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Abstract

Helium three (3He) monoatomic layer adsorbed on an atomically flat surface of graphite

is an ideal testing ground for studying a strongly correlated Fermion system with spin

S = 1/2 in two dimensions. One advantage of this system is its high purity. Since 3He film

is fabricated at low temperatures (a few K) and any atoms/molecules other than helium

are frozen at an inside wall of the filling line at higher temperatures before reaching the

sample cell, they cannot contaminate the 3He film. One can control film coverage (areal

density) to a large extent by just adding a known amount of 3He atoms into the cell,

without imposing lattice disorder. A 3He monolayer shows a variety of quantum phases

depending on its density: self-bound liquid, normal fermi liquid, commensurate solid,

and incommensurate solid [1,2]. 3He has such a large zero point motion that atom-atom

exchange is significant even in the solid phase, resulting in interactions between nuclear

spins, and it is known that the competition among the multiple spin exchange (MSE)

interactions, which were originally recognized to be important to explain the peculiar

nuclear magnetism in bulk solid 3He [3] also plays an essential role to understand the

magnetism of the 2D solid phases as well [4]. The competition causes strong magnetic

frustration, and the frustration is stronger at lower densities. Especially, the 2nd layer

low-density solid phase (C2 phase) is interesting. This phase is known as a characteristic

phase so called the 4/7 commensurate solid whose counterpart does not exist in the bulk
3He, and is stabilized by the delicate balance among the hard-core potential of 3He-3He

interaction, the zero-point motion of 3He atom, and the potential corrugation from the

underlayer. The nuclear spin system of this phase is strongly frustrated due to the geomet-

rical effect of a triangular lattice, in addition to the competition among MSE interactions,

resulting in the quantum spin liquid (QSL) ground state with gapless excitations.

The magnetism of 3He monolayers on graphite preplated with a monolayer of helium

but with a bilayer of HD (3He/HD/HD/gr) have also been studied [5, 6, 7, 8]. The density

of the 2nd HD layer is lower than that of the 1st helium layer, which leads to the 3He-C2

phase on the HD having the lowest areal density ever studied. The exchange interactions

are greater at low densities, and therefore the 3He/HD/HD/gr system is advantageous

when one tries to reveal the nuclear magnetism of the C2 phase at the low T limit.

However, the thermodynamic property of this system has not been studied intensively,

and the quantum phase diagram near solidification density remains unclear.

In this work, we performed heat capacity (C) measurements on 3He/HD/HD/gr system

in wide ranges of temperature (0.15 ≤ T ≤ 90 mK), and density (0.10 ≤ ρ ≤ 13.63 nm−2),

in order to reveal the magnetic phase diagram of this system, and low-T thermodynamic

properties of the QSL state in the C2 phase. Especially we made detailed measurements

in the density region near solidification (ρ = 4.5− 5.5 nm−2)

We observed that heat capacities at densities higher than 5.05 nm−2 have very broad

peaks, and shift to lower temperature without changing the shape of the curve with



increasing density up to 5.92 nm−2. Therefore this is a highly compressible phase in

which the effective exchange interactions strongly depend on its density. Normalized

specific heats of this phase behave like those of the C2 phase of the bilayer 3He system.

Thus we call this phase the C2-like phase. We found that the C2 phase compresses over

an even wider density range of 17 % than that in the C2 phase (≈ 8−9 %). We thus

speculate that the quantum liquid crystal is a more feasible phase for the C2 phase rather

than the commensurate solid.

At the highest three densities in this study (ρ = 9.33, 11.01 and 13.63 nm−2), we

observed ferromagnetic heat capacities which share a similar temperature dependence

with that of the high-density ferromagnetic solid phase in the bilayer 3He system with a

triangular lattice incommensurate to the lattice of the first layer.

We found a new phase at 4.74 nm−2 (C3 phase), which has not been reported pre-

viously. This phase is separated from the Fermi liquid and the C2-like phase via two

transitional regions, and exists within a narrow density window (less than 2 %). There-

fore the C3 phase is expected to be the ”true” commensurate phase. The reason why the

commensurate phase exists at such a low density where the bilayer system is in the liquid

phase, is that the amplitude of the potential corrugation by the 2nd HD layer is greater

by a factor of ≈ 3 compared with the 1st 3He layer. The magnetic heat capacity of the

C3 phase shows a very broad single peak at T = 21 mK followed by an unconventional

temperature dependence of C ∝ T 2/3 down to 0.3 mK. We also found that the magnetic

susceptibility (χ), previously measured by other workers [8, 9], shows an equally anoma-

lous temperature dependence of χ ∝ T−1/3, which is not recognized by those authors.

These facts indicate that the magnetic ground state of the C3 phase is the gapless QSL

with novel elementary excitations such as Majorana Fermions.

At low densities (ρ ≲ 4.2 nm−2), measured heat capacities satisfy the C = γT depen-

dence at low T , which is characteristic of the degenerate Fermi liquid. With increasing

density effective mass of a 3He quasiparticle, deduced from γ, shows the divergence up

to m∗/m = 4.4 ± 0.3 until 4.2 nm−2. At the lowest densities (0.1 ≲ ρ ≲ 0.7 nm−2),

we observed the formation of the self-condensed liquid, judging from the γ coefficient

smaller than the value of the noninteracting Fermi gas. Its critical density (0.7 nm−2) is

quantitatively consistent with that of 1 - 3 layers on graphite [1], but contradict recent

Monte Carlo studies which claims that the potential corrugation play an essential role to

stabilize the self-condensed liquid.
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論文要旨

グラファイト上に吸着したヘリウム３（3He）単原子層はスピン 1/2をもつ２次元強相関
フェルミオン系の研究舞台として理想的な系である。この系の利点は純度の高さにある。
3He膜は低温（数ケルビン）で作成されるためヘリウム以外の原子や分子はサンプルセル
に到達する前に試料導入用ラインの内壁で凍ってしまい、3He膜を汚染する事はない。ま
た格子欠陥を導入することなく膜の面密度を大きく変えることができるのも利点である。
3He単原子層はその密度に応じて様々な量子相を示し、自己凝集液体、フェルミ液体、整
合固体相、不整合固体相になる [1,2]。3Heはその大きな零点振動のため固体相において
も原子交換の寄与が大きく、結果として核スピン間の相互作用が起こる。そして元々はバ
ルク固体 3Heの特異な磁性を説明するために考えられた多体交換相互作用 [3] が２次元固
体の磁性を理解するにあたっても本質的であることが知られている [4]。これらの競合が
強い磁気フラストレーションを起こし、低密度ほどより強くなる。特に、吸着第２層目の
低密度固体（C2相）は、4/7整合相と呼ばれるバルク 3Heには対応する相がない特徴的
な相が、3He間のハードコアポテンシャルや零点振動、下地による周期ポテンシャルの微
妙なバランスによって実現することが知られており、興味深い。この相の核スピン系は、
三角格子と多体交換相互作用の競合のためにバルク 3Heよりも強いフラストレーション
が起こり、結果としてギャップレス励起をもつ量子スピン液体（QSL）になる。
下地にヘリウムを１層敷いた上の 3He単原子相だけでなく、下地を２層HDにした系

（3He/HD/HD/gr）の磁性も研究されている。 [5,6,7,8]。HD層の面密度はヘリウム層に
比べて密度が小さいため、HD上では知られている中で最も低い面密度の 3He-C2相が得
られる。密度が低い方が 3Heの相互作用が大きくなるため、3He/HD/HD/grは低温極限
でのC2相の核磁性を調べる上で有利である。しかし、この系の熱力学特性は詳細に調べ
られておらず、固化が起こる付近の密度の量子相図についてもまだよく知られていない。
本研究では 3He/HD/HD/grに対し、この系の磁気相図を明らかにすること及びC2相

のスピン液体状態の低温極限での熱力学特性を明らかにすることを目的として熱容量（C）
測定を広い温度範囲（0.15 ≤ T ≤ 90 mK）及び密度範囲（0.10 ≤ ρ ≤ 13.63 nm−2）にわ
たって行った。特に、固化が起こる付近の面密度域（ρ = 4.5− 5.5 nm−2）は詳細に測定
した。
まず、5.05 nm−2以上の面密度域で熱容量は非常にブロードなピークをもち、5.92 nm−2

まで密度を増やすとその形を変えずに低温にシフトすることを観測した。このことから。
これは大きな圧縮性を有する相であり、その交換相互作用は密度の変化に応じて比較的大
きく変化することが分かった。交換相互作用 J で規格化した比熱の振る舞いが２層ヘリ
ウム系のC2相に似ていることから我々はこの相をC2-like相と名付けた。C2-like相はC2

相（8 - 9 %）より大きい 17%もの圧縮性をもつことが分かった。ここからC2-like相は整
合相よりも量子液晶相である可能性が高いと考えられる。
もっとも高い密度域（9.33, 11.01, 13.63 nm−2）では、強磁性的な熱容量を観測し、２

層ヘリウム系で見られた第１層目の格子に不整合な三角格子をもつ高密度強磁性固体と
同様の温度依存性を示すことが分かった。



我々は、4.74 nm−2付近で、これまで報告された事のない新たな量子相を発見した（C3

相）。この相は２つの遷移領域でフェルミ液体相、及びC2-like相と隔てられており、2 %以
下の非常に狭い面密度範囲で存在する。この事実からC3相が”真の”整合相であると期
待される。２層ヘリウム系ではまだ液体層であるような低い面密度で整合相が安定化で
きる要因として、下地の第２層目 HDが作る周期ポテンシャルの振幅が第１層目 3Heの
それの３倍程度大きい点が挙げられる。C3相の磁気比熱は T = 21 mK で広いシングル
ピークをもち、低温では C ∝ T 2/3 という非常に特異な温度依存性が 0.3 mK まで観測さ
れた。我々はまた過去に測定された帯磁率 (χ) [8, 9] の結果が、原著者らは指摘していな
かったものの χ ∝ T−1/3 とやはり特異な温度依存性を示すことを見出した。これらの事
実は、C3相の磁気基底状態がギャップレスQSLであり、マヨラナフェルミオンなどの新
規な素励起を持つことが期待される。
低密度域 (ρ ≲ 4.2 nm−2)では、フェルミ液体に特徴的な C = γT の熱容量が観測さ

れた。この γ から求まる 3He準粒子の有効質量m∗ は密度とともに増加し 4.2 nm−2 で
m∗/m = 4.4± 0.3 まで増大する。もっとも低密度の液体領域 (0.10 ≲ ρ ≲ 0.7 nm−2)にお
いて、γ係数が相互作用のないフェルミ気体の値よりも小さいことから自己凝集液体が形
成していることを観測した。臨界密度の値 (0.7 nm−2)はグラファイト上 1 - 3 層目で観測
された値 [1] と定量的に一致するが、下地のポテンシャルが自己凝集相の安定化に本質的
な役割を果たすとする最近のモンテカルロ計算の結果と矛盾する。
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Chapter 1

Introduction

A wide variety of studies have been performed on low dimensional quantum systems,
through theoretical and experimental approaches. These systems have revealed many
interesting phenomenon which cannot be seen in the bulk three dimensional (3D) systems,
thanks to enhanced quantum fluctuations or interparticle correlation. Here we show some
examples.

In two dimensional (2D) systems with continuous symmetry, the finite temperature
phase transition to a state with long range order is prohibited, which is known as the
Mermin-Wagner theorem. However, Kosterlitz and Thouless predicted the finite temper-
ature phase transition (KT transition) between vortex-antivortex bound and unbound
states [1]. The KT transition was experimentally observed in a superfluid 4He thin film
[2]

The 2D electron systems in the inversion layer of a MOSFET in high magnetic field
have quantised energy levels (Landau levels), and its Hall resistance is also quantised in
units of h/e2, where h is Planck constant and e is the elementary charge [3]. Later, the
fractionalized quantisation of the Hall resistance due to strong electron-electron interac-
tions was discovered [4]

High temperature superconductivity was first found in the cuprate La2−xBaxCuO4 [5].
In this material quasi-2D CuO planes become.

Helium three (3He) monoatomic layer physisorbed on atomically flat graphite sub-
strates is an ideal system to study strongly correlated fermions with spin S = 1/2. In
this system one can easily change the areal density to a large extent without imposing
lattice distortion, and the 3He film shows a variety of quantum phases depending on its
density. The 2nd layer low density solid phase (C2 phase) is especially interesting, be-
cause this phase is believed to be the commensurate solid with the triangular lattice, and
its nuclear spin system is known as the candidate of a quantum spin liquid (QSL) state
[6]. The magnetic susceptibility of this phase shows the gapless behavior down to 10 µK
[7]. The magnetic specific heat shows T -linear behavior, which also indicates the gap-
less excitations. However, this T -linear behavior is observed within the relatively limited
temperature range, so it is still unclear whether this is the behavior at low T limit. By
replacing the 1st layer helium by a bilayer of HD molecule, one can enhance the exchange
interaction among 3He atoms on the topmost layer, thanks to the lower density of the
second layer HD. It is advantageous to investigate the low T behavior. However, in spite
of the advantage, the thermodynamic studies of the 3He films on a bilayer of HD are
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limited. Moreover, the phase diagram of the 3He layer on the HD is not well understood
compared with the bilayer 3He systems.

In this thesis, we report the results of heat capacity measurements on 3He on a bilayer
of HD in wide range of temperature and density region (0.15 < T < 90 mK, 0.10 < ρ <

13.63 nm−2), in order to clarify the thermodynamic property of the QSL state at low T
limit, and to reveal the quantum phase diagram of this system.

The thesis is organized as follows. In Chapter 2 the background knowledge related to
this work is briefly reviewed. In Chapter 3 the experimental apparatus and methods of
heat capacity measurements are described. In Chapter 4 how to prepare a bilayer of HD
and 3He films is described. The results of our heat capacity measurement are described
from Chapter 5 to 8. The quantum phase diagram of 3He/HD/HD/gr at T = 0, revealed
in this work, is shown in Fig.1.1. In Chapter 5 the frustrated magnetism of the C2-
like and IC phases are discussed. In Chapter 6 the existence of a new quantum phase
which have not been reported (the C3 phase in the figure) and its unconventional nuclear
magnetism are discussed. In Chapter 7 the critical behavior of the normal Fermi liquid
near localization are discussed. In Chapter 8 the liquid puddles in the 1st and 2nd layer
3He on HD are reported. In Chapter 9 the summary of this work and future prospects
are described.

Liquid

C3 + C2

IC
(Ferromagnetic)

C3

(New QSL)

Puddle

Puddle Liquid

� ��� ���

����

� ���

C2-like
(QSL, RS?)

��� ����	

C2+IC ?

Transitional

1st layer

2nd layer

ρ3He (nm-2)

Fig. 1.1: T = 0 phase diagram of 3He film on graphite preplated with a
bilayer of HD. QSL and RS represents the quantum spin liquid and the
random singlet.
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Chapter 2

Background

2.1 Helium-helium and helium-graphite interactions

Helium atom

0.2 0.3 0.4 0.5 0.6 0.7
-20

-10

0

V
  
(K

)

r  (nm)

He-He
 Lennard-Jones
 Aziz

He-H2
 van den Berge 

Fig. 2.1: Interatomic potentials
between two helium atoms.
The dashed line is the Lennard-
Jones potential, and the red
solid line is the Aziz potential
(Ref.[8]). A potential between
a helium atom and a hydrogen
molecule is also plotted as the
blue solid line (Ref.[9]).

Helium atom is an element with atomic number 2, which have two electrons in 1s
orbital. Helium is the smallest atom which has closed shell and spherical symmetry.
There are two stable isotopes of helium, namely, 3He and 4He. 3He is fermion with
S = 1/2 nuclear spin and 4He is Boson with no nuclear spin.

The interatomic interactions between helium atoms are electrical dipole-dipole interac-
tion (Van der Waals force) if the atomic distance is large. Although helium has spherical
symmetry, the fluctuating charge distribution causes the weak attractive force. However,
if the atomic distance is small, the interactions are dominated by strong repulsion due to
overlap of the electronic orbitals. These interactions can be expressed as the Lennard-
Jones (LJ) potential

V (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
(2.1)
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where, ϵ = 10.22 K, σ = 0.2556 nm. The LJ potential is shown in Fig.2.1. It is known
that the potential proposed by Aziz et al. [8] shows good agreement with the experimental
results rather than the LJ potential. The Aziz potential is also shown in Fig.2.1. The
potential between a helium atom and a Hydrogen molecule by van der Bergh [9] is also
plotted in Fig.2.1 as the blue solid line.

Thanks to its weak interaction and extremely large zero point motion due to small
atomic mass, helium is the only material which do not solidify even at T = 0 under 1
atm. Helium solidify at about 29 bar for 4He and 35 bar for 3He at T = 0. Even in the
solid phase, the large zero point motions enable the exchange between. That is why the
solid helium is called “quantum solid”. Moreover, due to its strong hard core repulsion,
exchange interactions among more than two atoms cannot be ignored.

Graphite substrate

��������
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Fig. 2.2: (a) Schematic view of crystalline structure of graphite with
the common ABAB stacking. (b) Graphite lattice seen from the c-axis.

Graphite is a layered material composed of carbon atoms. Honeycomb graphene sheets
are piled up with ABAB type stacking as shown in Fig.2.2 (a). In this study, we used
exfoliated graphite Grafoil [11] as an adsorption substrate for 3He monolayers. Grafoil is
often used for studies on Helium films because it has quite large specific surface area (≈
20 m2/g ). Grafoil consists of small platelets of graphite. A typical platelet size is 10 –
20 nm, and a typical thickness is 10 graphene sheets. A scanning tunneling microscopy
(STM) study observed that the surfaces of the platelets are atomically flat except about
10 % of inhomogeneities [12]. Figure 2.3 shows the adsorption potentials between graphite
and a helium atoms as a function of the distance from graphite surfaces z [10, 13]. A, S,
SP in the figure represent positions which are shown in the inset picture. The deepest
potential is about −200 K at the point S. A helium atom feels the corrugated potential
of graphite. The amplitude of the potential corrugation is approximately 10 K for the 1st
layer but decreases rapidly as z increase.
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Fig. 2.3: The adsorption potential between a helium atom and a
graphite surface (Ref.[10]). A, S, and SP represent graphite symme-
try points described in the lower right picture The dashes line is the
probability density of 4He in the laterally averaged potential. The ar-
rows at the right of the graph show enegy levels of 3He and 4He

2.2 Quantum phases of various 3He monolayers ad-

sorbed on graphite

Helium monolayers adsorbed on the graphite surface have been studied intensively. These
are ideal test grounds for studying 2D quantum systems, thanks to their high purity and
atomically flat surfaces of the graphite substrate. Figure 2.4 shows the calculated density
distribution of the 4He films on Grafoil [14]. The 1st and 2nd layers are well isolated and
regarded as good 2D systems.

Figure 2.5 shows the three different types of 3He monolayers: the 1st layer 3He
(3He/gr), the 2nd layer 3He (3He/3He/gr and 3He/4He/gr), and the 3He monolayer on
graphite preplated with a bilayer of Hydrogen (3He/H2/H2/gr and

3He/HD/HD/gr). By
changing underlayers 3He monolayers feel different potential corrugations. Table 2.1 shows
the densities of atom/molecule layers below the topmost 3He layers, ρsubstrate, and the ones
of the C2 phases ρC2. The

3He/HD/HD/gr system has the C2 phase whose density is lower
than the bilayer 3He systems. The C2 phase with even lower density is expected for the
3He/H2/H2/gr system which has the smallest value of ρsubstrate. However, among three
isotopes of hydrogen molecules (H2, HD, D2), H2 and D2 are not preferable to be used
in the experiments at millikelvin temperatures or lower, because they release the large
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Fig. 2.4: Density profile of 4He on a graphite surface. z is the distance
from the top graphene layer (Ref.[14])

ortho-para conversion heat [15]. The difference in the density of 3He momnolayers strongly
affects exchange interactions J among 3He atoms on the topmost layer. The interaction
J is enhanced, and J of the C2 phase of 3He/HD/HD/gr is approximately 10 times larger
than that of the bilayer 3He systems [7].

Fig. 2.5: Schematic pictures of 3He monolayers on (a) bare graphite
surface (3He/gr), (b) graphite preplated with a helium monolayer
(3He/3He/gr and 3He/4He/gr), and (c) graphite preplated with a bi-
layer of Hydrogen (3He/H2/H2/gr and

3He/HD/HD/gr)

Figure 2.6 compares the corrugated potentials between 3He/HD/HD/gr and 3He/3He/gr
systems [22]. The corrugated potentials of a bilayer of HD and monolayer of 3He on
graphite is shown in Fig.2.6 (a). The x-axis is the distance in the direction indicated by
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3He/3He/gr 3He/4He/gr 3He/HD/HD/gr 3He/H2/H2/gr
3He/D2/D2/gr

ρsubstrate (nm
−2) 11.6 [16] 12.0 [16] 9.1−9.2 [17, 18] 8.65 [19] 9.32 [19]

ρC2 (nm−2) 6.4 [6] 6.8 [20] 5.2−5.5 [18, 21] (4.9) (5.3)

Table 2.1: Listed densities of atom/molecule layers below the topmost 3He layers,
ρsubstrate, and the densities of the C2 phases ρC2. The C2 phases of 3He/H2/H2/gr and
3He/D2/D2/gr have not been observed experimentally, so ρC2 of them are estimated as
4/7 of ρsubstrate.
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Fig. 2.6: (a) Potential corrugations which 3He atoms on the topmost layer feel. The red
and blue symbols represent the potential corrugation of a bilayer HD on graphite and a
monolayer 3He on graphite, respectively. The direction of the x-axis is indicated as the
black arrow in (b). The origin of the x-axis is at the top of underlying HD/3He.

the black arrow in Fig.2.6 (b), where the open circles represent triangular lattices of the
HD or 3He layer. The origin of the x-axis is at the top of underlying HD/3He. In this
calculation the densities of HD and 3He underlayers are 9.1 and 11.6 nm−2, respectively.
The averaged potential of the 2nd HD layer is weaker than the 1st 3He layer due to the
longer distance from graphite surface. The amplitude of the potential corrugation of the
2nd HD layer is ≈ 15 K, three times greater than that of the 1st 3He layer of ≈ 5 K. What
causes the stronger potential corrugation in the HD layer is the larger lattice constant
and deeper minimum of the helium-hydrogen potential (see Fig.2.1).

In the following, Phase diagrams of the 3He monolayers are introduced.

2.2.1 1st layer 3He on graphite (3He/gr)

Figure.2.7(a) shows the phase diagram of the 1st layer 3He on graphite.

At density below 4.3 nm−2, the 3He layer is in the Fermi liquid phase [24, 28]. Large
zero-point energy of 3He overcomes the potential corrugation from the graphite substrate.
In the lowest density range (0 < ρ < 0.8 nm−2) the liquid do not cover the whole surfaces
of graphite and forms the self-condensed phase by interatomic interactions among 3He
atoms [23]. At ρ > 4.3 nm−2 , the Fermi liquid and a commensurate solid phase coexist.
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Fig. 2.7: Phase diagrams of (a) the 1st layer [23, 24] and (b) the 2nd
layer 3He films on graphite [16, 23, 25]. L, F, C, DW, and IC denote
liquid, fluid, commensurate solid, domain wall, and incommensurate
solid, respectively. A + B denotes two phase coexistence region.

The fraction of the solid phase increases with increasing density, and formation of the
commensurate solid phase is completed at 6.37 nm−2. This commensurate solid phase
is called “

√
3 ×

√
3 phase” in which 3He atoms occupy on one third of the central sites

of the hexagonal lattice of graphite, as depicted in Fig.2.8. This structure is interpreted
by the three state Potts model [29]. The model predicts the critical exponent of heat
capacity of 1/3, and the value is experimentally observed [30]. The commensurate solid
appears only in the 2D phase diagram because this phase is stabilized by the potential
corrugation of the graphite substrate. The

√
3 ×

√
3 structure melts above 3.0 K [30].

The
√
3×

√
3 solid can accommodate 2 % of vacancies but collapses easily by adding 3He

[31]. The structure between 6.37 and 7.8 nm−2 is considered to be the striped domain
wall phase like H2 or D2 monolayers on graphite [32, 33]. At ρ > 7.8 nm−2, the 3He layer
forms the incommensurate (IC1) solid. In this solid 3He atoms form a triangular lattice
but the lattice is not registered to the lattice of graphite substrate [34]. A promotion to
the 2nd layer occurs at 10.9 nm−2. A neutron diffraction measurement demonstrated that
the density of the 1st layer increases by 5 % even after the layer promotion [35], because
of additional pressure applied by the 2nd 3He layer.
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Fig. 2.8: Structure of the
√
3 ×√

3 commensurate phase of adsorbent
(circle) in the submonolayer. the hon-
eycomb lattice of the top graphite sur-
face is also shown. The adsorbent
atoms occupy 1/3 of the hollow site
of the hexagonal lattice.
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Fig. 2.9: Two different structures for the 4/7 commensurate phase pro-
posed by (a) Elser (Ref.[26]) and (b) Takagi (Ref.[27]). The black open
circles and colored ones are the 1st and 2nd layer particles. Symbols
with different colors represent the different types of adsorption sites.

2.2.2 2nd layer of 3He on graphite (3He/3He/gr and 3He/4He/gr)

Figure.2.7(b) shows the 2nd layer phase diagram [16]. The vertical axis represents the
total density of 3He including the 1st layer. This phase diagram is qualitatively similar
to that of the 1st layer.

At 0 < ρ < 0.6 nm−2, the self-condensed liquid appears like the 1st layer. At higher
densities the 3He film forms Fermi liquid phase spreading over the whole surface of the
substrate. As the density increase, the effective mass of the 3He quasiparticlesm∗ diverges,
which indicate the Mott-Hubbard transition [25, 36]. What follows after this effective mass
enhancement is still controversial. A study on the 3He/3He/gr system indicated that
solidification is 1st order [25], but an intensive study on 3He/4He/gr system dieplayed
that the transition cannot be explained by such a simple picture [36].

The formation of the C2 phase is completed at 6.4 nm−2 for 3He/3He/gr [25], and 6.8
nm−2 for 3He/4He/gr [20, 36]. The density of each system is 4/7 of that of underlayer.
This phase is believed to be a commensurate phase The melting temperature of the C2
phase is 1.0 – 1.1 K, lower than that of the

√
3×

√
3 phase [16], which means the stability

of the C2 phase is suppressed compared to the
√
3×

√
3 phase. From the density ratio of

the 2nd to the 1st layer, or its lattice structure, the C2 phase is called the 4/7 or
√
7×

√
7

phase. Two types of lattice structures of the 4/7 phase were proposed by different authors
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Fig. 2.10: Heat capacities of a bilayer of 3He on ZYX graphite substrate
[16] in two-phase coexistence regions between (a) liquid-C2, and (b) C2-
IC2 phases. (c) The melting peaks of the C2 phases on ZYX and Grafoil
substrates. (d) The C2 peak temperature Tpeak and height Cpeak. At
the top of the panel, T = 0 phase diagram is shown.

as shown in Fig.2.9. (a) is by Elser et al. [26] and (b) is by Takagi [27]. Both structures
have two different adsorption sites. However, a direct observation of the lattice structure
by neutron diffraction measurements has not been successful.

Recent melting heat capacity measurements on bilayers of 3He and 4He on ZYX
graphite substrate by Nakamura et al. were inconsistent with the traditional picture
of the 4/7 commensurate phase. heat capacities of the bilayer of 3He is shown in Fig.2.10.
The C2 peak exists over wide range of areal density (∆ρC2/ρC2 ≈ 0.08−0.09), but narrow
density range is expected for the commensurate solid. This result suggests that the C2
phase is not the commensurate solid with totally broken symmetry but a new kind of
state “quantum liquid crystal” in which rotational and/or translational symmetries are
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partially broken.

At the highest densities (ρ > 9.5 nm−2), the incommensurate solid (IC2) phase is
formed like the 1st layer. This solid has a triangular lattice which is not commensurate
to the triangular lattice of the 1st layer IC solid [34]. The phase transition between the
C2 and IC2 phases is the 1st order [16, 37].

2.2.3 3He monolayer on graphite preplated with a bilayer of
Hydrogen (3He/H2/H2/gr and 3He/HD/HD/gr)

Fig. 2.11: High-T phase diagram of the 3He monolayer adsorbed on
Grafoil preplated with a 2.15 layer of H2, determined by heat capacity
measurements (Ref.[38]) Note that the reduction of the surface area to
85 % of the total area due to the excess H2 is taken into account to
determine the 3He densities. The solid line corresponds to the melting
line of a solid phase.

Compared with the bilayer 3He systems (3He/3He/gr and 3He/4He/gr), the phase
diagram of the 3He monolayer on a bilayer of hydrogen is less investigated.

The phase diagram of the 3He monolayer on a 2.15 layer of H2 at T > 0.2 K is
studied by Ramos et al. through heat capacity measurements [38]. Their results are
shown in Fig.2.11. Although the low density commensurate phase was reported in the
4He/H2/H2/gr system [38] at around 6 nm−2, there were no sign of such a phase in 3He
at least down to 5.8 nm−2 [38]. Note that the reduction of the surface area by 15 % due
to the excess H2 was considered to calculate the 3He densities.

The 3He/HD/HD/gr system was studied for T < 60 mK. At 1 ≤ ρ ≤ 5 nm−2,
the Fermi liquid behavior was observed [39]. The divergence of the quasiparticle effective
mass m∗ with increasing density up to m∗/m ≈ 13 indicated the Mott-Hubbard transition
towards the critical density of nc = 5.1 nm−2. The solidification was reported as weakly
the 1st order transition [39]. A NMR measurements by Siqueira et al. observed that
the solidification was completed at 5.2 nm−2 [21], but a heat capacity study by the same
group reported that the 3He layer solidified at 5.4 - 5.5 nm−2 [18]. A NMR study by
Ikegami et al. observed the remnant liquid contribution at 5.2 nm−2 [17]. At 6.8 nm−2
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Fig. 2.12: Heat capacities of the 3He monolayers for the 3He/HD/HD/gr
system in the solid phase (Ref.[18]).

the layer promotion to the 2nd 3He layer (or 4th layer including the HD layers) occurs
[18]. At 6.8 < ρ < 7.5 nm−2, 3He in the 2nd layer forms the self-condensed liquid.

There was an NMR study of the 3He film on a trilayer of HD ( 3He/HD/HD/HD/gr )
in order to make the quantum solid with even smaller densities [40]. However the results
agreed excellently with the bilayer HD system. This means that the potential corrugations
of a bilayer and trilayer of HD is almost the same.

2.2.4 Amorphous 3He

In this thesis we study 3He monoatomic layer adsorbed on atomically flat surfaces of the
graphite substrate. However, in reality, not all 3He introduced is adsorbed on flat surfaces,
but a part of 3He is adsorbed on the surface heterogeneities such as platelet edges. In
the case of Grafoil, which is used in this work, 10 - 15 % of the total surface area is the
heterogeneities [12]. 3He adsorbed on the surface heterogeneities is believed to be in the
amorphous solid state because of the surface roughness. Hereafter this kind of solid 3He
is called “amorphous 3He”. The existence of amorphous 3He is pointed out by a number
of experimental studies on 3He adsorbed on graphite [17, 23, 25, 39, 41]. It is believed
that physical properties of the amorphous 3He can be explained by a model proposed by
Golov and Pobell [42]. Their model is originally built to explain the weak temperature
dependence of heat capacities of 3He on vycor glass, and is thought to be valid for 3He
adsorbed on rough surfaces.

The Golov-Pobell model assumes the random distribution of 3He interatomic distances
which results in the broad distribution of interatomic exchange J , and J fulfill

dN(J)

d ln J
= const., (2.2)
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Fig. 2.13: Schematic representation of the distribution of exchange pa-
rameter dN/d ln J on homogeneous (a), moderately inhomogeneous (b),
and extremely inhomogeneous (c) substrates (Ref.[42], marked are the
phases: L, liquid; cSi, crystalline solid in the 1st and 2nd layers; aS,
amorphous solid).

where N(J) is the distribution of spins with exchange interaction J . Since the entropy
change due to ∆N spins with S = 1/2 can be written as ∆S = ∆NkB ln 2, the magnetic
heat capacity is expressed as

C(T ) =
TdS

dT
= kB ln 2

dN(T )

d lnT
, (2.3)

where N(T ) is the effective number of disordered spins at temperature T . By assuming
that the spins ordered at the ordering temperature T ≈ J/KB do not interact with other
spins below the temperature, Eq. (2.2) become

dN(T )

d lnT
= const. (2.4)

From Eqs.(2.3) and (2.4), the heat capacity is independent of the temperature. If the
range of the distribution is from Tl to Th, the magnitude of heat capacity C0 is

C0 = kB ln 2
N0

ln(Th/Tl)
. (2.5)

The J distribution described as Eq.(2.2) also yield the magnetic susceptibility χ0 as
follows,

χ0(T ) =
c0
T

ln(T/Tl)

ln(Th/Tl)
, (2.6)

where c0 is the curie constant.
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Fig. 2.14: Behavior of low density 3He layer directly adsorbed on an ex-
foliated graphite (Grafoil) surface (Ref.[23]). (a) Heat capacities of the
1st layer of 3He at densities from 0.15 to 1.95 nm−2 from bottom to top.
The solid lines are fittings to Eq(.2.7). The dashed line is a heat capac-
ity expected for the degenerated Fermi gas covering the whole surface
of the substrate. (b) Density dependence of the amount of amorphous
3He. (c) Density dependence of the γ coefficients of the T -linear term.
The open circles are from another study [43]. The horizontal dashed
line represents the value of the noninteracting Fermi gas.

Most previous studies on the 3He monolayer on graphite adopted theGolov-Pobell
model and assume the amorphous 3He having the temperature independent term of heat
capacity or magnetic susceptibility described as Eq.(2.6) [17, 25, 39]. Morishita et al.
reported that the temperature dependence of the amorphous 3He from heat capacity
measurements of the liquid phases of the 1st and 2nd (3He/3He/gr) layers on Grafoil
[41, 44]. They also reported that the amorphous 3He has the layer structure. Sato et al.
measured the 1st 3He layer on Grafoil at very low densities (ρ < 2 nm−2, Fig.2.14(a)) and
they directly observed the amorphous heat capacity [23]. The heat capacity data up to
0.45 nm−2 slightly decrease with increasing temperature but have no feature characteristic
to the Fermi liquid (C ∝ T ). The weak T dependence of the heat capacity is roughly
consistent with the Golov-Pobell model. Sato et al. assumed that the heat capacity at
0.45 nm−2 is a typical behavior of the amorphous 3He, and demonstrated that the total
heat capacity of 3He monolayer at ρ < 2 nm−2 is well fitted to

C(T ) = γT − αT 2 + βC0.45(T ). (2.7)
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Therefore, the heat capacity of 3He adsorbed on the flat surfaces of the substrate can be
extracted when the amorphous contribution is properly evaluated and subtracted from
the total heat capacity. Figure 2.14 (b) and (c) show the density dependence of the
amorphous and 2D liquid 3He contributions. These figures indicate that the amorphous
3He component grows prior to 3He on the flat surfaces and is almost density independent
after the growth is completed at 0.6 nm−2. Low density 3He submonolayer in 3He/4He/gr
system is also studied [23]. This system does not show the amorphous heat capacity
unlike 3He/gr or 3He/3He/gr systems [41, 44]. The absence of the amorphous component
is thought to be because 4He, instead of 3He, is adsorbed on the surface heterogeneities.
The heat capacity and magnetization measurements on 3He/HD/HD/gr display the con-
tribution from the amorphous 3He [17, 18, 39], which means that HD do not reduce the
surface heterogeneities unlike 4He. The density dependence of the amorphous amount of
3He/HD/HD/gr system is estimated from the fitting assuming Eqs.(2.5) and (2.6). The
susceptibility measurements [17] indicated that approximately 10 % of the total 3He forms
the amorphous solid whose amount has the weak density dependence. However, the heat
capacity measurements [45] suggested that the amount of amorphous 3He increases by a
factor of ≈ 3 over the density range measured (1.0 – 5.0 nm−2).

2.3 Frustrated nuclear magnetism of solid 3He on

graphite

2.3.1 Nuclear magnetism of bulk solid 3He

��� ���

Fig. 2.15: (a) Magnetic phase diagram of bulk 3He of molar volume V
= 24.2 cc/mol. PP, LFP, and HFP are the paramagnetic, low field,
and high field phases respectively. The filled circles are from the NMR
measurements (Ref.[46]), the open circles from the melting pressure
measurements (Ref.[47]), and the filled squares from the heat capac-
ity measurements(Ref.[48]). (b) Spin lattice structure of the U2D2 and
CNAF phases, correspond to the LFP and HFP respectively(Ref.[49]).

As mentioned in Sec.2.1, the atomic exchanges among 3He atoms occur even in the
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solid phase. The typical exchange frequency is of the order of 107 Hz which is far smaller
than the Debye frequency of the order of 1011 Hz. This atomic exchanges cause the
interactions between the nuclear spins of 3He atoms. The nuclear spin system of the solid
3He has the unique magnetism which cannot be explained by the simple Heisenberg model

H = J
∑
<i,j>

Si · Si, (2.8)

where
∑

<i,j> is the sum of the nearest neighbor spin pairs.
Figure 2.15 shows the magnetic phase diagram of the b.c.c. solid 3He of the molar

volume V = 24.2 cc/mol [49]. In zero magnetic field the phase transition between the
high T paramagnetic phase (PP) and the low T antiferromagnetically ordered phase
(LFP) occur at T ≈ 1 mK. The transition is the first order [50], which is against the
Heisenberg model which predicts the second order phase transition. The LFP is not the
antiferromagnetic state with two simple cubic sublattices predicted by the Heisenberg
model. The NMR measurements on the single crystal b.c.c. 3He by Osheroff et al. show
the large zero field resonance frequency of ≈ 780 kHz [49]. It is the evidence of lacking
the cubic symmetry in the LFP. The high field phase (HFP) is not expected from the
Heisenberg model, neither. The spin structures of the LFP and HFP is known as the
U2D2 and CNAF (Canted Normal AntiFerromagnetic) state as shown in Fig.2.15(b).

The key to the unique nuclear magnetism of the bulk solid 3He is the Multiple Spin
Exchange (MSE) interactions [51, 52]. Because the zero-point motion of a 3He atom is
quite large, the interatomic exchanges occur even in the solid phase. When two atoms
exchange, the hard core potential between 3He atoms inevitably pushes out the surround-
ing atoms from their equilibrium positions. The effect on the surrounding atoms can be
reduced by the cyclic exchange among three or more atoms at a same time. The MSE
Hamiltonian is expressed as follows;

H = −
∑
n

Jn(−1)nPn (2.9)

where Jn (> 0) is the exchange interaction of the n-th order, Pn is the permutation
operator of n spins. Even number permutations favor antiferromagnetism and odd number
permutations ferromagnetism. Competence among the MSE interactions cause strong
magnetic frustration resulting in the fascinating nuclear magnetism of 3He.

2.3.2 Multiple spin exchange in 2D

The MSE interactions are important not only for the bulk solid 3He but also the solid
3He monolayer.

Figure 2.16 shows the PIMC (Path Integral Monte Carlo) calculation of each Jn of the
2D 3He system as a function of areal density ρ [53], up to the 6th order. In this calcula-
tion the substrate potential is ignored. Each Jn has strong ρ dependence and decreases
exponentially with the density. The Grüneisen constant αP of each MSE parameter is
different. Basically the higher order exchange has the larger exponent, but J3, not J2, has
the smallest exponent. This means that at higher density J3 is dominant and therefore
the ferromagnetic nature is stronger. On the other hand, at lower density the competition
among MSE interactions are enhanced and the system is strongly frustrated.
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Fig. 2.16: Density dependence of
the MSE interactions Jn of the 2D
3He system from the PIMC calcu-
lation (Ref.[53]). These parameters
changes exponentially with ρ, but
the exponents αP are different. At
low densities the system is highly
frustrated, but at high density J3
becomes dominant because of the
smallest αP.

To obtain the MSE parameters from the experimental results, the high temperature
series expansion (HTSE) analysis is useful. Roger calculated the HTSE parameters for
the logarithm of partition function ln(Z) with the MSE Hamiltonian including up to the
six-particle exchange term [54]. The partition function ln(Z) is expressed as

ln(Z)

N
=
∑

an,λ,µ,ν

[
J

2

]n−λ−µ−ν [
J4
8

]λ [
J5
16

]µ [
J6
32

]ν
βn

n!
, (2.10)

where J = J2 − 2J3 is an effective two spin exchange. He calculated an,λ,µ,ν up to the
fifth order and an,λ,0,ν up to the sixth order. The HTSE of heat capacity is deduced from
Eq.(2.10) the following relations,

C = −T
∂

∂T

(
∂F

∂T

)
= −T

∂

∂T

[
∂

∂T
{−T ln(Z)}

]
. (2.11)

The leading terms of the HTSE of the heat capacity and magnetic susceptibility are
written as

C =
9

4
NkB

(
JC
T

)2

, (2.12)

χ =
c

T − θ
≈ cθ

T
,
3cJχ
T

(2.13)

Jχ = θ/3, (2.14)

where N is the number of spins, kB is the Boltzmann constant, c is the Curie constant,
and θ is the Curie-Weiss temperature. The expressions of JC and Jχ by Jn are as follows
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Fig. 2.17: Density dependence of the magnetization M of the 3He film
on graphite at T = 4.6 mK (Ref.[56]). The promotion to the 2nd layer
occur at ρ = 10.9 nm−2. The solid line is M of free spins. At 11 ≲ ρ ≲
17 nm−2 M is a constant because the 2nd layer 3He is in the liquid. A
narrow plateau around the C2 phase (ρ ≈ 18 nm−2) below the solid line
means that the interactions are antiferromagnetic. At higher density M
steeply increases, and the interactions become ferromagnetic.

[55]

JC =

(
J +

5

2
J4 −

7

2
J5 +

1

4
J6

)2

+ 2

(
J4 − 2J5 +

1

16
J6

)2

+
23

8
J2
5 − J5J6 +

359

384
J2
6 (2.15)

Jχ = J + 3J4 − 5J5 +
5

8
J6. (2.16)

2.3.3 previous experiments

Density variation of magnetization

Figure 2.17 shows the magnetization M of a 3He film on graphite at T = 4.6 mK as a
function of the total 3He density [56]. The promotion to the 2nd layer occurs at ρ = 10.9
nm−2. M is independent of the density at 11 < ρ < 17 nm −2, because the 2nd layer
3He is in the Fermi liquid phase. Slightly below the C2 density (ρ = 17.8 nm−2), M
increases and there is a narrow plateau around ρ = 18 nm−2. Here M is still smaller than
the expected value for free spins, shown as the solid line in Fig.2.17, and therefore the
interactions are antiferromagnetic. At ρ ≳ 19 nm−2 M increases drastically and shows a
ferromagnetic peak. In this density range the 3He film is in the IC2 phase. The density
dependence of M is qualitatively consistent with the theoretical calculation mentioned
above, which predicts the ferromagnetic nature is stronger at higher densities [53].
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IC2 phase
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Fig. 2.18: (a) The magnetic heat capacity data of the IC2 solid 3He on
4He plated Grafoil at ρ = 11.30 nm−2, after subtracting the overlayer liq-
uid contribution shown as the dashed-dotted line in the inset (Ref.[37]).
At T ≪ Tpeak the data follow C ∝ T (the dotted line), indicating 2D fer-
romagnetic spin wave excitations. The dashed line is the HTSE fitting of
the MSE hamiltonian. (b) An effective two spin exchange J = J2 − 2J3
as a function of the total 3He density. The inset shows the higher order
exchanges K/J = (J4 − 2J5)/J and ν = J6/J4. The filled circles are
deduced from the heat capacity data of 3He/4He/gr [37]. The crosses
(Ref.[6]) and the open squares/diamonds (Ref.[57]) are from the heat
capacity data of 3He/3He/gr. The open triangles (Ref.[57]) are from the
magnetic susceptibility data of 3He/3He/gr.

The specific heat measurements of the IC2 phases in 3He/3He/gr [6, 57] and 3He/4He/gr
[37, 58] are quantitatively consistent with the PIMC calculation of the MSE model [53].
Fig.2.18 (a) shows the magnetic heat capacity of the IC2 phase at ρ = 11.30 nm−2 on
Grafoil preplated with a 4He monolayer of 12.0 nm−2. There is the third layer liquid 3He,
but its contribution is already subtracted. The total heat capacity is shown in the inset of
Fig.2.18 (a). The C ∝ T behavior, guided by the dotted line in Fig.2.18(a), at T ≪ Tpeak

is consistent with 2D ferromagnetic spin wave excitation. The MSE parameters deduced
from the HTSE fitting of the heat capacity data (the dashed line in Fig2.18(a)) are shown
in Fig.2.18(b). Here, J = J2 − 2J3 is the effective two particle exchange. The higher
order MSE parameters, K/J = (J4 − 2J5)/J and ν = J6/J4, are also shown in the inset
of Fig.2.18 (b). As the density increases J4, J5, and J6 decrease faster than J . Therefore
finally the effect of J is dominant and J is negative (ferromagnetic interactions). As the
density increase, the temperature dependence of the heat capacity of the IC2 phase is
similar to that of Heisenberg model with ferromagnet interactions on a Triangular lattice
(HFT model) [58]. This similarity indicates that the IC2 phase is hardly affected by
potential corrugation of the 1st layer. The Grüneisen parameter α of each Jn deduced
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from the experimental data [58] agrees well with the value predicted by the MSE model
ignoring the substrate potential [53].

C2 phase

Fig. 2.19: Magnetic heat capacity of bilayer 3He films at densities near
the C2 phase (Ref.[6]). The total areal densities are given in the figure.
A characteristic broad double-peak structure is observed; a high-T peak
around T = 1.8 mK, and a low-T peak around 0.3 mK. Below the low-T
peak the heat capacity is proportional to T .

In the C2 phase, the total exchange interactions are antiferromagnetic as shown in
Fig.2.17. Due to the low density, this phase is expected to have the strongly magnetic
frustration. Nuclear spin system of the C2 phase actually displays anomalous magnetic
properties.

The heat capacities of the C2 phase of 3He/3He/gr have a characteristic broad dou-
ble peak structure [6]. A rounded high-T peak at around 1.8 mK indicates short range
spin ordering. At T ≈ 0.3 mK the low-T peak appears. Below the low-T peak, the
heat capacity decreases and the temperature dependence seems to satisfy C ∝ T down
to 90 µK. This behavior indicates the gapless elementary excitations. The C2 phase of
3He/3He/gr also has the heat capacity with the double peak structure [20, 36]. These
features are totally inconsistent with the Heisenberg model with antiferromagnetic inter-
actions on a triangular lattice (HAFT model) which predicts the C ∝ T 2 behavior at
low T and a broad single peak [59]. The heat capacity of the solid 3He monolayer of the
3He/HD/HD/gr system has a broad peak around T = 5 mK [18]. For this system, the
double peak or C ∝ T behavior is not observed down to 0.8 mK.

The previous magnetization measurements on the C2 phase of 3He/4He/gr are shown
in Fig.2.20 [7]. Above 10 mK, the data satisfied the Curie-Weiss law M ∝ T−1. The
Curie-Weiss temperature θ was −0.9 mK. Below 10 mK the temperature dependence of
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Fig. 2.20: Magnetization measurements on the 3He monolayer in the
C2 phase of the 3He/4He/gr system (Ref.[7]). There is no anomalies
indicating finite-T magnetic phase transitions or a spin gap down to
10 µK. The solid line represents a Curie-Weiss behavior with the Weiss
temperature of −0.9 mK. The dotted line is an expected behavior if the
magnetic ground state has a spin gap of 80 µK (Ref.[60]).

M was weaker. No anomalies indicating finite temperature magnetic phase transition
were observed down to T/|θ| ≈ 0.01. The data was clearly inconsistent with the behavior
if the magnetic ground state has a spin gap of 80 µK, shown as the dotted line in Fig.2.20
[60]. The magnetization data of 3He/HD/HD/gr, shown in Fig.2.21 also had no anomalies
related to phase transition or a spin gap down to 10 µK [7, 17].

These experimental results strongly suggest that the magnetic ground state of the C2
phases is the QSL state with zero or an extremely small (< 10 µK) spin gap.

UUUD phase under magnetic field

Figure 2.22 shows the magnetization of the C2 phase of 3He/4He/gr as a function of the
applied magnetic field parallel to the graphite substrate at T = 0.7 mK. Before M fully
saturates at H0 =10 T, a narrow plateau of M = 1/2Msaturate appears between 1.2 and
2.2 T. This 1/2 plateau is evidence of the UUUD phase. The structure of this phase is
shown in Fig.2.22. The unit cell is an parallelogram in which three spins are up and one
is down. The UUUD phase is predicted by two theories in the frame of the MSE model.
One considers up to 4-spin exchanges [62] and the other considers up to 6-spin exchanges
[61]. The experiment and theories are inconsistent in the width of the plateau and the
saturation field. The difference is attributed to the difference in J6.
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Fig. 2.21: Magnetization measurements on 3He monolayers of the
3He/HD/HD/gr system from Ref.[17] (left) and Ref.[7] (right).There
is no anomalies indicating finite-T magnetic phase transitions or a spin
gap were down to 10 µK.

������
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�

Fig. 2.22: (a) Magnetization curve of the C2 phase of 3He/4He/gr at
0.7 mK. The M = 1/2 plateau between 1.2 and 2.2 T is the evidence
of the UUUD phase, predicted by the MSE model. The pink dotted
line is the theoretical calculation of the MSE model considering up to
6-particle exchange [61]. (b) Spin lattice structure of the UUUD phase.
The white arrow indicates the direction of the external magnetic field.

Theories for the QSL state of the C2 phase

The exact diagonalization studies of MSE Hamiltonian up to six-spin exchanges by Mis-
guich et al. predicts the QSL ground state [61, 63]. However, the QSL state predicted by
these caoculations has a spin gap of the order of J4/2, which contradicts the experimental
observations of the C2 phase.
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Motrunich et al. proposed another QSL state in their Variational Monte Carlo studies
on the MSE hamiltonian with up to 4-spin exchanges assuming the antiferromagnetic
effective 2-spin interactions [65]. They found the U(1) QSL state at J4/J2 ≳ 0.14. In this
QSL state, fermionic spinons form a Fermi surface, and therefore have gapless excitations.
This state has finite spin susceptibility at T → 0, and has an unusual behavior of the
specific heat satisfying C ∝ T 2/3 because the spinons are coupled to the U(1) gauge field.
However, this QSL state does not explain the properties of the C2 phase.

Though the MSE interactions are essentially important to understand the nuclear
magnetism of 3He monolayer systems, as seen in the IC phase and UUUD phase in the
magnetic field, the magnetism of the C2 phase is not fully explained by the MSE model. In
order to overcome the disagreement, some theories consider not only the MSE interactions
but also some additional effects. For example, the bond inequality of the 4/7 structure
[66], the hole doping (t-J-K model) [67], or the layer promotion [68]. Another possible
effect is the lattice disorder of the C2 phase, if it is not the solid but the QLC state
with partially broken symmetry (see Sec.2.2.2). The effect of the lattice imperfection may
explain the discrepancy. For example, an exact diagonalization study on the HAFT model
with randomness in exchange interactions J yields the QSL state having T -linear specific
heat [69]. This calculation assumed that the bond-independent uniform distribution in
the nearest neighbor couplings in [(1−∆)J, (1 + ∆)J ], .
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2.4 Normal Fermi liquid phase of 3He monolayer on

graphite

2.4.1 Landau Fermi liquid in two dimensions

A low density 3He submonolayer adsorbed on graphite is well described by the 2D Fermi
liquid theory. In the noninteracting Fermi gas, the heat capacity below the Fermi tem-
perature TF follows,

C =
∂E

∂T
=

π2

3
Dk2

BT, (2.17)

where D is the density of state. In the case of the 2D free fermion system, D is expressed
asD = mA/πℏ2, wherem is mass of a particle and A is the system surface area. Therefore
D is independent of the number of the particles. The heat capacity of the 2D free fermion
system is written as

C =
πk2

BmA

3ℏ2
T ≡ γ0T, (2.18)

where γ0 is called the Sommerfeld constant, and TF is,

TF (K) =
πℏ2

mkB
ρ = 0.504ρ (nm−2). (2.19)

In the Landau Fermi liquid theory, the interatomic exchange interactions are added to the
degenerate Fermi gas in adiabatic conditions. The elementary excitations of the Fermi
liquid are called quasiparticles. The number of the quasiparticles and that of the bare
particles have one to one correspondence. The effect of the interaction is expressed as the
enhancement of the quasiparticle effective mass m∗. The Fermi temperature is modified
to be

T ∗
F =

πℏ2

m∗kB
ρ =

m

m∗TF , (2.20)

and the heat capacity at T ≪ T ∗
F is,

C(T ) = γT, γ =
πk2

Bm
∗A

3ℏ2
=

m∗

m
γ0. (2.21)

The heat capacity of the 2D Fermi liquid is determined by two parameters, that is, the
effective mass enhancement m∗/m and the surface area A. Experimentally, the heat
capacity of the 3He layer in the Fermi liquid phase is known to follow

C(T )FL = γT − αT 2, (2.22)

where the T 2 term comes from the spin fluctuations [70].
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Fig. 2.23: (a): Heat capacities data of the Fermi liquid phase in 3He
monolayers on a bilayer of HD (Ref.[39]). They satisfy C ∝ T at low
T . The slope is enhanced at higher densities. (b): The effective mass
enhancement of 3He quasiparticles m∗/m as a function of the density.
The closed and open circles are from the heat capacity magnetization
measurements assuming the Landau parameter F 0

a of−3/4, respectively.
The m∗/m tends to diverge towards the critical density ρc = 5.1 nm−2.

Fig. 2.24: Γ2Dn vs. m∗/m, where Γ2D is the coefficient of T 2 term of
the heat capacity (Ref.[39]), and n is the areal density. Note that n
and Γ2D are denoted by ρ and α in the present thesis, respectively. The
solid line is a relation Γ2Dn ∝ (m∗/m)3 which is expected from the Mott
Hubbard transition there.
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2.4.2 Previous experiments

Previous heat capacity measurements of 3He/HD/HD/gr by Casey et al. observed a
C ∝ T dependence at ρ ≤ 5. nm−2. The behavior is characteristic to the Fermi liquid
(Fig.2.23 (a))[39]. If the Fermi liquid covers the whole surface of the substrate, A is
constant and γ is simply proportional to the effective mass enhancement m∗/m. As
shown in Fig.2.23 (b), the increase of m∗/m with increasing density was observed by
the heat capacity and magnetization measurements [39]. The value of m∗/m cannot be
deduced by the magnetization data only because the magnetization is determined not
only by m∗/m but also an antisymmetric Landau parameter of zeroth order F a

0 . They
assumed the almost localized model [71] which gives F a

0 = −3/4 to calculate m∗/m. The
maximum mass enhancement observed in the study was m∗/m = 13 at ρ = 5.0 nm−2.
The critical density of ρc = 5.1 nm−2 was obtained by fitting the data to

m∗

m
=

(
1− ρ

ρc

)−ν

(2.23)

where ν is the critical exponent. The critical behavior of a α coefficient of T 2 term was
observed as well [39]. Equation (2.22) can be expressed using Eq.(2.21) as follows

C =
1

3
π2N3kB

(
T

T ∗
F

− η

(
T

T ∗
F

)2
)
, (2.24)

where η is a dimensionless parameter related to α in the following way

αρ ∝
(
m∗

m

)2

Aη. (2.25)

Figure 2.24 shows that αρ is proportional to (m∗/m)3. The coefficient of T 2 term Γ2D

and the density n in the figure correspond to α and ρ in this thesis, respectively. They
introduced a characteristic temperature

T0 =
T ∗
F

η
, (2.26)

below which the Fermi liquid is well defined. Their results correspond to T0 ∝ T ∗2
F ∝

(m∗/m)−2. If solidification of the Fermi liquid is modeled by the filling control metal-
insulator transition, and the commensurate phase can be considered to be the Mott lo-
calized state, the “doping” δ is written as δ = (1 − ρ/ρc), where ρc is the density of the
commensurate phase. In the critical behaviors of the filling controlled metal-insulator
transition are given by Ref.[72] as

γ ∝ m∗

m
∝ δ(d−z)/d (2.27)

T0 ∝ δz/d, (2.28)

where z is the critical exponent and d is the dimension of the system. In the case of 3He
monolayers, of course, d = 2. Their data imply γ ∝ δ−1 and T0 ∝ (m∗/m)−2 ∝ δ2. These
are correspond to z = 4 and the value satisfies the Mott transition regime z > 2.
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2.5 Self-condensation of low density liquid 3He mono-

layers

Even after Kamerlingh Onnes successfully liquified 4He, 3He had long been thought to
be a permanent gas which cannot be liquefied at T = 0, because the lighter mass and
Pauli principle enhance the kinetic energy which prevent the system from liquefaction.
However, in 1949 the condensation of 3He was discovered [73]. Then, how about 3He
in 2D? By lowering the dimension the coordination number decreases. This reduces the
energy gain from the potentials by surrounding atoms and prevent liquefaction further.
A variational Monte Carlo study by Miller found that 2D 4He can be liquefied but 2D
3He cannot be [74]. A diffusion Monte Carlo study by Grau also concluded that 2D 3He
cannot condense even though 2D mass-3 bosons does condense[75].

Despite these negative theoretical predictions, experimental evidence of condensation
of the 3He monolayer was first reported in 1982. Bhattcharyya et al. measured the heat
capacity of 3He submonolayers on a superfluid 4He thin film of 10 Å and 12.3 Å thickness
adsrobed on a nuclepole substrate [76]. In the very low density region (x = ρ/6.4 nm−2 ≤
0.163), the C = γT dependence was observed below 100 – 120 mK and the γ coefficient
was smaller than γ0, the value of the degenerated Fermi gas. Since the γ coefficient is
determined by two parameters m∗/m and A, as discussed in Sec.2.4, and the effective
mass enhancement m∗/m cannot be less than unity, γ < γ0 is explained exclusively by
the reduction of the surface area A. Therefore this is clear evidence of the self-condensed
liquid (liquid puddle).

Fig. 2.25: (a) Areal density dependence of a γ coefficient of the
3He/4He/gr system[23]. Below a clear kink is at ρ ≈ 0.6 nm−2, γ become
smaller than γ0. (b) Phase diagram of 3He/4He/gr in the lowest density
region. The dashed line represents the Fermi temperature calculated by
Eq.(2.19). The inset shows the schematic picture of the self-condensed
liquid.

Recent experiments on 3He monoatomic layers on (plated) Grafoil substrate also
demonstrated the liquid puddle formation. Sato et al. measured heat capacities of low
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density (ρ < 1 nm−2) 3He submonolayers for three different systems (3He/gr, 3He/4He/gr,
and 3He/3He/4He/gr) and observed the self-condensed liquid for all of these systems. The
density dependence of the γ coefficient of 3He/4He/gr, shown in Fig.2.25, had a clear kink
at ρ ≈ 0.6 nm−2. Below this critical density the γ coefficient changed linearly with the
density and was smaller than γ0. This was clear evidence of the self-condensed liquid.
The γ coefficients of 3He/gr and 3He/3He/4He/gr also displayed the similar behavior and,
despite large difference in the potential corrugations from the underlayers, the critical
densities are very similar: 0.8 nm−2 for 3He/gr and 0.9 nm−2 for 3He/3He/4He/gr. There-
fore Sato et al. concluded that the self-condensed liquid is the intrinsic property of 2D
3He and is not stabilized by the potential from the underlayer.

Rrecent Quantum Monte Carlo studies, however, indicated that the potential from the
underlayers, especially its corrugations, plays an crucial role to stabilize the self-condensed
liquid of the 3He monolayers [77, 78]. In the case of 3He/4He/gr, the energy per particle
has a minimum value at 0.7 nm−2 when the realistic potential from a monolayer of 4He
and graphite are taken into account. However, when one assumes the laterally averaged
potential there is no energy minimum at finite density potential [77, 79]. Calculations for
3He/gr with the corrugated potential also predicts the gas-liquid (G-L) transition, but
it disagree with the experimental results in the density range. The experimental results
observed the G-L transition from zero density, while the theory predicted the transition
from 0.6 nm−2. The effect of the substrate potential on stabilizing the self-condensed
liquid is yet fully understood.

2.6 Quantum spin liquid candidates in electronic spin

systems

2.6.1 Quantum spin liquid

Spin systems usually become ordered states as the ground states. The kind of order
depends on the structures and interactions of the systems. However, if there are competing
interactions the formation of order is prevented. This situation is called the magnetic
frustration. One of the simplest example of the magnetic frustration is Ising spins with
the antiferromagnetic nearest neighbor interactions on three vertices of a triangle. When
one spin is in the up state, another spin favors the down state due to the antiferromagnetic
interactions. However, The antiferromagnetic interaction cannot be fully satisfied no
matter which state the other spin choose. Similar to the example above, many frustrated
spin systems have triangular lattices or lattices based on triangles, such as the kagome
or pyrochlore lattices. The geometry is not the only factor which gives the magnetic
frustration to the spin systems. For example, the next nearest neighbor interactions or
the coexistence of both ferromagnetic and antiferromagnetic interactions.

Spin systems with very strong magnetic frustrations are expected to have the ground
state without long range order. This state is named the quantum spin liquid (QSL) state,
because the spins are not ”frozen”. Here, we define the QSL state in this thesis as the
state which does not have the long range order or finite expectation value of a spin at each
site at T = 0. The concept of the QSL was first proposed by Anderson in 1973 [80]. He
claimed that the ground state of the HAFT model is the resonating valence bond (RVB)
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Fig. 2.26: (a) Schematic picture of a RVB state. In the two triangular
lattices valence bonds (blue ovals) are distributed in different patterns.
The RVB state is expressed by linear combinations of many different
distributions, and does not break lattice symmetries. (b) A spinon
excitation of in the RVB. A spinon is an unpaired spin moving in the
sea of valence bonds.

state. A building block of a RVB state is a singlet pair (1/
√
2)(|↑↓⟩−|↓↑⟩) whose total spin

is zero. There are numerous patterns of arranging singlet bonds on the lattice and all these
patterns have the same energy. The ground state of this system is the linear combinations
of all these arrangements of singlet bonds. In this state, there is no long range magnetic
order. A schematic picture of the RVB state is shown in Fig.2.26 (a). The results of the
numerical studies on the HAFT model after Anderson did not agree with him and the
ground state of the HAFT model is now believed to be the three-sublattice 120◦ Néel
ordered state [81, 82]. However, the QSL state have been energetically studied through
both theoretical and experimental approaches [83, 84]. The elementary excitations of the
RVB ground state is thought to be spinons which are originally considered in the regime
of the 1D spin liquid. A spinon is a decoupled free spin moving in the sea of resonating
valence bonds as depicted in Fig.2.26 (b). Because spinons are generated by decoupling
a singlet bond, two spinons must be excited at a same time. This elemental excitation
carries a spin 1/2 but no charge.

A number of theoretical studies were conducted after Anderson, but the experimental
realization of the QSL state had not been achieved for a long time. In 1997, the first
experimental evidence of the QSL state was reported in heat capacity measurements on the
nuclear spin system of the 3He C2 phase [6]. In 2003, the QSL material of the electron spin
system was reported in the NMR study on the layered organic Mott insulator κ-(BEDT-
TTF)2Cu2(CN)2 with the triangular lattice [85]. After these discoveries, a number of the
QSL candidates have been reported and they have a variety of lattice structures such as
a Kagome lattice [86, 87], 3D hyperkagome network [88], and a honeycomb lattice [89].
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2.6.2 QSL candidates with triangular lattices

We introduce previous studies on the QSL materials focusing on the ones with triangular
lattices. The first reported QSL candidate material with the 2D electron system is layerd
organic Mott insulator κ-(BEDT-TTF)2Cu2(CN)2. In this material, a dimer of BEDT-
TTF (bis(ethylenedithio)-tetrathiafulvalene) molecules is regarded as one electron site
and these dimers form S = 1/2 triangular lattice with small anisotropy. The NMR
measurements displayed no magnetic phase transition down to 32 mK [85]. Another QSL
candidate material with similar structure is EtMe3Sb[ Pd(dmit)2 ]2. This material also
shows no sign of magnetic ordering or phase transition down to 19.4 mK [90]. Both
materials have the T -linear specific heat as shown in the left panel of Fig.2.27, indicating
gapless excitations. From the NMR and specific heat results, one can calculate the Wilson
ratio RW expressed as

RW =
χ/χ0

C/C0

, (2.29)

where χ is the magnetic susceptibility and C is the specific heat. The subscript 0 means the
value of the ideal Fermi gas. The values of κ-(BEDT-TTF)2Cu2 and EtMe3Sb[ Pd(dmit)2
]2 are both close to unity, so elemental excitations (spinons) behave like electrons in
normal metal. It is difficult for these materials to discuss the specific heat of the electron
spins at low T limit because of a steep increase of the Schottky type contributions from
Cu2+ nuclear spins. To avoid the effect of Cu2+ nuclear spins the thermal conductivity
measurements were conducted. The results of these two materials were inconsistent as
shown in the right panel of Fig.2.27. The specific heat of EtMe3Sb[ Pd(dmit)2 ]2 had the
T -linear term but that of κ-(BEDT-TTF)2Cu2(CN)2 did not. Therefore, it is believed
that the QSL state of κ-(BEDT-TTF)2Cu2(CN)2 has a small energy gap of ∆ ≈ 0.45
K, and that of EtMe3Sb[ Pd(dmit)2 ]2 is gapless. Recently, another organic material κ-
H3(Cat-EDT-TTF)2 was reported as the new QSL candidate [91]. From the SQUID and
magnetic torque measurements the ground state of this material is the QSL with gapless
excitations. Some inorganic materials with triangular lattices were also reported as good
candidate of the QSL materials. For example, Ba3CuSb2O9 has an isotropic triangular
lattice of Cu2+ ions with S = 1/2, and the magnetic susceptibility and neutron scattering
measurements did not observe spin ordering down to 0.2 K [94]. The specific heat of this
material satisfied the C ≈ T dependence below 1.4 K, indicating gapless excitations.

YbMgGaO4 was reported as a new QSL candidate [112]. In this material Yb3+ ions
form the triangular lattice with no site mixing and no antisymmetric Dzyaloshinsky-
Moriya interaction. Because the ground state of Yb3+ is a Kramers doublet and there is
a large energy gap of 38 meV between the ground state and the first excited state, this
magnet can be regarded as the spin system with S = 1/2. The heat capacity satisfied the
power law behavior C ∝ T ν at T < 2 K. The power ν ≈ 0.7 under zero external field. This
value is close to ν = 2/3 expected for the U(1) spin liquid [65]. The spin entropy obtained
by integrating the specific heat asymptote toNkB ln 2, unlike other QSL candidates having
the residual entropy even at T = 0. The magnetic susceptibility satisfied χ ∝ T−1/3 from
4 K down to 0.4 K, which is inconsistent with the T -independent behavior expected for
the U(1) spin liquid, but the muon spin resonance measurements down to 0.048 K show
the temperature-independent spin relaxation rate which is proportional to the dynamic
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Fig. 2.27: left: Specific heat over the temperature
C/T of EtMe3Sb[Pd(dmit)2]2 (Ref.[92]), compared with
that of EtMe3As[Pd(dmit)2]2, EtMe3P[Pd(dmit)2]2, and
Et2Me2Sb[Pd(dmit)2]2. These three materials have the magneti-
cally ordered ground state. The finite value of C/T at T = 0 means
there is the T -linear term in the specific hear. right: Thermal conduc-
tivity over the temperature κ/T of EtMe3Sb[Pd(dmit)2]2 (dmit-131),
κ-(BEDT-TTF)2Cu2(CN)3, and Et2Me2Sb[Pd(dmit)2]2 (dmit-221).
The finite y-intercept of EtMe3Pd[Pd(dmit)2]2 data indicates the
T -linear term in the thermal conductivity, but the data of κ-(BEDT-
TTF)2Cu2(CN)3 and Et2Me2Sb[Pd(dmit)2]2 go to zero as T → 0
[93]

correlation function of Yb3+, at T < 0.4 K [95]. From these results, the ground state of
this material is believed to be the U(1) spin liquid. What makes the magnetic frustration
of YbMgGaO4 stronger than the HAFT model is thought to be the next nearest neighbor
interactions JNN from the results of a neutron scattering measurements [96].
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Chapter 3

Experimental apparatus and
methods

In this chapter the experimental setup and heat capacity measurement techniques used
in this study are described. The details are shown in Refs.[36, 97].

3.1 Nuclear demagnetization refrigerator

Figure 3.1 shows the schematic view of the whole setup of the refrigerator used in this
study. This system can roughly be divided into three parts: a 3He-4He dilution refrigera-
tor, a sample cell stage, and a Cu nuclear stage. For nuclear demagnetization refrigeration,
36 mol oxygen-free copper with a residual resistance ratio (RRR) of 5000 is used as the
nuclear stage. Up to 8 Tesla can be applied to this nuclear stage by a superconducting
magnet surrounding it. The lowest achievable temperature by demagnetization cooling
is 51 µ K. The mixing chamber of the dilution refrigerator is thermally connected to the
Cu nuclear stage via an Al superconducting heat switch (HSW), and the Cu stage and
the sample cell stage are connected via a Zn superconducting HSW. The thermometers
mounted on each stage are the following: a RuO2 resistance thermometer (> 10 mK) on
the mixing chamber, two Pt NMR thermometers (< 100 mK) on the nuclear stage and
the sample cell stage, and a carbon resistance thermometer on the sample cell stage.

3.2 Thermometers

3.2.1 3He melting curve thermometer

The melting pressure of 3He has a large temperature dependence below 1 K. A 3He
melting curve thermometer (MCT) is a thermometer that utilizes this relation for precise
determination of the temperature. A mixture of solid and liquid 3He is contained in a
pressure cell and the pressure is measured by a capacitance diaphragm. We adopt the
(T, P ) relation proposed by Greywall [98] for calibration. There are four fixed points
on the 3He melting curve which can be used for pressure calibration for a MCT. In this
study, the M point, a fixed point where the pressure reaches the minimum value, and the
A point, a fixed point where normal liquid 3He become a superfluid A phase, are used for
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3He Pumping Line

Shield Box

Anti-Vibration Table

0.5 m

3He-4He 
Dilution Refrigerator

Tmin = 6.1 mK

Experimental Space
163 φ × 175L

T ≳ 50 µK

Nuclear Stage
36 mol, RRR: 5000

Superconducting
Magnet
Bmax = 9 T

Lead Wires

Fig. 3.1: Schematic view of the Cu nuclear adiabatic demagnetization
refrigerator used in this work (Ref.[36])
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Fig. 3.2: Calibration of the Pt NMR thermometer which is thermally
connected to the sample cell stage. (a) Calibration of the signal after
a 90◦ pulse to a MCT. (b) (c) (d) Calibrations between signals after
pulses of different tipping angles.

calibration.

3.2.2 Pt NMR thermometer

Nuclear magnetization of Pt195, whose natural abundance is about 34 %, follows the Curie
law well down to 10 µK so it can be used as a thermometer at ultra low temperature.
As described in Sec.3.1, we have two Pt thermometers. One is mounted on the nuclear
stage and the other on the sample cell stage. A Pt thermometer can be used from
the lowest temperature of our refrigerator (≤ 100 µK) to about 100 mK, but for heat
capacity measurements this thermometer is used up to 30 mK because of the bad S/N
ratio. Magnetization of Pt is measured by a pulsed NMR method. We adopted several
different tipping angles for pulsed NMR measurements because the magnetization signal
obtained by applying a 90◦ pulse is so large that a preamplifier is saturated. 90◦, 7.2◦,
and 1.8◦ for the Pt thermometer on the nuclear stage, and 90◦, 18◦, 6◦, and 1.5◦ for the
Pt thermometer on the cell stage depending on the temperature of each stage. Tipping
angles are controlled by changing the width of the rf pulse and a resonant frequency is
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fixed at 250 kHz (H = 28.5 mT). The time interval between rf pulses τ must be large
enough compared with the spin-lattice relaxation time T1. T1 can be derived from the
Korringa relation T1 · T = κ, where κ is Korringa constant. In the case of Pt, κ = 30
s·mK. τ is chosen to be τ ≈ 3T1 during heat capacity measurements by heat pulse method,
and τ ≈ 0.5T1 for the thermal relaxation method. Magnetization signals using 90◦ pulses
are calibrated to the MCT, and signals after other tipping angles are calibrated to those
after the larger tipping angle as shown in Fig.3.2. A typical value of a heat leak into the
sample cell per one 90◦ pulse is ≈ 110 nJ. A heat leak per a pulse with another tipping
angle θt can be estimated to be ≈ 110× θt/90 nJ.

3.2.3 Carbon resistance thermometer

We have a carbon resistance thermometer (CRT) on the sample cell stage, which is used
for heat capacity measurements at T > 17 mK. This thermometer is also calibrated to the
MCT. Resistance of the CRT shows a small jump of ∆T = 30 Ω at 53.6 mK. The jump of
the resistance was reported in previous studies using the same experimental setup [58] It
is probably because a material used in a part of electrodes become superconductive at this
temperature. This jump is highly reproducible, so the calibration formula is determined
by fitting the data to Eq.(3.1) after the data at T ≥ 53.6 mK are shifted by 30 Ω.

1

T
=

2∑
n=−2

an(lnR)n. (3.1)

3.3 Heat capacity measurements

3.3.1 Sample cell

Figure.3.3 shows a schematic view of the sample cell for heat capacity measurements [36].
In this sample cell, exfoliated graphite Grafoil (GTA grade, 127 µm thick) [11] is used as
an adsorption substrate. Grafoil sheets are sandwiched between pure Ag foils and they are
diffusive bonded to get better thermal connection over the whole substrate. The surface
area of the substrate A = 562.5 ± 2.3 m2, obtained from a N2 adsorption isotherm at 77
K as shown in Fig.3.4. The thermal connectivity between the sample cell stage and the
Cu nuclear stage is controlled by the Zn HSW.

3.3.2 Adiabatic heat pulse method

We adopted two methods for heat capacity measurements, depending on the sample tem-
perature. In the temperature region of T ≥ 0.3 mK, the adiabatic heat pulse method was
adopted. In this method, temperature change ∆T was measured after a heat pulse Q̇ was
applied to the sample cell which was thermally isolated by opening the Zn HSW. Then the
sample heat capacity can be calculated using the relation C = Q̇/∆T . The power of the
heat pulse was chosen to keep ∆T/T around 10 – 20 %. Measured heat capacities includes
not only the 3He sample but also the Grafoil substrate and other parts of the sample cell
stage, so the contribution from the empty cell (hereafter we call it “addendum”) must be
subtracted from the total heat capacity. The addendum heat capacity will be discussed
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Fig. 3.3: left: Schematic drawing of the Pt pulsed-NMR thermometer
(Ref.[36]). right: Schematic drawing of the sample cell for heat capacity
measurements (Ref.[36]).

Fig. 3.4: N2 pressure isotherm at T = 77 K. The small substep near
P = 9 mbar corresponds to the formation of the

√
3×

√
3 commensurate

structure with ρ = 6.37 nm−2. The inset is a close-up around the
substep.
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Fig. 3.5: Typical time evolution of the temperature T of the cell con-
taining a 3He film of 5.92 nm−2 measured by the Pt NMR thermometer
during a heat capacity measurement by the adiabatic heat pulse method.
At t = 0 the HSW was opened. At t = 1859 s, a heat pulse of 3.35 nW
× 199 s was applied. The red solid lines are interpolations of the data
to t = 1859 s by fitting the data to Eq.(3.4).

later. The temperature rose before the first heat pulse, due to latent heat of the Zn HSW
and an ambient heat leak to the cell. The highest measuring temperature was T ≈ 90mK
above which the thermal conductivity of the Zn HSW increased steeply.

An example of heat capacity measurements by the adiabatic heat pulse method is
shown in Fig.3.5. The applied heat Q was determined by the following relation

Q = IV∆t (3.2)

where I and V are applied current and voltage, and ∆t is the width of the heat pulse.
To determine ∆T , time evolutions of the temperature before and after the heat pulse are
extrapolated to the pulse center time, but the temperature data just after the heat pulse
should not be used because of the overshooting. The data after the thermal equilibrium
in the cell was achieved must be used. If the heat capacity can be approximated to be a
constant over wide range of time before and after a heat pulse, the temperature changes
linearly with time. However, it is not the case for the actual measurements. Therefore
we assumed that the heat capacity C follows C = ATα. Then the time evolution of the
temperature during natural warming up can be written as

dT

dt
=

1

C

dq

dt
=

q̇

C
, (3.3)

where q̇ is a heat leak into the call during natural warming up. By integrating Eq.(3.3)
assuming a constant heat leak, we obtain

t =

{
(α+1)A

q̇
Tα+1 (α ̸= −1)

A
q̇
log T (α = −1).

(3.4)
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Therefore T can be fitted to a power function. Typical α value is 1 ± 1 at T < 1 mK,
and 0 ± 1 at 1 < T < 20mK. At higher temperatures α change drastically from ≈ 10 to
≈ −10. One can calculate the heat leak into the sample cell when the Zn HSW is opened
from the temperature change of the sample cell. The heat leak estimated using the data
in Fig.3.5 is 0.16 ± 0.01 µJ is approximately 3 % of the total latent heat of Zn (5.3 µJ).
It is useful to measure the natural warm up curve when the HSW is opened in advance
because one can estimate when the overshoot finishes by comparing the time evolution of
the temperature after the pulse and that in natural warm up by the ambient heat leak.
In addition, the ambient heat leak into the sample cell stage can be estimated from the
natural warming up and the value was typically about 0.5 nW. The heat leak was 5 – 10
nW when thermometry was done with the Pt NMR thermometer with 90◦ pulses, because
of the large heat generated by the pulses. At T > 30 mK the heat leak became negative
because the temperature of the cell stage was higher than that of the mixing chamber
stage of the dilution refrigerator.

3.3.3 Addendum heat capacity

As mentioned in Sec.3.3.2, the adiabatic heat pulse method measures the total heat ca-
pacity including not only 3He samples but the Grafoil substrate and other parts of the
sample cell stage. Therefore, it is necessary to measure the heat capacity of the adden-
dum in advance and subtract the addendum contribution from the raw data to extract
the heat capacity of 3He. In our case, the contribution from a bilayer of HD must also be
subtracted. The heat capacity of the addendum and the HD was measured twice. The
first measurements were conducted just after the HD film was made and before making
the first 3He sample (4.74 nm−2). The second measurements were after evacuating the
3He sample (see Sec.4.1.2). Both of these data are plotted in Fig.3.6 and agree well with
previous measurements of the addendum heat capacity which are shown as the crosses
in Fig.3.6 [36]. This means that the heat capacity of a bilayer if HD is negligible in this
temperature range. The addendum heat capacity displayed characteristic temperature
dependence. The T -linear behavior at T > 10 mK can be explained by the electron heat
capacity of Ag. The amount of Ag contained in the cell stage is ≈400 g, and the calcu-
lated heat capacity of Ag electrons is shown as the dashed line in the Fig.3.6. The low T

behavior is believed to be the contribution from the Grafoil substrate.
The heat capacity at T < 10 mK is not fully understood, it is qualitatively explained

by a sum of Schottky type specific heat of C13 atoms contained in Grafoil substrate.
Local internal field in graphite can be induced at the edges or by magnetic impurities
such as Fe. We made a simple estimation of a heat capacity of C13 atoms in the following
consideration. For simplicity we assume a square lattice with lattice constant aC = 0.142
nm and all electron spins at platelet edges are ferromagnetically ordered. Under this
assumption, the internal field B at a site separated from the edge by distance r is expressed
as

B(r) =
µ0µe

2πr2
√
3aC

, (3.5)

where µe is the electron magnetic moment. It causes the Zeeman splitting of the C13

nuclear spin at the site ∆E = 2µ13CB(r), where µ13C is the nuclear magnetic moment of
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Fig. 3.6: The solid line is the addendum heat capacity determined in
Ref.[36]. The red filled circles are the addendum heat capacity data in
the series 1A (see Table.4.1 in Sec.4.3) obtained just after the HD prepa-
ration. The black filled circles are the data in the series 1B obtained just
after evacuating the 3He sample as described in Sec.4.1.2. The crosses
are the data obtained in previous workers [36]. The dashed line is elec-
tron heat capacity of Ag contained in the cell (400 g). Heat capacities
of 3He samples of two densities are also plotted by the triangles (4.18
nm−2) and squares (4.74 nm−2).

C13. Therefore the specific heat of the C13 atom is

C(r) = kB

(
∆E

kBT

)2
1

cosh2(∆E/kBT )
, (3.6)

= kB

(
2µ13CB(r)

kBT

)2
1

cosh2(2µ13CB(r)/kBT )
, (3.7)

=
1.32× 10−62

r4T 2

1

cosh2(9.66× 10−22/r2T )
. (3.8)

The number of platelets and the number of C13 atoms per platelet in the cell used in
this work can be deduced from the adsorption surface area A = 562.5 m2 and the typical
platelet size 50× 50 nm2 [12]. Using these values and the natural abundance of C13 (1.1
%), the number of C13 atoms at the sites separated from the edge by naC (n = 0, 1, 2, · · · )
is estimated as ≈ 3 × 1018. When the contribution from C13 at an edge is calculated
using r = aB (Bohr radius), a summation of Eq.(3.8) roughly reproduce the temperature
dependence of the addendum heat capacity at T < 10 mK, but the magnitude is two
orders of magnitude smaller than the measurements. Note that this simple estimation
ignores magnetic impurities and the thickness of the platelets (≈ 10 graphene sheets),
which may compensate the difference.
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3.3.4 Thermal relaxation method

Fig. 3.7: Typical time evolution of the temperature T of the sample
cell containing a 3He film of 6.33 nm−2 measured by the Pt NMR ther-
mometer during a heat capacity measurement by the thermal relaxation
method. The heater power of 162 nW was turned on and off at time
indicated by the arrows. The solid line is a fitting of the data to Eq.(3.9).

In the temperature region of T ≤ 0.6 mK, the thermal relaxation method was adopted.
The consistency between this method and the adiabatic heat pulse method was checked
in the overlapping temperature. In this method, we applied constant heat q into the
sample cell which had weak thermal connection to the Cu stage (heat bath). The thermal
conductance between them was Kb. Then we observed the thermal relaxation process.
If the thermal relaxation time in the cell is negligible compared with that between the
cell and the Cu stage, the relaxation process satisfies T (t) = ∆Te−t, where ∆T is the
difference between the temperatures before and after the heater is turned on/off. In
this case, the heat capacity C is deduced as C = q/Kb. However, we measured more
complicated relaxation processes in this experiment.

A typical thermal relaxation curve obtained in this study is shown in Fig.3.7. In
this example a relaxation curve after the heater is turned off is analyzed. As shown in
Fig.3.8, the relaxation curve was not fitted well by a single exponential but by a double
exponential fashion

T = A1exp(−t/τ1) + A2exp(−t/τ2). (3.9)

The fitted curve is also drawn in Fig.3.7 as the solid line. This behavior can be explained
by the three-bath model [99] because the thermal conductance between the sample and
the addendum (Ka) cannot be ignored compared with Kb. The schematic picture of
this model is shown in Fig.3.9. Here, the short relaxation represents that between the
addendum and Cu stage, and the long relaxation between the sample and addendum.
Using this model, the heat capacities of the sample Csample and the addendum Cadd, Ka,
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��������	��
�

�
�

����������������� �������


�
�
��τ

�

�
�
��τ

�

������	
���
�

�������

�������	�

�
�

Fig. 3.9: Schematic diagram of the three bath model (Ref.[99]).

and Kb were deduced from fitted parameters A1, A2, τ1, and τ2 by following the relations
[99],

Kb = Q̇/∆T = Q̇/(A1 + A2), (3.10)

Csample + Cadd = Kb(A1τ1 + A2τ2)/(A1 + A2), (3.11)

τsampleτadd = τ1τ2, (3.12)

τsample ≡ Csample/Ka = (A2τ1 + A1τ2)/(A1 + A2), (3.13)

τadd ≡ Cadd/Kb, (3.14)

where Q̇ is heat flow into the sample cell, deduced from I and V of the heater. Kb can
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be controled by changing the applied field to the Zn HSW. When the applied field to the
HSW is fixed at the value, Kb satisfied Kb ∝ T , because a normal part of Zn obey the
Wiedemann-Franz law. This T dependence is confirmed by the measurements. Using this
relation the number of fitting parameter is reduced and the accuracy of the analysis is
improved [36]. The relaxation curve is first analyzed in which Kb is treated as a fitting
paramter, and the T dependence of Kb is fitted to Kb = aT . This result can be used as
a constraint condition starting from the next analysis as long as the applied field to the
Zn HSW is unchanged.
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Chapter 4

Sample preparation

4.1 Preparations for bilayer of HD and monolayer of
3He

4.1.1 Fabrication of HD and 3He films

The gas handling system (GHS) used for sample preparation is shown in Fig.4.1. HD (3
% impurity of H2 and D2) and

3He (99.9 % purity) gases were introduced into the sample
cell through a CuNi capillary after the amount of them were measured using a standard
volume (VSTD = 50.5 cc). There was a N2 cold trap between the GHS and the cryostat
in order to remove impurity gases.

What should be done to fabricate the atomic/molecular film was to introduce gases
into the sample cell and cool it down. At low temperatures the atoms/molecules in the
cell were adsorbed on the graphite surfaces because of the strong binding potential. The
nominal areal density ρnominal of a sample was determined as the number of atoms N
divided by the surface area of the Grafoil substrate A (= 562.5 m2). N was calculated
from the pressure, temperature, and VSTD before introduction.

The HD gas was introduced while the refrigerator was cooled down from 77 to 4.2 K.
We made the HD films of 18.50 nm−2 and the density corresponds to 2.03 layers [21]. The

Fig. 4.1: Gas handling system
used for 3He and HD sample
preparation.
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Fig. 4.2: (a) Pressure isotherms of HD films on Grafoil (Ref.[100]). The
horizontal dashed line represents ρ = 18.50 nm−2. (b) The temperature
dependence of measured pressure of a bilayer of HD after introducing
387 ccSTP of HD gas to the sample cell in Run1. The red solid and
orange dashed lines represents the vapor pressure of a HD film of 18.50
nm−2(Ref.[100]), and of the bulk HD (Ref.[101]), respectively.

amount of the introduced gas was determined according to the previous vapor pressure
measurements of HD films on Grafoil shown in Fig.4.2 [100]. We monitored the vapor
pressure in the sample cell while cooling the refrigerator in order to check whether the
bilayer was properly made by comparing the data to the results of previous adsorption
isotherms [100] (red line in Fig.4.2). After introduction of the proper amount of HD, we
had to take care to avoid the capillary blocking by condensation of HD. Because we used
the small capillary (i.d. 0.6 mm, o.d. 0.8 mm), it is easily blocked by the high vapor
pressure or quick temperature decrease. The triple point of HD is T = 16.6 K and P =
0.122 bar [101], so we tried to keep the pressure below this value. After introduction of
HD, we cooled down the refrigerator at 2 K/hour monitoring the pressure in the cell. The
orange dashed line in Fig.4.2 represents the vapor pressure of bulk HD [101]. Measured
pressure in the cell is less than this line. This is the proof that the capillary condensation
do not occur in this experiment. It was desired to take an adsorption isotherm of HD,
but we were not able because the refrigerator used in this work did not have the system
to keep constant temperature at T > 10 K. We had to control the temperature of the
refrigerator by changing the power of a heater mounted on the dewer and the flow rate
of liquid 4He into the dewer. After cooling the refrigerator to 4.2 K, we warmed it up
again to anneal the HD layers at 12.5 ± 0.5 K for more than 10 hours to make the film
smooth.

The 3He gas was introduced at 2.33 K. To check the reproducibility of the sample
we took the adsorption isotherms at this temperature as shown in Fig.4.3. In this work,
we did two series of the measurements (Run1 and Run2). Between Run1 and Run2,
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Fig. 4.3: The adsorption isotherms of 3He films on the Grafoil substrate
preplated with the HD films of 18.50 nm−2 at T = 2.33 K. The filled
black circles are data obtained before evacuating the 3He sample (see
Sec.4.1.2), and the open black circles are those after the evacuation in
Run1. The filled red triangles are the data obtained before the 3He
sample removal (see Sec.4.1.2), and the open red triangle is taken after
the evacuation in Run2. The remnant 3He coverage after the removal
is estimated to be less than 0.005 nm−2.

we evacuated the HD film and made the new one. Although we tried to make the HD
film by the same method as in both runs, the qualities of these two HD films were not
the same. The run to run dependence can be seen in the 3He adsorption isotherms as
shown in Fig.4.4. Because the vapor pressure in the cell was measured by a pressure
gauge at room temperature which were connected through the thin capillary, measured
pressure was tend to be higher than the actual value in the cell due to an effect called
the thermomolecular pressure difference. The ratio of the high-T pressure and the low T
pressure plow/phigh depends only on an product of the radius of the capillary r and the
high T pressure r · phigh. The data plotted in Fig.4.4 are the corrected pressure using the
data in Ref.[102] and r = 0.85 nm. The vapor pressure in Run2 was higher than the value
in Run1 at the same introduction amount of 3He. This difference was supposed to come
from the difference in the amount of the amorphous 3He. The amorphous 3He is adsorbed
on the surface heterogeneities whose binding potential is deeper than the potential of the
flat surfaces, so the vapor pressure depends only on the amount of 3He on the flat surfaces.
This means that the y-intercept of the adsorption isotherm correspond to the amount of
the amorphous 3He. The difference in the y-intercept between the isotherms indicated
that the quality of the HD film in Run2 was better than that in Run1. What caused the
difference in the qualities of the HD films was the difference in the cooling processes after
annealing the HD films from T ≈ 12 K. We tried to cool down the refrigerator slowly, but
in Run1 accidentally the temperature dropped quickly from 11.5 to 4.2 K at ≈ 8 K/hour.
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On the other hand, in Run2 we cooled down the refrigerator at ≈ 1 K/hour from 12 K
to 10 K, and then cooled down to 4.2 K quickly.

Since the amount of the amorphous 3He was different, the same nominal density in
Run1 and Run2 did not mean the same 3He density on the flat surfaces of the substrate.
Therefore we corrected the difference in the density scale between the Run1 and Run2 in
the following way. First, the adsorption isotherm of Run1 at 0.03 < P < 1.5 mbar was
fitted to obtain

Vrun1(P )[ccSTP] = 7.01 tanh

(
P

0.139

)
+ 54.4P + 15.7P 2 + 9.56, (4.1)

where, the last term is the y-intercept corresponding to the amount of amorphous 3He.
This function is not based on a certain physical model but just for fitting the data
smoothly. By assuming that the density correction is expressed by a linear function,
we fitted the data in Run2 to

VRun2(P )[ccSTP] = aVRun1(P ) + b, (4.2)

where the fitting parameter a and b correspond to the difference in the surface area and
amount of the amorphous 3He, respectively. This fitting yielded a = 1.026 and b = −9.29
ccSTP, which means that the effective surface area increased by 2.6% in Run2 thanks
to the reduction of the amorphous component. From these values the average density of
the amorphous 3He was estimated as ρ = 17.2 nm−2, 1.5 times larger than the 1st layer
completion density of 11.6 nm−2 [16]. The density correction formula was deduced by
dividing both sides of Eq.(4.2) by the surface area of the substrate. Finally, the formula
was given as

ρRun2[nm
−2] = 1.026ρRun1[nm

−2]− 0.445, (4.3)

where ρrun1 and ρrun2 are the nominal densities of Run1 and Run2, respectively.
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Fig. 4.5: The 3He pressure change while the evacuation of 3He from
the cell in Run1 (the blue circles) and in Run2 (the green symbols).
The arrows indicate the direction of time evolution. The red line is the
vapor pressure of a bilayer of HD (Ref.[100]). The 3He evacuation was
carried out at temperatures just below 10 K indicated by the vertical
dashed line where the vapor pressure of the HD film is sufficiently low
not to change the preplating coverage and the pressure of 3He film is
reasonably high so that the selective evacuation of 3He is possible.

4.1.2 3He removal

Due to the method of fabricating 3He samples described above, it is easy to increase the
areal density by simply introducing the additional 3He gas into the cell. However, it is
difficult to reduce the density. We tried to pump out the 3He sample keeping the HD film
undamaged. This is possible at the temperature where the vapor pressure of the 3He film
is high enough to be pumped out but that of HD is negligibly small. Figure 4.5 shows
the vapor pressure as a function of the inverse temperature of the sample cell. The 3He
sample was pumped for 60 hours in between 8 and 10 K. The adsorption isotherms of the
3He samples before and after the 3He removal (hereafter series A and B), shown in Fig.4.3,
agreed very well in both runs. The remnant 3He density estimated from the adsorption
isotherm is smaller than 0.005 nm−2.
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Fig. 4.6: Heat capacity data of monolayer of 3He at ρRun1 = 0.46 nm−2.
Note that at such a low density most of 3He atoms are trapped not at
a flat surface but at substrate heterogeneities forming the amorphous
phase with effectively much higher densities. The amorphous heat ca-
pacities used in the previous works are also shown for comparison. The
thick black line is a fitting of the data in this work to Eq.(4.4). The black
dashed line is the extrapolation of it. The thin black dashed double-
dotted line is the amorphous heat capacity of 3He/HD/HD/gr (Ref.[39]).
The blue lines are the amorphous heat capacities of 3He/gr reported in
Ref.[23] (the solid line) and Ref.[41] (the dashed-dotted line). The red
lines are those of 3He/3He/gr reported in Ref.[24] (the solid line), Ref[6]
(the dashed line), and Ref.[41] (the dashed-dotted line). The temper-
ature ranges of these lines correspond to those of the heat capacity
measurements.

4.2 Heat capacity of amorphous 3He

Heat capacities (C) of the 3He sample at ρRun1 = 0.46 nm−2 in Run1 are shown in Fig.4.6.
The heat capacity of 3He monolayer on a bilayer HD at such a low density was investigated
for the first time The previous heat capacity measurements on this system were performed
at densities from 1.00 nm−2 [39]. The C data at ρRun1 = 0.46 nm−2 increases gradually
with decreasing temperature. In this figure, the amorphous heat capacity of other 3He
monolayer systems are also shown for comparison. The black dashed double-dotted line
is the amorphous of 3He/HD/HD/gr [39], the blue lines are the amorphous of 3He/gr
[23, 41], and the red lines are the amorphous of 3He/3He/gr [6, 24, 41]. Note that in
Ref.[39] the amorphous heat capacity is not explicitly reported, so the value in the figure
is the estimated by fitting their raw data by ourselves. The detail of the fitting is described
in Appendix A. Similar gradual T -dependences have been observed in low density 3He
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films adsorbed directly on the same Grafoil substrate as that used in the present work
[23].

As discussed in Sec.2.2.4, 3He atoms are adsorbed preferentially on the substrate
heterogeneities, rather than the flat surfaces, forming the amorphous structure. The
weak temperature dependencies observed at ρRun1 = 0.46 nm−2 in this work and even
lower densities in Ref.[23] are roughly consistent with the constant heat capacity predicted
by the Golov-Pobell model [42]. The heat capacity data for ρRun1 = 0.46 nm−2 are larger
by a factor of two to three compared with that of the amorphous 3He adsorbed directly
on the Grafoil substrate [23] at ρnominal = 0.45, shown by the blue solid line in Fig.4.6.
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Fig. 4.7: (a)Heat capacity data at ρRun1 = 3.00 nm−2 and the fitting
to Eq.(4.5) (solid line). The blue dashed and green dotted lines are a
contribution from a 2D Fermi liquid and amorphous 3He, respectively.
(b) Deviation of the ρRun1 = 3.00 nm−2 data from the fitting function
given in Eq.(4.5).

We assume the temperature dependence of the heat capacity at ρRun1 = 0.46 nm−2 as
a typical heat capacity of the amorphous 3He, Camor, of

3He/HD/HD/gr. We determine
the T dependence of Camor as the following form,

Camor(T ) =
0.9585

1.96 log(1.3T )2 − 2.0 log(1.3T ) + 2.555
+ 0.00231, (4.4)

which is shown as the black solid line in Fig.4.6. The dashed line is the extrapolation.
Note that this function is not based on a certain physical model but just for reproducing
the plots. To determine the T dependence of Camor at low T (T ≲ 1 mK) is difficult from
the C data at 0.46 nm−2, Therefore we estimated the low T behavior of Camor from the C
data in the Fermi liquid region where the heat capacity of the 3He film on the flat surfaces
are expressed as Eq.(2.22). To separate the contribution of the amorphous 3He from that
of the 3He monolayer adsorbed on the flat surfaces of the substrate, we fitted the data to

C = γT − αT 2︸ ︷︷ ︸
Fermiliquid

+ ηCamor(T )︸ ︷︷ ︸
amorphous

, (4.5)
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where γ, α, and η are fitting parameters. An example of the fitted curve at ρRun1 = 3.00
nm−2 is shown in Fig.4.7(a), and deviation of the data from the fitting function is shown
in Fig.4.7(b). The fitting quality is not largely different for other densities. In Run2,
we did not directly measure Camor because of better quality of the HD film. The lowest
measuring density in Run2 was ρRun2 = 0.30 nm−2, but the C data displayed the Fermi
liquid type heat capacity of the C ∝ T dependence and the behavior did not disappear by
adding 3He. Therefore the temperature dependence is assumed to be the same as that in
Run1. The density evolution of the amount of the amorphous 3He Namor deduced from the
fitted parameter η in Eq.(4.5) are shown in Fig.4.8. Once the formation of the amorphous
3He is completed, Namor is almost density independent up to ρRun2 = 4.2 nm−2. A similar
behavior of Namor was observed observed in the 3He/gr system [23]. In Run2, Namor is
smaller than that in Run1. This is consistent with the larger y-intercept of the adsorption
isotherm in Run1 (see Fig.4.4). The weak density dependence of Namor obtained from the
previous NMR measurements of 3He/HD/HD/gr [17], shown as the crosses in Fig.4.8,
is roughly consistent with the data in Run1. Note that the data of previous studies are
plotted as a function of the nominal density ρnominal. We alto plot Namor from the previous
heat capacity measurements [39] deduced by the reanalysis using Camor(T ) obtained in
this work, as the open circles in Fig.4.8. It also shows the weak density dependence up
to ρnominal = 4.4 nm−2. The detail of the reanalysis is described in Appendix A.
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Fig. 4.8: The density evolution of the amount of 3He in the amorphous
state Namor. Also shown are Namor from the previous NMR measure-
ments (×, Ref.[17]) and heat capacity measurements reanalyzed using
Camor(T ) obtained by this work (◦, Ref.[39], see Appendix A for the
detail of the reanalysis).

In the later chapters, we focus on the heat capacity of the 3He samples on the flat sur-
faces of the substrate. Therefore the data in the later chapters are those after subtracting
the contribution of the amorphous 3He discussed in this section. The heat capacity of the
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3He film on flat surfaces is expressed as

C(T ) =

{
Ctotal(T )− Caddendum(T )− ηCamor(T ) (heat pulsemethod),

Csample(T )− ηCamor(T ) (relaxationmethod),
(4.6)

where Ctotal is the measured heat capacity and Caddendum is the addendum heat capacity
shown in Fig.3.6. Note that in the thermal relaxation method the heat capacities of the
3He sample and the addendum are separately deduced. At ρ < 4.2 nm−2, η is deduced by
fitting the data to Eq.(4.5). At ρ > 4.2 nm−2, we assume the temperature independent
amorphous fraction η = 0.922 for the data taken in Run1 and η = 0.373 in Run2, which
correspond to the solid lines in Fig.4.8. Also, in the later chapters, when we calculate the
specific heat C/NkB or the normalized spin entropy S/NkB ln 2, the number of spin N do
not include that of 3He atoms in the amorphous solid.

4.3 3He sample densities

Table 4.1 show all the sample densities of the 3He films measured in this work. In this
table ρ denotes the density of 3He on the flat surfaces of the substrate. The amorphous
density in Run2 was determined using the density dependence of the γ coefficient of the T -
linear term of the heat capacity of the Fermi liquid. As mentioned in Sec.2.5, at extremely
low densities γ changes linearly with the density. Therefore we estimated the amorphous
density as the x-intercept of the linear fit of γ at the densities below a kink (see Sec.8.1)
and obtain 0.20 ± 0.03 nm−2. The value is consistent with 0.18 ± 0.02 nm−2 estimated
from the η coefficients obtained by fitting the data to Eq.(4.5), shown as the red solid in
Fig.4.8. Finally, ρ is

ρ = ρRun2 − 0.20, (4.7)

= 1.026ρRun1 − 0.645. (4.8)

The table also shows that each 3He sample was measured in which run. Label A and
B represent whether the sample was fabricated before or after the 3He removal. The ρ

coefficient of the data at ρRun1 = 0.46 in Run1 is not written because the corrected density
by Eq.(4.7) is negative (ρ = −0.17 nm−2). This correspond to the heat capacity data at
this density which show only amorphous feature.
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ρ (nm−2) - 0.10 0.26 0.40 0.51 0.60 0.75 0.89 1.00 1.60
ρnominal 0.46 0.30 0.46 0.60 0.71 0.80 0.95 1.50 1.20 1.80
Run 1B 2A 2B 2A 2A 2A 2A 1B 2A 2A

ρ (nm−2) 2.35 2.43 3.45 4.18 4.35 4.43 4.55 4.59 4.67 4.74
ρnominal 2.55 3.00 3.65 4.70 4.55 4.95 4.75 5.10 5.18 5.25
Run 2A 1B 2A 1B 2A 1B 2A 1B 1B 1A, 1B

ρ (nm−2) 4.81 4.90 5.05 5.25 5.41 5.51 5.72 5.92 6.33 6.74
ρnominal 5.32 5.40 5.55 5.45 5.61 6.00 6.20 6.40 6.80 7.20
Run 1A 1A 1B 2A 2A 1A 1B 1A 1A 1A

ρ (nm−2) 7.15 9.33 11.01 13.63
ρnominal 7.60 9.72 11.21 13.91
Run 1A 1B 2A 1B

Table 4.1: The 3He sample densities at which heat capacity measurements were done in
the present work. ρ denotes the density of 3He on the flat surfaces of the substrate and
ρnominal is the nominal density obtained by simply calculating N/A. The series A samples
were first measured in order of density, and then the series B samples were measured after
evacuating the 3He samples of series A completely.
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Chapter 5

Frustrated magnetism of
compressible quantum phases

In this chapter, we discuss the results of heat capacity measurements on the 3He/HD/HD/gr
system at ρ ≥ 5 nm−2, shown as the colored region in Fig.5.1.

Liquid

C3 + C2

IC
(Ferromagnetic)

C3

(New QSL)

Puddle

Puddle Liquid

� ��� ���

����

� ���

C2-like
(QSL, RS?)

��� ����	

C2+IC ?

Transitional

1st layer

2nd layer

ρ3He (nm-2)

Fig. 5.1: Phase diagram of 3He/HD/HD/gr. The shaded region is dis-
cussed in this chapter.

5.1 Compressible C2-like phase (5.05 ≤ ρ ≤ 7.15 nm−2)

Figure 5.2 shows the heat capacity data of the 3He/HD/HD/gr system at 5.05 ≤ ρ ≤
7.15 nm−2. At 5.05 ≤ ρ ≤ 5.92 nm−2, the heat capacities have very broad peaks and
C ∼ γT at low temperatures. As the density increases, the heat capacity peak shifts to
lower temperatures without changing the entire shape of the heat capacity, as shown in
Fig.5.2 (a). At ρ > 5.92 nm−2 this shift is slowed down, whereas the heat capacities for
T < 5 mK and that at T > 10 mK increase, as shown in Fig.5.2 (b).

Scaling behavior

Firstly we focus on the heat capacity data at 5.05 ≤ ρ ≤ 5.92 nm−2.

The data at 5.05 and 5.25 satisfy C ∝ T at T ≪ Tpeak, where Tpeak is the peak
temperature. The heat capacity decay at T ≫ Tpeak is slower than T−2 which is expected
for localized spin systems. Above T = 50 mK the heat capacity decay becomes even
slower. The slow down of the heat capacity decay is likely due to the effect of the heat
capacity of 2D phonons which satisfy C ∝ T 2. To extract the contribution of the nuclear
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Fig. 5.2: (a) Heat capacity data of the 3He/HD/HD/gr system at 5.05,
5.25, 5.41, 5.51, 5.72, and 5.92 nm−2. As the density increases the heat
capacity shifts to a low temperature without changing the shape of the
curve. (b) The heat capacity data at 5.92, 6.33, 6.74, and 7.15 nm−2.
Clear increases in the heat capacity at T ≤ 5 and T ≥ 10 mK were
observed. The solid lines are guides to the eye.

spins, the heat capacity data are fitted to

C = N1kBP [2, 2] + a2T
2, (5.1)

where the T 2 term comes from the 2D phonons. P [2, 2] is the [2, 2] Padé approximation
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Fig. 5.3: The heat capacity data at 5.05, 5.25, 5.41, 5.51, and 5.72 nm−2

and the fitted curve using Eq.(5.1) for T > T ′, where T ′ is the tempera-
ture indicated by the arrows. The black dashed and blue dashed-dotted
lines represent the magnetic and 2D phonon contributions, respectively.

after the Euler transform β′ = β/(1+β), where β = 1/kBT . A [L,M ] Padé approximation
is given by

A(β)L+M =
PL

QM

+O(βL+M+1), (5.2)
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Fig. 5.4: (a) Temperature dependence of magnetic specific heat C/N1KB

(N1 is the number of 3He atoms in the 1st layer on the HD) at
5.05 ≤ ρ ≤ 5.92 nm−2 after subtracting the phonon or overlayer liq-
uid contribution. (b) C/N1KB after subtracting the contribution from
the 2D phonons as a function of temperature normalized by JC., which
has a C ∝ T dependence at T/JC < 0.15, and C ∝ T−2 at TJC > 20.
The temperature dependence of this universal curve is clearly different
from that of the Heisenberg antiferromagnet on or ferromagnet on a
triangular lattice [59]. The normalized specific heats of the C2 phases
for 3He/3He/gr[6] and 3He/4He/gr[20] are also plotted for comparison.
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where PL and QM are polynomials and the subscripts represent the order of these polyno-
mials. The fitted results are shown in Fig.5.3. The temperature range used for the fitted
curves is T > T ′, where T ′ is the temperature indicated by arrows. From these results and
Eq.(2.12) we obtained the exchange interaction JC; however, the MSE parameters cannot
be reliably determined. We ploted the specific heat C/N1kB at 5.05 ≤ ρ ≤ 5.92 nm−2 after
subtracting the contribution from the 2D phonons or the overlayer liquid, where N1 is the
number of 3He atoms in the 1st 3He layer, in Fig.5.4 (a). All the data follow a universal
curve when the specific heat data are plotted as a function of the normalized temperature
T/JC as shown in Fig.5.4 (b). The data at 5.92 nm−2 are well fitted to Eq.(5.3) rather
than Eq.(5.1), so the fitted results of this data is described in Fig.5.7. The universal curve
has a broad peak around T/JC ≈ 0.4 and C ∝ T behavior for T/JC < 0.1. Especially,
the data at 5.05, 5.25, and 5.41 nm−2 show good agreement with each other. The shape
of the specific heat peak gradually changes at ρ ≥ 5.51 nm−2. The specific heat starts to
decrease around T/JC ≈ 1, but at T/JC ≤ 0.2 it follows the universal curve again. Such a
universal behavior is also reported by the previous magnetic susceptibility measurements
on 3He/HD/HD/gr at 5.02 ≤ ρ′ ≤ 5.23 nm−2 by Ikegami et al. [17]. They also reported
this universal behavior changes between ρ′ = 5.23 and 5.62 nm−2, where ρ′ is the corrected
density obtained by considering the effect of the amorphous 3He, so ρ′ is not the same as
the density reported in their original paper. The detail of the correction of the density
scale is described in Appendix A.

The normalized specific heat of 3He/HD/HD/gr is clearly different from the behaviors
calculated from the HAFT and HFT models [59] shown as the dashed and dashed-dotted
lines in Fig.5.4 (b), respectively. We also ploted the normalized specific heats of the C2
phases of 3He/3He/gr [6] (purple dashed line) and 3He/4He/gr [20, 36] (orange dashed-
dotted line) in Fig.5.4 (b) for comparison. These data share some common features with
ours, that is, the broad peak structure and the C ∝ T behavior below the peak. However
the double peak structure of the C2 phases of the bilayer 3He systems are different from
the broad single peak of 3He on a bilayer HD. The universality indicates that the 3He
film forms the uniform phase with substantial compressibility (at least ∆ρ/ρ = (5.92 −
5.05)/5.05 ≈ 17%) larger than that of the C2 phase ∆ρ/ρC2 ≈ 9% of 3He/3He/gr [16].

From the comparisons discussed above, we found common features between the specific
heat of 3He/HD/HD/gr at 5.05 ≤ ρ ≤ 5.92 nm−2 and that of the C2 phases in the bilayer
3He systems: The large compressibility and very broad peak structure. However, there is
not clear evidence that the structure of the 3He film on the HD in this density range is
the same as that of the C2 phase. Therefore we call this phase the C2-like phase.

The large compressibility of the C2(-like) phase indicates that its structure is that of
a QLC state with partially broken symmetry. One candidate is the hexatic phase which
breaks the translational order but keeps the sixfold symmetry [103]. To detect such a
structure, a neutron diffraction study is required. If the C2(-like) phase is truly the QLC
state, its nuclear magnetism is not necessarily described by the localized spin models with
crystalline structures. Although the MSE interactions are still important, due to the 1/2
magnetization plateau of the C2 phase of 3He/4He/gr in a magnetic field characteristic
of the UUUD phase [104], the effect of the structural imperfection of the QLC state may
explain the discrepancy between the MSE model and the C2(-like) phase. For example, if
we assume the hexatic state, the interatomic distance has a distribution resulting in the
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distribution of the exchange interactions. An exact diagonalization study of the random
HAFT model in which the exchange interaction J at each bond is randomly distributed
between [J −∆, J +∆] gives the QSL state with C ∝ T behavior at low T [69].
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Fig. 5.5: (a) Entropy change calculated from the heat capacity data of
the 3He film in the C2-like phase. The data are normalized by the total
spin entropy N1kB ln 2. The solid lines are the extrapolation of the data
assuming C ∝ T below the lowest measured temperature for all of the
densities. (b) The entropy as a function of the normalized temperature
T/JC. The data at 5.05 and 5.25 nm−2 release almost all of the total
spin entropy (> 95 %), but at a higher density the entropy is not fully
released within the temperature range of the measurements.

Figure 5.5 (a) shows the entropy change ∆S of the 3He film deduced from the heat
capacity data. The solid lines are the extrapolation of the data below the lowest tem-
perature of the measurements assuming C ∝ T for all samples. At 5.05, 5.25 nm−2 ∆S
is close to the total spin entropy N1kB ln 2. At densities greater than 5.41 nm−2, the
∆S decreases slightly. At these densities the low temperature behavior may not be fully
observed within the temperature region of the measurements because the specific heat
shifts to low temperature as the density increase. The entropy as a function of normal-
ized temperature T/JC is also plotted in Fig.5.5 (b). The data at 5.04, 5.25, and 5.41
nm−2 fall onto the same curve, but at ρ ≥ 5.51 nm−2 the data deviate from the curve.

2D phonon

Figure 5.6 shows the a2 coefficients of the T 2 term in Eq.(5.1) for 3He/HD/HD/gr, with
those of the 1st layer incommensurate solid (IC1) phases of 3He/gr [105] and 4He/gr
[105, 106], and the C2 phases of 3He/3He/gr and 4He/4He/gr [16]. The a2 coefficients
of the 1st layer systems have a strong density dependence and its Grüneisen parameters
agree with those of the bulk solid 3He when its effective areal density is expressed as
ρeff = V 2/3, where V is the volume of the bulk solid. The solid lines in Fig.5.6 are
the power law fittings of the data of the IC1 phases of 3He/gr and 4He/gr produced by
Hering [105]. The a2 coefficient of the C2-like phase of 3He/HD/HD/gr is smaller than the
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Fig. 5.6: The a2 coefficient of the C ∝ T 2 term in Eq.(5.1) of helium
films on graphite as a function of the density ρ. The black solid circles
are the data of the C2-like phase in this work. The black and red open
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respectively [16]. The orange triangles[105] and diamonds [106] are the
IC solids of 3He/gr, and the blue triangles are the IC solid of 4He/gr
[105]. The solid lines are the power law fitting of the data from Ref.[105].

extrapolation of these solid lines. When the a2 coefficients of the C2-like and C2 phases of
3He/3He/gr are assumed to be in the same phase, they have a weaker density dependence
than the 1st layer cases. Such a reduction is possible in the QLC state, because the partial
order may reduce the number of the phonon modes.

C2-like phase after layer promotion

The heat capacity data at 5.92 < ρ < 7.15 nm−2 will now be discussed. At ρ ≥ 5.92
nm−2 the heat capacity at T ≳ 10 mK demonstrates a clear increase and satisfies the
C ∝ T dependence. This increase is clear evidence of the promotion to the 2nd layer (or
4th layer including HD layers) and the T -linear heat capacity is the contribution from the
liquid 3He on the topmost layer. Therefore we fitted the data to

C = NkBP [2, 2] + γT − αT 2, (5.3)

where the last two terms in the right hand side represent the contribution from the liquid
3He in the 2nd layer on the HD. The fitted results are shown in Fig.5.7. The temperature
range used for the fit is described in the same way as in Fig.5.3. The black dashed and blue
dashed-dotted lines represent the magnetic and liquid contributions. The density where
the layer promotion occur (ρpromotion) is estimated at 5.7 nm−2, which is smaller than that
of 3He/3He/gr and 3He/4He/gr (ρpromotion ≈ 6.8 nm−2). The difference can be explained by
the difference in the average confinement potential of the 3He/HD/HD/gr and 3He/3He/gr
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Fig. 5.7: Heat capacity data at 5.92, 6.33, 6.74, and 7.15 nm−2 and the
fitted curve using Eq.(5.3). The T ranges used for the fit are described
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lines represent the magnetic and overlayer liquid (puddle) contributions,
respectively.

system [22]. Since the confinement potential is smaller for 3He/HD/HD/gr, the layer
promotion is easier.

Growth of the ferromagnetic peak

After the layer promotion occurred, the high T heat capacity started to increase, although
the heat capacity in the mid T region (5 ≤ T ≤ 10 mK) did not significantly change.
The latter behavior indicates that the C2-like phase is nearly fully compressed, so the
former behavior should not be understood as the contribution from the C2-like phase.
The increase of the heat capacity at low T after the layer promotion is also observed
in 3He/4He/gr system [58], which may be explained by an emergent ferromagnetic com-
ponent. The heat capacity data at 6.33 ≤ ρ ≤ 7.15 nm−2 after subtracting the heat
capacity at 5.92 nm−2 are shown in Fig.5.8 (a). The coincidence of the growth of the
ferromagnetic component and the layer promotion indicates that this ferromagnetism is
caused by the indirect RKKY type interactions between the 1st layer localized 3He and

60



0 1 2 3 4
0

2

4

6

T (mK)

C
 -

 C
5
.9

2
 (

m
J
/K

)
7.15 nm -2

6.74
6.33

0 10 20 30 40
0

1

2

T  (mK)

C
 -

 C
C

2
 -

 C
F

L
  
(m

J
/K

)

7.96
7.71
7.48
7.31

ρ3He (nm-2)

���������

�� 	�
��

��������������	
����
����
�� ������������	
�����������
��

���������

�	 ��
��

Fig. 5.8: (a) Heat capacity data of 6.33, 6.74, and 7.15 nm−2 from
which the heat capacity of 5.92 nm−2 is subtracted. The black dashed
line represents the data at 9.33 nm−2, where the 3He film is in the
ferromagnetic IC2 phase, whose magnitude is multiplied by 0.25. (b)
The excess heat capacities of the C2 phase of 3He/4He/gr after the
layer promotion, from which the contributions of the C2 phase and the
overlayer liquid are subtracted. The dashed line shows the ferromagnetic
peak of the IC2 phase (ρ = 9.50 nm−2), whose magnitude is multiplied
by 0.14.

the overlayer liquid 3He [107]. Figure 5.8 (b) shows the excess heat capacity of the C2
phase of 3He/4He/gr after subtracting the contribution from the C2 phase and overlayer
liquid. The excess heat capacity has a peak and the peak temperature Tpeak is close to
that of the lowest density IC2 phase (9.50 nm−2, the red dashed line in the figure). Con-
versely, the Tpeak of C6.33 − C5.92 of 3/HD/HD/gr is smaller than 9.33 nm−2 (the black
dashed in the figure; the magnitude is multiplied by 0.25). Tpeak at 6.74 and 7.15 nm−2

are at lower than 0.8 mK. Since JC is expected to decrease at higher densities due to the
compression, the density of the emergent ferromagnetic component appears to be greater
than the smallest density of the IC2 phase. However, in the case of 3He/HD/HD/gr,
the compression of the C2-like phase continues even after the layer promotion and it is
difficult to separate the ferromagnetic contribution from that of the C2-like phase.

Comparison with the previous measurement

In Fig.5.9, we compare the heat capacity data of the C2-like phase, including the contri-
butions from the 2D phonons and the overlayer liquid, with those of the3He/HD/HD/gr
taken by Casey et al. [18] down to T = 0.8 mK. In Fig.5.9 (a), the Casey density scales
are clearly inconsistent with that in this work. The data in this work at 5.05 nm−2 are
similar to the data at 5.4 nm−2 in Ref.[18]. The data at similar densities are plotted in
similar colors. Note that the density of Ref.[18] is the nominal one including amorphous
3He. The density scales of both measurements are seemingly consistent if the densities in
Ref.[18] are multiplied by 0.93, as shown in Fig.5.9 (b). If we assume a difference in the
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Fig. 5.9: Comparisons between the heat capacity data of the 3He sam-
ples in the C2-like phase and the previous heat capacity measurements
of 3He/HD/HD/gr (Ref.[18]) using two different density scales. (a) The
density scale as reported in Ref.[18] is the nominal one that includes
the density of amorphous 3He. (b) The density scale multiplied by 0.93.
The data at similar densities are plotted in similar colors. The latter
scale shows good agreement with the data in this work at T > 3 mK.

density scale of ≈ 7% corresponding to the amount of amorphous 3He in Ref.[18], it is
estimated to be about 0.4 nm−2. They claimed that the 3He film forms the commensurate
solid at 5.4 - 5.5 nm−2. These densities become 5.02 - 5.12 nm−2 if multiplied by 0.93,
corresponding to the formation of the C2-like phase. They also claimed that the heat ca-
pacity peak becomes narrower at 5.7 nm−2, and above this density the heat capacity data
show power law behavior which may be relevant to the phase transition or the structural
disorder. However, as discussed above, the measurements in this work down to T = 0.2
mK revealed that all of the 3He samples plotted in Fig.5.9 are in the highly compressible
C2-like phase, which is confirmed by the scaling behavior (see Fig.5.4). The layer pro-
motion density ρpromotion is reported as 6.8 nm−2 in Ref.[18], which becomes 6.32 nm−2

when multiplied by 0.93. This value is still greater than ρpromotion ≈ 5.7 nm−2 obtained
in this work. However, the heat capacity in Ref.[18] at 6.05 nm−2 (in the density scale
after the correction) shows the weaker decrease at T > 20 mK than those at 5.67 nm−2.
This indicates the existence of the small overlayer liquid component. If so, the promotion
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density is between 5.67 < ρ < 6.05 nm−2, which is consistent with our data.

5.2 Incommensurate solid phase (9.33 ≤ ρ ≤ 13.63

nm−2)
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γ = 117 mJ/K2

α = 0.472 J/K3
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γ = 136.6 mJ/K2
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(b)

Fig. 5.10: Heat capacity data at 9.33, 11.01, and 13.63 nm−2 and the
fitted curve using Eq.(5.3). The black dashed and orange dashed-dotted
lines are the magnetic and overlayer liquid contributions, respectively.

The heat capacities of the 3He sample at the three highest densities (9.33, 11.01, and
13.63 nm−2) are shown in Fig.5.10. The heat capacity data have a peak around Tpeak =
1.5 mK at 9.33 nm−2, before shifting lower as the density increases. These peaks are
narrower than those of the C2-like phase. At 9.33 nm−2, a C ∝ T dependence is observed
below the peak, near T < 0.8 mK. For T > 20 mK, the heat capacity increasse almost
linearly with T , corresponding to the Fermi liquid heat capacity of the 3He overlayer.
All these features agree with the heat capacity of the 2nd layer incommensurate solid
(IC2) phases of 3He/3He/gr [6, 25, 57] and 3He/4He/gr [37] (see Sec.2.2), whose magnetic
ground state is ferromagnetically ordered. The C ∝ T behavior at low T is due to the 2D
ferromagnetic spin wave excitations. The previous magnetic susceptibility measurements
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Fig. 5.11: (a) Specific heats C/N1kB for 9.33, 11.01 and 13.63 nm−2.
Tpeak shifts to low T as the 3He film is compressed by the increasing
density. The solid lines are guides to the eye. (b) C/N1kB vs. the
normalized temperature. As the density increases, C/N1kB is similar to
the theoretical calculation of the HFT model [82], shown as the black
solid line. Note that N1 is the number of 3He atoms derived from spin
entropy at 9.33 m−2, and the same N1 was used for all of the data.
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Fig. 5.12: Spin entropy of the 9.33 nm−2 data calculated from the mea-
sured heat capacity. The black circles and dashed lines represent the
entropies of the 1st layer IC solid and total . Dashed line represents the
entropy of total 3He, respectively. The solid line shown below T = 0.3
mK represents the C ∝ T dependence. The N1 estimated from this
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of 3He/HD/HD/gr show that the exchange interaction is ferromagnetic at ρ ≥ 9.7 nm−2

[17]. We fitted the data to Eq.(5.3) to extract the spin contribution. The fitted results
are shown in Fig.5.10. Figure 5.11 (a) shows the specific heat C/N1kB of the IC phase
of 3He/HD/HD/gr. At T ≫ Tpeak the specific heats satisfies C ∝ T−2 as expected for
localized spin systems. Tpeak shifts to lower temperatures with increasing density, because
the 3He film is compressed. The specific heat as a function of the normalized temperature
T/JC is plotted in Fig.5.11 (b). The theoretical calculation of the HFT model [59] is also
shown here as the black solid line. The temperature dependence of the specific heat of
3He/HD/HD/gr approaches the calculated one based on the HFT model as the density
increases. Such a tendency is consistent with the IC2 phases of the bilayer 3He systems
[37, 57] and the 2D MSE model [53] which predicts that J3 is dominant for the high
densities.

Figure 5.12 shows the normalized entropy change ∆S/N1kB ln 2 deduced from the
measured heat capacity at 9.33 nm−2 after subtracting the liquid contribution. The solid
line is the extrapolation assuming C ∝ T . The entropy change deduced from the total
heat capacity, including that of the overlayer liquid, is shown as the dashed line. In the IC
phase, estimating the 2nd layer density ρ2 from the γ coefficient of the overlayer liquid heat
capacity is difficult because for such high densities the 3He on the topmost layer is not the
liquid puddle but the uniform Fermi liquid, so there is no criterion for estimating ρ2 from
γ. Therefore we tried to estimate N1 from the entropy change in Fig.5.12. N1 deduced in
this way corresponds to 5.87 nm−2, which is used to calculate the specific heat mentioned
above. N1 obtained from the data at 9.33 nm−2 is also used for the data at 11.01 and 13.63
nm−2, because the lowest temperatures of the measurements are not enough to calculate
the total entropy. Therefore N1 may be underestimated by approximately 10 % for the
data at 13.63 nm−2. The obtained N1 roughly corresponds to ρpromotion and is smaller
than expected. The IC2 phase of 3He/4He/gr also displayed a smaller than the expected
entropy change from the theoretical calculation [37]. The number of atoms of the IC2
phase estimated from ∆S of 3He/4He/gr is smaller by approximately 18 % compared with
the theoretically calculated 2nd layer density [14]. The origin of this entropy reduction is
not understood at present.

Density variation of JC

Figure 5.13 summarizes the JC values obtained by the fitted heat capacity data of 3He/HD/HD/gr
as a function of the density. In the plot, the horizontal axis is the ρ1 density of the 1st
3He layer on the HD. The quantum phase diagram of 3He/HD/HD/gr is also shown in
the upper panel.

We also plotted JC of 3He/3He/gr[6, 57], and 3He/4He/gr[20, 58], as well as the |Jχ|
values in 3He/HD/HD/gr [17], in Fig.5.13. |Jχ| is the absolute value of the exchange
interactions calculated from the Curie-Weiss temperature and Eq.(2.14). Note that the
density scale of the data in Ref.[17] is corrected (see Appendix A), and the data of the
bilayer 3He systems are plotted as a function of the 2nd layer density.

There are large inconsistencies in the behavior of JC of the C2(-like) and IC(2) phases
of the 3He/HD/HD/gr and bilayer 3He systems. Compared with the extrapolation of JC
of the IC(2) phases, JC of the C2(-like) phases are strongly suppressed by at least one
order of magnitude. This means that the C2(-like) phases are clearly distinguishable from
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Fig. 5.13: Exchange interactions JC and |Jχ| deduced by the measured
specific heat or the magnetic susceptibility data as a function of ρ1.
ρ1 is the density of the 1st 3He layer of the 3He/HD/HD/gr system
and that of the 2nd layer for the bilayer 3He systems. The plotted
series are the JC values with the symbols representing: 3/HD/HD/gr
for this work (black filled circle); C2 phase of 3/4He/gr (large triangle)
(Ref.[108]); C2 phase of 3/3He/gr (large inverse triangle) (Ref.[6]); IC2
phase of 3/4He/gr (small triangle) (Ref.[37]); IC2 phase of 3/3He/gr
(small inverse triangle) (Ref.[57]). Note that the data of the bilayer
3He systems are plotted as a function of the 2nd layer density. The +
symbols are the |Jχ| values of 2He/HD/HD/gr (Ref.[17]). Its density
scale is corrected by Eq.(A.2) (see Appendix A).

the IC(2) phases and the C2(-like) phases are affected by the corrugation potential of the
substrate.

JC and |Jχ| of 3He/HD/HD/gr differ by a factor of ≈ 5. This is reasonable because
the magnetism of the 3He monolayer cannot be explained by a single exchange interaction
J as mentioned in Sec.2.3.2. The difference between JC and |Jχ| is also observed in the
bilayer 3He system [57].

The obtained JC shows a strong density dependence at 5 < ρ < 6 nm−2, as observed
in the previous studies [17, 18, 21]. JC is reduced by a factor of 5 from 5.05 to 5.92 nm−2.
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The power law fitting of the data in this density region yields

d ln JC
d ln ρ

= 11.6± 1.5. (5.4)

The gray solid line drawn near the data points of the C2 phases has the same slope
of Eq.(5.4).This Grüneisen constant is smaller compared with |Jχ| ∝ ρ−15 [17]. The
density dependence of JC becomes weaker after the layer promotion occurs because the
C2-like phase is almost fully suppressed. The Grüneisen constant d ln JC/d ln ρ is −5.1;
approximately half of that before layer promotion. For the data at 5.92 ≤ ρ ≤ 7.15 nm−2,
ρ1 is calculated as ρ1 = ρ − ρ2 where ρ2 is the density of the 2nd layer liquid. Judging
from the magnitude of the γ coefficient, the 2nd layer liquid is in the self-condensed liquid,
rather than the uniform liquid spreading over the whole surface of the substrate. As will
be discussed in Sec.2.4.2, the density of the puddle phase is not strongly affected by the
potential corrugation from the substrate, so ρliquid can be estimated using the relationship
between γ and ρ of the 1st layer puddle on a bilayer HD shown in Fig.8.2. The resultant
ρ1 values are listed in Table.5.1

ρ (nm−2) 5.92 6.33 6.74 7.15
ρ1 (nm−2) 5.89 6.25 6.50 6.69

Table 5.1: Listed densities of the 1st 3He layer ρ1 after the layer promotion.

For the IC2 phases in 3He/3He/gr and 3He/4He/gr, where the layer promotion has already
occurred, ρ1 is estimated from the total 3He density and the theoretical calculation by
Roger [14]. The ρ1 values of 3He/HD/HD/gr in this work is also determined by this
calculation, assuming that the structure of the IC solid is less sensitive to the potential
corrugation of the substrates.

5.3 Conclusion

We measured the magnetic specific heat of compressible phases, namely the C2-like and
IC phases. The magnetic specific heat of the C2-like phase has a very broad peak around
T/JC = 0.4, and C ∝ T at low T . The specific heat over a wide range of the density (ρ =
5.05 - 5.9 nm−2, ∆ρ/ρC2like ≈17%) follow the same curve. Such a scaling behavior suggest
the uniform compressible quantum phase. These features are consistent with those of the
C2 phases of bilayer 3He systems. To understand the magnetism of this phase, not only
the MSE interactions, but also the effects of the lattice disorder are seemingly important.

After the layer promotion at ρ ≈ 5.7 nm−2, compression of the C2-like phase is sup-
pressed, but there is a low T (T < 5 mK) heat capacity increase related to the emergence
of the ferromagnetism. This ferromagnetism, which starts to grow at the density where
the layer promotion occur, can be thought to be caused by the indirect RKKY interactions
via the liquid 3He on the topmost layer.

In the IC solid phase at the highest density region (ρ > 9.3 nm−2), the ferromagnetic
specific heat is similar to that of the IC2 phases of the bilayer 3He systems. The tempera-
ture dependence of the specific heat was similar to that of the HFT model. This behavior
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is also consistent with that of the IC2 phases of the bilayer 3He systems and theoretical
calculation of the 2D MSE model.
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Chapter 6

A new quantum phase between the
liquid and C2-like phases: C3 phase

6.1 Successive phase transitions (4.18 ≤ ρ ≤ 5.05

nm−2)

In this chapter, we discuss the results of heat capacity measurements on the 3He/HD/HD/gr
system at 4.2 ≤ ρ ≤ 5 nm−2, shown as the colored region in Fig.6.1.

Liquid

C3 + C2

IC
(Ferromagnetic)

C3

(New QSL)

Puddle

Puddle Liquid

� ��� ���

����

� ���

C2-like
(QSL, RS?)

��� ����	

C2+IC ?

Transitional

1st layer

2nd layer

ρ3He (nm-2)

Fig. 6.1: Phase diagram of 3He/HD/HD/gr. The shaded region is dis-
cussed in this chapter.

The heat capacity data up to ρ = 4.18 nm−2 followed the relationship C ∝ T at low T ,
which is characteristic of a Fermi liquid. However, the data for higher densities deviated
from this behavior. This indicates that the 3He film started to solidify and the spin heat
capacity emerged. We fitted the low T part of the heat capacity data at 3.45 ≤ ρ ≤ 5.92
nm−2 to C = aT n where a and n are the fitting parameters. The fitted results and n
obtained from the fitting are shown in Fig.6.2. At 3.45 and 4.18 nm−2, n was close to
unity, because the 3He monolayer was in the Fermi liquid phase. As the density increases,
n displayed a U-shaped anomaly, with the minimum value n = 0.64 ± 0.03 at 4.74 nm−2.
n increased above 4.74 nm−2, before returning to unity at 5.05 nm−2. Therefore, the
phase transitional region was at 4.18 ≤ ρ ≤ 5.05 nm−2, with the singular point at 4.74
nm−2.

Figure 6.3 shows the heat capacities at fixed temperatures in the transitional region.
Between 4.74 and 5.05 nm−2 (the density region sandwiched by the two vertical solid
lines in the figure) the heat capacity isotherm linearly changed with the density at all
temperatures, and was constant at T = 11 mK. These are typical features of macroscopic
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Fig. 6.2: (a) Power law fitting of the data at 4.18 to 5.92 nm−2 at low
T . The temperature ranges of the solid lines were used for the fitting.
(b) The power was deduced by fitting the low T heat capacity data to
C = aT n. The fitting parameter n shows a U-shaped anomaly with a
minimum of n = 0.64 ± 0.03 at 4.74 nm−2. The solid lines correspond
to the boundary of the two phase coexistence regions between the C3
and C2-like phases. The dashed lines indicate the onset of the phase
transition (4.18 nm−2) and the density where the behaviors of the high
T heat capacity isotherms change (4.59 nm−2, see Fig.6.3)
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two phase coexistence, or in other words, the 1st order phase transition where the low
and high density phases are spatially separated. To confirm the scenario of two phase
coexistence, we checked whether the heat capacities at the intermediate densities can be
expressed as the linear combination of the data at the phase boundaries.

We fitted the data at 4.81 and 4.90 nm−2 to

C = (1− x)C4.74 + xC5.05 (6.1)

where C4.74 and C5.05 are the heat capacities of 4.74 and 5.05 nm−2, respectively, and x
is the fraction of the 5.05 nm−2 component. The fitted results are shown as the dashed
lines in Fig.6.4 (a). The heat capacity data at the intermediate densities were reasonably
reproduced by the linear combination of the heat capacities of the pure phases. x increases
linearly with the density as shown in the inset. These results agree with the scenario of
the 1st order phase transition. The heat capacities of 4.74, 4.81, 4.90, and 5.05 nm−2

cross at one point (T ≈ 11 mK, C ≈ 6 mJ/K), which is indicated by the red arrow in
Fig.6.4 (b). The existence of such a crossing point is also the typical feature of two phase
coexistence. Conversely, the heat capacities of 4.59, 4.67, and 4.74 nm−2 do not cross at
one point as indicated by the two red arrows in Fig.6.4 (b). Therefore the details of the
phase transition below 4.74 nm−2 cannot be interpreted as a simple two phase coexistence.
At ρ > 4.18 nm−2, although n deviates from unity as mentioned above, the divergence
of the low T heat capacity is still observed at T ≤ 40 mK and up to ∼ 4.55 nm−2 as
shown in Fig.6.3. Above 4.55 nm−2, the high T (T ≥ 40 mK) behavior changes sharply.
Although the detail of the transition is not clear, it may be divided into two stages.

We found the solidification of the 3He film above 4.18 nm−2 indicated by the low T
specific heat deviating from C ∝ T . At 4.74 nm−2 the anomalous behavior of the specific
heat is observed, which will be discussed in the next section. Above this density, the
1st order phase transition occurred. These experimental findings suggest that there is a
distinct phase in the vicinity of 4.74 nm−2. Hereafter we call this new phase “C3 phase”.
The structure of the C3 phase is most likely the commensurate phase, judging from its
weak compressibility ∆ρ/ρC3 < 2% compared with the C2(-like) phases. Therefore it is
probably the “true” commensurate phase. The density ratio of the 3He layer to the HD
layer is 4.74/9.2 = 0.515. This value is smaller than 4/7 (= 0.5714) previously reported.

The existence of the C3 phase supports the claim that the C2(-like) phase is not truly
the commensurate solid but the QLC. The reason why the C3 phases is realized only
in the 3He/HD/HD/gr system is assumed to be due to the difference in the substrate
potentials. According to Fig.2.6, the potential corrugation of a bilayer HD on graphite
is nearly three times as large as that of a monolayer 3He on graphite, and therefore the
wave function of 3He on HD is more strongly localized than on 3He. This tendency is
consistent with the experimental results.

We revealed that the quantum phase diagram of 3He/HD/HD/gr is qualitatively dif-
ferent from the bilayer 3He systems and found the commensurate solid at the unexpectedly
low density. Therefore the theoretical study of the 3He monolayer on Hydrogen is strongly
desired.
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Fig. 6.4: (a) The heat capacity data at 4.74 4.81, 4.90 and 5.05 nm−2 in
the coexistence region. All the data cross at one point indicated by the
red arrow. The dashed lines are the fitted data using Eq.(6.1) with x =
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Fig. 6.5: The specific heat data of 3He/HD/HD/gr at 4.18, 4.74, and
5.05 nm−2, representing the Fermi liquid, C3, and C2 like phases. The
3He/H2/H2/gr data at 4.00, 4.78, and 5.10 nm−2 are also plotted. The
solid line is the specific heat anomaly of 3He/3He/gr indicating 2D melt-
ing of the C2 phase[16], whose temperature is divided by 6.5.

Comparison with the high T specific heat of 3He/H2/H2/gr

The highest temperature of our measurements is limited to Tmax = 90 mK because the
Zn HSW become thermally conductive at T > 90 mK, and no high temperature measure-
ments on this system have not been performed. We compared the data in this work with
the specific heat measurements of 3He adsorbed on a 2.15 layer of H2 by Ramos et al.[38]
The areal density of the second layer HD and H2 are 9.1 – 9.2 nm−2 and 8.65 nm−2. Fig-
ure.6.5 shows the specific heat data of 3He/HD/HD/gr measured at the selected densities;
4.18, 4.74, and 5.05 nm−2, representing the Fermi liquid, C3, and C2-like phases. They
are compared with the data of 3He/H2/H2/gr system at densities similar to ours; 4.00,
4.78, and 5.05 nm−2 down to T = 200 mK. The specific heat of the sample at 5.05 nm−2

for 3He/HD/HD/gr and the one at 5.10 nm−2 for 3He/H2/H2/gr show similar disconnec-
tivities, indicating the order-disorder transition of the C2-like phase. For example, there
is a specific heat anomaly shown as the solid line in Fig.6.5 between 90 and 200 mK.This
line is the specific heat peak associated with the 2D melting transition of the C2 phase of
3He/3He/gr [16] whose temperature is divided by 6.5.

6.2 Nuclear magnetism of C3 phase (4.74 nm−2)

Figure 6.6 shows the heat capacity at the density of the C3 phase (ρ = 4.74 nm−2).
The magnetic heat capacity has a broad single peak at T = 21 mK indicating short
range ordering, and an unconventional temperature dependence C ∝ T 2/3 at T ≤ 5
mK indicating there are many low energy states. This behavior is quite inconsistent
with the specific heat of the C2-like or IC phases, as shown as the thick lines in the
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mK, the data satisfy C ∝ T 2/3. C/N1kB of the C2-like and IC phases
are also shown for comparison. The temperature scale of these data are
normalized by JC. The inset shows the heat capacity divided by T 2/3.
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Fig.6.6. The heat capacity of the C3 phase clearly disagrees with the C ∝ T behavior
observed for other QSL candidates with triangular lattices [92, 94, 109], the C2 phases of
3He/3He/gr [6], and the 3He/4He/gr systems [36].The data also differ from the C ∝ T 2

relationship expected for the magnon excitations of the 120◦ Neel ordered state [82]. Such
an anomalous temperature dependence should reflect the quite strong magnetic frustration
of the C3 phase due to an even lower density than the C2(-like) phase.

Figure 6.7 shows the spin entropy deduced by integrating the measured heat capacity.
The entropy is normalized by the total spin entropy N1kB ln 2. We assumed C ∝ T 2/3

below the lowest measured temperature 0.3 mK. Though the high T heat capacity was
not fully observed in these measurements, within the measured temperature range, more
than 93 % of the total entropy is released. This indicates that almost all of the nuclear
spin properties were observed. At T ≫ Tpeak the heat capacity seems to follow C ∝ T−1.
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Fig. 6.7: The entropy calculated from the heat capacity data given in
Fig.6.6. Below the lowest temperature (0.3 mK) of the present measure-
ments, the entropy was calculated by assuming C ∝ T 2/3. The lines are
the entropies deduced from the specific data of the C2 phases. In these
systems, we assumed the C ∝ T behavior to extrapolate the calculation
to T = 0

It is theoretically expected that the high-T heat capacity of a spin system is C ∝ T−2,
but our data decays more slowly. The exchange interaction JC is inferred by fitting the
data at 25 mK to

C = NkBP [2, 2]. (6.2)

Interestingly, the magnetic susceptibility (χ) data at ρ′ = 4.82 nm−2, obtained in the
previous NMR measurements performed by Ikegami et al. and Masutomi et al. [7, 17],
satisfy χ ∝ T−1/3, which was not originally claimed by the authors. The density correction
of the data in Ref.[7, 17] is described in Appendix A. Figure 6.8 shows χT 1/3 as a function
of temperature. Therefore the C3 phase is gapless or with a spin gap less than 0.01/θW =
0.01/9 ≈ 10−3.
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Such unconventional behaviors of C and χ enables us to define the Wilson ratio RW

RW ≡ χT

C
∝ T−1/3T

T 2/3
= const. (6.3)

We calculate RW using our heat capacity data at 4.74 nm−2 and susceptibility data at
4.82 nm−2 [17] and obtain RW ≈ 6. This value is considerably larger than that of the ideal
Fermi gas and organic QSL materials with RW ≈ 1[83, 92]. This indicates that elementary
excitations in the 3He C3 phase have strong correlations rather than the noninteracting
Fermi gas. Considering the characteristic T dependence of the specific heat and magnetic
susceptibility, the elemental excitations from the ground state is likely to be the fermionic
excitations with E ∝ k3 dispersion, where E is the energy and k is the momentum.

Both C ∝ T 2/3 and χ ∝ T−1/3 are qualitatively consistent with the gapless QSL theory
by Biswas et al. [110]. The theory is not based on a specific Hamiltonian. The authors
derived the relation from the triangular lattice, SO(2) symmetry, and Majorana Fermions
elementary excitation of S = 1. From these assumptions, they derive the dispersion
E ∝ k3, resulting in a specific heat of C = 1.18r0T

2/3 and magnetic susceptibility of
χ = 0.38µ2r0T

−1/3 at low temperatures, where µ is a magnetic moment and r0 is a
parameter proportional to the density of state. Both are qualitatively consistent with
experimental observations. To check the quantitative consistency, we compared a constant
parameter r0 deduced independently by fitting the C and χ data at 4.74 and at 4.82 nm−2,
respectively [17]. The coefficient of the T 2/3 term of the specific heat is 0.43, corresponding
to r0 = 0.37. The fitting of the χ data yields r0 = 0.084. The r0 values deduced from the
experimental data differ by a factor of ≈ 4.4. The Wilson ratio calculated from this theory
is RW = 4.3 [110], which is smaller than RW ≈ 6 by a factor of ≈ 1.4. Though this theory
does not have perfect quantitative agreement with the experiments, it demonstrates the
best consistency with the C3 phase, and it is therefore expected that the gapless QSL
state in the C3 phase has exotic elementary excitations, such as Majorana Fermions.
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Another theory based on the MSE Hamiltonian for up to 4 body exchange predicts
the U(1) QSL state with a C ∝ T 2/3 dependence [65]. The theory predicts a QSL ground
state if the contribution from J4 is large. However, this model also predicts the constant
magnetic susceptibility, which is not consistent with the experimental result. Moreover,
in this theory only the parameter space with Jeff

2 > 0 is investigated, but Jeff
2 < 0 is

obtained by fitting the susceptibility data [17].
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Fig. 6.9: Comparison between the C3 phase of 3He/HD/HD/gr and
other studies yielding C ∝ T 2/3. (a) The specific heat C/kB obtained in
this work and YbMgGaO4 (The green symbols) vs normalized temper-
ature T/Tpeak. The theoretical calculation based on the HAFT model
with the WJ transform [111] is also shown as the red dashed line. (b)
The magnetic susceptibility data of 3He/HD/HD/gr at 4.82 nm−2[7, 17],
and that of YbMgGaO4. The relaxation rate at zero field with the inci-
dent beam parallel to the c axis (perpendicular to the triangular plane)
is also plotted.

Wang calculated the HAFT model based on the 2D Wigner-Jordan (WJ) transforma-
tion, where the spin operators S are transformed into spinless operators d. The author
found that the nearest neighbor virtual bonding (NNVB) state of the WJ fermion has a
smaller energy compared with the Néel state. The elementary excitations of the NNVB
state are gapless fermions. In this model, the single particle energy become

E(k) = −2J(1 + 2∆)[sin(k·δ1) + sin(k·δ2) + sin(k·δ3)], (6.4)
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where J , ∆, k, and δi are the exchange interaction, magnitude of the nearest neighbor
bonding field, momentum vector, and nearest neighbor vector, respectively. At |k| → 0
this relation can be approximated as E ∝ k3, which results in C ∝ T 2/3 and χ ∝ T−1/3.
The specific heat calculated in Ref.[111] is compared with the experimental data of the
C3 phase in Fig.6.9. The calculated specific heat has a peak at T/2J = 0.75. The peak
is sharper with a faster decay at high temperature compared with the experimental data
of the C3 phase.

The C ∝ T 2/3 dependence was recently observed in the QSL candidate with triangular
lattice YbMgGaO4[112]. Figure 6.9 shows the specific heats of both systems as a function
of normalized temperature T/Tpeak. These data agree with each other at 0.02 < T/Tpeak <

0.2. This consistency indicates that the elementary excitations of these materials have
similar energy spectrums. However, their peak structures are different. The peak for
YbMgGaO4 is sharper and its magnitude is approximately 40 % larger, than that of the
C3 phase. At T > Tpeak, the specific heat decay satisfy C ∝ T−2 as expected for a
noninteracting spin system with S = 1/2; however, as mentioned above, the C3 phase
show weaker dependence.

The magnetic susceptibility of both systems also show similar χ ∝ T−1/3 behavior
down to T/Tpeak = 0.1. However, the µSR measurements on YbMgGaO4 demonstrated
that the relaxing rate λ become T -independent at T/Tpeak < 0.1, which is evidence of
the U(1) QSL. However, the 3He C3 phase satisfies the χ ∝ T−1/3 relation down to
T/Tpeak ≈ 0.0006.

6.3 Conclusion

We performed heat capacity measurements on 3He/HD/HD/gr in the density region be-
tween the Fermi liquid and C2-like phases, with small density steps. As a result, we
discovered the new quantum phase, termed ”C3 phase”, previously unreported in bilayer
3He systems. The C3 phase is separated by the Fermi liquid and C2-like phases via phase
transitional regions and is limited in a narrow density window (∆ρ/ρC3 ≲ 2%). Previous
studies on this system overlooked this phase. The phase transition from the Fermi liquid
to the C3 phase cannot be explained by simple two phase coexistence and the details are
yet to be determined. However, the transition from the C3 to C2-like phase is most proba-
bly produced by macroscopic two phase coexistence (the 1st order phase transition). The
reason why the C3 phase exists only in 3He/HD/HD/gr and not in bilayer 3He systems, is
probably the larger potential corrugation by the HD layer which assists 3He localization.

The magnetic specific heat of the C3 phase displays an unusual temperature depen-
dence of C ∝ T 2/3 below a single broad peak. Considering the equally unconventional
magnetic susceptibility χ ∝ T−1/3, we defined the Wilson ratio χT/C with the results sug-
gesting fermion type elemental excitations with E ≈ k3 dispersion. These are expected to
be the exotic elementary excitations, such as Majorana fermions. Such interesting nuclear
magnetism of the C3 phase is likely due to its low density, which enhances competition
among the MSE parameters and produces stronger magnetic frustration than that of the
C2(-like) phase.
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Chapter 7

Normal Fermi liquid phase near
localization

In this chapter, we discuss the results of heat capacity measurements on the3He/HD/HD/gr
system at 0.7 ≤ ρ ≤ 4.2 nm−2, shown as the colored region in Fig.7.1.
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ρ3He (nm-2)

Fig. 7.1: Phase diagram of 3He/HD/HD/gr. The shaded region is dis-
cussed in this chapter.

7.1 Critical behavior of Fermi liquid near localization

(0.7 ≤ ρ ≤ 4.2 nm−2)

The heat capacity data up to 4.18 nm−2 satisfy C ∝ T at low T , which is the typical
behavior of a Fermi liquid. We fitted the heat capacity data for T > 2 mK to Eq.(2.22),
and the fitted results are shown in Fig.7.2. The temperature range of the fitted curve
in the figure represents the temperature range of the data used for the fit. Figure 7.3
(a) shows the density dependence of the γ coefficient obtained by fitting the data to
and Eq.(2.21). The γ coefficients of the previous study on 3He/HD/HD/gr taken by
Casey et al.[39] are also plotted. In addition to the original data from Fig.2 in Ref.[39],
we plotted the γ values obtained by reanalysing the data in Ref.[39] assuming that the
T−dependence of the amorphous heat capacity is the same as the 0.46 nm−2 data in this
work (hereafter ”reanalyzed data”). We also corrected the density scale of the reanalyzed
data by considering the amount of the amorphous 3He. The details of this reanalysis is
described in Appendix A. The reanalyzed γ coefficient is larger than the original value,
because the amorphous heat capacity used for the reanalysis decrease with increasing
temperature for T > 3 mK. Therefore the γ value become greater than the value deduced
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liquid region. The solid lines are the fitted curves using Eq.(2.22). The
dashed line represents the behavior of noninteracting 2D Fermi gas.

using the T -independent amorphous heat capacity which is predicted by the Golov-Pobell
model. In Ref.[39], the heat capacity data up to 5.00 nm−2 were analysed as the Fermi
liquid. However, as discussed in Sec.6.1, we observed that the low T heat capacity deviated
from C ∝ T for the densities greater than 4.18 nm−2, indicating solidification of the 3He
film. This means that in Ref.[39] the data of the samples which were not in the Fermi
liquid were analysed as the Fermi liquid. Because the γ coefficient of the reanalyzed data
at 3.88 nm−2 (m∗/m ≈ 4.3) and that of the data in this work at 4.18 nm−2 (m∗/m ≈ 4.4)
is almost the same, we only used the data in Ref.[39] for ρ ≤ 3.88 nm−2, corresponding
to 4.4 nm−2 in the original density scale, in the following discussion. The effective mass
showed the divergence. The maximum value of m∗/m obtained in this work was 4.4 ±
0.3 at 4.18 nm−2. We analysed these data in the same way as in Ref.[39]. The m∗/m data
were fitted to Eq.(2.23). The fitted curves are shown as the solid lines in Fig.7.3 (a). The
small triangles were not used for the fit. ρc and ν obtained from the fitting are described
in Table.7.1. The data in this work yielded ρc = 6.35 ± 0.08 nm−2. This critical density
was far larger than the reported value of 5.1 nm−2 [39], the density of the C3 phase (4.74
nm−2), and the onset of the C2-like phase (5.05 nm−2). We also obtained ν = 1.36± 0.02
which is larger than ν = 1 expected from Eq.(2.27) with a critical exponent z = 4.

The reanalyzed data yielded ρc = 5.85 nm−2 and ν = 1.34. Both of these values were
similar to the data in this work, rather than that in the original data. The critical density
ρc of the original data was 5.46 nm−2, greater than 5.1 nm−2 reported in Ref.[39], because
the density range for the fit was limited up to 4.4 nm−2. Note that ρc = 5.1 nm−2 was
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reproduced if we used the original data up to 5.00 nm−2 for the fit, but in this case we
obtained ν = 0.77, smaller than ν = 1 expected from the scaling relations proposed by
Imada [72] and the critical exponent z = 4 deduced by the α coefficient of the T 2 term
[39]. Figure 7.3 (b) shows m∗/m as a function of (1− ρ/ρc)

ρc ν zν µ zµ
This work 6.35±0.08 1.36±0.03 4.72±0.06 2.3±0.1 3.5±0.2

Casey, reanalysis[39] 5.85±0.43 1.34±0.17 4.68±0.34 2.5±0.1 4.3±0.5
Casey, original[39] 5.46±0.43 0.81±0.15 3.62±0.67 3.0±0.2 3.2±0.3

Table 7.1: ρc, ν, and µ obtained by fitting these data sets. Critical exponentszν and zµ
are deduced from ν and µ assuming the scaling theory in Ref.[72].

100 101

10-2

10-1

100

101

m*/m

αρ
 (

J
 K

-3
 n

m
-2

) 

(m*/m)2.3

Casey (2003)
Original data
Reanalyzed data

This work

(m*/m)2.6

(m*/m)3.0

Fig. 7.4: αρ as a function of the effective mass enhancement m∗/m.
Here, α is the coefficient of the T 2 term in Eq.(2.22). The symbols are
the same as Fig.7.3. The lines are the fitted curves using Eq.(7.1)

Next, we analysed α, the coefficient of T 2 term. Figure 7.4 shows the product of the
α coefficient and the density ρ as a function of m∗/m. Three data sets were fitted to

αρ = a(m∗/m)µ, (7.1)

where a and µ are fitting parameters. The original data kept the reported value of µ = 3
even after changing the density range for the fit. However the data in this work and the
reanalyzed data yielded smaller values of µ = 2.3 (this work), µ = 2.6 (reanalyzed data).

The fitted results were compared with the scaling theory in Ref.[72] which is intro-
duced in Sec.2.2.3. Using the scaling relations, we deduced the critical exponent z in
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two independent methods. One used ν and Eq.(2.27), and z determined in this way was
named zν which is expressed as follows

zν = d(1 + ν) = 2(1 + ν), (7.2)

where d is the dimension of the system. The other method used ν, µ, and Eqs.(2.27)
and (2.28). The z exponent determined in this way was named zµ which is expressed as
follows

zµ = dν(µ− 1) = 2ν(µ− 1). (7.3)

Calculated zν and zµ are described in Table.7.1. We observed the self-inconsistency
between zν and zν for the data in this work. For the original and reanalysed data in
Ref.[39], zν and zµ were consistent, but the values were different from the reported value
of z = 4. The reason why zν and zν of the original data is different from z = 4 is that we
used ν = 0.81 and not ν = 1 originally assumed.

Another theory of Mott-Hubbard transition from the dynamical mean field theory
points out that the coherence temperature T0, below which the system can be well de-
scribed as the Fermi liquid, shows the power law behavior T0 ≈ δ1.5 [113]. If we define the
coherence temperature in the same way as in Eq.(2.26), the data in this work (reanalyzed
data) yield T0 ≈ δ1.6 (T0 ≈ δ1.9) and the value is close to 1.5. Although this theory does
not predict the critical exponent ν, it shows better consistency with the experimental
results in this work.

7.2 Conclusion

We measured heat capacity of the normal Fermi liquid. The effective mass divergence
was observed, but the critical behavior near localization was different from the previous
report. The new results still do not exclude the Mott-Hubbard scenario. The discrepancy
between this work and the previous results is owing to two factors. One is that the
previous workers included the data which is in the transitional region towards the C3
phase. The other is that they assumed the too simplified amorphous heat capacity based
on the Golov-Pobell model.
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Chapter 8

Liquid puddle formation in the low
density limit

In this chapter, we discuss the results of heat capacity measurements on the 3He/HD/HD/gr
system at 0.1 ≤ ρ ≤ 0.7 nm−2, shown as the colored region in Fig.8.1.

Liquid

C3 + C2

IC
(Ferromagnetic)

C3

(New QSL)

Puddle

Puddle Liquid

� ��� ���

����

� ���

C2-like
(QSL, RS?)

��� ����	

C2+IC ?

Transitional

1st layer

2nd layer

ρ3He (nm-2)

Fig. 8.1: Phase diagram of 3He/HD/HD/gr. The shaded region is dis-
cussed in this chapter.

8.1 1st layer

The heat capacity data of the 3He film below ρ = 4 nm−2 are shown in Fig.8.2 (a). As
already discussed in the previous chapter, in this density range the data satisfy C ∝ T

at low T . We fitted the data to Eq.(2.22) shown as the solid curves in Fig.8.2 (a). The
dashed line in Fig.8.2 (a) represents the C = γ0T behavior, where γ0 is the value of the
noninteracting Fermi gas spreading over the whole surface area. The density dependence
of the γ coefficient obtained by fitting the heat capacity data to Eq.(2.22) is shown in
Fig.8.2 (b). The dashed line in this figure represents the value of γ0. The behavior of γ
was similar to that of the 1st and 2nd 3He layer on bare graphite surfaces, shown as the
blue and red symbols in Fig.8.2 (b), respectively [23, 24, 43]. There is a kink at ρC ≈ 0.7
nm−2. At ρ > 0.7 nm−2 γ diverged with increasing density, as discussed in the previous
section. Below the kink γ changed linearly with the density and was smaller than γ0.
This is strong evidence that the 3He self-condensed liquid phase was also formed on a
bilayer of HD despite the difference in the potential corrugations. If we extrapolate the
behavior of the γ coefficient above the kink density to 0 nm−2, the value is slightly larger
than γ0. This indicates the mass of a 3He atom is enhanced by the interaction between a
3He atom and the underlayers, and the similar behavior was also observed in the previous
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Fig. 8.2: (a) The heat capacity data at 0.1 ≤ ρ ≤ 1.00 nm−2. The
dashed line shows C = γ0T behavior expected to the noninteracting
Fermi gas. (b) The density dependence of the 3He quasiparticle effective
mass enhancement m∗/m deduced from the heat capacity data. Below
a kink at ρ ≈ 0.7 nm−2, m∗/m changes linearly with ρ. The data of the
1st and 2nd layer 3He on graphite are also shown for comparison. The
dashed line represents γ0

results of the 1st and 2nd 3He layers on the bare graphite [23]. The mass enhancement
at ρ → 0 is predicted by some theories considering the realistic potential corrugations
from the substrates. [10, 79, 114] For example, a theory of the 1st 3He layer on the bare
graphite predictes the mass enhancement of m∗/m = 1.03, and another theory of the 3He
film on graphite plated with the 4He monolayer predicts m∗/m = 1.02 [79]. According to
Gasparini et al., the liquid puddle with the higher critical density ρC has the greater mass
enhancement at dilute limit [114]. However, the 2nd layer puddle, which has the lowest
critical density ρC ≈ 0.6, has the largest m∗/m. Therefore the prediction by Gasparini is
inconsistent with the experimental results.

In the puddle phase, the γ and α coefficients obtained by fitting the data to Eq.(2.22)
increases with increasing density in a similar manner as shown in Fig.8.3. This behavior
is consistent with the simple expectation that, added 3He is not used to change the liquid
density but to increase the surface area of the puddle. The previous measurements of
the 3He puddle on graphite plated with the 4He monolayer by Sato et al. displayed the
decrease in α/γ to zero at ρ → 0 [23]. They concluded that the reduction is because the
long-wavelength modes of the spin fluctuations were cut off when the size of the puddle
was small. This is inconsistent with the results of the 3He puddle on the HD. However,
the detailed comparison and discussion are difficult because the α coefficients obtained
in this work have large error bars especially at low density, mainly due to determination
of the amorphous heat capacity. Once the puddle spread over the whole surface of the
substrate, γ and α coefficients show different density dependences because added 3He is
used to increase the density of the liquid and enhance the interactions among 3He atoms
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8.2 2nd layer

The γ coefficient of the 2nd layer liquid on the HD as a function of ρ− ρpromotion is shown
in Fig.8.4, where ρpromotion is the density where the layer promotion occur. The 2nd layer
promotion occured at ρpromotion ≈ 5.7 nm−2 (see Sec.5.1). At ρ− ρpromotion ≤ 1.45 nm−2,
γ is smaller than γ0. Therefore the 2nd 3He layer on the HD forms the self-condensed
liquid like the 1st layer on the HD. A previous heat capacity measurements of the 3He
films on the HD also mentioned the γ < γ0 relation just after the 2nd layer promotion
[18]. The γ coefficients of the 1st 3He layer on the HD and that 3rd 3He layer on the
bare graphite (3He/3He/4He/gr) [23] are also plotted in Fig.8.4 for comparison. The γ

coefficient of the 2nd 3He layer on the HD increased far more slowly than that of the 1st
3He layer on the HD. The slope is rather close to that of the 3rd 3He layer on the bare
graphite just after the layer promotion. The slope of the γ coefficient of the 2nd 3He layer
on the HD increased gradually with increasing density. The change in the slope was also
observed for the 3rd layer 3He puddle on the bare graphite. The density dependence of
γ of the 3rd layer 3He had a clear kink at ρ− ρpromotion = 0.5 nm−2 where the slope was
three times larger. Below this kink a 1/3 of the added 3He was adsorbed on the topmost
layer but the other 2/3 compressed the second layer. Above the kink all of the added
3He atoms were adsorbed on the 3rd layer. The NMR measurements of the 3rd 3He layer
[116] were consistent with the heat capacity measurements [23]. Note that not all of the
3He atoms added after layer promotion are necessarily adsorbed on the topmost layer.
As already mentioned, the neutron scattering experiments on the 3He films on the bare
graphite observed the increase in the density of the 1st 3He layer by a few % even after
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the layer promotion[35]. However, the change in the slope of γ of the 2nd 3He layer on the
HD was continuous without a kink. This indicates that, a 1/3 of added 3He was adsorbed
on the topmost layer just after the layer promotion, forming the self-condensed liquid,
and then the fraction increased gradually with increasing density.

8.3 conclusion

We measured heat capacities of the low density liquid 3He films of the 1st and 2nd layers
on a bilayer of HD. The γ coefficients of the T -linear term in both the 1st and 2nd layers
were smaller than γ0, indicating the formation of the self-condensed liquid. The critical
density ρC of the 1st layer puddle was 0.7 nm−2. This value was very close to ρC of the
1st, 2nd and 3rd 3He layers on the bare graphite (0.6 - 0.9 nm−2) despite the difference
in potential corrugations. For the 2nd layer puddle on the HD, ρC was apparently higher
than these values, but the weak density dependence of γ at lowest densities suggests that
not all of the added 3He atoms are adsorbed on the 2nd layer but part of them are used
to compress the 1st layer.
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Chapter 9

Summary and future prospects

Summary

In this study, we performed the heat capacity measurements on 3He/HD/HD/gr system
over wide ranges of areal density (0.10 ≤ ρ ≤ 13.63 nm−2) and temperature (0.16 ≤ ρ ≤
90 mK) to determine the nuclear magnetic phase diagram of this system and the magnetic
properties of the QSL state.

Amorphous Solid At very low areal density in Run1, measured heat capacities have
weak temperature dependence, which is roughly consistent with the Golov-Pobell model.
This indicates that 3He atoms are in the “amorphous” state where atoms are adsorbed on
substrate heterogeneities rather than a flat surface. Although it has been known that HD
layer do not reduce heterogeneities of substrate[17]. It was the first direct measurement
of the heat capacity of amorphous 3He on the HD film. This enables us to analyze the
heat capacity data more accurately beyond the Golov-Pobell model.

C2-like Phase At 5.05 ≤ ρ ≤ 5.92 nm−2, we found the system show rather similar
frustrated magnetism to that of the C2 phase which was originally anticipated as the
4/7 phase but was reconsidered by the recent heat capacity measurements [16]. Thus we
named the relevant phase in the 3He/HD/HD/gr the “C2-like” phase. The magnetism of
the C2-like phase is characterized by the quite broad heat capacity peak with the nearly
T -linear low temperature envelope. The scaling behavior of normalized specific heat by JC
from 5.05 nm−2 to 5.92 nm−2 shows large compressibility of 17 %. This is qualitatively
consistent with the C2 phase in bilayer 3He system. This result supports the scenario
that the C2(-like) phase is not the commensurate solid but probably the “quantum liquid
crystal” in which rotational or translational symmetry is partially broken. At 5.7 < ρ,
the T -linear heat capacity above T = 10 mK appears, which suggests the layer promotion
to the 2nd layer. At the same time, the heat capacity below T = 5 mK increases which
is associated with the emergent of the ferromagnetic component. This component is
probably made under second layer puddle.

Incommensurate Solid At ρ ≥ 9.33 nm−2, the ferromagnetic heat capacity is ob-
served, which is consistent with the previous magnetization measurements [17]. These
results suggest that the 3He film forms the solid phase which has a triangular lattice
incommensurate with the underlayer lattice, like the bilayer 3He system. This similarity
appears because at such high densities the effect of underlayers is weaker compared with
that of theinteractions between 3He atoms.
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C3 Phase Between 4.18 and 5.05 nm−2, we observed successive phase transitions
separated by the distinct phase (C3 phase). The phase transition between C3 and C2-like
phases is the first order transition which is confirmed by the two ways. One is that heat
capacities at intermediate densities between the two pure phases can be represented by
linear combinations of those of the pure phases. The other is that there exist temperatures
(11 mK) at which the C(T ) vs. T lines cross each other within the two phase densities.
The phase transition between the Fermi liquid and C3 phases is not interpreted as the
first order transition. The low T magnetic specific heat of the C3 phase shows the peculiar
temperature dependence as C ∝ T 2/3 in a wide T range of 0.015 ≤ T/Tpeak ≤ 0.2. Here
Tpeak (= 21 mK) is the temperature at which the specific heat has a broad maximum.
This is different from any other known T dependence such as C ∝ T 2 for the 2D antifer-
romagnetic spin waves, C ∝ T for 2D ferromagnetic spin waves or other QSL candidates
with triangular lattices [6, 92], etc. However, by combining with the fact that the previ-
ously measured magnetic susceptibility[7, 17] follows the similarly curious T dependence
as χ ∝ T−1/3, our data are indicative of gapless quantum spin liquid phase with exotic
magnetic excitations represented by Majorana Fermions.

Fermi Liquid neat Localization At 0.10 ≤ ρ ≤ 4.18 nm−2, the T -linear heat
capacity at low T is observed, indicating the degenerate Fermi liquid. The coefficient of
the T -linear term γ, which is proportional to the effective mass of a 3He quasiparticle,
is enhanced with increasing density. We found the critical behavior near the localization
is inconsistent with the previous result which suggests the Mott-Hubbard transition with
the critical exponent z = 4 [39]. We showed that this discrepancy comes from their
inappropriate inclusion of the data points belonging to the transitional density region from
the Fermi liquid towards the C3 phases and their assuming a less accurate amorphous
heat capacity based on the Golov-Pobell model.

Self-Condensed Liquid At 0.10 ≤ ρ ≤ 0.7 nm−2 and just after the layer promotion
to the 2nd layer, we observed the coefficient of the C ∝ T term γ smaller than the value
of the noninteracting Fermi gas γ0. Therefore the self-condensed liquid is formed in both
the 1st and 2nd layer on HD. The critical density of the 1st layer puddle (0.7 nm−2) is
quite similar to the previous results (0.6 - 0.9 nm−2 [23]), despite the difference in the
potential corrugations.

Future prospects

The result of this work supports the recent melting heat capacity measurement which
claims that the C2 phase is not the 4/7 commensurate solid, but compressible QLC state
with partially broken symmetry. To confirm it, neutron diffraction studies on the C2 and
C3 phases, and theoretical studies for 3He on the HD are desirable.

To understand the complex transitional region in the vicinity of the C3 phase, the
detailed density dependence of the magnetic susceptibility of the 3He/HD/HD/gr system
is also desirable.
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Appendix A

Reanalysis of measurements on
3He/HD/HD/gr by previous workers

As discussed in Sec.(4.1), we deduced the density of 3He adsorbed on a flat surface of
the substrate by subtracting the amount of amorphous 3He. However, previous workers
who studied on 3He/HD/HD/gr adopted the nominal density scale including amorphous
3He. Here, we discuss correction of the density scales of some previous works in order to
compare our results with them.

A.1 Magnetization measurements by Ikegami (2000)

and Masutomi (2004)

Ikegami et al. estimated the amount of the amorphous 3He by fitting the magnetization
data in the Fermi liquid region at the 3 densities (ρnominal = 3.3, 3.8, and 4.5 nm−2). The
density evolution of NG is shown in Fig.4.8. Their data is multiplied by 562.5/10.7, the
ratio of the substrate surface area. The relation between NG and the total amount of 3He
Ntotal as

NG[ccSTP] = aNtotal + b. (A.1)

By dividing both sides of this equation by the surface area, the correction formula become

ρ[nm−2] = ρtotal − ρG (A.2)

ρG[nm
−2] = 0.0383ρtotal + 0.332. (A.3)

For example, through Eq.(A.2) 5.20 nm−2 become 4.82 ± 0.04 nm−2. The density of the
3He film on a bilayer HD reported in Ref.[7] can also be viewed as 4.82 nm−2, because
the authors mention that the density of their sample is consistent with the 3He film at
5.2 nm−2 in Ref.[17].

A.2 Heat capacity measurements by Casey (2003)

In Ref.[39], Casey et al. analyzed their heat capacity data assuming the amorphous
contribution as a temperature independent term β. They obtained γ and α coefficients
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by fitting the data to

C(T ) = γT − αT 2 + β. (A.4)

The magnitude of β term is not reported in their papers. They only commented that β
term increases by a factor of 3 over the density range investigated. Here, we reanalyzed
their heat capacity data using the directly measured amorphous heat capacity in our
study (ρRun1 = 0.46 nm−2, see Sec.4.2). The heat capacity data fitted to

C(T ) = γT − αT 2 + aCamor(T ) (A.5)

Camor(T ) =
0.9585

1.96 log(1.3T )2 − 2.0 log(1.3T ) + 2.555
+ 0.00231. (A.6)

The fit results is shown in Fig.A.1. The a coefficient obtained from the fitting is plotted
in Fig.A.2. a moderately increase with increasing density up to about 4.4 nm−2. However
at ρ > 4.4 nm−2 the increase in a coefficient become steeper, shown as the open symbols
of Fig.A.2. Such a drastic change indicate that the assumption of the Fermi liquid is no
longer valid in this density range.
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Appendix B

Ortho-para conversion heating of a
bilayer H2 on Grafoil

As mentioned in Sec.2.2, a bilayer H2 is avoided as the substrate of 3He monolayer
for sub mK measurements, because of heat emission by conversion between ortho- and
para-H2. These states correspond to spin triplet and singlet states of nuclear spins.
Abundance ratio of ortho- and para-H2 at room temperature is 3:1, reflecting the degree
of degeneracy. However, when temperature decrease ortho-H2 convert to para-H2 increase
because the ground state energy of para-H2 is 14.7 meV smaller than that of ortho-H2.
Heat release from this conversion is harmful for cooling down to ultra low temperature.
In this section, we report the measurement of heat release from a bilayer H2 on Grafoil
at mK temperatures to testify the feasibility of it for the experiment at ultra low T .

We made a bilayer H2 whose areal density is 17.52 nm−2, corresponding to 2.03 layer
[19]. H2 gas was introduced into the cell at T > 17 K to prevent H2 from being frozen
in a capillary before reaching the sample cell. 7 days after fabricating H2 film, we cooled
the refrigerator and measured the speed of natural warm up from 30 mK in adiabatic
condition. Heat release deduced by the speed and the addendum heat capacity, shown
in Fig.B.1 was ≈ 130 nW. Our experimental apparatus requires heat leak into the cell to
be less than 1 nW for sub mK measurement, so measured value is too large. Abundance
ratio of ortho-H2 is ≈ 0.5 % if we assume that ortho-para conversion rate is 0.4 at T < 6
K % [117].

We measured heat release again 7 days after the 1st measurement. We obtained 7 ±
1 nW at 40 < T < 70 mK, which was measured by the same method as that used after
the first time, as shown in Fig.B.1. Heat release become about 1/20 of the value after the
first anneal and abundance ratio of ortho-H2 become 0.03 %, but it is still too larger than
is required.

Finally we estimate the conversion rate. When we assume the rate is insensitive to
temperature below T = 20 K [118], ortho-para conversion rate is 33 ± 3 %/day, so heat
release may be below 1 nW by waiting 5 extra days.
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[18] A. Casey, H. Patel, J. Nyéki, B. P. Cowan, and J. Saunders, J. Low. Temp. Phys.
113, 265 (1998).

98



[19] H. Wiechert, Excitations in Two−Dimensional and Three−Dimensional Quantum
Fluids, Edited by A. G. F. Wyatt, and H. J. Lauter, Prenum Press, p499 (1991).

[20] D. Sato, D. Tsuji, S. Takayoshi, K. Obata, T. Matsui, and H. Fukuyama, J. Low
Temp. Phys. 158, 201 (2010).

[21] M. Siqueira, C. P. Lusher, B. P. Cowan, and J. Saunders, Phys. Rev. Lett. 71, 1407
(1993).

[22] M. C. Gordillo and J. Boronat, private communication.

[23] D. Sato, K. Naruse, T. Matsui, and H. Fukuyama, Phys. Rev. Lett. 109, 235306
(2012).

[24] D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 65, 2788 (1990).

[25] D. S. Greywall, Phys. Rev. B 41, 1842 (1990).

[26] V. Elser, Phys. Rev. Lett. 62, 2405 (1989).

[27] T. Takagi, J. Phys. Conf. Series 150, 032102 (2009).

[28] J. Saunders, C. P. Lusher, and B. P. Cowan, Phys. Rev. Lett. 64, 2523 (1990).

[29] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

[30] M. Bretz, Phys. Rev. Lett. 38, 501 (1977).

[31] S. Nakamura, K. Matsui, T. Matsui, and H. Fukuyama, J. Low Temp. Phys. 171,
7115 (2013).

[32] H. Freimuth and H. Wiechert, Phys. Rev. B 42, 587 (1990).

[33] S. N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee, and W. F. Brinkman,
Phys. Rev. Lett. 46, 549 (1982).

[34] H. J. Lauter, H. P. Schildberg, H. Godfrin, H. Wiechert, and R. Haensel, Can. J.
Phys. 65, 1435 (1987).

[35] H. J. Lauter, H. Godfrin, V. L. P. Frank, and H. P. Schildberg, Physica B 165 &
166, 597 (1990).

[36] Y. Matsumoto, Ph.D. Thesis, The University of Tokyo (2003).

[37] D. Sato, Takayoshi, K. Obata, T. Matsui, and H. Fukuyama, J. Low Temp. Phys.
158, 544 (2010).

[38] R. C. Ramos Jr, P. S. Ebey, and O. E. Vilches, J. Low Temp. Phys. 110, 615 (1998).
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