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Chapter 1

Introduction

1.1 Introduction

1.1.1 General Motivation : Why we see the living things
as ”’living things”?

While we still poorly understand the inherent characteristic(s) of living things,
almost all people might agree that the living things are strikingly different from
non-living matters. Now, on what grounds do we think living things are living?
We have some traditional criteria for defining what the living things are; ”living
things” have a boundary separating their internal entity from external environ-
ment, metabolism, and the ability of self-proliferation. The criteria might be
helpful to distinguish the living things and non-living things. These criteria just
rephrase common features obtained from the observations of what we see as "liv-
ing things”, and the criteria (might) never tell us why we see them as ”living”.
For example, metabolism is just a collection of chemical reactions, and thus, we
can easily reconstruct a part of metabolism in beakers. Also, if we place candles
densely and ignite one of the candles, the candle fire will propagate and increase the
number of fires. This phenomenon looks like the self-replication of fire, and there
are chemical reactions in the candle fires corresponding to very simple metabolism.
Still, it might be inherently different from the self-replication of living things?.
We, human beings, have encountered such elusive phenomena and concepts, for
example, the arrow of time and information, and have elucidated them by con-
structing quantitative theories. The arrow of time was, to some extent, understood
by establishing the second law of thermodynamics, and also, information was de-
fined, in the style of Shannon, as a quantity which helps to reduce the number
of possible choices. The final goal of the author is to construct such quantitative
theory (not epistemology) of living things which enables us to understand why we
clearly distinguish the living things from non-living things as the second law of
thermodynamics provides one explanation why does time seem to go forward.

LOf course, candle fires do not have the boundary, however, each candle separates each fire,
and thus, at least we can distinguish each fire. While the role of the boundary is not only
establishing individuality, to some extent, the propagation of candle fires is very similar to the
life phenomenon if we judge this phenomenon pedantically based on the criteria.



To accomplish this purpose, we have to investigate the characteristic features what
we think are the essences of living things. Thus, in this thesis we do not take an
inductive approach, i.e. highlight what living things are by collecting the common
features of them, but take a deductive approach. We focus on some features of liv-
ing things obtained by observations and try to investigate the general consequence
emerging from the features. Specifically, we focus on two themes; consequence of
the autonomy to energetic property of cellular systems, and the growth laws in
starved conditions.

The energetics of autonomous cellular growth

Cells generally take up substrates from the external environment and convert them
into the ingredients for their growth and energy source for the self-maintenance.
Needless to say, we know that cells cannot sustain their lives in the chemical
equilibrium at which all chemical reactions are balanced, and thus, no energy is
transducted thereby. In this sense, the constant consumption of chemicals through
cellular metabolism makes cells possible to live. Then, it is natural to wonder the
characteristics of this conversion process; how cells allocate the substrates to its
growth and self-sustainment.

In thermodynamics conversion process is formulated by the Carnot engine. S.
Carnot pointed out by studying the ideal model of engines that the process of
converting the heat to mechanical work has an upper limit on efficiency represented
by the temperature difference in the heat baths, and the engine reaches the upper
bound by the quasi-static operation. Here, one may regard the cellular systems as
the energy-conversion systems which convert the chemical potential of substrates
into their growth and self-sustainment. On the other hand, the striking difference
between Carnot-type engines and cells lies in an autonomous feature. Carnot-type
engines never produce their components such as piston and cylinder, whereas, cells
produce their components as a result of energy conversion. We expect that this
autonomous feature leads to the distinct characteristic nature of energy conversion
such as the efficiency of the process.

Phenomenological growth laws under slow growth conditions

I. Prigogine conceptualized living things by proposing ”dissipative structure” [1].
He regarded living things as a consequence of the self-organization in non-equilibrium
states. His idea paved the way to relate an emergence of living things to order-
disorder transitions in non-equilibrium states and the bifurcation phenomena dis-
cussed in dynamical systems theory. The idea encouraged to bridge a gap between
the researches for living things and non-living matters, but still, the idea is suspi-
cious because many organisms can sustain their lives for a long time period even in
the substrate-poor environments, while the ordinary dissipative structures cannot
exist in a closed system or a low-flux conditions[2, 3, 4].

To focus on the nature of living things under low flux conditions, we study the
stationary phase of bacteria. Bacteria typically show four distinct growth phases
in batch culture conditions, namely, lag, exponential, stationary, and death phase.



In the exponential phase and death phase, the population of bacteria simply in-
creases or decreases in time, respectively. On the other hand, in the stationary
phase that appears in the lack of resources, the growth rate and death rate of
the bacteria are strongly suppressed as if the bacteria are sleeping[2]. Thus, the
stationary phase might be strikingly different from the exponential phase in which
constant consumption of substrates supports the growth of bacteria allowing for
the far-from-equilibrium condition that is assumed in dissipative structure.

1.1.2 Why Phenomenological Theory?

In this thesis, we study the characteristic nature of cells by using phenomeno-
logical models of cells, without details of precise metabolic processes for cellular
growth such as Flux Balance Analysis[5] because we aim to construct the universal
theory for cellular growth and energetics. For our purpose, such detailed models
are not suitable because one of the main aims of the detailed models is to give
quantitative predictions for cellular growth, and thus, the specific details for each
species are significant, and universality in living systems takes a second place for
such researches?.

Since the cellular systems consist of complex systems of gene regulation and
metabolism, the impact of phenomenological approach is naively suspicious. There
are several successful phenomenological laws on the cellular growth, however, for
example, Monod equation, Pirt’s relation, and the relationship between the amount
of ribosomal RNA and the growth rate[3, 6, 7]. Because of the simplicity of these
laws, they do not always hold. Still, it is confirmed that they provide a reasonable
model to understand the cellular physiology for certain conditions. What makes
such simple, phenomenological laws possible? As an example, let us remember the
movement of a ball under gravity. The equation of the motion of it with initial
velocity vy is given as v(t) = —ge,, v(0) = vy, where g and e, represent the grav-
itational acceleration and unit vector of the vertical axis, respectively. To predict
the motion of the ball in extremely accurately, we have to include the effect of the
shape of the ball, rotation, and friction with air, and so on. However, we know
that in most cases, we can omit these "miscellaneous factors”. In such condition,
it is sufficient to assume the ball as a point mass, and gravity as only force im-
posed onto the ball. When can we model biological systems like this ball? Here,
we briefly review some conditions which might make phenomenological approach
reasonable.

2For example, we seek the universal theory which picks up the common features from E.coli to
humans, however, even two different strains of E.coli have slightly different metabolic pathways
and kinetic parameters, and this difference could result in different growth rate or other objective
functions. Thus, the researchers cannot ignore such difference for the purpose of quantitative
prediction.



Oth-order kinetics

In this section, we review two mechanisms which lead to Oth-order reactions. When
a certain reaction obtains the Oth-order dependency on certain substrates, the rate
of chemical reaction is independent of their concentrations, and thus, it contributes
to reducing the complexity of cellular metabolism.

Michaelis-Menten kinetics

Almost all chemical reactions occurring in cells are catalyzed by enzymatic proteins
(we call them as "enzymes” hereafter). Enzyme usually forms a complex with its
corresponding ligands first, and thereafter, converts it into the product and deforms
the complex. Kinetics of such enzymatic reaction is known to follow Michaelis-
Menten equation given as

[E][S]

production rate = Va1

K +[S]

where [E] and [S] represents the concentration of enzyme and substrate, respec-
tively. ¥max is the maximum production speed of product, and K is the dissociation
constant.

A significant characteristic of the kinetics is that if the concentration of substrate
is sufficiently larger than the dissociation constant (K < [S]), the kinetics turns
to be the Oth order chemical reaction of the substrate. It makes the kinetics of
chemical reaction simple.

Rate-Limiting substrates

There is another mechanism which leads to the Oth order chemical reaction against
certain substrates. Let us introduce simple chemical reaction pathways composed
of the elemental reactions described below (schematic representation of reactions
is shown in Fig.1.1(a))

0 —

O — y,
r+y — Z,
xr — O,

— 0,

z = 0

where, molecular species x and y are supplied from the external environment (or
other pathways), and also, chemicals x and y are spontaneously degraded with the
rate ¢. Produced z molecule is consumed with the rate v. Here, we study the
dynamics of the consumption of z molecule. To clarify that Oth order sensitivity
stems from a mechanisms different from Michaelis-Menten kinetics, we model all



chemical reactions by mass-action kinetics®. Then, the differential equations for

the concentration of x, y, and z are given by

2] = Jo = [2]ly] - o),
Wl = Jy = l2]ly] - olyl,
2] = lally] — ol

where J, and J, represent the supply rate of chemical x and y, respectively. ¢ and
v are rate constants for spontaneous degradation of x and y, and consumption of
z.

Fig.1.1.(b) and (c) show the consumption flux of z denoted by J as a function of J,
and J,. Even though there is no trivial saturation effect caused by the Michaelis-
Menten kinetics, J turns to be the Oth order reaction of J,. This saturation effect
simply stems from the lack of molecule y. As shown in Fig.1.1.(d), the steady
concentration of y decreases in the order of magnitude at the point at which J
saturates for each J, value. At the steady state, production rate and consumption
rate have to be balanced for each molecule. If we omit the spontaneous degradation
of x and y for the simplicity?, to J = J, and J = J, must hold in the steady state.
This condition simply leads J = min{J,, J,}, and for J, > J,, chemical y is the
substrate that rate limits. Such condition for the balance of influx/efflux also leads
to the insensitivity of certain reactions on the non-rate-limiting chemical species.

Growth rate as Global Constraint

There are ~ 4,300 proteins even in F.Coli cell[8]. Here, the cell state with all
chemical concentrations including the concentrations of other metabolites is rep-
resented by the phase space of more than 4,300-dimension. Then, it would be
almost impossible for a simple model with just a few variables to successfully cap-
ture the nature of cells. However, a recent study revealed that the concentration of
chemical species cannot change in this high-dimensioned space without restriction
when the cell achieve stable growth[9]. Their dynamics are constrained by the
volume growth of the cell.

To see this constraint, let us introduce the dynamics of chemical species inside
cells in a general form. When we assume the chemical species are well-mixed, and
thus, the spatial structure inside the cell can be omitted, the change in chemical
concentrations is written as

&= filxy) = py)w, (0<i<N—1) (1.1)

where y is the external parameters (for example the external concentration of
substrates),z; and f; represent the concentration of ith chemical species, and its

3Mass-action kinetics is valid for non-enzymatic reactions, and also, enzymatic reactions under
low-substrate concentration regime in which the concentration of substrates is sufficiently smaller
than the dissociation constant.

4Since we set ¢ as sufficiently smaller than other parameters in the calculation of Fig.1.1, this
assumption is valid.
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Figure 1.1: (a). Reaction diagram of our example. For the sake of visibility, the
spontaneous degradation and consumption reactions are not depicted in the dia-
gram. (b). Three-dimensional plot of the steady value of J(.J,, J,). Also, J(J,, J,)
values for several J, values are overlaid as a function of J,. (c). J(J,,J,) values
for several .J, values are plotted as functions of J,. (d). Steady concentrations of
[y] are plotted as functions of J,. Line with the same color has the same value of
J,, among (b)-(d). Parameter values are set to be ¢ = 1072 and v = 1.0.



change by all the collection of the chemical reactions including interactions between
with environment, respectively. p is the specific growth rate of the cell (u = % InV
with V as the volume of the cell). The growth rate of the cell is determined by
the rates of some chemical reactions and the concentrations of certain chemical
species. Here, we perform variable transformation X; = Inx; with an assumption
x; # 0. Then we get

Xi = E(X7Y) _M<XaY)7 (0 <i<N-— 1)7

where F; is f;/x;. At the steady state, X; = 0 holds, which implies that the
production rate of ith chemical species normalized by its steady concentration is
equal to the specific growth rate p for all 7. If the steady concentration of ith
chemical is twice the concentration of jth chemical, the production rate of ith
chemical has to be twice of the production rate of j. It is the simplest constraint
for a cell that doubles all chemical components without changing the compositional
ratio of chemical species. Now, Fy = F; = --- = Fy_1 = p holds, which imposes
N —1 conditions to the steady state of N-dimensional dynamical system (Eq.(1.1)).
This leads to a constraint on the change in chemical compositions.

1.1.3 Overview of this thesis

We first study the energetics of cellular growth in Chapter.2 and Chapter.3, and
thereafter, we study the phenomenological laws of bacterial growth under substrate-
poor conditions (or low-growth conditions) in Chapter.4 and Chapter.5.

Chapter.2 Energetic efficiency of cellular growth

Cells generally convert external nutrient resources to support metabolism and
growth. Understanding the thermodynamic efficiency of this conversion is essen-
tial to determine the general characteristics of cellular growth. Using a simple
protocell model with catalytic reaction dynamics to synthesize the necessary en-
zyme and membrane components from nutrients, the entropy production per unit-
cell-volume growth is calculated analytically and numerically based on the rate
equation for chemical kinetics and linear nonequilibrium thermodynamics. The
minimal entropy production per unit-cell growth is found to be achieved at a
nonzero nutrient uptake rate rather than at a quasistatic limit as in the standard
Carnot engine. This difference appears because the equilibration mediated by the
enzyme exists only within cells that grow through enzyme and membrane syn-
thesis. Optimal nutrient uptake is also confirmed by protocell models with many
chemical components synthesized through a catalytic reaction network. The pos-
sible relevance of the identified optimal uptake to optimal yield for cellular growth
is also discussed.

Chapter.3 Efficient metabolic reaction facilitated by the temporal sep-
aration of anabolism and catabolism

Cells generally convert nutrient resources to products via energy transduction.
Accordingly, the thermodynamic efficiency of this conversion process is one of



the most essential characteristics of living organisms. However, although these
processes occur under conditions of dynamic metabolism, most studies of cellular
thermodynamic efficiency have been restricted to examining steady states; thus,
the relevance of dynamics to this efficiency has not yet been elucidated. Here,
we develop a simple model of metabolic reactions with anabolism-catabolism cou-
pling catalyzed by enzymes. Through application of external oscillation in the
enzyme abundances, the thermodynamic efficiency of metabolism was found to be
improved. This result is in strong contrast with that observed in the oscillatory
input, in which the efficiency always decreased with oscillation. This improvement
was effectively achieved by separating the anabolic and catabolic reactions, which
tend to disequilibrate each other, and taking advantage of the temporal oscilla-
tions so that each of the antagonistic reactions could progress near equilibrium.
In this case, anti-phase oscillation between the reaction flux and chemical affinity
through oscillation of enzyme abundances is essential. This improvement was also
confirmed in a model capable of generating autonomous oscillations in enzyme
abundances. Finally, the possible relevance of the improvement in thermodynamic
efficiency is discussed with respect to the potential for manipulation of metabolic
oscillations in microorganisms.

Chapter.4 Phenomenological laws of lag phase and stationary phase

The quantitative characterization of bacterial growth has attracted substantial at-
tention since Monod’ s pioneering study. Theoretical and experimental works have
uncovered several laws for describing the exponential growth phase, in which the
number of cells grows exponentially. However, microorganism growth also exhibits
lag, stationary, and death phases under starvation conditions, in which cell growth
is highly suppressed, for which quantitative laws or theories are markedly under-
developed. In fact, the models commonly adopted for the exponential phase that
consist of autocatalytic chemical components, including ribosomes, can only show
exponential growth or decay in a population; thus, phases that halt growth are
not realized. Here, we propose a simple, coarse-grained cell model that includes
an extra class of macromolecular components in addition to the autocatalytic ac-
tive components that facilitate cellular growth. These extra components form a
complex with the active components to inhibit the catalytic process. Depending
on the nutrient condition, the model exhibits typical transitions among the lag,
exponential, stationary, and death phases. Furthermore, the lag time needed for
growth recovery after starvation follows the square root of the starvation time and
is inversely related to the maximal growth rate. This is in agreement with exper-
imental observations, in which the length of time of cell starvation is memorized
in the slow accumulation of molecules. Moreover, the lag time distributed among
cells is skewed with a long time tail. If the starvation time is longer, an exponential
tail appears, which is also consistent with experimental data. Our theory further
predicts a strong dependence of lag time on the speed of substrate depletion, which
can be tested experimentally. The present model and theoretical analysis provide
universal growth laws beyond the exponential phase, offering insight into how cells
halt growth without entering the death phase.
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Chapter.5 Cell death induced by nutrient

In Chapter.4 , we constructed a model exhibiting three distinct phases, namely,
active, inactive, and death phases, and found a law on the dependence of average
lag time on the starvation time and maximum growth rate, and distribution form
of lag time over cells, in agreement with experiments. Lag time of the model cell
depends on the process of the starvation, but it does not show the dependence on
the process of the substrate recovery. However, such dependence is experimentally
known as sugar induced cell death (SICD). If the starved cell is incubated to the
water or unusable carbon source medium, cells remain being starved. When a
cell is incubated to the glucose medium without any other nutrient (i.e, without
nitrogen source, inorganic substrates, and so on), however, the cell rapidly dies.
In contrast, if the cell is incubated to the glucose medium with other non-carbon
nutrient sources, it easily resurrects. Hence the cell death is triggered by glucose,
the nutrient source

To study such problem, we introduced additional components into the previous
model; energy currency molecules such as ATP and ADP. The model cell takes
up two types of nutrients from the external environment. The first kind of sub-
strate is used to produce macromolecules, and the second one is used for the
conversion reaction from ADP to ATP. The model cell needs active form of energy
currency molecules (ATP) to produce macromolecules and increase the fraction of
the growth-facilitating component among the total macromolecules.

By computing the steady states and dynamics of this model cell, we found that
the model cell had death attractor for all substrate conditions. The cells could be
attracted to the death attractor depending on which substrate concentration was
recovered first. SICD is explained accordingly from this model.

11



Chapter 2

Entropy production of a
steady-growth cell with catalytic
reactions

2.1 Introcution

A cell is a system that transforms nutrients into substrates for growth and divi-
sion. By assuming that the nutrient flow from the outside of a cell is an energy
and material source, the cell can be regarded as a system to transform energy and
matter into cellular reproduction. It is important to thermodynamically study the
efficiency of this transformation[10, 11, 12, 13, 14]. Regarding material transforma-
tion, the yield is defined as the molar concentration of nutrients (carbon sources)
needed to synthesize a molar unit of biomass (cell content) and has been measured
in several microbes [6, 15, 16, 17, 18]. As the conversion of nutrients to cell content
is not perfect and material loss to the outside of a cell occurs as waste, the yield is
generally lower than unity. The yield also changes with nutrient conditions, and
measurements in several microbes show that the yield is maximized at a certain
finite nutrient flow rate. The basic logic underlying the optimization of yield at a
finite nutrient flow rate rather than at a quasi-static limit is not fully understood.
A cell can also be regarded as a type of thermodynamic engine to transform
nutrient energy into cell contents. It is necessary to study the thermodynamic
efficiency or entropy production during the process of cell reproduction.The ther-
modynamic efficiency of metabolism has been measured in several microbes under
several nutrientconditions[17, 19, 20, 21, 22, 23|, and Westerhoff and others com-
puted it by applying the phenomenological flow-force relationship of the linear
thermodynamics to catabolism and anabolism [13, 13, 24] to show that the ef-
ficiency is optimal at a finite nutrient flow. Although such a phenomenological
approach is important for technological application, a physiochemical approach is
also necessary to highlight difference between cellular machinery and the Carnot
engine by characterizing the basic thermodynamic properties in a simple protocell
model. Indeed, when viewed as a thermodynamic engine, a cell has remarkable
differences from the standard Carnot-cycle engine.

12



The cell sits in a single reservoir, without a need to switch contacts between differ-
ent baths. The cell grows autonomously to reproduce. To consider the nature of
such a system, it is necessary to establish the following three points distinguishing
the cell from the standard Carnot engine [25].

First, cells contain catalysts (enzymes). The enzyme exists only within a com-
partmentalized cell encapsulated by a membrane and thus enables reactions to
convert resources to intracellular components to occur within a reasonable time
scale within a cell but not outside the cell. Without the catalyst, extensive time
is required for the reaction. Thus, the reaction is regarded to occur only in the
presence of the catalyst. This leads to an intriguing non-equilibrium situation: Let
us consider the reaction R+ C = P+ C with R as the resource, P as the product,
and C as the catalyst. Then, under the existence of C, the system approaches
an equilibrium concentration ratio with [R]/[P] = exp(—f(ur — pp)) and pgr and
wp as the standard chemical potential of the resource and product, respectively,
and with 3 as the inverse temperature. In contrast, outside the cell, R and P
are disconnected by reactions within the normal time scale !; therefore, their con-
centration ratio can take on any value. In this sense, a cell can be regarded as a
machinery which has ability to equilibrate extracellular environment.

Second, while considering the dynamical process, it is important to note that the
catalysts are synthesized within the cell as a result of catalytic reactions. The time
scale to approach equilibrium can depend on the abundance of the catalyst, which
depends on the reaction dynamics themselves. Based on the first and second points
mentioned above, the approach to equilibrium in the intracellular environment de-
pends on catalyst abundance, which also depends on the flow rate of nutrients
from outside the cell. Hence, the thermodynamic efficiency could show non-trivial
dependence upon the nutrient flow.

Third, cell volume growth results from membrane synthesis from nutrient com-
ponents, facilitated by the catalyst, whereas the concentrations of catalyst and
nutrient are diluted by cell growth, which results in a non-standard factor for
thermodynamic characteristics.

These three issues, which are fundamental to cell reproduction, are mutually con-
nected and thus inherent to a self-reproducing, or autopoietic, system. In contrast
to dynamical systems studies for self-reproduction in catalytic reaction networks
[27, 28, 29, 30], however, the thermodynamic characteristics for such systems have
not been fully explored.

On the other hand, there are extensive studies on thermodynamic efficiency for a
system that operates at a nonequilibrium condition with a finite velocity, as well
as the optimality on the power efficiency [31, 32, 33, 34], with some applications
to molecular motors [35, 36]. However, the above three issues that are essential
to reproducing cells are not discussed in the traditional thermodynamic context
so far. In particular, with the encapsulated catalysts that exist only within a cell,
reactions that do not exist at the outside of a cell can progress within a cell within

LOf course, if we wait for a huge amount of time, the reaction between R and P could occur
ultimately, even without catalysts. However, the enzymes often facilitate the time scale of the
order of 107 to 10 [26], so that within the normal time scale we are concerned, the reaction can
be regarded not to occur at the outside.

13



a normal time scale we are concerned. In the standard time scale, the equilibra-
tion is possible only within a cell, whose speed is facilitated by the enzymes which
are produced as a result of the intra-cellular reactions. How this autonomous
regulation of time scale together with the cell volume growth influences on the
thermodynamic efficiency is the main concern of this chapter, which has not been
investigated earlier.

In the present study, we determine these characteristics using simple reaction dy-
namics consisting of the nutrient, catalyst, and membrane. In Sec.2, we consider
a simple protocell model consisting of a membrane precursor and catalyst under
a given nutrient flow. The entropy production by chemical production per unit
cell volume growth is shown to be minimized at a certain finite nutrient flow. The
mechanism underlying this optimization is discussed in relation to the abovemen-
tioned three characteristics of a cell. The entropy production by material flow is
discussed in Sec.2 and basically does not change the conclusion described above.
A protocell model consisting of a variety of catalysts that form a network, together
with nutrients and membrane precursors, has been investigated to confirm that the
conclusion described above is not altered. The biological relevance of our results
is discussed in Sec.3.

2.2 Entropy production of an autopoietic cell

2.2.1 Two-component model

First, we study the entropy production rate o resulting from the intracellular reac-
tion for the minimal protocell model consisting only of the synthesis of the enzyme
and membrane precursor from the nutrient, which then leads to cellular growth
[7, 16, 37, 38|(see FIG.2.1 for schematic representation). The model consists of
nutrient, membrane precursor, and enzyme, where the enzyme and membrane pre-
cursor are synthesized from the nutrient under catalysis by the enzyme. Moreover,
by assuming that the diffusion constant of the nutrient is sufficiently large, the
internal nutrient concentration is regarded to be equal to the external nutrient
concentration. Based on the rate equation for chemical kinetics, our model is
given by the following two-component ordinary differential equation

dx

— = RKgx(kr —x) —xA,

dy

il kyx(lr —y) — ¢y — yA. (2.1)
where the variables x and y denote the concentrations of the enzyme and membrane
precursor, respectively, whereas \ = %% denotes the cell volume growth rate to

be determined. Here, the first terms with x in both the equations represent the
change in the concentrations by the reaction NV = E, and N = M, respectively,
and the term ¢y is due to the consumption of the membrane precursor molecules
to produce the membrane (M, — Membrane), while the last terms represent the
dilution of the concentrations of all chemical species due to the volume expansion
with the rate A. Here, the notation of parameters is as follows:

14



Nutrient Pool

e

Membrane

Membrane
Precursor

Figure 2.1: Schematic representation of our three-component protocell model. N,
Mp, and E denote nutrient, membrane precursor, and enzyme, respectively. The
nutrient is taken up from the extracellular nutrient pool by diffusion, indicated by
a blue arrow. All chemical reactions, indicated by black solid arrows, are reversible
and catalyzed by the enzyme, as indicated by dashed arrows. Membrane precursors
are transformed to the membrane as indicated by the green ring with some leaks.
The membrane growth results in an increase in cell volume.

r : nutrient (i.e. resource) concentration

o k= e Pla—nr) | = g=Blw—rr) - the rate constant of each chemical reaction,
with p,, p, and p, as the standard chemical potential of nutrient, z, and v,
respectively.

K; : catalytic capacity of the enzyme for i component (i = x, ).

e ¢ : consumption rate of the membrane precursor to produce the membrane,
such that the volume growth rate A is given by A = ~¢y, where v is the
conversion rate from membrane molecules to cell volume.

In the stationary state, A takes a positive constant value of y > 0 for r > 0 3.
Thus, the protocell volume increases exponentially in time. Here, we define the
entropy production rate per unit volume at this steady growth state as o. In
computing o, spatial inhomogeneity is not considered through the assumption of
local homogeneous equilibrium. Thus, the entropy produced during the doubling

’In other words, the forward and backward reaction rates are given by rgk and ks, Kyl
Ky, respectively. We used the present parameterization, to separate the timescales of chemical
reactions as represented as k;, (i = z,y), from the ratios of forward to backward reactions that
are given by the exponential of the free energy difference.

3In our model, another stationary solution (z,y) = (0,0) exists. However this solution is an
unstable fixed point of the differential equation for X > 0.
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in the cell volume is given by

T
S = // o dVdt,
o Jv

T

= / VoeModt, (2.2)
0

_ %Vo-
where V} is the initial cell volume and 7' is doubling time of the cell %,
We denote n = o/ as the entropy production per unit cell-volume growth. Gen-
erally, if n is smaller, the thermodynamic efficiency for a cell growth is higher. For
larger 1, more energetic loss occurs in the reaction process. Hereafter, we study
the dependence of 1 on the nutrient condition and the growth rate A.
In this subsection, we consider only the entropy production by the chemical re-
action; the entropy production by the flow of chemicals from the outside of the
cell will be considered in the next section. The calculation of entropy production
rate among different components is performed by virtually introducing chemical
baths for different components that are mutually in disequilibrium and then ap-
plying linear non-equilibrium thermodynamics for calculation. This may result in
stringent requisites; however, this step is adopted to address the thermodynamic
efficiency of a cell with growth, as general steady-state thermodynamics are not
established currently.
Then, the entropy production rate by the reactions is given by o = >, Ji%, where
J; is the chemical flow and A; is the affinity for each reaction. Here we set T' =1
without losing generality.
For calculation, we assume that s, and «, are identical for simplicity, denoted as
k. Then, by rescaling the variables as

To= Y, y=y,
ro= lry, T=1t¢. (2.3)
Eq.(2.1) is written as
dx ~
d—f = Ra(ki — 7) — 77,
di
d—i = RI(F—9) -7 -7, (2.4)
where K = ¢—“7 and k = k /1. The stationary solution of the equation for & = 1 is
given by 5 . .
_ kr(1+ kF) _ k2
r=———"—""—=_, Yy= ————=".
1+ 7 + ki 1+ 7 + &

4This is nothing but the relationship between the total entropy production through cell re-
production and the entropy production per time and volume. Specific contribution of material
flow, cell volume growth, and reactions to the entropy roduction rate o will be analyzed below.
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Following this assumption, the entropy production rate by chemical reaction o at
the stationary state is calculated as 0 = o, + 0, with o, = Ji% for the enzymatic
reaction ¢ = x and for the membrane reaction ¢ = y. Here, the flows are given
by J, = ki(ki — %) and J, = &Z(7 — §), whereas the affinities are given by
A, = Tn(k7/z) and A, = T'In(7#/7). We omit the tilde for affinities because the
affinities are not affected by scale transformation. Therefore, we obtain

¢ = Ri(ki — &) In(ki/z) + RE(F — §) In(7 /7).
The dependence of 7 = 6/y = 1 upon k and 7, thus obtained, is plotted in
FIG.2.2 for £ = 1. As shown, the entropy production per unit growth shows
a non-monotonic dependence on the nutrient concentration and is minimized at
a non-zero nutrient concentration. Because nutrient uptake rate is a monotonic
function of nutrient concentration, this result means that the entropy production
per unit growth 7 is minimal at a finite nutrient uptake rate. This result is in

strong contrast with the thermal engine, where the entropy production is mini-
mal at a quasi-static limit. FIG.2.3(a),(b) shows the entropy production per unit
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g Log(f)
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]

= 0.8
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7] 0.6
s 3

° 0.4
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o 0.2
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3 0
=

@ 0 -0.2
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i)

©

o

Scaled nutrient concentration 7

Figure 2.2: The logarithm of 7 plotted as a function of scaled nutrient concentra-
tion 7 and k = k /1, the ratio between two rate constants, with the color code given
in the side bar. It is calculated from the solutions of Eq.(2.4). The parameter &
is chosen to be 1.0. For given /%, there is an optimal nutrient concentration that
gives the minimum 7.

growth o, /X, 0,/X for each reaction which produces component x and y, respec-
tively. This shows that the non-monotonic dependence on the nutrient in FIG.2.2
is attributable to o,/A. As mentioned above, an important characteristic of cells
is that intracellular reactions are facilitated by enzymes that are autonomously
synthesized. Thus, the equilibrium distribution of chemicals in the presence of en-
zymes is different from the external chemical distribution. The decrease in n under
low nutrient concentrations is explained accordingly: The extracellular concentra-
tions of the nutrient and of the membrane precursor are far from equilibrium in
the presence of catalysts. Therefore, their intracellular concentrations under con-
ditions of low nutrient uptake remain far from equilibrium and still similar to the
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Figure 2.3: The logarithm of the rescaled entropy production rate per unit rescaled
growth rate ¢,/\ and o,/ A for the enzyme and membrane precursor synthesis
reactions, respectively, plotted as a function of the rescaled nutrient concentration
7 and the ratio between rate constants k, computed by Eq.(2.4). (a). &,/ for the

enzyme producing reaction and (b) g,/ A for the membrane precursor producing
reaction.
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external concentrations because of insufficiency of the enzyme. However, when
the amount of nutrient uptake increases, the amount of enzyme increases and the
system approaches intracellular equilibrium; therefore, the entropy production per
unit growth decreases.

In contrast, with further increases in nutrient uptake, the entropy production rate
increases as a result of the increase in cellular growth; entropy production rate
o=, Ji% by the reaction increases linearly with the reaction speed J;. In the
steady state, the reaction speed J; is roughly estimated by Ap;, with p; as the
concentration of the product of the ith reaction, because the dilution due to cell
volume expansion and production of chemical reaction should be balanced. For ex-
ample, the dynamics of the enzyme concentration are given by Cfi—f = x(kr—x)—\z.
At steady state, the enzyme production rate x(kr — x) is balanced with Az ac-
cording to Eq.(2.1). Thus, o, increases with Az. In summary, for a cell with a
high growth rate, increased enzyme abundance is needed, which, however, leads
to higher entropy production rate °.

In contrast, if the enzyme concentration is fixed externally, the entropy production
per unit growth 7 is minimized at the zero limit of nutrient concentration. In this
case, the reaction dynamics Eq.(2.1) are reduced to

y

o =cllr—y) — oy - oy’ (2.5)

where c is a constant representing the concentration of the enzyme. In this case,
the stationary solution is given by y = [ —(1 + ¢/¢) + /(1 + (c¢)?) + 4clr/¢ |,
and accordingly n~! = (1+4y) In(Ir/y). There is no optimal nutrient concentration

in this expression because 83’—;1 is always positive for any 7,1 > 0. This is consistent
with the explanation mentioned above for Eq.(2.4). If the enzyme abundance is
fixed to be independent of the nutrient uptake, the speed of approaching equilib-
rium is not altered by the nutrient condition; therefore, the entropy production

just increases monotonically because of the cell volume growth.

2.2.2 Additional entropy production by material flow

Thus far, we considered only entropy production by chemical reactions. In addi-
tion, the material flow also contributes to entropy production, which is taken into
account here.

To discuss the flow of nutrients, the dynamics of the nutrient concentration cannot
be neglected. By including the temporal evolution of the nutrient concentration,

SFor membrane production in Eq.(2.1), (¢ + \)y balances with the synthesis of the membrane
precursor, but the tendency does not change. The increase of entropy production rate with A
mentioned above does not mean that the factor A would totally be canceled with the factor o
in Eq.(2.2). The intra-cellular state concentrations of chemicals depend on A, so that o/X has
further dependence on .
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the dynamics of the cellular state are given by

d
d—: = —rgx(kr —x) — kyx(lr —y)
— A+ D(Texy — T),

d

d—f = kKgx(kr —x) —x), (2.6)

dy

gl ky(lr —y) — ¢y — yA.
where x,y and r are the enzyme, membrane precursor, and nutrient concentra-
tion, respectively, and \ = %% = v¢y. The rate constants k£ and [ are determined

by the standard chemical potential of each chemical. Additionally, the nutrient
is taken up with rate D from the extracellular environment with a concentration
Text-

Entropy production by chemical flow is derived from nutrient uptake and mem-
brane consumption, which (again by assuming linear nonequilibrium thermody-
namics) are given by J, - V(—p,/T) and .J, - V(—pu,/T), respectively, where J; is
the material flow of component ¢ and p is the chemical potential. Integration of
the terms with the spatial gradient over a space results in D(ree — 7)™t~ /T" and
oy /T ©.We neglect the entropy production of the solvent with the assumption that
intra- and extracellular solvent concentrations are identical . The contribution of
dilution of the nutrient resulting from cellular growth is approximated as o4, ~ A
by using the formula of entropy change resulting from the isothermal expansion of
an ideal solution ®; for other species, we use the same formula.

We choose that k,, Ky, D,y and ¢ are equal to unity and that [ = &, for the sake
of simplicity. Indeed, the characteristic behavior of 7 is independent of this choice.
Then, the fixed-point solutions of Eq.(2.6) are obtained against two parameters k
and re. From the solution, the entropy production per unit growth is computed,
as shown in FIG.2.4(a). We note that here again the minimal 7 is achieved for
a finite nutrient uptake, i.e., under nonequilibrium chemical flow. In FIG.2.4(b),

6The entropy production rate of material flow under a one-dimensional gradient of
chemical concentration w;(x) (of the spcies ¢ at the position z) is estimated as follows;

b b i(b)—u, T i (wi(b)—u, 2 :
[ Ji(@) L (—pi(2)/T)dx =~ [, Di(u;i(b) —ui(a)) (7%@1)121(%))% =D lu (bzﬁ(z)(a)) , by assuming

that b — a is small. To neglect possible correction by the spatial inhomogeneity on the entropy
production by reaction, it might be necessary to assume that the spatial gradient is restricted at
round the membrane, and not extends through the cells, while this correction would be smaller.

"The extracellular membrane concentration is assumed to be zero in our model; Eq.(2.1), we
adopted entropy production rate of membrane consumption as a diffusion process.

8Entropy production during isothermal expansion of an ideal solution from the initial volume
V; to a terminal volume V; is AS = In(V;/V;) per unit mole. Because X is the volume expansion
rate in this context and V; = V; + AAt, the change in entropy density is written as As, =
In(1 + AAt) per unit mole. The approximated formula is obtained by expanding In(1 + \At)
into the Taylor series and taking the limit of At to zero. Of course, i’"’t’” , entropy change per
unit time of the system, is generally different from the entropy production rates because there is
increase in the entropy due to the heat flow from the environment, so that the entropy production
by the expansion can be smaller. At any rate, the above As, is smaller than the other entropy
production terms, and the estimate here is not essential to our result.

20



we plotted 7Mgow, the entropy production excluding that derived from the chemi-
cal reaction. It increases monotonically with the external nutrient concentration.
Entropy production is primarily derived from chemical reactions; therefore, the
conclusion of subsection A is unchanged.

Note that the so-called thermodynamic efficiency is defined as 7y, = — 33
J. and J, are the rates of catabolism and anabolism, and AG,. and AG, are the
affinities of catabolism and anabolism [13, 19]. Here, the optimality with regard to
entropy production 7 also leads to the optimal thermodynamic efficiency, which,
in the present case, is computed by 7, = ﬁ—ﬁ‘ where J, = D(rey — 1) and J, = ¢y
are the absolute values of the uptake (and consumption) flow of chemical species r
(and y), and p; is the chemical potential of the ith chemical species. It is computed
by using the chemical potential of nutrient p, = p°, + T'In(r/r) with u°, as the
standard chemical potential for the nutrient and ry as its standard concentration
(The chemical potential for  and y are computed in the same way). This thermo-
dynamic efficiency also takes a local maximum value at a non-zero nutrient uptake
rate (see FIG.2.5).
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Figure 2.4: The entropy production plotted as a function of the external nutrient
concentration 7.;; and the rate constant k(= [), calculated from the fixed-point
solution of Eq.(2.6); (a) the logarithm of total entropy production per unit cell
growth, n; and (b) the logarithm of the entropy production per unit growth by
material flow (o,,7/A) and dilution (o4/A) only. The parameters are chosen to be
ky = 1.0, K, =10, D=1.0, ¢ =10, v=1.0, and [ = k.
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Figure 2.5: The thermodynamic efficiency for the model Eq.(2.6) plotted as a
function of the external nutrient concentration r.,; and the rate constant k(= [).
The parameters were set as j, = 0.0, D = 1.0, ¢ = 1.0, v = 1.0 and k, = r, = 1.0.
The standard concentrations were chosen to be 107%.

2.3 Extension to a multi-component model

It is worthwhile to check the generality of our result for a system with a large
number of chemical species as in the present cell. For this purpose, we introduce
a model given by

dr N N-1
d_tl = Z (C(l,j, k)kljxj — C(], 1, k)kjlxl)xk
j=1 k=2
+ (X1 —21) — 11,
d. N N-1
j=1 k=2
— z\, (1<i<N-1), (2.7)
dr N N-1
d_év = Y > (C(N.j;k)knja; — C(, Ns k)kjnay )y
j=1 k=2
TN — CL’N)\,
A = IN-.

where the variables z1, zx, and z; (1 < i < N) denote the concentrations of the
nutrient, membrane precursor, and enzymes, respectively, and X; is the external
concentration of the nutrient. Each element of the reaction tensor C'(4, j; k) is unity
if the reaction of j to i catalyzed by k exists; otherwise, it is set to zero. Here, the
nutrient and the membrane precursor cannot catalyze any reaction, whereas the
other components i = 2,..N — 1 form a catalytic reaction network [28, 39, 40, 41].
All chemical reactions are reversible in our model; therefore C(i, j; k) is equal to
unity if and only if C'(j,4; k) equals unity. For the sake of simplicity, we assume
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that catalytic capacity, nutrient uptake rate, membrane precursor consumption
rate, and the conversion rate from membrane molecule to cell volume are unity.
The standard chemical potential p; for each chemical species is assigned by uniform
random numbers within [0, 1], whereas k;; is given by min{1, exp(—8(u; — p;))}
accordingly [40].

Numerical simulations reveal that there again exists an optimal point of 1 for each
randomly generated reaction network of N = 100. The dependence of 1 on the
nutrient concentration is plotted in FIG.2.6(a), overlaid for different networks. Al-
though the nutrient concentration to give the optimal value is network-dependent,
it always exists at a finite nutrient concentration; therefore, the entropy produc-
tion is minimized at a non-zero nutrient concentration. To determine a possible
relationship with the optimality of n and equilibrium in the presence of a cata-
lyst We also computed the Kullback-Leibler (KL) divergence of the steady state
distribution from the equilibrium Boltzmann distribution [25] as a function of the
external nutrient concentration, expressed as

Dkr(plla) = sz ln— (2.8)

where p; and g; are p; = e /(3 e7) and ¢; = 2*;/(3; 2*;), respectively (z*;
is the concentration of the i th chemical species in the steady state.) The KL di-
vergence for each network shows non-monotonic behavior, as shown in FIG.2.6(b).
Although the optimal nutrient concentration does not agree with the optimum for
71, each KL divergence decreases in the region where 7 is reduced. In this sense, it
is suggested that the reduction of 1 in our model Eq.(2.7) is related to the equi-
libration process of abundant enzymes synthesized as a result of a relatively high
rate of nutrient uptake as discussed for Eq.(2.1) and Eq.(2.6).

2.4 Summary and Discussion

To discuss the thermodynamic nature of a reproducing cell, we have studied simple
protocell models in which nutrients are diffused from the extracellular environment
and necessary enzymes for the intracellular reactions are synthesized to facilitate
chemical reactions, including the synthesis of membrane components, which leads
to the growth of cell volume. In the models, cell growth is achieved through nu-
trient consumption by the reactions described above. We computed 7, which is
the entropy production per unit cell volume growth and found that the value was
minimized at a certain nutrient uptake rate. This optimization stems from the
constraint that cells have to synthesize enzymes to facilitate chemical reactions,
i.e., the autopoietic nature of cells. In general, the concentrations of nutrients and
membrane components in extracellular environments are different from those in
equilibrium achieved in the presence of enzymes, and the intracellular state moves
towards equilibrium by synthesizing enzymes to increase the speed of chemical
reactions. The equilibration reduces the entropy per unit chemical reaction. How-
ever, faster cell volume growth leads to a higher dilution of chemicals; therefore,
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Figure 2.6: The entropy production and deviation from equilibrium calculated
from the steady-state solution of the multi-component model Eq.(2.7), plotted as
a function of the external nutrient concentration. The results of 10 randomly
generated networks are overlaid. (a)n ; entropy production rate per growth rate,
and (b)Kullback-Leibler divergence of the steady-state distribution from the Boltz-
mann distribution defined in Eq.(2.8). The number of chemical species is set as
100, whereas the parameter ¢ is chosen to be unity, and the ratio of the average
number of reactions to the number of chemical species is set to 3.
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faster chemical reactions are required to maintain the steady-state concentration
of chemicals. Because entropy production rate by the reaction increases (roughly
linearly) with the frequency of net chemical reactions, n then increases for a higher
growth range. Thus, the existence of an optimal nutrient content is explained by
the requirement for reproduction mentioned in the introduction, i.e., equilibration
of non-equilibrium environmental conditions facilitated by the enzyme, autocat-
alytic processes to synthesize the enzyme, and cell-volume increase resulting from
membrane synthesis.

In the present model, all chemical components thus synthesized are not decom-
posed; they are only diluted. However, each component generally has a specific
decomposition time or deactivation time as a catalyst. We can include these de-
composition rates, which can also be regarded as diffusion to the extracellular
environment with a null concentration. Then, the equilibration effect is clearer,
although the results regarding optimal nutrient uptake are unchanged.

Note that in the present cell model, there is only a single stationary state, given
the external condition. In a complex reaction system as in the present cell, there
can be multiple stationary states, with different growth rates and the selection
process among them is also important [42, 43]. Comparison of thermodynamic
efficiency among different states will be also important .

In the present study, we focused on the case with a single entropy production that
corresponds to dissipated energy per unit growth. In microbial biology, however,
material loss is discussed as biological yield, as mentioned in the introduction, and
it is thus reported that the optimal yield is achieved at a certain finite nutrient
flow. Material loss is not directly included in the present model; therefore, we can-
not discuss the yield derived directly from entropy production. However, it may be
possible to assume that energy dissipation is correlated with material dissipation.
For example, the stoichiometry of metabolism is suggested to depend on dissi-
pated energy [46]. Here, metabolism consists of two distinct parts: catabolism
and anabolism. For catabolism, the energy is transported through energy cur-
rency molecules such as ATP, NADPH, and GTP, which are synthesized from the
nutrient molecule. In this process, molecular decomposition also occurs, leading
to the loss of nutrient molecules. In addition, the abundance of energy-currency
molecules and the utilized energy are correlated. Hence, for both catabolism and
anabolism, the energy dissipation and material loss are expected to be correlated.
Indeed, a linear relationship between the yield and the inverse of thermodynamic
loss (i.e., quantity similar to 1/n here) is suggested from microbial experiments
[46, 47].

Considering the correlation between energy and matter, the minimal entropy pro-
duction at a finite nutrient flow that we have shown here may provide an explana-
tion for the finding of optimal yield at a finite nutrient flow. Future studies should
examine the relationship between minimal entropy production and optimal yield
in the future by choosing an appropriate model that includes ATP synthesis and
waste products in a cell. Currently, although our models are too simple to capture

9There is no reason that a state with smaller entropy production is selected, and in contrast,
there are proposals that a maximal one are selected [44, 45].
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such complex biochemistry in a cell, they should initiate discussion regarding the
thermodynamics of cellular growth.
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Chapter 3

Enzyme oscillation can enhance
the thermodynamic efficiency of
cellular metabolism: consequence
of anti-phase coupling between
reaction flux and affinity

3.1 Introduction

Cells uptake external nutrients from energy sources and transform them into all
of the components required for growth, maintenance, and survival, such as the cell
membrane and catalysts. The efficiency of these reaction processes, collectively
referred to as "metabolism”, is an important factor for the fitness of a cell. Given
that intracellular reactions are catalysed by enzymes, the efficiency of such reac-
tions also depends on the enzyme concentrations and their dynamics. Therefore,
as cells regulate enzyme concentrations through protein expression dynamics, the
potential relationship between metabolic efficiency and enzyme dynamics is an
important issue warranting investigation [48, 49].

Although enzymes cannot alter the equilibrium condition itself [50], they do
change the speed of chemical reactions drastically. Indeed, enzymes generally fa-
cilitate chemical reactions in the order of 107 to 10'® [26], and many reactions
within a cell could be almost completely halted by reducing the amount of the
corresponding enzyme. In general, the relaxation process to equilibrium is con-
trolled by the enzyme abundances, and thus so is the time scale for the metabolic
reactions.

Furthermore, the abundance of each enzyme can change autonomously over
time within a cell. Hence, together with the external flow that maintains the sys-
tem out of equilibrium, the internal time scales are changed autonomously. In this
sense, a cell is regarded as a machine with autonomous changes in time scale that
functions in transforming nutrients into useful products via energy transduction
[49, 51, 52, 53, 54, 55]. Although there are extensive studies on thermodynamic
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nature for a non-autonomous system that operates at a non-equilibrium condition
with a finite velocity [31, 32, 33, 56], to date, the characteristic nature of such
autonomous machinery has not been studied in the context of non-equilibrium
chemical thermodynamics. Hence, investigations of the thermodynamic nature of
dynamic metabolic processes are not only important to resolve basic questions in
cellular biophysics but can also provide insight for non-equilibrium physics.

Metabolic processes can be generally classified into anabolism and catabolism.
The former is a synthesis process of biomolecules from nutrients, which typically
involves consumption of energy by transforming ATP to ADP, whereas the latter
involves decomposition of nutrients into smaller molecules, and consequently re-
leases energy with a change from ADP to ATP. Through this metabolism, chemical
resources are transformed into products along with the energy transduction be-
tween ATP and ADP. The thermodynamic efficiency of such energy transduction
processes has been extensively studied [13, 17, 19, 21, 24, 57, 58, 59, 60]. However,
so far, these studies have primarily focused on the behaviours in the steady state,
without consideration of the time-dependent dynamics in the reaction flux and
concentrations of enzymes and substrates.

In contrast, there are a variety of time-dependent (non-steady) processes in
cellular metabolism, such as those observed in the cell cycle [61, 62], cyclic AMP
signaling [63], circadian rhythms [64, 65] glycolytic oscillation [66, 67, 68, 69, 70,
71, 72, 73], and yeast metabolic cycle (YMC) [74, 75, 76, 77, 78]. The enzyme
concentrations change in time during these dynamic processes, which then alters
the time scale of the reaction processes, as mentioned above. Thus, it is important
to study the characteristics of such ”dynamic” processes of cellular metabolism,
and uncover the potential influence of the cyclic process on the thermodynamic
efficiency of the metabolic processes.

Toward this end, we here introduce a simple model of coupled anabolic and
catabolic reactions, each of which is catalysed by a corresponding enzyme and uses
typical energy currency molecules (ATP and ADP). In particular, we demonstrate
that temporal changes in enzyme concentrations are required to achieve higher
thermodynamic efficiency under the condition in which available enzymes are lim-
ited.

In Section 2, the Nutrient, Waste, Substrate, Product (NWSP) model is de-
scribed and implemented by applying periodic oscillations of the abundances of
enzymes for anabolism and catabolism. This model showed improved thermo-
dynamic efficiency compared to the steady-state condition. This result was then
extended to the case with autonomous oscillations resulting from internal catalytic
reaction dynamics, which confirmed the relevance of oscillation in enzyme abun-
dances for thermodynamic efficiency. The observed increase in the efficiency due to
the oscillation in enzyme abundances is in strong contrast with the general condi-
tion of a decrease in thermodynamic efficiency due to oscillatory inputs. In Section
3, we discuss the biological relevance of these results for the dynamic control of
enzyme abundances.
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3.2 NWSP Model

Here, we introduce a simple model for a metabolic process consisting of anabolism
and catabolism, by extending the model introduced by Westerhoff et al.[13, 17]. In
the Westerhoff model, anabolism (process for the synthesis of biomolecules) and
catabolism (process for the digestion of nutrients) are analysed using linear non-
equilibrium thermodynamics, in which the deviation from chemical equilibrium is
assumed to be small, and the steady chemical reaction flow and thermodynamic
force (affinity) are proportional [79]. To incorporate oscillatory dynamics, we ex-
tended this model so that the chemical concentrations change according to the
rate equation of the chemical reactions. Specifically, our model consists of four
chemical species, i.e., Nutrient, Waste, Substrate, and Product, in addition to
the energy currency molecules ATP and ADP, and involves two catalytic enzymes
for anabolism and catabolism, E, and E., respectively. The catabolic reaction
decomposes nutrients to waste with the aid of the catalyst E., simultaneously
transforming ADP into ATP, whereas the anabolism reaction synthesizes a prod-
uct from a substrate with the aid of E,, by consuming energy with the change
from ATP to ADP. As a consequence of the coupled reactions of catabolism and
anabolism, the product is synthesised from a substrate by consuming a nutrient.
If the enzyme concentrations are constant, there is a steady flow generated from
nutrient and substrate to waste and product, depending on the concentrations of
the chemical spoecies, as in the Westerhoff model. Here, we introduce a periodic
change in the concentration of each enzyme, and study the effect of this tem-
poral change in enzyme concentrations on the thermodynamic efficiency of this
metabolism. Thus, to reflect all of these reaction dynamics, our model is given by

d[Nutrient] _ .
— = —J.+ ([Nutrlent]ext - [Nutr1ent]>
d[Waste]
— = Jeo+ ([Waste]ext - [Waste})
d[Prod]
o = —J,+ ([Prod]ext - [Prod])
d[Subs]
o = J,+ ([Subs]ext - [Subs])
d[AdfP] = Ja+Jc (3.1)
d[ADP]  Ja— Je
dt

J. = [B]®) ([Nutrient] . [ADP] — [Waste] - [ATP])

J. = [EJ®) ([Product] .[ADP] — [Substrate] - [ATP]),
where [] represents the intracellular concentration of chemical species, and [-]exs
represents the external concentration. If E. and E, were constant, and the external

concentrations of chemicals were close to be equilibrium values, the model system
(3.1) would be reduced to that introduced by Westerhoff. Note that the total
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concentration of ATP and ADP is conserved according to (3.1). However, the
enzyme concentration changes with time as

[E] = c(l+aAf(t))

o {+1 (i = )
' -1 (i=a),

where f(t) is a given periodic function with period 7" that satisfies,
o max[f(¢)] = 1, min[f(¢)] = -1
° fo t)dt = 0.

With the first condition, A gives the amplitude of the oscillations in the enzyme
concentration (relative to the steady-state value). The second condition is im-
posed so that the average concentration is not altered by the periodic change,
which facilitates comparison between the steady and oscillatory cases. The av-
erage concentration of enzymes is given by the parameter s, which controls the
time scale of the chemical reactions. The sign parameter o; is introduced to rep-
resent the difference in the phase of enzyme oscillations between catabolism and
anabolism. Here, we mainly consider the case in which catabolism and anabolism
proceed in an anti-phase manner, and the case with an in-phase will be briefly
discussed later.

Nutrient Product

R

Waste Substrate

Figure 3.1: Schematic representation of the NWSP model. Nutrient, Waste, Prod-
uct, and Substrate molecules diffuse in and out of the cell through the external
environment. Enzyme concentrations [E.| and [E,] are periodically changed exter-
nally in order to study the influence of oscillations on the thermodynamic efficiency.

3.2.1 Remarks on oscillatory input

Before presenting the results for the enzyme oscillation, we provide brief remarks
on the general consequence of oscillations in substrate concentration.

In general, cellular metabolism can be described as a transduction system of

chemical energy. Therefore, it can be expected that oscillatory reaction dynamics
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would increase the dissipation in energy transduction compared with the steady-
state case. For example, let us consider the simplest reversible chemical reaction
X =Y, with X as the substrate and Y as the product. Then, it can be clearly
proven with linear non-equilibrium dynamics that dissipation in the chemical reac-
tion represents a minimum for the steady state (for details, see the Supplement).
In general, such oscillations do not change the time scale for the equilibration, and
never improve the thermodynamic efficiency.

In contrast, the enzymes themselves can change the time scale for the reac-
tion, which facilitates the equilibration process. Hence, with appropriate oscilla-
tory dynamics in enzyme concentrations, higher thermodynamic efficiency may be
achieved, which we will explore in this section.

3.2.2 Characteristic dynamics

Figure 3.2 shows an example of the time series of the concentrations of nutrients,
substrates, waste, product, ATP, and ADP, where the periodic function f(t) is
chosen as successive switches by a step function with period 1. Specifically, for
t € [0.0,0.5), [E.] = k and [E,] = 0.0, and for ¢t € [0.5,1.0), [E.] = 0.0 and
[E,] = K, where [E.] and [E,| change periodically. In the example given in Figure
2, the enzyme is switched four times at ¢ = 0.0,0.5,1.0, and 1.5. Changes in
the concentrations of ATP and ADP reflect this enzyme switching, whereas the
concentrations of the nutrient and waste are not changed substantially at ¢t ~ 0.5
(and ¢t ~ 1.5). This is why the chemical reaction Nutrient + ADP = Waste +
ATP is almost relaxed to equilibrium at that time point, and the affinity of the
reaction, i.e. the flux, is approximately zero. On the other hand, the product and
substrate do not change at t ~ 0.0 (and t ~ 1.0) for the same reason.

Here, we introduce the average thermodynamic efficiency of metabolism to

10.8 50.6 10 9.2

(b) ()

@
<
=
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[Product]
[Substrate]
[ATP]

o
S
>

99.2 10 50
0

0 05 1 15 2 2 0 0.5 1 1.5

time

Figure 3.2: An example of the time series of chemical concentrations in the NWSP
model (3.1) plotted over two periods. The periodic function f(¢) is chosen to
be a step function with period 1. We set [Nutrient|e, = 100.0, [Waste|exy =
10.0, [Product]exy = 50.0, [Substrate|eyy = 10.0,[ATP, ADPJiotr = 10.0, and
k= 0.1.

study the relevance of oscillatory metabolism for energy transduction. This model
of thermodynamic efficiency was originally introduced by Westerhoff et al. [13, 17]
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as a ratio of the output of Gibbs free energy to the input of Gibbs free energy,
given by n = —J,A,/J.A., where J; and A; are the chemical reaction flux and
affinity (difference in the Gibbs free energy between the substrate and product
of the reaction), respectively [80]. However, this model of the thermodynamic
efficiency of metabolism was originally considered in the steady state without a
temporal change in chemical concentrations. Therefore, to deal with the case of
a time-dependent chemical reaction system, we here extend the definition of the
thermodynamic efficiency as follows:

[T J(t) - Aa(t)dt

n )‘7 K) = — 0
( ) foT Jc(t) ’ Ac(t)dt
Ac - Gnutrient - Clwaste (32)

Aa = Gproduct - Gsubst7

where G; is the chemical potential (sum of the standard chemical potential and
activity due to a difference in concentration from the standard) of chemical species
1, k is the rate constant of the chemical reaction, and A is the amplitude of enzyme
oscillations relative to the steady state. By setting A = 0 (without oscillation), this
definition (3.2) is of the same form used for the steady-state metabolism model
[13]; thus, it is a natural extension to incorporate the oscillatory case.

Rigorously speaking, this definition of thermodynamic efficiency is justified
only near equilibrium. Nevertheless, it is expected that n provides at least an
approximately good measure for the efficiency of chemical energy transduction in
consideration of oscillatory reaction dynamics.

3.2.3 Influence of oscillation on the thermodynamic effi-
ciency

In this subsection, we demonstrate the dependence of  on the amplitude A of the
oscillation of enzyme concentrations and their average x values. The efficiency is
plotted as a function of the amplitude A and rate constant x in Figure 3.3. Here, the
steady state is given by A = 0, while A = 1 corresponds to the switch between two
separated states, in which one of the enzymes (F, or E.) vanishes so that the corre-
sponding reaction is halted. From the numerical results in Figure 3.3, we find that
the incorporation of oscillatory metabolism improves the average efficiency when
x is small. However, note that the average flux, < J > (\, k) = —=T! fOT Ja(t)dt,
is not improved (see Figure.3.12).

In Figure 3.4, the efficiency is compared between the steady (A = 0) and full
oscillatory (A = 1) cases. This comparison further confirmed that the efficiency
n(A, k) is improved with oscillations in the small k region. Note that n(\, k) is not
a monotonic function of A for a certain range of x values. The crossover point of
the amplitude at which the efficiency for the oscillation case exceeds that for the
steady case depends on x, whereas the oscillation case is always advantageous as
long as « is small. This advantage of dynamic (chemical) energy transduction for
thermodynamic efficiency is in strong contrast with the energy conversion observed
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Figure 3.3: Heat map of the average thermodynamic efficiency with oscillations
in enzyme concentrations relative to that in the steady state. The horizontal
and vertical axes are k and 1.0 — A, respectively. The colour bar represents
n(A, k)/n(A = 0,k). The thermodynamic efficiency n is improved for the small
k region. The step periodic function, with period 7' = 200.0, was adopted
to model the change in enzyme concentration. Parameters were set as follows:
[Nutrient]exy = 10.0, [Waste|exy = 0.1, [Prod]exy = 1.0, [Subs|exs = 0.05,and
[ATP] 4 [ADP] = 100.0.

in the dynamic input change, in which the efficiency is always decreased by the
oscillation, as discussed above.

In the following, we will focus on how this observed improvement in efficiency is
actually achieved. Firstly, loss in efficiency is caused by the dissipation of Gibbs
free energy in each chemical reaction. Then, the amount of dissipation is reduced
when each reaction progresses close to its equilibrium. If , the time scale for
the catalytic reaction, is sufficiently larger than that of material flux (which is
set to unity), the system is near equilibrium and the loss is small; indeed, this
loss is smallest at the steady state. However, when x is small, the ”chemical
coupling“ between the two reactions (anabolism and catabolism) hinders the ap-
proach to equilibrium. In the present case, the two reactions are coupled with the
energy currency ATP and ADP. Equilibration of catabolism results in an excess
of ATP compared to ADP, which results in a far-from-equilibrium condition for
the anabolism reaction (Of course, whether equilibration of one elemental reac-
tion dis-equilibrates the other will depend on how the two reactions are coupled
energetically; in particular, this will depend on the values of standard chemical
potentials. However, as long as [ J.dt > 0, [ J,dt < 0 and Gsubstrate < GProduct
synthesis of the product (P) relies on the free energy of ATP synthesised from the
nutrient, and this coupling form is generally true for coupling between catabolic
and anabolic reactions. Thus, increasing the reaction time scale of catabolism
produces more ATP, which then dis-equilibrates the anabolic reaction.).

Thus, the elemental reaction processes dis-equilibrate each other in the present
coupled reaction system. In the steady state, these two reactions progress in a
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moderately dis-equilibrated condition when x is small. In contrast, the oscilla-
tory reaction can separate the process into two time regimes. The first regime is
the situation for F., in which the catabolism reaction progresses near equilibrium
and the anabolism reaction occurs far from equilibrium and is almost halted as
E, ~ 0. On the other hand, in the time regime with £, > 0 and E. ~ 0, an-
abolism progresses near equilibrium, and catabolism is almost halted. Thus, most
of the reaction events for the two temporal regimes occur near their equilibria,
and thus the dissipation is suppressed in these two regimes. On the other hand,
during the switch time between E. > FE, and E, > E., the dissipation would be
increased. Thus, the total efficiency depends on the difference between the gain in
the suppression from one of the reactions and the loss caused by the oscillation.
This characteristic is not observed when the enzymes oscillate in an in-phase man-
ner. In the in-phase oscillation, the enzymes facilitate the catabolic and anabolic
reactions equally, and each reaction hinders the approach to the other reaction’s
equilibrium, as observed in the steady state.

To quantify the gain and loss of this oscillatory chemical reaction system, we
calculated the energy gain Gy, and loss Gogs using the following equation:

G = > [ TS — AT () I () (A — AR(0)de

i=c,a

Gow = Y [ 00400 - AT - e 63

)1 (z>0)
bla) = {o (x < 0),

where Ag is the affinity (Gibbs free energy difference) of the reaction, and Jij is
the corresponding flux, where ¢ = ¢ for catabolism and ¢ = a for anabolism; and
j = st for A = 0 (the steady case) and j = os for A = 1 (full oscillatory case).
Thus, Ggain (Gioss) represents the amount of reduced (excess) Gibbs free energy
compared with that of the steady-state value. The value of x at which the gain
exceeds the loss is approximately equal to the value where n(A = 1, k) is larger
than (A = 0, k), as shown in Figure 3.4. In summary, by progressing the chem-
ical reaction closer to the equilibrium and suppressing the reaction further from
equilibrium, the efficiency is increased compared to that of the steady case.

This improvement in efficiency can also be interpreted from a different per-
spective. Figure 3.6 shows the time series of the flux and affinity of the catabolic
reaction. When the flux is not close to zero, the affinity is close to zero, and thus
the reaction progress near equilibrium. By contrast, when the affinity is not close
to zero, the flux is close to zero, except at the time point of enzyme switching,
and this far-from-equilibrium reaction occurs only at a very low rate. Thus, ther-
modynamic loss is suppressed throughout the process. In Figure 3.6, we illustrate
this negative correlation between flux and affinity for catabolism, which was also
confirmed for anabolism.

It is important to note that this characteristic cannot be realized under the
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condition of linear thermodynamics without a change in the enzyme concentra-
tions, in which thermodynamic flux increases with the affinity. Thus, the flux can
be controlled only by changing the affinity of the chemical reaction, and the two
are always positively correlated. In contrast, in the present case, by changing the
concentration of the catalytic enzyme, the time scale of the chemical reaction is
changed. Accordingly, the flux can be increased even for a low-affinity state, and
can be suppressed for a high-affinity state.
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Figure 3.4: The average thermodynamic efficiency n(\, k) for the steady (A = 0)
and oscillatory (A = 1) cases plotted against the rate constant of the chemical
reaction k. The average thermodynamic efficiency for the oscillatory case is higher
for the small s region. The choice of function and parameters is identical with
that described in Figure3.3.

3.3 Extension to an autonomous chemical reac-
tion model

So far we have demonstrated that the thermodynamic efficiency of metabolism
(coupling between anabolism and catabolism) can be improved by incorporation
of an oscillatory chemical reaction. However, the model introduced in the last
section cannot generate the chemical oscillation autonomously; thus, this model
does not account for the possible energetic cost from generating the chemical os-
cillation. Since the chemical oscillation is generated as a dissipative structure
at the far-from-equilibrium condition, generating the oscillation itself requires a
certain amount of excess dissipation [81]. Therefore, it is important to investi-
gate whether or not a chemical reaction system capable of generating autonomous
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Figure 3.5: The thermodynamic loss and gain with oscillatory metabolism cal-
culated using (3.3). At the value of x for which the loss and gain are balanced,
n(A = 0,k) ~ n(A = 1,k) holds as in Figure 3.4. The choice of the periodic
function and parameter values is identical with that of Figure 3.3.
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Figure 3.6: Time series of the flux (red) and affinity (green) under enzyme switch-
ing plotted over two time periods. A step periodic function with period T'= 1 was
adopted for f(¢).The flux and affinity ocillate with an anti-phase.
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oscillation can improve thermodynamic efficiency. To address this question, we
developed a three-catalyst model in which chemical oscillation appears under a
given flow from resource chemicals to product.

Our model consists of nine chemical species, x,y;, z;, (i = 1,2,3), substrate,
and product. Chemical reactions were constructed by coupling between catabolic
(energy-generating) and anabolic (energy-consuming) reactions, as shown in the
schematic in Figure 3.7. There are two types of catalytic reactions, x+substrate =
yi+product and y; 4 substrate = z;+product, and each reaction is catalysed by v;.
The system takes up x and the substrate from the external environment, and x is
converted into z via the above two reactions, resulting in the simultaneous synthe-
sis of two products. The produced z molecules and products are transported into
the environment. In the model, the reaction to covert x into z via y is assumed to
be a catabolic reaction, and the chemical reaction between the substrate and the
product is regarded as anabolism. Therefore, the reaction substrate — product is
driven by the coupled chemical reactions © — y; and y; — z;.

In developing this model, we referred to the example of a repressilator [82], in
which the expression of three proteins is mutually inhibited to generate the oscilla-
tion. However, given the present focus of a reaction system involving a catalytic re-
action, there is no direct inhibition. Instead, each of the three components y; mutu-
ally catalyse the decomposition of ;1 into z;11 (y;11+substrate = z;1+product).
Hence, the y;s suppress the abundances of each other, which introduces effective
mutual inhibition, as in a repressilator.

Here, for the sake of simplicity, we assume that the consumed substrate or syn-
thesised product is quickly supplied by or transported to the external environment,
respectively; thus, their internal concentrations are kept constant. Therefore, there
are only 7 variables for [z], [y;], and [z;]. In addition, by scaling the rate constants
according to the concentration of the substrate, the coupling with the anabolic
reaction is given by a single parameter p. Finally, by assuming the symmetrical
case in which the parameters for each species ¢ are homogeneous over the index 7,
our chemical reaction system is given by

dz] ¢
el ;:1 Jii + D([X] — [#])
U]
dt K 2,1
d[Zz] .
Tl Joi + d([Z] — [zi]) (3.4)

Jii = rfyl([x] = Lplyi])
Joi = KalYo))([Ui] — lapl2i)),

where [-] represents the concentration of the corresponding chemical species, k; and
ko are the rate constants of each chemical reaction x + substrate = y; + product
and y; + substrate + z; + product, respectively, D and ¢ are the rate of material
exchange of x and z with the external environment, respectively, and [, [, and p
are the Boltzmann factors of each chemical reaction (i.e. l; = exp(—f(pz — ty)),

l2 = €XpP ( _5 (,uy —Hz ) ) ) and P = [pI‘OdU_Ct] [substrate] -1 exXp ( _6 (//Jsubstrate — Hproduct )) )
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where p; is the standard chemical potential of chemical species 7). [X] and [Z] rep-
resent the environmental concentrations of chemical species x and z, respectively,
where o denotes the cyclic permutation on i (0(1) = 3,0(2) = 1,0(3) = 2).

We numerically computed the dynamics and attractor of the model by varying
the parameter values, and found that the system exhibits Hopf bifurcation from
a fixed point to limit-cycle oscillation with the increase in the parameter k5. An
example of the time series of the concentrations is shown in Figure 3.8.

Figure 3.7: Schematic representation of a simple chemical reaction model exhibit-
ing autonomous oscillation. The chemical reaction x = y; is catalysed by y;, and
y; = z; is catalysed by y;_1 species. In each reaction, the product (P) is syn-
thesised from substrates (S) that are externally supplied. An anabolic reaction
substrate = product is coupled to each reaction.
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Figure 3.8: Time series of concentrations of species (a) z, (b) y;s, and (c) z;s. Pa-
rameters were chosen as follows: 1, = 1.0, py, = 2.0, 1. = 0.0, fiproduct — Msubstrate =
0.5,k1 = 0.1, k2 = 20.0, =3.0,D = ¢ = 1.0, [X] = 10.0, and [Z] = 0.0.

3.3.1 Relationship between oscillation and dissipation

We now introduce the average thermodynamic efficiency of the energy trans-
duction, as described in Section 2. In our model (3.4), the reactions to convert
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x into z via y are regarded as catabolic, and the reactions between the substrate
and product are considered to be anabolism. Thus, the average thermodynamic
efficiency can be defined as,

T a
. Zzg fo Ji,j(t)Ai,jdt
T c )
Zi,j fo JiJ(t)Ai,j(t)dt

where A, (A7;) indicates the affinity of the catabolic (anabolic) part of the chem-
ical reaction (i,7), and the time for the average T is chosen to be sufficiently
long. Specifically, the parameters are given by A7, = In(x/(ly - y;))/B8, A3, =
In(y;/(la - 2;))/B, and Af; = —In(p)/B. The definition of the average thermody-
namic efficiency implies the ratio of output to input energy, and 7 satisfies the
inequality 0 < n < 1 with appropriate conditions: J; ;(t) values are always posi-
tive, and p > 1.

Figure 3.9 shows the average flux < J > and 7. Both the average flux and
the thermodynamic efficiency were improved (or maintained at a high level) by
incorporation of the oscillation. The time courses of the flux and affinity for each
reaction are shown in Figure 3.10. The flux and affinity of each chemical reaction
oscillates out of phase, roughly in anti-phase. Since the thermodynamic dissipa-
tion is given by the product between the flux and affinity, it can be reduced by
this anti-phase oscillation between the two, as described in Section 2.

To summarise, we introduced a simple chemical reaction system exhibiting
autonomous sustainable oscillations, and confirmed that the oscillations increased
the average thermodynamic efficiency, which was attributed to the anti-phase os-
cillation between the flux and affinity.

3.4 Summary and Discussion

We here report the first evaluation of the relevance of oscillatory chemical reac-
tions to thermodynamic efficiency by introducing the NWSP model. In the model,
chemical energy is stored by transforming ADP into ATP via a catabolic reaction
that converts an imported nutrient into waste, while an anabolic reaction con-
sumes the stored energy to synthesise a product from a substrate, by transforming
ATP to ADP. Such a coupling structure between anabolism and catabolism forms
the basis of cellular metabolism. Thus, the NWSP model is regarded as a simpli-
fied, coarse-grained model for cellular metabolism. Each reaction is catalysed by
a corresponding enzyme. Moreover, by introducing oscillations in the abundances
of each enzyme, the thermodynamic efficiency of energy conversion was computed
and compared between the steady and oscillatory cases.

Under the condition of enzyme limitation, in which the (average) enzyme abun-
dances are insufficient and the chemical reactions can only progress slowly, we
found that the oscillation in enzyme abundances improved the thermodynamic ef-
ficiency. This improvement stems from the antagonistic nature between anabolism
and catabolism. In general, a catabolic reaction generates the energy currency
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Figure 3.9: (a) The thermodynamic efficiency and (b) average flux of the model,
plotted as a function of kq, for the oscillation (green) and steady (red) cases. The
thermodynamic efficiency is maintained at a higher value by the oscillation for
small x; values. In addition, the oscillation also improved the flux. Hopf bifur-
cation occurs at k1 &~ 0.155, and the oscillatory solution (limit cycle) disappears
for k1 > 0.155. The parameters were chosen to be p, = 1.0,u, = 2.0,u, =
0.0, fiproduct — Msubstrate = 1.5, ke = 250.0,8 = 1.0,D = ¢ = 1.0, [X] = 10.0, and
[Z] = 0.0.

by breaking a large macromolecule into smaller pieces, whereas anabolism con-
sumes energy to drive the synthesis of a macromolecule. Therefore, these two
reaction types tend to dis-equilibrate each other, and thus they will progress far
from equilibrium if they progress concurrently under a limited rate, which will
consequently increase thermodynamic loss (entropy production). In contrast, if
sequential switching between anabolism and catabolism is achieved by oscillations
in enzyme abundances, the two reactions become decoupled, and the loss is sup-
pressed. Indeed, we confirmed the improvement in thermodynamic efficiency by
imposing anti-phased oscillations in the abundances of enzymes for anabolism and
catabolism.

However, the generation of such oscillation can bring about thermodynamic loss
by itself. To account for this effect, we also considered a reaction model that can
generate autonomous chemical oscillations, by amending the energy-transduction
with three enzymes that mutually catalyse their degradation reactions, so that au-
tonomous, repressilator-type, oscillation is possible. The model converts chemical
species x into z via the enzymes, along with synthesis of a product from the sub-
strate. By comparing the thermodynamic efficiency between cases, we confirmed
again that the thermodynamic efficiency is improved by the emergence of chemical
oscillation.

The common mechanism for the improvement in efficiency observed in our two
models is the anti-phase oscillation between the chemical reaction flux and affinity.
The anti-phase oscillation implies low flux for a high-affinity state and high flux
for a low-affinity state. This situation leads to the increase in the thermodynamic
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Figure 3.10: Time series of the flux (red) and affinity (green) in the reaction
x + substrate = y, + product (a), and y; + substrate = z; + product (b). The flux
and affinity of both reactions, x + substrate = vy, + product and y, + substrate =
z1 + product, oscillate out of phase as in the NWSP model. The time series for
index 7 = 1 is shown here, and those for indices ¢ = 2 and ¢ = 3 are the same
(except for the difference in the oscillation phase). The parameter values were
chosen as described in Figure 3.8.
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efficiency, as the thermodynamic loss owing to entropy production is given by the
product between the flux and affinity.

In the present study, we focused only on a system with simplified, coarse-
grained metabolism and elementary chemical reactions. However, improvement
in the thermodynamic efficiency by such anti-phase oscillation between flux and
affinity is expected to be a universal phenomenon for all biochemical processes
involving catalytic reactions. In the case of an ordinary chemical reaction without
catalytic enzymes, chemical reaction flux can only be controlled by the affinity,
and the two are positively correlated (or proportional in the case of linear thermo-
dynamics) [79, 83, 84]. However, for an enzymatic reaction, the flux is controlled
not only by the affinity but also by the abundances of the corresponding enzymes.
The enzymes do not directly alter the equilibrium condition but do facilitate the
tendency toward equilibration. Hence, an increase in enzyme supply reduces dis-
sipation for a single chemical reaction event as studied in the previous chapter.
Therefore, as long as the enzyme abundance is increased with the flux, the affinity
and flux will be negatively correlated if the enzyme controls the chemical reaction.

In general, biochemical reactions in microbial experiments are often facilitated
and halted by simply controlling the amount of enzymes.[7, 83, 84, 85, 86, 87, 88|.
Therefore, the results of the present model suggest that thermodynamic efficiency
in metabolism could be improved by dynamically changing the enzyme concentra-
tions in a microbial system. For example, oscillations in gene expression have been
reported in yeast grown under nutrient limitation, which is generally referred to
as the yeast metabolic cycle (YMC)[74, 75, 76, 77]. Roughly speaking, expression
levels of anabolic and catabolic proteins are temporally separated in the YMC, in
a similar manner to the condition of our NWSP model under an oscillatory switch
of the two enzymes. Here, as the nutrients are limited, the rate of the catalytic
reaction is lowered, which implies a smaller s value (the rate constant of chemi-
cal reactions) in our NWSP model. Hence, improvement of the thermodynamic
efficiency by oscillation for the small x region observed here may provide an ex-
planation for the experimental observations of the benefit of the YMC.

Additionally, the anti-phase oscillation between the flux and affinity also emerges
in a model of the glycolytic oscillation [72]. Since glycolysis is a part of the catabolic
process, we cannot adopt the same definition of the thermodynamic efficiency as
adopted in this chapter. However, thermodynamic efficiency for the energy con-
version, defined similarly, is shown to be improved by the glycolytic oscillation
[73]. The examples of YMC and glycolytic oscillation may imply the ubiquity of
the anti-phase oscillation between the reaction flux and affinity as a mechanism of
improvement of the thermodynamic efficiency by enzymatic oscillation.

In general, intracellular processes include several coupled reactions that may
disequilibrate each other. One potentially effective strategy to achieve higher effi-
ciency may be to temporally separate these reactions by switching the abundances
of the corresponding enzymes for each reaction in time. This issue will be ad-
dressed directly in future extensions of the present model. Furthermore, analyses
of several phases in the cell cycle along these same lines may reveal new patterns
and mechanisms.
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3.5 Supplement

3.5.1 Increase of the thermodynamic dissipation for the
oscillatory input

Here, we provide the calculation for the proof of the thermodynamic dissipation
increase in the oscillatory input.

Let us consider the simplest model, which consists of a chemical reaction r = v,
with x as the substrate and y as the product, and material flow between the internal
and external environment for both chemical species x and y. We assume that the
oscillatory input is given by the sinusoidal oscillation of the external concentration
of z molecules, denoted by X. Then, our model is given by

A ol — o) + (2X)(1 + Asin(®) — [2)
W () — ) + (] - ), (s1)

where & is the rate constant of the chemical reaction x = y (the rate constant of
material flow is set at unity), A is the amplitude of the oscillation, [X] represents
the average external concentration of z, and [Y] is the external concentration of
Y.

The solution of this reaction system (S1) is given by

[z](t) = [z]st + M asin(t) + beos(t))/Z
[I(t) = [ylse + Alesin(t) + dcos(t)) /2,

where [z]y, = WRXHY] o5 [y),, = CRYIEE]

P P are the concentrations of each
chemical species in the steady state, and the coefficients are a = (1+k)(1+2k),b =
—(1+k),c=1+k+26%d=1+k, and Z = [X]/(2 + 4k(1 + K)).

From the solution, the average flux < J >= 1/27 fo% k([x] — [y])dt = k([ X]o —
[Y])/(1+ 2k) does not change from incorporating the oscillation. In contrast, the
average entropy production rate, given by < ¢ >=1/27 fo% k([z]—[y]) In([x]/[y])/Bdt,
with § as the inverse temperature, is changed by the oscillation. By assuming that
the amplitude A is small, o(t) = s([z](¢t)—[y](t)) In([x](¢)/[y](t))/ 5 is expanded into
a Taylor series in A as o(t) = > 0,(t)A". In the series, equation fo% on(t)dt =0
holds for an odd number for n because the model (S1) is symmetric against the
sign inversion of A. This is because the sign inversion of A is equivalent to the
shift of the origin of time, because —sin(t) = sin(¢ + 7) holds. Since the choice of
the origin of time does not alter the average entropy production rate, the function
form of < o > is symmetric against A at A\ = 0; thus, the equation [ o, (t)dt = 0,
(n:odd) holds. Therefore, < o > is expanded as < 0 >= gy + A\? < 09 > +O(A\?),
where < o9 > is given by

| (el + [ylw) ((cmst — afyl)” + (dlals - b[y]sa?)

< 09 >= — ,
Z? 4[£Et [y]gt
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which is always positive regardless of the specific parameters.

We also computed < ¢ > numerically over a wide range of x and A values.
Figure 3.11 shows the dependence of < ¢ > on k and A. It is confirmed that < o >
is increased by the oscillation, independent of the amplitude of A and &, so that
the energy transduction efficiency of the chemical reaction x = y is decreased.

10°

K

Figure 3.11: Heat map of the average entropy production rate relative to the
steady value plotted against s (horizontal axis) and A (vertical axis). The colour
bar represents < o > (A\,k)/ < 0 > (A = 0,k). The average entropy production
rate always increased with the increase in the relative amplitude A. The parameters
were set to be [X]o = 10.0 and [Y] = 1.0.
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Figure 3.12: Heat map of the average flux relative to the steady value, plotted
against x (horizontal axis) and 1 — A (vertical axis). The colour bar represents
< J>(\Nk)/ < J > (A=0,k). The average flux always decreased with the
increase in the relative amplitude A\. The parameters were set to be the same as
those in Figure 3. We also calculated the first- and second-order derivatives of the
average flux value < J > with respect to the relative amplitude of the oscillation in
the concentration of enzymes A at A = 0 in the NWSP model (1). Because of the
symmetry of the sign inversion of A in the model, the first derivative of the average
flux is equal to zero regardless of the parameters used. The second-order derivative
is extremely complicated, and is always negative if the value of the flux is positive
at the steady state. This indicates that the chemical flux is never facilitated by
an oscillation with a small amplitude.
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Chapter 4

Theory for Transitions Between
Exponential and Stationary
Phases: Universal Laws for Lag
Time

4.1 Introduction

Quantitative characterization of a cellular state, in terms of the cellular growth
rate, concentration of external resources, as well as abundances of specific com-
ponents, has long been one of the major topics in cell biology, ever since the
pioneering study by Monod [3]. Such studies have been developed mainly by fo-
cusing on the microbial exponentially growing phase, in which the number of cells
grows exponentially (this phase is often termed the log phase in cell biology, but
considering the focus on exponential growth, we here adopt the term ”exponential
phase” throughout). This work has uncovered somewhat universal growth laws,
including Pirt’s equation for yield and growth [6] and the relationship between the
fraction of ribosomal abundance and growth rate (experimentally demonstrated
by Schaechter et al.[89], and theoretically rationalized by Scott et al. [7]), among
others [37, 90, 91, 92], in which the constraint to maintain steady growth leads to
general relationships|[9, 41].

In spite of the importance of the discovery of these universal laws, cells under
poor conditions exhibit different growth phases in which such relationships are
violated. Indeed, in addition to the death phase, cells undergo a stationary phase
under conditions of resource limitation, in which growth is drastically suppressed.
Once cells enter the stationary phase, a certain time span is generally required to
recover growth after resources are supplied, which is known as the lag time. There
have been extensive studies conducted to characterize the stationary phase, includ-
ing the length of lag time for resurrection and the tolerance time for starvation
or antibiotics [2, 93, 94|, and specific possible mechanisms for phase transitions
have been proposed [95, 96, 97]. Furthermore, recent experiments have uncovered
the quantitative relationships of lag time and its cell-to-cell variances[98, 99]. For
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example, the lag time was shown to depend on the length of time the cells are
starved. This implies that the stationary phase is not actually completely sta-
tionary but that some slow changes still progress during the starvation time, in
which cells “memorize” the starvation time. Hence, a theory to explain such slow
dynamics is needed that can also characterize the phase changes and help to es-
tablish corresponding quantitative laws.

The existence of these phases and lag time are ubiquitous in bacteria (as well
as most microorganisms). Hence, we aimed to develop a general model that is
as simple as possible, without resorting to detailed specific mechanisms, but can
nonetheless capture the changes among the lag, exponential, stationary, and death
phases. We first describe a simple model for a growing cell, which consists of an
autocatalytic process driven by active chemical components such as ribosomes.
However, this type of model with autocatalytic growth from substrates and their
derivatives that is adopted for the exponential phase is not sufficient to represent
all phases, as the autocatalytic process either grows exponentially or decays to-
ward death, and thus does not account for a halting state with suppressed growth
corresponding to the stationary phase. Therefore, to go one step further beyond
the simplest model, we then consider the addition of an extra class of components
that do not contribute to catalytic growth. Still, even the inclusion of this ex-
tra class of components cannot fully account for the transition to the stationary
phase. Therefore, we further considered the interaction between the two classes of
components. Here, we propose a model that includes the formation of a complex
between these two types of components, which inhibits the autocatalytic process
by the active components. We show that the model exhibits the transition to
the stationary phase with growth suppression. By analyzing the dynamics of the
model, we then uncover the quantitative characteristics of each of these phases in
line with experimental observations, including the bacterial growth curve, quan-
titative relationships of lag time with starvation time and the maximal growth
rate, and the exponentially tailed distribution of lag time. The proposed model
also allows us to derive several experimentally testable predictions, including the
dependence of lag time on the speed of the starvation process.

4.1.1 Model

Since molecules that contribute to autocatalytic processes are necessary for the
replication of cells, models for growing cells generally consist at least of substrates
(S) and active components (noted as “component A” hereafter) that catalyze
their own synthesis as well as that of other components. For example, in the mod-
els developed by Scott et al.[7] and Maitra et al.[48], component A corresponds
to ribosomes, whereas several models involving catalytic proteins have also been
proposed[51, 52, 100]. This class of models provides a good description of the ex-
ponential growth of a cell under the condition of sufficient substrates availability;
however, once the degradation rate of component A exceeds its rate of synthe-
sis under a limited substrate supply, the cell’s volume will shrink, leading to cell
death. Hence, a cell population either grows exponentially or dies out, and in
this cellular state it is not possible to maintain the population without growth.
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However, cells often exhibit suppressed growth under substrate-poor conditions,
even at a single-cell level [2, 93, 98], as observed in the stationary phase. Such
cells that neither grow exponentially nor go toward death cannot be modeled with
cell models that only consider autocatalytic processes|7, 48, 51, 52, 100].

Therefore, to model a state with such suppressed growth, it is important to
consider additional chemical species, i.e., macromolecules that do not contribute
to autocatalytic growth, in addition to the substrates (S) and component A (A)
that are commonly adopted in models of cell growth. Component A represents
molecules that catalyze their own growth such as ribosomes, and can include
metabolic enzymes, transporters, and growth-facilitating factors. Component B
represents waste products or can be other molecules that are produced with the
aid of component A but do not facilitate growth. Thus, the next simplest model
is given by

ds
= —Fa(S)A - Fy(S)A+ A(Seu — §) — S

W~ Pu$)A - daA—pa (4.1)
C;_f — Fp(S)A —dpB — B,

Here, S. and S indicate the concentrations of the extracellular and intracellular
substrate, respectively. The concentration of the intracellular substrate determines
the synthesis rate of the active and non-autocatalytic proteins F4 and Fz, respec-
tively. All chemical components are diluted due to the volume growth of a cell.
In addition to dilution, macromolecules (A and B) are spontaneously degraded
with slow rates (d4 and dpg). In this model, the cell takes up substrates from the
external environment from which component A and the non-growth-facilitating
component B are synthesized. These syntheses, Sey = 5,5 — A, and S — B, as
well as the uptake of substrates take place with the aid of catalysis by component
A. Then, by assuming that the synthesized components are used for growth in a
sufficiently rapid period, the growth rate is set to be proportional to the synthesis
rate of component A. Hence, the dilution rate p of each component due to cell
volume growth is set as u = FuA.

Now, if the ratio F4/Fp does not depend on the substrate concentration S,
the fraction A/B also does not depend on S, and the model is reduced to the
original autocatalytic model; thus, the phase change to suppressed growth is not
expected. Then, by introducing the S-dependence of F4/Fp to reduce the rate of
component A with the decrease in the substrate condition, we first tested whether
the transition to a suppressed growth state, as in the stationary phase, occurs
under a substrate-poor condition, by setting Fx/Fp to decrease in proportion to
the change in S (i.e., =5 F4/Fp > 0). However, in this case, it is straightforwardly
confirmed that there is no transition to a suppressed growth state. That is, the
cells always grow exponentially without any slowing-down process, as the decrease
in S simply influences the growth rate u, while the presence of B does not influence
the dynamics of A. (see also Appendix A).

Thus, we need to introduce an interaction between component A and the
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non-growth-facilitating component B. Although complicated interactions that may
involve other components could be considered, the simplest and most basic inter-
action that can also provide a basis for considering more complex processes would
be formation of a complex between A and B given by the reaction A + B = C.
This results in inhibition of the autocatalytic reaction for cell growth, as complex
C does not contribute to the activity for the autocatalytic process. A schematic
representation of the present model is shown in Fig. 4.1(a). Thus, our model is
given by

% = FA(S)A — Fy(S)A+ A(Sexi — S) — S

% — FA(S)A—G(A, B,C) — dsA— uA

C;_lj — Fp(S)A—G(A B,C) —dpB — BB (4.2)
% — G(A,B,C) —deC — uC

where G(A, B, C') denotes the reaction of complex formation, given by k,AB—k,,C.
The catalytic activity of component A is inactivated due to the formation of com-
plex C. Here, the complex has higher stability than that of other proteins (d¢ is
smaller than d4 and dp)?

From Eq. (4.2), by summing up A and C, we obtain A4+C = F(S)A(1—(A+C))
if d4 and do are zero (or negligible). This means that once the cell reaches any
steady state, the relationship A + C' = 1 is satisfied as long as A and F4(S) are
not zero. We use this relationship and eliminate C' by substituting C' =1 — A for
the following analysis.

One plausible and straightforward interpretation of B is misfolded or mistrans-
lated proteins that are produced erroneously during the replication of component
A. Such waste molecules often aggregate with other molecules[101, 102, 103]. Al-
ternatively, B components can be specific molecules such as HPF and YfiA[104,
105, 106], which inhibit catalytic activity by reacting with component A.

With regards to the formation of error or “waste” proteins, there are gen-
erally intracellular processes for reducing their fraction. These include kinetic
proofreading, molecular chaperones, and protease systems. These error-correction
or maintenance systems are energy-demanding, and require the non-equilibrium
flow of substrates[107, 108]. Therefore, the performance of these mechanisms is
inevitably reduced in a substrate (energy source)-poor environment. Thus, it nat-
urally follows that the ratio of the synthesis of active proteins to wastes is an in-
creasing function of the substrate concentration, i.e., %?ﬁg; > (. In the present
model, we assume that this ratio increases with the concentration and becomes
saturated at higher concentrations, as in Michaelis-Menenten’s form, and choose

vS _ S vS ¢
Fua(S) = Fis s and Fp(5) = 75 Kﬁs, for example.

Note that almost all the results to be presented in this manuscript are obtained
as long as F)y > Fp holds for the nutrient-rich condition and F4 < Fp for the

!The model equation (4.2) is non-dimensionalized by appropriate normalization.
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nutrient- poor condition (see the section ”Remarks on the choice of parameters to
fit the experimental data” and Supplemental Information). Under this condition,
specific choice of the form of F4 and Fg is not important.

This S-dependence of F4/Fg would be biologically plausible both for the inter-
pretations of component B as specific inhibitory proteins or ”waste” (mistransla-
tion) proteins. For the first interpretation, it is reported that such proteins related
with the stationary phase (HPF, YfiA and others) are induced under stress condi-
tion such as starvation[104, 105, 109, 110], and thus it is suggested that F)x > Fp
(F4 < Fp) for a large (small) amount of S, repectively. On the other hand, by
adopting the latter, waste, interpretation, F4(S) and Fg(S) close to the above
Michaelis-Menten’s form is derived, by considering a proofreading mechanism to
reduce the mistranslation (see also Appendix B).

Here we also note although the S-dependence of F4/Fp is relevant to derive
quantitative laws on the lag-time in agreement with experimental observation, it
is not required just to show a transition to a suppressed growth state, as briefly
discussed later (see Discussion).

4.2 Results

4.2.1 Growth phases

The steady state of the present model exhibits three distinct phases as a
function of the external substrate concentration Sey (Fig. 4.1(b)), as computed
by its steady-state solution. The three phases are distinguished by both the steady
growth rate and the concentration of component A, which are termed as the active,
inactive, and death phases, as shown in Fig.4.1, whereas the growth rate shows
a steep jump at the boundaries of the phases. The phases are characterized as
follows. (i) In the active phase, the highest growth rate is achieved, where there
is an abundance of component A molecules, which work freely as catalysts. (ii) In
the inactive phase, the growth rate is not exactly zero but is drastically reduced by
several orders of magnitude compared with that in the active phase. Here, almost
all of the component A molecules are arrested through complex formation with
component B, and their catalytic activity is inhibited. (iii) At the death phase, a
cell cannot grow, and all of components A, B, and complexes go to zero. In this
case, the cell goes beyond the so-called “point of no return” and can never grow
again, regardless of the amount of increase in S., since the catalysts are absent
in any form. (As will be shown below, the active and inactive phases correspond
to the classic exponential and stationary phases; however, to emphasize the single-
cell growth mode, we adopt these former terms for now).

The transition from the active to inactive phase is caused by the interaction
between components A and B. In the substrate-poor condition, the amount of
component B exceeds the total amount of catalytic proteins (A + C), and any free
component A remaining vanishes. Below the transition point from the inactive
to death phase, the spontaneous degradation rate surpasses the synthesis rate,
at which point all of the components decrease. This transition point is simply
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Figure 4.1: (a) Schematic representation of the components and reactions in the
present model. The concentration of each chemical changes according to the listed
reactions. In addition, chemicals are spontaneously degraded at a low rate, and
become diluted due to volume expansion of the cell. (b) Steady growth rate
and the concentration of component A are plotted as functions of the external
concentration of the substrate. (¢ and d) Growth curve of the model. Parameters
were set as follows: v = 0.1,k, = 1.0,k,, = 107 K = 1.0,K; = 10.0,dg =
dp = 107°,dc = 1072, The detailed numerical method for (c¢) and (d) is given in
Appendix C.

determined by the balance condition Fy = d4. Hence, if d4 is set to zero, the
inactive-death transition does not occur.

We now consider the time series of biomass (the total amount of macromolecules)
that is almost proportional to the total cell number, under a condition with a given
finite resource, which allows for direct comparison with experimental data obtained
in a batch culture condition (Fig. 4.1(c and d)). To compute the time series of
biomass, we used a model including the dynamics of Sey in addition to S, A, B, and
C. Details of this model are shown in Appendix C. In the numerical simulation, the
condition with a given, finite amount of substrates corresponding to the increase of
cell number is implemented by introducing the dynamics of the external substrate
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concentration into the original model. Here, S. is decreased as the substrates
are replaced by the biomass, resulting in cell growth. At the beginning of the
simulation, the amount of biomass (i.e., cell number) stays almost constant, and
then gradually starts to increase exponentially. After the phase of exponential
growth, the substrates are consumed, and the biomass increase stops. Then, over
a long time span, the biomass stays at a nearly constant value until it begins to
slowly decrease. Finally, the degradation dominates and the biomass (cell number)
falls off dramatically.

These successive transitions in the growth of biomass (Fig. 4.1 (¢ and d)) from
the initially inactive phase to the active, inactive, and death phases correspond to
those observed among the lag, exponential, stationary, and death phases. As the
initial condition was chosen as the inactive phase under a condition of rich substrate
availability, most of the component A molecules are arrested in a complex at this
point. Therefore, at the initial stage, dissociation of the complex into component
A and component B progresses, and biomass is barely synthesized, even though a
sufficient and plentiful amount of substrate is available. After the cell escapes this
waiting mode, catalytic reactions driven by component A progress, leading to an
exponential increase in biomass. Subsequently, the external substrate is depleted,
and cells experience another transition from the active to inactive phase. At this
point, the biomass only decreases slowly owing to the remaining substrate and the
stability of the complex. However, after the substrate is depleted and components
A and B are dissociated from the complex, the biomass decreases at a much faster
rate, ultimately entering the death phase.

In the active phase with exponential growth, the present model exhibits classical
growth laws, namely (i) Monod’s growth law, and (ii) growth rate vs. ribosome
fraction (see Fig. 4.6).

4.2.2 Lag time dependency on starvation time T, and
maximum growth rate piyax

In this section, we uncover the quantitative relationships among the basic
quantities characterizing the transition between the active and inactive phases; i.e.,
lag time, starvation time, and growth rates. We demonstrate that the theoretical
predictions agree well with experimentally observed relationships.

First, we compute the dependency of lag time () on starvation time (T ).
Up to time ¢ = 0, the model cell is set in a substrate-rich condition, Sey = SH,
and stays at a steady state with exponential growth. Then, the external substrate
is depleted to Sexy = She . instantaneously. The cell is exposed to this starvation
condition up to starvation time ¢t = Ty;,. Subsequently, the substrate concentration
Sext instantaneously returns to ngth. After the substrate level is recovered, it takes
a certain amount of time for a cell to return to its original growth rate (Fig.4.10),
which is the lag time A following the standard definition of lag time as the time
period before the specific growth rate reaches its maximum value introduced by

Penfold and Pirt[4, 111]. Given this, the dependency of A on the starvation time
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Ty can be computed.
Next, we compute the dependency of the lag time A\ on pi... We choose the
steady-state solution of the cell model under Sey = She as the initial condition

and compute the lag time A under the Se = SUM condition against different

values of pimax(= v) (following the standard method to measure the relationship
between A and fimax[112]).

4.2.3 Relationship between lag and starvation time: A o< /Ty

We found that A increases in proportion to /Ty, as shown in Fig. 4.2(a).
For comparison, the experimentally observed relationship between A and T, is
also plotted in Fig. 4.2(b), using reported data [93, 98, 113] that also exhibited
A < /Ty dependency. Although this empirical dependency has been previously
discussed[93], its theoretical origin has thus far not been uncovered.

Indeed, the origin of A\ o< /Ty, can be explained by noting the anomalous
relaxation of the component B concentration, which is caused by the interaction
between components A and B. A general description of this explanation is given
below, and the analytic derivation is given in the Supplementary Information.

First, consider the time series of chemical concentrations during starvation. In
this condition, cell growth is inhibited by two factors: substrate depletion and in-
hibition of the catalytic activity of component A. Following the decrease in uptake
due to depletion of Sey, the concentration of S decreases, resulting in a change in
the balance between A and B (hereafter we adopt the notation such that A, B,
and C' also denote the concentrations of the corresponding chemicals). Under the
SPXT condition, the ratio of the synthesis of B to A increases. With an increase
in B, A decreases due to the formation of a complex with B. Over time, more
A becomes arrested, and the level of inactivation increases with the duration of
starvation.

In this scenario, the increase of the concentration of B is slow. Considering
that the complex formation reaction A + B = (' rapidly approaches its equilib-
rium, i.e., k,AB ~ k,,C, then A is roughly proportional to the inverse of B (recall
A+ C = 1) if B is sufficiently large. Accordingly, the synthesis rate of B, given
by Fg(S)A, is inversely proportional to its amount, i.e.,

B(t) < Fp(S)/B

, and thus
dB?/dt ~ const.

Hence, the accumulation of component B progresses with B(t) oc v/t. (Note that
due to S depletion, the dilution effect is negligible.)

Next, we consider the time series for the resurrection after recovery of the
external substrate. During resurrection, A is increased while B is reduced. Since
component A is strongly inhibited after starvation, the dilution effect from cell
growth is the only factor contributing to the reduction of B. Noting u = F4 A and
A x 1/B, the dilution effect is given by uB = F4AB « B/B = const. at the early
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Figure 4.2: (a and b) Lag time is plotted as a function of (a) starvation time or (b)
pre-incubation time. Lag time is scaled by the maximum growth rate (Inversely
proportional to the shortest doubling time in the substrate-rich condition). Purple
pentagons, cyan dots, and orange squares are adopted from Figures 3, 6a, and 6b
of Augustin et al.[93], respectively, and the red triangles are extracted from the
data in Table 1 of Pin et al.[113]. (c and d) Relationship between the lag time and
maximum specific growth rate .. Data are adopted from Table 1 of Oscar[112].
Parameters were set as follows: SHh = 104 S0 = 1072,v = 0.1,k, = 1.0, k,,, =
1075 K = 1.0,K; = 10.0, and d4 = dg = dc = 0 (the same parameter values
as in Fig. 4.1 except d;s). Lag time is computed as the time needed to reach
the steady state under the Se = S™" condition from an initial condition in the
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stage of resurrection. Thus, the resurrection time series of B is determined by the
dynamics

B(t) o< —const.,
leading to the linear decrease of B, i.e., B(t) ~ B(0) — const. x t.

Let us briefly recapitulate the argument presented so far. The accumulated
amount of component B is proportional to v/7y., whereas during resurrection, the
dilution of B progresses linearly with time, which is required for the dissociation
of the complex of A and B, leading to growth recovery. By combining these two
estimates, the lag time satisfies A oc v/Tity.

4.2.4 Relationship between the lag time and maximal growth
rate: A\ < 1/pimax

Second, the relationship A oc 1/piax is obtained by numerical simulation of our
model, in line with experimental results [112] (Fig. 4.2(c and d)).

This relationship A o¢ 1/pmax can also be explained by the characteristics of
the resurrection time series. The dilution rate of B over time is given by uB,
as mentioned above; thus, at the early stage, B ~ —uB. In the substrate-rich
condition, the substrate abundances are assumed to be saturated, so that

lim B~ lim Fj- B/B = pimax

rich rich
SoS—o0 Sost—o0

holds because limg_,o, F4(S) = pimax is satisfied. Thus, it follows that A oc 1/ pimax-
We also obtained an analytic estimation of the lag time as

\/2F Bk, kT (4.3)

(see the Supplementary Information for conditions and calculation). In this form,
the two relationships A oc v/Tyy and A o< 1/pmax are integrated.

AN

ﬂmax

4.2.5 Dependence of lag time on the starvation process

So far, we have considered the dependence of lag time on the starvation time.
However, in addition to the starvation period, the starvation process itself, i.e.,
the speed required to reduce the external substrate, has an influence on the lag
time.

For this investigation, instead of the instantaneous depletion of the external sub-
strate, its concentration is instead gradually decreased over time in a linear manner
over the span Ty, in contrast to the previous simulation procedure, which corre-
sponds to Tgee = 0. Then, the cell is placed under the substrate-poor condition for

the duration T, before the substrate is recovered, and the lag time A is computed
2

’Here, Ty is computed from the time point at which the external substrate concentration
starts to be decreased (i.e., Tgec < Tytv); if it were computed from the time when the depletion
is computed, a slower decrease with the increase of T4.. would effectively elongate the starvation
time by itself.
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The dependence of the lag time A on T, and Ty is shown in Fig. 4.3(a). While

A monotonically increases against Ty, for a given Ty, it shows drastic dependence

on Tyee. If the external concentration of the substrate is reduced quickly (i.e., a

small Tyec), the lag time is rather small. However, if the decrease in the external

substrate concentration is slow (i.e., a large Tye.), the lag time is much longer. In
addition, this transition from a short to long lag time is quite steep.

This transition against the timescale of the environmental change manifests
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Figure 4.3: (a) Dependence of lag time A on the time required to decrease the sub-

strate Tye. and starvation time Ty,. (b-d) Time series of starvation for different

Tace (Thee = 10° (green) and Ty = 1.0 (purple)) values, the internal concen-

trations of substrate S (b), component A (c), and component B (d). (e) Time

series of biomass during resurrection. The same parameter values as indicated

in Fig.4.2 were adopted. The batch culture model (which is used to compute a

bacterial growth curve) was adopted to compute the time series of biomass accu-
mulation(e).Time series of y is shown in Fig.4.12.

itself in the time series of chemical concentrations (see Fig. 4.3(b)). With rapid
environmental change, S decreases first, whereas with slow environmental change,
component A decreases first. In addition, the value of component B is different
between the two cases, indicating that the speed of environmental change affects
the degree of inhibition, i.e., the extent to which component A is arrested by com-
ponent B to form a complex.

Now, we provide an intuitive explanation for two distinct inhibition processes.
When Sg starts to decrease, a cell is in the active phase in which A is abun-
dant. If the environment changes sufficiently quickly, there is not enough time to
synthesize the chemicals A or B, because of the lack of S, and the concentrations
of chemical species are frozen near the initial state with abundant A. However, if
the rate of environmental change is slower than that of the chemical reaction, the
concentration of B (A) increases (decreases). Hence, A remains rich in the case
of fast environmental change, whereas B is rich for a slow environmental change.
In the former case, when the substrate is increased again, component A molecules
are ready to work, so that the lag time is short, which can be interpreted as a kind
of "freeze-dry” process. Note that the difference in chemical concentration caused
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by different T}, values is maintained for a long time because in the case of slow
(fast) environmental change, chemical reactions are almost completely halted due
to the decrease of A (S). Thus, the difference of lag time remains even for large
Titv, as shown in Fig. 4.3(a).

This lag time difference can also be explained from the perspective of dynamical
systems[114]. For a given S, the temporal evolution of A and B is given by the
flow in the state space of (A, B). Examples of the flow are given in Fig. 4.4. The
flow depicts (dA/dt,dB/dt), which determines the temporal evolution. The flow is
characterized by A— and B— nullclines, which are given by the curves satisfying
dA/dt =0 and dB/dt = 0, as plotted in Fig. 4.4.

Note that at a nullcline, the temporal change of one state variable (either A or
B) vanishes. Thus, if two nullclines approach each other, then the time evolution
of both concentrations A and B are slowed down, and the point where two null-
clines intersect corresponds to the steady state. As shown in Fig. 4.4, nullclines
come close together under the substrate-depleting condition, which provides a dy-
namical systems account of the slow process in the inactive phase discussed so far.

For a fast change (i.e., small Ty, Fig. 4.4(a)), S is quickly reduced at the point
where the two nullclines come close together. First, B reaches the B-nullcline
quickly. Then, the state changes along the almost coalesced nullclines where the
dynamics are slowed down. Thus, it takes a long time to decrease the A concen-
tration, so that at resumption of the substrate, sufficient A can be utilized.

In contrast, for a slow change (i.e., large The), the flow in (A, B) gradu-
ally changes as shown in Fig. 4.4(b-d). Initially, the state (A, B) stays at the
substrate-rich steady state. Due to the change in substrate concentration, two
nullclines moderately move and interchange their vertical locations. Since the
movement of nullclines is slow, the decrease in A progresses before the two null-
clines come close together (i.e., before the process is slowed down). The temporal
evolution of A and B is slowed down only after this decrease in A (Fig. 4.4(c and
d)). Hence, the difference between cases with small and large Tge. is determined
according to whether the nullclines almost coalesce before or after the A decrease,
respectively.

These analyses allow us to estimate the critical time for a substrate decrease
T7.. beyond the point at which A increases dramatically. The value of a fixed point
(Agt, Bst) depends on the substrate concentration, which drastically changes at the
active-inactive transition point. If the relaxation to the fixed point is faster than
the substrate decrease Ty.., the system changes ‘adiabatically’ to follow the fixed
point at each substrate time during the course of a “slow decrease”. The relax-
ation time is estimated by the smallest eigenvalue around the fixed point at the
transition point. In k,, — 0 limit, this eigenvalue is equal to the growth rate at the
active-inactive transition point. Since it is inversely proportional to v, the critical
time T}, for the substrate decrease is estimated as T7;.. o< 1/v. This dependence
was also confirmed numerically (Fig.4.13 in Supplementally Information).
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Figure 4.4: Movement of nullclines and time evolution of state variables (circles
within the state space (A, B)). (a) The case of a fast substrate decrease (the orange
line indicates the orbit and numbers in white boxes indicate the time points). The
orbit of a slow substrate decrease is also plotted (black dashed line). (b-d) The
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is also depicted. Parameters are identical to those described in Fig. 4.2.
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4.2.6 Distribution of lag time

So far, we have considered the average change of chemical concentrations using
the rate equation of chemical reactions. However, a biochemical reaction is inher-
ently stochastic, and thus the lag time is accordingly distributed. This distribution
was computed by carrying out a stochastic simulation of chemical kinetics using
the Gillespie algorithm|[115].

By increasing the starvation time, two types of lag time distributions are obtained:
(1) a skewed type, and (2) a skewed type with an exponential long time tail type.
Each distribution type changes as follows:

(1) When the starvation time is sufficiently long, the system enters the phase
with the slow accumulation of B. Here, the relaxation is anomalous, leading to a
skewed type distribution. This skewed distribution is understood as follows. The
number of component A molecules among cells takes on a Gaussian-like distribu-
tion just before the recovery of the external substrate concentration®, whereas the
lag time A is proportional to B and thus to 1/A, as discussed in last section. Then,
the lag time distribution A is obtained as the transformation of 1/4 — A from the
Gaussian distribution of component A. This results in a skewed distribution with
a long time tail as shown in Fig. 4.5(a).

(2) When the starvation time is too long, the decrease in A comes to the stage
where its molecular number reaches 0 or 1. This results in a long time tail in the
distribution. This effect occurs when the number of component A molecules be-
comes zero due to the inhibition by component B. When the number of component
A molecules becomes zero, the only reaction that can take place is a dissociation
reaction (C' — A + B). Since we assume that the time evolution of molecule
numbers follows a Poisson process, the queueing time of dissociation obeys an ex-
ponential distribution Prob(queueing time = t) ~ N¢k,, exp(—N¢k,,t), where N¢
is the number of complexes formed. This exponential distribution is added to the
skewed distribution, resulting in a long tail.

The distributions of the two cases are plotted in Fig. 4.5, together with ex-
perimental data adopted from[98]. The skewed distribution fits the experimental
observations for the 0-day starvation data, whereas the distribution including the
exponential tail is a good fit to the 1-day, 2-day, and 3-day distributions.

Here, each kinetic parameter alters the critical starvation time around which
the shape of the distribution starts to change; for example, a small k,, makes it
easier to obtain the type three distribution. However, kinetic parameters do not
change the shape of the distribution directly as confirmed computationally.

The distribution of lag time was traditionally thought to follow the normal
distribution[92, 118] until single-cell measurements for a long time span were car-
ried out[98]. The preset model also generates the normal distribution of lag time
if the starvation time is too short, whereas the normal distribution of lag time
in earlier experiments would originate from the limitation of experimental proce-
dures. For example, a cell that regains growth in a colony ends up dominating
the colony, and thus the fluctuation of the shortest lag time governs the behavior.

3Note that the log-normal or Gamma distribution of chemicals in a cell has been well observed
and mathematically explained for an exponentially growing cell[116, 117].
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However, identification of the small fraction of bacteria with a long lag time is
difficult owing to the limited capacity of cell tracking (as indicated in [98]).
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Figure 4.5: Distribution of lag time obtained by model simulation (solid line)
with experimental data (lag time distribution of cultures starved for the indicated
days) overlaid. The horizontal axis of each distribution was normalized by using
its peak point (Peak) and the full width half maximum (FWHM) as A — (X —
Peak)/FWHM. Experimental data were extracted from those presented in Fig. le
of Reismann et al.[98]. Methods of stochastic simulations, the procedure used to
compute Peak and FWHM, and parameter values are given in Appendix C.
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4.2.7 Remarks on the choice of parameters to fit the ex-
perimental data

Although there are several parameters in the model and the results depend
on these values, the basic results on the active-inactive transition, suppression
of growth, and quantitative relationships with lag time are obtained for a large
parameter region. Conditions of the parameter values to obtain these main results
are given in the Supplemental Information and are summarized in Table 4.1. Here,
an important parameter is k,,, which we assumed to be the smallest among all other
parameters values. This choice was made to facilitate analytic calculations, and
this condition for k,, can be relaxed. For example, we plotted the growth rate at
the steady state in Fig.4.14, indicating that the active-inactive transition occurs
as long as k,, < k, holds.

Next, we estimated realistic parameter values such as the value of v from the

‘ Result ‘ Assumption ‘ Condition (Prediction)
1+ 2FA(Sse(Sect ™)) [k
Active-Inactive Transition Point kp ~ 0 = \/ 1+ 4Fp(Sx (S22 /K.
Inactive-Death Transition Point - FA(Sst(SéifCt_death)) =da

kp ~ 0, Dynamics of S

ext

Analytic Estimation of Lag Time | is faster than (A, B) | A~ m\/ 2Fp(Sst (St ) kp/ km Tty

)  __G(0B)
Contiguity of Nullclines Ap-nulictine(B) FA(S)—-G'(0,B)

(Slow Relaxation) - AB_nullctine(B) ~ FB(S)_FZJE(;’@_G,(OE

Table 4.1: Predictions and Assumptions

literature. However, several parameter values could not be estimated directly from
experimentally reported data because this would require quantitative studies at
the stationary phase, which are not currently available. Thus, we estimated other
parameter values by fitting Monod’s growth law [3] as well as from the reported
relationship between the ribosome fraction and growth rate[7, 119, 120] (Fig.4.6)*.
Since the number of parameters is greater than the minimum number required
to fit the two laws in Fig. 4.6, the choice of parameter values is not unique. A
possible set of of parameter values is listed in Table 4.2 in Appendix D.

In fitting the two growth laws in Fig.4.6, we have also found that v is proportional

4Recall that Eq.(4.2) is already non-dimensionalized with appropriate scaling. To make a
quantitative comparison with experimental data, we replaced each term in Eq.(4.2) as follows:
Sext = M- Sext/f1,S = m-S/fi,A—-m-A B—-m-B,C—->m-C,v—=v-¢-r/(fo-D/m),k, —
kp/(fo- D) km = km/(fo-D/m), K - m -K/fi,Ky > m-K;/f1,and t = t- (fo- D/m), with
additional parameters fo, f1,7, m, 1, and D, which indicates the stoichiometry between external
substrates and substrates, stoichiometry between substrates and macromolecular components
(components A and B), fraction of ribosomal proteins to component A, fraction of actively
translating ribosomes, volume growth per synthesis of component A, and speed of the Sexy = S
reaction, respectively. To fit the experimental data, we adopt an interpretation that the external
substrate, substrate, and both components A and B correspond to glucose, amino acids, and
proteins, respectively. Thus, we adopt the stoichiometry between glucose and amino acids, that
between amino acids and typical (average size of) proteins, and that between amino acids and
ribosomal proteins as fy, f1, and fa, respectively. To compare with the data of [7, 119, 120], the

ribosomal fraction ¢ is defined as ¢ = 1/)%%-
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to the maximum growth rate and negatively correlates to the slope of the linear
relationship between ribosome fraction and growth rate, while r (the fraction of
actively translating ribosome) decreases and k, increases the y-offset of the linear

relation, respectively °.
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Figure 4.6: Comparison of the model results using estimated values (Table 4.2)
with experimental values. (a) The specific growth rate is plotted as a function
of the external substrate (glucose) concentration. Experimental data are adopted
from Monod[3]. (b)Fraction of ribosomal proteins (component A) to total proteins
as a function of the specific growth rate: orange squares are from Scott et al.[7],
red circles are from Bremer and Dennis[119], and green triangles are from Forch-
hammer et al.[120]. In (b), the theoretical curve from the model is plotted up to
~ 1.0, because we obtained the parameter values by fitting the u — ¢ relation and
the Monod equation with the maximum growth rate of piya ~ 1.0.

4.3 Discussion

Here, we developed a coarse-grained model consisting of a substrate, autocatalytic
active protein (component A), non-growth-facilitating component (component B),
and A-B complex, C. In the steady state, the model shows distinct phases, i.e.,
the active, inactive, and death phases. In addition, the temporal evolution of total
biomass is consistent with the bacterial growth curve. The present model not only
satisfies the already-known growth laws in the active phase but also demonstrates
two relationships, A o< v/Tity and A o 1/fumax, concerning the duration of the lag
time A. Although these two relationships have also been observed experimentally,
their origins and underlying mechanisms had not yet been elucidated. The present
model can explain these relationships based on the formation of a complex between

® Addition of antibiotics may correspond to the increase in k,, in our model, while Scott et al.[7]

showed experimentally that addition of antibiotics increases the y-offset of the linear relation.
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components A and B, whose increase in the starvation condition hinders the cat-
alytic reaction.

The above two laws are also generally derived for the inactive phase, which corre-
sponds to the stationary phase, as long as the ratio of the synthesis of component B
to that of component A is increased along with a decrease in the external substrate
concentration. This condition can also be interpreted as a natural consequence of
the waste-reducing (or error-correcting) process that is ubiquitous in a cell, which
demands energy when assuming that component B consists of waste molecules.
These laws are also derived if the waste is interpreted as a product of erroneous
protein synthesis, where a proofreading mechanism to correct the error, which also
requires energy, works inefficiently in a substrate-poor condition. The inhibition
of growth by waste proteins is experimentally discussed by Nucifora et al. and
others[101, 102, 103]. Aggregation of such waste proteins can inhibit the catalytic
activity of proteins, although its role in the transition to the inactive phase remains
to be elucidated. Alternatively, instead of waste proteins, we can also interpret
such non-autocatalytic proteins as specific inhibitory molecules binding ribosomes
such as YfiA and HPF [104, 105, 106].

For a simpler model, one could eliminate the substrate dependence of Fig(S)/Fa(S).
Indeed, even in this simpler form, the active/inactive transition itself is observed if
we tune the parameter values finely, as the decrease in substrate flow decreases the
dilution, which in turn increases the fraction of complexes formed. Nevertheless,
the accumulation of non-autocatalytic proteins is not facilitated with a substrate
decrease, and the increase in the lag time as A oc /Ty does not follow. Hence,
this simpler model will not be appropriate to explain the behavior of the present
cells, although it might provide relevant insight as a general mechanism for the
“inactive” or “dormancy” phase in the context of protocells.

Although the cell state with exponential growth has been extensively analyzed
in previous theoretical models, the transition to the phase with suppressed growth
has thus far not been theoretically explained. Our model, albeit simple, provides
an essential and general mechanism for this transition with consideration of the
complex formation between components A and B, which can be experimentally
tested.

The model here may also be relevant to study growth arrest such as stringent
response[121, 122]. There, ppGpp, the effector molecule of the stringent response,
is known to destabilize the open complex of all promoters causing the global re-
duction of macromolecular synthesis, playing the similar role as the component B
in this chapter[123, 124, 125, 126]. Additionally, rpoS, sigma factor of stationary-
phase genes, lies downstream of ppGpp[127], and it is reported that the mutant
lacking ppGpp (which might correspond to inhibition of the component B in our
model) shows a physiological state reminiscent of exponentially growing bacteria
even under starvation [128].

Moreover, the model predicts that the lag time differs depending on the rate
of external depletion of the substrate, which can also be examined experimentally.
Recently, the bimodal distribution of growth resumption time from the stationary
phase was reported in a batch culture experiment[99]. The heterogeneous deple-
tion of a substrate due to the spatial structure of a bacterial colony is thought to
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be a potent cause of this bimodality, and progress toward gaining a deeper under-
standing of this concept is underway. Since the present model shows different lag
times for different rates of environmental change, it can provide a possible scenario
for helping to explain this bimodality.

4.4 Appendix A: Model without interaction be-
tween the two components

To clarify the necessity of the interaction between the two components to obtain
the main results, we remove the complex formation between A and B (by setting
k, and k,, to be zero). Then, the A-B complex is eliminated, and our model is
given as

A = F4(S)A — F4(S)A% — d A, (4.4)
B = Fp(S)A— Fs(S)AB — dpB. (4.5)

(We assume that the internal concentration of the substrate is equal to that of the
external concentration of the substrate, and ignore the substrate dynamics.) The
steady solution is

da

Ay=1--4_ B,—F
st FA(S)’ st B(S)

1= da/Fa(S)
FA(S) —dgy +dB7

and the steady growth rate is given as pg = Fa(S)Ag = Fa(S) — da. Therefore,
the present model without an interaction between components A and B exhibits
only the active-death transition at S*, satisfying F4(S*) = d4.

In addition, the dynamics of the system are calculated as

) = : -
1 —exp(—Fat)(1 — A(0)™)
. Fy 1—exp(—FAt)(1—§§8;§;‘)’

Fu1-— exp(—Fat)(1 — A(O)_l)

where we neglect d;. Therefore, if the model cell Eq. (4.5) restarts growth in a
high S (Syicn) value environment after exposure to the starvation condition (low
S value), A(t) and B(t) exponentially converge to the substrate-rich steady state.
Hence the time for growth recovery Ti.. is quite short, which is calculated

1 B
Trec = —FA(S ™ ln((ﬁD — 1> (1— e_FA(S’”"’”")Ts”)> + const.,

as a function of starvation time Ty,. Here, B, and B, are the steady concentra-
tions of component B under the substrate-poor and substrate-rich environment,
respectively. Obviously this relationship is far from the relationship between lag
and startvation time.

64



4.5 Appendix B: Reduction of the kinetic proof-
reading model

In the main text, the concrete forms of F4 and Fp were predetermined by
assuming the characteristic -=(F4/Fg) > 0, which is essential for the active-
inactive transition. In this section, we show that this characteristic is derived
from a simple polymer elongation model with a kinetic proofreading scheme[108] by
assigning a correct polymer as A and an erroneous one as B. Indeed, -L(F,/Fp) >
0 originates from an error in the synthesis of component A that consequently
inhibits the synthetic reactions.

Polymer elongation is essential to synthesize macromolecules. It is well known
that ribosomes elongate a polypeptide chain following receipt of the information
from messenger RNA. However, since the transfer RNA (tRNA) discrimination by
a ribosome is not perfect, there is always a certain probability for mistranslation
(i.e., the wrong choice of tRNA). Kinetic proofreading is one of the possible error-
correction mechanisms in such a polymerization system, which demands energy.
We derive that the synthesis ratio of mistranslated proteins to a “correct” protein
increases under the substrate-depleting condition.

For the polymerization reaction, we introduce two monomers, “correct” and
“wrong” monomers, as simplified from real amino acids. In reality, there are 20
amino acids and one tRNA that specifies one amino acid, i.e., one correct and 19
wrong monomers with a certain affinity lower than that of the correct monomer.

In the model, a polymer is elongated up to the length L with the aid of the
catalytic activity of the “correct” protein, i.e., the ribosome. The matured polymer
with length L is spontaneously folded into a protein; the proteins consisting of only
correct monomers are correct proteins with catalytic activity, whereas those with
other monomer sequences turn into mistranslated proteins. The elongation process
progresses under a kinetic proofreading mechanism (Fig. 4.7).

As in the original model, mistranslated proteins inhibit the correct protein’s
catalytic activity by forming a complex with it, while the growth is facilitated by
the activity of correct proteins.

The dynamics of the polymer elongation part are given by

WA= e S (A )
— b Y (AN - prb{A@M;)
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Figure 4.7: Schematic representation of a polymer elongation system with kinetic
proofreading. The reactions other than the synthesis part (F4(S)A and Fp(5)A)
are identical to those of the original model (4.2).

where [M¢] and [Mp] denote the concentrations of correct and wrong monomers,
respectively. [A;(x)], [A;(x)My], and [A;(x)M;s] represent the concentration of
a complex of correct proteins and a polymer with length ¢, a correct protein-
polymer-monomer complex, and an activated correct protein-polymer-monomer
complex, respectively, where x denotes a monomer sequence such as CCDC' - - -
with C' and D indicating the correct and wrong monomer, respectively. ter(z)
and z~ indicate the last monomer (C' or D) of a monomer sequence z and the
partial monomer sequence of x from which the last monomer (i.e., ter(z)) has
been removed, respectively. Here, [Ag] denotes the concentration of the correct
protein. v and k;s are the rate constants of the chemical reactions, and the I;s
are the Boltzman factors of each chemical reaction. We assume that dissociation
of the matured polymer from correct proteins and polymer folding into proteins
take place instantaneously. « and f are the concentration energy currencies, for
example, GTP and GDP, respectively. p; reflects the difference in affinity between
the wrong monomer (D) and the correct monomer (C') (we set po as unity).

At the steady state, the synthesis rates of correct and mistranslated proteins,
JE and JE, are given by

Jy = A [Mc|HoZE
JE = 0[Ao(Hc[Mc] + Hp[Mp])(Ec +Ep) ' — JX,
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where functions =; and H; are given by
0H;[M;]
ko 32;(1 = piloZ; (M) + ko 32, (1 — pslaH,[M;])
koo (kyor + kopilo) + kokior
(ko + kopilo) (kily B + kopily + 0) — k210
koo + 1%1515Hz‘
l%opile + l%loz

Z; =

=9 and =; denote the rate of polymer elongation with the wrong and correct
monomers, respectively.

Now, we set the functional form of o and monomer concentrations [M¢| and
[Mp] to obtain the concrete values of J* and JL. It is natural to assume that «
and [M;] are increasing functions of the internal substrate concentration [S]. Here,
we adopt a Michaelis-Menten’s type form o = [S]/(K, + [5]), f = K./(K. + [5]),
and [Mc] = [Mp] = [M]ax[S)/(Ks +[S]).

Although JX([S]) and JL([S]) do not completely agree with the form we adopted
for F4(S)A and F(S)A in the original model, the conditions discussed in Section
2 of the Supplementary Information are nevertheless satisfied, as shown in Fig.
4.8. In particular, ﬁt}ﬁ /JE& > 0 holds. Indeed, using this model, we obtained
the same active, inactive, and death phases, as well as the same growth curve and
other quantitative laws. As an example, Fig. 4.9 shows the steady growth rate as
a function of the external substrate concentration [S]e. Furthermore, for any L,
the same behaviors are obtained, as J% and J& satisfy the condition outlined in
Section 2 of the Supplementary Information. It is also confirmed that the ratio of
JE([S]) to JE([S]) increases as [S] increases for any L.

4.6 Appendix C: Details of Models and Simula-
tion Procedures
To obtain the growth curve shown in Fig. 1(c) and (d), we added the dynamics

of the substrates in the external environment, as well as cell volume growth. By
representing the dynamics according to the amounts of chemicals rather than their
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Figure 4.8: J{=19 and JL=1° are plotted against the substrate concentration [S].
The ratio of J{=1% to JE='0 is also plotted in the inset of the figure. Parameters
for the polymer elongation part are set to be v = 0.1, pc = 1.0, pp = 10.0, ko =
10°,ky = 10%ky = 1000y = I} = exp(—=1),l, = exp(1),K, = 10.0,Kg =
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Figure 4.9: Steady growth rate of the model with polymerization and kinetic
proofreading. JE=10 and JL=10 are adopted for the synthetic reaction rate of
components A and B. Parameters for J{='% and J5='° are identical to those in
Fig. 4.8, and others are set to be the same.
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concentrations, the model is given by

% = —Na(Ns.../Voatnh — Ns/V) (4.6)
% = —F4(Ng/V)N4— Fg(Ns/V)Np + Na(Ns,../Vian — Ng/V)(4.7)
d% = F(Ns/V)Na — kyNaNp/V + kyNe — daNa (4.8)
d% = Fp(Ng/V)Na — k,NaNg/V + knNe — dpNp (4.9)
% = kpNaNp/V — knNo — deNe (4.10)

% = Fa(Ng/V)Na, (4.11)

where Ng_, is the amount of substrate in the external environment at volume
Viatn, and Ng, Ny, Ng, and Ng are the amounts of each chemical within the cell
at volume V(t), respectively. V(t) is the volume of a cell. The dilution effect
is introduced by dividing the amount of each chemical by V(). Sey is the total
amount of the external substrate contained in the culture system with volume
Viatn (set to be unity). For all other parameters, the same values as shown in Fig.
4.1 were adopted.

To obtain the lag time distribution, we performed a stochastic simulation. We
computed the model equation according to the volume change

N,

— = ~Fa(Ns/V)Na = F5(Ns/V)Na + Na(Nsow/Voutn = Ns/V)(4.12)

AN,

7 - FA(NS/V)NA—kpNANB/v+kmNC (413)

dNp

7 - FB(NS/V)NA—kpNANB/V+kmNC (4].4)

dN,

_dtc — k,NaNg/V — knNe (4.15)
dv

Here, we introduced cell division and simulated the dynamics of only one daughter
cell (to reduce the simulation time). When the cell volume V' reaches the division
volume Vy;,, V' halves and chemicals are distributed to two doughter cells in equal
probability. After computing these equations for a sufficiently long time under the
Nguen condition, Ng,,, suddenly changed to Ngeeor, and was then set at this value
over the starvation period Ty,. Then, Ng_, returned to the original value N gich.
The lag time A is computed as the time needed to double the volume from Vj;
i.e., the volume at which S.y recovers. The numerical results indicated that the
absolute value of the correlation coefficient between V and A is small. Here, the
difference in Vj in cells does not affect the distribution of the lag time. Stochastic
simulation was carried out using the Gillespie algorithm. Parameter values were
set to be Viiy = 2 x 103, Vigtn = ]_.O,ngé:th = 104,N5§;tor = 1073, and the others
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were the same as those described in Fig. 4.2. The length of starvation time Ty,
was set to be 5 x 10%,10% 2 x 10%, and 107 for Fig. 4.5 (a), (b), (c), and (d),
respectively.

From the lag time distribution obtained by numerical simulation, we could compute
the peak and FWHM values directly. Since the experimental data did not include
a sufficient amount of samples, we applied a smoothing filter to determine the
FWHM, while the peak point was determined directly.

4.7 Appendix D: Estimated parameter values

’ Symbol ‘ Meaning \ Estimated Value (Unit) H Reference ‘
Stoichiometry of glucose
and amino acids

fo (measured by carbon, average) 1.1(-) [129]
Stoichiometry of amino acids
f1 and average proteins 209(-) 8]
Stoichiometry of amino acids
fo and ribosomal protein 7336(-) 7]
synthesis rate of protein per ribosome
v 20(a.a/sec)/209(a.a) x 3600(sec) 345 (1/hour) [7, 8]

volume growth per synthesis of growth factor
1.0um? (E. Coli volume) divided by

m 5 x 10° (# of proteins) 1.2 x 1072 (1/mM) 8]
r Fraction of actively translating ribosomes 0.8 (—) [119]
P Fraction of ribosomal proteins to component A 3.6 x 1073(—) Fitting
D Speed of phenomenological catabolism 10°(1/mM/hour) Fitting
K Saturation constant of F4 + Fp 1.8 x 10~2(mM) Fitting
K Phenomenological constant changing A/B balance 2.3 x 10~%(mM) Fitting
k, Rate of association between A and B 1073(1/mM /hour) Fitting
km Rate of dissociation between A and B 1075(1/hour) Fitting

Table 4.2: Estimated parameter values

4.8 Supplemental Information

4.8.1 Analytic estimation of lag time )\

Here, we are not concerned with the death process, which occurs over a much
longer time scale. Hence, we assume that the spontaneous degradation rates
da,dp, and do are negligibly small and are thus set to be zero. Therefore, the
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model equation is given by

% = —FAA—FBA+A<Sext_S)_FAAS
dA

= = FaA—kAB + kuC — Fu A’

dB

— = FpA—kAB + knC — FAAB

% — kyAB — ki, C — FAAC

From the above equations, we obtain

%(A—FC’) = F4(S)A(1 - (A+C)). (4.17)
Eq. (4.17) implies that once the model (4.17) reaches a steady state, the sum
of A and C' cannot be altered by any parameter. Thus, the concentrations of
A and C change over time while maintaining A + C' = 1, even if the external
substrate concentration Sey is changed. Thus, C' is substituted by 1 — A and can
be eliminated in the calculation below.

Relationship between the initial value and lag time

First, we calculate the relaxation time from an initial starved condition (Sy, Ag, Bo)
to the substrate-rich steady state (51, A1, B1). Considering the present setup of
the model, the following three conditions are assumed:

e A and B relax after the relaxation of S, and the substrate uptake part
A(Sexy — S) is dominant in the dynamics of S.

e The cell is initially in the inactive phase. As a result, the concentration of

component B exceeds a certain value By, where B, = Fa(5S1)/k,.

e Dissociation of the A-B complex hardly ever occurs, i.e., k,, is the smallest
parameter among all parameters.

It has been experimentally confirmed that the uptake of a substrate occurs
at the very beginning of growth resurrection[92], and the relaxation of S and
(A, B) are separated in the numerical simulation (Fig.4.10). Note that the initial
state (Sp, Ao, By) does not need to be the steady state under the substrate-poor
condition.

Under these conditions, we first estimate the relaxation time of S. According
to the assumptions, A is fixed to Ay during the relaxation of S, while the dominant
part of the change in S is given by its uptake, so that S is approximated by

S~ Ag(Sth — 8.

ext

71



Then, the relaxation time Ag is obtained by solving this equation with S(0) =

So, S(Ag) = 51 as
1 Srich_SO
Ag ~ — In| =t 2
A H(ngth—&)

. Next, we estimate the relaxation time of A and B, where S is fixed at
the steady value S; throughout the estimation. We adiabatically eliminate the
dynamics of A, in order to represent A as a function of B, A = A(B), obtained
by A = 0. (In other words, the relaxation progresses along the A null cline, as
validated later). Then, from the assumption of a small k,,, we get

dB (Fa— Fp + FaB)
d " k,B—Fa

+ O(K2), (4.18)

where the last term is neglected below. This expression is valid in the region
B, < B, ie., k,B > F4(S1). As will be shown later, the concentration of
component B changes linearly with time, and this relaxation is much slower than
that observed in the exponential relaxation region with B}, > B. By integrating

B(t) from t = 0 to t = A\ with the condition B(0) = By and B(Ag) = B}, the
relaxation time Ap is obtained as

Ka 1 Fy Fa(l+ Bo) — F
A~ —<(By—B:,)— |1 —— 1 4.19
B Fy {( 0 I‘lCh) ( + kaA FA) n(FA(l + B* ) — Fy ) ( )

rich

where K4 = k,/ky,. Recalling that k,, is the smallest parameter, and accordingly
K4 > 1 and A\g < Ap, the relaxation time A is approximated as A =~ Ag. Here,
we assume Fg/Fy ~ 0, then

KA 1 1 + BO
Ap~ —<(Bg—B:,)— |1 | 4.2
B FA {( 0 I‘lCh) ( + kaA) n<1 + B:ich> } ( 0)

holds. Since we consider the asymptotic behavior of lag time A under a sufficiently
long starvation time Ty, By > B} holds. Therefore, the second term in Eq.
(4.20) with logarithmic dependence is neglected as compared to the linear part,
and (By — BY,,,) is approximated as By. Thus, we obtain a simple relationship

between the initial amount of component B and the lag time given by

K4
F4(S1)

A~ Bo. (4.21)

Relationship between accumulation of component B and starvation time

In this section, we estimate the relationship between the accumulation of
component B and starvation time, i.e., the relationship between B, and Ti.,.
The initial point is set at the steady state under the substrate-rich condition
(S1, By, A1). As discussed in the previous subsection, the relaxation of S is fast,
so that the time required for this relaxation is negligible. Using Eq. (4.18) and
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noting F4(Sy) < Fg(Sy), i.e., the ratio of the synthesis of component B to that of
component A is larger under the substrate-poor condition, we get

dB Fp
— ~ . 4.22
dt KaB ( )
The solution with the initial condition B(0) = B, = Fa(So)/k, is given by
Fp(So), | Fa(So)
B(t) ~ /2 t .
() \/ oy T
As Fa(So)/Fp(So) =~ 0, its solution is obtained as
Fp(S,
B(t) ~ QMt (4.23)
K4
Substituting Eq. (4.23) into Eq. (4 21) with ¢t = T, we get
A~ \/ZFB (S0) K ATyt (4.24)

FA(Sl

Thus, the lag time increases with the square root of starvation time.
In addition, since limg o, F'4(S) = fimax holds, the relationship between lag
time and the maximum specific growth rate ,umax is obtained as

lim A ~ lim 2FB(S0)K aTxty
SHCh—>OO S“ch—>00 FA(‘Sl \/ B 0 A t

ext

= L Fs(5) KaTmn (4.25)

Recall that to derive the relationship A oc /T, only the assumption F4(Sy) <

Fg(Sy) and F4(S1) > Fp(S1) is required here, while to derive A\ o< 1/imax, only

limg oo FA(S) = pimax is needed. Thus, these relationships hold irrespective of

the detailed function form of Fjs. For example, we can chose a form close to step
function for F;s.

Finally, we confirm that the relaxation between (Ao, By) and (A;, By) occurs
along the A null cline. For this purpose, we calculate the difference between A /A
and B/B.

Fig.4.11 is a phase diagram dividing (A, B) space into the regimes with

()= ()
(D' <2)

The figure demonstrates that the former region occupies the greatest area in (A, B)
space, which is the region of interest here. In addition, we obtain the boundaries

N\ 2 N2
By1(A), Bya(A), and By, 3(A) of these regions by solving (%) — (%) = 0 with

respect to B. By comparing them, it is confirmed that (A/A)? > (B/B)? and
thus A = 0, is reached at a much faster rate as long as k,, is sufficiently small.

and
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4.8.2 Condition for the main results
Growth phases

We chose the specific rate functions F4(5), Fg(S), and G(A, B,C'). However,
the main results were not altered by changing the choice of rate functions as long as
certain conditions are fulfilled. In this section, we discuss the conditions required
for the three growth phases (Fig.1(b)) to exist.

In general, Fa(S),Fp(S) > 0 for S > 0, and F4(0) = Fp(0) = 0, while
F4(S) + Fp(S), so that the total synthesis rate monotonically increases with S.
We assume that k,, is sufficiently small. Although F4 and Fp are functions of
S, we use an abbreviated representation of Fi4(Sext) and F(Sext) as Fa(Sst(Sext))
and Fp(Sst(Sext)), respectively.

First, the transition point between the inactive and death phases Snact—death jg
simply and generally obtained as the point satisfying F,(Smact—death)y — g, For

Xt .
estimating the transition point between the active and inactive phase St~ the

ext
spontaneous degradation rate of all chemical species can be set to zero. Following
the earlier argument, C'is eliminated by using C' = 1 — A, and the model equation

is given by

% — FuA -k AB — FA?
‘il_f — FyA—k,AB — FAAB, (4.26)

where the reaction term k,,(1 — A) is neglected as k,,, — 0. The bifurcation of the

system occurs at S~ mact ext ext ext

By substituting the steady solution of Eq. (4.26), we obtain the relationship

between Fy and Fp at S2T—mact a9

ext

L+ 2F (S5 [y = 14+ AP (S35,

Sact —inact

ot > (0 satisfying this equation, there also exists an active-

If there exists
inactive transition, while the region 14+2F, (S22 /o, > \/1 + AFp(Sas—mact) /|

ext ext

corresponds to the active phase.
In summary, the transition points for the active/inactive phases and inac-
tive/death phases are given by

o 1 2Fa(SEE) [y = \[1+ AFp(S2 ) [k,

° FA(Sinactfdeath> — dA-

ext

As long as the functions F4 and Fg allow for such equalities given certain Sey
values, there exist three phases against the change in S, and essentially the
same results are obtained as in the original model, including the time series of
biomass (Fig.1(c and d)).

74

, where FA (Sact—inact) — kszt (Sact—inact) _FA (Sact—inact)flst (Sact;—inact

).



Condition for the contiguity of null clines

We here discuss the condition for the contiguity of null clines, which causes slow
relaxation. We assume that the inhibitory reaction takes place among A, B, and
C, and mass is conserved in the reaction, although we do not specify the process
of inhibition. To clarify the constraint imposed by the mass conservation, we set
the mass per unit volume of each chemical species as dynamical variables. Then,
the model equations are given by

dA

Ma—r = MaF4(S)A — EAMAG(A, B,C) — MsF4(S)A?, (4.27)
M3§ = MpFg(S)A — gMpG(A, B,C) — MpFa(S)AB,  (4.28)
MC% = ¢eMeG(A, B,C) — MoF4(S)AC, (4.29)

where M; and §; (i = A, B,C) are the mass and the stoichiometry coefficient of
the inhibition reaction in the rate of G(A, B, C'), respectively, while S is regarded
as a parameter. Following the same argument to derive A + C' = 1 as introduced
in Section 2 above, C' = £¢/4(1 — A) is satisfied after the system reaches the
steady state, and thus C is eliminated. By calculating the A and B null clines for
a small A region, we obtain

AAfnullcline(B) (430>

AB—nullcline(B) ~ (431)

(FB(S) — Fa(5)B)/¢s — G'(0, B)'

where G'(0, B) represents 95 (0, B). The only difference between the two null clines
lies in the first term in the denominators. Since F4(S) and F(S) approach zero as
S goes to zero, the first term is vanishingly small in the substrate-poor condition,
and the two null clines come close together for small A values.

The central point of null cline contiguity lies in the mass conservation in
the reaction G(A, B), which is commonly introduced in the equations for both A
and B. The rate of all reactions other than the inhibition reaction decreases as
S decreases. However, the inhibition reaction is not slowed down, because the
reaction is independent of the substrate concentration. This reaction is dominant
for both A and B under the starving condition. Therefore, A and B are almost
completely determined by the same dynamics.
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Figure 4.10: Time series of the starvation-mimicking simulation. (a and b) Time
series of the (a) growth rate p and internal substrate S, and (b) components A
and B during the starvation period. (¢ and d) Time series of the (c¢) growth rate
p and internal substrate S, and (d) components A and B after recovery of the
external substrate concentration. At ¢t = 0, the cell stays at the steady state under
the substrate-rich Se = SHM condition, and S.y changes to SPS".  After the

ext ext

Ty = 10® starvation period, Se is returned to ST (For (¢ and d), the origin
of time is set to the time point at which the external substrate concentration is
recovered). Recovery to the original concentration other than S requires a long

lag time. The same parameter values are adopted as described for Fig. 2 .
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Figure 4.11: Phase diagram dividing (A, B) space into the A-fast region and B-fast
region. The orange region and green region correspond to the (4/A)? > (B/B)?
and (A/A)? < (B/B)? regions, respectively. A time series (orbit) is obtained by
numerical simulation of the model. The parameters are the same as those described

in Fig. 4.10. The initial point for the time series is given as S(0) = S1, B(0) = 10.0,
and A(O) - AA—nullcline(Sh B<O>) .
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Figure 4.12: (a) Time series of growth rate p during starvation for different Tye.

values (Tgee = 10° (green) and Ty = 1.0 (purple)). (b)The resurrection of growth
rate is plotted against time after recovery of the external substrate concentration.
The same parameter values as indicated in Fig.2 were adopted.
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Figure 4.13: Relationship between the critical Tgec(7},.) and synthesis rate v. The
same parameter values as indicated in Fig.2 were adopted.
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Figure 4.14: The steady growth rate for different k,, values. A sharp decline of

the steady growth rate is observed as long as k, is smaller than k,(= 1.0). Other
parameter values are chosen to be same as those indicated in Fig.1.
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Chapter 5

Substrates can kill cells : A

phenomenological model for
Sugar Induced Cell Death

5.1 Introduction

In the previous chapter, we constructed coarse-grained model consisting of three
components of macromolecules, namely, an autocatalytic component which facil-
itates cellular growth (A), a component which does not facilitate cellular growth
(B), and the complex (C) consisting of component A and B. The model (ABC
model) exhibits three distinct phases (active, inactive, and death phases), and the
obtained dynamics of the amounts of macromolecules are similar to those observed
in the bacterial growth curve. It also reproduces the well-known growth laws in
exponential growth phase (Monod’s equation and the relationship between rRNA
and growth rate).

In the inactive phase, novel phenomenological relationships are obtained. The
lag time for growth resurrection increases in square-root of starvation time and
is inversely proportional to the maximum growth rate. The distribution of lag
time exhibits a long-time tail. These two results were confirmed to be consistent
with the experimental results. While there is no direct experimental evidence, it
is also found that the length of lag time depends on how the cell is starved. If the
substrate depletes gradually, the lag time becomes much longer than that of a cell
under immediate depletion of the substrate.

Here, additional question arises. The ABC model predicts that "how starved”
matters on the cell’s behavior, but "how waken up” does not matter. As will
be discussed, it is known that the recovery processes of environmental conditions
affect a resurrection of cells from starved conditions. Especially, in a phenomenon
known as Sugar Induced Cell Death (SICD), incubation of starved cells (E.coli or
some yeasts) into a medium with glucose as a sole nutrient source leads to cell
death[130, 131, 132]. SICD was first reported by Granot et. al[131] in starved
cells of S.Cerevisiae. The authors incubated the starved cells into three types
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of nutrients, namely, water, sorbitol!, and glucose medium. Any other nutrient
sources, such as nitrogen sources, vitamins, and inorganic salts, were not added
to these media. Then, the cells incubated in the glucose medium were reported
to die faster than the cells in the water and sorbitol medium?. Also, they found
that the cells in glucose medium had more reactive oxygen species (ROS) than
those in water and sorbitol medium. Because of the observation of toxicity, ROS
was thought to lead the SICD. SICD was also reported, however, in the petite
mutant of yeast cells which lack the respiratory chain[132]. Thus, SICD has also
triggered mechanisms other than the accumulation of ROS. To elucidate general
mechanisms and phenomenological laws of SICD, we extend the model which is
proposed in Chapter.4 by introducing energy currency molecules in this chapter.
We show that the model exhibits distinct growth phases, and dies depending on
the temporal order of the recovery of substrates.

5.2 model

Here, we extend our previous model by introducing the energy currency molecules
such as ATP and ADP into the ABC model and modifying the synthesis rate of
component A and B so that the synthesis ratio between them is determined by
the ratio of ATP to ADP. We add another type of substrate which is used for the
conversion reaction from ADP to ATP. This extra substrate is denoted as Sy, while
the substrate (S) in ABC model is renamed as Sy. Also, we assume that the total
concentration of ATP and ADP is kept constant just for the sake of simplicity.
Then, our model is given by

% = FFA(So,a)A — G(A, B,C) — dgA — pA,

Cil_f = [Fp(Sp,a)A— G(A, B,C) — dpB — B,

% — G(A,B,C) - doC — uC,

Cfl_? = (1—=f)J(S1,a)A — Fa(So,a)A — Fp(So, a)A — dya.

Here, o represents the concentration of ATP. Since the total concentration of ATP
and ADP is kept constant value oy, the concentration of ADP is given as ayo; — av.
ATP is converted from ADP using the substrate S; with the aid of catalytic ability
of component A. ATP is used for the macromolecular synthesis, and spontaneously
deactivated into ADP. Decrease in ATP and ADP by the dilution effect is com-
pensated, for example, by the supply of such phosphate molecules. f denotes the
fraction of component A used for the synthesis of macromolecules (0 < f < 1),
and 1 — f is the fraction of component A which is used for the production of ATP.

LS. Cerevisiae cannot utilize sorbitol as a carbon source, sorbitol was used for the pH control.
20f course, since there is no nutrient sources in the water and sorbitol medium, the cells in
these media will die. The speed of cell death, however, is quite slow.
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A schematic representation of the present model is shown in Fig.5.1.(a).
Definitions of G and p are identical to the previous ABC model, given as G(A, B,C) =
ky,AB —k,;,,C and pn = F4 A, respectively. The expressions of F)4 and F'p are slightly
modified. We set these as F4(Sp, ) = é}f%o oo and Fp(S,a) = %%a
The first part of F) is derived from normal Michaelis-Menten type reaction kinet-
ics. The second part determines the ratio of the synthesis of component A to that
of B. In this model, if a cell has ATP sufficiently, it produces component A, while
in the opposite case, it produces the component B. The last term, «, is added be-
cause macromolecular synthesis reactions are typically endothermic processes, and
thus, they need the consumption of energy currency molecules. One can obtain
this type of functions also as a consequence of error-correcting mechanisms of the
macromolecular synthesis as discussed in Chapter.4. J(S, ) represents the rate
of conversion reaction from ADP to ATP which consumes substrate S; given as

o uS1 (ot — )
J<Sl’ Oé) T Kat+Si+(atot—a)+S1 (atot—ar)

5.3 Growth Phases and lag time

By computing the steady state of the present model, we obtain again the three
growth phases. Fig.5.1.(b) shows the three-dimensional plot of the steady growth
rate. In contrast to the ABC model, the present model has death attractor within
all (Sp, S1) region. Also, by decreasing Sy with keeping S; at high values, there is
no distinct transition between active and inactive phases as observed in the pre-
vious chapter, whereas, there are such transitions by decreasing S; with keeping
So at high values. This difference is consistent with result of the previous chapter.
In the ABC model, the active-inactive transition occurs when the substrate con-
centration satisfies an equation 1+ F4(S)/k, = \/1+ 4Fp(S)/k, as discussed in
Appendix of the previous chapter. By assuming 4F5(S5)/k, < 1, this equation is
approximated as F4(S)/Fgp(S) ~ 1 indicating that the transition point does not
depend on each synthesis rate of A and B, but depends critically on the synthesis
ratio of A and B. In ABC model, change in the concentration of substrate alters
both the whole synthesis rate and synthesis ratio of A and B, and it cannot distin-
guish the influence of the two to the transition. Here, by introducing the energy
currency molecules, these two effects are separated. The transition between active
and inactive phases is triggered by the change in the synthesis ratio. On the other
hand, the active/death and inactive/death transition occurs when the spontaneous
degradation rate of component A exceeds its synthesis rate. Both the changes are
relevant to this transition in whole synthesis rate and synthesis.

The death phase in the substrate-rich condition emerges by an overproduction of
component B. If we chose an initial condition with a low o and A, the macromolec-
ular synthesis is directed mostly to component B due to the low concentration of
a. Also, since the concentration of component A is low, the production rate of
« is slow. Besides the slow production of ATP, it is also degraded (deactivated)
spontaneously, which further decreases the synthesis ratio of component A to com-
ponent B. Thus, the cell cannot change the synthesis ratio unless the concentration
of component A exceeds a certain value so that the production rate of o exceeds
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its spontaneous degradation rate. There are the initial points from which the con-
centration of component A cannot exceed such critical value, and the state from
such initial points are attracted into death attractor with zero-growth.

Also, we computed the growth rate in the mixed medium made by blending S,
and S; in a certain proportion. Fig.5.1(c) shows the steady growth rate for several
blending proportion medium. As a result of the differences between the roles of
So and S; on the transition, three growth phases emerge under limited blending
proportion.

The present model exhibits similar behavior of lag time with the ABC model, as
shown in Fig.5.2. We computed the dependency of lag time on starvation time and
the maximum specific growth rate. Up to time ¢t = 0, a cell is put in the substrate
rich condition (Sy = S; = Sien). Then, the concentrations of both substrates is
decreased immediately (Sy = S1 = Spoor). After the starvation period Ty, the
concentrations of both substrates are recovered to the rich condition immediately.
The lag time was computed as the relaxation time necessary to return to the orig-
inal, non-zero growth state. If the starvation time is sufficiently long, the lag time
increases with square-root of the starvation time. In contrast to the previous ABC
model, however, if the starvation time is too long, the cell cannot return to the
original non-zero growth state mainly due to the spontaneous degradation of ATP.
As the starvation time approaches this ”point of no return”, the lag time starts to
diverge. In this case, the square-root dependency, is not observed due to the cell
death if the spontaneous degradation rate is large. The cell dies before it satisfies
the condition discussed in Supplemental Information of Chapter.4.

Also, the inverse proportionality between lag time and the maximum specific
growth rate is obtained. The cell is starved for the fixed starvation time T}, = 10°,
and the substrate concentrations return to the original rich value. Here, we
changed v and u when the substrate concentrations are recovered to compute
the lag time for various fimay°.

5.4 Growth resurrection depending on the re-
covery process of environmental condition

In this section, we study the relationship between the resurrection of cells from
starving conditions and the recovery process of the external substrate concentra-
tions. A cell is starved up to t = T, as explained above. After the starvation
period, the substrate concentration starts to recover. We compute two different
temporal orders of the substrate restoration. That is, first Sy is returned to Sycn
and then S; is returned to Sy after the period of time Tiierval. In the other
process, S is recovered first, and subsequently, Sy is recovered after Tierval-

Fig.5.3 shows the phase diagram on the recovery processes plotted against the
change in the starvation and interval time. We examined if the cell resurrects,
i.e., returns to the original growth after the above two orders of resource recov-

3We used the same parameter set for the starvation, i.e. we computed the relaxation time
from a single initial condition, for various v and u values.
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Figure 5.1: (a). Schematic representation of the components and reactions in the
present model. The concentration of each chemical changes according to the listed
reactions. In addition, chemicals are spontaneously degraded at a low rate, and
chemicals other than ATP and ADP are diluted following the volume expansion of
the cell. (b). The steady growth rate is plotted as a function of the concentrations
of Sop and S;. Blue dots indicate non-zero growth state and the yellow surface
is the death state with zero growth rate. The growth rate of the steady state is
plotted as a function of the concentrations of Sy and S;, for different values of
p. (c). The steady growth rate is plotted as a function of total concentration of
substrate S(= Sy + S) for several p values. Line colors correspond to those in (b).
Parameter values are set as v = 2.0,u = 20.0, f = 0.5,k, = 1.0,k,, = 1073 K =
10.0, K, = 10.0,d4 = 1077, dp = dc = 0.0,d,, = 107°, and a;o; = 1.0.
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Figure 5.2: (a). Lag time as a function of starvation time. Lag time diverges at
Tyy ~ 10'2 because of the cell death.(b). Relationship between the lag time and
maximum specific growth rate pin.c. Starvation time is set as Ty, = 10*°. We
changed the values of v and u with keeping a relationship v = 0.1 x u. Parameters
are set as v = 20.0,u = 200.0,k, = 1.0,k,, = 107%, K = 10.0, K,, = 10.0, Sy, =
103, Spoor = 1077,da = 1078, dp = dc = 0.0,d, = 1072, f = 0.5, and e, = 1.0.

ery processes. For too small Sp,o0, (Fig.5.3(a)), the cell cannot recover the growth
against both recovery processes unless Ty, and Tiyerval are small. In the other
value of Spoor (Fig.5.3(b)), however, the order of substrate concentration recov-
ery determines whether the cell returns to the high growth rate or not. The first
increase of Sy concentration leads to the cell death in a wide range of Ty, and
Tinterval. We have confirmed for other parameter choices that the cell can return to
the high growth state, except a special case described below, if the concentration
of Sy recovers after the recovery of S; the cell resurrects the growth?.

The recovery process of substrate concentration affects the resurrection of the cell
because it leads the overproduction of component B. The synthesis ratio of com-
ponent B is typically higher in small S conditions than that of high concentration
situation due to the low concentration of a. Thus, if the concentration of Sy in-
creases keeping the concentration of S; low, the synthesis rate of component A
and B increases, but the synthesis ratio of A to B is not improved, so that more
component A is not synthesized. Moreover, since the increased production rate of
both A and B consumes more ATP. Therefore, an addition of Sy in low S; results
in the induction of the synthesis of component B. If the duration of induction
(Tinterva) is short, and S is soon added, the cell restores the high growth rate. If
the induction lasts for a long time, however, the state enters the basin of death

4Note that the growth recovery is always worse in the alternate recovery of substrate con-
centrations than the simultaneous increase of the concentrations of both substrates. When the
concentrations of both substrates return to the high value after the starvation period Ty, simul-
taneously, the cell can restore the high growth rate as long as the cell can resurrect by either
way of substrate recovery (So — S1 or S1 — Sp). Therefore we can see that the addition of Sy
as a sole nutrient source is nothing but a just toxic operation for the cell.
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attractor, and the cell will die.

When Spo0r is very small (Fig.5.3(a)), there is a region in which cells are resur-
rected only for the case in which Sy is first recovered (So — S;) This occurs when
the cell stays near the basin boundary of death attractor when the starvation is
finished. It is explained accordingly: The active/death and inactive/death transi-
tions occur when the spontaneous degradation rate of component A (d,4) exceeds
the production rate of it (F4). Whereas the concentration of S; does not directly
increase the production rate F)4 because the ATP production reaction is necessary,
an increase of Sy directly increase the production rate. Near the boundary, the
concentration of component A is exceedingly small, and thus, the ATP production
hardly progresses. Thus, the first increase of S effectively prolongs the starvation
time under such situations, and the recovery process (S; — Sg) fails to resurrect
the starved cells®.

(a). S pour ~ 10° o). S 0~ 10°
10 I ° ° ° ° ° ° ° ° 10 ° °
¢ o o o o o o o o e o ® : Both resurrect starved cells
»—2 9 ° ° ° ° ° ° ° ° ? 9§ ° °
2 4 o © © © o o o o Z o o : Only S —S§, eesurrects starved cells
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Figure 5.3: Processes which lead the resurrection of the starved model cell are
plotted as a function of Ty, and Tipervar for different Sy, values. (a). Since the
substrate concentration in starvation condition is too low (Spin ~ 10_5), the cell
cannot recover the growth. (b). If both Ty, and Tiyterval are small, the cell can
resurrect the growth by both processes of substrate recovery. However, if the cell
is exposed at Sp-rich and S;-poor environment for a long time, it fails to recover
the growth. Parameter values are set as v = 2.0,u = 20.0, f = 0.5, k, = 1.0, k,,, =
1073, K =10.0, K, = 10.0,dy = dg = 107°,dc = 1077, d,, = 1072, and o = 1.0.

5.5 Summary and Discussion

Here, we developed a phenomenological model consisting of two types of sub-
strates, autocatalytic component (A), non-growth-facilitating component(B), A-B
complex,(C) and energy currency molecules such as ATP and ADP. In contrast to
the model introduced in Chapter.4, present model has death attractor for a whole
range of the concentrations of substrates. Also, the model exhibits the square-root

5Tf we simultaneously increase the concentrations of both substrates at ¢t = Ty + Tinterval,
the cell dies for the values of Ty, and Tingerval at which the first increase of Sy only succeeds
the resurrection. Thus, the first increase of 57 itself is not toxic, but an effective prolongation
of starvation period leads to the cell death. Also, this situation emerges very limited choices of
Tstv and T’intervab
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dependency of lag time to the length of starvation time.

It is shown that the resurrection of the cellular growth in the present model from
the starved conditions is determined by how the substrate concentration returns to
high values. If macromolecular synthesis rate is increased first without filling the
energy currency molecules, the macromolecular synthesis triggers cell death. This
cell death is induced by the positive feedback of component B production. The
active synthesis of component B under lower ATP level hinders ATP production
further, because component B forms a complex with component A and inhibits its
catalytic ability. Thus, if the production rate (or ratio) of component B exceeds a
certain value, this positive feedback mechanism triggers cell death. In Chapter.4,
we discussed a possible scenario interpreting the main results as consequences of
error-correcting mechanisms of macromolecular synthesis in cellular systems. The
cell death induced by the substrate is possibly seen as a consequence of the mech-
anisms which work inefficiently under substrate-poor conditions. The aggregate
body formation of denatured proteins is experimentally reported by Ncifora and
others [101, 102, 103], and they can inhibit the catalytic ability of active proteins.
Also, we can interpret component B as a reactive oxygen species to some extent.
One of the toxicities of ROS is denaturation of proteins[131]. When we set the
dissociation rate k,, to zero, the complex formation reaction can be interpreted as
an irreversible denaturation of component A caused by component B, and we can
infer that the resistant systems against ROS molecules supported by antioxidant
enzymes work ineffectively under substrate-poor conditions.

While our model is too simple to discuss the detailed mechanisms which lead to
the cell death, it can provide abstract concepts of the cell death led by the chem-
ical species which positively contribute to the cellulaer growth under the typical
conditions.
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Chapter 6

Summary and Discussions

6.1 Summary

6.1.1 Energetically efficient growth of cellular system

In Chapter.2 and Chapter.3, we have studied the energetic (thermodynamic) effi-
ciency of cellular growth and metabolism. As discussed in Introduction, biological
systems need to produce the catalytic enzymes to proceed biochemical reactions.
In other words, the protein production is sustained by protein production, itself.
We found that biological systems do not achieve the highest efficiency at the quasi-
static limit as a consequence of this autonomous nature.

Based on a simple cell model consisting of substrate, catalytic enzyme, and mem-
brane precursor, we have found that the total entropy production during one
generation of cell division is minimized at a non-zero, finite, growth rate. This
optimality at a finite speed stemmed from two effects; the equilibration effect led
by the increase of the abundance of catalytic enzyme and the increase of entropy
production rate due to the overproduction of macromolecules. The qualitatively
same result is obtained also in the catalytic reaction network model with multiple
chemical species.

In Chapter.3, we found that the temporal separation of different chemical reac-
tions enhances the thermodynamically efficient growth by using a simple model
of metabolism. Our model consists of simplified ”catabolic” and ”anabolic” reac-
tions connected by the energy currency molecules. When the concentrations of the
two distinct enzymes needed for catabolic and anabolic reactions oscillate in anti-
phase with each other, the catabolic reaction and anabolic reaction are temporally
separated, which allows each reaction to progress in close to the chemical equi-
librium. We examined the advantage of the temporal separation of metabolism
by imposing non-autonomous oscillation of the concentration of enzymes as a first
step. Next, the temporal separation is shown to be beneficial also in the catalytic
reaction model which exhibits an autonomous oscillation in the concentrations of
enzymes. It implies that the temporal separation of chemical reactions might be
advantageous even if the energetic cost for autonomous oscillation is considered,
as is a typical phenomenon in non-equilibrium dissipative systems.

The common message of these two studies is that cells realize the states being
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close to chemical equilibrium not in the non-growing or static conditions but in
growing or dynamic states because external chemical environments are inherently
far-from-equilibrium and cells obtain energy by facilitating equilibration of chem-
ical reactions with the aid of catalytic enzymes. This concept will be common to
living things.

We will try to construct a quantitative theory which bridges the thermodynamic
efficiency and yield of cellular growth with such error-correcting mechanisms. Also,
we have to discuss the biological relevance of this optimality at a finite speed.

6.1.2 Phenomenological theory for slowly growing cell

In Chapter.4, we constructed a simple, coarse-grained cell model that includes an
extra class of macromolecular component in addition to the autocatalytic active
components that facilitate cellular growth, while this additional component forms
a complex with the autocatalytic component. Depending on nutrient conditions,
the cell exhibited typical transitions among the lag, exponential, stationary, and
death phases. Furthermore, the lag time needed for growth recovery after the
starvation followed the square root of the starvation time and was inverse to the
maximal growth rate, in agreement with experimental observations. Moreover, the
lag time distributed among cells was skewed with a long time tail, also in agree-
ment with experiments.

In Chapter.5, we extended our model introduced in Chapter.4 to study the phe-
nomenon called sugar induced cell death. An extended model has another sub-
strate and energy currency molecules such as ATP and ADP in addition to the
original model. The model also showed three distinct phases depending also on the
compositional ratio of two substrates. If the concentration of substrate for protein
synthesis is high and the concentration of the substrate for energy currency pro-
duction is low, the model cell does not exhibit ”inactive” phase. The model showed
the same dependency of the lag time to the starvation time and the maximum spe-
cific growth rate. In contrast to the original model, however, the extended model
has death attractor over a whole range of substrate concentrations, and after the
starvation, the cell could be attracted to the death attractor depending on which
substrate concentration was recovered first. This model might give us the insight
to establish a theory for cell death caused by the process of substrate recovery.

6.2 Future Directions

Here, we discuss the limitation of our studies and the future directions for a few
topics.

6.2.1 Energetics of cellular growth

Energetics, or in other words, the economics of cell growth has gathered much
attention. Thermodynamic efficiency of cellular growth have been actively stud-
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ied in the 1980s[6, 13, 14, 15, 16, 17, 18]. In these studies, relationships between
the thermodynamic efficiency and the yield seemed to be blindly trusted to exist.
In fact, no clear relationships between them are found. Lack of this relationship
imposes limitations on our studies.

Normally, the thermodynamic efficiency of chemical reactions increases if the chem-
ical reactions progress in the state being close to the chemical equilibrium. How-
ever, cells have to change the stoichiometry of chemical reactions to increase the
yield of certain reactions. To change the stoichiometry according to the thermo-
dynamic efficiency, the cell has to sense the efficiency, and regulate the reactions.
It is not clear whether the thermodynamically efficient reaction always leads to
high yield or not, even if we omit the costs of the sensing and regulation.

One candidate which possibly connect the thermodynamics and yield is error-
correcting mechanism such as kinetic proofreading. In the original model of ki-
netic proofreading proposed by J. J. Hopfield[107, 108], the production ratio of
desired protein to that of other mistranslated proteins changes according to the
GTP/GDP ratio. If we can naively expect that the thermodynamically efficient
metabolism realizes high GTP/GDP ratio, it can lead to accurate translation, and
high yield states.

6.2.2 Universality theory of lag time

Experimental studies for the lag time study described in Chapter.4 are needed in
future. We list up some topics to be done, and briefly explain each.

Confirm square-root dependency

Since the experimental data we have used to validate our theory in Chapter.4 were
obtained from the low- temperature experiments, there may be a possibility that
they may not reflect the bacterial physiology under the normal temperature (from
room temperature to 37°C). Thus, an experiment performed at normal tempera-
ture is needed.

Memory for the starvation process

We found that the lag time in our model cell drastically changed depending on how
the cell was starved. The difference in the starvation process somehow preserved
in a cell state over a long time. Hence the starvation process is memorised in a cell
state. While this result on starvation-process dependence has not yet confirmed
experimentally, there is a suggestive experiment done by Radzikowski et.al. They
performed an experiment in which bacteria grown in glucose medium are separated
into two groups by re-incubating to the different media: fumarate and no-carbon
source medium. They found that the gene expression level of ribosome modification
factor (RMF) for the fist (fumarate) group is significantly higher than that of the
second (without carbon source) group. Since fumarate is a carbon source inferior
to glucose, we possibly regard the incubation of bacteria to fumarate medium as
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the slow decrease in the concentration of the substrate. If this expectation is valid,
the up-regulation of RMF might support the increase of component B in our model
induced by slow decrease in the substrate concentration, because RMF is similar
in function to component B.

While we expect that this study can be indirect support for our prediction about
the memory of starvation processes, the direct confirmation of the memory is
necessary.

Mechanism of the emergence of heavy tail in the distribution of lag time

We found the long-time-tailed distribution of lag time in our model. According
to our study, this tail appears if all the component A (or ribosome) of a bac-
terium binds to component B. By monitoring the binding of ribosome and the
ribosome-binding factors such as hibernation promoting factor(HPF) and YfiA,
and examining if all ribosomes are bound to such factors, this hypothesis has to
be tested.

Model for Sugar Induced Cell Death

The model cell introduced in Chapter.5 resurrects its growth from starved condi-
tions depending on the substrate recovery process. The cell fails the resurrection if
the concentration of substrate used for the macromolecular synthesis is recovered
fist. It is discussed as a potential mechanism of SICD that the increase in the
abundance of glucose triggers the active production of macromolecules regardless
of other substrates[131]. Of course, it is not obvious whether such discussions on
the real cells is straightforwardly applicable for our simple model, or not. Both in
such experimental studies and in our model, however, launching the macromolec-
ular synthesis without preparing other reactions such as ATP production would
harm the integrity of cells, leading to cell death. It will be important to study the
cell death induced by the substrate addition by constructing a detailed model of
SICD, and extract the central mechanism of SICD.

6.3 Concluding Remarks

In this thesis, we have studied the energetics of cellular growth (Chapter.2 and
Chapter.3) and the growth laws and the growth resurrection from starved con-
ditions (Chapter.4 and Chapter.5). Whereas we found that the thermodynamic
efficiency of cellular growth is optimized at a finite speed as a consequence of the
autonomous nature of cells, we have not yet understood how the thermodynamics
efficiency of biochemical reactions affect the growth yield, and whether the cell
growth matters the thermodynamic efficiency, or not.

In Chapter.4, novel phenomenological growth laws of cells in stationary and lag
phases were found. Whereas these laws agree with the experimental result well,
still, the generality of the laws has to be validated both experimentally and theo-
retically.
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It is still far to answer the questions presented in Introduction. However, we hope-
fully succeeded in grabbing some aspects of living things. The author is honored
if we can make even a little contribution to approach the problems.
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