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1

General Introduction

Since the two seminal papers, the first Markov chain Monte Carlo simulation by
N. Metropolis and collaborators [1], and the first molecular dynamics simulation by
B. Alder and T. E. Wainwright [2], numerical simulations have increased their importance,
and been extensively utilized to find new understandings of our nature. In particular,
Markov chain Monte Carlo simulations, based on fundamental mathematical theories of
Markov chains, have been rapidly progressed with many innovative algorithms. Thanks
to their simplicity and applicability, we can easily simulate any systems using our
computers. Indeed, many works in physics, chemistry, engineering, and statistics have
used Monte Carlo simulations. Monte Carlo simulation is now an essential tool in various
fields of science along with theory and experiment.
To understand physics is closely related to simulation. We can imagine, or simulate in

our mind, how a simple object moves in a simple situation according to the Newtonian
dynamics, and thus predict its behavior. However, only with three objects interacting
with each other, an extremely complex, chaotic behavior may be observed, and we cannot
imagine their moves precisely. When extremely many objects move simultaneously with
interactions, we no longer know how to imagine their dynamics. We cannot simulate in our
mind a system with an extremely large number of objects and predict what will happen
correctly without any a priori knowledge although to understand and to predict collective
behaviors are fundamental and important problems. Phase transition is a typical example
where many-body effects are essentially relevant. Numerical simulations of many objects
are expected to extend our mind, and extend the possibility of our understandings of
collective phenomena and phase transitions.
Phase transitions have been one of the major research subjects in physics for many

years. Since the celebrated work by L. Onsager [3], in which an exact solution for the
two-dimensional ferromagnetic Ising model is presented, many statistical models and their
phase transitions have been solved exactly. Unfortunately, a very specific class of models is
solvable while an infinite number of exactly solvable models can be constructed. Another
analytical theory, the mean-field theory, may provide us a qualitative understanding of
a phase transition. The mean-field theory usually explains a phase transition exactly
in infinite dimensions. That helps us to know what physical quantities are involved in
a phase transition even in finite dimensions. Nevertheless, the mean-field theory often
contains uncontrolled approximations, and can be completely wrong in finite dimensions;
the theory sometimes predicts a phase transition which does not exist actually, or a
qualitatively different phase transition. Indeed, the Ginzburg criterion is often violated
in the mean-field theory when the spatial dimension is lower than the upper critical
dimension (which is usually 4 in systems without disorder). Renormalization group and
scaling theory, developed by K. Wilson and L. P. Kadanoff, are considered as promising
theories to understand phase transitions in finite dimensions beyond mean-field theory.
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These theories developed the concept of the universality for continuous phase transitions
of systems. The universality classes are characterized by the critical exponents, which
allow us to understand them in terms of the spatial dimensionality and symmetry of
the systems. We thus simply estimate by its spatial dimensionality and symmetry the
universality class to which a phase transition in a system belongs. However, when a
system has very low symmetry due to competition or frustration among interactions and
fields, symmetry of the system is no longer useful for understanding its universality class.
The nature of a possible phase transition in that case depends on each system, and there
may be an unexpected type of phase transition.

Chiral magnets, which will be extensively studied in this thesis, have very low symmetry,
especially in the presence of a magnetic field. That induces various complicated spin
structures into the magnetic systems at low temperature. Many spins behave collectively
as if they form interacting objects with a length scale larger than the lattice spacing, and
ordering in chiral magnets are driven by the objects. While chiral magnets have been
greatly investigated both experimentally and theoretically in the literature of condensed-
matter physics, detail properties of their phase transitions at finite temperature have been
poorly understood. In the present thesis, by means of large-scale numerical simulations,
I consider two models of chiral magnets from a point of view which has not been noticed
ever for the models.

Numerical simulation is the method which in principle enables us to study any sta-
tistical models without any approximation. We can access any physical quantities and
any correlations through numerical simulations. However, as other methods, numerical
simulations also have disadvantages; finiteness of the system size and the simulation time.
If the system size is not sufficiently large, we may misunderstand physical properties of
systems in the thermodynamic limit, especially near their phase transition points. A short
simulation time also leads us to wrong results. Only if we resolve these serious problems,
we obtain correct results from numerical simulations. I will show in this thesis that modern
Monte Carlo approaches, an irreversible algorithm, and massively parallelized simulations
implemented on GPUs, can indeed resolve the problems, and allows us to get new physical
insights.

This thesis is composed of three parts. In Part I, we discuss the Markov-chain Monte
Carlo method. We introduce the concept of Markov chains, their fundamental properties,
and three time scales in Markov chains in the first chapter. Next, various Markov chain
Monte Carlo algorithms are discussed focusing on their pros and cons. In Chapter 3,
we consider the recently introduced event-chain Monte Carlo algorithm. We apply the
event-chain algorithm to classical Heisenberg spin models such as the three-dimensional
ferromagnetic model, the antiferromagnetic model on the triangular lattice, and the three-
dimensional spin glass model, and discuss its performance in each model.

In Part II, we discuss a classical Heisenberg spin model of a uni-axial chiral magnet in
three dimensions. Due to the Dzyaloshinskii–Moriya interaction, the model has a simple
helical structure in the low temperature region without magnetic fields, and a non-trivial
spin structure which is called the chiral soliton lattice in the presence of a magnetic
field perpendicular to the helical axis. In the first chapter, we overview a theory of a
one-dimensional continuum model at zero temperature. The continuum model shows a
phase transition at finite field between the chiral soliton lattice and the paramagnetic
phases. We also briefly review results of some experimental works using Cr1/3NbS2 on its
phase diagram. In the next chapter, we detail the simulation method used in our Monte
Carlo simulations. With the event-chain algorithm, we performed large-scale Monte Carlo
simulations of the system with more than 106 spins. In the last chapter, we present our
results and discuss phase transition in the system. The universality class and the phase
diagram are also discussed.
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In Part III, melting transition of skyrmions which emerge in a two-dimensional chiral
magnet is studied. Skyrmions are topological excitations with local energies, and locally-
stable particle-like objects. They are also thermodynamically stable in chiral magnets
because of the bi-axial Dzyaloshinskii–Moriya interaction. In the first chapter of the
part, we review phase diagram of chiral magnets obtained by experiments. After that,
we also review the famous Kosterlitz–Thouless–Halperin–Nelson–Young theory for two-
dimensional melting of particles with/without a periodic substrate. In the next chapter,
details of our Monte Carlo simulations are presented. In the last chapter, we present our
Monte Carlo results and discuss phase diagram with an interpretation of skyrmions as
point particles.
All of the original results presented in this PhD thesis are based on the following papers:

[4] Yoshihiko Nishikawa, Manon Michel, Werner Krauth, and Koji Hukushima,
Physical Review E 92, 063306 (2015).

[5] Yoshihiko Nishikawa and Koji Hukushima,
Physical Review B 94, 064428 (2016).

[6] Yoshihiko Nishikawa and Koji Hukushima
Journal of Physics: Conference Series 750, 012014 (2016).

[7] Yoshihiko Nishikawa, Koji Hukushima, and Werner Krauth,
arXiv:1710.11095 (2017).
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2

Introduction to Markov chain Monte Carlo

methods

Since the celebrated work by N. Metropolis and his collaborators [1], the Markov chain
Monte Carlo method has been established as a standard tool in natural sciences. A rapid
progress of modern computers in these decades allows us to access large-scale Monte Carlo
simulations of systems with an extremely large number of degrees of freedom. Markov
chains, the concept on which Monte Carlo simulations relies, are simple stochastic pro-
cesses in which the transition probability depends on only the present state *1. Any
Markov chain converges to its unique stationary probability distribution if the global bal-
ance, the irreducibility, and the aperiodicity conditions are satisfied. In this chapter, we
introduce the concept of Markov chains, and discuss the conditions. We next discuss
various Monte Carlo algorithms such as local, cluster, extended ensemble, and irreversible
algorithms.

2.1 Markov chains

We overview the fundamental properties of Markov chains, especially those with discrete
states and discrete time steps in this section. A Markov chain is specified by a state
space, a transition probability matrix, and an initial distribution. By the Monte Carlo
method using (pseudo-)random numbers, we can implement any Markov chain. We also
discuss time scales and slowing down in Markov chains and Markov chain Monte Carlo
simulations.

2.1.1 Markov chain and its convergence

In a Markov chain, a stochastic process with a random variable σ on a set of discrete
states Ω and a transition matrix T , the conditional probability that a state σt+1 = xt+1 ∈
Ω appears at time t+ 1 depends on only the state σt = xt ∈ Ω, i.e.

P (σt+1 = y | {σ0 = x0, · · · , σt = xt}) = P (σt+1 = y | σt = xt) = T (xt, y) . (2.1)

Note that the transition probability matrix T is normalized:
∑
y T (x, y) = 1. If, for every

pair of x, y ∈ Ω, there exists a finite integer n such that Tn (x, y) > 0, then the Markov
chain is irreducible, which means that any state can be reached from an arbitrary initial
state in finite time steps. When the irreducibility holds for a Markov chain, then the
Markov chain has a unique stationary distribution π, which satisfies the global balance

*1 Technically, any stochastic process in which a state at time t depends on a finite number of the past
states at time t − 1, · · · , t − k (k ≥ 1) is a Markov chain in the sense that it can be mapped to a
Markov chain with k = 1.
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condition [8]

π = πT ⇔ ∀y ∈ Ω, π (y) =
∑
x

π (x)T (x, y) . (2.2)

Here, for the consistency with the definition of the transition matrix, the stationary dis-
tribution π is represented as a row vector. The global balance condition Eq. (2.2) always
holds if the detailed balance condition π (x)T (x, y) = π (y)T (y, x) is satisfied. Of course,
when a distribution satisfies the detailed balance condition with the transition matrix
T , the distribution is the unique stationary distribution. A Markov chain satisfying the
detailed balance condition is called reversible.

While any Markov chains with irreducibility have only one stationary distribution π,
periodic Markov chains, which will be specified below, with an initial distribution inequiv-
alent to π do not converge to π even in the long time limit. Thanks to irreducibility, every
state x ∈ Ω appears more than twice within a sufficiently long finite time step. We define
a set of time steps S (x) = {t | t ≥ 1, T t (x, x) > 0}, and its period dx as the greatest
common divisor of elements of S (x). The period of every state of an irreducible Markov
chain corresponds to each other [8], and thus the period d of the Markov chain is defined
as d = dx of a state x. An aperiodic Markov chain has d = 1, and any other chain with
d > 1 is called periodic. For any Markov chains with irreducibility and aperiodicity, the
convergence theorem holds, which states as follows [8]: Two constants α ∈ (0, 1) and
C > 0 exist which satisfy

δ (t) = max
x∈Ω

∥∥T t (x, ·)− π
∥∥
TV

< Cαt. (2.3)

Here, ∥·, ·∥TV denotes the total variation distance between two probability distributions
defined as

∥µ− ν∥TV = max
x∈Ω

|µ (x)− ν (x)| , (2.4)

and T (x, ·) represents the x-th row of the matrix T . Therefore, Markov chains with
irreducibility and aperiodicity converge to the stationary distribution starting from an
arbitrary initial distribution. Any Markov chain with a non-zero T (x, x), which is the
rejection rate, is always aperiodic, and thus any initial distribution converges to the sta-
tionary distribution in such a Markov chain. However, a rejection-free Markov chain can
be periodic unless S (x) has co-prime two elements.

In practice, our goal is to design a transition probability matrix that is irreducible
and aperiodic so that its unique stationary distribution is of our interest, rather than
to find the stationary distribution for a given transition matrix. The detailed balance
condition has been traditionally adopted in designing, but the condition is sufficient for
the convergence as discussed above. Indeed, some Markov chains and the corresponding
Monte Carlo algorithms breaking detailed balance have been known. We will discuss a
few of them in the end of this chapter, and in the next chapter.

2.1.2 Time scales and slowing down in Markov chains

While any Markov chains with irreducibility and aperiodicity converge exponentially
to their stationary distribution, the convergence speed is not quite clear. To measure the
speed of the convergence, we define the mixing time of a Markov chain as

τmix (ϵ) = min {t | δ (t) < ϵ} . (2.5)

Direct computation of the mixing time is a computationally time-consuming task as the
full information of the transition probability matrix is required. We can instead find other
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time scales in reversible, irreducible, and aperiodic Markov chains that bounds the mixing
time. In a reversible Markov chain, the transition matrix is symmetric, and it thus has real-
valued eigenvectors and eigenvalues. Of course, thanks to the Perron–Frobenius theorem,
the largest eigenvalue λ1 = 1 (see Eq. (2.2)). The other eigenvalues {λi} (i = 2, · · · |Ω|)
have |λi| < 1. The relaxation time of the Markov chain is defined as

τrel =
1

1−maxi=2,···|Ω| |λi|
. (2.6)

The relaxation time gives upper and lower bounds of the mixing time if the Markov chain
is irreducible and aperiodic [8]:

(τrel − 1) log

(
1

2ϵ

)
≤ τmix (ϵ) ≤ log

(
1

ϵπmin

)
τrel, (2.7)

where πmin = minx∈Ω π (x). However, unfortunately, the relaxation time is still difficult
to be computed because it requires eigenvalues of the transition matrix. We thus usually
focus on the correlation time determined by the autocorrelation function in practical
Markov chain Monte Carlo simulations [9]. The autocorrelation function of a function O
on the state space Ω is defined as

CO (t) =
⟨O (σt)O (σ0)⟩π − ⟨O (σt)⟩π ⟨O (σ0)⟩π

⟨O2 (σ0)⟩π − ⟨O (σ0)⟩2π
, (2.8)

where the bracket ⟨· · ·⟩π represents the average over the stationary distribution π, and σt
is a state at time t. We define the exponential correlation time of a function O as

τexp (O) = lim sup
t→∞

t

− logCO (t)
(2.9)

and the exponential correlation time of the Markov chain is defined as τexp = supO τexp,O
to find the slowest mode in the autocorrelation function. The exponential correlation
time can be represented in terms of the eigenvalues as τexp = −1/ logmaxi=2,···|Ω| |λi|
[10], and τexp < τrel if maxi=2,···|Ω| |λi| is sufficiently close to 1. We compute in practical
Monte Carlo simulations the exponential correlation time of a function O∗ with an as-
sumption that the function O∗ has the slowest relaxation mode of the Markov chain in
its autocorrelation function.
In statistical mechanics, these time scales in Markov chains are closely related to phase

transitions and spatial orders in the stationary distribution, i.e. the Gibbs distribution.
For example, in a reversible Markov chain that has the Gibbs distribution of a lattice
spin system as its stationary distribution, it was proved that the system has a short-
range spatial order if the mixing time is finite for any system size [11]. In particular,
for the two-dimensional Ising model at the critical temperature, which has a diverging
correlation length in the thermodynamic limit, the relaxation time diverges polynomially
with the system size [12] *2. While no general proof is known, the correlation time has
been numerically shown to diverge polynomially at a continuous phase transition point
in various models [13–16] *3. An exponent that characterizes the polynomial divergence
of the time scales accompanied with continuous phase transitions is called the dynamical
critical exponent z. For some Markov chains, the dynamical critical exponent is proved to

*2 A rigorous proof was given in Ref. [12] using a continuous-time Markov chain.
*3 If maxi=2,···|Ω| |λi| → 1 in the thermodynamic limit, both of the relaxation time and the exponential

correlation time diverge with the same speed.
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have a lower bound determined by the Gibbs distribution [17–20]. Note that the dynam-
ical critical exponent strongly depends on the transition matrix T even if the stationary
distribution is identical: Cluster algorithms, which will be discussed below, have a much
smaller z than that of conventional algorithms. Conversely, we can measure the efficiency
of each algorithm through the dynamical critical exponent. At a first-order phase transi-
tion point, where two different states separated by large free-energy barriers appear with
equal statistical weights, on the other hand, the time scales diverge exponentially with
the system size due to the nucleation process [21]. We thus can infer the order of phase
transitions from the diverging behavior of the time scales.

2.2 Local Monte Carlo algorithm

Local Monte Carlo algorithm is the most used, simplest and straightforward algorithm
to implement a Markov chain. We can sample from any probability distribution in the
long time limit by using them. However, as we discussed above, with the local algorithms,
we will be always confronted by the slowing down near a phase transition point. Neverthe-
less, because of their local nature, we can easily implement the algorithms in a spatially
parallelized way. Recent Monte Carlo studies with massive parallelization indeed use lo-
cal algorithms [22–26]. Here, we introduce the Metropolis–Hastings and the heat-bath
algorithms (or Glauber dynamics).

2.2.1 Metropolis–Hastings algorithm

The original Metropolis algorithm is the first Markov chain Monte Carlo algorithm
proposed in Ref. [1]. Let us consider a configuration σ = x and another configuration
x′ proposed according to a symmetric proposal matrix Q, where σ is random variables
following the Markov chain. The acceptance probability matrix PMet in the Metropolis
algorithm is

PMet (x → x′) = min

[
1,
π (x′)

π (x)

]
, (2.10)

where π (σ) is the stationary probability distribution of the Markov chain. The algorithm
simply satisfies the detailed balance condition as

π (x)Q (x,x′)PMet (x → x′) = Q (x,x′)min [π (x) , π (x′)]

= π (x′)Q (x′,x)PMet (x
′ → x) . (2.11)

For the Gibbs distribution at inverse temperature β, π (σ) = exp (−βE (σ)) /Z (β), we
obtain the acceptance probability

PMet (x → x′) = min [1, exp (−β (E (x′)− E (x)))] , (2.12)

where Z (β) is the partition function and E (x) is the energy of the configuration x. We
should notice here that the partition function Z (β) does not appear in the transition
probability Eq. (2.12). That implies we can simulate a Markov chain and sample from the
stationary probability distribution π (x) without any a priori knowledge about the system
except the energy.

About two decades after the work by Metropolis and coworkers, W. K. Hastings gave
a generalization of the Metropolis algorithm, the Metropolis–Hastings algorithm [27]. In
this generalized algorithm, the proposal matrix Q does not need to be symmetric. The
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acceptance probability matrix PMH, instead, is modified as

PMH (x → x′) = min

[
1,
π (x′)Q (x′,x)

π (x)Q (x,x′)

]
. (2.13)

The factor Q (x,x′) = 0 if and only if Q (x′,x) = 0 for an arbitrary pair of configurations
x and x′. We can easily check the transition probability in the Metropolis–Hastings
algorithm Q (x,x′)PMH (x → x′) satisfies detailed balance as Eq. (2.11).
While the Metropolis–Hastings algorithm is the simplest algorithm and can be applied

to any probability distributions, correlation between samples in the Markov chain remains
large for a very long time. We have to be careful about the correlation time of this algo-
rithm and simulate the system for much longer than the correlation time, and otherwise
we will be led to a wrong result.

2.2.2 Heat-bath algorithm

The Metropolis–Hastings algorithm chooses one configuration from a proposed new con-
figuration and the present one at each time step. The heat-bath algorithm, or Glauber
dynamics, on the other hand, chooses one configuration from multiple configurations inde-
pendent of the present configuration with satisfying detailed balance *4. The probability
to choose a configuration σx from a set of configurations {σy} is

PHB (σx) =
π (σx)∑
y π (σy)

. (2.14)

In practice, we usually pick randomly (or sequentially, or according to other procedure) a
few variables to be updated, and choose the set composing of all possible configurations
which are equivalent to the present configuration except the picked variables. We illustrate
the single-site heat-bath algorithm for the Gibbs distribution at inverse temperature β of
a q-state Potts model defined by the Hamiltonian H (σ), where each spin σi = 0, · · · , q−1.
Suppose that we choose a site k to be updated. The probability to choose a configuration
with σk = a and other spins fixed is

PHB (σk = a) =
exp (−βH ({· · · , σk = a, · · · }))∑

b∈{0,··· ,q−1} exp (−βH ({· · · , σk = b, · · · }))
. (2.15)

The heat-algorithm can be better than the Metropolis–Hastings algorithm in a sense of
the rejection rate when the number of components of the set is large. In particular, for
some continuous spin models with classical Heisenberg spins, the heat-bath algorithm
is rejection-free while the Metropolis–Hastings algorithm for these models has a finite
rejection probability. Let us consider a classical Heisenberg spin model defined by the
Hamiltonian

H ({Si}) = −
∑
⟨i,j⟩

Si · JijSj −
∑
i

hi · Si, (2.16)

where Si is a three-dimensional vector with fixed length |Si| = 1, the bracket ⟨·, ·⟩ rep-
resents a pair of interacting spins, Jij is a 3 × 3 matrix, and hi is a three-dimensional
vector. For a randomly chosen spin Sk to be updated, the normalization constant of this

*4 The heat-bath algorithm is often regarded as a special case of the Metropolis–Hastings algorithm.
Here, nevertheless, we introduce the heat-bath algorithm as another algorithm for clarity.
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system excluding the contributions from the other fixed spins is

Zk (β) =

∫
dSke

−βHk·Sk =

∫
dϕd (cos θ) e−βHk cos θ = 2π

2 sinh (βHk)

βHk
, (2.17)

where Hk =
∑
j JijSj + hk and Hk = |Hk|. We can sample a new orientation (θ′, ϕ′) of

the spin from PHB (cos θ, ϕ) d (cos θ) dϕ via its cumulative probability distribution using
the inversion sampling technique as∫ ϕ′

0

dϕ

∫ cos θ′

−1

d (cos θ)PHB (cos θ, ϕ) =
ϕ′

2π

eβHk cos θ′ − e−βHk

2 sinh (βHk)
. (2.18)

The probability to sample the old orientation as a new orientation is 0 in this algorithm.
Note here that the single-site heat-bath algorithm can be interpreted as direct sam-

pling of a randomly chosen single spin from a conditional probability distribution under
a condition that all other spins are fixed.

2.3 Cluster algorithm

The simple local Monte Carlo algorithms allow us to sample from the exact stationary
probability distribution in the long time limit. However, as discussed above, the corre-
lation time gets much longer and diverges with the system size either polynomially or
exponentially at a phase transition point depending on the order of the phase transition.
This dramatic increase of the correlation time makes Monte Carlo results have a large
systematic error: Probability distributions of physical quantities obtained by short-time
simulations may have different structures from the equilibrium ones. To solve this prob-
lem, we have to simulate for a very longer time than the correlation time, or consider
an efficient algorithm in which correlations decay rapidly. Cluster algorithms can real-
ize the rapid decorrelation in some models, and show us that slowing down near phase
transition points that is caused by physical nature of systems can be reduced by artificial
Monte Carlo dynamics. In this section we review some cluster algorithms and discuss
their limitations.

2.3.1 Swendsen–Wang and Wolff algorithm

The Swendsen–Wang algorithm is the first algorithm that qualitatively changes dynam-
ics of some systems [28]. By introducing extra variables which is called bond variables,
many spins are updated in a cooperative manner. Here, for concreteness, we consider the
q-state ferromagnetic Potts model defined by the Hamiltonian

H = −J
∑
⟨i,j⟩

(
δσi,σj − 1

)
, (2.19)

where the bracket ⟨·, ·⟩ represents an interacting pair of spins, and the spin variable σi ∈
{0, · · · , q − 1}. A configuration {σi} appears at inverse temperature β with probability

PPotts
β ({σi}) =

1

ZPotts (β)
exp

βJ∑
⟨i,j⟩

(
δσi,σj − 1

) (2.20)

=
1

ZPotts (β)

∏
⟨i,j⟩

[
p+ (1− p) δσi,σj

]
, (2.21)
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where p = exp (−βJ). We introduce bond variables {nij} (nij = 0, 1) to the system
that do not interact with each other so that the joint probability that a configuration
({σi} , {nij}) appears is

P joint
β ({σi} , {nij}) =

1

Zjoint (β)

∏
⟨i,j⟩

[
pδnij ,0 + (1− p) δσi,σjδnij ,1

]
. (2.22)

Note that the normalization constants (the partition functions) for two probability distri-
butions ZPotts (β) and Zjoint (β) are identical, and the marginal distribution of {σi} with

P joint
β ({σi} , {nij}) is equal to PPotts

β ({σi}). We can directly sample {nij} for a given

{σi} by Eq. (2.22) as

ni =

{
0 with probability p/

(
p+ (1− p) δσi,σj

)
1 with probability (1− p) δσi,σj/

(
p+ (1− p) δσi,σj

)
.

(2.23)

Every region of spins connected with nij = 1 is called a “cluster”. After a direct sampling
of {nij}, δσi,σj ’s are determined directly; δσi,σj = 1 with probability 1 (= (1− p) / (1− p))
if nij = 1, and δσi,σj is arbitrary if nij = 0. In the original Swendsen–Wang algorithm
[28], after identifying every cluster, new values of spins are randomly equally selected
for each cluster independent of the former spin value. The Swendsen–Wang algorithm
is often referred to as the multiple-cluster algorithm as every cluster is updated in every
step. The Wolff algorithm proposed by U. Wolff [29], also known as the single-cluster
algorithm, on the other hand, changes the spin value to a different one only for a single
cluster. Although the Wolff algorithm seems to be just a variant of the Swendsen–Wang
algorithm, its performance is usually slightly better than that of the Swendsen–Wang
algorithm, especially for three-dimensional models [30]. Wolff also gave a generalization
of the cluster algorithm to O(n) continuous spin models [29] in which spins are reflected
with respect to a randomly chosen axis.
The Swendsen–Wang and the Wolff algorithms dramatically reduce the dynamical criti-

cal exponent of simple ferromagnetic spin models, such as Ising, Potts, XY, and Heisenberg
models. The dynamical exponent for the algorithms is rigorously bounded by a ratio of
the static critical exponents as z ≥ α/ν [19].

2.3.2 Geometric cluster algorithm

The Swendsen–Wang and the Wolff algorithms were built on the representation of the
partition function Eq. (2.22) derived from the Fortuin–Kasteleyn (FK) random-cluster
representation of spin models [31–33]. The point of the cluster algorithms is, by intro-
ducing the bond variables, to update spin variables to a symmetric state in terms of the
Hamiltonian that has the same statistical probability without any rejection. In particular,
from this point of view, the Wolff algorithm can be understood without an explicit FK
representation as follows:

1. Choose a spin σi randomly.
2. Change the value of the spin σi to R (σi), where R is an operator that preserves

the Hamiltonian.
3. Put i to a cluster.
4. For every spin σj interacting with σi except spins already in the cluster, change its

value to R (σj) with probability 1−exp (−β∆Eij), where ∆Eij = Eij (R (σi) , σj)−
Eij (R (σi) , R (σj)).

5. Iterate 3–4 until the cluster growth stops.
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The algorithm satisfies detailed balance if R is self-inverse, i.e. R2 = id. By generalizing
this abstract cluster algorithm, we can construct various cluster algorithms not only for
spin systems but also for particle and any other models.

In 1996, C. Dress and W. Krauth proposed a pivot cluster algorithm for hard sphere
systems in which positions of hard spheres are reflected with respect to a pivot [34].
Their algorithm utilizes point symmetry of the system, and it clearly satisfies the detailed
balance condition. This algorithm was successfully applied to a binary mixture of hard
objects [35] and a poly-disperse glassy system [36] in two dimensions. A finite-temperature
counterpart of this cluster algorithm was proposed by J. Liu and E. Luijten [15], and it
can significantly reduce critical slowing down at the liquid–gas critical point of a Lennard-
Jones system. We also could consider a cluster algorithm for particles, or an avalanche
algorithm, that utilizes translational symmetry of the system [37]; positions of many
particles are moved with the same finite displacement. However, this cluster update often
does not satisfy the detailed balance condition and almost all updates are rejected in the
large density or low temperature region. We will discuss this algorithm in Section 3.1.1
again.

2.3.3 Limitation of cluster algorithms

The Swendsen–Wang and the Wolff cluster algorithms have been the most efficient
algorithms for some simple models. However, they are powerless for more complicated
models with frustration including, for example, spin glass models, and no speed up is seen
in the dynamics for the models. A possible reason that the cluster algorithms cannot
enhance decorrelation is the ratio of the cluster compared to the system size: The size of
the clusters reaches to the system size even in a disordered phase, then almost all of spins
are updated in the same manner and very small fraction of spins are effectively updated.
Indeed, while the cluster size ratio is moderate in the two-dimensional ferromagnetic Ising
model at the critical temperature, that in the antiferromagnetic Heisenberg model on the
two-dimensional triangular lattice, is close to 1 or 0 independent of the system size at an
estimated temperature of a possible phase transition [38], see Fig. 2.1. The same problem
is seen in other complicated models such as the spin glass models in three-dimensions,
and particle models in the geometric cluster algorithm by Dress and Krauth.

The cluster algorithms have been developed for systems with two-body interactions.
We can easily generalize the algorithms to a system including one-body external fields,
like magnetic fields, while their performance usually decreases for such systems. A more
serious problem of the cluster algorithms is that their generalization to systems with
many-body interactions is difficult. Note that a recent study indicates a possible way to
design a cluster algorithm for many-body interactions [39].

2.4 Extended Ensemble algorithm

Thanks to the cluster algorithms proposed in the late 1980s, slowing down associated
with equilibrium continuous phase transitions in simple spin systems such as ferromag-
netic models is almost completely eliminated, and much precise values of transition tem-
peratures and critical exponents are obtained for the models, see Ref. [40] for example.
However, the cluster algorithms turned out not to be efficient for models with frustra-
tion including spin glasses. Also, their generalization to other models is not trivial as
mentioned above.

In 1990s, Monte Carlo algorithms that avoids sampling from the Gibbs distribution with
fixed parameters appeared: Extended (or generalized) ensemble algorithms. The idea of
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extended ensemble algorithms is to sample from an artificial ensemble in which mixing
and relaxation of a Markov chain is faster than the original one in the target distribution.
We discuss briefly some of extended ensemble algorithms in this section.

2.4.1 Multicanonical algorithm

First-order phase transitions caused by multiple free-energy minima show a discontin-
uous change of a thermodynamic dominant state with O (N) finite jumps of physical
quantities in the thermodynamic limit. A coexistence state mixed with those two states
has a finite surface free-energy of O

(
Ld−1

)
(L is the linear dimension of a system and d is

the spatial dimension) and thus it has an exponentially small probability in the canonical
ensemble. Conventional local Monte Carlo algorithms have to go through the intermedi-
ate states with a nucleation process to make a transition from one state to another one,
and it takes exponentially long time for sampling due to the small probability.
The canonical average of a physical quantity A at inverse temperature β can be com-
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Fig. 2.1: (a,b) The distribution function of the cluster size in the Wolff algorithm for
the ferromagnetic Ising model on a two-dimensional square lattice at the critical tem-
perature, and at various temperatures, respectively. (c,d) The distribution function of
the cluster size in the Wolff algorithm for the antiferromagnetic Heisenberg model on a
two-dimensional triangular lattice at T = Tv, a transition temperature of a possible phase
transition, and at various temperatures, respectively. In (c) and (d), Tv/J = 0.285 is
used, which is estimated in Ref. [38].
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puted by using samples drawn from an arbitrary distribution function as

⟨A⟩β =

∫
dσA(σ) exp (−βE(σ))∫
dσ exp (−βE(σ))

=

∫
dσA(σ) exp (−βE(σ)− f(σ)) exp(f(σ))∫
dσ exp (−βE(σ)− f(σ)) exp(f(σ))

=
[A(σ) exp(−βE(σ)− f(σ))]f

[exp(−βE(σ)− f(σ))]f
. (2.24)

In this expression, σ stands for a configuration of the system, exp (f (σ)) is an
arbitrary function of σ, and [· · · ]f is average in the probability distribution
exp (f (σ)) /

∫
dσ′ exp (f (σ′)). We choose f (σ) = −βE (σ) for the usual Gibbs

distribution. The multicanonical algorithm [41, 42] is designed to sample from an
artificial probability distribution with f (σ) = − log Ω (E (σ)) to avoid the exponentially
slow nucleation process, where Ω (E) is the density of states. The Metropolis–Hastings
acceptance probability is frequently used to sample the probability distribution. With
this probability distribution, we obtain a distribution function of the energy E

P (E) =

∫
δ (E − E (σ))Ω (E (σ))

−1
dσ∫

Ω(E (σ))
−1
dσ

=

∫
Ω(E′) δ (E − E′)Ω (E′)

−1
dE′∫

Ω(E′)Ω (E′)
−1
dE′

= const.

(2.25)
This means that we can sample an energy with probability independent of its value in
contrast to the canonical ensemble in which intermediate energies between two thermody-
namic relevant energies around a first-order transition point appears with exponentially
small probability. Furthermore, the system can easily go through the intermediate region
(via coexistence states) in the multicanonical ensemble, and thus this algorithm does not
suffer from the exponential slowing down caused by the nucleation process. The density
of states Ω (E), however, cannot be obtained a priori although it is determined only by
the system Hamiltonian. B. A. Berg and T. Neuhaus pointed out that the exact density
of states is not necessary to implement the multicanonical algorithm, and an approximate
empirical density of state Ω̃ (E) estimated by an iterative procedure is usually used in
practice, see detailed discussions in Ref. [42, 43]. The Wang–Landau algorithm [44, 45]
can also be utilized to estimate the density of states.

Thanks to the multicanonical algorithm, the exponential slowing down caused by the
nucleation process in the first-order phase transitions is eliminated. However, for large
systems, where the algorithm has to travel around many energy levels, a polynomially
long time O

(
N2
)
is required for simulations as the speed of the algorithm is still limited

by a diffusive process in the space of the energy. Parallelization in the energy space, or
more sophisticated update scheme rather than the simple Metropolis–Hastings algorithm
which can change the diffusive behavior to a ballistic one is expected to be necessary.

2.4.2 Exchange Monte Carlo method

The exchange Monte Carlo method, also known as “parallel tempering” algorithm,
was introduced in Refs. [46–48]. In this algorithm, we simulate multiple replicas of a
system with different parameters, and exchange the parameters between two replicas with
keeping detailed balance. This simple procedure greatly accelerates relaxation of the
system. Indeed, it has been numerically proven to be efficient for many kinds of systems
such as spin glasses, protein models and structural glasses [48–56]. In the following, we
discuss the exchange Monte Carlo method with different temperatures while it can be
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applied to the case with any intensive parameters. Let us consider a composite system
that consists of M replicas with the same Hamiltonian and different inverse temperatures
β1, · · · , βM (β1 > · · · > βM ). The Gibbs distribution of the system is written as

P ({Ei} ; {βi}) =
∏
i

p (Ei;βi) =
∏
i

exp (−βiEi)
Z (βi)

, (2.26)

where Ei is the energy of replica i and Z (βi) is the partition function of the system at
βi. Two temperatures are exchanged with probability Wjk which satisfies the detailed
balance condition

P ({Ei} ; {· · · , βj , · · · , βk, · · · })Wjk = P ({Ei} ; {· · · , βk, · · · , βj , · · · })Wkj . (2.27)

We can choose
Wjk = min {1, exp ((βj − βk) (Ej − Ek))} (2.28)

for the Metropolis type, and

Wjk =
exp ((βj − βk) (Ej − Ek))

exp ((βj − βk) (Ej − Ek)) + exp ((βk − βj) (Ej − Ek))
(2.29)

for the heat-bath type acceptance probabilities. It is usual to try an exchange of two
neighboring temperatures in practice. Note that the exchange Monte Carlo algorithm itself
does not change configurations of the system, and we have to combine other algorithms
such as Metropolis–Hastings algorithm.
The exchange Monte Carlo method applied to Ising spin glass models can be interpreted

as a family of Replica Monte Carlo algorithm [57, 58], in which a cluster identified by an
overlap between two replicas is updated [43]. Replica Monte Carlo algorithm is claimed
to be much more efficient for a two-dimensional Ising spin glass model than the exchange
Monte Carlo method while their performances are comparable for a three-dimensional
Ising spin glass model [58]. However, it is difficult to generalize the concept of the cluster
in Replica Monte Carlo algorithm to other models such as particle models. On the other
hand, the exchange Monte Carlo method that utilizes only macroscopic physical quantities
can be easily applied to many other models. Indeed, there is a tremendous amount of its
applications ranging from statistical inference to quantum systems. Even for spin glass
models, the exchange Monte Carlo method is the most used algorithm today.
It is necessary to keep the exchange probabilities high so that each replica can wander

around the temperature space in a short time, and low exchange probabilities between
replicas make the performance of the exchange Monte Carlo algorithm much worse. We
expect the exchange probability is moderately high when the static energy distributions
of two neighboring temperatures have a large enough overlap. Thus, first-order phase
transitions are the most notorious examples that the algorithm does not work well: The
exchange probability between two fixed temperatures below and above a first-order phase
transition point decays exponentially with the system size due to a finite jump in the
energy. The algorithm, in contrast to the multicanonical algorithm, is not suitable to
reduce slowing down caused by the nucleation process in first phase transitions

Even for continuous phase transitions, we need O
(√

N
)
replicas for a fixed interval of

temperature to keep the probability O (1) if the distribution of the energy is Gaussian.
This large number of replicas also makes the performance of the algorithm worse even
if the exchange probabilities are high; a time that each replica tunnels from the lowest
temperature to the highest one scales as ∼ O (N) even if the dynamics in the temperature
space is diffusive. Furthermore, the long correlation time of the energy of a system at low
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temperature makes the exchange dynamics in the temperature space slower even if the
exchange probabilities are high enough *5. We have to be very careful about not only the
exchange probabilities but also the tunneling time in the temperature space.

2.5 Irreversible algorithm

The detailed balance condition forbids any net probability flow in the stationary distri-
bution of a Markov chain. The chain with the condition is reversible, and have a diffusive
random-walk behavior. Most Markov chain Monte Carlo algorithms were developed in the
framework of detailed balance, and almost all existing Monte Carlo algorithms including
those discussed above satisfy it. Note that sequential or checkerboard (or any other sys-
tematic) updates with the conventional algorithms break the detailed balance condition
weakly, but convergence to the stationary distribution of such updates was also proved
[59].

Although it has been widely known that detailed balance is sufficient for the conver-
gence of Markov chains, few attempts were made to construct an irreversible algorithm,
which breaks detailed balance, until the pioneering work by P. Diaconis, S. Holmes, and
R. M. Neal [60] *6, which discusses a one-dimensional irreversible Markov chain. In this
section, we discuss the idea of “lifting” of Markov chain, a concept introduced by F. Chen,
L. Lovász and I. Pak [61], and a practical algorithm by K. S. Turitsyn, M. Chertkov and
M. Vecelja, which is a lifting algorithm. We also discuss another practical algorithm
proposed by H. Suwa and S. Todo.

2.5.1 Lifting algorithm

2.5.1.1 Lift of Markov chain
A lift of a Markov chain has been the most extensively studied framework of irreversible

Markov chains. The idea of lifting is to generate a net probability flow and enhance mixing
of a Markov chain by adding auxiliary variables. In Ref. [61], F. Chen and L. Lovász and

I. Pak gave a general definition of a lift of a Markov chain: A Markov chain X̂ on a discrete
state space V̂ is a lift of another Markov chain X on V if there exists a map f : V̂ → V
such that

π (i) = π̂
(
f−1 (i)

)
=

∑
a∈f−1(i)

π̂ (a) , (2.30)

・・・

Fig. 2.2: A one-dimensional reversible Markov chain. The stationary distribution is the
uniform distribution.

*5 The exchange probabilities only depend on the thermodynamic energy distributions. Microscopic
dynamics does not change the exchange probabilities, but can enhance tunneling in the temperature
space by reducing the correlation time of the energy.

*6 The paper first appeared in TR BU-1385-M, Biometric Unit, Cornell University (1997)
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T (i, j) =
∑

a∈f−1(i),b∈f−1(j)

π̂ (a)

π̂ (f−1 (i))
T̂ (a, b) , (2.31)

where T and T̂ are the transition probabilities of X and X̂, respectively.
An irreversible Markov chain that P. Diaconis, S. Holmes and R. M. Neal [60] discussed

is the first proposed lift of a Markov chain. Let us consider a Markov chain on a set
of discrete states V with the stationary distribution π (i) = 1/N (N = |V |, i ∈ V ), see
Fig. 2.2. If we choose the transition probability T (i, j) from a state i to j as

T (i, j) =

{
1
2 if j = i± 1 or i = j = 0, N − 1
0 otherwise,

(2.32)

the Markov chain trivially satisfies the detailed balance condition, and thus it is reversible.
Note that this Markov chain is aperiodic thanks to the boundary condition. To construct
an irreversible Markov chain, the state space V is doubled by adding an extra variable
σ that takes ±: Each state i is divided into (i,+) and (i,−). The transition probability

T̂ ((i, σ) , (j, σ′)) is chosen as

T̂ ((i,+) , (i+ 1,+)) = 1− 1
N if 0 ≤ x < N − 1

T̂ ((N − 1,+) , (N − 1,−)) = 1− 1
N

T̂ ((i,+) , (i+ 1,−)) = 1
N if 0 ≤ x < N − 1

T̂ ((N − 1,+) , (N − 1,+)) = 1
N

T̂ ((i,−) , (i− 1,−)) = 1− 1
N if 0 < x ≤ N − 1

T̂ ((0,−) , (0,−)) = 1− 1
N

T̂ ((i,−) , (i− 1,+)) = 1
N if 0 < x ≤ N − 1

T̂ ((0,−) , (0,−)) = 1− 1
N

(2.33)

This Markov chain with T̂ satisfies the global balance condition with the stationary
distribution π̂ (i, σ) = 1/2N , but clearly violates detailed balance as, for example,

π̂ (i,+) T̂ ((i,+) , (i+ 1,+)) ̸= π̂ (i+ 1,+) T̂ ((i+ 1,+) , (i,+)). As an important prop-
erty of this irreversible chain, the marginal distribution of σ with {π̂ (i, σ)} is equivalent
to the original stationary distribution {π (i)} of the reversible chain, as Eq. (2.30).
Eq. (2.31) can also be easily confirmed to hold. See Fig. 2.3 for a schematic picture of
the irreversible Markov chain.
F. Chen et al. rigorously proved in Ref. [61] that the best possible reduction of the

mixing time with an appropriate lifting for Markov chains on discrete states is its square
root. We have to notice that a unit time step is defined as one update trial of a variable
rather than N trials, which is usually used in Monte Carlo simulations for statistical
mechanics. On the other hand, if a lift of a reversible Markov chain is also reversible,
the reduction of the mixing time is limited by O (logN). Their result for the square-root
reduction is recently generalized to Markov chains on continuous state spaces [62].

2.5.1.2 Turitsyn–Chertkov–Vecelja algorithm
Applying the concept of the lifting, K. S. Turitsyn, M. Chertkov, and M. Vucelja pro-

posed an irreversible Monte Carlo algorithm [63]. In their algorithm, a state space of a re-
versible Markov chain with the transition probability T (i, j) and the stationary probability
π (i), are doubled by an extra variable σ = ±, exactly as Ref. [60]. A configuration of the

system is updated according to the transition probability T̂± (i, j) that is chosen so that the

“skew” detailed balance condition, T̂+ (i, j)πi = T̂− (j, i)πj (T (i, j) = T̂+ (i, j)+T̂− (i, j)),
is fulfilled. They applied the algorithm to the mean-field (or infinite-range) ferromagnetic
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Ising model defined by the Hamiltonian H ({τi}) = − J
N

∑
i<j τiτj (τi = ±1). Because

of the mean-field nature of the system, every state of the system can be specified by its
magnetization m except for a permutation of the labels of sites, and its dynamics with
reversible local algorithms is equivalent to that of a one-dimensional finite Markov chain.
So their algorithm successfully reduce the correlation time, and the dynamical critical
exponent of the system [63]. However, for two- and three-dimensional ferromagnetic Ising
models in which the dynamics is essentially different from a one-dimensional Markov chain,
the algorithm is not so efficient to reduce the exponent [64].

2.5.2 Suwa–Todo algorithm

A few irreversible Monte Carlo algorithms have been known until today. While most
of them are based on the lifting framework discussed above, the Suwa–Todo algorithm
proposed in Ref. [65] breaks detailed balance without any extra variable, and is not a
lifting algorithm. Let us suppose an update in which a next state will be chosen from a
set of states V = {0, · · · ,K − 1} with the stationary probability πi (i = 0, · · · ,K−1). We
construct the transition probability T (i, j) with satisfying the global balance condition

πi =
∑
j∈V

πjT (j, i) , i ∈ V. (2.34)

The global balance condition means that every stationary probability distribution πi of
state i is composed of fragments πjT (j, i) of πj (j ∈ V ), and T (j, i) determines how much
ratio of πj goes to πi. The idea of the Suwa–Todo algorithm is to design (T (i, j))i,j so
that every stationary probability πi is filled by other stationary probabilities with as few
states as possible. That is equivalent to choose a matrix (πiT (i, j))ij so that the number
of elements and the values of the diagonal elements is minimized. This is accomplished
by choosing

πiT (i, j) = max [0,min [∆ij , πi + πj −∆ij , πi, πj ]] . (2.35)

We can easily understand the idea visually, see Ref. [65]. The resultant transition proba-
bility of the Suwa–Todo algorithm is equivalent to the Metropolis acceptance probability
if K = 2. They showed that this algorithm may be rejection-free when K is large, and can
shorten the (integrated) correlation time of a ferromagnetic Potts model and a spin-half
antiferromagnetic XXZ model. Although, unfortunately, the algorithm cannot reduce the
dynamical critical exponent of a ferromagnetic Potts model [66], we can expect that the

・・・

・・・

Fig. 2.3: A one-dimensional irreversible Markov chain. The stationary distribution is the
uniform distribution.
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Suwa–Todo algorithm allows us to simulate many models more efficiently with an O (1)
reduction of the correlation time.
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3

Event-Chain Monte Carlo algorithm

Monte Carlo algorithms that breaks detailed balance but satisfies global balance can
enhance decorrelation as we discussed in the previous section. In particular, for lifting
algorithms defined above, it is mathematically proven that breaking detailed balance can
reduce in principle the mixing time of the Markov chain to its square root [61]. However,
there had been no known algorithm breaking detailed balance that was shown to change
the dynamical exponent z even for simple ferromagnetic models in finite dimensions with
a finite-temperature phase transition.

In this chapter, we introduce and discuss the event-chain Monte Carlo (ECMC) algo-
rithm for particle and continuous spin models. The ECMC algorithm utilizes continuous
degrees of freedom of a system while that could be generalized to a model with discrete
states by introducing auxiliary continuous variables. We will show that the algorithm
can change the dynamics qualitatively, and reduce the dynamical critical exponent for the
three-dimensional ferromagnetic Heisenberg model. The performance of the algorithm for
a frustrated spin model and a spin glass model are also discussed.

3.1 Event-chain algorithm for particle systems

3.1.1 Event-chain algorithm for hard spheres

Before discussing the ECMC algorithm, we review an avalanche algorithm for hard
spheres that may induce a non-local cluster move to the system [37]. Hard spheres interact
with each other by a hard-core potential

U (r) =

{
0 r > σ
∞ r < σ

(3.1)

that forbids any overlap of spheres, where σ is the radius of hard spheres. The hard
sphere system in spatial dimensions d ≥ 2 shows phase transitions in the high density
region. The Metropolis algorithm is the simplest way to simulate hard spheres, but
almost every proposed move is rejected and it falls out of equilibrium if the density gets
higher. The avalanche algorithm is one kind of cluster algorithms that may update many
hard spheres in a coherent way. The idea of the avalanche algorithm is not to reject
any finite move that causes an overlap between two hard spheres: When the move makes
an overlap between the sphere and another one, then the overlapped hard sphere moves
with the same displacement. This dynamics can induce a cluster update in a chain-like
manner, and may satisfy the detailed balance condition, i.e. the reverse chain can be
constructed uniquely. However, the finite move of spheres often makes an overlap with
multiple spheres. In this case, the chain branches, and then it is impossible to construct
the reverse chain starting from one moving sphere unless the chain happens to converge
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to one sphere in the end.
In Ref. [67], E. P. Bernard, W. Krauth, and D. Wilson resolved this serious problem

in the avalanche algorithm by introducing infinitesimal moves. Infinitesimal moves make
a multiple overlap occur with probability 0, and the chain never branches. We thus can
construct the reverse chain uniquely. Each chain is truncated when the total displacements
of hard spheres in the chain reach to a length ℓ that is a parameter of the ECMC algorithm.
This algorithm with infinitesimal moves, referred to as the event-chain algorithm in [67]
and the following, induces a rejection-free large cluster update. The only randomness
for the ECMC algorithm for hard spheres is the choice of the initial direction of moves
with fixed truncated length ℓ. For hard spheres in a translationally symmetric box in
d dimensions, the algorithm can break the detailed balance condition yet satisfying the
global balance condition by choosing the initial direction from only positive basis vectors
+ei (i = 0, · · · , d − 1); no reverse chain appears during simulations, and every moved
sphere never goes back to its former position.
The event-chain algorithm, especially the irreversible version, have been shown to out-

perform conventional algorithms, such as the Metropolis–Hastings Monte Carlo and the
event-driven molecular dynamics [24, 67, 68]. E. P. Bernard and W. Krauth applied the
algorithm to simulate two-dimensional 10242 hard disks, and successfully equilibrated the
system in the high density region [69].

3.1.2 Event-chain algorithm for particles with more general potentials

The original ECMC algorithm for hard spheres utilizes the concept of a collision, that is,
a rejection of an infinitesimal move by another sphere. For particles with a more general
potential at finite temperature, it is unclear how to define a collision between two particles
that is expected to depend on temperature. In Ref. [70], E. P. Bernard and W. Krauth
extended the ECMC algorithm to a general potential with a discretization of potentials.
They define a collision as an event where an interacting energy between the moving particle
and another one raises. This even-driven algorithm is a direct generalization of the original
ECMC algorithm, and they showed in the paper that it reduces the correlation time.
However, according to the definition of the collision, this generalized ECMC algorithm
does not produce samples from the canonical distribution by itself; it never changes the
energy of the system.
What is an appropriate definition of a collision that allows us to sample the canonical en-

semble? We expect the collision occurs at finite temperature in a stochastic manner. The
answer is given by E. A. J. F. Peters and G. de With in Ref. [71] that introduced an event-
driven Monte Carlo algorithm for particles. Two years later, M. Michel, S. C. Kapfer,
and W. Krauth [72] introduced the factorized Metropolis filter, and revealed that the
event-chain and the event-driven algorithm by Peters and de With are lifting algorithms.
To illustrate the stochastic collision, let us consider two particles interacting with each

other via U (r) (where r is the distance between two particles) in a d-dimensional box. The
Metropolis–Hastings algorithm gives an acceptance probability when a particle i (i = 1, 2)
moves from xi to xi + v∆x as

P ({xj}j=1,2, (i,v) ,∆x) = min
[
1, exp

(
−βE(i,v) (∆x)

)]
(3.2)

= exp
(
−βmax

[
0, E(i,v) (∆x)

])
, (3.3)

where β is inverse temperature, v is a d-dimensional unit vector, and E(i,v) (∆x) =
U (|xi + v∆x− xi′ |) − U (|xi − xi′ |) (the other particle is denoted as i′ = |1− i|). In
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the infinitesimal limit ∆x→ +0,

P ({xj}j=1,2, (i,v) ,∆x→ +0) = exp

(
−βmax

[
0,

d

dx
E(i,v) (x)

]
dx

)
, (3.4)

and the rejection probability is

1− P ({xj}j=1,2, (i,v) ,∆x→ +0) = βmax

[
0,

d

dx
E(i,v) (x)

]
dx. (3.5)

Instead of step-by-step acceptance-or-rejection procedure, we can sample in an event-
driven way [73] a location x′

i = xi + sv where a finite displacement s along v is sampled
via the conditional acceptance probability

P (xi → x′
i) = exp

(
−β
∫ s

0

max

[
0,
d

dt
E(i,v) (t)

]
dt

)
. (3.6)

Considering the rejection as a stochastic collision, we can construct the event-chain algo-
rithm for two particles with general potentials in the same manner as one for hard spheres,
and sample from the Gibbs distribution.

To generalize the two-particle ECMC algorithm to N particles, we introduce the fac-
torized Metropolis acceptance probability

PfMet ({xi} → {x′
i}) =

∏
α

exp (max [0,∆Eα]) , (3.7)

where {Eα} is a set of two-body interacting energies that is a decomposition of the system
Hamiltonian, and ∆Eα is the difference of Eα between {xi} and {x′

i}. We can easily
check that PfMet can satisfy detailed balance with an appropriate proposal probability as
the usual Metropolis–Hastings acceptance probability. While this acceptance probability
is usually lower than the Metropolis–Hastings acceptance probability, it has a distinct
characteristic; the proposed move is accepted only if every interacting energy Eα agrees
with the move. This means that we can define the collision for each pair of interacting
particles with the factorized Metropolis probability by setting {Eα} to pairwise interacting
energies where each is involving two particles.

In the event-chain algorithm, an extra variable (i,v) changes at the moment when a
move is rejected, and specifies which particle moves and what direction it moves. This can
be regarded as a lifting variable that is updated as (i,v) → (j,v) at the moment when
a move is rejected, and help the algorithm break detailed balance. Although no reverse
chain appears in the algorithm if the lifting variable, the vector v, is chosen only from a
set of basis vectors {+e0, · · · ,+ed−1}, any forward chain has to have the same probability
to appear as its reverse chain when the vector v is chosen from {±e0, · · · ,±ed−1}. We
thus cannot apply the event-chain algorithm with the update scheme (i,v) → (j,v) to a
system with a pair interacting energy E (xi,xj) that does not satisfy

d

dt
E(i,v) (t) = − d

dt
E(j,v) (t)

(
=

d

dt
E(j,−v) (t)

)
, (3.8)

where E(i,v) (t) = E (xi + tv,xj)−E (xi,xj) (the last equation always holds). The easiest
way to apply the algorithm to such a system is to change the lifting variables (i,v) to
(i,−v) rather than (j,v), when a collision occurs (or a move is rejected) by interacting
energies which do not satisfy Eq. (3.8); we have a trivial equation for any interacting
energy

d

dt
E(i,v) (t) = − d

dt
E(i,−v) (t) . (3.9)
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However, this update of the lifting variables is expected to worsen the performance of the
event-chain algorithm because moved particles can go back to their former position in a
chain and the algorithm is reversible. More sophisticated update scheme is required to
improve the algorithm for the case.
The event-driven Monte Carlo algorithm by Peters and de With [71] includes both the

event-chain algorithm and the event-driven molecular dynamics for hard spheres as special
cases. In contrast to the event-driven molecular dynamics in which all particles move at
any time, only one single particle moves in the event-chain algorithm. Therefore, its
implementation is much easier and faster than the event-driven molecular dynamics. On
the other hand, the correlation time of the event-driven molecular dynamics in the high
density region measured in the number of collisions is shorter than that of the event-chain
algorithm. We thus could expect that the Peters–de With algorithm with all particles
moving at finite temperature is more efficient than the event-chain algorithm in the sense
of the time unit, especially for systems with interactions which do not satisfy Eq. (3.8).

3.2 Event-chain algorithm for continuous spin systems

The event-chain algorithm applied to some particle systems is shown to be much more
efficient than the usual Metropolis–Hastings algorithm. As the algorithm utilizes continu-
ous degrees of freedom of a system, we would expect that the algorithm can be generalized
to any model that has continuous variables. In this section, we discuss the event-chain
algorithm for classical continuous spin models, especially for classical Heisenberg spin
models, and its performance.
We begin with the simplest Heisenberg spin model defined by the Hamiltonian

H ({Si}) = −
∑
⟨i,j⟩

Si · JijSj −
∑
i

hi · Si, (3.10)

where Si is a three-dimensional vector with fixed length |Si| = 1, the bracket ⟨·, ·⟩ rep-
resents a pair of interacting spins, Jij is a 3 × 3 matrix, and hi is a three-dimensional
vector. Let us consider a decomposition of the Hamiltonian (3.10)

H ({Si}) =
∑
α,i<j

Eαij (Si,Sj) +
∑
α,i

Eαi (Si) , (3.11)

where Eαij (Si,Sj) = −Si · JαijSj , Eαi (Si) = −hαi ·Si, and
∑
α J

α
ij = Jij ,

∑
α h

α
i = hi. As

we discussed in the previous section, each Eij (Si,Sj) has to satisfy Eq. (3.8) to update the
lifting variables as (i,v) → (j,v). In the event-chain algorithm for systems composed of
continuous O (n) spins (n ≥ 2), spins are rotated with respect to a vector v. The condition
Eq. (3.8) thus is equivalent to the following condition for the Hamiltonian (3.10):

d

dt

(
Rv (t)Si · JαijSj

)
=

d

dt

((
Jαij
)T

Si ·R−v (t)Sj

)
⇔ Si ·DvJ

α
ijSj = Si · JαijDvSj

⇔
[
Jαij , Dv

]
= 0, (3.12)

whereRv (t) is a rotation matrix around a vector v with an angle t, andDv = d
dtRv (t)

∣∣
t=0

.

Note that the matrix Dv is skew symmetric. If a vector v satisfies Eq. (3.12) for a
certain Jαij , we can update as (i,v) → (j,v) when a collision occurs due to the interaction
energy Eαij (or a infinitesimal move is rejected by Eαij). We should stress here that the
Hamiltonian is invariant under the global transformation with Rv (t) if and only if the
condition Eq. (3.12) holds for every Jαij .
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For the case that a collision occurs with external fields, {hi}, we no longer can change
the moving spin. While another update scheme might be possible, the easiest update of
the lifting variable is, again, (i,v) → (i,−v). Initial directions of a rotation, v, have to be
chosen from a set of vectors that contains pairs of opposite vectors to satisfy the balance
condition.

According to the above discussion, we can expect that the performance of the event-
chain algorithm is maximal when it is applied to a system with continuous symmetry:
The detailed balance condition can be maximally broken for the system. If a system does
not have any continuous symmetry, only one spin (or particle) moves in a chain with the
update scheme of the lifting variables (i,v) → (i,−v). The event-chain algorithm can
update the system only in a local manner, and its dynamics is essentially equivalent to
local Monte Carlo algorithms for this case.

3.2.1 Performance of the event-chain algorithm

To demonstrate the performance of the ECMC algorithm for some continuous spin mod-
els, we consider an autocorrelation function of a physical quantity O defined in Eq. (2.8).
In our actual simulations, one unit Monte Carlo time step is defined as one update per
spin. The length of each chain ℓ is set to Nπ/10 in the following. We use the exponential
correlation time Eq. (2.9) to find the slowest mode in the autocorrelation function. Due
to the finiteness of available data, the autocorrelation function CO (t) has a relatively
large statistical error at large time that prevents us to find the exact τexp (O). Here, to
estimate the slowest time scale of the Markov chain, we assume that the slowest mode in
CO (t) appears at a time t∗ where CO (t∗) = 0.1, and define an approximate exponential
correlation time as

τ ′exp (O) =
t∗

− logCO (t∗)
. (3.13)

Hereafter, we discuss the performance of the event-chain algorithm by using this approx-
imate exponential correlation time τ ′exp (O). A physical quantity O is carefully chosen
so that its autocorrelation function is expected to have the slowest mode of the Markov
chain. Otherwise, if we set O to a quantity that is not involved in the order of the system,
the autocorrelation function CO (t; tw) decays fast at any finite temperature.

3.2.1.1 Heisenberg ferromagnetic model in three dimensions
The first example we consider is the ferromagnetic Heisenberg model in three dimen-

sions. The Hamiltonian is
H ({Si}) = −J

∑
⟨i,j⟩

Si · Sj . (3.14)

The lattice on which spins reside is the simple cubic lattice with the periodic boundary
conditions. The model shows a phase transition from the paramagnetic phase to the
ferromagnetic phase at finite inverse temperature βc = 0.6930(1) [40].

We focus here on the dynamical critical exponent z of the ECMC algorithm. The
exponent was estimated as z = 1.96(6) by using Metropolis–Hastings algorithm with the
autocorrelation function of the magnetization m = 1

N

∑
i Si [13]. Here, we measure not

only the autocorrelation function of m, but also that of the energy and the magnetic
susceptibility χ = 1

N |m|2.
The autocorrelation function of the magnetization obtained by the event-chain algo-

rithm displays an oscillation, which is not observed in a stochastic process with detailed
balance, see Fig. 3.1. Furthermore, the autocorrelation is independent of the system size
while that in the heat-bath algorithm decays slower with increasing the system size. At



3.2 Event-chain algorithm for continuous spin systems 23

first sight, the dynamical critical exponent z ≃ 0 in the event-chain algorithm. However,
the autocorrelation function of other physical quantities, the energy density and the mag-
netic susceptibility, in the event-chain algorithm undoubtedly depends on the system size.
Why does not the autocorrelation function depend on the system size? In the event-chain
algorithm, many spins (about O (N) spins in the choice of ℓ = Nπ/10) rotate with the
same axis in each chain. The magnetization is not invariant under global rotation of spins,
and consequently the orientation of the magnetization is largely changed in one Monte
Carlo time step. These oscillating behavior in the autocorrelation function of the magne-
tization is also found in the trivial global rotation of all of spins [4]. The magnetization
is not a physical quantity for the event-chain algorithm that has the slowest mode in
its autocorrelation function obtained [4]. We thus focus on the autocorrelation function
of the magnetic susceptibility χ, which is invariant under global rotation, and shows a
polynomial divergence at the critical temperature.
The approximate exponential correlation time τ ′exp (χ) measured in Cχ (t) increases

polynomially with the system size, which implies the critical slowing down, see Fig. 3.1.
The slope of the size dependence of the correlation time yields the dynamical critical
exponent z ≃ 1.2. This value is significantly smaller than that of the local algorithms,
z = 1.96(6) by the Metropolis algorithm. The reduction of the dynamical critical ex-
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Fig. 3.1: (a–c) The autocorrelation function of the magnetization m, the energy e, and
the magnetic susceptibility χ, respectively. (d) The correlation time of the magnetic
susceptibility τ ′exp (χ) for both the event-chain algorithm (ECMC) and the heat-bath
algorithm (HB) with sequential update.
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ponent is not so dramatic as the Wolff cluster algorithm [40]. However, the event-chain
algorithm realizes the reduction in a different manner from the cluster algorithm: Break-
ing the detailed balance condition. This is the first irreversible algorithm that can reduce
the dynamical exponent of a finite-dimensional model with a finite-temperature phase
transition. While the cluster algorithms do not work well in systems that do not have
discrete (reflection) symmetry but has continuous symmetry, the event-chain algorithm is
expected to be efficient for such systems.

3.2.1.2 Heisenberg antiferromagnetic model on a triangular lattice
Here we consider the Heisenberg antiferromagnetic model on a two-dimensional trian-

gular lattice defined by the Hamiltonian

H ({Si}) = −J
∑
⟨i,j⟩

Si · Sj (J < 0) . (3.15)

Due to the geometrical frustration in each plaquette of the lattice, the ground state of the
system is so-called 120◦ Néel state. In 1984, H. Kawamura and S. Miyashita [74] argued
that this model has a Kosterlitz–Thouless-type phase transition at finite temperature
driven by Z2 vortices which are estimated to have a logarithmically diverging energy scale.
The Z2 vortex is a vortex formed by the chirality vector κi on each upward triangular
plaquette of the lattice that is defined as

κi =
2

3
√
3
(Si,1 × Si,2 + Si,2 × Si,3 + Si,3 × Si,1) , (3.16)

where Si,α (α = 1, 2, 3) is the spin located at the left bottom site (α = 1), the right bottom
site (α = 2), and the top site (α = 3), respectively, see Fig. 3.2. A recent estimation of
a possible phase transition temperature is Tv/J = 0.285(5) [38]. While the nature of the
system in the low temperature region is still under debate, it is true that dynamics of Z2

vortices at low temperature is very slow. We thus set T/J = 0.25 that is a sufficiently low
temperature to demonstrate the performance of the event-chain algorithm. We choose O
as the susceptibility of the chirality vector χc =

1
N |
∑
i κi|

2
that is invariant under global

rotational transformation.
While the correlation time in the heat-bath algorithm at the temperature increases

polynomially, that in the event-chain algorithm is almost constant for L > 48. If the
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Fig. 3.2: (a) An elementary upward plaquette of a triangular lattice. (b) The correlation
time χc obtained by the heat-bath and the event-chain algorithm.
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low temperature nature of the system is of the Kosterlitz–Thouless phase, the correla-
tion time in the event-chain algorithm shows that the dynamical critical exponent is very
small. A recent study [75] reports by using extreme-value statistics that the event-chain
algorithm gives z → 0 in the zero-temperature limit for the two-dimensional ferromag-
netic XY model although the mixing time is much longer than the equilibrium correlation
time in the low temperature phase. The result in the two-dimensional antiferromagnetic
Heisenberg model may be described by the same analysis. On the other hand, the cor-
relation time in the event-chain algorithm can be also explained by assuming either that
the low temperature phase is equivalent to the paramagnetic phase or that the suscep-
tibility of the chiral vector is not involved in the low temperature phase. Anyway, the
event-chain algorithm greatly enhances decorrelation of the correlation time of a physical
quantity which increases rapidly in the heat-bath algorithm. We thus can conclude that
the event-chain algorithm works efficiently in a frustrated antiferromagnet.

3.2.1.3 Heisenberg spin glass model in three dimensions
As the last example, let us consider the Edwards–Anderson Heisenberg spin glass model

on the three-dimensional simple cubic lattice. In the model, spins interact with each
other through random coupling constants {Jij} drawn independently from a Gaussian
distribution

P (Jij) =
1√
2πJ2

exp

(
−
J2
ij

J2

)
. (3.17)

The Hamiltonian of the model depending on each realization {Jij} is

H{Jij} ({Si}) = −
∑
⟨i,j⟩

JijSi · Sj . (3.18)

While the Heisenberg spin glass model is considered to have a spin glass phase transition
at finite temperature TSG, another phase transition, a chiral glass transition, is claimed
to occur at higher temperature TCG associated to the Z2 symmetry of the system [51,
76–79]. The chiral glass order parameter is defined as an average of an overlap between
two replicas of the local chiral glass order

χiµ = Si+eµ ·
(
Si × Si−eµ

)
(3.19)
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Fig. 3.3: The autocorrelation function of the chiral glass order Cχ (t) in the three-
dimensional Heisenberg spin glass model.
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over the lattice sites i and the directions µ, where eµ is a unit vector parallel to the µ
direction (µ = x, y, z). An opposite view on the model claims that the chiral and spin
glass orders do not decouple, and TSG = TCG = 0.129+0.003

−0.016 [80].
Here, we measure the autocorrelation function of the chiral glass order parameter

averaged over 1024 realizations of random couplings. The temperature we consider is
T/J = 0.12 which is expected to be lower than an estimated spin glass transition temper-
ature no matter whether the two orders decouple or not.

The autocorrelation function in the event-chain algorithm decays slower than the heat-
bath algorithm for L = 4 and 8, see Fig. 3.3. This clearly means that the event-chain
algorithm is not efficient, and even worse than the conventional algorithm. We may
understand this behavior by the discrete Z2 nature of the chiral glass order: Global
rotation, which is induced by the event-chain algorithm, does not change the sign of the
chiral glass order, but global reflection does. Decorrelation of the chiral glass order is
only achievable when configurations with the chiral glass order in both signs are equally
sampled. The event-chain algorithm in the low temperature region of the spin glass model
induces a global-rotation-like update while the heat-bath algorithm induces a random
jump for each spin with finite displacements. Therefore the event-chain algorithm is not
suitable for orders with discrete symmetry. Note that the event-chain algorithm is claimed
to be efficient in the three-dimensional XY model, and enhance decorrelation of the chiral
glass order [81]. They compare the efficiency of the simple Metropolis algorithm and the
event-chain algorithm, as the heat-bath algorithm is difficult to apply to XY spin models.
Their result implies that the event-chain algorithm works better than the Metropolis
algorithm even though it is not so efficient for the spin glass model.
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Conclusion of Part I

In Part I, we discussed the Markov chain method in statistical physics. Any Markov chain
that satisfies the irreducibility and the aperiodicity conditions converges to the unique sta-
tionary distribution. We can implement Markov chains without any a priori information
about the system such as the normalization constant except its energy function. Markov
chain Monte Carlo method is a powerful method in statistical physics that allows us to
study statistical properties of an arbitrary finite-size system without any approximation
in principle. However, due to correlations between samples and long correlation times in
Markov chains, we sometimes obtain wrong results. In particular, at a phase transition
point, the time scales diverge with the system size polynomially for continuous transitions,
and exponentially for first-order transitions if we use the conventional local Monte Carlo
algorithms. We have to simulate the system for a very long time in such cases. We also
discussed some Markov chain Monte Carlo algorithms. Each algorithm has advantages
compared to other algorithms, but does not work well for certain models.
In the last chapter, we presented the recently developed event-chain algorithm for par-

ticle and continuous spin systems. By introducing lifting variables, this algorithm can
violate detailed balance with keeping global balance. We discussed a condition that the
algorithm can maximally break detailed balance, especially for continuous spin systems.
In the end of the chapter, we showed applications of the event-chain algorithm to some
Heisenberg spin systems. The most surprising result there is the dynamical critical expo-
nent z of the algorithm for the three-dimensional ferromagnetic model: While conventional
local Monte Carlo algorithms such as the Metropolis–Hastings and the heat-bath algo-
rithm have z ≃ 2 scaling in the relaxation time, the event-chain algorithm has z ≃ 1
scaling. This is the first example of a reduction of the exponent by breaking detailed
balance for a finite-dimensional system with a finite temperature phase transition. The
event-chain algorithm is numerically proven to be efficient also for a frustrated system,
an antiferromagnetic model on the two-dimensional triangular lattice. However, for a
Heisenberg spin glass model in three-dimensions, the event-chain algorithm works worse
than the heat-bath algorithm. A possible reason for its performance is the discrete nature
of the order in the low temperature phase of the spin glass model.
The event-chain algorithm applied to the three-dimensional ferromagnetic Heisenberg

model induces a rotation of O (N) spins in a single chain if the chain length ℓ is sufficiently
long. It is thus natural that the correlation time of the orientation of the magnetization
vector is eliminated by the event-chain algorithm. However, the event-chain algorithm
also reduces the correlation time, and the dynamical critical exponent of the length of
the magnetization vector, the magnetic susceptibility, which seems a mode perpendicular
to the orientation of the magnetization vector. This fact means that the dynamics of
the event-chain algorithm is essentially different from the trivial global orientation. Some
might expect that the reduction of the correlation time of the magnetic susceptibility in
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the event-chain algorithm derives from the rejection-free nature of the algorithm. But,
this is not true as the heat-bath algorithm, which is also rejection-free for the Heisenberg
model, has the usual dynamic scaling z ≃ 2. Some also might think that breaking detailed
balance produces the reduction of the dynamical critical exponent. This is not true either
as any other algorithms breaking detailed balance are not reported to reduce the dynamical
critical exponent. Thus, we can conclude that both of breaking detailed balance and a
cluster update in the event-chain algorithm are essential for the reduction of the dynamical
critical exponent. We need to understand a condition when the event-chain algorithm,
and other algorithms breaking the detailed balance condition, can change the dynamics
qualitatively which gives us a guiding principle to design new Monte Carlo algorithms.

The event-chain algorithm is built on the factorized Metropolis acceptance probability.
This probability is a product of the conventional Metropolis acceptance probabilities,
which can be calculated easily. We thus expect that the event-chain algorithm is applicable
to any models straightforwardly as the conventional Metropolis algorithm. In particular,
for statistical models with continuous degrees of freedom to which the heat-bath algorithm
is not applicable (when the normalization constant cannot analytically integrable unlike
the Heisenberg spin models as Eq. (2.17)), the event-chain algorithm should be a promising
algorithm to investigate the systems in equilibrium efficiently. Continuous spin models
defined by the Hamiltonian

H ({Si}) =
∑

Vij (Si · Sj) , (4.1)

where Vij is an arbitrary nonlinear function, are examples for which the heat-bath algo-
rithm is not suitable due to non-trivial calculations of the normalization factor. They
have various phases and phase transitions not observed when Vij is a linear function [82–
85]. The conventional Metropolis algorithm suffers from rejection with high probability
and the long correlation time at low temperature. The event-chain algorithm, on the
other hand, is free from rejection, and thus it is expected to reduce the correlation time.
However, whether a qualitative reduction of the correlation time in the models is realized
by the event-chain algorithm is unclear. Another interesting examples for the event-
chain algorithm are off-lattice particle models, especially structural glasses. In structural
glasses, dynamics in molecular dynamics and Monte Carlo simulations with conventional
algorithms is highly spatially heterogeneous at low temperature or high density [86, 87].
Immobile particles (“rattlers”) are caged in neighboring particles. It takes a long time to
move many particles cooperatively by conventional algorithms to destroy inactive regions
in the system. The event-chain algorithm makes neighboring particles move cooperatively
in one direction. The inactive regions in the structural glasses may possibly be destroyed
efficiently by the algorithm. Extensive studies of the dynamics of the event-chain algo-
rithm in complex systems including continuous spin systems with nonlinear interactions
and structural glasses are necessary to understand the efficiency of the event-chain algo-
rithm.

The major drawback of the event-chain algorithm is a difficulty of parallelization. A
single cluster of displaced spins or particles formed in the event-chain algorithm extends
over the whole system if the chain length ℓ is sufficiently long. Of course, such a large
cluster is essential for the fast decorrelation by the algorithm, but that makes it difficult
to find spatial regions which can be updated independently at the same time. A possible
attempt to parallelize the algorithm for hard disks was reported in Ref. [88], where the
system is decomposed into O (L) parallel layers (L is the linear dimension of the simulation
box). Its maximal efficiency is thus O (L) if the dynamics of the event-chain algorithm
is not affected by the parallelization. Another parallelization strategy [89] is the checker-
board decomposition of the system as in Ref. [25] with a short chain length ℓ. While the
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maximal efficiency of this parallelization is O (N), a short chain length largely decreases
the efficiency of the algorithm, and the overall speedup is moderate [89].
A recent graphic processing unit (GPU) makes massive spatial parallelization of Monte

Carlo simulations possible, and realizes ∼ 109 updates per second both for particle and
spin systems in two dimensions [22, 23, 25]. In particular, in the two-dimensional hard
disk model, an O (N) spatially parallelized simulation using a checkerboard decomposition
with the conventional Metropolis algorithm [25] is 5 times faster than a serial Monte Carlo
simulation with the event-chain algorithm in the sense of the correlation time measure in
wall clock seconds. However, in higher dimensions, the parallelization efficiency is lower
than that in two dimensions as the ratio of the regions in the system which can be updated
at the same time decreases. Furthermore, the O (N) spatial parallelization requires an
advanced programming technique and fine tuning parameters in the program. On the
other hand, the event-chain algorithm requires almost the same computational effort also
in higher dimensions, and a straightforward implementation. We thus expect that the
event-chain algorithm allows us to obtain more easily high-precision data of systems when
the algorithm works well in the systems, i.e. the systems have continuous symmetry.
Our ultimate goal in designing Monte Carlo algorithms is to find a “good” cluster that

can be used to enhance relaxation of each system. This requires us a deep understanding
of physics of the system; its symmetry and orders. The Swendsen–Wang and Wolff algo-
rithms, which have been regarded as the most successful cluster algorithms ever known,
utilize discrete symmetry of systems to form clusters. That cluster in the algorithms is
essentially important for very specific models (for example, as mentioned above, simple
ferromagnetic models), but, for almost all models, it is not useful even if the models have
discrete symmetry. The event-chain algorithm which utilizes continuous symmetry of sys-
tems also induces a large-cluster update in a different manner from the Swendsen–Wang
and Wolff cluster algorithms. It thus can reduce slowing down in a different class of mod-
els. However, the event-chain algorithm is not so efficient for complex models like spin
glasses, and obviously, models without continuous degrees of freedom. Any algorithm is
not versatile, and we need a specific algorithm designed for each system that we would
like to study.
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Phase transition in a three-dimensional
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5

Introduction to uni-axial chiral magnets

Magnetic systems with competing (or frustrating) interactions and/or fields have lower
symmetry in their spin space. Complicated spin structures, for example, spin ice, mag-
netic skyrmion, and spin liquid, emerge in such magnetic systems at low temperature.
Phase transitions and phase diagrams of the systems with low symmetry are diverse,
and may show unexpected properties. Uni-axial chiral magnets, in which the uni-axial
antisymmetric Dzyaloshinskii–Moriya (DM) interaction [90–94] has an essential role in
the spin structure, have recently attracted great interests to experimental and theoretical
studies not only for its fundamental properties but also for applications [95–103]. They are
experimentally realized in some materials, for example, Cr1/3NbS2 and CsCuCl3, where
their crystal structures are non-centrosymmetric [103]. In particular, Cr1/3NbS2 has been
extensively studied, and shown to have a non-trivial spin structure, which is called the
chiral soliton lattice (CSL) structure (see Fig. 5.1 for a schematic picture of the CSL struc-
ture), at low temperature in the presence of a magnetic field perpendicular to the helical
axis [98–100, 102–104]. A phase transition between the CSL phase and the paramagnetic
phase is experimentally observed through various physical quantities such as the magne-
tization [98, 100, 104], the magnetoresistance [99] and the ac susceptibility [102]. Two of
the works [102, 104] reports that the phase transition qualitatively changes depending on
the magnetic field.

The uni-axial chiral magnets have been theoretically studied by using a one-dimensional
model with the ordinary exchange and the DM interactions with magnetic fields [90–92,
97, 105]. At zero temperature, the CSL structure indeed emerges in the model with a
continuum approximation in the presence of the magnetic field, and a phase transition
between the CSL and the paramagnetic phases occurs at finite magnetic field, see Fig. 5.1.

CSL

Paramagnetic

Fig. 5.1: Phase diagram of uni-axial chiral magnets at zero temperature. A phase tran-
sition between the CSL and the paramagnetic phases occurs at finite magnetic field hc.
Each arrow represents a spin.
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A finite-temperature phase transition in three dimensions has been studied within mean-
field approximations [106–110]. These works show that three types of phase transitions
occur depending on the magnetic field; a continuous phase transition with classical critical
exponents at weak and zero magnetic fields; a first-order phase transition with a latent
heat; a “nucleation” type continuous phase transition [111] at strong magnetic field. In the
mean-field level, the nucleation type continuous phase transition is described as a phase
transition at which the average distance between two chiral solitons is infinity and only
the uniform component of the magnetic susceptibility diverges while multiple wave vectors
are necessary to characterize the ordered phase. In Refs. [107–110], the phase diagram
and the detailed properties of phase transitions within the mean-field approximations are
very detailed. Nevertheless, their mean-field approximation is essentially the same as the
one-dimensional model because spins in the same plane perpendicular to the helical axis
are assumed to have a very weak fluctuation. Thermal fluctuations at finite temperature
appear in shrinkage of the length of the magnetization vector of each plane. Finite-
dimensional effects on their mean-field approximation are not clear in their studies.
The phase diagram and a finite temperature phase transition of uni-axial chiral magnets

in three dimensions is still unclear. Some attempts using renormalization group theory
[112, 113] and a simple transformation of the Hamiltonian [114, 115] have been reported
which consider the system without the magnetic field. However, their applicability is
limited to the case. Monte Carlo simulations of the system with the magnetic field is thus
expected to provide us detailed understandings of the phase transition. In particular,
they allow us to access physical quantities such as the magnetization and the specific heat
which can be measured in experiments and compare them obtained by experiments and
simulations directly. Also, from the statistical-mechanical point of view, it is of significance
to understand how the nucleation type phase transition appears in three-dimensions as
its finite-dimensional counterpart has not been known to our knowledge.
In the following, we overview some results focusing on a phase transition at finite tem-

perature and the phase diagram obtained by experiments on the uni-axial chiral magnets.
Theoretical works on a one-dimensional continuum model of the chiral magnets at zero
temperature and the mean-field theory are reviewed after that.

Fig. 5.2: Magnetic phase diagrams of Cr1/3NbS2 constructed by using the magnetization
(left) and the magnetoresistance (right) [99].
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5.1 Experiments on uni-axial chiral magnet

Most of the experiments studying finite-temperature properties of the uni-axial chiral
magnet have used a single crystal of Cr1/3NbS2 [95, 96, 98–100, 102–104], whose crystal
has a hexagonal structure. The CSL structure can be directly observed in the compound at
finite temperature by transmission electron microscopy [98]. The magnetic phase diagram
of the compounds has been constructed by using some physical quantities; the temperature
and the magnetic field dependence of the magnetization [99, 100]; the magnetoresistance
[99]; the ac susceptibility [102]. The phase diagrams obtained by each work qualitatively
correspond to each other while the estimated value of the critical magnetic field at zero
temperature is slightly different [99, 100, 102, 104].

In Ref. [99], they showed experimentally that the magnetoresistance is correlated to the
period of the CSL structure, or equivalently, the number of the chiral solitons. At low
temperature, the magnetoresistance monotonically decreases with increasing the magnetic
field, which indicates that the number of chiral solitons also decreases. At slightly higher
temperature, the magnetoresistance shows a positive change at phase transition point
[99]. This suggests that the nature of the phase transition at finite magnetic field changes
depending on temperature if the magnetoresistance still correlates to the number of chiral
solitons at higher temperature. They also showed that no hysteresis is observed in their
experiments. Another study [102] using the ac susceptibility claims that there exists a
characteristic magnetic field that separates the CSL phase into two regions. A qualitative
change in the ac susceptibility is observed depending on whether the magnetic field is
above or below the characteristic value. In particular, they suggest a possibility of a first-
order phase transition in the low magnetic field region. The order of a phase transition is
also discussed in Ref. [104]. At low magnetic field, by measuring the entropy of spins, a
first-order phase transition is claimed to occur at finite temperature. With increasing the
magnetic field, the phase transition turns to be of second order.

While almost the same shape of the phase diagram of the uni-axial chiral magnet is
obtained in many experimental works (see Fig. 5.2), detailed properties of the phase
diagram of the uni-axial chiral magnet are still controversial: Is there a critical point at
finite temperature and the magnetic field? Does a first-order phase transition occur in the
low magnetic field region? A first-order phase transition discussed in [102, 104] clearly
contradicts to the magnetization curve in which no hysteresis is seen [99]. If there exists
a critical point in the phase diagram at which a first-order transition line terminates,
criticality of the second-order phase transition at higher magnetic field is unclear.

5.2 Theory of the uni-axial chiral magnet

A one dimensional spin model of the uni-axial chiral magnet is defined by the Hamil-
tonian

H ({Si}) = −J
∑
i

Si · Si+ey −D ·
∑
i

Si × Si+ey − h ·
∑
i

Si, (5.1)

where, Si is a classical Heisenberg spin. The second term corresponds to the
Dzyaloshinskii–Moriya interaction, and D = Dey. With this choice of D, a helical
structure along the one-dimensional lattice is induced. We take the magnetic field
h = hez ⊥ D. At zero temperature, all of spins are in the x-z plane, and thus the
Hamiltonian Eq. (5.1) can be written by parametrization Si = (sinϕi, 0, cosϕi) as

H ({ϕi}) = −J
∑
i

cos
(
ϕi+ey − ϕi

)
−D

∑
i

sin
(
ϕi+ey − ϕi

)
− h

∑
i

cosϕi (5.2)
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For very small D/J , the angle between two spins |ϕi − ϕi+ez | → 0, and we obtain a
continuum Hamiltonian which is exact in the limit D/J → 0

H [ϕ (y)] = J

∫
dy

[
1

2

(
dϕ (y)

dy

)2

− arctan

(
D

J

)
dϕ (y)

dy
− h

J
cosϕ (y)

]
(5.3)

A variational analysis gives a spatial profile ϕ (y) = 2am
(√

hz/
√
Jk
)
, where am (x) is the

Jacobi amplitude function, and k is the elliptic modulus. This profile is periodic with the
period L = 2kK (k)

√
J/h, where K (k) is the complete elliptic integral of the first kind.

The value of k (0 < k < 1) is again determined by a variational calculation of the energy

per a period. With approaching hc = (π arctan (D/J))
2
J/16 from below, the elliptic

modulus k → 1, and the period L diverges as ∼ − log (hc − h). The magnetization m
and the uniform magnetic susceptibility χ also have singular behaviors, m ∼ 1− 1

log(hc−h)
[92, 97, 103] and χ ∼ 1/ (hc − h) log (hc − h) [92], respectively. The spin structure (or,
equivalently, ϕ (z)) of the system with finite h/J is indeed the CSL structure characterized
by multiple wave vectors. The phase transition at zero temperature with the diverging
period L and uniform magnetic susceptibility χ is called the nucleation type continuous
phase transition [111].
At finite temperature, phase transitions are studied within mean-field approximations

for the continuum model [106, 107, 109], and for the discrete lattice model with the
Hamiltonian Eq. (5.1) [108, 110]. They show that a tricritical point between the first-
order and the ordinary continuous transition lines and a multicritical point between the
first-order and the nucleation type continuous transition lines exist in the magnetic phase
diagram, see Fig. 5.3. However, no theoretical study that systematically considers finite-
dimensional effects on the system has not been known. Finite-dimensional fluctuations
in the same perpendicular plane may completely blow out the mean-field picture. We
thus need a theory of the uni-axial chiral magnet beyond the mean-field approximations
to understand the nature of phase transitions and the phase diagram.

Fig. 5.3: Phase diagram of the uni-axial chiral magnetic model with a mean-field and a
continuum approximations [109].
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Simulation method

In this chapter, we introduce a classical Heisenberg spin model of a uni-axial chiral magnet,
and physical quantities which are useful to study phase transitions in the model. Detailed
parameters of the used algorithms are also presented.

6.1 Model

The model we consider here is a classical Heisenberg spin model with the ordinary
exchange interaction, the Dzyaloshinskii–Moriya (DM) interaction, and a magnetic field.
Its Hamiltonian is the following:

H ({Si}) = −J
∑
⟨i,j⟩

Si · Sj −D ·
∑
i

(
Si × Si+ey

)
− h ·

∑
i

Si, (6.1)

where Si is a classical Heisenberg spin model with |Si| = 1, D = Dey is the DM vector,
and h = hez is a magnetic field perpendicular to the DM vector D. The bracket ⟨·, ·⟩
represents a pair of neighboring sites of the lattice. The lattice on which spins reside is a
simple cubic lattice where the linear length of the y direction (parallel to the DM vector)
is α times as long as the x and z directions. We denote the linear length of the x and the
z directions of the lattice as L and the total number of sites is N = αL3. We set α = 8
through this work. Periodic boundary conditions are used on the x and the z directions
and a free boundary condition on the y direction. The linear length of the system in our
simulations ranges from L = 2 (the total number of spins N = 2 × 16 × 2) to L = 64
(N = 64× 512× 64).

The ground state structure parallel to D of the system without the magnetic field can
be easily obtained by local optimization of each local energy if we assume that Ly → ∞,
or Ly is commensurate to the structure. Since the Hamiltonian is invariant under a
rotation with an axis ey and a translation, it is natural to suppose that a spin at i-th site
Si ∥ ez. We can easily minimize the local energy of Si and Si+ey , −JSi+ey,z −DSi+ey,x,
by parametrizing Si+ey = (sin θ, 0, cos θ), and find the optimal angle θGS = arctan (D/J).
The ground state of the system with h = 0 is characterized by one single wave vector

qchiral = arctan

(
D

J

)
ey. (6.2)

By transforming spins Sr → σr = Rey (−θGSry)Sr, where r = (rx, ry, rz) is a position of
a lattice site and Rey

(θ) is a rotation matrix around ey for an angle θ, the Hamiltonian
is converted to

H ′ ({σi}) = −J
∑
⟨i,j⟩⊥

σi · σj −
∑
i

σi ·Aσi+ey
, (6.3)
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where

A =

 √
J2 +D2

J √
J2 +D2

 , (6.4)

and the summation in the first term runs over the neighboring pairs of two lattice sites
which are in the same x-z plane [114, 115]. This Hamiltonian (6.3) for a finite value
of D has the same symmetry with the XY model, and therefore, the original system is
expected to belong to the same universality class of the three-dimensional ferromagnetic
XY model [114].
In the presence of the magnetic field h = hez perpendicular to the DM vector, the

structure of the ground state is modulated depending on h, and cannot be determined
locally. For 0 < h < hc (<∞), the chiral soliton lattice structure emerges, and all spins
are parallel to the magnetic field for h > hc. The precise value of hc is unclear for arbitrary
value of D/J while those for D/J ≪ 1 with a continuum approximation [90–92, 97, 103,
105] and for D/J = 1 are calculated [116]. In the CSL state at zero temperature, there
are more than one local length scales such as the distance between two chiral solitons and
the length scale of one chiral soliton, and hence, multiple wave vectors are expected to be
required to characterize the CSL structure.

6.2 Physical quantities

In this section, we define several physical quantities to study phase transitions in our
system.
Any periodic spin structure is identified by the wave-vector-dependent magnetization

m (q) =
1

N

∑
j

Sj exp (−iq · rj) , (6.5)

where q is a three-component wave vector. The wave-vector-dependent susceptibility
associated with m (q) is defined as

χ (q) = βN [⟨m (q)m (−q)⟩ − ⟨m (q)⟩ ⟨m (−q)⟩] , (6.6)

where β is inverse temperature and the bracket ⟨· · ·⟩ denotes the thermal average at β.
Note that χ (q) is proportional to a Fourier component of the spin correlation function

C (r) =
1

N

∑
i

(⟨Si · Si+r⟩ − ⟨Si⟩ · ⟨Si+r⟩) (6.7)

in the thermodynamic limit N → ∞, or with periodic boundary conditions. We especially
focus on the susceptibility with a wave vector q parallel to the DM vectorD that we denote
as χ∥ (q) (q = |q|). While an order parameter of the ground state of the system without
the magnetic field is m (q = qchiral), which m (q)’s characterize phase transitions of the
system at finite temperature is not obvious even if the magnetic field is absent. We thus
compute the wave-vector dependence of χ∥ (q) to find the wave vectors q0 at which χ∥ (q0)
gives maximum values. By using χ (q), the wave-vector-dependent finite-size correlation
length can be measured as

ξL (q) =
1

2 sin (|qmin| /2)

√
χ (q)

χ (q + qmin)
− 1, (6.8)
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where qmin is the minimum wave vector parallel to q [117]. We denote the finite-size

correlation length depending on a wave vector q parallel toD as ξ
∥
L (q) as the susceptibility,

where qmin in Eq. (6.8) is set to qmin = (0, 2π/αL, 0).
We also measure a distribution function of the energy density e

P (e) =

⟨
δ

(
e− 1

N
H ({Si})

)⟩
. (6.9)

This distribution function shows a double-peak structure near a first-order phase transition
point. The specific heat c is computed as the variance of the energy distribution

c = β2N

(⟨(
H

N

)2
⟩

−
⟨
H

N

⟩2
)
. (6.10)

The peak value of the specific heat c∗ (L) diverges with the system size as Ld asymptoti-
cally, where d is the spatial dimension of the system, if the system has a first-order phase
transition [118]. On the other hand, for second-order phase transitions, c∗ (L) is involved
in the nontrivial critical exponents of the specific heat α and the correlation length ν. If
α > 0 (the specific heat diverges at a phase transition point), c∗ (L) scales as c∗ (L) ∼ L

α
ν ,

while c∗ (L) ≃ c∗ (∞) − sL
α
ν if α < 0 and the specific heat has a cusp singularity at a

phase transition point in the thermodynamic limit [40].

6.3 Algorithms

To equilibrate the system with more than 106 Heisenberg spins, we use the event-chain,
the heat-bath, the over-relaxation, and the exchange Monte Carlo algorithms together. In
this section we explain the detail parameters of the algorithms used in our simulations.
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Fig. 6.1: The autocorrelation function C|m(qchiral)|2 (t) of the square of the wave-vector-

dependent magnetization |m (qchiral)|2 of the system without magnetic fields. Open and
filled symbols represent C|m(qchiral)|2 (t) with and without the ECMC algorithm, respec-
tively. The temperature is set to the critical temperature Tx estimated in the next chapter.



6.3 Algorithms 39

h/J = 0 h/J = 0.1 h/J = 0.2 h/J = 0.3

L Tmin/J Tmax/J Tmin/J Tmax/J Tmin/J Tmax/J Tmin/J Tmax/J
2 1.5 1.9
4 1.55 1.8 1.5 1.9 1.45 1.85 1.4 1.5
8 1.62 1.77 1.5 1.9 1.45 1.85 1.4 1.5
16 1.65 1.75 1.62 1.72 1.55 1.65 1.4 1.5
32 1.66 1.71 1.60 1.7 1.55 1.65 1.43 1.47
48 1.443871 1.446129
64 1.67 1.7 1.65 1.67 1.59 1.61 1.44

1.443871
1.45

1.446129

Table 6.1: The lowest and highest temperatures in our Monte Carlo simulations. For
L = 64 and h/J = 0.3, simulations are performed for two temperature sets.

6.3.1 Event-chain and heat-bath algorithm

The Hamiltonian of our model except the magnetic field is invariant under a rotation
with v = ey. We thus can apply the event-chain algorithm with the update scheme of the
lifting variables (i,v) → (j,v), which maximally breaks detailed balance, if the rotation
axis v = ey, see Section 3.2. However, the event-chain algorithm for Heisenberg spins
with a single rotational axis v = ey is not irreducible, i.e. the ergodicity condition is
not satisfied. We may apply the algorithm with another rotation axis using an update
(i,v) → (i,−v), which means a moving spin goes back to the opposite direction when
a move is rejected. Here, instead, we combine the heat-bath algorithm to restore the
ergodicity condition.
A parameter of the event-chain algorithm ℓ which determines the length of each chain,

or the total rotation angles in a chain, is set to Nπ/10. The heat-bath update is carried
out sequentially every 100 event chains.
As discussed in Chapter 3, the event-chain algorithm is expected to greatly reduce the

correlation time of several models. Indeed, the autocorrelation function of |m (qchiral)|2
at the phase transition temperature (described below) decreases much faster if the event-
chain and the heat-bath algorithms are combined, see Fig. 6.1. Here, one unit Monte
Carlo time step is defined as N spin updates in both cases.

6.3.2 Over-relaxation algorithm

To further enhance decorrelation, we use the over-relaxation algorithm together with
the event-chain and the heat-bath algorithms. The over-relaxation algorithm updates
spins as

Si → −Si +
2Si ·Hi

|Hi|2
Hi, (6.11)

where Hi is the local field made by interacting spins and external fields. Although this
algorithm is deterministic and never changes the energy of the system, it greatly helps
decorrelation when combined with algorithms that sample from the Gibbs distribution.
In our simulations, 5 over-relaxation sweeps are performed for every event chain.

6.3.3 Exchange Monte Carlo method

We use the exchange Monte Carlo algorithm for 32 replicas with different temperatures.
Two neighboring temperatures are exchanged with the Metropolis-type exchange proba-
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bility, Eq. (2.28). Temperatures lie at regular intervals between the lowest and highest
temperatures, which are denoted as Tmin and Tmax, respectively. To keep the exchange
probability high, we change the temperature range in our simulations depending on the
system size and the magnetic field, see Tab. 6.1.
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7

Phase transitions and Ordering structures of

the uni-axial chiral magnet

In this chapter, we present results of our Monte Carlo simulations of the system with and
without the magnetic field. Without the magnetic field, we show by finite-size scaling
analyses of the correlation length and the magnetic susceptibility that the system belongs
to the three-dimensional XY model as discussed in Section 6.1 and predicted by theories.
In the presence of the magnetic field perpendicular to the axis of the helical structure, we
find that the nature of a phase transition depends on the magnetic field, and at least one
critical point exists in the magnetic phase diagram. We also show results for dynamics of
the system consistent with the results obtained by our Monte Carlo simulations.

7.1 Universality class of the system without magnetic fields

In this section we discuss a phase transition of the system without the magnetic field and
its universality class. Below a phase transition temperature Tc, the system is expected to
have a long-range helical order characterized by a single wave vector, and the wave-vector-
dependent magnetic susceptibility associated with the wave vector diverges polynomially
with the system size L at Tc (the susceptibility scales as Ld even below a phase transition
temperature in finite systems if the Hamiltonian has symmetry that is spontaneously
broken with the phase transition). The wave-vector-dependent magnetic susceptibility
has two clear peaks at qchiral at low temperature independent of the system size, see
Fig. 7.1. This means that the wave vector qchiral, which characterizes the ground-state
spin structure, also characterizes the structure of the system around Tc, and m (qchiral) is
an order parameter of the phase transition. The wave-vector-dependent correlation length

ξ
∥
L (qchiral) divided by αL increases with decreasing temperature for all system sizes, and

each pair of ξ
∥
L (qchiral) /αL and ξ

∥
2L (qchiral) /2αL has a clear intersection at T/J ≃ 1.68

(Fig. 7.2 (a)). We assume a finite-size scaling form for the correlation length

ξ
∥
L (qchiral)

αL
= F

[(
T − Tc
J

)
(αL)

1/ν

]
, (7.1)

where the transition temperature Tc and the critical exponent of the correlation length
ν are estimated so that data for different system sizes fall into a universal curve F with
each other. We use a recently proposed method based on Bayesian inference [119, 120] to
estimate Tc and ν. Four sets of the data that consist of three successive system sizes Lmin,
2Lmin and 4Lmin are used for the analysis. The finite-size scaling form works very well,
especially for the data set with Lmin = 16 which include the largest system size L = 64
in our simulations, see Fig. 7.2 (b). The estimated values of the critical temperature and
the exponent for Lmin = 16 are Tc = 1.68672(4) and νξ = 0.676(3), respectively. We
should notice that, with increasing Lmin, the estimated value of the exponent decreases,
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Fig. 7.1: Wave-number dependence of χ∥ (q) of the three-dimensional uni-axial chiral
magnetic model without magnetic fields (a) for various system sizes at T/J = 1.680645,
which is close to the critical temperature, and (b) with L = 32 at various temperatures
above and below the critical temperature.
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Fig. 7.2: (a) Temperature dependence of the finite-size correlation length ξ∥ (qchiral) di-
vided by αL of the system without magnetic fields. Inset shows an enlarged view around
the critical temperature. (b) A finite-size scaling plot of the finite-size correlation length

ξ
∥
L (qchiral) divided by αL of the system without magnetic fields. The smallest system size
of this FSS plot is Lmin = 16. The critical temperature Tc and the critical exponent ν are
estimated as Tc/J = 1.68672(4) and ν = 0.676(3), respectively.

and the value of νξ is definitely lower than that of the three-dimensional ferromagnetic
Heisenberg model ν = 0.704(6) [40], and comparable to that of the three-dimensional
ferromagnetic XY model ν = 0.67155(27) [121] (see Tab. 7.1). We also analyze the
magnetic susceptibility χ∥ (qchiral) for the same data sets by assuming a finite-size scaling
form

χ∥ (qchiral) = (αL)
γ/νχ G

[(
T − Tc
J

)
(αL)

1/νχ

]
. (7.2)

Here, the value of the transition temperature Tc obtained in the finite-size scaling analysis

of ξ
∥
L (qchiral) /αL is used for this analysis. The critical exponent of the correlation length

νχ slightly decreases with increasing Lmin as that estimated using χ∥ (qchiral). The resul-
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Fig. 7.4: Temperature dependence of the specific heat c of the system without magnetic
fields.

tant value of the critical exponent νχ for Lmin = 16 is again in good agreement with that
of the XY model, and that of another exponent γ = 1.320(4) is also close to γ = 1.3177(5)
in the XY model, see Fig. 7.3.
For models that belong to the ferromagnetic XY universality class, we find that the

critical exponent of the specific heat α is negative by using the hyperscaling relation
dν = 2 − α. Indeed, the specific heat of the ferromagnetic XY model has a finite value
even at the critical temperature Tc, but it has a cusp singularity [122]. The specific heat
c of our model develops a singularity with increasing L (Fig. 7.4), but its peak value
does not seem to diverge in the thermodynamic limit, see Fig. 7.5 (b). This is, again,
consistent with the ferromagnetic XY universality class. We therefore conclude that the
system without magnetic fields undergoes a phase transition from a paramagnetic phase
to a uni-axial chiral magnetic phase as temperature decreases with the critical exponents
of the three-dimensional XY model, as predicted in Refs. [112–115].
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Lmin Tc/J νξ νχ γ
2 1.688(1) 0.72(2) 0.711(5) 1.45(1)
4 1.6871(2) 0.696(5) 0.682(2) 1.314(4)
8 1.68683(5) 0.681(4) 0.671(1) 1.303(3)
16 1.68672(4) 0.676(3) 0.670(2) 1.320(4)

Table 7.1: The estimated values of the critical temperature and the critical exponents of
the correlation length and the susceptibility by finite-size scaling analyses. The values of
the critical temperature Tc and the exponent of the correlation length denoted as νξ are

estimated using the data of the finite-size correlation length ξ
∥
L (qchiral) /αL. Using the

estimated value of Tc, the value of critical exponents of the susceptibility γ and that of
the correlation length denoted as νχ are estimated by FSS analyses of the susceptibility

χ∥ (qchiral).

7.2 Phase transition under a magnetic field perpendicular to

the DM vector

In the presence of the magnetic field, the system has no continuous symmetry in the
Heisenberg spin space, and hence, it is natural to expect that a possible phase transition
between the paramagnetic phase and the chiral-soliton lattice phase belongs to another
universality class, or is of first order. We present in this section our Monte Carlo results
of the system with the magnetic field h/J = 0.1, 0.2, and 0.3.

For weak magnetic fields h/J = 0.1 and 0.2, the specific heat shows a temperature
dependence similar to that of the system without the magnetic field; it seems to have a
cusp singularity at finite temperature, see Fig. 7.6 (a). When the specific heat has a cusp
with a phase transition, a peak value of the specific heat c∗ (L) scales with the system
size L as [40]

c∗ (L) = c∗ (∞)− sLα/ν , (7.3)

where s is a constant. The peak value c∗ (L) for both h/J = 0.2 and 0.3 has almost
the same value as for h/J = 0, and we expect that the system with h/J = 0.2 and
0.3 has a critical exponent ratio α/ν that is very akin to, or the same as that of the
three-dimensional XY model. On the other hand, at h/J = 0.3, the specific heat has a
very large peak at finite temperature T/J ≃ 1.445, and c∗ (L) shows a strong divergence
with the system size as well as or stronger than L3 (Fig. 7.5 (b)). We see a similar size
dependence for a peak value of the uniform magnetic susceptibility χ (0), Fig. 7.5 (a).
These indicate that at least one critical point exists between h/J = 0.2 and 0.3, and the
nature of the phase transition is qualitatively changed depending on the magnetic field.

At low temperature, the q-dependence of the magnetic susceptibility χ∥ (q) has multiple
peaks independent of the magnetic field h > 0 while that has only two peaks at high
temperature as the case without the magnetic field, see Fig. 7.7. These peaks are located
at integer multiples of the wave number of the first peak (which we denote as q0), and they
grow with the system size. These observations indicate that a periodic spin structure, e.g.
a chiral soliton lattice, emerges in the low-temperature region. Local length scales in the
spin structure are represented by the inverse of the wave numbers at which χ∥ (q) has a
peak, and especially the distance between two chiral solitons 2πq−1

0 . The wave number
q0 decreases with the magnetic field h (see Fig. 7.8), which means the distance increases
with h, and, for example, at h/J = 0.3, the distance is 2πq−1

0 ≃ 10 lattice spacings.
The value of q0, which determines the wave-vector-dependent magnetization m (q0)
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Fig. 7.6: Temperature dependence of (a) the specific heat c, (b) the magnetization mz

parallel to the magnetic field h, and (c) the uniform magnetic susceptibility χ of the
system with and without the magnetic field.

characterizing the spin structure of the system with each system size, depends on tem-
perature and even on the system size. The peak locations in the thermodynamic limit are
expected to have real numbers, and deviate from those in finite discrete lattices, which
have a finite number of wave vectors. It is difficult to identify the precise value of q0 in
the thermodynamic limit by numerical simulations of finite size systems and the order pa-

rameter of the phase transition. We may calculate the finite-size correlation length ξ
∥
L (q0)

using Eq. (6.8) for each system size and each temperature as the case without magnetic

fields. However, due to the change of q0 depending on temperature, ξ
∥
L (q0) shows a sud-

den change with decreasing temperature, and hence ξ
∥
L (q0) is not an appropriate physical

quantity to calculate a transition temperature and a critical exponent of the system with
the magnetic field.
Instead ofm (q), we calculate an overlap between spin configurations of two independent

replicas as a possible order parameter. The overlap between two replicas q =
∑
i S

(1)
i ·

S
(2)
i /N *1 is well known as the spin glass order parameter [123], and is also useful for

detecting ordinary periodic orders such as ferromagnetic and antiferromagnetic orders.

*1 The overlap is usually denoted as q in the literature of the spin glass theory. It is a confusing
notation here as wave vectors are represented as q. Nevertheless we use this usual notation because
it is easy to understand which one is represented as q in each sentence.
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Fig. 7.7: Wave-number dependence of χ∥ (q) of the system with L = 32 near the estimated
phase transition temperature. The values of the magnetic fields perpendicular to the DM
vector are (a) h/J = 0.1, (b) h/J = 0.2, and (c) h/J = 0.3.
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Fig. 7.8: Wave-number dependence of χ∥ (q) of the system for various system sizes in the
low-temperature region. The values of the magnetic fields perpendicular to the DM vector
are (a) h/J = 0.1, (b) h/J = 0.2, and (c) h/J = 0.3.

The susceptibility and the correlation length associated with the overlap can be defined
in the same manner as m (q). We should notice that the relevant wave vector in the
overlap is zero no matter which wave vectors the intrinsic order has. As a matter of
fact, for our system without the magnetic field, the correlation length defined using the
overlap (which we denote ξL in the following) divided by αL has an intersection, and
allows us to get almost the same transition temperature Tc and the critical exponent ν
estimated in the previous section by assuming the same finite-size scaling form Eq. (7.1),
see Fig. 7.9. At h/J = 0.2, we also find a clear intersection in the correlation length ratio
at finite temperature, and, again with the finite-size scaling form Eq. (7.1), we obtain
a transition temperature Tc/J = 1.6061(2) and the critical exponent of the correlation
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Fig. 7.9: A finite-size scaling plot of the finite-size correlation length of the spin overlap
divided by αL. The magnetic field h/J = 0 (a) and 0.2 (b).
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length ν = 0.67(1). We thus expect that the system with the magnetic field h/J = 0.2
still belongs to the three-dimensional XY model although it no longer has any continuous
symmetry due to the magnetic field. This weak magnetic field may be an irrelevant field to
the helical order m (qchiral), and a single wave vector q0 characterizes the phase transition,
which means that only χ (±q0) diverges at Tc, while multiple wave vectors are required
in the chiral soliton lattice phase to characterize its structure. Renormalization group
analysis would possibly help us to understand this phase transition.
At h/J = 0.3, as discussed above, a possible scenario of the phase transition of the

system is largely changed from the case with h/J = 0.2. As for h/J = 0 and 0.2, the
correlation length defined using the spin overlap divided by αL has a intersection at
around a temperature T∗/J ≃ 1.446 where the specific heat has a large peak. The simple
finite-size scaling form Eq. (7.1), however, does not work well even though we consider the
corrections to scaling: Any combination of data for three system sizes does not fall into
a universal curve. One of the possible reasons is that finite size effects in the system are
extraordinarily large that the leading corrections-to-scaling term does not work. If so, we
have to simulate larger system sizes to obtain the transition temperature and the critical
exponents. Another possible reason is that the finite-size scaling form Eq. (7.1) may be
not appropriate for this case. In Ref. [92], I. E. Dzyaloshinskii predicts theoretically by
using a one-dimensional continuum model of a uni-axial chiral magnet with the magnetic
field that the specific heat diverges toward a phase transition temperature T∗ from below
as

c ∝ 1

(T∗ − T ) log2 (T∗ − T )
(7.4)

while no critical divergence is seen above T∗. This suggests that α ≤ 0 and α′ = 1.
Then, if assume the hyperscaling relation dν = 2−α for each side of the phase transition
temperature, we obtain different values for ν and ν′. If the theory by Dzyaloshinskii holds
for our model, another finite-size scaling form is necessary.
After all, what is the order of the phase transition in the system with h/J = 0.3? For

first-order phase transitions, because of finite jumps in physical quantities such as the
energy density, their susceptibilities (for example, the specific heat for the energy density)
diverge as Ld with the system size, where d is the spatial dimension of the system, and
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Fig. 7.10: The energy-density distribution function P (e) of the system with the magnetic
field h/J = 0.3. The system size L = 64 is the largest size in our simulations and the
temperatures are close to the transition temperature.
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the finite-size peak location T∗ (L) depends on the system size as

T∗ (L) = T∗ (∞) +O
(
L−d) . (7.5)

The “critical” exponents are α = 1, γ = 1, and ν = 1/d with vanishing asymptotic am-
plitude of the correlation length [118]. Also, at around the phase transition temperature,
the probability distributions of the physical quantities have double-peak structures. Our
data show that the system size dependences of the specific heat and the uniform magnetic
susceptibility are marginally compatible with Ld for L ≥ 32. However, the Dzyaloshin-
skii’s theory predicts the same scaling for the peak value of the specific heat ∼ L

α
ν = L3

if we again assume the hyperscaling relation, and hence, we cannot distinguish them by
the system size dependence of the peak value of the specific heat. On the other hand,
the peak location T∗ (L) does not follow the finite size scaling of first-order phase tran-
sitions Eq. (7.5) up to L = 32. Furthermore, the probability distribution of the energy
density does not have a double-peak structure although the system size dependence of
the specific heat reaches to Ld, see Fig. 7.10. Therefore, it is natural to conclude within
our simulations that the system with h/J = 0.3 has a continuous phase transition with
nontrivial critical exponents. Further calculations for much larger systems and detailed
data analyses using, for example, the multiple reweighting method [124], are necessary to
conclude decisively the nature of the phase transition.

A recent mean-field study [110] claims that the system with the same parameters,
D/J = 1 and h/J = 0.3, shows a first-order phase transition. As in the conventional
naive mean-field approximation, they assume spin fluctuations in the same x-z planes are
small enough. However, in our Monte Carlo simulations, fluctuations in the same x-z
planes are unexpectedly strong. Each x-z plane looks like a coexistence state mixed of
spins parallel and antiparallel to the magnetic field, see Fig. 7.11. These large fluctuations
should be essential in the phase transition at the magnetic field, and thus the naive mean-
field approximation may not be applicable. Further analysis is required to characterize
the large fluctuations.

 0  30  60
x

 0

 30

 60

z

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

Fig. 7.11: A typical snapshot of an x-z plane of the system at the estimated transition
temperature with h/J = 0.3. The color represents the z component of each spin, which
is the component parallel to the magnetic field.
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7.3 Dynamics

In this section, We study Monte Carlo dynamics of the system, especially the correlation
time τO of a physical quantity O at the phase transition temperature by using only the
heat-bath algorithm. The value of the dynamical critical exponent z, which is estimated
in finite systems as τO ∝ Lz, implies an order of its phase transition: The correlation time
diverges with the system size algebraically for continuous phase transitions (z is finite),
and exponentially for first-order phase transitions. We set temperature to the estimated
phase transition temperature by the finite-size scaling analysis for h/J = 0 and 0.2, and
the peak location of the specific heat for h/J = 0.3. We choose the energy density e
and the uniform magnetization m (0) to measure the autocorrelation Eq. (2.8). As in the
Section 3.2.1, we use the exponential correlation time. Here, however, to compute the
approximate exponential correlation time τ ′exp (O) = −t∗/ logCO (t∗), t∗ is defined as the
time where CO (t∗) = 0.01.
The exponential correlation time of the energy density increases algebraically with the

system size L up to the system sizes, see Fig. 7.12. The exponent z ≃ 2.0 for h/J = 0.2,
and z ≃ 2.7 for h/J = 0.3. The exponential correlation time of the uniform magnetization
also shows an algebraic increase for both magnetic fields, but its exponent is smaller than
that of the energy density. The autocorrelation of the energy density thus has a slower
mode than the autocorrelation function of the magnetization. The algebraic increase
implies a continuous phase transition occurs for both magnetic fields. The exponent
z ≃ 2.0 for h/J = 0.2 is consistent with the three-dimensional XY model [14]. At
h/J = 0.3, the exponent is significantly larger than that for h/J = 0.2. That indicates
the nature of the phase transition at h/J = 0.3 is different from that at h/J = 0.2. If we
assume a lower bound of the dynamical critical exponent z ≥ γ/ν [17, 18] holds in the
system, the critical exponent ν for h/J = 0.3 is possibly much smaller than that in the
three-dimensional XY universality class.
When a first-order phase transition occurs with a latent heat, the exponential correlation

time of the energy density diverges exponentially with the system size. Our result shows
that the correlation at h/J = 0.3 does not increase exponentially, but algebraically up
to L = 16. While a larger system size should be studied to conclude it, the increase of
the correlation time is consistent with the result of equilibrium Monte Carlo simulations
presented in the previous section.
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Fig. 7.12: The exponential correlation time of the energy density e (a) and the uniform
magnetization m (0) (b) in the system with h/J = 0.2 and 0.3.
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7.4 Phase diagram

A phase diagram of the system obtained by our simulations is presented in Fig. 7.13,
where we denote the paramagnetic phase and the CSL phase as “P” and “CSL”, respec-
tively. The filled square at h/J = 0 is estimated by the FSS analysis in Section 7.1,
and the other squares and circles are estimated by the peak temperature of χ (0) at
h/J = 0.1, 0.2 and 0.3 for L = 64 and at h/J = 0.35 for L = 16. The phase transitions at
the transition temperatures represented by the squares belongs the three-dimensional XY
universality class as discussed in the previous section. On the other hand, at h/J = 0.3,
a completely different criticality is observed at the transition temperature shown in the
phase diagram as a circle. Almost the same system-size dependence of the peak values
of the specific heat and the uniform magnetic susceptibility is seen at h/J = 0.35 up to
L = 16. The zero-temperature critical magnetic field hc/J , the diamond in the phase di-
agram, can be computed as a magnetic field where the energy cost of one chiral soliton in
a one-dimensional model is zero. The value should coincide with a mean-field result, and
thus hc/J = 0.50884(3) [116]. According to our results presented in the previous section,
there should be at least one (multi-)critical point between h/J = 0.2 and 0.3 in the phase
diagram which divides the phase boundary. At the time when our work on the uni-axial
chiral magnet [5] was completed, even an existence of at least one critical point was not
established in the model of the uni-axial chiral magnets in three dimensions. However,
after the completion of our work [5], the two mean-field studies [109, 110] report that two
critical points divide the phase boundary between the paramagnetic and the CSL phases.
From this viewpoint, our data are obviously not enough to claim the existence of one single
critical point in the phase diagram. To testify the mean-field results, physical quantities
exactly on the phase boundary should be studied. If a first-order phase transition line lies
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Fig. 7.13: A possible magnetic phase diagram of the system. In the phase diagram, “CSL”
and “P” denote the chiral soliton lattice phase and paramagnetic phase, respectively.
The filled squares and circles are estimated transition temperatures by our numerical
simulations, and the diamond is the critical magnetic field at zero temperature hc/J (see
text for the precise value). The three-dimensional XY criticality appears at the filled
squares while another critical behavior with strong divergences in the specific heat and
the uniform magnetic susceptibility is observed at the filled circles.
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on the phase boundary, the Binder parameter of the energy or the magnetization should
show a negative diverging behavior on the line while it has a finite value at a continuous
phase transition point. Much larger-scale Monte Carlo simulations are required to con-
clude the structure of the phase diagram. Nevertheless, in the following, we assume the
single critical point (Td/J, hd/J) on the phase boundary for further discussions.
The phase boundary h∂CSL (T ) between the paramagnetic phase and the CSL phase has

a finite slope, which are also observed in experimental works of a uni-axial chiral magnet
[99, 100, 102]. When the free-energy density of the system in the thermodynamic limit
is differentiable at a point on the phase boundary (T0, h∂CSL (T0)), which means that the
phase transition is continuous, the finite slope of the phase boundary yields a general
relation

∆χ∆c− T (∆ω)
2
= 0, (7.6)

where ω and χ are the temperature derivative and the magnetic-field derivative of the
magnetization parallel to the field, and

∆X = XCSL −XP (7.7)

for any X ∈ {c, χ, ω} is a difference of X in the limit from inside the CSL phase and from
the paramagnetic phase to (T0, h∂CSL (T0)), respectively. The system in the magnetic field
with 0 < h < hd belongs to the universality class of the three-dimensional ferromagnetic
XY model as discussed above, then the specific heat is continuous on the phase boundary,
∆c = 0. In this system for a fixed h < hd, the uniform susceptibility has a finite value,
∆χ <∞. Therefore, Eq. (7.6) requires ∆ω = 0, meaning that the magnetization parallel
to the magnetic field is smooth at the transition temperature. This is consistent with our
results for the magnetization, where it does not show any jump or singular behavior at
around the transition temperature, Fig. 7.6.
For h > hd, on the other hand, the specific heat diverges at a phase transition tempera-

ture. The difference ∆c is infinitely large unless the critical amplitude ratio is accidentally
1 with the same critical exponent above and below the critical temperature which may
unlikely occur in finite dimensions. The relation of Eq. (7.6) allows typically two cases:

(i) ∆χ ≲ ∆c−1 and ∆ω is finite, or
(ii) ∆χ ≳ ∆c−1 and ∆ω is infinitely large.

Our result on the divergence of χ (0) indicates the latter case unless, again, the critical
amplitudes and the exponents above and below the critical point are identical. Technically
speaking, χ is not equivalent to χ (0), but, in our system, a singular part in χ (0) originates
from χ. The specific heat c divided by the susceptibility χ (0) seems to have a finite value
even in the thermodynamic limit in our simulations. This implies that the exponent of the
divergence of χ (0) coincides with that of the specific heat. Furthermore, the temperature
dependence of the magnetization is also described by the same singularity at least either
above or below the critical temperature. Thus, the critical singularity of the specific
heat appears in other observables unrelated to the critical nature through the relation of
Eq. (7.6), while in a conventional system where χ is an order-parameter susceptibility, the
relation yields the scaling relation α+ 2β + γ = 2 among the critical indices.
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Conclusion of Part II

In Part II, we have numerically studied the classical Heisenberg spin model of a uni-axial
chiral magnet in three dimensions by equilibrium Monte Carlo simulations. The event-
chain algorithm introduced in the previous part works very efficiently in the model, and it
allows us to equilibrate the system with more than 106 Heisenberg spins. We particularly
focused on its finite-temperature phase transition between the chiral-soliton-lattice phase
(the helical phase) and the paramagnetic phase with and without a magnetic field perpen-
dicular to the axis of the helical structure. Without the magnetic field, detailed finite-size
scaling analyses revealed that the system undergoes a continuous phase transition with
critical exponents of the three-dimensional ferromagnetic XY model. This is consistent
with some theoretical studies using a renormalization group calculation [112, 113] and a
simple transformation of the Hamiltonian [114, 115].

In the presence of the magnetic field, the nature of the phase transition strongly depends
on h/J while the low temperature phase is common. The chiral soliton lattice structure
is characterized by multiple wave vectors, and order parameters which are involved in the
phase transition are unclear. To avoid this problem, we used the spin overlap, also known
as the spin glass order parameter, to compute the finite-size correlation length. We found
that the system with h/J = 0.1 and 0.2 shows a phase transition which is very similar
to that in the absence of the magnetic field: A cusp singularity in the specific heat, and
no divergence in the uniform magnetic susceptibility. A finite-size scaling analysis yields
the critical exponent ν, which is consistent with the three-dimensional ferromagnetic XY
model. At h/J = 0.3, we observed a completely different phase transition with strong
divergences of the peak values with a scaling ∼ L3 both in the specific heat and the
uniform magnetic susceptibility. The correlation length ratio indeed has an intersection,
but the conventional finite-size scaling ansatz for it fails to find the critical exponent.

Our results clearly demonstrate that at least one critical point exists in the region
where 0.2 < h/J < 0.3 in the phase diagram of the system while we cannot rule out a
possibility that there exist two or more critical points in the region. The critical nature at
low magnetic field, whose exponent is consistent with that of the three-dimensional XY
model, is surprising in the sense of the symmetry of the Hamiltonian. A renormalization
group study would support our results; if a renormalization-group flow goes into the zero-
field critical point Tc/J , the same critical nature as the zero-field case should appear
at finite but low magnetic field. The phase transition at higher magnetic field remains
unclear. While the peak value of the specific heat diverges as ∼ L3, which is usually
seen in a first-order phase transition, a double-peak structure in the distribution function
of the energy density is not observed. Also, at the phase transition temperature, the
equilibrium relaxation time seems to diverge polynomially, which suggests a continuous
nature of the transition. We thus found no evidence of a first-order phase transition in
any other physical quantities at h/J = 0.3.
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The assumption that a spin fluctuation is small enough to be ignored in the naive
mean-field theories is usually incorrect in systems in low dimensions. The upper critical
spatial dimension dU below which a mean-field theory breaks down is determined by
self-consistency of the theory, or the Ginzburg criterion [125]. For the continuous phase
transition with the classical critical exponents such as ferromagnetic phase transitions, the
upper critical dimension dU = 4. Between dU and the lower critical dimension dL, a phase
transition with nontrivial critical exponents occurs at finite temperature, and it disappears
below dL. The validity of mean-field theories can be tested by itself for continuous phase
transitions. On the other hand, for first-order phase transitions, a mean-field theory is
always self-consistent if they remain in finite dimensions within the theory as fluctuations
are weak at first-order phase transition points. However, a first-order phase transition
in the mean-field theory is sometimes replaced by a second-order phase transition in
finite-dimensional models such as the three-state ferromagnetic Potts model [126]. Non-
perturbative finite-dimensional effects may eliminate first-order phase transitions in the
mean-field theory, and the theory cannot yield its validity by itself. In our model of uni-
axial chiral magnets, the recent mean-field study [110], in which a spin fluctuation in the
same plane perpendicular to the helical structure is assumed to be very small, claims that
a first-order phase transition with a latent heat occurs at the parameters, D/J = 1 and
h/J = 0.3. As discussed above, the mean-field theory should always be self-consistent
even if the theory gives an incorrect result. A large fluctuation ignored in the mean-field
can completely change the mean-field picture of the phase transition while the order of
the phase transition might not be changed even if the fluctuation exists. A snapshot of a
plane perpendicular to the helical axis Fig. 7.11 in our simulations indeed indicates a large
fluctuation ignored in the theory. This suggests that the phase transition is driven by the
fluctuation in each plane rather than the mean-field scenario. Whether the fluctuation
plays an important role at the phase transition temperature should be extensively studied
by numerical simulations through an appropriate physical quantity which captures the
fluctuation *1.
This work considers phase transitions in a system with a field that is not conjugate

to an order of the system without the field. A field conjugate to an order of a system
explicitly breaks symmetry in its Hamiltonian, and generally suppresses a phase transition
in the original system without the field. On the other hand, a weak field which is not
conjugate to an order of a system but breaks continuous symmetry down to discrete
one in its Hamiltonian does not remove a phase transition and may induce nontrivial
effects on the critical exponents of a phase transition [127, 128]. Such a field may be
dangerously irrelevant in the sense that the fixed point of the renormalization group
analysis is the original one and thus the critical exponent ν is identical, but some of the
critical exponents such as γ′ and γ are modified *2. The magnetic field in our model of

*1 For example, a susceptibility

χplane =
∑
ry

χ (ry) , (8.1)

where

χ (ry) = L2β
[⟨

m2
ry

⟩
−

⟨
mry

⟩2]
, (8.2)

mry =
1

L2

∑
r∈{(x,y,z)|y=ry}

Sr (8.3)

may be utilized to study the fluctuation. These quantities can be directly computed in numerical
simulations.

*2 Here we denote the critical exponent that characterizes the divergence of the susceptibility χ at
a critical temperature Tc from higher temperature as γ (χ ∼ (T − Tc)

−γ) and that from lower
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a uni-axial chiral magnet is a field which breaks the continuous symmetry of the system
without the magnetic field. We thus expect our model in the magnetic field can be
explained by the theory. Indeed, according to the results obtained in our Monte Carlo
simulations, the critical exponent ν of the phase transition of the system with the weak
magnetic field is identical to that of the system without the magnetic field, i.e. the
three-dimensional XY model. We have not estimated other critical exponents here, but
some of the exponents above and below the critical temperature can be different from
each other as the models in Refs. [127, 128]. More surprisingly, the magnetic field, an
irrelevant field when h/J = 0.1 and 0.2 in our model, completely changes the criticality
of the phase transition. At higher magnetic field, h/J = 0.3 in our simulations, strong
divergences in the specific heat and the uniform magnetic susceptibility are observed at
the critical temperature. The magnetic field is no longer irrelevant at h/J = 0.3. We
may expect naively that two different phases with two different broken symmetry exist
in the low temperature region with two different types of phase transitions. However,
the symmetry of the system with the magnetic field is independent of the value h/J , and
the low temperature CSL phase is identical. It is very important for understanding of
the system to see how fixed points corresponding to the phase transition at low and high
magnetic fields appear and relate to each other, and renormalization flows converge to
each fixed point in the renormalization group theory.

We used the spin glass order parameter, or the spin overlap, q =
∑
i S

(1)
i · S(2)

i /N
to detect the phase transition of the system with the magnetic field. For translation-
ally invariant systems, the spin overlap can be written using the wave-vector-dependent
magnetizations by Fourier transformation as

q ∝
∑
k,k′

m (k) ·m (k′) . (8.4)

Thus, the overlap is expected to detect periodic orders characterized by the magnetiza-
tions with several wave vectors. For our system with a free boundary condition in the y
direction, Eq. (8.4) needs some corrections. However, the corrections vanish in the ther-
modynamic limit, and the overlap gives the correct critical exponents by using a usual
finite-size scaling analysis with corrections to scaling. Indeed, it gives a consistent value
of the critical exponent of the correlation length ν (see Fig. 7.9) of the system without the
magnetic field, and we successfully obtain the exponent ν in the presence of the magnetic
field h/J = 0.2. We can detect through the overlap an order with a spatially modulated
structure even when the order is characterized by multiple wave vectors. While a con-
sistent value of the exponent ν is obtained numerically at least in the case h/J = 0, the
applicability of the overlap, or the types of orders and phase transitions detectable by
the overlap, are not clear. We can naively expect that any periodic orders accompanying
slowing down in the autocorrelation function of spins can be detected by the overlap. On
the other hand, it has been reported that the spin glass order parameter does not detect
a spin nematic order [129, 130]. Further theoretical and numerical studies are necessary
to clarify the limitation of the spin overlap as an order parameter.

temperature as γ′ (χ ∼ (Tc − T )−γ′
).
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Introduction to skyrmions in chiral magnets

and two-dimensional melting

Skyrmions are particle-like excitations introduced in field theory by T. H. R. Skyrme
in 1962 [131]. They are characterized by a topological integer, and topologically stable
objects in the sense that any continuous change cannot destroy them. After decades,
skyrmions are turned out to be significant in magnetic systems [132–134]; many spins form
a topologically stable particle-like vortex. Various magnetic systems have been known in
which skyrmions are stabilized [134]; spin systems with frustrating exchange interactions
[135] and dipole-dipole interactions [136]; the Kondo lattice model with classical localized
spins [137]. In these systems, skyrmions and anti-skyrmions, which has a topological
integer with an opposite sign, emerge with the same energy, or statistical weight because
of chiral symmetry in the systems.
In recent years, skyrmions that emerge in chiral magnets have been extensively studied

both experimentally and theoretically. They are stabilized by competition between the
exchange interactions, the antisymmetric Dzyloshinskii–Moriya (DM) interactions, and a
magnetic field. As the bi-axial antisymmetric DM interactions break chiral symmetry, only
one kind of skyrmion (or anti-skyrmion) with the same topological integer emerges. Such
skyrmions have been observed in various chiral magnets such as MnSi, Fe1−xCoxSi [134,
138–144]. Real-space observation of skyrmions is reported using transmission electron
microscopy [140, 145], and their size is known to be typically ten times larger than the
lattice spacing of spins [134].
Phase diagram of chiral magnets strongly depends on their spatial dimensionality. In

three-dimensional bulk systems, skyrmions are observed only in a very narrow window
in the phase diagram at finite temperature as skyrmion triangular crystal states in both
experiments and Monte Carlo simulations [134, 138, 139, 141, 146]. On the other hand,
in two-dimensional chiral magnets, or quasi-two-dimensional thin films of chiral magnets,
skyrmions exist in a wide region of the phase diagram at low temperature [134, 140–142,
145, 147–150]. Furthermore, a triangular skyrmion crystal state exists as the ground
state, and it is reported stable at finite temperature [134, 140–142, 147, 149]. As one of
the largest differences from three-dimensional bulk systems, skyrmions in thin films are
stable even when they are isolated. We thus expect that a completely different phase
transition from the three-dimensional system occurs at finite temperature.
As skyrmions can be stable isolated objects in two dimensions, we can effectively inter-

pret them as particles interacting with each other. Phase transitions in two-dimensional
chiral magnets involved in skyrmions thus should be studied in the analogy with two-
dimensional particles. In two-dimensional particle models, particles cannot form a crystal
state at finite temperature (or finite density) [151], which has a long-range positional order.
However, they can form a solid with a quasi-long-range positional order and a long-range
orientational order [152]. With increasing temperature (or decreasing density), the solid
state melts into a hexatic state with a short-range positional order and a quasi-long-range
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dynamically stable only in the skyrmion lattice phase, also known as the “A phase”.
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Fig. 9.2: Phase diagram of a thin film of Fe0.5Co0.5Si [140]. Skyrmions exist in a wide
region of the phase diagram.

orientational order, and finally, the hexatic state melts into a liquid phase, where both
the positional and the orientational orders have short-range correlations [69, 153]. These
melting transitions have been discussed for decades from the first Monte Carlo simulation
by N. Metopolis and coworkers [1], the first event-driven molecular dynamics simula-
tion by B. J. Alder and T. E. Wainwright [154], and the Kosterlitz–Thouless–Halperin–
Nelson–Young (KTHNY) theory [155–160], to recent studies by large-scale Monte Carlo
simulations [24, 69, 153] and a high-precision experiment [161].

In this chapter, we review some of the experimental facts on the phase diagram of
chiral magnets in both three dimensions and two dimensions. We also discuss the theory
of two-dimensional melting transition in particle systems, the KTHNY theory, and recent
results on the systems obtained by numerical simulations.

9.1 Experiments on skyrmions in chiral magnets

In a three-dimensional crystal of MnSi, we can find four different phases of spins [138,
139, 162]; the paramagnetic phase, the helical phase, the conical phase, and the skyrmion
crystal phase, see Fig. 9.1. In the skyrmion crystal phase, also known as the “A phase”
[138], a triangular lattice structure extends to the plane perpendicular to the magnetic
field. Skyrmions are observed only in the A phase, a very small region in the phase
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diagram, in three dimensions. Phase transitions into the skyrmion crystal phase are of
first order [139]. At lower temperature, the conical state has a lower energy than the
skyrmion crystal state, and thus the state is dominant in the low temperature region.
The crystal state is stabilized entropically at finite temperature. The small region of the
crystal phase is also found in other materials [141, 142].
With reducing the thickness of materials such as MnSi and FeGe, the region of the

skyrmion crystal phase becomes larger, and eventually, extends to zero temperature [134,
140–142, 145], see Fig. 9.2 for the phase diagram of a thin film of Fe0.5Co0.5Si. The
conical state, which has a three-dimensional structure parallel to the magnetic field, can
no longer exist in thin films. Surprisingly, in thin films of chiral magnets, skyrmions are
thermodynamically stable even in the paramagnetic phase as isolated excitations. This
suggests that a phase transition between ordered and disordered phases of skyrmions
occurs in contrast to the three-dimensional bulk chiral magnets.

9.2 Two-dimensional melting of particles

9.2.1 The KTHNY theory

The KTHNY theory [155–160] of melting transition in two-dimensions was developed by
B. I. Halperin, D. R. Nelson, and A. P. Young based on the Kosterlitz–Thouless (KT) the-
ory for the two-dimensional XY model, a thin film of 4He, and two-dimensional particles
[155, 156]. The KT theory predicts, as in the two-dimensional XY model, a solid–liquid
melting transition at temperature Tm driven by unbinding of topological defects, dislo-
cations, in two-dimensional particles. Halperin and Nelson [157, 159], and Young [158]
pointed out that the melted phase with unbound dislocations is not a simple isotropic
liquid phase, but a hexatic phase with bounded disclinations, where the orientational and
the positional correlations decay algebraically and exponentially, respectively. At higher
temperature TI > Tm, the hexatic phase melts into a liquid phase with free disclina-
tions that makes all of correlations short-ranged. See Tab 9.1 for the correlations of the
orientational and the positional orders in each phase.
At low temperature (or high density) in the solid phase without periodic substrates,

the system can be described by the following effective Hamiltonian:

HE =
1

2

∫
dr
∑
i,j

(
2µu2ij (r) + λu2ii (r)

)
, (9.1)

where u (r) = (ux (r) , uy (r)) is the deviations from the complete triangular crystal struc-
ture in the ground state, the linearized symmetric tensor

uij (r) =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
(i, j = x, y), (9.2)

and µ and λ are Lamé coefficients. The effective Hamiltonian gives at very low but finite

Orientational order Positional order

Liquid Short-range Short-range
Hexatic Quasi-long-range Short-range
Solid Long-range Quasi-long-range

Table 9.1: Correlations of the orientational and the positional orders in each phase.
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temperature that

gk0 (r) ∼ r−ηk0
(T ), (9.3)

ηk0 =
kBT |k0|2 (3µ+ λ)

4π (2µ+ λ)
, (9.4)

where k0 is a reciprocal vector of the lattice structure. This algebraic decay in the posi-
tional correlation means that two-dimensional particles do not form a crystal, which has
a long-range positional correlation, at any finite temperature. However, the orientational
order parameter

ψ (r) = exp (6iθ (r)) , (9.5)

has a long-range correlation, ⟨ψ∗ (r)ψ (0)⟩ > 0 even in the limit |r| → ∞, where θ (r) is
the orientational field defined as

θ (r) = ez · ∇ × u (r) =
1

2

(
∂ui
∂rj

− ∂uj
∂ri

)
. (9.6)

These are completely consistent with the theory of the harmonic solid by N. D. Mermin
[152]. A free dislocation has a diverging energy ∼ log (L) (L is the linear dimension of the
box), thus no free dislocation exists in the solid phase. The energy scale of a dislocation
determines a melting transition Tm of the solid state. Just above Tm, the density of free
dislocations is finite. By taking account of contributions from dislocations in the effective
Hamiltonian, we find using renormalization group calculation the exponentially decaying
correlation length of the positional order with increasing temperature

ξ+ (T ) = exp (const/ (T − Tm)
ν
) , (9.7)

where ν = 0.3696... [159]. Approaching Tm from below, the exponent ηk0 (T ) increases,
and in the limit T → Tm, ηk0 (T ) → 1/3. Any solid with the exponent ηk0 (T ) > 1/3 is
unstable due to unbinding of dislocations.

Above the melting temperature Tm, if the orientational order is not short-ranged, the
system on large length scale is controlled by an effective Hamiltonian

HA =
1

2
KA

∫
dr |∇θ (r)|2 , (9.8)

as in the ferromagnetic XY model in two dimensions [155, 156]. Here, KA is essentially
the same as the Frank constant that has a positive value in the presence of a (quasi-)long-
range correlation in the orientational order. By renormalization group analysis, the Frank
constant KA is found to have a finite value if the system is in a smooth substrate, which
implies a quasi-long-range correlation in the orientational order. The effective Hamiltonian
Eq. (9.8) indeed gives an algebraic decay in the correlation function of the orientational
order

⟨ψ∗ (r)ψ (0)⟩ ∼ r−η6(T ). (9.9)

As the case of the melting transition of solid, by taking disclinations into account, we
obtain the exponent η6 (T ) → 1/4 with approaching the transition temperature TI from
below, which is again estimated by the energy scale of a free disclination. The correlation
length of the orientational order can be also calculated as

ξψ (T ) = exp
(
const/ (T − TI)

1/2
)
. (9.10)
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In the presence of a periodic substrate under particles, the KTHNY theory slightly
modified depending on the strength, the shape, and the fineness of the substrate [157–
159]. If the periodic substrate is commensurate to the lattice structure of the solid state,
a true crystal state with a long-range positional correlation exists at finite temperature.
In the following, we particularly focus on the case of a weak incommensurate periodic
substrate. Let us consider an effective Hamiltonian of particles in a periodic substrate

HP = HE −
∑
r

V (r + u (r)) , (9.11)

where HE is the effective Hamiltonian for the solid phase Eq. (9.1), and V (r) is the
periodic substrate. Assuming that an angle of between the orientation of the solid state
and the underlying periodic substrate varies slowly and small, we then find the effective
Hamiltonian Eq.(9.11) can be written as

HP =
1

2

∫ ∑
i,j

(
2µuij (r) + λu2i

)
+ 4γθ2 (r) , (9.12)

where γ is an elastic constant determined by the periodic substrate. We can find by
using this effective Hamiltonian that the low-temperature solid phase and the dislocation-
unbinding transition are qualitatively the same as the case of particles without periodic
substrate. However, at temperature slightly higher than Tm, Halperin and Nelson argued
that the Frank constant can be infinitely large, which indicates that the orientational order
has a long-range correlation, and at TI, the two-dimensional Ising type phase transition
occurs to an isotropic liquid phase if the periodic substrate has a square-lattice shape
[157, 159].

9.2.2 Melting of hard and soft particles in a smooth substrate

After the KTHNY theory, many theoretical and experimental works studied the melting
transition in two-dimensional particles, especially in hard disks, but, contradicting results
had been reported until recently. For example, by using isobaric Monte Carlo simulations
of 1000 hard disks, J. Lee and K. J. Strandburg showed an evidence of a first-order phase
transition [163]. On the other hand, by large-scale Monte Carlo simulations of hard disks,
C. H. Mak claimed that two continuous phase transitions occur according to the KTHNY
theory [164]. However, E. P. Bernard and W. Krauth [67] showed using the event-chain
algorithm (discussed in the previous part) that another scenario holds in two-dimensional
hard disks: A first-order phase transition between the liquid and the hexatic, and a KT
phase transition between the hexatic and the solid. This result is confirmed by numerical
simulations with three independent algorithms [24], and a recent experiment [161].
Melting transition in soft disks with an interaction U (r) = (σ/r)

n
is also investigated

recently [153]. The model includes the hard disks in the limit n → ∞. Surprisingly, the
nature of the hexatic–liquid phase transition depends on n: While n ≳ 6, the transition
is of first-order as hard disks, it becomes a KT transition when n ≲ 6. The melting
transitions also depend on the shape of particles. Two-step melting with both a first-
order and a KT hexatic–liquid transitions is observed depending on the shape, and even
one-step direct solid–liquid melting is found [26].
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10

Simulation method

In this chapter, we introduce a classical Heisenberg spin model of a two-dimensional
chiral magnet. We also discuss a difficulty of Monte Carlo simulations of the model and
our strategy to study a phase transition. A detail of massive spatial parallelization using
GPUs is presented. Three important order parameters, the orientational, positional, and
directional order parameters, are introduced in the end of the chapter.

10.1 Model

As a model of a two-dimensional chiral magnet, we consider a system defined by the
Hamiltonian

H ({Si}) = −J
∑
⟨i,j⟩

Si ·Sj −Dx ·
∑
i

Si×Si+ex −Dy ·
∑
i

Si×Si+ey −h ·
∑
i

Si. (10.1)

In this Hamiltonian, Si is a classical Heisenberg spin with |Si| = 1 on a site i of the
two-dimensional square lattice with periodic boundary conditions. The bracket ⟨·, ·⟩ rep-
resents a neighboring pair of lattice sites. The second and third terms in the Hamiltonian
constitute the DM interaction. We take h parallel to the z-axis, Dx parallel to the x-axis,
Dy parallel to the y-axis, and choose |Dx| = |Dy| = J . Bloch-type skyrmions [144] are
stabilized at low temperature with the choice of parameters in the magnetic field, for
example, h/J = 0.6, see Fig. 10.1.

Due to the bi-axial DM interaction, the model has no continuous symmetry even if
the magnetic field is absent. The only discrete symmetry in the spin space of the model
without the magnetic field is inversion symmetry Si → −Si. In the presence of the

Fig. 10.1: A Bloch-type skyrmion in the model of a two-dimensional chiral magnet defined
by the Hamiltonian Eq. (10.1).
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magnetic field, the system only has symmetry involved in the underlying spin lattice; for
example, trivial translation symmetry

(rx, ry) → (rx + δx, ry + δy) (δx, δy ∈ N) , (10.2)

and lattice inversion symmetry coupled with spin inversion{
(rx, ry) → (±rx,∓ry) ,
Si = (Si,x, Si,y, Si,z) → S′

i = (∓Si,x,±Si,y, Si,z) .
(10.3)

The ground state structure of the system, especially in the presence of the magnetic
field, is highly nontrivial due to competition of the isotropic, the DM interactions and
the magnetic field. Recent studies [134, 141, 147, 150, 165] report that the ground state
is either the helical, the skyrmion crystal, or the paramagnetic phase depending on the
magnetic field. The skyrmion crystal state has long-range positional and orientational
orders with a triangular-lattice structure. However, the winding number in the helical
phase, and the density of skyrmions in the skyrmion crystal phase are unclear. Numerical
calculations to compare the energies of states with various winding number of helices and
various skyrmion numbers are necessary to determine detailed properties of each phase
and transition points.

10.2 Choice of lattice parameters

The skyrmions in the low temperature region are expected to form a triangular lattice
structure. A complete triangular lattice with “base” orientation, in which each elementary

triangle points upward, has a linear dimension in the y direction which is
√
3
2 times shorter

than that of the x direction. The skyrmion crystal and solid states are sensitive to the
boundary conditions and expected to have large finite-size effects if the lattice structure is
incommensurate to the simulation box although they vanish in the thermodynamic limit.
We thus set the linear dimensions of the underlying spin lattice Lx = k × 97 in the x
direction and Ly = 84 × k in the y direction (k ∈ N) to study the skyrmion crystal and
solid states with triangular lattice structures. This choice of the linear dimensions realizes
a ratio Lx/Ly ≃ 0.865979 that is very close to

√
3/2 ≃ 0.866025.

On the other hand, at low magnetic field, the system is in the helical phase in which
helices go up or down with ±π/4 tilting (this angle ±π/4 is determined by the choice of the
parameters |Dx| = |Dy|). The rectangular-shape spin lattice above is incommensurate to
the helical states. A skyrmion crystal state with a square lattice structure commensurate
to the underlying spin lattice, which is in principle possibly realized at zero temperature,
is also incommensurate to it. We use a square-shape spin lattice with linear dimensions
L for these two cases.

10.3 Zero-temperature simulated annealing

At zero temperature, energy minimization and simulated annealing along the magnetic
field are carried out by using the heat-bath algorithm at zero temperature, where spins
are aligned to the local field determined by interacting spins and the magnetic field. The
zero-temperature phase diagram can be constructed by directly comparing the energy
density of the helical states with various winding numbers, the skyrmion crystal states
with various densities, and the paramagnetic state. We use 4×103 sweeps to minimize the
energy of the system at each magnetic field. The helical initial configurations are prepared
at h/J = 0 using a single wave vector q = 2mπ/L (1, 1) (m ∈ N). Triangular and square
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skyrmion configurations with various densities are produced from many skyrmions placed
very close to the corresponding lattice sites (each skyrmion is prepared in a small system
with 7× 7 spins at h/J = 0.6). Simulated annealing runs are performed from h/J = 0 to
higher magnetic field for helical states with |∆h/J | = 0.001, and from h/J = 0.6 to lower
and higher magnetic field with the same |∆h/J | for triangular skyrmion states. To find
whether square skyrmion states can have a lower energy than triangular states in the low
density region, i.e. in the vicinity of the transition field hSP, we also perform simulated
annealing simulations from h/J = 0.7 to lower magnetic field with |∆h/J | = 0.0001.

10.4 Difficulty of simulation of skyrmions at low temperature

Each skyrmion consists of tens of spins with our choice of the parameters. A large free-
energy barrier prevents regular Monte Carlo algorithms such as the heat-bath and the over-
relaxation algorithms from destroying/creating skyrmions in a short time. That causes
a serious relaxation problem in the low temperature region: Physical quantities, even
the energy density, starting from completely different initial conditions, a ferromagnetic
and a random configuration, do not coincide with each other for more than 106 Monte
Carlo sweeps even for a small system with 1282 spins, see Fig. 10.2. We may apply the
event-chain algorithm discussed in Section 3 to the system. However, unfortunately, due
to a lack of continuous symmetry, it does not work well, and no speed-up is seen by the
event-chain algorithm for the system.

Skyrmions are topological excitations with local energies, and we expect the free-energy
barrier is O (1) but takes a large value at low temperature. To create/destroy skyrmions,
or to change the number of skyrmions in a short time, we consider an algorithm that
realizes a heating and an annealing process of a local region with keeping the detailed
balance condition (which is referred to as Annealing/Heating-Operation (AHO) algorithm
in the following). Let us suppose a region where ℓ spins σ reside in a system with
inverse temperature β. We change temperature of the region according to a schedule S =
{β → β0 → · · · → βM−1 → βM−1 → βM−2 → · · ·β0 → β}. At each temperature, spins in
the region are updated using the heat-bath algorithm with other fixed spins outside the
region. A new spin configuration σ′ is accepted by the Metropolis acceptance probability

P (σ,σ′, S) = min (1, r) , (10.4)
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Fig. 10.2: Monte Carlo time dependence of the energy density (a) and the magnetization
(b) starting from the ferromagnetic configuration (square and upward triangular symbols)
and a random configuration (circle and downward triangular symbols). “HB”, “OR”, and
“AHO” stand the heat-bath, the over-relaxation, and the Annealing/Heating-Operation
algorithms, respectively.
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where

r = exp {(β0 − β) (E0 − E2M ) + (β1 − β0) (E1 − E2M−1) + · · ·
· · ·+ (βM−1 − βM−2) (EM−1 − EM+1) .}(10.5)

to satisfy detailed balance. Here, Ei is the energy of the system at i-th temperature in
the schedule S. This AHO algorithm with well tuned parameters, for example, ℓ = 16,
M = 1200, β = 10, and βM = 4, has a considerable acceptance probability, and allows
the energy density and the magnetization starting from two completely different states
to coincide with each other in a short Monte Carlo time steps, see Fig. 10.2. However,
unfortunately, it takes O (M) times longer real time for every step than regular algorithms,
and the algorithm seems not to be useful for our system even though the convergence time
is more than M times faster.
We may construct a geometric cluster algorithms as discussed in Section 2.3.2 using the

symmetry Eq. (10.2) or Eq. (10.3), but, the algorithms are inefficient due to the cluster-
size problem discussed in Section 2.3.3, with which cluster algorithms are confronted for
many complex models.

10.5 Strategy for Monte Carlo simulations at finite

temperature

To overcome the difficulty of conventional Monte Carlo simulations of the system, we
perform Monte Carlo simulations in two stages as follows. In the first stage, by exten-
sive simulated annealing simulations from high temperature where the skyrmion number
changes fast, we find the thermodynamic dominant number of skyrmions Ns at low tem-
perature. Cooling rate dependence of the resultant Ns is carefully checked to obtain the
correct value of Ns. In the second stage, we compute some physical quantities presented
below with the fixed number of skyrmions Ns, which is estimated in the first stage. Re-
sults obtained by this procedure coincide with those obtained by regular Monte Carlo
simulations toward the thermodynamic limit.
At the magnetic field h/J = 0.5, in our simulated annealing simulations starting from

T/J = 0.955 to 0.155 with ∆T/J = 0.01, the number of Monte Carlo steps at each
temperature M is controlled, where one Monte Carlo time step consists of one heat-
bath sweep followed by ten over-relaxation sweeps. Both algorithms are carried out with
a sequential update. The equilibrium number of skyrmions is obtained in the limit of
vanishing cooling rate θ → 0. After the thermodynamic dominant value Ns is found, we
fix the number during simulations to calculate physical quantities. In the simulations, one
unit Monte Carlo time step consists of one heat-bath sweep and 104 over-relaxation sweeps.
The number of skyrmions is checked every Monte Carlo time step using an integer-valued
topological charge [166], and a new configuration is rejected if the number of skyrmions is
changed from the thermodynamic dominant value. This algorithm strictly preserves the
number of skyrmions during simulations.

10.6 Massive parallelization with GPU

Because of the local nature of the Hamiltonian, we can implement the heat-bath and
the over-relaxation algorithms with spatial parallelization. Recently, a general-purpose
graphic processing unit (GPU) is extensively utilized for massive parallel computations
ranging from exact numerical diagonalization of large matrices to large-scale molecular
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dynamics and Monte Carlo simulations. In this work, we use GPUs to simulate our system
with massive spatial parallelization using the two-color checkerboard decomposition of
the system proposed in Refs. [22, 23]. The checkerboard consists of many “blocks” which
are composed of ℓ × ℓ sites, see Fig. 10.3. Blocks on one of the two sub-lattices of the
checkerboard are updated independently. In each block, spins residing on one of the two
sub-lattices are updated simultaneously, and spins on the other sub-lattice are updated
by turns. We choose ℓ = 16 in our simulations. A parameter of this spatial parallelization
using the checkerboard decomposition is the number of sweeps K in each block. While
the balance and the ergodicity conditions are always satisfied for any K, we take K = 1,
which seems to be the best in the sense of the relaxation time of physical quantities such
as the global orientational order of skyrmions (that is discussed below).

Our checkerboard decomposition that consists of many blocks with 16 × 16 spins is
incommensurate to the rectangular-shaped underlying spin lattice with Lx = 97 × k
and Ly = 84 × k, and not all of the spins are updated in the checkerboard at a time.
We randomly shift the checkerboard after every 102 over-relaxation sweeps to assure the
ergodicity condition.

10.7 Positions of skyrmions

We interpret skyrmions as point particles with an isotropic interaction. To this end,
we define a position of each skyrmion R = (Rx, Ry) in the two-dimensional plane using
lattice sites of spins composing the skyrmion and the spin variables as

Rα =
1

Ask

∑
i∈skyrmion

(rα + Si,α) , (α = x, y) (10.6)

where Ask is the number of spins composing the skyrmion, and rα is a position of lattice
site i. A connected cluster of spins with Si,z < 0 is regarded as a skyrmion. An isolated
skyrmion at zero temperature has a symmetric structure around its core, and spins near
a core of a skyrmion are antiparallel to the magnetic field (they thus point into the −z
direction)). The definition gives the exact center of each skyrmion if it has a complete
symmetric shape. At finite temperature, on the other hand, the thermal fluctuations of
the Heisenberg spins induce fluctuations in the determination of the skyrmion position.
While we may use other definitions of a position of a skyrmion, we expect that the same

Fig. 10.3: A checkerboard decomposition of the system. Each block consists of ℓ×ℓ spins.
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results are obtained unless they give a symmetric point as a position for a skyrmion at
zero temperature that has a completely symmetric shape.

10.8 Physical quantities

In this section, we introduce three important order parameters to study phase transi-
tions in the two-dimensional chiral magnet. The orientational and the positional orders
are used for skyrmions with the interpretation as point particles. These parameters are
traditionally studied for particle systems to find phase transitions. The other one, the
directional order, is relevant for helical states. That detects a helical ordering in any
direction.

10.8.1 Orientational order

The local orientational order parameter, explicitly introduced in Ref. [167], is a complex
number that characterizes an orientation of a local lattice structure. A triangular lattice
structure is invariant under a rotation of the whole system with an angle ±π/3. The local
orientation order of particle j is defined so that the ±π/3 rotation gives the same value
as

ψj =
1

|∂j|
∑
k∈∂j

exp (6iθjk) , (10.7)

where ∂j is a set of neighboring particles of j, and θjk is an angle of rjk = rk − rj
measured by a fixed axis, Fig. 10.4. The global orientational order Ψ6 is simply defined
as the average of ψj over all particles. For a complete triangular-lattice configuration of
particles, the global orientational order gives |Ψ6| = 1. The local orientation order ψj is
a quantity like an XY spin, but its length is changed depending on neighboring particles’
configuration.
While the orientational order can be easily calculated once neighboring particles are

identified, it is unclear what an appropriate definition of neighboring particles is. Indeed,
the value of the orientational order itself and its behavior strongly depends on the choice
of the definition [168]. Here, we use a definition based on the Delaunay triangulation,
the dual of the Voronoi tessellation, to find neighboring pairs of particles. Note that
many works (for example, see [26, 167, 169–173]) have adopted a definition based on the
distance between particles; each pair of particles at distance shorter than a fixed threshold

Fig. 10.4: An angle θjk of a bond rjk = rk − rj between two particles j and k.
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is regarded as neighboring particles. This definition reduces a computational time to find
neighboring particles, but a result is expected to depend on the threshold, and we do not
know a priori how to find an “appropriate” threshold.

We define the correlation function of the local orientational order

g6 (r) =

⟨
1

Ns

∑
j,k

ψ∗
jψkδ (r − |rk − rj |)

⟩
(10.8)

to find a phase transition involved in the orientational order. In the solid or crystalline
phase, the correlation function of an infinite system remained finite even in the limit
r → ∞. On the other hand, it decays to zero algebraically in the hexatic phase and
exponentially in the liquid phase. The correlation function is computed as a histogram
of the distance between two skyrmions with weight ψ∗

jψk. The size of each bin of the
histogram is 1/5a0, where a0 is the lattice spacing of spins.

10.8.2 Positional order

The positional order of N particles is characterized by the structure factor

S (q) =

⟨
1

N

∑
j,k

exp (iq · (rj − rk))

⟩
, (10.9)

where q is a two-dimensional vector, and rj is a position of particle j. By using a
wave vector q0 where the structure factor S (q) has the largest peak, the positional order
parameter is defined as

v =
1

N

∑
j

exp (−iq0 · rj) . (10.10)

The positional correlation function is defined using v as

gq0 (r) =

⟨
1

N

∑
j,k

exp (iq0 · (rj − rk))

⟩
. (10.11)

However, for off-lattice particles as well as skyrmions in our model with the interpretation,
unlike spin models on a finite regular lattice, the wave vector q0 can have real-valued
components, and to find the wave vector q0 is a computationally time-consuming task with
the Fourier transform and an interpolation. We therefore focus on the two-dimensional
positional correlation function

g (∆r) =

⟨
1

N

∑
i,j

δ (∆r − (rj − ri))

⟩
, (10.12)

that can be obtained without knowing q0 [69]. In the computation of g (r), each con-
figuration is rotated by − arg (Ψ6/6) so that the resultant Ψ6 is approximately parallel
to the x axis [69]. Note that while in the liquid and hexatic phase g (r) decays to 1
exponentially, it decays to 1 algebraically in the solid phase. If the correlation function
decays to a value larger than 1, that means long-range positional order exists and the
system is in the crystal phase. We compute the two-dimensional positional correlation
function as a histogram of the displacement vectors between two skyrmions. The area of
each two-dimensional bin is a0/5× a0/5.
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10.8.3 Directional order

Helical orders have been studied by using the spin structure factor

Sspin (q) =

⟨
1

N

∑
j,k

Sj · Sk exp (iq · (rj − rk))

⟩
. (10.13)

When the structure factor has the two largest peaks at non-zero vector ±q0, the system
has a helical order, and the wave-vector-dependent magnetization m (q0) (see Eq. (6.5))
may be regarded as an order parameter. In our system, two helical structures with +π/4
and −π/4 directions have the same statistical weight because of the symmetry Eq. (10.3)

in the Hamiltonian. Two wave vectors q
(1)
0 and q

(2)
0 (q

(1)
0 ⊥ q

(2)
0 ) characterize the order

of the system, and one of the two helical structures appears over the whole system in the
ground state. Therefore, we expect a spontaneous symmetry breaking associated with
the direction of the helical structure occurs with a phase transition. However, the wave
vectors are not known a priori, and, as discussed in the previous chapter, they depend
not only on system sizes but also on temperature and the magnetic field.
We instead introduce another order parameter (the directional order parameter) that

detects a direction of the helical structure over the system

Φ =
1

N

∑
i

φi, (10.14)

φi = Si × Si+ex +Rez (−π/4)Si × Si+ey , (10.15)

where Rez (θ) is a rotation matrix with an rotation axis ez and an angle θ. If a system
has a homogeneous helical structure with an axis ±ex, the order parameter Φ ∥ +ex,
and Φ ∥ −ex with an axis ±ey. With our choice of the parameters |Dx| = |Dy| in the
Hamiltonian, only two helical structures that give Φ ∥ ±ey are dominant in the system.
We thus focus on the y component of Φ, and use the Binder parameter

U =
1

2

(
3−

⟨
Φ4
y

⟩⟨
Φ2
y

⟩2
)
. (10.16)

to find a phase transition. Note that
⟨
Φny
⟩
= 0 (n = 1, 3, · · · ) because of the symmetry

Eq. (10.3).
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Melting of skyrmions in two spatial dimensions

In this chapter, we present the results obtained by our Monte Carlo simulations of the
system. We first discuss the zero-temperature phase diagram obtained by extensive simu-
lated annealing simulations at zero temperature. Skyrmions are stabilized by each other,
and the skyrmion crystal phase indeed exists in a finite region of the magnetic field. At
finite temperature, by large-scale Monte Carlo simulations with massive parallelization
discussed in Section 10.6, we show that the skyrmions form a typical two-dimensional
solid without a long-range positional order rather than a crystal. The skyrmion solid
state melts into the skyrmion liquid state in one stage without an intermediate hexatic
phase, unlike two-dimensional particle models *1. We also discuss a phase transition
between the paramagnetic and the helical phase, and the magnetic phase diagram.

11.1 Zero-temperature phase diagram

At zero temperature, the energy and the stability of a single skyrmion are studied by
using the zero-temperature heat-bath algorithm. As the skyrmion is a local topological
excitation, an energy difference between one single skyrmion and the paramagnetic spin
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Fig. 11.1: An effective potential Veff (r) between two skyrmions as a function of the
distance r. The potential decreases exponentially with r.

*1 Technically speaking, the high-temperature state of repulsive particles should be mentioned as a
gas state. Nevertheless, here we refer to it as a liquid phase according to the previous studies in
particle models.
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Fig. 11.2: (a) Phase diagram of a single skyrmion at zero temperature. For h/J ≲ 0.50,
a single skyrmion is unstable toward a tube-like object, and at high h/J ≳ 1.10 toward
the paramagnetic state. (b) Phase diagram of the system at zero temperature, with
helical, triangular skyrmion crystal, and paramagnetic state (hHS/J ≃ 0.29 and hSP/J ≃
0.69, below which a single skyrmion gains an energy). (c) Energy densities of triangular
skyrmion crystal states (with various densities) and helical states (with various winding
numbers). The color represents the skyrmion densities for skyrmion crystal states, and
the square of winding densities for helical states, respectively. Square skyrmion crystals
always have higher energies than the triangular skyrmion crystal state of the lowest energy.
The skyrmion crystal states with low densities are unstable below h/J ≃ 0.50, where a
single skyrmion instability emerges.
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configuration, where all of the spins are parallel to the magnetic field, is always O (1),
independent of the system size. While a skyrmion costs an energy when h/J ≳ 0.69, it
is locally stable up to h/J ≃ 1.10, see Fig. 11.2 (a). Below h/J ≃ 0.69, to put a single
skyrmion gains an energy compared to the paramagnetic state, and it is stable down to
h/J ≃ 0.50 below which the skyrmion is transformed into a tube-like object (Fig. 11.2
(a)).

As a skyrmion is a stable vortex and two skyrmions do not annihilate each other,
we can consider skyrmions as particles interacting through an effective interaction. We
calculate an effective interaction Veff (r) between two skyrmions as an extra energy to put
them at distance r. The energy is minimized by using the zero-temperature heat-bath
algorithm with two fixed spins at a center of each skyrmion. Two skyrmions interact
with each other through purely repulsive, and exponentially decaying small interaction,
see Fig. 11.1. An effective radius of each skyrmion estimated by exponential fitting of
the interaction decreases with increasing the magnetic field. By comparing the energy
gain below hSP/J of a single skyrmion and the effective interaction of two skyrmions, the
skyrmion density increases with decreasing the magnetic field.

Below h/J ≃ 0.69, referred to as hSP/J in the following, the triangular skyrmion
crystal states have lower energies than the paramagnetic state. The point below which
a single skyrmion gains an energy corresponds to the transition magnetic field between
the skyrmion crystal and the paramagnetic phase, see Fig. 11.2 (b). The density of the
skyrmion crystal state with the lowest energy gets higher with decreasing h/J predicted by
the above discussion of the effective interaction. Skyrmions are stabilized by the mutual
repulsive interaction. Indeed, while crystal states with low skyrmion density gets unstable
below h/J ≃ 0.5, where a single skyrmion becomes unstable, high-density skyrmion crystal
states are stable down to very low magnetic field. Between hHS/J ≃ 0.29 and hSP/J , the
triangular skyrmion crystal states thus has the lowest energy, and below hHS/J the helical
state is the ground state, see Fig. 11.2 (b).

Due to the underlying square spin lattice, a weak coupling exists between a position of
each skyrmion and the underlying spin lattice (we detail in the next section). By inter-
preting skyrmions in our system as interacting particles in a square periodic substrate,
skyrmions in our system may have a square-lattice structure commensurate to the under-
lying lattice in the low density region just below hSP/J [157, 159]. However, square-lattice
skyrmion crystals always have higher energy than triangular lattice crystals. The size of
skyrmion is ∼ 8 times larger than the lattice spacing of spins, and thus a triangular lattice
structure can adjust to the substrate potential with a minimal distortion and a small en-
ergy cost. Therefore, the triangular skyrmion crystal states, which is the closest packing
structure for isotropic particles, are the ground state even near hSP/J .

11.2 Magnetic Phase diagram at finite temperature

Our model, at finite temperature, has three phases at finite temperature (Fig. 11.3);
the paramagnetic phase with all short-range correlations; the skyrmion solid phase with a
long-range orientational and a quasi-long-range positional correlations; the helical phase
with a long-range directional correlation. We should notice in the phase diagram that
the skyrmion crystal phase, which has a long-range positional correlation, does not ex-
ist at finite temperature. Also, with our interpretations of skyrmions as particles, the
phase boundaries are largely changed from the conventional phase diagram of the two-
dimensional chiral magnet, see, for example, [134, 140, 149, 150]: Phase transition tem-
perature between the paramagnetic and skyrmion solid phases are reduced, and the phase
boundary between them has an anomalous positive slope in a small region of the phase
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boundary, see Fig. 11.3. We will show and discuss our Monte Carlo results in the next
section.

11.2.1 Paramagnetic–Helical phase transition

Before proceeding with the skyrmions at finite temperature, we discuss a phase transi-
tion between the paramagnetic and helical phases. In the helical phase, the helical struc-
ture with one of two directions ±π/4 is dominant over the system while both directions
appear with the same probability. With increasing temperature, two helical structures
are mixed in the system. At h/J = 0.1, the Binder parameter of the directional order UL

Helical

Skyrmion 

             Solid

Paramagnetic

(Skyrmion liquid)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4  0.5

h
/J

T/J

Fig. 11.3: Magnetic phase diagram of the two-dimensional chiral magnet. The circles are ob-
tained by the zero-temperature energy minimizations. The squares are obtained by decays of
correlation functions, and the diamonds denote peak locations of the specific heat obtained by
finite-temperature Monte Carlo simulations at each magnetic field.
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Fig. 11.5: Effective coupling potential Vcoup (∆r) characterizing the coupling between
skyrmion positions and lattice sites. For h/J ≳ 0.68, the potential minimum coincides
with the lattice sites (∆x = ∆y = 0), but at smaller magnetic field, the minimum lies
between the lattice spins, at ∆x = ∆y = 0.5.

has an intersection at temperature T/J ≃ 0.42, see Fig. 11.4. A finite-size scaling analysis
with the form

UL = F

[(
T − Tc
J

)
L1/ν

]
(11.1)

yields Tc/J = 0.42043(6) and ν = 1.06(2). The critical exponent of the correlation length
ν is marginally consistent with the two-dimensional ferromagnetic Ising universality class.
We obtain at h/J = 0 with the same scaling form Tc/J = 0.44797(7) and ν = 1.06(2),
and thus the phase transition between the paramagnetic and the helical phases belongs
to the same universality class independent of h/J .

11.3 Skyrmions at finite temperature

11.3.1 Coupling potential between skyrmions and lattice sites

As mentioned in the previous section, skyrmions have a weak but finite coupling to
the spin lattice. We compute the coupling potential between skyrmion positions and spin
lattice sites using the skyrmion locator of Eq. (10.6). We simulate one single skyrmion
in the system with 16 × 16 spins at T/J = 0.1 to obtain a histogram of the skyrmion
locations

P (∆r) =

⟨
δ

(
∆r −min

k
(Rsk − ℓk)

)⟩
,

where the bracket ⟨· · ·⟩ represents average over configurations with only one skyrmion, and
ℓk represents the location of k-th lattice site. We checked that the coupling potential is
independent of the system size. The coupling potential is estimated as a free-energy ratio
Vcoup (∆r) = − log (P (∆r)) /β. Fig. 11.5 shows Vcoup (∆r) at various magnetic fields.
The potential is clearly finite, and the potential minimum depends on the magnetic field
(see Fig. 11.5). The coupling potential and the effective interaction between skyrmions
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Fig. 11.6: Cooling-rate dependence of the number of skyrmions in configurations at T/J =
0.155 obtained by simulated annealing simulations from a high temperature. The magnetic
field h/J = 0.5. The leftmost point θ = 0 corresponds to the equilibrium limit.

(Fig. 11.1) clearly shows that the correct interpretation of skyrmions in our system is
particles in a square periodic substrate with a short-range repulsive interaction.

11.3.2 Thermodynamic dominant number of skyrmions

At h/J = 0.5, the number of skyrmions Ns at T/J = 0.155 decreases with decreasing
the cooling rate of the simulated annealing runs discussed in Section 10.5. For the system
with Lx = 1164 = 97× 12 and Ly = 1008 = 84× 12, the number Ns approaches 128× 128
in the limit θ → 0, see Fig. 11.6. We thus estimate the thermodynamic dominant number
of skyrmions as Ns = 128 × 128 in the system. The same limiting density of skyrmions
is also obtained for smaller systems with (Lx, Ly) = (582, 504) and (291, 252). We note
that, at h/J = 0.5, the obtained limiting density corresponds to the skyrmion density in
the ground state.

11.3.3 Low-temperature phase

In our production simulations to compute physical quantities, we keep the number of
skyrmions to the estimated value with a specialized Monte Carlo algorithm implemented
on GPU (see Section 10.5 and 10.6). At T/J = 0.155, scatter plot of the global orientation
order parameter Ψ6 has some “lobes”. Each lobe corresponds to slight rearrangements
of the skyrmions with respect to the periodic simulation box: Each row of skyrmions in
configurations in the lobe at ImΨ6 ≃ 0 goes back to itself with the periodic boundary, and
that in the other lobes goes to another row. Those lobes imply a long-range correlation
in the orientational order parameter. Indeed, the correlation function of the orientational
order g6 (r) at T/J = 0.155 decays to a finite value, which means a long-range ordering of
Ψ6, see Fig. 11.7. At this temperature, the two-dimensional correlation function g (∆r)
averaged over the configurations independent of the value of Ψ6 has a triangular lattice
structure at short distance, which derives from the long-range correlation of Ψ6. How-
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(b) h/J = 0.30 and 0.35.

ever, a one-dimensional cut of the two-dimensional correlation function g (x, 0)−1 decays
slightly faster than an algebraic decay, that suggests an exponential decay with a long but
finite correlation length.

The long-range correlation in the orientational order and the short-range correlation in
the positional order contradict each other at first sight. We thus analyze the positional
correlation function for each lobe. In the center lobe at |ImΨ6| ≃ 0, the one-dimensional
cut of the two-dimensional positional correlation g (x, 0) − 1 clearly decays algebraically
with an exponent ≃ 0.5, see Fig. 11.8 (e). On the other hand, in the other lobes, the
positional correlation function g (x, 0)−1 appears to decay faster than an algebraic decay,
which can be seen markedly in the lobe that has |ImΨ6| ≳ 0.1, see Fig. 11.8 (c). However,
this is an artifact due to the slight distortion of the correlation peaks near the x axis that
do not lie on the x axis unlike the center lobe, see inset of Fig. 11.8 (b)–(d). This is
caused by the mismatch between the locally triangular structure with large |ImΨ6| and
the simulation box, i.e. the underlying spin lattice. When the peaks are not located
on the x axis, the naive one-dimensional cut of the two-dimensional positional correlation
g (x, 0)−1 does not give the correct correlation. The correct positional correlation function,
the maximum values for all peaks near the x axis, determined individually, indeed decay
algebraically for all the lobes (see black open symbols in Fig. 11.8 (b)–(d)). Therefore
we conclude that the positional correlation function at T/J = 0.155 decays algebraically
with an exponent 0.5. Note that the exponent 0.5 is larger than the stability limit 1/3 of
a two-dimensional solid predicted by the KTHNY theory [157, 159]. Their theory relies
on the continuous symmetry of particle models. On the other hand, our system has no
continuous symmetry, and each position of skyrmions has small but finite coupling to the
lattice sites as discussed in Section 11.3.1. This coupling can be considered as an effective
periodic potential incommensurate to the skyrmion solid that stabilizes the solid phase
with a larger exponent than that observed in particle systems. A larger exponent was also
reported in an experimental work on a melting transition of atoms on a two-dimensional
periodic substrate [174].

The conventional understanding of the low temperature phase of two-dimensional chiral
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Fig. 11.8: (a) Scatter plot of the global orientational order parameter Ψ6, and the two-
dimensional pair correlation function at short distance. (b)–(e) Positional correlation
function g (∆r)− 1 for each lobe of the scatter plot. Solid lines represent g (x, 0)− 1 and
black open symbols (circles in (b), inverted triangles in (c), etc.) represent the maximum
value of each peak in the two-dimensional correlation function g (x, y). Insets in (b)–(e)
show the two-dimensional correlation function g (x, y) near the x axis (compare with (a)).
The white line is the x axis along which g (x, 0)− 1 is plotted. Black open symbols again
represent local maxima. The system is Lx = 1164 and Ly = 1008 at T/J = 0.155 and
h/J = 0.5.

magnets has stated that skyrmions form a crystal. However, our results clearly show that
skyrmions in the two-dimensional chiral magnet form a two-dimensional solid, which has
a long-range orientational correlation and a quasi-long-range positional correlation, rather
than a crystal. With the interpretation of skyrmions as point particles, our results are
consistent with the KTHNY theory for particle models on a weak incommensurate periodic
substrate [157, 159].

11.3.4 Melting of skyrmions

With increasing temperature, the skyrmion solid state melts into the skyrmion liquid
state. The liquid phase, as discussed in Section 9.2.1, has short-range correlations in both
the orientational and the positional orders. The skyrmion solid and liquid phases can be
directly visualized using a color representation of a phase of the local orientational order,
see Fig. 11.9. Towards the transition temperature from below, we observe a decrease of
the asymptotic correlation of the orientational order. From the opposite side, i.e. from the
liquid phase, a very rapid increase of the orientational correlation length towards a value
comparable to the system size L (for example at h/J = 0.5, see Fig. 11.7(a), where the
transition temperature is estimated as T/J ≃ 0.16). Analogous behavior is found for all
other values of h/J with a solid–liquid transition. Unlike for the two-dimensional particle
models, but in agreement with theoretical predictions [157, 159], we find no evidence of
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an intermediate hexatic phase. This is also consistent with the experimental work [174]
that reports a direct melting transition from the solid to the liquid.

With increasing the magnetic field, which lowers the entropy, systems usually enters
the paramagnetic phase. This also holds in our system if the magnetic field h/J ≳ 0.35.
However, in a small region of the phase diagram, skyrmions freeze solid with increasing the
magnetic field (see Fig. 11.3). This is remarkably observed in the orientational correlation
functions at a certain finite temperature, which is long ranged at higher h/J while it
decays exponentially at lower h/J (see Fig. 11.7(b)).

Our results show that the solid–liquid transition of skyrmions is of one-step, and is
a continuous transition with a growing correlation length. However, a continuous solid–
liquid transition has not been known in two-dimensional particle models while a first-order
one and a continuous two-step transition are observed in some models. One of the possible
explanations of the temperature dependence of the correlation function of the orientational
order is an existence of an intermediate hexatic phase between the solid and the liquid
phases with an extremely narrow temperature range. If so, our system size is clearly
not enough to observe the hexatic phase. Another possible explanation is an intermediate
phase that has a finite orientational order parameter but is not solid predicted by Halperin
and Nelson [157, 159]. According to their theory, the orientational order vanishes at higher
transition temperature with the two-dimensional Ising anomalies. Anyway, in our system,
a possible intermediate phase, if it exists, lies in a very narrow temperature range, between
T/J ≃ 0.155 and T/J ≃ 0.165. A simulation of the system with an extremely large size
would change our present understanding of the phase transition, but we conclude here
within our Monte Carlo simulations of the model with 106 Heisenberg spins that the
skyrmions solid state melts into the liquid state in one step.
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Fig. 11.9: A color representation of the argument of the local orientational order parameter
ψi of each skyrmion. The system is in the solid phase (left) and the liquid phase (right).
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Conclusion of Part III

In Part. III, we investigated a classical Heisenberg spin model of a two-dimensional
chiral magnet and discussed its phase transitions. Competition between the bi-axial
Dzyaloshinskii–Moriya interaction and the magnetic field induces skyrmions, thermody-
namically stable vortices composed of tens of spins, into the system. At zero temperature,
the system has three different phases depending on the magnetic field: The helical phase,
the skyrmion crystal phase with a triangular lattice structure, and the paramagnetic
phase. The helical phase and, of course, the paramagnetic phase survive at finite temper-
ature. We proposed an order parameter, the directional order, to detect a phase transition
into the helical phase, and found that the phase transition belongs to the two-dimensional
ferromagnetic Ising universality class. On the other hand, the skyrmion crystal state does
not exist at finite temperature, contrary to the conventional belief in the two-dimensional
chiral magnet. We interpreted skyrmions as point particles, and focused on the positional
and the orientational orders, which are two important order parameters in particle models.
By use of a specialized Monte Carlo algorithm that preserves the number of skyrmions,
and massive parallelization implemented on GPUs, we revealed with the interpretation
that two-dimensional skyrmions at finite temperature form a typical two-dimensional solid
without a long-range positional correlation. This skyrmion solid state melts in one step
into the skyrmion liquid (which is equivalent to the paramagnetic phase) without an in-
termediate hexatic phase, which has been numerically proved to exist in particle models
on a smooth substrate.
We showed that skyrmions can be naturally considered as particles in a periodic sub-

strate. The typical size of each skyrmion is ∼ 8 times larger than the underlying spin
lattice, which produces the effective periodic potential. The KTHNY theory for particles
in a fine mesh potential with a square-lattice shape, which are similar to skyrmions in
our system, predicts the absence of the intermediate hexatic phase. While our results
are consistent with the theory, the applicability of the KTHNY theory to our case is not
trivial. In the two-dimensional hard disk model, the hexatic–liquid Kosterlitz–Thouless
phase transition predicted by the theory is preempted by a first-order phase transition
[69]. This first-order phase transition may survive in a perturbative periodic substrate
as the q-state ferromagnetic Potts model in a weak magnetic field (with sufficiently large
q). The KTHNY theory for a particle model in a periodic substrate is expected to hold
when the model without the periodic substrate exhibits the Kosterlitz–Thouless phase
transitions as predicted by the theory. Skyrmions in our model of two-dimensional chiral
magnets have a very soft repulsive interaction. The scenario of the melting transitions
depends on the softness of the interaction between particles [153], and thus, we can con-
firm our results through the effective interaction between skyrmions. For smaller but
finite D/J , the average size of skyrmions gets larger, and the effective interaction be-
tween skyrmions becomes softer. The periodic potential emerging from the spin lattice
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becomes weaker. Therefore, the situation for skyrmions in the system with smaller D/J
approaches to that of the KTHNY theory, and our results qualitatively hold in that case.
In the limit D/J → 0, however, the underlying spin lattice disappears. Skyrmions in this
case should be interpreted as point particles on a smooth substrate. The two-dimensional
melting scenario in a smooth substrate thus holds and the intermediate hexatic phase ex-
ists. The finite-temperature phase diagram of two-dimensional chiral magnets with finite
D/J differs from that of the continuum model of chiral magnets.

The KTHNY theory also predicts another phase transition at higher temperature that
belongs to the two-dimensional Ising universality class for particles models on an incom-
mensurate periodic substrate. However, we did not find any clear evidence of such a phase
transition in our simulations, and the orientational correlation function decays exponen-
tially slightly above a temperature where the system is in the skyrmion solid phase. One
of the possible interpretations of our results is that the temperature range between two
phase transitions is very narrow, like ∆T/J ∼ 0.01. To identify two phase transitions
separated by such a narrow temperature range is extremely difficult for Monte Carlo sim-
ulations of the system with ∼ 104 skyrmions. We expect that an effective particle model
that disguises skyrmions in the two-dimensional chiral magnet allows us to see melting of
skyrmions more clearly, and make our results comprehensible.

The phase diagram of the system has two ordered phases at finite temperature; the
skyrmion solid phase and the helical phase. In the skyrmion solid phase, the orientational
order has a long-range correlation while the directional order has a long-range correlation
in the helical phase. These two order parameters characterize different symmetry of the
system, and thus, the phase boundary between the two phases should be of first order.
However, to confirm the expected first-order phase transition by Monte Carlo simulations
is very difficult due to slow dynamics in ordered phases *1. A multicanonical Monte Carlo
simulation [41, 42] is one of the possible methods for a direct observation of the first-order
phase transition.

As discussed in Section 11.3.4, a reentrant region exists in the phase diagram with
a positive slope of the phase boundary of the skyrmion solid phase. This anomalous
behavior is explained in terms of the dominant number of skyrmions. With decreasing
the magnetic field, the size of each skyrmions increases. Moreover, a larger number of
skyrmions is favored at lower magnetic field as more skyrmions gain more entropy. These
two changes with decreasing magnetic field compete, and the number of skyrmions is
maximized at h/J ≃ 0.35. At lower magnetic field h/J ≃ 0.30, the size of each skyrmion
becomes larger than that at h/J ≃ 0.35, and hence the effective interaction between
skyrmions becomes softer. As softer particles with a smaller number have a lower freezing
temperature than that of harder particles with a larger number, we obtain the anomalous
positive slope in the phase diagram.

In our Monte Carlo simulations, the number of skyrmions is rigorously fixed by a spe-
cialized algorithm to avoid the difficulty discussed above. This strategy is invalid if the
number of skyrmions strongly fluctuates at a target temperature. Fortunately, during our
simulations, the fluctuation of the number is very small, and the number rarely changes.
Furthermore, towards the thermodynamic limit, fluctuations in the number density will
be suppressed unless temperature is exactly a first-order phase transition point. We thus
expect that our strategy is valid in the sense that it gives the asymptotically correct results
towards the thermodynamic limit. The difficulty to change the number of skyrmions in
numerical simulations at low temperature prevents us to access high-precision data of the

*1 In Ref. [150], they show that a first-order phase transition occurs between the ordered phases by
Monte Carlo simulations of a small system with 128×128 spins while their model is slightly different
from ours.



81

system with a large system size. Our strategy is necessary for Monte Carlo simulations
of the system with more than 106 spins, and obtain our results unless an efficient cluster
algorithm is developed for the system.
We have considered in this work phase transitions driven by objects composed of Heisen-

berg spins, elementary degrees of freedom in the Hamiltonian. Collective configurations
of spins determine their positions and orders, and an effective particle model emerges with
the interpretation. We found in the skyrmion solid phase a quasi-long-range correlation
in the positional order and a long-range correlation in the orientational order. To our
knowledge, few studies have been known which reports collective objects showing a differ-
ent order from that characterized by elementary degrees of the Hamiltonian. If we focus
only on the spin-spin correlation function, we cannot find two distinct correlations in two
different orders. In that sense, the interpretation of skyrmions as particles is essential
to characterize the orders in the system and construct the phase diagram. Furthermore,
the interpretation can be directly applied to experimental data. We hope our results of
the two correlations in the skyrmion solid phase are testified through experiments of thin
films of chiral magnets, and contribute to understanding macroscopic properties such as
elastic stiffness of skyrmions [175] in thin films and their collective dynamics.
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Concluding Remarks

In this thesis, we discussed Monte Carlo algorithms, implementations, and their applica-
tion to two models of chiral magnets. In Part I, the event-chain algorithm is introduced.
The event-chain Monte Carlo algorithm is a lifting Monte Carlo algorithm, where, by
introducing an extra variable called the lifting variable, the detailed balance condition is
violated yet the global balance condition is satisfied. This algorithm was originally de-
veloped in the hard sphere models, but turned out to be efficient also in continuous spin
systems. In particular, for three-dimensional ferromagnetic Heisenberg model, reduction
of the dynamical critical exponent is realized by the algorithm; while the exponent z ≃ 2
in conventional algorithms with detailed balance, z ≃ 1 in the event-chain algorithm. The
event-chain algorithm shows us that breaking detailed balance can significantly change
the dynamics at a critical point. The algorithm is numerically shown to be efficient also
in a frustrated magnet. This is in contrast to the cluster algorithms: While cluster algo-
rithms reduce the dynamical critical exponent more than the event-chain algorithm, they
are useless in frustrated systems due to the discrepancy of the percolation threshold of
the cluster size and the actual phase transition point. However, the event-chain algorithm
does not work well for a three-dimensional Heisenberg spin glass model.

The speedup obtained by the event-chain algorithm relies on an introduction of the
lifting variables. In previous works [61, 63, 176], the lifting variable that takes an O (1)
value has been introduced just to double the configuration space. On the other hand, in
the event-chain algorithm, the lifting variable specifies a degree of freedom which will be
updated, and thus takes an O (N) value. This is the key ingredient to realize the collective
update and maximal breaking of detailed balance in the construction of the algorithm. It
would be one of guiding principles to design a lifting algorithm that induces a collective
update. Breaking detailed balance will be one of the useful strategies to develop efficient
Monte Carlo algorithms in the future. In particular, the lifting framework should have a
large potential for the systematic design of irreversible algorithms. A possible direction
for further research on Monte Carlo algorithms is to design an irreversible algorithm that
realizes a collective update for models with discrete degrees of freedom. Some irreversible
algorithms have been proposed for such models [63, 65, 176, 177], but none of them
change the dynamics qualitatively, or reduce the dynamical critical exponent of models
in finite dimensions with a phase transition at finite temperature. In these algorithms,
irreversibility affects only locally, and no collective update is realized in their dynamics
for the models. Irreversibility should be introduced so that a cooperative dynamics is
induced to the models.

In Part. II, the three-dimensional uni-axial chiral magnet with a magnetic field con-
sidered is studied by using the event-chain Monte Carlo algorithm. Fortunately, the
algorithm works quite well in the model of the three-dimensional uni-axial chiral magnet,
and it allows us to equilibrate the system with more than 106 spins. We found that a
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phase transition belonging to the three-dimensional ferromagnetic XY model occurs at
weak finite magnetic field although the magnetic field breaks the continuous symmetry
of the system. Another type of phase transition is found in the system with the larger
magnetic field. This phase transition accompanies strong divergences of the specific heat
and the uniform magnetic susceptibility. Although the system size dependences of the
peak values of the specific heat and the uniform magnetic susceptibility are marginally
consistent with ∼ L3, no double-peak structure is found in the energy density. This sug-
gests that L3 divergences derive from a different mechanism from a double-peak structure.
We pointed out the similarity between the Dzyaloshinskii’s theory and our results. On
the other hand, mean-field studies [107–110] show that a first-order phase transition can
occur with a finite magnetic field. Our results on this phase transition and the phase
diagram are not decisive. Further theoretical studies, such as finite-size scaling theory of
nucleation-type continuous transition, would help us to comprehend our results.
In Part III, we study the two-dimensional chiral magnet with bi-axial DM interaction

by massively parallelized Monte Carlo simulations implemented on GPUs. Skyrmions
emerge in the model with a magnetic field at low temperature as stable vortices composed
of many spins. The zero-temperature phase diagram is identified by energy minimization
of various skyrmion crystals and helical states. As a result, a triangular skyrmion crystal
state with a long-range positional correlation is the ground state in a finite region of the
magnetic field. At finite temperature, we interpret skyrmions as point particles. With
this interpretation, the system can be regarded as repulsive particle models with a square-
lattice periodic substrate. We simulate a large system with 106 spins and 104 skyrmions,
and compute the correlation functions of the orientational and the positional orders. At
low temperature, skyrmions form a two-dimensional solid with an algebraically decaying
positional correlation and long-range correlation in the orientational order. The triangular
skyrmion crystal state at zero temperature is not stable at finite temperature. We also find
the solid state melts into a liquid phase, equivalent to the paramagnetic phase, in one step.
This is consistent with the Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY) theory
for particles in a weak incommensurate periodic potential. Nevertheless, the KTHNY
prediction is not completely applied to our model just above the melting temperature. A
possible reason of the difference is the softness of skyrmions: As each skyrmion consists of
many spins, skyrmions might be considered as a particle with internal degrees of freedom.
Another reason is the fineness of the underlying lattice compared to the size of each
skyrmion. The detailed analysis of the theory and our results may be comprehensible
from these points of view.
The concept of the universality, which has been one of the celebrated achievements

in modern physics for decades, is essential to understand continuous phase transitions.
However, the universality of phase transitions in systems with low symmetry has been
still less understood. In both of our models of chiral magnets, the Hamiltonians have no
symmetry in the spin space, and only discrete symmetry coupled with the transformation
of the spin lattice exists. Therefore, we cannot estimate what kind of phase transition
is possible in the systems a priori. As demonstrated in Part II and III, both systems
indeed show extremely nontrivial phase transitions, which are not expected to occur by the
symmetry of their Hamiltonians. The Landau theory based on the concept of spontaneous
symmetry breaking cannot be directly applied to systems with very low symmetry. We
thus expect a phase transition beyond the Landau theory is possible in such systems.
Through this thesis, we have used an appropriate Monte Carlo strategy for each situa-

tion. While the event-chain algorithm worked efficiently in the model of uni-axial chiral
magnets (Part II), it is not efficient for the model of bi-axial chiral magnets (Part III).
Massive parallelization of a local Monte Carlo algorithm greatly helps equilibration in a
short time measured in the wall clock time in the latter model. We have to design an ap-
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propriate approach for each system we are interested in to minimize a real time to obtain
the correct results. Numerical simulations are dangerous in the sense we obtain wrong
results unless we are extremely careful. What we have to do in numerical simulations is
to try to understand each system profoundly rather than simulate it naively using general
algorithms. A deep understanding of each system may provide us a new numerical ap-
proach to each system, and, a new numerical approach provides us a new insight into the
system. I believe that “good” algorithm and implementation can change our conventional
understandings of physics.
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