzing
the problem agree with each other on the phase transition point suggests the existence of
RS-RSB/easy-hard correspondence.
Finally, our result could be seen as one example of how the NP hardness assumption we

discussed in chapter 2 is physically realized, under some other assumption. If we believe
that the MIS problem is indeed hard on average for some parameter regions in the random
graph ensembles, this means any algorithm should be impeded in that region for some
reason. Physically coupling a system with an MIS Hamiltonian to an ideal thermal bath
would be one (naive) algorithm, which should be impeded as well. Our result shows that
the RSB phase is responsible for the randomized MIS problem being hard on average. If
we can further show this correspondence in general, the NP hardness assumption may be
able to provide strategy for showing that some systems have full-RSB phases.
Furthermore, our result in this chapter becomes a guideline when we try to seek the

physical consequences of the NP hardness assumption for quantum systems in the next
chapter. Now that we are confident with using the DPLR algorithm as a probe for
measuring average-case complexity, we can make sure that an ensemble is indeed hard on
average. This point will be adopted in evaluating typical hardness of the unique solution
ensemble in the next chapter.
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Chapter 6

Stoquastic Quantum Annealing Applied

to the Maximum Independent Set

Problem

In this chapter, we consider the situation where we apply quantum annealing (QA) for the
Maximum independent set (MIS) problem. As we saw in chapter 5, classical algorithms
such as simulated annealing and even dynamic programming algorithms suffer from the
same physical phenomena, the spin glass transition. The question of whether QA faces
difficulty for the same type of physical phenomena is interesting in several ways.

First, we know that at least for some types of problems, QA can pass through energetic
barriers via quantum fluctuations [143]. Thus, the spin glass picture may be completely
invalid in some cases, since the picture accompanies energetic barriers between clusters in
the RSB phase. To see how far this picture holds should be a general interest for statistical
physicists.

Secondly, this topic would be a case where the NP-hardness assumption discussed in
chapter 2 is pushed further for the quantum case. This is because we believe NP⊈BQP,
and the strong (quantum) Church-Turing thesis, which implies that there should be some
kind of an obstacle even for a quantum annealer. A similar argument in chapter 5 was
mentioned in the classical case, and whether physical predictions from the NP-hardness
assumption has a further physical consequence is interesting in its own right.

Finally, and relating to the first two points, is the stoquastic nature of QA. As we have
seen in chapter 4, it is very likely that QA in its most basic form is not fully quantum
owing to its stoquastic nature. So far, we do not have many physical properties intrinsically
coming from stoquasticity, and the class of stoquastic Hamiltonians only have a rather
computation-based characterization. While we may hope for a fully quantum QA to have
an intrinsically quantum obstacle as a consequence of NP hardness assumption, we could
seek for physical phenomena coming from stoquasticity by considering this topic.

6.1 Previous Researches
As we have introduced in chapter 3, Quantum Annealing (QA) [51, 52, 53, 75, 145] is
one of the most studied strategies for utilizing quantum effects for computation. In this
chapter, we will consider the stoquastic Hamiltonian in the form of Eq.(3.7)

Ĥ(λ) = (1− λ)ĤP + λĤT, (6.1)

where the two terms ĤP and ĤT are the problem Hamiltonian and the transverse field
Hamiltonian respectively, and the parameter λ is the time-dependent control parameter.
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Since the sufficient condition of how slow the quantum fluctuation should be reduced
is closely related to the minimum excitation gap ∆Emin of Ĥ(λ), QA has opened up
possibility to figure out algorithmic difficulties from physical perspectives. As we discussed
in section 3.1, the quantum adiabatic theorem [144] guarantees that the quantum state

starting from the ground state of ĤT will always remain in the instantaneous ground
state with high probability, as long as λ is changed using time longer than O(∆E−2

min).

Thus, for a fixed problem instance embedded in ĤP, if there are only polynomially small
energy gaps, it implies that QA can solve the specific problem in polynomial time, which
is considered as “efficient” in the computer science community [18, 17].
Surprisingly, early studies hinted polynomial time computation of NP-hard problems

[146], however they turned out to be artefacts of finite-size effects [147]*1. As we believe
that NP⊈BQP from oracle results[49], or equivalently from the NP hardness assumption
[34], we expect for quantum annealers to fail for NP-hard problems, indifferent to the fact
that it is only BstoqP and may not be BQP-complete. This could be seen as a compu-
tational complexity based physical conjecture that says if a Hamiltonian set corresponds
to an NP-hard problem, then Hamiltonians with exponentially small energy gaps should
exist, especially when the solution is unique. Providing a physical picture to this con-
jecture would be of great importance for the understanding of the connection between
computational complexity and physics. One of the convincing arguments was made using
numerical approaches [71], showing that a fraction of samples exhibit first order phase
transition-like behaviors in terms of the usual spin-glass order parameter q. Since first
order transitions in quantum spin systems are usually accompanied with an exponen-
tially small energy gap [148], they provide good reason that NP-hard problems could not
be computed in polynomial time using QA. However, those first order transitions are
strongly sample dependent, and no concrete arguments have been made for explaining
the phenomena with a physical mechanism.

6.1.1 The Spin-glass picture

For the quantum random energy model (QREM) [149], it is known that there is a 1RSB
phase transition, and that transition accompanies an exponentially small energy gap.
However, QREM is an extremely simplified model, with somewhat pathologic properties.
It is also a “trivially exponentially hard problem” when considered as an optimization
problem, and does not suffice for our motivation of seeking the physical consequences of
the NP hardness assumption.
For some NP-hard models, it is known that a spin-glass transition occurs. There are two

different ways of exponentially small energy gaps emerging. One is where the exponentially
small energy gap occurs at the spin-glass phase transition point, such as in ref. [101].
Another way is that the spin-glass phase transition point itself only has a polynomially
small energy gap, and within the spin-glass phase, there exists an exponentially small
energy gap. The latter pattern was rigorously shown to be true for the Hopfield model
[150], which is again a relatively simple model compared to NP-hard problems. Also, the
“spin-glass transition” which the quantum Hopfield model here experiences is always in
the RS phase, which is different from that of NP-hard problems.
Therefore, it remains open if NP-hard problems in general undergo the same physical

scenario of a spin-glass transition.

*1 This claim would have been immediately disgarded if the NP hardness assumption was considered.
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6.1.2 The Localization Picture

It was argued in [152], that the Anderson/many-body localization transition happens
during the QA process. While the energy gap for the localization transition point is not
discussed, it is argued that within the localized phase, avoided crossing with exponentially
small energy gaps occur [151]. Their argument essentially relates the stoquastic annealing
Hamiltonian Eq.(6.1) and the tight-binding model for Anderson localization [153] (AL) as

(1− λ)ĤP − λ
∑
i

σ̂x
i = (1− λ)

∑
σ

HP(σ)|σ⟩⟨σ| − λ
∑

σ,σ′:n.n.

|σ′⟩⟨σ|, (6.2)

where the sum in the second term takes all nearest neighbor pairs of σ and σ′. Apparently,
the expression on the right hand side resembles the Hamiltonian of AL, but there are
caveats.

First, while the second term corresponds to the hopping term of AL, it differs in the
sense that the hopping occurs in configuration space and not real space. Since the existence
of AL phase crucially relies on the space dimension, we are not sure if AL occurs in our
setting as well. This is because the configuration space we are considering now is an
N -dimensional hypercube with N → ∞ in the thermodynamic limit. Secondly, while the
AL model has random on-site potential, usually drawn from i.i.d. uniform distribution,
the on-site potential of the above model is simply the cost function, which is obviously a
random instance, but has correlations and is far from independent.

For these reasons, it is not clear how much the analogy with AL discussed in [152] is
valid. No concrete demonstration of the AL phase in QA of NP-hard problems has been
found so far.

6.1.3 Our Strategy

Both of the above scenarios explain the first order transitions as a phenomenon within
a specific underlying phase. However, while there are arguments against the localization
picture [154], studies against the quantum spin-glass picture [155] exist as well, and the
understanding for the phase transition inducing the first order transitions in [71] is very
much unsettled.

In this work, we see if the “underlying phase transition” scenarios are correct at all, for
the unique solution ensemble using quantum Monte Carlo (QMC) simulations. A natural
strategy to see the underlying phase transition would be to take the sample average (dis-
order average) of the spin-glass order parameter q which exhibited a first order transition-
like behavior in individual samples. However, we find that this quantity does not exhibit
any singularities when the sample average ⟨q̄⟩ is taken. The implication is not only that
there is no spin-glass transition, but also that another measure is necessary to see the
phase transition in question, if it exists. We thus used the notion of fidelity susceptibility
[156, 157, 158]. This quantity quantifies how rapid the ground state is changing in the λ
direction. The fidelity susceptibility χF is also proportional to the symmetric logarithmic
derivative (SLD) Fisher information metric [159], and has been recently under interest for
detecting phase transitions where the order parameter is unknown, such as topological
order phases. Our work suggests that χF is also useful for quantum spin-glass-like models
with frustrated quenched disorders.

By using stochastic series expansion (SSE), a variant of quantum Monte Carlo methods,
we estimate the sample average of the fidelity susceptibility χF. We show for a specific
NP-hard problem that QA undergoes a phase transition at a certain value of λ. At this
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transition point, χF diverges, while other common quantities such as q̄ do not show or
has very weak singularity. This implies that although there is a quantum phase transition
at the value of λ, the order parameter for this transition is yet unknown. However, since
all of the first order like transitions occur at values below the transition point, this result
suggests that the first order transitions could be understood as a phenomenon within a
non-trivial quantum phase.

6.2 The Setup

6.2.1 The Model

We fix the NP-hard problem in consideration to the Maximum Independent Set (MIS)
problem. As we have introduced in chapter 5, MIS is the problem where given a graph
G = (V,E), one finds the maximum subset of vertices I∗ ⊂ V such that no two vertices
in I∗ are adjacent (i.e. ∀i, j ∈ I∗, (i, j) /∈ E). Finding the solution to the MIS problem is
equivalent to finding the ground state of a Hamiltonian with the Pauli matrix in the form
of

ĤP =
α

4

∑
(v,w)∈E

σ̂z
v σ̂

z
w −

∑
v

2− αdv
4

σ̂z
v , (6.3)

which is the same as Eq.(), but in the quantum form. We will generate random instances
of the MIS problem by randomly generating the graph G in target. We discuss how the
random ensembles are ensured to be hard on average in the next section.

6.2.2 The Ensemble

In this chapter, we consider two different ensembles. One is the unique solution ensemble
and the other is the Erdöes-Rényi ensemble. The focus is more on former, since it has a
direct prediction from the NP hardness assumption as we will see.

The Erdöes-Rényi Ensemble
The Erdöes-Rényi ensemble (ERE) is simply the Erdöes-Rényi random graphs [160] which
we also considered in chapter 5. We have already seen that ERE enters a full-RSB phase
when the average degree c is larger than e = 2.718 . . . [130], and this becomes an important
point when we motivate studying ERE later. Furthermore, from our results in chapter 5,
we know that the MIS problem on ERE becomes hard on average in the RSB phase. This
also is important when we construct the other ensemble with a unique solution.
An important difference with the unique solution ensemble is that an Erdöes-Rényi

random graph typically has multiple (exponentially many) MIS, known as residual entropy.
As we will explain in detail in the next subsection, this disables defining the computation
time for QA in the most straightforward theoretical way. Thus in our study, ERE plays a
role of supporting our claims from the statistical physics side, rather than being the main
subject.

The Unique Solution Ensemble
The unique solution ensemble (USE)*2 is our main focus in this chapter.
If there were multiple solutions, two problems arise. One is that the minimum en-

ergy gap ∆Emin becomes ill-defined, since the ĤP has a degenerate ground state causing

*2 This ensemble is often referred as the “unique solution assignment”, and is abbreviated as USA in
literature, e.g., [71].
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∆Emin → 0 at λ→ 0. The other problem is more subtle. If there were multiple solutions,
an exponentially small energy gap would no longer imply exponential computation time
for QA. This is because even if we have a Landau-Zener transition at the point of expo-
nentially vanishing gap, if the state remains in the first excited state |Ψ1(λ)⟩ for the rest
of the annealing schedule, we will end up in the ground state anyway. Therefore, having
a unique solution is essential for having a well-defined computation time.

Another reason we consider USE is that the first order transitions mentioned in section
6.1 are previously only observed in those examples which have unique solutions[71].

We construct USE by randomly adding extra edges to an Erdös-Rényi random graph.
The details of this procedure are explained in Appendix A. The important point is that
the procedure is probabilistic, which gives us a distribution over MIS instances with a
specific size.

We should make a final remark on the average case hardness of USE. It is crucial to
ensure that the process of making the solution unique does not make the complexity of
the problem easy. The intuition is that adding edges to make the solution unique only
effectively increases the average degree, and pushes the graph deeper into the RSB/hard
phase. We describe the details of how this point is made sure in Appendix B.

6.2.3 The Method: SSE and EMC

We adopt the SSE method for Ising spin systems [95, 162] as explained in details in
section 4.1.3. The SSE method effectively takes the Trotter limit in the path integral
Monte Carlo method [86, 161], and is therefore free from systematic error caused by the
Trotter decomposition. We decompose the Hamiltonian of Eq.(6.1) in the same manner
as in section 4.1.3, and use the z basis {|σ⟩}. Here we decouple the Hamiltonian as

Ĥ(λ) = −
∑

k Ŵk. We add constant terms appropriately as explained in section 4.1.3, so

that for all |σ⟩ and Ŵk, Ŵk|σ⟩ =Wk,σ|σ′⟩ with Wk,σ ≥ 0. Here, we have the interaction

terms (1 − λ)Jij σ̂
z
i σ̂

z
j and local field terms (1 − λ)hiσ̂

z
i coming from ĤP, and transverse

field terms λσ̂x
i coming from ĤT. The partition function Z is expanded as

Z := Tr[e−βĤ ] (6.4)

=

∞∑
n=0

βn

n!

∑
{kl}

∑
σ

⟨σ|
n∏

l=1

Ŵkl
|σ⟩, (6.5)

where β is the inverse temperature. SSE samples terms in the above summation using
Markov chain Monte Carlo methods, by changing |σ⟩, n and {Ŵkl

}l.
Furthermore, we also adopt the exchange Monte Carlo method (parallel tempering) to

accelerate equilibration [99, 102] as discussed in section 4.2.2. We divide the parameter
region [λlow, λhigh] into R−1 equidistributed intervals, and run R different SSE simulations
with the corresponding λr. By applying Eq.(4.32), we get the exchange probability for
SSE, of adjacent λr,

Pλr↔λr+1
= min

[
1,

(
λr
λr+1

)kr+1−kr
(

1− λr
1− λr+1

)lr+1−lr
]
,

where kr and lr denote the number of operators coming from ĤT and ĤP, respectively.
As discussed in section 4.2.1, we take the strategy of taking the inverse temperature β

large enough so that β > ∆E1 = E1−E0, letting the equilibrium state effectively the same
as the ground state. Practically, we sample the equilibrium state of β = 3.5N with N
being the number of vertices of the problem. By fixing the system size N and increasing
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β, we see that usual observables saturate around β ∼ 1.5N and χF also saturates at
β ∼ 3.5N . Thus, sampling the thermal equilibrium state at β = 3.5N is sufficient to see
the properties of the ground state except for the transition points. The arguments for the
transition points will be discussed later. 3072 samples (instances) were taken for system
sizes N = 20 and 30, and 1.6× 105 to 1.28× 106 MCS to measure the quantities after the
same amount for equilibration. In the following, we show 256 samples with N = 50 since
they exhibit clearer first order transitions, but will not use them for sample averages due
to lack of enough samples.

6.2.4 Measured Observables

Before we explain our results, we will first introduce the physical quantities we measured
in our study. We also explain how to measure the quantities using SSE.

The Overlap Parameter q, and its Derivative
The overlap parameter q (also called as the spin-glass order parameter) is defined as [71]

q :=
1

N

∑
i

⟨σ̂(1)
i σ̂

(2)
i ⟩ = 1

N

∑
i

⟨σ̂i⟩2, (6.6)

where the upper suffixes (1) and (2) are the labels for two independent systems with the
same quenched disorder. Note that this definition is the expectation value of the overlap
parameter q we defined in Eq.(5.5), thus a notation as ⟨q⟩ may be more suitable. Caution
is needed since previous studies on QA with glassy systems [101, 71] focus on this quantity,
and denote it as q instead of ⟨q⟩. In this chapter, we may also write q for ⟨q⟩ according
to convention. Although q does not contain the entire information of P (q), it captures
singularities in P (q), for instance an RSB transition. If the structure of P (q) becomes non-
trivial at some point, with more than one delta peak, the average value ⟨q⟩ =

∫
qP (q)dq

will also have a singularity, at least in the derivative by λ. Thus, measuring q is effective
for detecting the spin-glass phase transition, and is simple since we only have to measure
the average magnetization ⟨σ̂z

i ⟩ for each site i.
The above argument encourages us to also measure the derivative ∂q/∂λ. Measuring

the first derivative of q
∂q

∂λ
=

1

N

∑
i

2⟨σ̂z
i ⟩
∂⟨σ̂z

i ⟩
∂λ

, (6.7)

reduces to measuring

∂⟨σ̂z
i ⟩

∂λ
=

1

Z

∂Tr[e−βĤ(λ)σ̂z
i ]

∂λ
− 1

Z

∂Z

∂λ
⟨σ̂z

i ⟩. (6.8)

Expanding Z the same way for deriving SSE as in Eq.(4.15), we obtain

1

Z

∂Z

∂λ
=

1

Z

∂

∂λ

∑
σ

∞∑
n=0

βn

n!

∑
k(l)

⟨σ| (1− λ)
l
λk

n∏
l=1

Ŵ ′
k(l)|σ⟩ (6.9)

=
1

Z

∑
σ

∞∑
n=0

βn

n!

∑
k(l)

⟨σ|
(

−l
1− λ

(1− λ)lλk +
k

λ
(1− λ)lλk

) n∏
l=1

Ŵ ′
k(l)|σ⟩ (6.10)

=

⟨
k

λ
− l

1− λ

⟩
config

, (6.11)
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where we borrow the notation ⟨·⟩config from section 4.1.3. Here, l and k denote the number

of operators coming from ĤP and ĤT respectively, and Ŵ ′ are the operators without the
coefficients λ or (1− λ). Similarly it could be calculated that,

1

Z

∂Tr[e−βĤ(λ)σ̂z
i ]

∂λ
=

⟨(
k

λ
− l

1− λ

)
σ̂z
i

⟩
config

. (6.12)

Therefore,

∂q

∂λ
=

2

N

∑
i

⟨σ̂z
i ⟩
{⟨(

k

λ
− l

1− λ

)
σ̂z
i

⟩
− ⟨σ̂z

i ⟩
⟨
k

λ
− l

1− λ

⟩}
. (6.13)

Similarly, derivative of other quantities tend to become related to covariances of simple
quantities.

The Answer Fidelity Fans

The notion of fidelity was introduced in order to address the “closeness” of two quantum
states. Naively thinking, we can simply use the inner product of two pure states, and in
fact the absolute value of it turns out to be the fidelity for pure states (or the square of it
depending on style). Here we define the fidelity between two quantum states |ψ⟩ and |ϕ⟩
as

F (ψ, ϕ) =
∣∣⟨ψ|ϕ⟩∣∣. (6.14)

Since we take the strategy of measuring the finite temperature state of large enough β
to obtain the ground state, a generalization of the above simple notion of fidelity to mixed
states is necessary. The most straight forward way to understand fidelity would be to set
some axioms which a closeness function should satisfy. We choose the axioms as below.

1. 0 ≤ F (ψ, ϕ) ≤ 1 (normalization)
2. F (ψ, ϕ) = F (ϕ, ψ) (symmetric)

3. F (Ûψ, Ûϕ) = F (ψ, ϕ) (unitary invariant)
4. F (ψ1 ⊗ ψ2, ϕ1 ⊗ ϕ2) = F (ψ1, ϕ1)F (ψ2, ϕ2) (multiplicity)

It is known that the definition of fidelity for mixed quantum states

F (ρ̂, ρ̂′) = Tr
√
ρ̂1/2ρ̂′ρ̂1/2, (6.15)

satisfies the above and is the unique function up to arbitrary powers. Note that if we
assume pure states for the density operators, we recover Eq.(6.14). Here, we define the

root of an operator
√
ρ̂ = ρ̂1/2 as the unique operator X̂ which is positive-semidefinite and

satisfies X̂2 = ρ̂. This is unique when ρ̂ itself is positive semidefinite, which is always the
case when ρ̂ is actually an density operator. The fact that the above definition satisfies
all of the axioms should be not hard to confirm. It can be rewritten in the form

F

(
e−βĤ(λ)

Z(λ)
,
e−βĤ(λ′)

Z(λ′)

)
=

Tr
√
e−βĤ(λ)/2e−βĤ(λ′)e−βĤ(λ)/2√

Z(λ)Z(λ′)
(6.16)

=
Tr[e−βĤ(λ)/2e−βĤ(λ′)/2]√

Z(λ)Z(λ′)
(6.17)

if the mixed states are canonical states and −βĤ is positive semidefinite. The positive
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semi-definiteness is always satisfied if we are considering stoquastic Hamiltonians*3. Ac-
cordingly, to obtain Eq.(6.17), we use the relation

Tr[X̂†X̂] = Tr[X̂2] (6.18)

which holds when X̂ is real and symmetric.
We measure the fidelity of the ground state |Ψ0(λ)⟩ with the answer state |σans⟩ =

|Ψ0(λ = 0)⟩. This is done easily, by simply measuring ⟨P̂ans⟩ where P̂ans = |σans⟩⟨σans|.

The Fidelity Susceptibility χF

Both of the spin-glass order parameter q and the answer fidelity Fans, turns out to be
a quantity which does not capture the underlying phase transition, as we will see in the
following section. The fidelity susceptibility is a notion which enables us to capture phase
transitions when we do not know the order parameter. The idea is to see the fidelity
between two ground states with close λ. If the two states are both in the same phase, the
fidelity susceptibility should be close to 1, while if they are separated by a phase transition
in between, the fidelity should drop. This leads us to take the derivative of the fidelity.
However, there are subtleties to be taken care of. First of all, since the fidelity is

defined as a function with two quantum states as inputs, we have two parameters which
could be varied. Let us consider the case where we fix one state and vary the other, as
|⟨Ψ0(λ)|Ψ0(λ+ ϵ)⟩|. Now, if we take the first derivative by ϵ∣∣∣∣ ∂∂ϵ ⟨Ψ0(λ)|Ψ0(λ+ ϵ)⟩

∣∣∣∣ = ∣∣∣∣⟨Ψ0(λ)|
∂|Ψ0(λ+ ϵ)⟩

∂λ

∣∣∣∣ , (6.19)

the result is always 0. This is because from

0 =
∂

∂λ
⟨Ψ0(λ)|Ψ0(λ)⟩ = ⟨Ψ0(λ)|

∂|Ψ0(λ)⟩
∂λ

+
∂⟨Ψ0(λ)|

∂λ
|Ψ0(λ)⟩, (6.20)

the term is always purely imaginary. Since we are now considering a ground state of a
stoquastic Hamiltonian this term should be real as well, so the only possibility is 0 *4.
This corresponds to the graph of |Ψ0(λ)|Ψ0(λ+ ϵ)| having a smooth curve as a function
of ϵ and thus having no slope at ϵ = 0.
Therefore, we take the second derivative of the fidelity which quantifies how sharp the

peak of the fidelity as a function of ϵ is. This corresponds to how rapidly the ground state
is changing in the Hilbert space. Thus, we define the fidelity susceptibility as

χF(λ) := −∂
2 logF (Ψ0(λ),Ψ0(λ+ ϵ))

∂ϵ2

∣∣∣∣
ϵ=0

. (6.21)

Measuring the fidelity susceptibility using QMC is not straight forward. In order to
measure the fidelity susceptibility, we use the finite temperature fidelity as in [163],

F (λ, λ+ ϵ) =

√
Tr[e−βĤ(λ)/2e−βĤ(λ+ϵ)/2]

(Tr[e−βĤ(λ)]Tr[e−βĤ(λ+ϵ)])1/2
, (6.22)

which corresponds to the square root of the fidelity we defined in Eq.(6.15). The differ-
ence in the power for the definition of fidelity does not change the interpretation of the

*3 The definition of Ô begin semi positive-definite is to have ⟨ψ|Ô|ψ⟩ ≥ 0 for arbitrary |ψ⟩. This is
exactly the condition for SSE to be able to applied.

*4 Even for non-stoquastic systems, the imaginary term can be erased by a global phase shift e−iθ.
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fidelity susceptibility as the quantification of how rapid the ground state is changing. By
expanding Eq. (6.22) up to the second term in ϵ, we obtain the representation of χF for
finite temperature as

χT ̸=0
F =

⟨kLkR⟩ − ⟨kL⟩⟨kR⟩
2λ2

+
⟨lLlR⟩ − ⟨lL⟩⟨lR⟩

2(1− λ)2

−⟨kLlR⟩ − ⟨kL⟩⟨lR⟩
2λ(1− λ)

− ⟨lLkR⟩ − ⟨lL⟩⟨kR⟩
2λ(1− λ)

, (6.23)

where k∗ and l∗ denote the number of operators within the left or right half (depending

on the subindex) of the operator string {Ŵkl
}nl=1, coming from ĤT and ĤP, respectively.

⟨· · · ⟩ represents the Monte Carlo average. The center of the string is determined proba-
bilistically for every sampled configuration, according to the binomial distribution among
the possible n+ 1 points of division.

6.3 Results on the Unique Solution Ensemble
Equipped with the above quantities and the methods to measure them, we see if there
are physical phase transitions in the MIS problem with unique solutions. Note that as we
discussed in section 6.2.2 and in Appendix B, the USE is a random distribution over the
MIS problem which is typically hard. Our aim is to see physical phenomena which could
be seen as the “physical consequence of the NP hardness assumption”, and further confirm
scenarios regarding “underlying phase transitions” which were previously proposed.

6.3.1 Spin-glass Order Parameter q

The spin-glass order parameter q (the overlap parameter) was used to capture the “first
order phase transitions” in [71]. Our result presents a similar behavior and we explain
this in detail. What we see immediately is that q behaves very differently for different
samples (Fig. 6.1). Not all, but some samples exhibited an acute increase in q after a
characteristic dip with decreasing λ, which we show in red lines in the figure.

As we discussed in section 5.2.1, the overlap parameter q quantifies how “frozen” the
spins are. We can immediately see from the definition Eq.(6.6) that q(λ) is 0 at λ = 1
and is 1 at λ = 0 since the solution is unique. During the process of decreasing the trans-
verse field, the spins are expected to freeze due to the reducing of quantum fluctuations.
Therefore, the “dip” of q, which is a non-monotonic behavior seems counterintuitive. This
could be understood as follows. Let’s assume that the ground state experiences a first
order phase transition. By this, we mean that the dominant configuration before and after
the transition, |σbefore⟩ and |σafter⟩, has a Hamming distance of O(N) In this case, there
are O(N) qubits which differ between |σbefore⟩ and |σafter⟩, which cancels each other for
contributing to q in the form ⟨σ̂z

i ⟩2 at the phase transition point. This would result in a
decrease of O(1) for q, which is a dip.

The above explanation with first order transition for the dip is obviously not decisive
on its own. It is unclear if the two ground states before and after the transition could be
written with dominant z basis configurations*5. It also only provides a sufficient condition.
If there really is a first order transition of that kind, there would indeed be a dip in q

*5 Of course, if there is a localization transition for this model, and the first order transitions take
place within the localized phase, the argument will be completely justified. The problem is that
whether if the “underlying phase transition” scenario (including localization) really holds or not
was the main purpose of our study!
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Fig. 6.1: The overlap parameter q is drawn as a function of λ for 256 samples with
N = 50. 27 samples with dips are drawn in red, and the remaining 229 samples without
dips are in blue. The black line is the sample average q̄. The inset presents q̄ for different
sizes.

accordingly to the argument. However the existence of a dip may be explained with
another physical picture, and is not necessarily an evidence for the first order transition.
Furthermore, strictly speaking, first order phase transitions are notions which are well-
defined only in the thermodynamic limit.
However we have several other supporting evidence for the dips indicating first order

transition. One is that double peaks in the histogram of q and Fans indicating phase
coexistence were confirmed at the “transition points” of those “first order transitions”
[165]. We will also see a finite jump for Fans at the same points, further indicating a
sudden change to the |σans⟩ dominant ground state. Therefore, we will use the term
“first order transition” for this phenomena in this thesis, assuming the first order phase
transition picture holds. In this case, there would be exponentially small energy gaps at the
first order transition points, from the Landau-Zenner argument [71, 152]. More precisely,
in order to have two distant states |σbefore⟩ and |σafter⟩, to have avoided crossings*6, the
O(N) th perturbation is needed, resulting in the exponentially small energy gap.
Now that we have evidence of exponentially small energy gaps, and a physical picture

of first order transitions, can we go further and understand the first order transitions as
a whole? As we can see from Fig. 6.1, the transition points and even the presence of the
first order transitions are sample dependent. This means that we cannot argue simply
that there is always a first order transition accompanying an exponentially small energy
gap at a specific value of λ.
The sample dependency of q itself is rather consistent with the average case complexity

*6 Remember that degeneracy is generally prohibited due to the non-crossing theorem (thm. 4) ex-
plained in section 3.2.
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of the MIS problem with this particular ensemble, since not all instances need to be hard.
We can say that the samples with first order transitions are the hard instances while the
samples without the first order transitions are the easy instances. Since our model is set
to be hard on average, we expect that the proportion of the instances with first order
transitions should grow in the thermodynamic limit. This tendency was indeed observed
for another NP-complete model, however we could not conclude so for our model as well,
due to limitation of size. We only see a slight increase in the ratio of instances with first
order transition. This is partly because we only start to observe first order transitions
at N ≳ 25. This fact implies that it is necessary to consider size somewhat larger than
the size accessible by the state-of-the-art diagonalization methods, in order to access the
essential hardness QA faces when tackling computationally hard problems.
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Fig. 6.2: The λ derivative of the averaged spin-glass order parameter q̄ for different sizes
are drawn for different sizes. The inset is a magnified view at the minimum point.

We can also see that the first order transitions always take place in the region λ ≲ 0.3.
This hints that there may be an underlying phase transition around λ ∼ 0.3, which the low-
λ phase induces the first order transitions. Furthermore, it is known that within the RSB
phase of spin glasses, self-averaging is broken, meaning that values of certain quantities
such as P (q) do not match for all instances even in the thermodynamic limit [166]*7 (P (q)
as we explained in section 5.2.1 is defined by taking average over all samples.). This leads
us to an expectation that the severe sample dependence of q at the “low λ region” is an
appearance of the breaking of self-averaging.

However, when we take the sample average of q to see the behavior of the ensemble as in
Fig. 6.1 (inset), we are unable to see any size dependence nor singularities. The derivative
with respect to λ, ∂q/∂λ, also seems to have no singularities as seen in Fig. 6.2. This

*7 Thermodynamic quantities such as energy, free energy, entropy, etc... do have self-averaging prop-
erties, and an instance will have the same value as the random average for those quantities in the
thermodynamic limit.
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Fig. 6.3: Square of the answer fidelity F 2
ans = ⟨P̂ans⟩ for 256 samples with N = 50. The

inset shows the sample average of − log2⟨P̂ans⟩/N , i.e. Sans/N for different sizes.

implies that although q was a good quantity for detecting the first order phase transitions
for individual samples in QA, it does not capture the underlying phase transition for this
problem. This suggests that there is no RSB phase transition as discussed in section 5.2.1,
since RSB would imply singularity in q, which is not observed.

6.3.2 Answer Fidelity Fans

Provided that there is no underlying transition detectable by q, let us consider checking
the localization scenario.
As we explained briefly in section 6.1.2, the localization takes place in the configura-

tion space [152], which could be described as an N -dimensional hypercube, each vertex
corresponding to one configuration, i.e. a particular product state in the z-direction. The
ground state is fully extended (has equal weight on all 2N states) at λ = 1, and since
our model has only one solution, at λ = 0 the state is fully localized. An easily mea-
sured quantity that quantifies this situation is the fidelity between the ground state of a
particular λ and that of λ = 0. We will call this as the answer fidelity Fans := F (λ, 0),
and this will represent the probability of observing the correct answer by a projection
measurement with the z-basis, ⟨P̂ans⟩.
Since the answer fidelity is 0 for λ = 1 in the thermodynamic limit and is 1 for λ = 0, it

could be a natural candidate for an order parameter. Indeed, as we can see from Fig. 6.3,
the answer fidelity jumps from almost 0 to a finite value in samples exhibiting first order
transition, at the same value of λ as the dips in q. This strongly suggests that the first
order transition could be understood as a transition into a |σans⟩ dominant state from a
completely different state, enforcing the arguments for the exponentially small energy gap
associated with it.
Furthermore, samples without first order transitions start to have non-negligible values
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from a certain value of λ. It is tempting to think that there is an underlying phase
transition which is a transition from a Fans = 0 phase to a Fans > 0 phase, with the
hard instances somehow gets stuck in another basin. However, this turns out to be
incorrect. This is because Fans seems to converge to 0 for all λ > 0. In fact, if we plot
Sans := − log2⟨P̂ans⟩ normalized by N , they collapse into a common curve as in the inset
of Fig. 6.3. This is natural, since when λ is small enough and if Fans is larger than the
fidelity between the ground state and any other basis state of the z-direction |σ⟩, Sans is
actually equivalent to the Rényi entropy [167, 168]

Sn(λ) :=
1

1− n

∑
σ

∣∣⟨σ|GS(λ)⟩
∣∣2n, (6.24)

in the n→ ∞ limit, where |GS(λ)⟩ is the ground state of Ĥ(λ). By assuming that S∞/N
converges to a finite value, and that S∞ = Sans, it is easy to see that Fans goes to 0 for
all λ > 0.

Similarly to q, although both Fans or Sans seems to capture the first order transitions,
when we take the sample average of them, no singularities could be observed. Furthermore,
when n = 2, the Rényi entropy becomes the logarithm of the inverse participation ratio,
a frequently used quantity to see localization [169]. The absence of singularity in the Fans

or Sans strongly suggests that the original Anderson localization scenario [152] also fails
to show an underlying phase transition of our model.

6.3.3 Fidelity Susceptibility χF
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use of colors is the same as Fig. 6.1. The inset shows a magnified view of 6 samples for
clarity. The arrow is pointing at the moderate peak of χF at λ ∼ 0.3

So far, we have seen that both of spin-glass phase transition scenario and Anderson
localization scenario seems to fail for our model of MIS with USE. Then is there no
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Fig. 6.5: The sample average of normalized fidelity susceptibility χF/N is drawn fo r
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“underlying phase transition” at all which enables us to understand the first order phase
transition as a phenomenon within a particular phase? Are the first order transitions
merely a random phenomena occurring for random instances of NP-hard problems, just
to satisfy the NP hardness assumption? It turns out that there is an underlying phase
transition, which we can detect from the fidelity susceptibility.
Fig. 6.4 presents λ dependence of the fidelity susceptibility χF for each sample with

N = 50. Similarly to q and Fans, χF also shows an acute peak at the points where first
order transitions occur (See Fig. 6.4). Other than the acute peaks corresponding to the
first order transitions, we can see a relatively moderate peak at λ ∼ 0.3. To see this more
clearly, the sample average of the fidelity susceptibility χF is taken in Fig. 6.5. It shows
a diverging trend at λ ∼ 0.3, towards the thermodynamic limit.
One subtlety should be noted here, i.e., although we have seen first order transitions

with arguably exponentially small energy gaps, we only have linear inverse temperature
scaling as β = 3.5N . An exponentially large β is needed if ground state properties right
at the exact first order transition points are being focused. However, an exponential
scaling in β is not only practically impossible for large system sizes which we investigate
in our study, but also unnecessary for all points other than the first order transitions with
larger energy gaps. There are two observations which suggest that the phase transition
associated with the divergence of χF only accompanies a polynomially small energy gap
∆E(λ ∼ 0.3). One is that the divergence of χF is considerably weaker compared to the
individual peaks of χF at the first order transitions. Another is that χF saturates well
before β = 3.5N . Thus, we can be confident that the divergence of χF at λ ∼ 0.3 is indeed
a property of the ground state.
Importantly, the moderate peak of χF in each sample is present in samples of both

types, either with or without first order transitions, as seen in the inset of Fig. 6.4. This
means that in the thermodynamic limit, all samples should have diverging χF at λ ∼ 0.3.
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Moreover, all of the first order transitions occur within the low λ phase of this divergence.
This implies that there is a phase transition common among all the samples, and the
phase is responsible for inducing first order transitions within the phase, compatible with
mechanisms discussed in previous studies [101, 150, 151, 152]. However, as we mentioned
at the end of the last section, since the sample-averaged q does not show any singularity,
a simple spin-glass scenario does not explain this phase transition. Nor does the simple
Anderson localization scenario hold, since no localization in the configuration space as
expected from the previous study was observed.

6.4 Results on the Erdös-Rényi Ensemble
We have seen that the unique solution ensemble has an underlying phase transition which
is common among all samples regardless if they are easy/hard instances. The nature of
the underlying phase transition however, remained unclear since it did not immediately fit
either proposed scenarios of spin glass or Anderson localization. One strategy for further
investigating the underlying phase is to consider a similar ensemble which some part of
the phase diagram is already known, and compare it to the USE. This is exactly what we
do in this section.

As we have discussed in section 6.2.2, making the solution unique is quite crucial for
fulfilling our motivation to see the physical consequence of the NP-hardness assumption.
While the simple Erdös-Rényi ensemble was unsuitable because of the multiple solutions,
we know from chapter 5, that the classical MIS problem is in the RSB phase for average
degree c > e = 2.718 . . . which was one guideline on how we constructed USE. The classical
model corresponds to λ = 0 (or equivalently Γ = 0, as we explain below), which means
that there should at least be one spin-glass phase transition for the QA of MIS with ERE.
If that phase transition occurs similarly to the underlying phase transition observed in
USE, we can suspect that the underlying transition could be understood as a modified
spin-glass transition. To sum up, we can further check the validity of the spin-glass picture
by measuring the (sample averaged) fidelity susceptibility χF for the ERE.

6.4.1 Fidelity Susceptibility χF

We can clearly see that the sample averaged fidelity susceptibility χF/N shows two peaks,
indicating that there are two phase transitions. Note that here, we are using the Hamil-
tonian in the form of

Ĥ(Γ) = ĤP + ΓĤT (6.25)

which is essentially the same as the QA Hamiltonian Eq.(6.1) with the transformation of
Γ ↔ λ/(1−λ). Therefore, the moderate peak on the right side around Γ ∼ 0.4 corresponds
to λ ∼ 0.3, where the moderate peak for USE occurred.

We further provide Fig. 6.7 to see the tendency towards the thermodynamic limit, on
the peaks. The peak of χF on the left (around λ ∼ 0.1) may appear to be shifting towards
the left. However, we can see from Fig. 6.7 (left) that the least-squares fitting indicates
that the divergence of χF in the thermodynamic limit will take place in finite Γ. Moreover,
it will not be much of a problem even if the phase transition in the left takes place at
Γ = 0 in the thermodynamic limit, since that will only imply that the classical spin-glass
phase which we argued in chapter 5 only appears in the classical limit Γ → 0.

Also, the peak of χF on the left (around λ ∼ 0.4) may seem to be too weak as a
divergence, but we do have some support on the divergence as shown in Fig. 6.7 (right).
We can see that there is a diverging trend similar to that of the underlying transition for
USE (the slope for USE was about 0.04 whereas we have 0.02 for ERE.).
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Fig. 6.7: The graph on the left shows the size dependence of where the peak in χF(Γ) on
the left is. A least-squares fitting to the form Γ∗(N) = a+b/N is done, giving a = 0.046(4)
and b = 0.55(6). The graph on the right shows the size dependence of the peak value
in χF(Γ) on the right. A least-square fitting to the form χ∗

F = aN + b is done, giving
a = 0.018(1) and b = 1.65(2).

The fact that there are not one but two diverging points for χF implies that there are
three phases in total. We already know that the phase in the leftmost (Γ ≲ 0.1) is the RSB
phase as in classical MIS as we discussed in chapter 5. The rightmost phase (Γ ≳ 0.4) is
also obviously the quantum paramagnetic phase just like any other stoquastic system. We
are left with the unknown phase in between. It is possible that while the leftmost phase
corresponds to a classical spin glass where as the intermediate phase could be interpreted
as a quantum spin-glass phase. To test this idea, we measure the spin-glass susceptibility.

6.4.2 Spin-glass Susceptibility χSG

The spin-glass susceptibility χSG we have introduced in section 5.2.1 was a purely classical
quantity which quantified the broadness of P (q). The classical spin-glass susceptibility
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was defined in Eq.(5.15) as χSG = 1
N

∑
i,j C

2
ij , where Cij was the correlation between the

i th and j th spins, which could be expressed as

Cij =
∂⟨σi⟩
∂hj

∣∣∣∣
hj=0

= β (⟨σiσj⟩ − ⟨σi⟩⟨σj⟩) . (6.26)

If we interpret this as a quantum system, we get the canonical correlation as

Cij =
∂⟨σ̂z

i ⟩
∂hj

∣∣∣∣
hj=0

=

∫ β

0

⟨σ̂z
i (τ)σ̂

z
j ⟩dτ, (6.27)

where Â(τ) := eτĤÂe−τĤ is the imaginary time evolution of Â. With a spectral decom-
position, we obtain

Cij =

∫ β

0

1

Z

∑
n,m

⟨Ψn|eτĤ σ̂z
i |Ψm⟩⟨Ψm|e−τĤ σ̂z

j e
−βĤ |Ψn⟩dτ (6.28)

=
1

Z

∑
n,m

⟨Ψn|σ̂z
i |Ψm⟩⟨Ψm|σ̂z

j |Ψn⟩
∫ β

0

e−(β−τ)Ene−τEmdτ (6.29)

β→∞−−−−→ 2
∑
n ̸=0

⟨Ψ0|σ̂z
i |Ψn⟩⟨Ψn|σ̂z

j |Ψ0⟩
En − E0

. (6.30)

This gives us the “purely quantum” spin-glass susceptibility*8

χ
(q)
SG =

4

N

∑
i,j

∑
n ̸=0

⟨Ψ0|σ̂z
i |Ψn⟩⟨Ψn|σ̂z

j |Ψ0⟩
En − E0

2

=
4

N

∑
n,m ̸=0

∣∣∑
i⟨Ψ0|σ̂z

i |Ψn⟩⟨Ψm|σ̂z
i |Ψ0⟩

∣∣2
(En − E0)(Em − E0)

,

(6.31)
which somewhat resembles to the spectral representation of the fidelity susceptibility

χF =
∑
n ̸=0

∣∣∣∣∣ ⟨Ψn| ∂∂tĤ|Ψ0⟩
En − E0

∣∣∣∣∣
2

. (6.32)

However, currently we have no methods to measure this purely quantum spin-glass sus-
ceptibility other than exact diagonalization, and we thus need to consider a more simple
way of defining the spin-glass susceptibility in the quantum case.

Since we were measuring the overlap parameter q, and the classical spin-glass sus-
ceptibility could be interpreted as the kurtosis of P (q), defining the quantum version
analogously is a natural strategy. The actual quantity we were measuring in section 6.3.1
was defined in Eq.(6.6) as

⟨q⟩ := 1

N

∑
i

⟨σ̂z
i ⟩2 (6.33)

= ⟨ 1
N

∑
i

σ̂
z(1)
i σ̂

z(2)
i ⟩ (6.34)

*8 This is somewhat different from the quantity studied in [170], which is also called the quantum

spin-glass susceptibility χ
(q)
sg = 4

N

(∑
n ̸=0

|⟨Ψ0|σ̂z |Ψn⟩|2
En−E0

)2
.
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=
1

N

∑
i

⟨ 1
β

∫ β

0

σ̂z
i (τ)dτ⟩2 (6.35)

= ⟨ 1

Nβ2

∑
i

∫ β

0

∫ β

0

σ̂
z(1)
i (τ1)σ̂

z(2)
i (τ2)dτ1dτ2⟩. (6.36)

While The definition of ⟨q⟩ was in the form of Eq.(6.33) or Eq.(6.34), in order to gain
high precision for measuring ⟨σ̂z

i ⟩, we rewrote ⟨q⟩ as in Eq.(6.35). This corresponds to
not just sampling the basis states |σ⟩ for calculating ⟨σ̂z

i ⟩, but also sample from all L
configurations along the Trotter direction*9.
Therefore, there is subtlety in what we should consider as the q (not ⟨q⟩) being

sampled. Note that this subtlety only arises in quantum systems. While interpreting
1
N

∑
i σ̂

z(1)
i σ̂

z(2)
i as q is straightforward, numerically it can only take N different values,

which seems too small since we are only dealing with systems with sizes up to N = 40 now.

On the other hand, interpreting 1
Nβ2

∑
i

∫ β

0

∫ β

0
σ̂
z(1)
i (τ1)σ̂

z(2)
i (τ2)dτ1dτ2 as q accordingly

to Eq.(6.36) gives a very smooth P (q), but it takes O(NL2) time to compute, which is
practically troublesome. Thus, we take the strategy of considering

1

Nβ

∑
i

σ̂
z(1)
i

∫ β

0

σ̂
z(2)
i (τ)dτ (6.37)

as q. This quantity is in between the first two, and is computable in O(NL) time while
the corresponding P (q) is smooth*10.
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Fig. 6.8: The Γ dependence of sample averaged (normalized) fidelity susceptibility
χF(Γ)/N is drawn for different system sizes.

We can see that the resulting χSG exhibits only one divergence around Γ ∼ 0.1 which
corresponds to the divergence of χF on the left (Fig. 6.8). While there is no divergence

*9 This could be understood from the periodic boundary condition in the Trotter direction.
*10 It may be arguable that the integrated quantities are “less physical” since they could not be mea-

sured directly in an experiment by a projective measurement. While taking the integration may
smooth out information (we confirm that is not the case in our model), it is known that the inte-
grated values are experimentally measurable [171].



6.4 Results on the Erdös-Rényi Ensemble 87

around Γ ∼ 0.4, there may be a singularity, which further examination is necessary for
confirmation.

The important point is that we only see a divergence of χSG for the phase transition
at the leftmost, implying that the phase transition in the right is indeed not a spin-glass
transition.

6.4.3 Other Quantities

We measured other quantities as well to see if there are any singularities regarding the
phase transition in the right side. However, no singularities are found so far, except for
the fidelity susceptibility, as it is clear from the figures below.
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Fig. 6.9: Graphs of the Γ = λ/(1 − λ) dependence of sample averaged quantities. The
quantities presented are specific heat (left top), transverse magnetization (left bottom),
linear magnetic susceptibility (right top), and non-linear magnetic susceptibility (right
bottom). All of the quantities seem to converge as the system size grows, and have no
singularities.

It should be noted that the non-linear susceptibility is only known to match the spin-
glass susceptibility when there is symmetry in the random interactions Jij (see footnote
*7 in chapter 5). Since MIS does not have this symmetry, the non-linear susceptibility
has different behavior with the spin-glass susceptibility.

We also see no singularity in the answer fidelity, or the second Rényi entropy. These
properties are common with the underlying phase transition found in USE, suggesting
that the phases have similar properties.
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6.5 Conclusion and Discussions
We have demonstrated that the fidelity susceptibility can be useful to find quantum phase
transitions which would otherwise have been hard to confirm. For the MIS problem with
unique solutions, we find a divergence in χF around λ ∼ 0.3, which other conventional
quantities fail to capture. The non-singularities in q and Sans suggest that a simple spin-
glass [172] or a localization picture fails to explain the phase. However, weak (non-RSB)
spin-glass transitions or complicated many-body localization are not completely ruled out.
Freezing phenomena found in the actual quantum annealing machine [174] may also be
connected with the new phase in our result. Many-body localization is also a possibility
for the underlying phase transition which is becoming under interest recently [173].
Unfortunately, it is unclear what kind of the phase transition is, since conventional

quantities such as the specific heat, transverse magnetization, linear magnetic suscepti-
bility, and the non-linear magnetic susceptibility did not exhibit any singularities as well
as more model specific quantities such as Fans. However, it is always possible that a weak
singularity is smoothed out due to finite size effects. Thus, to be more precise, we should
say that the fidelity susceptibility χF, compared to other physical quantities, provides an
easier way to confirm the existence of a subtle quantum phase transition, as in this case.
Previous results [163] show that χF could be used as indicators for various transitions
including spin liquids etc. The present work shows that it is also true for the case of QA
of NP-hard problems which is glassy and has frustrated quenched disorders.
Furthermore, the phase transition found by χF has important implications for how QA

fails to efficiently compute NP-hard problems, regarding the NP hardness assumption. The
first order transitions in terms of q found in our study, should accompany exponentially
small energy gaps according to arguments made in [71], resulting in exponential running
time of QA. These first order transitions are only observed in finite proportion of the
samples, also differing in transition points among samples. This is consistent with the
fact that NP-hardness is a notion for the worst-case analysis, meaning that not all of
the samples studied here need to be hard instances. However, notably, the first order
transitions occur only in the low-λ side of the χF divergence. Remarkably, even the
samples with first order transitions have peaks in χF corresponding to the divergence in
χF around λ ∼ 0.3. This strongly suggests that the underlying quantum phase captured
by χF is common among all samples, and is inducing the first order transitions within
the phase. While this is partially compatible with proposed scenarios with an underlying
phase inducing exponentially small energy gaps [151, 152, 101, 150], they do not fully
explain our results as we mentioned above. The proportions of the samples with first
order transitions in unique solution NP-hard problems are only investigated numerically
so far [71]. Therefore, it should be crucial to identify the nature of this underlying phase
transition detected by χF, in order to fully understand the physical cause leading to the
failure of QA for NP-hard problems, and the physical consequences of the NP hardness
assumption, or more specifically NP⊈BstoqP in this case.
The fact that a similar phase transition occurs in the ERE as well as USE, suggests that

it may be possible to tackle the nature of the underlying phase from replica calculations.
Since there are only replica calculations for quantum systems with fully coupled systems
currently (such as the quantum SK model [175] or the QREM), approaches applicable to
sparse quantum mean-field systems (such as quantum belief propagation [147]) should be
adopted.
We finally note that χF also shows a very sharp peak at the first order transitions

which occur within the low λ side of the phase transition. Together with the fact that in
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some situations χF could upper bound the size of energy gaps [176, 177], this suggests the
possibility that χF may actually detect all of the transitions which are relevant for QA.

6.A The Unique Solution Ensemble
Instead of using simple Erdös-Rényi random graphs which have multiple solutions for the
MIS, we use random graphs which have unique solutions. This ensures that it is always the
minimum energy gap ∆Emin that causes the failure of QA. If there are multiple solutions,
a small ∆Emin would not necessarily imply failure, since it can still end in the degenerate
ground state of ĤP.

To generate random-graph ensemble with a unique solution, we randomly add edges to
the Erdös-Rényi random graph in the following way. If the original Erdös-Rényi random
graph already has a unique solution, we can just use it, although the probability of such
a graph occurring decreases as N increases. When the graph has multiple solutions, it
means the vertices could be divided into two groups, namely the backbones and the non-
backbones. The backbones are the vertices which are constantly in the independent set
or out of it throughout all the possible solutions. If a given graph has a unique solution,
all the vertices belong to the backbone by definition. After checking which vertices the
backbones are, we randomly assign one of the possible solutions, at random. If there are
more than two non-backbones which are inside of the assigned solution, we add an edge
between those two vertices. This makes the chosen solution no longer valid, while making
sure that there are still solutions of the same size.

We continue this process until there are no more pairs of non-backbones inside a par-
ticular maximum independent set solution. If there still remains a non-backbone vertex
with no pair, we randomly choose one backbone vertex within the solution and add an
edge with that. This procedure always decreases the degeneracy. When the degeneracy
is totally removed and the solution is unique, the procedure ends successfully. If feasible
solutions vanish during this procedure, we discard the graph and start all over again. We
call this stochastically generated ensemble of graphs, the unique solution ensemble (USE)
in this chapter.

6.B The Dynamic Programming Leaf Removal Algorithm
We should confirm that the process of making the solution unique does not make the
problem easier, since we want to know the physical picture of hard problems. A specific
algorithm which we call the Dynamic Programming Leaf Removal algorithm (DPLR)
explained in section 5.3.2 was used for confirming this point.

As we saw in chapter 5, the DPLR algorithm is an algorithm which correctly presents
the RS-RSB/easy-hard correspondence in the MIS problem. It thus becomes a good
measure of if we are truly considering an average-case hard ensemble or not. Furthermore,
the DPLR algorithm is the analogue of the well-known DPLL algorithm [128] for the
satisfiability problem. As it is known that the running time of DPLL scales polynomially
in the easy parameter region of SAT [178], DPLR should be a fairly good algorithm to
see the hardness of the MIS problem.

We can compare the simple Erdös-Rényi random graphs and the unique solution en-
semble in terms of computation time using DPLR, from Fig. 6.10 and Fig. 6.11. Since
the distribution of time steps has exponentially long tails, it is convenient to focus on
the logarithm of the time steps needed. We plot the logarithm of the median time steps
needed for finding and confirming a solution for the MIS problem. We used over 1000
samples for each size to estimate the median value, and the error bars are drawn by the
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Fig. 6.10: The logarithm of median time steps needed to find the MIS for Erdös-Rényi
random graphs using the DPLR algorithm is shown as a function of the system size N .
The inset shows the same plot with non-logarithmic scale for the horizontal axis. All lines
are obtained by least square fittings, either assuming y = aN b+ c (stretched exponential)
or y = c+d log(N) (polynomial). The stretched exponent b is estimated as b = 0.465(25).
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Fig. 6.11: The logarithm of median time steps needed to find the MIS for randomly
generated unique solution graphs, using the DPLR algorithm. The inset shows the same
plot with non-logarithmic scale for the horizontal axis. The fittings are performed as the
same as in Fig. 6.10, yielding that the stretched exponent b = 0.433(19).

bootstrap method. Calculating by the logarithm of the time step allows us to have small
error bars, which otherwise would require an exponential amount of data to have constant
size error bars. Importantly, the median time step shows stretched exponential scaling
for both ensembles. We can see that a polynomial scaling, shown by the dotted lines in
Fig. 6.10 and Fig. 6.11, does not fit, and a stretched exponential scaling does. The fact
that the median computation time grows stretched exponentially implies that at least half
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of the samples will be hard instances. The exponents are N0.465±0.025 and N0.433±0.019

for Erdös-Rényi random graphs and the unique solution ensemble respectively. The fact
that both ensembles scale stretched exponentially and not polynomially implies that the
MIS problem is hard for both ensembles and we have not changed the hardness of the
problem drastically by making the solution unique described in Appendix 6.A.
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Chapter 7

Concluding Remarks and Future

Directions

We have seen three studies on topics concerning the relation between physics and compu-
tational complexity. Here, we will go through and review what we have shown and their
implications, together with possible future directions in research.
In chapter 2, we reviewed the basics of computational complexity theory, which lead

to notions such as NP-hardness/completeness, average case complexity, and quantum
computation.
We showed reasons for regarding NP-hardness as an archetypical property of “hardness”

in general and further introduced the idea that no physical phenomena should be able to
efficiently compute such hard problems. This was called the NP hardness assumption.
Average case complexity was introduced since the worst case analysis framework may
be regarded as too theoretical. However, we reviewed that the average case complexity
also faces difficulties, and saw that statistical physics analysis may provide an alternative
approach for average case complexity. This perspective was further examined in chapter
5, and then was also applied in chapter 6. Quantum computation was introduced for
considering quantum effects on computation. While it could be seen as that allowing
probabilistic procedures for Turing machines already introduced probabilistic “superpo-
sitions”, the coherence in the superposition for quantum states seemed to allow more
powerful computations in the class BQP. The boundary of BPP and BQP was further
discussed in chapter 4, and then was also applied in chapter 6.
In chapter 3, we reviewed the basics of quantum annealing (QA) and the adiabatic

quantum computation (AQC) which are essentially the same but have different emphasis.
AQC was a protocol which was aimed to be a computational protocol from the be-

ginning, and was thus defined with the help of the quantum adiabatic theorem. QA, on
the other hand, was originally proposed as a quantum analogue of simulated annealing
(SA), and was therefore defined more procedurally. It is possible to consider the originally
proposed QA as a restricted version of AQC. However, recent studies of QA are not nec-
essarily restricted as in the originally proposed QA in the sense that they may consider
(1) non-adiabatic finite time annealing, (2) noise or finite temperature effects, (3) non-
stoquastic terms in Hamiltonian, etc. While the third direction makes QA closer to the
idea of AQC by becoming BQP-complete, the first two extensions are rather directed away
from AQC. We organized this situation, and explained that we will focus on stoquastic
QA in the following chapters (4 and 6), with adiabatic operations.
In chapter 4, we further examined the stoquasticity of the original QA. We explained

quantum Monte Carlo (QMC) methods in detail, because they play a crucial role both in
understanding stoquasticity and in our study presented in chapter 6.
The path integral Monte Carlo (PIMC) method, a very basic QMC method, was ex-
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plained first, and then we explained stochastic series expansion (SSE), the main tool in
chapter 6. We also reviewed a somewhat different type of Monte Carlo algorithm called
diffusion Monte Carlo (DMC). These three methods have different strategies for correctly
simulating a quantum system, but remarkably seems to have similar constraints on the
quantum Hamiltonian, which is stoquasticity (i.e. absence of the negative sign problem).

While all of the methods allow us to map a stoquastic system to a classical system, the
equilibration time required for the Monte Carlo methods to correctly sample the system
has been an open problem in general. After reviewing few examples where straightfor-
ward QMC or DMC fails to simulate specifically designed stoquastic QA, we focused on
simulating stoquastic QA by the QMC, together with the exchange Monte Carlo (EMC,
also known as parallel tempering/replica exchange) method, since it is the most used
algorithm for simulating QA.

We first showed numerically that the obstruction which was proposed to impede does
not affect the behavior of QMC methods, and is thus not an essential obstruction on its
own. The focus then, was if the energy landscape of the type proposed for the obstruction
for DMC was able to become an obstruction even for QMC methods.

Our result was somewhat surprising in the sense that we found a simple example by
extending the obstruction for DMC, where QA is possible to go through in polynomial
time (guaranteed by the polynomially large energy gap), but the corresponding simulation
using QMC and EMC takes exponential time. The intuitive understanding of EMC is to
exchange the replicas along a certain curve in the parameter space to enhance equilibration
in the “hard region” where the correct distribution is a priori hard to realize. Our example
does have a continuous variable λ connecting the hard region (the golf-hole potential) and
the easy region (the golf-hole potential with a longitudinal magnetic field as a hint).
Although EMC achieves high exchange rate in our example, they require exponentially
long time for finding the golf-hole potential for parameter region close to λ = 1.

The first implication of our result is that there is unaddressed quantum weakness of
EMC, perhaps a weakness similar to a previously addressed classical weakness. While this
does not immediately imply inadequateness of EMC for the usage of simulating QA as
done in many researches since they have a qualitatively different structure of the energy
landscape, it is interesting to consider a naturally arising model where a golf-hole like
potential emerges.

The second implication of our result is that EMC is not sufficiently strong enough in
order to be utilized for proving claims such as BstoqP=BPP. While separation of com-
plexity classes require extremely non-trivial proof in general, equivalences are often proved
constructively through clever algorithms. Our example shows that the EMC in its basic
form cannot be that “clever algorithm”. We easily see numerically that our example is
easily simulable by simulated quantum annealing (SQA), which is currently the remain-
ing algorithm for proving equivalences. Since there are already proposed examples where
naive SQA fails from topological obstructions, a proof of BstoqP=BPP should require
similar techniques as population annealing, or at least repeating SQA polynomially many
times. It is interesting that both of the possible algorithms are dynamic, in the sense
that they have time-evolving Hamiltonians defining a stochastic dynamics non-uniform in
time. The importance of this point remains unclear.

There are several possible directions for further research on this topic. While proving
BstoqP=BPP is an obvious goal, numerical approaches for supporting that may come
first. For example, numerically showing that population annealing or repeated SQA can
efficiently simulate stoquastic QA with the topological obstructions discussed in section
4.3.1 would be interesting. This is because while for the first few examples provided in
[106] were evidently simulable by polynomially repeated SQA as we discussed in section
4.3.1, it is nontrivial for the examples provided later (which we did not discuss). It would
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be worth confirming that if a simple repetition of SQA will be enough, or resampling
methods such as population annealing will be necessary.
It is also interesting to consider a classical Hamiltonian having the same property as our

example of having an exponentially long equilibration time while having a high enough
exchange rate. This seems possible since mapping our stoquastic Hamiltonian back to a
classical one has no difficulty in principle. In that case, we may be able to compare the
strengths and weakness of SA and EMC, just as comparing SQA and QMC+EMC, further
investigating the difference between classical probability and stoquastic probability.
In chapter 5, we focused on the connection between average case complexity and sta-

tistical physics from in the classical setting. We constructed a simple novel algorithm
DPLR which exhibits precise correspondence between the average case complexity (lower
bounded by DPLR) and statistical mechanical phases.
We focused on the maximum independent set (MIS) problem, as a simple NP-

complete/hard problem. This problem enables us to consider random graphs as the
random instances. We first reviewed that from the NP hardness assumption perspective,
whether the setting we consider is NP-hard or NP-complete does not matter because
P=NP⇒P=PH.
We then reviewed the situation of the statistical mechanical approach to random NP-

hard problems, after reformulating the MIS problem as a variation of the Ising spin-
glass model. The replica symmetry breaking (RSB) phase transition was defined, and its
properties were discussed. While the rugged energy landscape arising in the RSB phase
intuitively suggests hardness in searching the ground state in the RSB region, we saw
that the situation is generally not so simple as in the case for random 3SAT. While the
situation is completely open for SAT, we aim for seeking correspondence for the random
MIS problem.
We introduced the leaf removal (LR) algorithm, and then the dynamic programming

leaf removal (DPLR) algorithm which we propose. We saw that for Erdös-Rényi random
graphs, the LR algorithm already displays a correspondence between the typical compu-
tation time and the (full) RSB phase transition. However, for scale free networks which
we introduced next, this is not the case and LR fails well before the RSB transition point.
We found that while DPLR takes typically exponential time in the RSB region, its typical
computation time only scales linearly to the problem size in the entire RS region. Finite
size effects were observed within the RS phase, with an interesting scaling behavior. The
problem size N∗ where the typical computation time no longer shows finite size effects
increase polynomially as we get closer to the RS/RSB transition point, and finally di-
verges at the phase transition point. This could be seen as a critical behavior in typical
computation time.
There are several implications and directions for further research for our result in this

chapter. The first implication is obviously that the RS-RSB/easy-hard correspondence
seems to strictly hold in MIS, regardless of the random distribution of instances. It is
important that the correspondence did not hold when we only used the LR algorithm.
This implies that strong enough algorithms are necessary for searching the connections
between statistical physics and average case complexity. The fact that for the MIS prob-
lem, such a simple algorithm as DPLR would be enough to exploit the correspondence
is interesting. It would be interesting to see the capability of algorithms and also the
correspondence, when we use the state-of-the-art algorithm together with backtracking
and dynamic programming. This is because both in MIS (DPLR) and SAT [123], this
strategy seems to provide the most powerful algorithm so far, working in linear time up
to some phase transition point.
The second implication is that the average case complexity jumps from linear time to

exponential time, which is rather surprising. This linear to exponential jump is also ob-
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served in random 3SAT, and may be a universal feature among random NP-hard problems.
While no explanation for this phenomena is known so far, our result at least suggests that
it is hard to simply construct a natural nonlinear polynomial time average case complexity
class. It would be interesting to consider naturally arising ensembles where the compu-
tation time grows polynomially (and not linearly) in some finite parameter region, for
two reasons. First, it would be an interesting example on glassy systems where we can
explicitly evaluate the equilibration time and its divergence. Second, it may provide us
insights on why only low degree polynomials as time complexity classes are far more often
observed than polynomials with enormous degrees.

The third implication of our result is that while 1 RSB transitions do not affect the
computation time in SAT, full RSB seems to be crucial for computation time for the exact
solution. This point has not been discussed so much, since in physics an O(1) difference
in energy is usually ignored in the thermodynamic limit. It would be interesting to seek,
for example, NP-hard problems which the randomized version only has a 1 RSB phase
transition and no full RSB. It is also interesting to consider ensembles which are natural
for another NP-complete problem. This type of ensemble could be easily made by first
generating a random instance simply for one NP-hard problem, and then converting it to
another NP-hard problem via the polynomial mapping reductions we discussed.

Equipped with the results from chapter 4 and 5, we analyzed the physical consequence
of the NP hardness assumption for an average-case hard problem in the stoquastic setting
in chapter 6. The methods such as EMC and SSE introduced in Chapter 4 enablee us to
simulate the stoquastic QA, and insights from chapter 5 provided us evidence on average
case hardness for the ensemble we used in this chapter.

The NP hardness assumption in this case claims that there should be exponentially
small energy gaps for QA computing NP-hard problems (at least for the worst instances).
By assuming that the average case hardness for the random ensemble in the RSB phase
fully captures the hardness of NP, we can further claim that QA will face typically an
exponentially small energy gap for the problem instances from that ensemble.

We first explained two major scenarios for explaining how such exponentially small
energy gap may arise. They are the spin-glass scenario and the Anderson localization
scenario, both of them not being confirmed in the general case for NP-hard problems.
Both of the scenarios present a picture where there is an “underlying phase transition”
(either a spin-glass transition or a localization transition), and then within the underlying
phase, there occur exponentially small energy gaps. Our motivation was to see which of
the scenarios is true, or if there exists such an underlying phase in the first place.

After explaining the methods and measured quantities, we first focused on our results
on the unique solution ensemble (USE), where the exponentially small energy gaps must
occur according to the above-mentioned assumptions. We observed that the instances
could be divided into two groups, the easy instances and hard instances, distinguishable
from the existence of a first order phase transition in q, when dealing with problem sizes
up to 40∼50. While these first order transitions could be observed using straightforward
quantities such as the spin-glass order parameter q or the answer fidelity Fans, those
quantities did not show any singularities indicating “underlying phase transition”.

An important finding is that the fidelity susceptibility χF captures not only the first
order transitions but also the underlying phase transition, after we take the sample average
χF. While the existence of the underlying phase transition itself is compatible with both
scenarios previously proposed, the measured quantities indicated that the phase transition
is neither a normal spin-glass transition or an Anderson localization transition.

We further checked this point by considering the Erdös-Rényi ensemble (ERE) which a
spin-glass phase is already known to exist in the classical limit. The expectation is that
both of the ERE and USE we used have similar statistical properties, although this point
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remains to be further analyzed. We found two phase transitions using the fidelity suscep-
tibility for ERE. Interestingly, one phase transition occurs at a similar parameter point as
for the underlying phase transition in USE. From measuring the spin-glass susceptibility
χSG, we can confirm that the second phase transition which takes place in the parameter
region very close to the classical limit is indeed a spin-glass transition. Since χSG does
not diverge at the other phase transition point, it is likely that the underlying phase is
not a spin-glass phase.
Obviously, figuring out the true nature of this underlying phase transition is one big

future direction to pursue. As we mentioned in chapter 6, freezing phenomena in the
actual quantum annealer device is reported, which occurs from some value λ similarly
to our underlying phase transition. There are also studies on many-body localization
(MBL) for quantum spin-glass systems recently. It is possible that the underlying phase
transition could be understood as an MBL phenomenon, since it is known that dynamical
information of the system could be extracted from SSE samplings. At this point, we also
have results that the probability of observing a non-answer maximal independent set after
a projective measurement on the z-axis becomes the largest around the underlying phase
transition point. It is possible that the underlying phase transition could be understood
through the amplitude contributions of these “locally optimal” solutions to the ground
state.
Regarding the NP hardness assumption, there are also numbers of interesting future

directions of research. It would be interesting to consider a similar situation but with a
totally quantum AQC, which may lead to an even more quantum phenomena preventing
polynomial time computation of the NP-hard problem. While it is numerically difficult to
deal with non-stoquastic systems, and it is almost surely impossible to directly observe
the first order transitions in that case (since they only occur in large sizes N ≳ 25), we
may be able to see the underlying transitions since they occur from smaller system sizes.
Applying the NP hardness assumption to other areas is also attractive, since it may open

up new approaches for complex systems. For instance, a possibility of using computational
complexity ideas for proving results on fluid equations has been proposed [179].
We conclude that while we attained results such as the RS-RSB/easy-hard correspon-

dence for the MIS problem, or showing the existence of a novel underlying phase in
stoquastic QA for the MIS problem, the attempt to study physics from the computational
complexity perspective still has many open problems ahead. We believe that once the ba-
sic obstacles such as finding/defining a natural arising average case-complete problem, or
showing the exact equivalence/separation of stoquasticity to other classes, the perspective
will become extremely fruitful.



97

謝辞

はじめに指導教官であり、修士課程から計 5年間私を指導してくださった福島孝治教授には深
く深く感謝いたします。僕は何かと問題児だったかもしれないと反省していますが、そんな自
分に対し粘り強く指導してくださったことは本当にありがたいです。自分に甘えがあってたる
んでいる時にはお叱りを受け、また落ち込みそうな時には激励していただきました。研究に関
する議論の際には様々な助言をいただくとともに、研究者としての作法を学びました。他所の
研究室で発表をする際や議論をする際の心構え、研究者の世界でどのように生きていくかなど
他の様々な面でもご指導いただきました。掛けて頂いた言葉を胸に今後の研究者人生を歩ん
でいきます。また、そもそも僕が統計力学を知ったのは大学一年生の夏学期に福島さんによる
統計力学の授業を受けた時です。それまで僕は名前の響きだけから (?)「統計を使うなんて妥
協っぽいイマイチな分野なんだろうな～」となんとなく思っていのですが、その学期に統計力
学の授業を受講して以降はむしろ統計力学こそが一番面白いのではないかとすら思えました。
そのような縁に恵まれて今の自分の研究があるのだと不思議な感慨があります。
京都大学の佐々真一教授には大学院時代直接指導を受けることはありませんでしたが、学部

(教養学部基礎科学科)時代から一貫して議論や激励をして頂きました。感謝しております。今
にして思うと、学部三年生の時に佐々さんと一緒に行った Nature of Computation [17] の輪
行で僕の興味は大きく方向付けられたと思います。福島さんの統計力学の授業と共に、今の自
分の研究を方向づけている輪行セミナーの最終日、ピザ片手に僕が 10時間くらい話した日は
忘れません。今後も研究姿勢や哲学に関して大いに勉強させていただこうと思います。
僕の一年先輩であり、現在名古屋工業大学の助教でいらっしゃる高邉賢史さんには非常にお

世話になりました。日常の議論から諸申請書の書き方に到るまで、本当にありがとうございま
した。また、本博士論文第 5章は高邉さんとの共同研究になっております。興味を共にし、い
つでも議論ができる一年上の先輩がいたことは僕にとって本当に幸せなことでした。感謝申し
上げます。
同期の西川宜彦くんにも数え切れないくらいお世話になりました。彼とは物理の議論も思う

存分できた上 (僕の研究に対して一番ピントが合っている他人です)、僕がよく大小様々な問題
にぶちあたっている時に快く解決を手伝ってくれました。僕も同じくらい彼に対して手を貸せ
ていれば良いのですが (主に英語ではお世話しました)、仮に偏りがあったとしても西川理論に
よれば「貸しを作れている状態が良い」らしいので、それでも良しということにします (?)。
また、非常に良き雑談相手、愚痴相手、ボードゲーム相手でもありました。本当にありがと
う！いつも彼は「惇くんはどうせ数年以内に僕の名前を忘れる」などと吹聴していますが、彼
の名前は一生絶対に忘れません。
大関真之准教授、田中宗准教授、小渕智之助教、鳩村拓矢くんには様々なセミナーにお呼び

して頂き、物理学と情報科学の観点から様々なコメントや激励の言葉をいただきました。特に
大関さんには量子アニーリングに関する議論をたくさんして頂くと共に兄貴分として様々な助
言を頂き本当に感謝しております。小渕さんの飄々としつつも学問的に深く通じている感じも
是非「統計力学飄々としてる勢」の後を継ぐべく今後も見習って行きたいです。
藤井啓祐准教授、金子邦彦教授、清水明教授、沙川貴大准教授には本博士論文の審査員とし

て非常にお世話になりました。特に藤井さんには修士時代から会うたびにアドバイスなどを頂
き続けました。教えて頂いた DQC1や IQPなどの below BQPの計算量クラスの存在は本論
文の第 4 章の内容に直接繋がりました。また、金子さんには学部の卒業研究においても指導
教官としてお世話になり、大学院時代も常に気にかけて頂きました。清水さんには学部時代か
ら授業等でご指導いただくと共に、弓削さんの研究に関する議論を通じて僕の研究に関しても



98 謝辞

助言を頂きました。沙川さんと清水さんには修士論文の際にも審査員としてお世話になりまし
た。全員に感謝申し上げます。
設楽智洋くん、松本啓史准教授、白石直人博士、田島裕康博士、Seth Lloyd教授、樺島祥

介教授、越田真史くん、水野雄太くん、高橋昂くん、観山正道助教、星野晋太郎助教、正木祐
輔さん、高木隆司くん、村下湧音くん、関優也助教、西口大貴博士、奥山真佳くんをはじめと
する諸先同後輩方には、今日に至るまで様々な場面でたくさんの物理の議論だけでなく相談に
も乗って頂き感謝申し上げます。特に星野さんには同室だった際にも他所へ移られた後も、研
究室や分野が異なるにも関わらず非常に積極的に議論して頂き、更には申請書の書き方なども
正確なアドバイスをくださり、真に理想的なロールモデルでした。大変感謝しております。高
木くんと設楽くんは高校時代の物理好きな仲良し三人組 (エアーリーダーズ)であり、いつで
も物理だけでなくあらゆることを議論・祝福・慰め・相談・楽しむことができました。場所や
道は多少違えど三人ともここまで来れて非常に嬉しく思います。観山さんには、申請書や公募
での心構えなどをアドバイス頂き、大変感謝しております。正木さんも良き先輩でした。研究
ネタに関する議論が盛り上がっただけでなく、様々な非自明共通点もあることが分かり、その
ような人と大学院時代を過ごせたことは興味深いです。
中村統太教授、田中篤司助教、田崎晴明教授、森貴司助教、宮崎涼二助教、弓削達郎助教、

徳田悟博士、中島千尋博士にも議論をして頂き感謝します。福島研の方々、中西義典助教、小
松尚登博士、酒井佑士博士、安倍雅史くん、そして加藤雄介教授をはじめとする加藤研の方々、
篠崎美沙子さん、福井毅勇くん、堤康雅博士、寒川崇生くん、武田陸歩くんには日頃の議論や
雑談を始め大変お世話になりました。また秘書の長谷眞紀子さんと豊田久子さんには非常にお
世話になりました。本当にありがとうございました。
東京大学博士課程教育リーディングプログラム「多文化共生・統合人間学 (IHS) プログラ

ム」からは資金的な援助を頂きました。感謝いたします。高校時代までは「宇宙をやり直した
らほぼ確実に歴史や地理は全く違うものになるのに、歴史や地理なんかの非普遍的な学問をや
る価値あるの？」なんて狭い見方をしていましたが、IHS プログラムでの多様な活動を通じ
て、今ある社会問題や歴史は直接的/間接的に自分に関わってくることであり、かつある種の
必然性を持って生じているのだということを理解しました。このように視野が広がったことは
確実に自分の今後の人生をより豊かに過ごし、そしてより良い決断を下すために必ず役に立つ
ことと思います。
最後に僕を産んでくれ、ここまで育ててくれ、さらには資金的にも援助してくれた両親に感

謝いたします。僕が自分の真にやりたいことを見出し、ここまで来る決断ができたのも両親の
教育があってのものです。ありがとう！



99

References

[1] Turing, Alan M. “Computing machinery and intelligence.” Mind 59.236 (1950): 433-
460.

[2] Deutsch, David. The fabric of reality. Penguin UK, 1998.
[3] Aaronson, Scott. “Why philosophers should care about computational complexity.”

arXiv preprint arXiv:1108.1791 (2011).
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