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1 Introduction

String theory is expected to play an important role to construct quantum gravity theory.
However, string theory is not completed yet. One of the problems is that the theory is
defined as a perturbative theory, in which one can investigate only around a fixed back-
ground. The relationships between backgrounds are not clear. Construction of string field
theory is an approach to make nonperturbative string theory. For example, Witten made
a covariant open bosonic string field theory [1] and this theory succeeded in analyzing
tachyon condensation [5]. Tachyon condensation describes D-brane decayed background
from a background which has unstable D-brane.

String theory consists of not only bosonic string theory but also supersymmetric string
theory, which is called superstring theory. There are two types of construction of su-
perstring theory: Ramond-Neveu-Schwarz (RNS) form and Green-Schwartz form. Open
superstring in RNS formalism consists of Neveu-Schwarz (NS) sector, which gives space-
time bosons, and Ramond sector, which gives space-time fermions. We consider only NS
sector in this thesis. Witten constructed an open superstring field theory as well as bosonic
theory [2]. However, Witten’s open superstring field theory has a singularity which cause
a divergence in the four point amplitude. Erler, Konopka and Sachs modified this theory
by the approach explored by Iimori, Noumi, Okawa and Torii and resolve the singularity
[6][7]. The action constructed by Erler, Konopka and Sachs has a structure called A∞ al-
gebra. Berkovits provided another formulation open superstring field theory [3] [4]. These
two theories use different Hilbert spaces. Berkovits formulation is based on large Hilbert
space. In the large Hilbert space, superconformal ghost sector is described in terms of
η(z), ξ(z),φ(z). Erler-Konopka-Sachs (EKS) formulation is also constructed in the large
Hilbert space. However, its dynamical fields and gauge transformation is restricted to the
small Hilbert space, where superconformal ghost sector is described in terms of β(z), γ(z)
ghosts. β(z) and γ(z) are related to η(z), ξ(z),φ(z) as β(z) = e−φ(z)∂ξ(z), γ(z) = eφ(z)η(z).
Since β(z) does not depend on the zero mode of ξ(z), the Hilbert space of βγ ghosts is
smaller.

EKS formulation and Berkovits formulation are related by embedding EKS action into
the large Hilbert space and redefining fields [9][10][11]. However, embedding EKS action
increases gauge degrees of freedom and makes the gauge fixing more difficult.

Since superstring field theories have complicated gauge structures, the Batalin-Vilkovisky
(BV) formalism is used to fix gauge transformation. To quantize string field theory, it is
necessary to fix gauge by constructing BV master action which includes ghost fields and
antifields. BV action satisfies master equation 1

2{S, S} = i!△S where { , } is antibracket
which is defined in section 2 and △ is an operator. Constructing classical BV action which
satisfies classical master equation {S, S} = 0 is the first step to achieve second quantization
of string field theory. A classical master action can be constructed from EKS action in
the small Hilbert space easily because of the A∞ structure. However, when EKS action
is embedded into the large Hilbert space, we cannot construct a classical BV action in a
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straightforward way. The goal of this thesis is constructing classical BV master action in
the large Hilbert space.

This thesis is organized as follows. In section 2 we review the BV formalism briefly. We
see general gauge structures and how to fix gauge transformations with fields and antifields.
In section 3 we review construction of EKS action. We see the definition of A∞ algebra
and the form of EKS action. We review how to construct the string products in the action.
In section 4 we check the gauge transformations of EKS action. Embedding EKS action
into the large Hilbert space, we see the changes of gauge degrees of freedom. In section
5 we try to solve master equation in the large Hilbert space naively. However, we fail to
construct master action in this way. We show the details of the calculation. In section 6 we
propose a action which satisfy the master equation in the large Hilbert space. We double
fields and antifields in this approach. However, this action does not satisfy a boundary
condition. In section 7 we propose another BV action. We add ghost fields and antifields
and impose constraints.

2 BV formalism

In some gauge theories, gauge transformations are dependent on each other. These theories
are called irreducible. When all gauge transformations are independent, the theory is
reducible. Open superstring field theory is a reducible gauge theory. Quantization of such
theories is complicated.

The BV formalism can quantize reducible gauge theories in a covariant way [17][18].
In this thesis, we use only the classical BV formalism. We review gauge fixing procedure
using field and antifield in this section. This review is written in [8].

2.1 Gauge transformation

We consider a classical action S0[φ], which depends on n different fields φi(x), (i =
1, · · · , n). Let ϵ(φi) = ϵi denote the Grassmann parity of φi. Each φi is either a com-
muting field (ϵi = 0) or an anticommuting field (ϵi = 1).

Let us assume that the action is invariant under a set of m0 non-trivial gauge transfor-
mations

δφi(x) =
(
Ri

α(φ)ε
α
)
(x) (2.1)

where α = 1, 2, · · · ,m0. Here, εα(x) are infinitesimal gauge parameters and Ri
α are the

generators of gauge transformations. We use a generalized summation convention in which
a repeated discrete index implies not only a sum over that index but also an integration over
the corresponding space-time variable. As a simple example, consider the multiplication
of two matrices g and h, written with explicit matrix indices. In compact notation,

fA
B = gACh

C
B (2.2)
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represents

fA
B(x, y) =

∑

C

∫
dzgAC(x, z)h

C
B(z, y) (2.3)

in conventional notation. In other words, the index A in eq(2.2) stands for A and x in
eq(2.3). Likewise, B and C in eq(2.2) represents {B, y} and {C, z}. The generalized
summation convention for C in compact notation yields a sum over the discrete index C
and an integration over z in eq(2.3).

With this convention, the transformation laws

δφi(x) =
∑

α

∫
dyRi

α(x, y)ε
α(y) (2.4)

can be written as
δφi = Ri

αε
α. (2.5)

Let S0,i(φ, x) denote the variation of the action with respect to φi(x):

S0,i(φ, x) ≡
∂rS0

∂φi(x)
(2.6)

where ∂r indicates that the derivative is to be taken from the right. If the subscript is l,
the derivative is taken from the left. The right derivative is related to the left derivative

∂rF

∂φ
= (−)ϵ(φ)(ϵ(F )+1)∂lF

∂φ
. (2.7)

The statement that the action is invariant under the gauge transformation in eq(2.1)
means the Neother identity

S0,iR
i
α = 0. (2.8)

Assume that all gauge invariances of a theory are known and that the regularity con-
dition

rank

(
∂l∂rS0

∂φi∂φj

) ∣∣∣∣
Σ

= ndof (2.9)

is satisfied, where Σ is the stationary surface defined implicitly by

S0,i|Σ = 0 (2.10)

and ndof is the number of fields that enter dynamically in S0.
The most general solution to the Noether identities (2.8) is a gauge transformation, up

to terms proportional to the equations of motion:

S0,iλ
i = 0 ⇔ λi = Ri

0α0
λ′α0 + S0,jT

ij (2.11)
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where T ij must satisfy the graded symmetry property

T ij = −(−)ϵiϵjT ji. (2.12)

The Ri
0α0

are the gauge generators. The second term is a trivial gauge transformation.
If the functionals Ri

0α0
are independent on-shell, the theory is irreducible. In such a

case,
rankRi

0α0
|Σ = m0, (2.13)

where m0 is the number of gauge transformations. The rank of the hessian is

rank

(
∂l∂rS0

∂φi∂φj

) ∣∣∣∣
Σ

= n− rankRi
α|Σ = n−m0. (2.14)

Then for an irreducible theory ndof = n−m0 since there m0 gauge degrees of freedom.
If there are dependences among the gauge generators, and the rank of the generators

is less than their number
rankRi

0α− |Σ < m0, (2.15)

the theory is irreducible. If m0−m1 of the generators are independent on-shell, then there
are m1 relations among them and there exist m1 functionals Rα0

1α1
such that

Ri
0α0

Rα0
1α1

= S0,jV
ji
1α1

, (α1 = 1, . . . ,m1) (2.16)

for some V ji
1α1

, satisfying V ji
1α1

= −(−)ϵiϵjV ij
1α1

.
The Rα0

1α1
are the on-shell null vectors for Ri

0α0
since Ri

0α0
Rα0

1α1
|Σ = 0. If εα = Rα

1α1
εα1 ,

δφi in eq(2.1) is zero on-shell. Then, no gauge transformation is produced. εα1 is called
level one gauge parameter. The Grassmann parity of Rα0

1α1
is

ϵ(Rα0
1α1

) = ϵα0 + ϵα1 (2.17)

where ϵα1 is the Grassmann parity of the level one gauge parameter. Rα0
1α1

also constitute
a complete set

Ri
0α0

λα0 = S0,jM
ji
0 (2.18)

⇒ λα0 = Rα0
1α1

λ′α1 + S0,jT
jα0
0 , (2.19)

for some λ′α1 , T jα0
0 and M ji

0 satisfying M ji
0 = −(−)ϵiϵjM ij

0 .
If the functionals Rα0

1α1
are independent on-shell

rankRα0
1α1

|Σ = m1, (2.20)

the theory is first stage reducible. The rank of Ri
0α0

is

rankRi
0α0

, (2.21)
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and the net number of degrees of freedom in the theory is n−m0 +m1.
If the functionals Rα0

1α1
are not all independent on-shell, relations exist among them

and the theory is second or higher stage reducible. Then, there are higher level gauge
parameters and the on-shell null vectors of Rα0

1α1
exist.

If the theory is L-th stage reducible, there are functionals

Rαs−1
sαs

(αs = 1, . . . ,ms, s = 0, . . . , L), (2.22)

such that Ri
0α0

satisfies S0,iRi
0α0

= 0, and that, at each stage, the Rαs−1
sαs constitute a

complete set, i.e.,

Rαs−1
sαs

λαs = S0,jM
jαs−1
s (2.23)

⇒ λαs = Rαs
s+1,αs+1

λ′αs+1 + S0,jT
jαs
s , (2.24)

Rαs−2
s−1,αs−1

Rαs−1
sαs

= S0,iV
iαs−2
sαs

, (s = 1, . . . , L), (2.25)

rankRαs−1
sαs

|Σ =
L∑

t=s

(−1)t−smt (s = 0, . . . L), (2.26)

where we have defined α−1 ≡ i. The Rαs−1
sαs are the on-shell null vectors for Rαs−2

s−1,αs−1
. The

Grassmann parity of Rαs−1
sαs is

Rαs−1
sαs

= ϵαs−1 + ϵαs (2.27)

where ϵαs is the Grassmann parity of the s level gauge transformation parameter associated
with the index αs. Finally,

ndof = n−
L∑

s=0

(−1)sms (2.28)

is the net number of degrees of freedom.
The gauge transformations (2.24) contain trivial gauge transformations S0,jT

jαs
s . We

will discuss their role.
Suppose that the finite invertible gauge transformations satisfy the group axioms, their

infinitesimal counterparts necessarily form an algebra. Besides the usual gauge transfor-
mations (2.1), there are the trivial gauge transformations, defined as

δµφ
i = S0,jµ

ji, µji = −(−)ϵiϵjµji (2.29)

where µji are arbitrary functions. Such gauge transformations appear in commutators of
two non-trivial gauge transformations, so we need to take into consideration trivial gauge
transformations.

The commutator of a trivial gauge transformation δµ with another transformation δr is

[δµ, δr]φ
i = ri,kS0,jµ

jk − S0,jµ
ji
,kr

k − S0,jkr
kµji (2.30)
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where
δrφ

i = ri. (2.31)

Given that δr is a symmetry transformation of S0, it follows by differentiation by φj that

S0,kr
k = 0 (2.32)

⇒ S0,jkr
k + S0,kr

k
,j = 0 (2.33)

then the commutator becomes

[δµ, δr]φ
i = S0,j

(
rj ,kµ

ki − (−)ϵiϵjri,kµ
kj − µji

,kr
k
)
= S0,jµ̃

ji. (2.34)

The commutator of a trivial transformation with any other transformation is a trivial
transformation. Hence, the trivial transformations are a subgroup H of the full group of
gauge transformations Ḡ. The trivial gauge transformations have no physical significance.
We can consider the gauge theory on G = Ḡ/H.

2.2 The field antifield formalism

The ultimate goal is to quantize this theory in a covariant way. The field antifield formalism,
which is called the BV formalism was developed to achieve this aim.

Suppose a theory is irreducible with m0 gauge invariances. At the quantum level,
m0 ghost fields are needed. It is useful to introduce these ghost fields at the classical
level. Hence, the field set A is A = {φi, Cα0

0 } where α0 = 1, . . .m0. If the theory is first
stage reducible, there are gauge invariances for gauge parameters and there are ghosts for
ghosts. If there are m1 level one gauge invariances, there are ghost-for-ghost fields Cα1

1
where α1 = 1, . . . ,m1 in addition to the above set. If the theory is L-th stage reducible,
the set of fields is

A = {φi, Cαs
s } (s = 0, . . . , L; αs = 1, . . . ,ms). (2.35)

An additive conserved charge, which is called ghost number, is assigned to each of these
fields. The classical fields φi have ghost number zero, whereas ordinary ghosts have ghost
number one. Ghosts for ghosts, i.e., level one ghosts, have ghost number one, and so
on. Similarly, ghosts have opposite Grassmann parity of the corresponding gauge param-
eter, but ghosts for ghosts have the same Grassmann parity as the corresponding gauge
parameter. In general,

gh[Cαs
s ] = s+ 1, (2.36)

ϵ(Cαs
s ) = ϵαs + s+ 1 (mod 2). (2.37)

We set fields φA = φi, Cαs
s and introduce antifields φ∗A for each fields φA. The ghost

number and Grassmann parity of antifields are

gh[φ∗A] = −gh[φA]− 1, (2.38)
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ϵ(φ∗A) = ϵ(φA) + 1 (mod 2). (2.39)

In the space of fields and antifields, the antibracket is defined by

{X,Y } ≡
∑

A

(
∂rX

∂φA
∂lY

∂φ∗A
− ∂rX

∂φ∗A

∂lY

∂φA

)
. (2.40)

The properties of the antibracket are

{Y,X} = −(−)(ϵX+1)(ϵY +1){X,Y }, (2.41)

{{X,Y }, Z}+ (−)(ϵX+1)(ϵY +ϵZ){{Y, Z}, X}+ (−)(ϵZ+1)(ϵX+ϵY ){{Z,X}, Y } = 0, (2.42)

gh[{X,Y }] = gh[X] + gh[Y ] + 1, (2.43)

ϵ[{X,Y }] = ϵX + ϵY + 1 (mod 2). (2.44)

The first equation means that the antibracket is graded antisymmetric. The second equa-
tion shows that the antibracket satisfies a graded Jacobi identity. The antibracket carries
ghost number one and is Grassmann odd.

From these properties and the definition of right and left derivatives, one concludes
that

{B,B} = 2
∂rB

∂φA
∂lB

∂φ∗A
, (2.45)

{F, F} = 0, (2.46)

{{X,X}, X} = 0, (2.47)

where B is bosonic and F is fermionic.
The classical master equation is

{S, S} =
∑

A

2
∂rS

∂φA
∂lS

∂φ∗A
= 0. (2.48)

The BV action satisfies the master equation and it is on the boundary condition

SBV[φ,φ
∗]|φ∗=0 = S0 (2.49)

where S0 is the original action.

3 A∞ superstring field theory

Recently, an open superstring field theory based on A∞ algebra is developed [6]. This
theory can be related to Berkovits superstring field theory by field redefinition[9][10][11].
We review the construction of the action based on A∞ algebra in this section.
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3.1 A∞ algebra

In this subsection, we review a construction of A∞ algebra which is called bar construction
[12]. This review is written in [13]. An element of an A∞ algebra belong to a Z-graded
vector space. First, we provide the definition of coalgebra and operators on the coalgebra
to define A∞ algebra.

1. Let C be a graded vector space. When a coproduct △ : C → C ⊗ C is defined on C
and it is coassociative, i.e.

(△⊗ I)△ = (I⊗△)△ (3.1)

then C is called a coalgebra.

2. A linear operator m : C → C raising the degree of C by one is called coderivation
when

△m = (m⊗ I)△+ (I⊗m)△ (3.2)

is satisfied. Here, for x, y ∈ C, the sign is defined as

(I⊗m)(x⊗ y) = (−)deg(x)(x⊗m(y)). (3.3)

3. Given two coalgebras C and C ′, a cohomomorphism or coalgebra homomorphisim F
from C to C ′ is a map of degree zero satisfying the condition

△F = (F ⊗ F)△. (3.4)

Let H be a Z-graded vector space. We consider the tensor algebra

TH = H⊗0 ⊕H⊕H⊗2 ⊕ · · · (3.5)

as a coalgebra C(H). Here H⊗0 consists of the identity of the tensor algebra 1, satisfying

1⊗A = A⊗ 1 = A (3.6)

for any A ∈ TH.
Then the coassociative product △ : TH → TH ⊗ TH is uniquely determined. For

o1, . . . , on ∈ H, it is given by

△(o1 ⊗ · · ·⊗ on) =
n∑

k=0

(o1 ⊗ · · ·⊗ ok)⊗′ (ok+1 ⊗ · · ·⊗ on) (3.7)

where the term for k = 0 is 1⊗′ (o1⊗ · · ·⊗on) and the term for k = n is (o1⊗ · · ·⊗on)⊗′ 1.
Here ⊗ represents the tensor product of H and ⊗′ is the tensor product of TH in this
equation.
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The form of the coderivation corresponding to this coproduct is also given as follows.
Let {ck : H⊗k → H (k ≥ 0)} be multilinear maps which are

ck : o1 ⊗ · · ·⊗ ok ,→ ck(o1, . . . ok). (3.8)

The degree of this state is

deg cn(o1, . . . , on) = deg(cn) + deg o1 + · · ·+ deg on. (3.9)

The tensor product of bk,m : H⊗m → H⊗k and cl,n : H⊗n → H⊗l is

(bk,m ⊗ cl,n)(o1 ⊗ · · ·⊗ om+n)

= (−)deg(cl,n)(deg(Ψ1)+···+deg(Ψm))bk,m(o1, . . . , om)⊗ cl,n(om+1, . . . , om+n) (3.10)

The operations of ck on TH are given as

ck(o1 ⊗ · · ·⊗ on)

=
n−k+1∑

p=1

(−)deg(ck)(deg o1+···+deg op−1)o1 ⊗ · · ·⊗ op−1 ⊗ ck(op, . . . , op+k−1)⊗ op+k ⊗ · · ·⊗ on

(3.11)

for n ≥ k. If n < k,
ck(o1 ⊗ · · ·⊗ on) = 0. (3.12)

The commutator of the operators is defined as

[bk, cl] = bk(cl(o1 ⊗ · · ·⊗ on))− (−)deg(bk) deg(cl)cl(bk(o1 ⊗ · · ·⊗ on)) (3.13)

Suppose that all cn have the same degree parity. c is defined as

c = c0 + c1 + c2 + · · · , (3.14)

and this c is the coderivation. The coderivation on the coalgebra TH is always written in
this form.

Moreover, the form of a cohomomorphism F : TH → TH′ is determined by a collection
of degree zero multilinear maps {fk : H⊗k → H′ (k ≥ 0)}. For o1, . . . , on ∈ H, it is given
as

F(o1 ⊗ · · ·⊗ on)

=
n∑

i=1

∑

1≤k1<k2<···<ki=n

1

1− f0
⊗ fk1(o1, . . . , ok1)⊗

1

1− f0
⊗ fk2−k1(ok1+1, . . . , ok2)⊗ · · ·

· · ·⊗ 1

1− f0
⊗ fn−ki−1(oki−1+1, . . . , on)⊗

1

1− f0
(3.15)
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where f0 ∈ H′ and 1
1−f0

is defined by

1

1− f0
≡ 1+ f0 + f0 ⊗ f0 + · · · . (3.16)

A weak A∞ algebra is a coalgebra C(H) with a coderivation c = c1 + c2 + c3 + · · ·
satisfying

(c)2 = 0. (3.17)

We denote the weak A∞-algebra by (H, c). In particular, (H, c) is called an A∞-algebra if
c0 = 0.

For an A∞-algebra (H, c), if we act c2 on o1 ⊗ · · · ⊗ on, its image belongs to H⊗1 ⊕
· · ·⊕H⊗n. Using the projection on H⊗1, the equation is

0 =π1(c)
2(o1 ⊗ · · ·⊗ on)

=
∑

k+l=n+1

∑

j=0,...k−1

(−)deg(c)(deg o1+···+deg oj)ck(o1, . . . , oj , cl(oj+1, . . . , oj+l), oj+l+1, . . . , on)

(3.18)

Here πn is a projection operator πn : TH → H⊗n that is

πn (1+Ψ+Ψ⊗Ψ+Ψ⊗Ψ⊗Ψ+ · · · ) = Ψ⊗n (3.19)

Consider an odd constant symplectic structure ω on the graded vector space H

ω : H⊗H → C. (3.20)

If (H, c) is an A∞ algebra and c is cyclic with respect to ω, that is,

ω(o1, cn(o2, . . . , on+1)) = −(−)deg(cn) deg o1ω(cn(o1, . . . , on), on+1), (3.21)

then (H,ω, c) is called cyclic A∞ algebra.
Given two weak A∞ algebras (H, c) and (H′, c′), a cohomomorphism F : T H → T H′

satisfying
Fc = c′F . (3.22)

is a weak A∞ morphism F : (H, c) → (H′, c′). In particular, if (H, c) and (H′, c′) are A∞
algebras and f0 = 0, a weak A∞ morphism F : (H, c) → (H′, c′) is called an A∞ morphism.

Suppose that (H,ω, c) and (H′,ω′, c′) are cyclic A∞ algebras and there exists an A∞
morphism F : (H, c) → (H′, c′). F is called cyclic A∞ morphism when

ω′(f1(o), f1(o
′)) = ω(o, o′), (3.23)

for any o, o′ ∈ H and for fixed n ≥ 3,

n−1∑

k=1

ω′(fk(o1, . . . , ok), fn−k(ok+1, . . . , on)) = 0. (3.24)
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3.2 EKS action

Erler, Konopka and Sachs proposed an open superstring field theory based on A∞ algebra
in the small Hilbert space[6]. We review the construction of EKS action.

Let HS be small string field space in NS sector. An open superstring field Ψ ∈ HS has
ghost number 1 and picture number −1, and

ηΨ = 0 (3.25)

where η is the zero mode of η field. Ψ has ghost number 1 and picture number −1. If ηΦ
does not vanish, Φ belongs to the large Hilbert space HL. The degree of this string field is
defined as

degΨ = ϵ(Ψ) + 1 = 0 (mod 2) (3.26)

where ϵ(Ψ) is the Grassmann number. Then, the small Hilbert space is a Z-graded vector
space. The inner product of the small Hilbert space ⟨ , ⟩S is provided by the BPZ inner
product. This inner product does not vanish only when the total ghost number in the inner
product is 3 and the total picture number is −2.

The EKS action takes the form

S =
1

2
⟨Ψ, QΨ⟩S +

1

3
⟨Ψ,M2(Ψ,Ψ)⟩S +

1

4
⟨Ψ,Mn(Ψ,Ψ,Ψ)⟩S + · · ·

=
∞∑

n=1

1

1 + n
⟨Ψ,Mn(Ψ, . . . ,Ψ)⟩S (3.27)

M1 = Q is the BRST operator. This is nilpotent and anticommutes with η i.e.

Q2 = 0, (3.28)

[Q, η] = Qη + ηQ = 0. (3.29)

M2,M3, . . . are multi-string products of odd degree. The products are in the small Hilbert
space

[η,Mn] = 0 (3.30)

where η is an operator

η(Ψ1 ⊗Ψ2 ⊗ · · ·⊗Ψn) =ηΨ1 ⊗Ψ2 ⊗ · · ·⊗Ψn +Ψ1 ⊗ ηΨ2 ⊗ · · ·⊗Ψn

+ · · ·+Ψ1 ⊗Ψ2 ⊗ · · ·⊗ ηΨn, (3.31)

Ψk is in the small or large Hilbert space. The product Mn+1 carries picture number n and
ghost number 1 − n. We review how to construct these multi-string products in the next
subsection. The coderivation M is

M =
∞∑

n=1

Mn (3.32)
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An symplectic structure ωS : HS ⊗HS → C is defined as

ωS(A,B) = (−)degA⟨A,B⟩S . (3.33)

This is degree graded antisymmetric

ωS(A,B) = −(−)degA degBωS(B,A). (3.34)

Then (HS ,ωS ,M) is a cyclic A∞ algebra, i.e.

(M)2 = 0 (3.35)

and

ωS(Ψ1,Mn(Ψ2, . . . ,Ψn+1)) = −(−)deg(Mn) degΨ1ωS(Mn(Ψ1, . . . ,Ψn),Ψn+1). (3.36)

The equation of motion is

π1M
1

1−Ψ
= 0. (3.37)

3.3 Construction of Multi-string products

The string product M is determined by recursive equations and can be written by BRST
operator Q and a cohomomorphism G

M = G−1QG. (3.38)

Note that G is in the large Hilbert space HL

[η,G] ̸= 0. (3.39)

The BPZ inner product in the large Hilbert space ⟨ , ⟩ is

⟨A,B⟩S = ⟨ξA,B⟩. (3.40)

This large Hilbert space inner product does not vanish only on states whose ghost number
adds to 2 and picture number adds to −1. ξ is an operator constructed from ξ ghost, which
has ghost number −1 and picture number 1

ξ =

∮

|z|=1

dz

2πi
f(z)ξ(z). (3.41)

ξ is BPZ even in the large Hilbert space and

[η, ξ] = g0. (3.42)

13



where g0 is the open string coupling constant. We set the coupling constant g0 to 1. The
symplectic structure ωL : HL ⊗HL → C is defined as

ωL(A,B) = (−)degA⟨A,B⟩ (3.43)

The products Mn are defined by a set of recursive equations. We introduce three
products. Mn+1 is product whose degree is odd and picture number is n. mn+2 is called
bare product whose degree is odd and picture number is n. µn+2 is gauge product whose
degree is even and picture number is n+ 1. The products Mn+1 start with M1 = Q. The
bare products mn+2 start with m2 which is the star product [1] with a sign factor

m2(A,B) = (−)degAA ∗B. (3.44)

The gauge products µn+2 also start with 2-string multiplication. The recursive equations
for these products are described by promoting these products to coderivations and defining
generating functions

M(t) =
∞∑

n=0

tnMn+1, (3.45)

m(t) =
∞∑

n=0

tnmn+2, (3.46)

µ(t) =
∞∑

n=0

tnµn+2. (3.47)

The generating functions satisfy

d

dt
M(t) = [M(t),µ(t)], (3.48)

d

dt
m(t) = [m(t),µ(t)], (3.49)

[η,µ(t)] = m(t). (3.50)

Expanding these relations in powers of t, the n-th relations are

Mn+2 =
1

n+ 1

n∑

k=0

[Mn−k+1,µk+2], (3.51)

mn+3 =
1

n+ 1

n∑

k=0

[mn−k+2,µk+2], (3.52)

[η,µn+2] = mn+2. (3.53)
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These equations define higher products in terms of commutators of lower products. How-
ever, the solution of the eq(3.50) is not unique since one can add an η-exact term to µn+2.
We make a specific choice to make (HS ,M) an A∞ algebra

µn+2 =
1

n+ 3

(
ξmn+2 −mn+2

(
n+1∑

k=0

I⊗k ⊗ ξ ⊗ I⊗n−k+1

))
. (3.54)

µ is cyclic on ωL.
Consider the cohomomorphism

G(t) =P
[
exp

(∫ t

0
dt1µ(t1)

)]
(3.55)

≡I+
∫ t

0
dtµ(t) +

∞∑

n=2

(∫ t

0
dt1µ(t1)

)(∫ t

t1

dt2µ(t2)

)
· · ·
(∫ t

tn−1

dtnµ(tn)

)
. (3.56)

We can express the generating functions with this cohomomorphism

µ(t) = G(t)−1 d

dt
G(t), (3.57)

M(t) = G(t)−1QG(t), (3.58)

m(t) = G(t)−1m2G(t). (3.59)

where

G(t)−1 =P−1

[
exp

(
−
∫ t

0
dt1µ(t1)

)]
(3.60)

≡I−
∫ t

0
dtµ(t) +

∞∑

n=2

(
−
∫ t

0
dt1µ(t1)

)(
−
∫ t1

0
dt2µ(t2)

)
· · ·
(
−
∫ tn−1

0
dtnµ(tn)

)
.

(3.61)

The coderivation M is provided by

M = G−1QG (3.62)

where
G ≡ G(1). (3.63)

4 Gauge invariance of EKS action

There are gauge invariances in EKS action which is defined in the small Hilbert space.
These gauge degrees of freedom can be fixed with the BV formalism. When we embed
EKS action into the large Hilbert space, the gauge invariance also changes. We review the
gauge invariances in the small and large Hilbert space.
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4.1 String fields and CFT basis

First, we see the composition of string field theory. A string field Ψs;g,p consists of a set of
space-time fields Ar

s,p and a set of CFT basis Br
g,p.

Ψs;g,p ≡
∑

r

Ar
s,pB

r
g,p (4.1)

Ar
s,p has space-time ghost number s. Its p is just a label. Br

g,p has world sheet ghost number
g and picture number p. The r-label distinguishes different states which have same ghost
number and picture number.

The Grassmann parity of the string field G(Ψs;g,p) is

G(Ψs;g,p) = s+ g (4.2)

and the Grassmann parity of the space-time field is

G(As
s,p) = s. (4.3)

We define the degree of the string field by

deg(Ψs;g,p) = s+ g − 1. (4.4)

Let {Y r
g,p} be a basis of the small Hilbert space such that

⟨Y rC
g,p , Y

s
h,q⟩S = δr,sδg+h,3δp+q,−2 (4.5)

This inner product is BPZ inner product of the small Hilbert space. This satisfies

⟨Y r
g,p, Y

s
h,q⟩S = ⟨Y s

h,q, Y
r
g,p⟩S . (4.6)

We define the dual basis {Y r∗
g,p} by

Y r∗
3−g,−2−p ≡ Y rC

g,p (4.7)

which satisfy the usual orthogonal relation

⟨Y r
g,p, Y

s∗
h,q⟩S = ⟨Y s∗

h,q, Y
r
g,p⟩S = δr,sδg,hδp,q, (4.8)

Y r∗
3−g,−2−p has world-sheet ghost number g and picture number p. The basis has complete-

ness ∑

t,f,u

⟨Y r
g,p, Y

t∗
f,u⟩S⟨Y t

f,u, Y
s
h,q⟩S = ⟨Y r

g,p, Y
s
h,q⟩S . (4.9)
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The inner products of string fields are defined by

〈
∑

s

As
a,pY

s
g,p,
∑

t

At
b,qY

t
h,q

〉

S

≡
∑

s,t

(−)a+b(g+1)As
a,pA

t
b,q⟨Y s

g,p, Y
t
h,q⟩S (4.10)

=
∑

s,t

(−)a(g+h)+bh⟨Y s
g,p, Y

t
h,q⟩SAs

a,pA
t
b,q. (4.11)

We consider the basis of the large Hilbert space next. Let {Zr
g,p} be a basis of the large

Hilbert space such that

⟨ZrC
g,p, Z

s
h,q⟩ = (−)hqδr,sδg+h,2δp+q,−1 (4.12)

This inner product is BPZ inner product of the large Hilbert space. This has graded
symmetry

⟨Zr
g,p, Z

s
h,q⟩ = (−)g⟨Zs

h,q, Z
r
g,p⟩. (4.13)

We define the dual basis {Zr∗
g,p} by

Zr∗
2−g,−1−p ≡ (−)gpZrC

g,p (4.14)

which satisfy the usual orthogonal relation

⟨Zr
g,p, Z

s∗
h,q⟩ = δr,sδg,hδp,q, ⟨Zr∗

g,p, Z
s
h,q⟩ = (−)gδr,sδg,hδp,q. (4.15)

Zr∗
2−g,−1−p has world-sheet ghost number g and picture number p. The orthogonal relations

of the complete basis provides simple decompositions of the unit.

∑

t,f,u

⟨Zr
g,p, Z

t∗
f,u⟩⟨Zt

f,u, Z
s
h,q⟩ = ⟨Zr

g,p, Z
s
h,q⟩ (4.16)

∑

t,f,u

⟨Zr
g,p, Z

t
f,u⟩⟨Zt∗

f,u, Z
s
h,q⟩ = (−)g⟨Zr

g,p, Z
s
h,q⟩ (4.17)

The inner products of string fields are defined by

〈
∑

s

As
a,pZ

s
g,p,
∑

t

At
b,qZ

t
h,q

〉
≡
∑

s,t

(−)bgAs
a,pA

t
b,q⟨Zs

g,p, Z
t
h,q⟩ (4.18)

=
∑

s,t

(−)a(g+h)+bh⟨Zs
g,p, Z

t
h,q⟩As

a,pA
t
b,q. (4.19)
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4.2 The classical BV action in the small Hilbert space

The EKS action (3.27) is ∞-th stage reducible. We review this fact and construct the
master action for the A∞ superstring field theory in the small Hilbert in this subsection

The string field Ψ has world sheet ghost number 1 and picture number −1

Ψ = Ψ1,−1 =
∑

r

ψr
0,−1|Y r

1,−1⟩S . (4.20)

The gauge transformation of EKS action (3.27) is

δ1Ψ1,−1 = π1M
1

1−Ψ1,−1
⊗ Λ0,−1 ⊗

1

1−Ψ1,−1
. (4.21)

where
Λ0,−1 =

∑

r

λr0|Y r
0,−1⟩S , (4.22)

λr0 is gauge parameters, which are Grassmann even. The gauge transformation of EKS
action is

δ1S =

〈
δ1Ψ1,−1,π1M

1

1−Ψ1.−1

〉

S

= −
〈
Λ0,−1,π1M

2 1

1−Ψ1,−1

〉

S

= 0. (4.23)

Consider a transformation of this gauge parameter δ2λr0 such that

δ2Λ0,−1 = π1M
1

1−Ψ1,−1
⊗ Λ−1,−1 ⊗

1

1−Ψ1,−1
. (4.24)

The transformation of the gauge transformation is

δ2δ1Ψ =π1M
1

1−Ψ1,−1
⊗ π1

(
M

1

1−Ψ1,−1
⊗ Λ−1,−1 ⊗

1

1−Ψ1,−1

)
⊗ 1

1−Ψ1,−1

=− π1M
1

1−Ψ1,−1
⊗
(
π1M

1

1−Ψ1,−1

)
⊗ 1

1−Ψ1,−1
⊗ Λ1,−1 ⊗

1

1−Ψ1,−1

+ π1M
1

1−Ψ1,−1
⊗ Λ−1,−1 ⊗

1

1−Ψ1,−1
⊗
(
π1M

1

1−Ψ1,−1

)
⊗ 1

1−Ψ1,−1

(4.25)

This vanishes on-shell. Then, δ2 is level one gauge transformation. Similarly, there are
level g gauge transformations

δg+1Λ−(g−1),−1 = π1M
1

1−Ψ1,−1
⊗ Λ−g,−1 ⊗

1

1−Ψ1,−1
(4.26)

where Λ−g,−1 =
∑

r λ
r
g|Y r

−g,−1⟩S . Therefore, EKS action is ∞-th stage reducible.
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The set of fields AS in the BV formalism is

AS = {ψr
g,−1|g ≥ 0, r ∈ N}. (4.27)

Fields ψr
g,p (g ≥ 1) are ghost fields corresponding to the gauge parameter λrg−1. Then string

fields Ψ1−g,−1 are

Ψ1−g,−1 =
∑

r

ψr
g,−1|Y r

1−g,−1⟩S . (4.28)

Ψ1−g,−1 carries space-time ghost number g, world sheet ghost number 1 − g and picture
number −1. The anti string field Ψ∗

2+g,−1 (g ≥ 0) is defined as

Ψ∗
2+g,−1 =

∑

r

(ψr
g,−1)

∗|Y rC
2+g,−1⟩S , (4.29)

where (ψr
g,−1)

∗ is the antifield corresponding to ψr
g,−1. The minimal set of the fields and

the antifields is

AS
min =AS ⊕ (AS)∗

={ψr
g,−1, (ψ

r
g,−1)

∗|g ≥ 0, r ∈ N}. (4.30)

The definition of antibracket on this set is

{F,G} =
∞∑

g=0

∑

r

(
∂rF

∂ψr
g,−1

∂lG

∂(ψr
g,−1)

∗ − ∂rF

∂(ψr
g,−1)

∗
∂lG

∂ψr
g,−1

)
. (4.31)

Ψ∗
2+g,−1 has space-time ghost number −1− g, world sheet ghost number 2+ g and picture

number −1. String field and anti string field have the same Grassmann parity. We can
define string field Ψ′

Ψ′ =
∞∑

g=0

Ψ1−g,−1 +
∞∑

g=0

Ψ∗
2+g,−1. (4.32)

The master action is

SS
BV =

∞∑

n=1

1

n+ 1
⟨Ψ′,Mn(Ψ

′, . . . ,Ψ′)⟩S . (4.33)

From the completeness of the basis (4.9), 1
2{S

S
BV, SS

BV} is

(LHS) =

〈
π1M

1

1−Ψ′ , π1M
1

1−Ψ′

〉

S

=
∞∑

n=1

n∑

k=1

⟨Mk(Ψ
′, . . . ,Ψ′), Mn−k+1((Ψ

′, . . . ,Ψ′)⟩S

=
∞∑

n=1

2

n+ 1

〈
Ψ, π1M

2πn
1

1−Ψ′

〉

S

= 0. (4.34)
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Then, the action (4.33) satisfies the master equation

{SS
BV, SS

BV} =
∞∑

g=0

∑

r

2
∂rSS

BV

∂ψr
g,−1

∂lSS
BV

∂(ψr
g,−1)

∗ = 0. (4.35)

Actually, the A∞ structure implies that the action satisfy the BV master equation [21].

4.3 Embedding EKS action into the large Hilbert space

Although the string product M is constructed from Q in the large Hilbert space, EKS
action is defined in the small Hilbert space. We consider string fields Φ ∈ HL related to
Ψ ∈ HS by partial gauge fixing

Ψ = ηΦ (4.36)

and the action which is not restricted to the small Hilbert space [22][23].
The A∞ type action in the large Hilbert space is

S =
∞∑

n=1

⟨ξηΦ,Mn(ηΦ, . . . , ηΦ)⟩

=
∞∑

n=1

⟨Φ,Mn(ηΦ, . . . , ηΦ)⟩. (4.37)

The ghost number of Φ is 0 and the picture number is also 0.

Φ = Φ0,0 =
∑

r

φr0,0|Zr
0,0⟩ (4.38)

Gauge transformation of Φ is

δ1Φ0,0 = π1M
1

1− ηΦ0,0
⊗ Λ−1,0 ⊗

1

1− ηΦ0,0
+ ηΛ−1,1 (4.39)

where
Λ−1,0 =

∑

r

λr−1,0|Zr
−1,0⟩, Λ−1,1 =

∑

r

λr−1,−1|Zr
−1,1⟩. (4.40)

Consider a transformation of gauge parameters δ2λr−1,0, δ2λ
r
−1,1 such that

δ2Λ−1,0 = π1M
1

1− ηΦ0,0
⊗ Λ−2,0 ⊗

1

1− ηΦ0,0
+ ηΛ−2,1, (4.41)

δ2Λ−1,1 = π1M
1

1− ηΦ0,0
⊗ Λ−2,1 ⊗

1

1− ηΦ0,0
+ ηΛ−2,2. (4.42)
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Then,

δ2δ1Φ0,0 =π1M
1

1− ηΦ0,0
⊗ π1

(
M

1

1− ηΦ0,0
⊗ Λ−2,0 ⊗

1

1− ηΦ0,0

)
⊗ 1

1− ηΦ0,0

+ π1[M,η]
1

1− ηΦ0,0
⊗ Λ−2,1 ⊗

1

1− ηΦ0,0
+ η2Λ−2.2. (4.43)

The second and third terms are zero because η2 = 0 and M is in the small Hilbert space.
The first vanishes on-shell. Therefore, δ2 is level one gauge transformation. We obtain
higher level gauge transformation in the same way

δg+1

⎛

⎜⎜⎜⎝

Λ−g,0

Λ−g,1
...

Λ−g,g

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

π1M
1

1−ηΦ0,0
⊗ Λ−(g+1),0 ⊗ 1

1−ηΦ0,0
+ ηΛ−(g+1),1

π1M
1

1−ηΦ0,0
⊗ Λ−(g+1),1 ⊗ 1

1−ηΦ0,0
+ ηΛ−(g+1),2

...
π1M

1
1−ηΦ0,0

⊗ Λ−(g+1),g ⊗ 1
1−ηΦ0,0

+ ηΛ−(g+1),g+1

⎞

⎟⎟⎟⎟⎠
. (4.44)

Then the set of field AL in the BV formalism is

AL = {φrg,p|g ≥ 0, 0 ≤ p ≤ g, r ∈ N}. (4.45)

The minimal set of fields and antifields is

AL
min = {φrg,p, (φrg,p)∗|g ≥ 0, 0 ≤ p ≤ g, r ∈ N}. (4.46)

The definition of antibracket on this set is

{F,G} =
∑

g≥0

∑

0≤p≤g

∑

r

(
∂rF

∂φrg,p

∂lG

∂(φrg,p)
∗ − ∂rF

∂(φrg,p)
∗
∂lG

∂φrg,p

)
. (4.47)

String fields Φ−g,p are defined as

Φ−g,p ≡
∑

r

φrg,p|Zr
−g,p⟩ (4.48)

φrg,p has space-time ghost number g . Anti string fields (Φ−g,p)∗ are conventionally defined
[16]

(Φ−g,p)
∗ = Φ∗

2+g,−1−p ≡
∑

r

(φrg,p)
∗|Zr∗

−g,p⟩ =
∑

r

(−)g(p+1)φr∗−1−g,−1−p|ZrC
2+g,−1−p⟩. (4.49)

where (φrg,p)
∗ = φr∗−g−1,−1−p is the antifield of φrg,p and carries ghost number −g − 1.
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5 Naive construction of BV action in the large Hilbert space

We construct string field BV action in large Hilbert space from EKS action. The simplest
way is expanding the BV action with antifield number and solving the master equation at
each antifield numbers. However, it has critical defect. We explain the problem in this
section.

5.1 Antifield number expansion

We introduce antifield number. In principle, we can solve the classical master equation
systematically by using this. The antifield numbers are assigned in the string field theory
according to the following rule [14][15].

1. All the fields carry no antifield number.

2. The antifield of the field in the original action (φ0,0)∗ = φ∗−1,−1 carries antifield
number one.

3. The antifield of the g-th ghosts (φg,p)∗ = φ∗−1−g,−1−p carry antifield number g + 1.

We expand the BV action by antifield number

S =
∞∑

n=0

S(n) (5.1)

where S(n) (n > 0) denotes the sum of the all terms which have antifield number n, with
S(0) coinciding with the original action. The antifield number of a term is defined as the
total of the antifield numbers of the fields which the term includes. Therefore, antifield
numbers are assigned as

afn[Φ∗
2+g,−p] = 1 + g, afn[Φ−g,p] = 0, (5.2)

afn

[
∂S(a+1)

∂(φg,p)∗

]
= a− g, afn

[
∂S(a)

∂φg,p

]
= a. (5.3)

The master equation can be decomposed into its sub-equations by their antifield num-
bers. By solving each equations, we can determine S(n) one by one. In some theories,
only a finite number of S(n) are nonzero. In this case, we can obtain the master action
completely. Open superstring field theory has infinite number of S(n) which are nonzero,
but S(n) are determined systematically.

The master equation is

{S, S} =
∑

r,g,p

(
∂rS

∂φrg,p

∂lS

∂(φrg,p)
∗ − ∂rS

∂(φrg,p)
∗
∂lS

∂φrg,p

)
= 2

∑

r,g,p

∂rS

∂φrg,p

∂lS

∂(φrg,p)
∗ = 0. (5.4)
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We write

∂rF

∂φrg,p
= (−)g

〈
∂rF

∂Φ−g,p
, Zr

−g,p

〉
,

∂rF

∂(φrg,p)
∗ =

〈
∂rF

∂(Φ−g,p)∗
, Zr∗

−g,p

〉
, (5.5)

∂lF

∂φrg,p
=

〈
Zr
−g,p,

∂lF

∂Φ−g,p

〉
,

∂lF

∂(φrg,p)
∗ =

〈
Zr∗
−g,p,

∂rF

∂(Φ−g,p)∗

〉
, (5.6)

so that [16]

∑

r

∂rF

∂φrg,p

∂lG

∂(φrg,p)
∗ =

〈
∂rF

∂Φ−g,p
,

∂lG

∂(Φ−g,p)∗

〉
, (5.7)

∑

r

∂rF

∂(φrg,p)
∗
∂lG

∂φrg,p
=

〈
∂rF

∂(Φ−g,p)∗
,
∂lG

∂Φ−g,p

〉
. (5.8)

The antifield number a part of the master equation is given by

∑

r

a∑

s=0

s∑

g=0

g∑

p=0

∂rS(a−s+g)

∂φrg,p

∂lS(1+s)

∂(φrg,p)
∗ =

a∑

s=0

s∑

g=0

g∑

p=0

〈
∂rS(a−s+g)

∂Φr
−g,p

,
∂lS(1+s)

∂(Φr
−g,p)

∗

〉
= 0. (5.9)

5.2 Naive BV approach

In the naive BV approach, we require the following three properties:

1. Regarding states, the master action consists of only the minimal set of fields and
antifields Amin given by

AL
min = {φrg,p, (φrg,p)

∗|0 ≤ g, 0 ≤ p ≤ g, r ∈ N}. (5.10)

2. Regarding operators and products, the master action consists of the operators and
products which appear in the action and its gauge invariance, namely, M,η, and the
large BPZ inner product only.

3. In the master action, effective change of property 1 or 2 does not arise, and thus
explicit insertions of ξ of M−1 are not included.

We carry out the calculation of antifield number expansion in accordance with these re-
quests.

First, the antifield number 0 part is

〈
∂rS(0)

∂Φ0,0
,
∂lS(1)

∂Φ∗
2,−1

〉
= 0. (5.11)
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Here,

S(0) =
∞∑

n=0

〈
Φ0,0,

1

1 + n
Mn(ηΦ0,0, . . . )

〉
. (5.12)

Then, the equation is 〈
M,

∂lS(1)

∂Φ∗
2,−1

〉
= 0 (5.13)

where

M = π1M
1

1− ηΦ0,0
. (5.14)

By using M2 = 0, [M,η], η2 = 0, we obtain a solution

∂lS(1)

∂Φ∗
2,−1

= M((Φ−1,0)) + ηΦ−1,1, (5.15)

S(1) =
〈
Φ∗
2,−1,M((Φ−1,0)) + ηΦ−1,1

〉
(5.16)

where

M((A)) = π1M
1

1− ηΦ0,0
⊗A⊗ 1

1− ηΦ0,0
. (5.17)

Next, the antifield number 1 part is

〈
∂rS(0)

∂Φ0,0
,
∂lS(2)

∂Φ∗
2,−1

〉
+

〈
∂rS(1)

∂Φ0,0
,
∂lS(1)

∂Φ∗
2,−1

〉
+

〈
∂rS(1)

∂Φ−1,0
,
∂lS(2)

∂Φ∗
3,−1

〉
+

〈
∂rS(1)

∂Φ−1,1
,
∂lS(2)

∂Φ∗
3,−2

〉
= 0.

(5.18)
Here

∂rS(1)

∂Φ0,0
= −ηM((Φ−1,0), (Φ

∗
2,−1)), (5.19)

∂rS(1)

∂Φ−1,0
= M((Φ∗

2,−1)),
∂rS(1)

∂Φ−1,1
= ηΦ∗

2,−1, (5.20)

where

M((A), (B)) =π1M
1

1− ηΦ0,0
⊗A⊗ 1

1− ηΦ0,0
⊗B ⊗ 1

1− ηΦ0,0

+ (−)deg(A) deg(B)π1M
1

1− ηΦ0,0
⊗B ⊗ 1

1− ηΦ0,0
A⊗ 1

1− ηΦ0,0
. (5.21)

M((A), (B), (C), . . . ) are defined in the same way, i.e.

M((A), (B), (C), . . . ) = π1M
1

1− ηΦ0,0
⊗A⊗ 1

1− ηΦ0,0
⊗B⊗ · · ·⊗ 1

1− ηΦ0,0
+ · · · (5.22)
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which satisfiesM(. . . , (D), (E) . . . ) = (−)deg(D) deg(E)M(. . . , (E), (D), . . . ). M(. . . ,M(. . . ), . . . )
represents M(. . . , (M(. . . )), . . . ).

We substitute eq(5.19),eq(5.20) in the left hand side of the eq(5.18)

(LHS) =

〈
M,

∂lS(2)

∂Φ∗
2,−1

〉

+ ⟨−ηM((Φ−1,0), (Φ
∗
2,−1)),M((Φ−1,0)) + ηΦ−1,1⟩

+

〈
M((Φ∗

2,−1)),
∂lS(2)

∂Φ∗
3,−1

〉

+

〈
ηΦ∗

2,−1,
∂lS(2)

∂Φ∗
3,−2

〉
. (5.23)

The A∞ relations are
M(M((A))) +M(M, (A)) = 0, (5.24)

M(M((A), (B))) +M(M, (A), (B)) +M(M((A)), (B)) + (−)deg(A)M((A),M((B))) = 0.
(5.25)

By using these relations, we obtain the solution of the eq(5.18),

∂lS(2)

∂Φ∗
3,−1

=
1

2
M((ηΦ−1,0), (Φ−1,0)) +M((Φ−2,0)) + ηΦ−2,1, (5.26)

∂lS(2)

∂Φ∗
3,−2

= −1

2
M(M((Φ−1,0)), (Φ−1,0)) +M((Φ−2,1)) + ηΦ−2,2, (5.27)

∂lS(2)

∂Φ∗
2,−1

=
1

2
M((ηΦ−1,0), (Φ

∗
2,−1), (Φ−1,0)) +M((Φ∗

2,−1), (Φ−2,0)). (5.28)

Then, S(2) is

S(2) =

〈
Φ∗
3,−1,

1

2
M((ηΦ−1,0), (Φ−1,0)) +M((Φ−2,0)) + ηΦ−2,1

〉

+

〈
Φ∗
3,−2,−

1

2
M(M((Φ−1,0)), (Φ−1,0)) +M((Φ−2,1)) + ηΦ−2,2

〉

+

〈
Φ∗
2,−1,

1

4
M((ηΦ−1,0), (Φ

∗
2,−1), (Φ−1,0)) +

1

2
M((Φ∗

2,−1), (Φ−2,0))

〉
. (5.29)
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The antifield number 2 part of the master equation is

〈
∂rS(2)

∂Φ0,0
,
∂lS(1)

∂Φ∗
2,−1

〉
+

〈
∂rS(1)

∂Φ0,0
,
∂lS(2)

∂Φ∗
2,−1

〉
+

1∑

p=0

〈
∂rS(2)

∂Φ−1,p
,
∂lS(2)

∂Φ∗
3,−1−p

〉

+

〈
∂rS(0)

∂Φ0,0
,
∂lS(3)

∂Φ∗
2,−1

〉
+

1∑

p=0

〈
∂rS(1)

∂Φ−1,p
,
∂lS(3)

∂Φ∗
3,−1−p

〉
+

2∑

p=0

〈
∂rS(2)

∂Φ−2,p
,
∂lS(3)

∂Φ∗
4,−1−p

〉
= 0.

(5.30)

Here

∂rS(2)

∂Φ0,0
=− 1

2
ηM((Φ∗

3,−1), (ηΦ−1,0), (Φ−1,0))− ηM((Φ∗
3,−1), (Φ−2,0))

+
1

2
ηM((Φ∗

3,−2),M((Φ−1,0)), (Φ−1,0))−
1

2
ηM((Φ−1,0),M((Φ∗

3,−2), (Φ−1,0)))

− ηM((Φ∗
3,−2), (Φ−2,1))−

1

2
ηM((Φ∗

2,−1)
2, (ηΦ−1,0), (Φ−1,0))

− ηM((Φ∗
2,−1)

2, (Φ−2,0)), (5.31)

∂rS(2)

∂Φ−1,0
=
1

2
M((ηΦ−1,0), (Φ

∗
3,−1))−

1

2
ηM((Φ−1,0), (Φ

∗
3,−1))

− 1

2
M(M((Φ−1,0)), (Φ

∗
3,−2)) +

1

2
M(M((Φ−1,0), (Φ

∗
3,−2)))

+
1

2
M((Φ∗

2,−1)
2, (ηΦ−1,0))−

1

2
ηM((Φ∗

2,−1)
2, (Φ−1,0)), (5.32)

∂rS(2)

∂Φ−1,1
= 0, (5.33)

∂rS(2)

∂Φ−2,0
= M((Φ∗

3,−1)) +M((Φ∗
2,−1)

2), (5.34)

∂rS(2)

∂Φ−2,1
= ηΦ∗

3,−1 +M((Φ∗
3,−2)), (5.35)

∂rS(2)

∂Φ−2,2
= ηΦ∗

3,−2. (5.36)
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However, eq(5.30) has no solution. We write details of the calculation hereinafter. We
calculate the terms which includes Φ∗

3,−2 and three Φ−1,0 in eq(5.30).

〈
1

2
ηM((Φ∗

3,−2),M((Φ−1,0)), (Φ−1,0)), M((Φ−1,0))

〉

−
〈
1

2
ηM((Φ−1,0),M((Φ∗

3,−2), (Φ−1,0))), M((Φ−1,0))

〉

−
〈
1

2
M((Φ∗

3,−2),M((Φ−1,0))),
1

2
M((ηΦ−1,0), (Φ−1,0))

〉

+

〈
1

2
M(M((Φ∗

3,−2), (Φ−1,0))),
1

2
M((ηΦ−1,0), (Φ−1,0))

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

〉
+

〈
M((Φ∗

3,−2)),
∂lS(3)

∂Φ∗
4,−2

〉
+

〈
ηΦ∗

3,−2,
∂lS(3)

∂Φ∗
4,−3

〉
= 0 (5.37)

The terms of the left hand side are

(First term) =

〈
Φ∗
3,−2, − 1

2
M(M((Φ−1,0)),M((ηΦ−1,0)), (Φ−1,0))

〉

=

〈
Φ∗
3,−2, − 1

4
M(M((Φ−1,0)),M((ηΦ−1,0)), (Φ−1,0))

− 1

4
ηM(M((Φ−1,0))

2, (Φ−1,0))

− 1

4
M(M((Φ−1,0))

2, (ηΦ−1,0))

〉
, (5.38)

(Second term) =

〈
Φ∗
3−2,

1

2
M(M(M((ηΦ−1,0)), (Φ−1,0)), (Φ−1,0))

〉

=

〈
Φ∗
3,−2, − 1

4
ηM(M(M((Φ−1,0)), (Φ−1,0)), (Φ−1,0))

− 1

4
M(M(M((Φ−1,0)), (Φ−1,0)), (ηΦ−1,0))

− 1

4
M(M(M((ηΦ−1,0), (Φ−1,0))), (Φ−1,0))

− 1

4
M(M((ηΦ−1,0),M, (Φ−1,0)), (Φ−1,0))

〉
, (5.39)

(Third term) =

〈
Φ∗
3,−2, −1

4
M(M((Φ−1,0)),M((ηΦ−1,0), (Φ−1,0)))

〉
, (5.40)

(Fourth term) =

〈
Φ∗
3,−2,

1

4
M(M(M((ηΦ−1,0), (Φ−1,0))), (Φ−1,0))

〉
. (5.41)
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We used cyclicity (3.21), A∞ relation M2 = 0 and [M,η] = 0. The sum of the terms from
first to fourth is
〈
Φ∗
3,−2, − 1

4
ηM(M((Φ−1,0))

2, (Φ−1,0))

− 1

4
ηM(M(M((Φ−1,0)), (Φ−1,0)), (Φ−1,0))

− 1

4
M(M(M, (Φ−1,0), (ηΦ−1,0)), (Φ−1,0))

− 1

4
M(M((Φ−1,0)),M((ηΦ−1,0)), (Φ−1,0))

− 1

4
M(M((Φ−1,0))

2, (ηΦ−1,0))

− 1

4
M(M(M((Φ−1,0)), (Φ−1,0)), (ηΦ−1,0))

− 1

4
M(M((ηΦ−1,0), (Φ−1,0)),M((Φ−1,0)))

〉
(5.42)

=

〈
M, − 1

4
M((Φ−1,0), (ηΦ−1,0),M((Φ∗

3,−2), (Φ−1,0)))−
1

4
M((Φ−1,0),M((Φ−1,0), (Φ

∗
3,−2), (ηΦ−1,0)))

〉

+

〈
M((Φ∗

3,−2)),
1

4
M(M((Φ−1,0)), (ηΦ−1,0), (Φ−1,0))

〉

+

〈
ηΦ∗

3,−2, −1

4
M(M((Φ−1,0))

2, (Φ−1,0))−
1

4
M(M(M((Φ−1,0)), (Φ−1,0)), (Φ−1,0))

〉

+

〈
Φ∗
3,−2,

1

4
M(M(M((Φ−1,0)), (ηΦ−1,0)), (Φ−1,0))

〉
. (5.43)

The last term does not vanish while the others can be canceled by
〈
M,

∂lS(3)

∂Φ∗
2,−1

〉
+

〈
M((Φ∗

3,−2)),
∂lS(3)

∂Φ∗
4,−2

〉
+

〈
ηΦ∗

3,−2,
∂lS(3)

∂Φ∗
4,−3

〉
.

One may think that the remaining term can vanish in a good way, but all the string field
derivatives of S(3) are used to cancel the other terms of eq(5.30) as shown in Appendix A.
Therefore, the equation is not completed at least. We can carry out a similar calculation
by using BV variation, but we fail to construct the BV action as it is written in Appendix
B. We need some contrivances to construct the BV action.

6 Linear BV approach

In the previous section, we worked on the naive BV approach, which causes the breakdown.
As a resolution, we add an extra set of fields and antifields, and give a solution to the master
equation.
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6.1 Modification of requirements

We tried to construct BV action satisfying the conventional requirements which is written
in subsection 5.2. There is, however, no solution satisfying the three requirements. We
have to modify the properties.

In the naive construction, S(3) do not have degrees of freedom to cancel the terms which
include two Φ∗

3,−2 and three Φ−1,0. To solve this problem, we add some fields.
Even if two string fields have the same ghost number and picture number, they need

not necessarily be the same field. We change the first requirement in the previous section
and double the fields and antifields. Let the set of fields and antifields A be

A = {φ1,rg,p, (φ1,rg,p)
∗, φ2,rg,p, (φ2,rg,p)

∗|0 ≤ g, 0 ≤ p ≤ g, r ∈ N}. (6.1)

The antibracket is defined as

{F,G} =
∑

g≥0

∑

0≤p≤g

∑

r

(
∂rF

∂φ1,rg,p

∂lG

∂(φ1,rg,p)∗
+

∂rF

∂φ2,rg,p

∂lG

∂(φ2,rg,p)∗
− ∂rF

∂(φ1,rg,p)∗
∂lG

∂φ1,rg,p

− ∂rF

∂(φ2,rg,p)∗
∂lG

∂φ2,rg,p

)
.

(6.2)

The string fields are defined as

Φ1
−g,p =

∑

r

φ1,rg,p|Zr
−g,p⟩, (6.3)

Φ2
−g,p =

∑

r

φ2,rg,p|Zr
−g,p⟩, (6.4)

Φ∗1
2+g,−1−p =

∑

r

(φ1,rg,p)
∗|Zr∗

−g,p⟩, (6.5)

Φ∗2
2+g,−1−p =

∑

r

(φ2,rg,p)
∗|Zr∗

−g,p⟩. (6.6)

6.2 Linear BV approach

In the naive approach, the terms in which there are interactions between ghost fields
violated the master equation. Then we solve the master equation as such terms are canceled
at each antifield number part.

We expand a action with antifield number

Slinear =
∞∑

n=0

S(n), (6.7)

and we set

S(0) =
∞∑

n=1

1

n+ 1

〈
Φ1
0,0 + Φ2

0,0, π1Mπn
1

1− η(Φ1
0,0 + Φ2

0,0)

〉
(6.8)
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S(1) =⟨Φ∗1
2,−1, M((Φ1

−1,0 + Φ2
−1,0)) + ηΦ1

−1,1⟩
+ ⟨Φ∗2

2,−1, −M((Φ1
−1,0 + Φ2

−1,0)) + ηΦ2
−1,1⟩ (6.9)

where

M((A)) = π1M
1

1− η(Φ1
0,0 + Φ2

0,0)
⊗A⊗ 1

1− η(Φ1
0,0 + Φ2

0,0)
. (6.10)

The antifield number 0 part of the master equation is complete.

〈
∂rS(0)

∂Φ1
0,0

,
∂rS(1)

∂Φ∗1
2,−1

〉
+

〈
∂rS(0)

∂Φ2
0,0

,
∂rS(1)

∂Φ∗2
2,−1

〉

=

〈
π1M

1

1− η(Φ1
0,0 + Φ2

0,0)
, M((Φ1

−1,0 + Φ2
−1,0)) + ηΦ1

−1,1

−M((Φ1
−1,0 + Φ2

−1,0)) + ηΦ2
−1,1

〉
= 0. (6.11)

The antifield number 1 part of the master equation is

2∑

m=1

(〈
∂rS(1)

∂Φm
0,0

,
∂lS(1)

∂Φ∗m
2,−1

〉
+

〈
∂rS(0)

∂Φm
0,0

,
∂lS(2)

∂Φ∗m
2,−1

〉
+

〈
∂rS(1)

∂Φm
−1,0

,
∂lS(2)

∂Φ∗m
3,−1

〉
+

〈
∂rS(1)

∂Φm
−1,1

,
∂lS(2)

∂Φ∗m
3,−2

〉)

=
〈
− ηM((Φ1

−1,0 + Φ2
−1,0), (Φ

∗1
2,−1)) + ηM((Φ1

−1,0 + Φ2
−1,0), (Φ

∗2
2,−1)),

M((Φ1
−1,0 + Φ2

−1,0)) + ηΦ1
−1,1 −M((Φ1

−1,0 + Φ2
−1,0)) + ηΦ2

−1,1

〉

+

〈
M,

2∑

m=1

∂lS(2)

∂Φ∗m
2,−1

〉

+

〈
M((Φ∗1

2,−1))−M((Φ∗2
2,−1)),

∂lS(2)

∂Φ∗1
3,−1

+
∂lS(2)

∂Φ∗2
3,−1

〉

+

〈
ηΦ∗1

2,−1,
∂lS(2)

∂Φ∗1
3,−2

〉
+

〈
ηΦ∗2

2,−1,
∂lS(2)

∂Φ∗2
3,−2

〉
= 0. (6.12)

The solution is
∂lS(2)

∂Φ∗m
2,−1

= 0 (m = 1, 2), (6.13)

∂lS(2)

∂Φ∗1
3,−1

= M((Φ1
−2,0 + Φ2

−2,0)) + ηΦ1
−2,1, (6.14)

∂lS(2)

∂Φ∗2
3,−1

= −M((Φ1
−2,0 + Φ2

−2,0)) + ηΦ2
−2,1, (6.15)
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∂lS(2)

∂Φ∗1
3,−2

= M((Φ1
−2,1 + Φ2

−2,1)) + ηΦ1
−2,2, (6.16)

∂lS(2)

∂Φ∗2
3,−2

= −M((Φ1
−2,1 + Φ2

−2,1)) + ηΦ1
−2,2. (6.17)

Therefore

S(3) =⟨Φ∗1
3,−1, M((Φ1

−2,0 + Φ2
−2,0)) + ηΦ1

−2,1⟩
+ ⟨Φ∗1

3,−2, M((Φ1
−2,1 + Φ2

−2,1)) + ηΦ1
−2,2⟩

+ ⟨Φ∗2
3,−1, −M((Φ1

−2,0 + Φ2
−2,0)) + ηΦ2

−2,1⟩
+ ⟨Φ∗2

3,−2, −M((Φ1
−2,1 + Φ2

−2,1)) + ηΦ2
−2,2⟩. (6.18)

After all, the action is

Slinear =
∞∑

n=0

S(n) (6.19)

where

S(0) =
∞∑

n=1

1

n+ 1

〈
Φ1
0,0 + Φ2

0,0, π1Mπn
1

1− η(Φ1
0,0 + Φ2

0,0)

〉
(6.20)

S(k) =
k∑

j=1

⟨Φ∗1
k+1,−j , M((Φ1

−k,j−1 + Φ2
−k,j−1)) + ηΦ1

−k,j⟩

+
k∑

j=1

⟨Φ∗2
k+1,−j , −M((Φ1

−k,j−1 + Φ2
−k,j−1)) + ηΦ2

−k,j⟩ (k ≥ 1). (6.21)

The master equation {Slinear, Slinear} = 0 is completed.
However, S(0) is not equal to the original action. There are extra dynamical fields.Then

this action does not satisfy the boundary condition. We need to find constraints which
exclude additional degrees of freedom.

7 Constrained BV approach

Linear BV approach can construct a classical master action. However, the physical meaning
is not clear. We investigate other approaches in this section [24]. We add extra fields to
the minimal set of fields and impose constraints considered by Berkovits [20] in this time.
We modify the antibracket with constraints and define Dirac antibracket. We calculate the
master equation with this Dirac bracket.
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7.1 Extra set of fields and antifields

We introduce an extra set of space-time ghosts

Aex = {φr−1−g,−p|0 ≤ g, 0 ≤ p ≤ g, r ∈ N} (7.1)

which carry negative space-time ghost number. It provides an extra set of ghost string
fields {Φg+1,−p|0 ≤ g, 0 ≤ p ≤ g} via

Φg+1,−p =
∑

r

φr−1−g,−p|Zr
g+1,−p⟩. (7.2)

For these extra space-time ghosts, we introduce their space-time antifields

A∗
ex = {(φr−1−g,−p)

∗|0 ≤ g, 0 ≤ p ≤ g, r ∈ N}. (7.3)

Unlike ghost string fields in the BV formalism, there is no criteria or rule for how to
assemble string antifields. The BV formalism just suggests that how or what kind of ghost
string fields are provided from the gauge invariance, that one can introduce their space-
time antifields such that the antibracket takes the Darboux form, and that a given master
action is proper or not. In general, the anti string field (Φ−g,p)∗ takes the following form
[24]

(Φ−g,p)
∗ =

∑

r

(φrg,p)
∗|g, p; r⟩, (7.4)

where
|g, p; r⟩ =

∑

h,q,r′

ar,r
′

(−g,p),(−h,q)|Z
r′
2+h,−1−q⟩, (7.5)

ar,r
′

(g,p),(h,q) are constants. For example, eq(4.49) gives

ar,r
′

(g,p),(h,q) = (−)g(p+1)δrC ,r′δg,hδp,q. (7.6)

These antifields satisfy ⟨Φg,p, (Φg,p)∗⟩ ̸= 0 formally.
We consider the nonminimal set of fields and antifields

A ≡Amin ⊕Aex

={φrg,p, φr−1−g,−p, (φrg,p)
∗, (φr−1−g,−p)

∗|0 ≤ g, 0 ≤ p ≤ g, r ∈ N}, (7.7)

where
Aex = Aex ⊕A∗

ex, (7.8)

and define an antibracket acting on this A by

{F,G} ≡
∑

g∈Z

∑

p,r

(
∂rF

∂φrg,p

∂lG

∂(φrg,p)
∗ − ∂rF

∂(φrg,p)
∗
∂lG

∂φrg,p

)
. (7.9)
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Since there are extra degrees of freedom in this phase space, we have to introduce a set
of constraints {Γa} which cancel them. When the constraints are second class, the BV
antibracket need to be modified using the Dirac procedure [19].

{F,G}D ≡ {F,G}−
∑

a,b

{F,Γa}({Γ,Γ}−1)ab{Γa, G}. (7.10)

A second class constraint Γa has constraints Γb which satisfies {Γa,Γb} ̸= 0 . On the other
hand, a first class constraint Γa satisfies {Γa,Γb} = 0 for all constraints Γb. This modified
antibracket is called Dirac antibracket. We will construct a master action SBV based on
this redundant set of fields and antifields.

7.2 Constrained BV action

Let {Φ−g,p} be a set of dynamical, ghost and extra-ghost string fields. We write ϕ for the
sum of fields for brevity,

ϕ ≡
∑

g,p

Φ−g,p. (7.11)

As proposed by Berkovits[20], we take the following constrained BV action

Scon
BV =

∫ 1

0
dt

〈
ϕ, π1M

1

1− tηϕ

〉
, (7.12)

which has the same form as the original action. The anti string fields (Φ−g,p)∗ are intro-
duced into SBV via constraints.

Note that action (7.12) has special property. One can split fields into η-exact and
ξ-exact components as

Φ−g,p =
∑

r

φrg,p(ηξ + ξη)|Zr
−g,p⟩ =

∑

rη

φ
rη
g,p|Zrη

−g,p⟩+
∑

rξ

φ
rξ
g,p|Z

rξ
−g,p⟩, (7.13)

where |Zrη
−g,p⟩ are η-exact and |Zrξ

−g,p⟩ are ξ-exact. For any pairs of (g, p), we find

∂lScon
BV

∂φ
rη
g,p

= ⟨Zrη
−g,p, M⟩ = 0,

∂rScon
BV

∂φ
rη
g,p

= 0. (7.14)

We impose the constraint Γg,p [20]

Γg,p = (Φ−g,p)
∗ − ηΦ1+g,−p. (7.15)

Anti string fields are defined as eq(4.49) with this constraint. This constraint implies first
class constraint

η(Φ−g,p)
∗ = 0, (7.16)
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which generates the gauge transformation

δΦ−g,p = η
∑

r

λr|Zr
−g−1,p+1⟩. (7.17)

So the constraint (7.15) has first class and second class pieces [20]. In other words, splitting
fields and antifields into η-exact and ξ-exact components, the space-time fields and antifields
of eq(7.15) are

(φ
rη
g,p)

∗ = 0, (7.18)
∑

rξ

(φ
rξ
g,p)

∗|Zrξ∗
−g,p⟩ =

∑

r′ξ

ηφ
r′ξ
−1−g,−p|Z

r′ξ
1+g,−p⟩. (7.19)

Note that |Zrξ∗
−g,p⟩ are η-exact and |Zrη∗

−g,p⟩ are ξ-exact. The constraints (7.18) are first class
and the constraints (7.19) are second class.

We have two ways to define the Dirac bracket in such a case. The first one is to
introduce new constraints which fix the gauge invariance (7.17). For example,

ξΦ−g,p = 0 (7.20)

that is
φ
rη
g,p = 0. (7.21)

In the presence of the new constraints, all of the constraints including (7.16) (7.18) become
second class constraints.

The second way is that we do not fix the first class gauge and define the Dirac bracket
only for operators which commute with the first class constraints. The Dirac bracket is
only defined for operators which are gauge invariant with respect to eq(7.17). In this case,
the matrix ({Γ,Γ})−1

ab which is appeared in the Dirac bracket (7.10) is defined to be the
inverse of the matrix {Γa,Γb} where a, b range only over the second class constraints. The
choice of how to split off these second class constraints from the first class constraints does
not cause ambiguities because the operators F,G in the Dirac bracket (7.10) vanishes in
the antibracket with the first class constraints.

We discuss only the second way in this thesis. The gauge transformations of space-time
fields generated by the first class constraints (7.18) are

δφ
rη
g,p = λ

rη
g,p, (7.22)

and δφ
rξ
g,p are zero. Then, operators which are invariant with respect to the gauge trans-

formation (7.17) are (Φ−g,p)∗ and Φξ
−g,p where

Φξ
−g,p =

∑

rξ

φ
rξ
g,p|Z

rξ
−g,p⟩, Φη

−g,p =
∑

rη

φ
rη
g,p|Zrη

−g,p⟩. (7.23)
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Because of eq(7.14), SBV is also gauge invariant with respect to the gauge transformation
(7.17).

The antibrackets of fields Φξ and antifields (Φ)∗ without constraints are

{Φξ
−g,p, (Φ−g′,p′)

∗} = (−)g
∑

rξ

|Zrξ
−g,p⟩|Z

rξ∗
−g′,p′⟩δg,g′δp,p′ , (7.24)

{(Φ−g,p)
∗,Φξ

−g′,p′} = −
∑

rξ

|Zrξ∗
−g,p⟩|Z

rξ
−g′,p′⟩δg,g′δp,p′ , (7.25)

{Φξ
−g,p,Φ

ξ
−g′,p′} = 0, (7.26)

{(Φ−g,p)
∗, (Φ−g′,p′)

∗} = 0. (7.27)

The antibracket of the constraint is

{Γg,p,Γg′,p′} ={(Φ−g,p)
∗,−ηΦ1+g′,−p′}+ {−ηΦ1+g,−p, (Φ−g′,p′)

∗}

=
∑

rξ

(−)g|Zrξ∗
−g,p⟩η|Z

rξ
−g,p⟩δg,−(1+g′)δp,−p′

+
∑

r′ξ

(−)gη|Z
r′ξ
1+g,−p⟩|Z

r′ξ∗
1+g,−p⟩δg,−(1+g′)δp,−p′ (7.28)

Here if we set

|Zrξ∗
−g,p⟩ = η|Z

r′ξ
1+g,−p⟩, (7.29)

then, by definition,

1 = ⟨Zrξ
−g,p, Z

rξ∗
−g,p⟩

= ⟨Zrξ
−g,p, ηZ

r′ξ
1+g,−p⟩

= ⟨Z
r′ξ
1+g,−p, ηZ

rξ
−g,p⟩ (7.30)

⇔ |Z
r′ξ∗
1+g,−p⟩ = η|Zrξ

−g,p⟩. (7.31)

Therefore,

{Γg,p,Γg′,p′} =2
∑

rξ

(−)g|Zrξ∗
−g,p⟩η|Z

rξ
−g,p⟩δg,−(1+g′)δp,−p′ (7.32)

=2
∑

r′ξ

(−)gη|Z
r′ξ
1+g,−p⟩|Z

r′ξ∗
1+g,−p⟩δg,−(1+g′)δp,−p′ (7.33)

=2
∑

r′ξ

(−)1+g′η|Z
r′ξ
−g′,p′⟩|Z

r′ξ∗
−g′,p′⟩δg,−(1+g′)δp,−p′ (7.34)
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The inverse of this antibracket is

({Γ,Γ})−1
(g,p),(g′,p′) =

1

2

∑

rξ

⟨Zrξ∗
−g′,p′ |ξ⟨Z

rξ
−g′,p′ |δg,−(1+g′)δp,−p′ (7.35)

=− 1

2

∑

rξ

⟨Zrξ
−g,p|⟨Z

rξ∗
−g,p|ξδg,−(1+g′)δp,−p′ . (7.36)

The Dirac brackets of the constraints are

{Γg,p,Γg′,p′}D = 0. (7.37)

The Dirac antibrackets of the operators are

{Φξ
−g,p, (Φ−g′,p′)

∗}D = (−)g
1

2

∑

rξ

|Zrξ
−g,p⟩|Z

rξ∗
−g′,p′⟩δg,g′δp,p′ , (7.38)

{(Φ−g,p)
∗,Φξ

−g′,p′}D = −1

2

∑

rξ

|Zrξ∗
−g,p⟩|Z

rξ
−g′,p′⟩δg,g′δp,p′ , (7.39)

{Φξ
−g,p,Φ

ξ
−g′,p′}D = −1

2
|Zrξ

−g,p⟩ξ|Z
rξ∗
−g,p⟩δg′,−(1+g)δp′,−p, (7.40)

{(Φ−g,p)
∗, (Φ−g′,p′)

∗}D = (−)1+g 1

2
|Zrξ∗

−g,p⟩η|Z
rξ
−g,p⟩δg′,−(1+g)δp′,−p. (7.41)

Since the master action does not include antifields, the antibracket of the master actions
without constraints {Scon

BV , Scon
BV} is zero, and antibrackets of the master action and con-

straints are

{Scon
BV ,Γg,p} = {Scon

BV , (Φ−g,p)
∗} = (−)g

∑

rξ

〈
∂rScon

BV

∂Φξ
−g,p

, Z
rξ
−g,p

〉
|Zrξ∗

−g,p⟩, (7.42)

{Γg,p, S
con
BV} = {(Φ−g,p)

∗, Scon
BV} = −

∑

rξ

|Zrξ∗
−g,p⟩

〈
Z

rξ
−g,p,

∂lScon
BV

∂Φξ
−g,p

〉
. (7.43)
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Then, the master equation with the constraints (7.15) is

{Scon
BV , Scon

BV}D

=
1

2
(−)g+1

∑

g,p,rξ,r′ξ

〈
∂rScon

BV

∂Φξ
−g,p

, Z
rξ
−g,p

〉〈
Z

rξ∗
−g,p

∣∣∣∣ξ
∣∣∣∣Z

r′ξ∗
1+g,−p

〉〈
Z

r′ξ
1+g,−p,

∂lScon
BV

∂Φξ
1+g,−p

〉

= −1

2

∑

g,p

〈
∂rScon

BV

∂Φξ
−g,p

, ξ
∂lScon

BV

∂Φξ
1+g,−p

〉

= −1

2

〈
π1M

1

1− ηϕ
, ξπ1M

1

1− ηϕ

〉

= − 1

n+ 1

〈
ϕ, π1M

2πn
1

1− ηϕ

〉
= 0. (7.44)

We used the completeness (4.16), (4.17). Then the SBV satisfies the master equation. This
action does not have kinetic terms for Φ−g,p (g > 0, p = g)

Scon
BV =

1

2
⟨Φ0,0, QηΦ0,0⟩+

∑

g≥0

∑

0≤p≤g

⟨(Φ−g,p)
∗, QΦ−1−g,p⟩

+

∫
dt
∑

n≥2

〈
ϕ, π1Mπn

1

1− tηϕ

〉
. (7.45)

Fields Φ−g,p (p = g, g > 0) are auxiliary fields which act as lagrange multiplier.

8 Conclusion

We tried to construct BV action of superstring field theory in the large Hilbert space
naively. However, it failed under the condition written in the section 5. We proposed two
approaches to overcome this problem:linear BV approach, constrained BV approach.

In linear BV approach, we add extra fields to cancel interaction terms between ghost
fields in the master equation. The boundary condition of the master equation S(0) is
different from the original action and the physical meaning of the additional fields is not
clear.

In constrained BV approach, we introduce additional fields and constraints. These con-
straints make all the anti string fields η-exact. It does not affect the master equation since
the master action is independent of the space-time fields on η-exact basis. In this con-
struction, fields Φ−g,p=g do not have kinetic terms. Then, they are considered as auxiliary
fields.

Constructing classical BV action is an important step to quantize the string field. These
approach will be helpful to accomplish this purpose.
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Appendix A

The master equation for antifield number 2 is

〈
∂rS(2)

∂Φ0,0
,
∂lS(1)

∂Φ∗
2,−1

〉
+

〈
∂rS(1)

∂Φ0,0
,
∂lS(2)

∂Φ∗
2,−1

〉
+

1∑

p=0

〈
∂rS(2)

∂Φ−1,p
,
∂lS(2)

∂Φ∗
3,−1−p

〉

+

〈
∂rS(0)

∂Φ0,0
,
∂lS(3)

∂Φ∗
2,−1

〉
+

1∑

p=0

〈
∂rS(1)

∂Φ−1,p
,
∂lS(3)

∂Φ∗
3,−1−p

〉
+

2∑

p=0

〈
∂rS(2)

∂Φ−2,p
,
∂lS(3)

∂Φ∗
4,−1−p

〉
= 0. (A.1)

The terms for one Φ∗
3,−1 and three Φ−1,0 in the left hand side are

〈
−1

2
ηM((Φ∗

3,−1), (ηΦ−1,0), (Φ−1,0)), M((Φ−1,0))

〉

+

〈
1

2
M((ηΦ−1,0), (Φ

∗
3,−1))−

1

2
ηM((Φ−1,0), (Φ

∗
3,−1)),

1

2
M((ηΦ−1,0), (Φ−1,0))

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−1),(Φ−1,0)3

〉
+

〈
M((Φ∗

3,−1)),
∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0)3

〉

+

〈
ηΦ∗

3,−1,
∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0)3

〉
(A.2)

where ∂lS(3)

∂Φ∗
2,−1

∣∣
(Φ∗

3,−1),(Φ−1,0)3
represents the terms for one Φ∗

3,−1 and three Φ−1,0 in ∂lS(3)

∂Φ∗
2,−1

.

∂lS(3)

∂Φ∗
4,−1

∣∣
(Φ−1,0)3

and ∂lS(3)

∂Φ∗
4,−2

∣∣
(Φ−1,0)3

are defined in the same way. The first term plus the
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second term is
〈
− 1

2
ηM((Φ∗

3,−1), (ηΦ−1,0), (Φ−1,0)), M((Φ−1,0))

〉

+

〈
1

2
M((ηΦ−1,0), (Φ

∗
3,−1))−

1

2
ηM((Φ−1,0), (Φ

∗
3,−1)),

1

2
M((ηΦ−1,0), (Φ−1,0))

〉

=
1

4
⟨Φ∗

3,−1, M((ηΦ−1,0),M((ηΦ−1,0), (Φ−1,0)))⟩+
1

4
⟨Φ∗

3,−1, M(M((ηΦ−1,0)
2), (Φ−1,0))⟩

+
1

4
⟨Φ∗

3,−1, M((ηΦ−1,0),M((ηΦ−1,0)), (Φ−1,0))⟩+
1

4
⟨Φ∗

3,−1, M((ηΦ−1,0)
2,M((Φ−1,0)))⟩

+
1

4
⟨Φ∗

3,−1, ηM((ηΦ−1,0),M((Φ−1,0)), (Φ−1,0))⟩

=− 1

4
⟨Φ∗

3,−1, M(M((ηΦ−1,0)
2, (Φ−1,0)))⟩

− 1

4
⟨Φ∗

3,−1, M(M, (ηΦ−1,0)
2, (Φ−1,0))⟩

+
1

4
⟨Φ∗

3,−1, ηM((ηΦ−1,0),M((Φ−1,0)), (Φ−1,0))⟩ (A.3)

We used (M)2 = 0. The solution is

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−1),(Φ−1,0)3
=

1

4
M((ηΦ−1,0)

2, (Φ−1,0), (Φ
∗
3,−1)), (A.4)

∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0)3

=
1

4
M((ηΦ−1,0)

2, (Φ−1,0)), (A.5)

∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0)3

= −1

4
M((ηΦ−1,0), (Φ−1,0),M((Φ−1,0))). (A.6)

The terms for Φ∗
3,−1,Φ−1,0,Φ−2,0 in the master equation are

⟨−ηM((Φ∗
3,−1), (Φ−2,0)), M((Φ−1,0))⟩

+

〈
1

2
M((ηΦ−1,0), (Φ

∗
2,−1))−

1

2
ηM((Φ−1,0), (Φ

∗
2,−1)), M((Φ−2,0))

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−1),(Φ−1,0),(Φ−2,0)

〉
+

〈
M((Φ∗

3,−1)),
∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0),(Φ−2,0)

〉

+

〈
ηΦ∗

3,−1,
∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0),(Φ−2,0)

〉

= 0. (A.7)
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The first term and the second term of the left hand side in this equation are

⟨−ηM((Φ∗
3,−1), (Φ−2,0)), M((Φ−1,0))⟩

+

〈
1

2
M((ηΦ−1,0), (Φ

∗
2,−1))−

1

2
ηM((Φ−1,0), (Φ

∗
2,−1)), M((Φ−2,0))

〉

=
1

2
⟨Φ∗

3,−1, M((ηΦ−1,0),M((Φ−2,0)))⟩ −
1

2
⟨Φ∗

3,−1, M(ηM((Φ−2,0)), (Φ−1,0))⟩

+ ⟨Φ∗
3,−1, M(M((ηΦ−1,0)), (Φ−2,0))⟩

=
1

2
⟨Φ∗

3,−1, ηM(M((Φ−2,0)), (Φ−1,0))⟩

+ ⟨Φ∗
3,−1, M(M((Φ−2,0), (ηΦ−1,0)))⟩+ ⟨Φ∗

3,−1, M(M, (Φ−2,0), (ηΦ−1,0))⟩ (A.8)

Then, we obtain

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−1),(Φ−1,0),(Φ−2,0)

= M((ηΦ−1,0), (Φ−2,0), (Φ
∗
3,−1)), (A.9)

∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0),(Φ−2,0)

= M((ηΦ−1,0), (Φ−2,0)), (A.10)

∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0),(Φ−2,0)

= −1

2
M((Φ−1,0),M((Φ−2,0))). (A.11)

The terms for Φ∗
3,−1,Φ−1,0,Φ−2,1 are

1

2
⟨M((Φ∗

3,−1), (ηΦ−1,0)), ηΦ−2,1⟩

+

〈
ηΦ∗

3,−1,
∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0),(Φ−2,1)

〉
+

〈
M((Φ∗

3,−1)),
∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0),(Φ−2,1)

〉
= 0. (A.12)

Therefore,
∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0),(Φ−2,1)

=
1

2
M((Φ−1,0), (ηΦ−2,1)), (A.13)

∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0),(Φ−2,1)

= 0. (A.14)
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The terms for Φ∗
3,−2,Φ−1,0,Φ−2,1 are

⟨−ηM((Φ∗
3,−2), (Φ−2,1)), M((Φ−1,0))⟩

+

〈
−1

2
M(M((Φ−1,0)), (Φ

∗
3,−2)) +

1

2
M(M((Φ−1,0), (Φ

∗
3,−2))), ηΦ−2,1

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−2),(Φ−1,0),(Φ−2,1)

〉
+

〈
M((Φ∗

3,−2)),
∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0),(Φ−2,1)

〉

+

〈
ηΦ∗

3,−2,
∂lS(3)

∂Φ∗
4,−3

∣∣∣∣
(Φ−1,0),(Φ−2,1)

〉

= 0. (A.15)

Substituting eq(A.13),

(LHS) =

〈
Φ∗
3,−2, −M(ηM((Φ−1,0)), (Φ−2,1)) +

1

2
M((ηΦ−2,1),M((Φ−1,0)))

− 1

2
M(M((ηΦ−2,1)), (Φ−1,0)) +

1

2
M(M((Φ−1,0), (ηΦ−2,1)))

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−2),(Φ−1,0),(Φ−2,1)

〉
+

〈
ηΦ∗

3,−2,
∂lS(3)

∂Φ∗
4,−3

∣∣∣∣
(Φ−1,0),(Φ−2,1)

〉

(A.16)

Then, the solution is

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−2),(Φ−1,0),(Φ−2,1)

=
1

2
M((Φ−1,0), (ηΦ−2,1), (Φ

∗
3,−2)), (A.17)

∂lS(3)

∂Φ∗
4,−3

∣∣∣∣
(Φ−1,0),(Φ−2,1)

= −M(M((Φ−1,0)), (Φ−2,1)) (A.18)

The terms for Φ∗
3,−2,Φ−1,0,Φ−2,0 are

〈
−1

2
M(M((Φ−1,0)), (Φ

∗
3,−2)) +

1

2
M(M((Φ−1,0), (Φ

∗
3,−2))), M((Φ−2,0))

〉

+

〈
M((Φ∗

3,−2)),
∂lS(3)

∂Φ∗
4,−2

∣∣∣∣
(Φ−1,0),(Φ−2,0)

〉
+

〈
ηΦ∗

3,−2,
∂lS(3)

∂Φ∗
4,−3

∣∣∣∣
(Φ−1,0),(Φ−2,0)

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−2),(Φ−1,0),(Φ−2,0)

〉
= 0. (A.19)
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Using eq(A.11), the solution is

∂lS(3)

∂Φ∗
4,−3

∣∣∣∣
(Φ−1,0),(Φ−2,0)

= 0, (A.20)

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

3,−2),(Φ−1,0),(Φ−2,0)

=M((Φ−2,0),M((Φ−1,0), (Φ
∗
3,−2)))

− 1

2
M(M((Φ−2,0)), (Φ−1,0), (Φ

∗
3,−2)). (A.21)

The terms for two Φ∗
2,−1, Φ−1,0,Φ−2,1 are

〈
1

2
M((Φ∗

2,−1)
2, (ηΦ−1,0), ηΦ−2,1

〉

+

〈
M((Φ∗

2,−1)
2),

∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0),(Φ−2,1)

〉
+

〈
M((Φ∗

2,−1)),
∂lS(3)

∂Φ∗
3,−1

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0),(Φ−2,1)

〉

+

〈
ηΦ∗

2,−1,
∂lS(3)

∂Φ∗
3,−2

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0),(Φ−2,1)

〉
+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

2,−1)
2,(Φ−1,0),(Φ−2,1)

〉
= 0.

(A.22)

∂lS(3)

∂Φ∗
4,−1

∣∣
(Φ−1,0),(Φ−2,1)

is already fixed in eq(A.14). The solution is

∂lS(3)

∂Φ∗
3,−1

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0),(Φ−2,1)

= 0, (A.23)

∂lS(3)

∂Φ∗
3,−2

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0),(Φ−2,1)

= −1

2
M((Φ−1,0), (ηΦ−2,1), (Φ

∗
2,−1)), (A.24)

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

2,−1)
2,(Φ−1,0),(Φ−2,1)

= 0. (A.25)
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The terms for two Φ∗
2,−1 and three Φ−1,0 are

〈
−1

2
ηM((Φ∗

2,−1)
2, (ηΦ−1,0), (Φ−1,0)), M((Φ−1,0))

〉

+

〈
−ηM((Φ−1,0), (Φ

∗
2,−1)),

1

2
M((ηΦ−1,0), (Φ

∗
2,−1), (Φ−1,0))

〉

+

〈
1

2
M((Φ∗

2,−1)
2, (ηΦ−1,0))−

1

2
ηM((Φ∗

2,−1)
2, (Φ−1,0)),

1

2
M((ηΦ−1,0), (Φ−1,0))

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

2,−1)
2,(Φ−1,0)3

〉
+

〈
M((Φ∗

2,−1)),
∂lS(3)

∂Φ∗
3,−1

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0)3

〉

+

〈
ηΦ∗

2,−1,
∂lS(3)

∂Φ∗
3,−2

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0)3

〉
+

〈
M((Φ∗

2,−1)
2),

∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0)3

〉
= 0. (A.26)

Because of eq(A.4), S(3) includes the term 1
4⟨Φ

∗
2,−1, M((ηΦ−1,0)2, (Φ−1,0), (Φ∗

3,−1))⟩. Then,
we obtain

∂lS(3)

∂Φ∗
3,−1

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0)3
=

1

4
M((ηΦ−1,0)

2, (Φ−1,0), (Φ
∗
2,−1)). (A.27)

We substitute this and eq(A.5). Then, the solution is

∂lS(3)

∂Φ∗
3,−2

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0)3
=− 1

4
M(M((Φ−1,0)), (Φ

∗
2,−1), (ηΦ−1,0), (Φ−1,0))

− 1

4
M(M((Φ−1,0), (Φ

∗
2,−1)), (ηΦ−1,0), (Φ−1,0))

− 1

4
M(M((Φ−1,0), (Φ

∗
2,−1), (ηΦ−1,0)), (Φ−1,0)) (A.28)

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

2,−1)
2,(Φ−1,0)3

=
1

8
M((Φ−1,0), (ηΦ−1,0)

2, (Φ∗
2,−1)

2) (A.29)
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The terms for two Φ∗
2,−1,Φ−1,0,Φ−2,0 are

⟨−ηM((Φ∗
2,−1)

2, (Φ−2,0)), M((Φ−1,0))⟩
+ ⟨−ηM((Φ∗

2,−1), (Φ−1,0)), M((Φ∗
2,−1), (Φ−2,0))⟩

+

〈
1

2
M((Φ∗

2,−1)
2, (ηΦ−1,0))−

1

2
ηM((Φ∗

2,−1)
2, (Φ−1,0)), M((Φ−2,0))

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

2,−1)
2,(Φ−1,0),(Φ−2,0)

〉
+

〈
M((Φ∗

2,−1)),
∂lS(3)

∂Φ∗
3,−1

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0),(Φ−2,0)

〉

+

〈
ηΦ∗

2,−1,
∂lS(3)

∂Φ∗
3,−2

∣∣∣∣
(Φ∗

2,−1),(Φ−1,0),(Φ−2,0)

〉
+

〈
M((Φ∗

2,−1)
2),

∂lS(3)

∂Φ∗
4,−1

∣∣∣∣
(Φ−1,0),(Φ−2,0)

〉
= 0.

(A.30)

We use eq(A.9), eq(A.10), eq(A.21), and the solution is

∂lS(3)

∂Φ∗
2,−1

∣∣∣∣
(Φ∗

2,−1)
2,(Φ−1,0),(Φ−2,0)

= −M((Φ∗
2,−1)

2, (ηΦ−1,0), (Φ−2,0)). (A.31)

All the terms are canceled by the derivatives of S(3) except the terms for Φ∗
3,−2 and

three Φ−1,0. There is no remaining degrees of freedom of S(3) to cancel the left terms, so
the master equation (5.30) is not completed.

Appendix B

BV variation is defined as
δBVA ≡ {S,A} (B.1)

S is the BV action (5.1). We will calculate BV variations of the action expanded by antifield
number, and construct the action to satisfy δBVS = 0. The BV variation of the original
action is

δBVS
(0) = ⟨δBVΦ0,0|(0),M⟩. (B.2)

Here

δBVΦ0,0|(0) = {S,Φ0,0}|(0) = − ∂rS(1)

∂Φ∗
2,−1

=
∂lS(1)

∂Φ∗
2,−1

. (B.3)

The antifield number 1 action S(1) includes one Φ∗
2,−1 and does not include other antifields.

The BV variation of Φ∗
2,−1 with antifield number 0 is

δBVΦ
∗
2,−1|(0) =

∂rS(0)

∂Φ0,0
= M. (B.4)

44



Then, the BV variation of S(1) with antifield number 0 is

δS(1)|(0) =
〈
δBVΦ

∗
2,−1|(0),

∂lS(1)

∂Φ∗
2,−1

〉
=

〈
M,

∂lS(1)

∂Φ∗
2,−1

〉
. (B.5)

Since the BV variation of Φ∗
g,p, (g > 2) is

δBVΦ
∗
g,p|(0) = {Φ∗

g,p, S
(0)} = − ∂lS(0)

∂Φ2−g,−1−p
= 0 (g > 2), (B.6)

we obtain

δBVS
(n)|(0) =

〈
δBVΦ

∗
n+1,p|(0),

∂lS(n)

∂Φ∗
n+1,p

〉
= 0 (n ≥ 2). (B.7)

Therefore, the BV variation of the BV action with antifield number 0 is

δBVS|(0) = δBV(S
(0) + S(1))|(0) = 2

〈
M,

∂lS(1)

∂Φ∗
2,−1

〉
. (B.8)

BV variations of the action with each antifield number vanish. Then

δBVS|(0) = 0. (B.9)

The solution is
S(1) = ⟨Φ∗

2,−1, M((Φ−1,0)) + ηΦ−1,1⟩. (B.10)

The BV variation of the action with antifield number 1 is

δBVS
(0)|(1) = ⟨δBVΦ0,0|(1), M⟩ =

〈
M,

∂lS(2)

∂Φ∗
2,−1

〉
, (B.11)

δBVS
(1)|(1) =⟨δBVΦ

∗
2,−1|(1), M((Φ−1,0)) + ηΦ−1,1⟩+ ⟨Φ∗

2,−1, M((δBVΦ−1,0|(0)))⟩
− ⟨Φ∗

2,−1, M((ηδBVΦ0,0|(0)), (Φ−1,0))⟩+ ⟨Φ∗
2,−1, ηδBVΦ−1,1|(0)⟩

=2⟨Φ∗
2,−1, M(M((ηΦ−1,0)), (Φ−1,0))⟩+

〈
M((Φ∗

2,−1)),
∂lS(2)

∂Φ∗
3,−1

〉

+

〈
ηΦ∗

2,−1,
∂lS(2)

∂Φ∗
3,−2

〉
. (B.12)

A term of S(2) includes two Φ∗
2,−1, one Φ∗

3,−1 or one Φ∗
3,−2, so

δBVS
(2)|(1) =

〈
δBVΦ

∗
2,−1|(0),

∂lS(2)

∂Φ∗
2,−1

〉
+

〈
δBVΦ

∗
3,−1|(1),

∂lS(2)

∂Φ∗
3,−1

〉
+

〈
δBVΦ

∗
3,−2|(1),

∂lS(2)

∂Φ∗
3,−2

〉

=

〈
M,

∂lS(2)

∂Φ∗
2,−1

〉
+

〈
M((Φ∗

2,−1)),
∂lS(2)

∂Φ∗
3,−1

〉
+

〈
ηΦ∗

2,−1,
∂lS(2)

∂Φ∗
3,−2

〉
(B.13)
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Here δBVS(n)|(1) = 0 (n ≥ 3) as it is showed in the same way with eq(B.7). Therefore, the
BV variation of the action with antifield number 1 is

δBVS|(1) =2⟨Φ∗
2,−1, M(M((ηΦ−1,0)), (Φ−1,0))⟩

+ 2

〈
M,

∂lS(2)

∂Φ∗
2,−1

〉
+ 2

〈
M((Φ∗

2,−1)),
∂lS(2)

∂Φ∗
3,−1

〉
+ 2

〈
ηΦ∗

2,−1,
∂lS(2)

∂Φ∗
3,−2

〉
. (B.14)

The solution of δBVS|(1) = 0 is

S(2) =

〈
Φ∗
3,−1,

1

2
M((ηΦ−1,0), (Φ−1,0)) +M((Φ−2,0)) + ηΦ−2,1

〉

+

〈
Φ∗
3,−2,−

1

2
M(M((Φ−1,0)), (Φ−1,0)) +M((Φ−2,1)) + ηΦ−2,2

〉

+

〈
Φ∗
2,−1,

1

4
M((ηΦ−1,0), (Φ

∗
2,−1), (Φ−1,0)) +

1

2
M((Φ∗

2,−1), (Φ−2,0))

〉
(B.15)

We calculate δBVS|(2) in the same way and see the terms which include one Φ∗
3,−2 and

three Φ−1,0.

1

2
δBVS|(2)(Φ∗

3,−2),(Φ−1,0)3
=

〈
1

2
ηM((Φ∗

3,−2),M((Φ−1,0)), (Φ−1,0)), M((Φ−1,0))

〉

−
〈
1

2
ηM((Φ−1,0),M((Φ∗

3,−2), (Φ−1,0))), M((Φ−1,0))

〉

−
〈
1

2
M((Φ∗

3,−2),M((Φ−1,0))),
1

2
M((ηΦ−1,0), (Φ−1,0))

〉

+

〈
1

2
M(M((Φ∗

3,−2), (Φ−1,0))),
1

2
M((ηΦ−1,0), (Φ−1,0))

〉

+

〈
M,

∂lS(3)

∂Φ∗
2,−1

〉
+

〈
M((Φ∗

3,−2)),
∂lS(3)

∂Φ∗
4,−2

〉
+

〈
ηΦ∗

3,−2,
∂lS(3)

∂Φ∗
4,−3

〉

(B.16)

δBVS|(2)(Φ∗
3,−2),(Φ−1,0)3

= 0 is equivalent to eq(5.37). We have no proper S(3).
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