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Abstract

In this thesis, we develop theories to investigates chiral magnets, which have been a field of
intensive study with various experimental techniques such as neutron scattering measurement,
circular polarized X-ray diffraction, and the Lorentz transmission electron microscopy(TEM)
as well as the material synthesis. Chiral magnets have antisymmetric spin interactions, called
Dzyaloshinskii–Moriya interaction (DMI), which emerges because of broken inversion sym-
metry and strong spin-orbit coupling. The spin system has chirality due to the DMI, which
induces non-trivial spin structures, e.g., helical and conical states, soliton lattice, skyrmions.

This thesis mainly focuses on a uniaxial chiral magnet represented by Cr1/3NbS2. The
lattice structure of this material has the space group symmetry P6322, but we simplify it
as a tetragonal lattice system with a single type of DMI at zero magnetic field. This DMI
induces a helical order with modulation along the helical axis. This system shows a rich phase
structure with changing field strength and direction even at zero temperature. The field is
rotated from perpendicular to parallel directions to the helical axis. When the field is applied
along the perpendicular direction H⃗ex = (Hx

ex, 0, 0), the system shows a lattice structure of
solitons, which have a highly nonlinear spatial pattern. The corresponding phase transition
is unconventional because of its logarithmic singularity rather than conventional power law.
When the field is applied along the parallel direction H⃗ex = (0, 0, Hz

ex), the transition shows
conventional power-law singularities, but non-reciprocity in the spin wave excitations develops
for Hz

ex < Hc, where Hc is the critical field of the transition. The non-reciprocity is the
asymmetry between the right- and left-propagations.

Main results of the present thesis consist of two parts. The first part is about the spin wave
structure of the uniaxial chiral magnet under parallel field (0, 0, Hz

ex), and it is discussed in
Chap. 3. It is well known that the dispersions of spin wave excitation energy Eq are non-
reciprocal Eq ̸= E−q in the uniform state of the chiral magnets for Hz

ex > Hc. We have
clarified how the non-reciprocity appears in the spin wave structure atHz

ex < Hc. We study the
excitation spectrum by calculating the dynamical spin structure factorCµν(q, ω) for momentum
q parallel to the helical axis. We find that the transverse component such as Cxx(q, ω) has two
branches of its peak, andCxx(q, ω) = Cxx(−q, ω). Note that peak positions (q, ω) and (−q, ω)
belong to different branches. Intensity of one branch increases with increasing field, while the
other’s decreases and disappears completely at the critical field Hc. Hence the non-reciprocity
develops through the asymmetry of spectral intensity Cxx(q, ω) ̸= Cxx(−q, ω), and finally
there is only one non-reciprocal branch for Hz

ex ≥ Hc. The uniaxial system is convenient to
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ii ABSTRACT

observe this behavior since the system changes from the helical state to the uniformly saturated
state through the conical state by increasing magnetic field along the chiral axis, and each step
is feasible for thorough analysis.

The second part of the main results is discussed in Chap. 4 and it is about the phase diagram
and surface effects in tilted magnetic field from the view point of chiral solitons. Laliena et
al. obtained the phase diagram numerically, and found that it is separated into one ordered
phase with periodic spatial modulation and one disordered phase in which spins are polarized
by the field[Phys. Rev. B 93, 134424 (2016)]. Their phase boundary consists of two lines of
continuous phase transition and one line of discontinuous phase transition in between. The line
of discontinuous transition connects with the two continuous transition lines at multicritical
points. The continuous phase transition aroundHx

ex ∼ 0 is called the instability-type one, while
the other continuous phase transition around Hz

ex ∼ 0 is called the nucleation-type following
de Gennes’s classification. The standard picture of the latter transition is a condensation
of solitons. Following the Schaub and Mukamel[Phys. Rev. B 32, 6385 (1985)], we call
the point connected to the instability-type the tricritical point and the point connected to the
nucleation-type the multicritical point.

We perform a linear analysis which examines an asymptotic form of an isolated soliton
or a sinusoidal mode for a small deviation from the uniform state. This analysis separates
the phase diagram into three regions, and we find that the region described by a distorted
conical order has the boundary consistent with the instability-type phase transition. In order to
study this instability, we derive the Landau energy of this order starting from the microscopic
Hamiltonian and determine the corresponding phase boundary and the location of the tricritical
point. They are consistent with the numerical results, and this justifies our Landau expansion.
We separate the other region where a soliton tail structure exists into two subregions depending
on whether the tail oscillates or not and find that the soliton interaction changes its sign on
the phase boundary at the multicritical point. Hence we confirm that the mechanism of the
discontinuous phase transition is attractive interaction between solitons, as the same as that
studied by Schaub and Mukamel. Then we determine more precisely the instability field of
solitons since the linear analysis underestimates the soliton instability. We call the instability
field the H0 line and find that the instability is caused by the spin motion toward the helical
axis.

We also study the surface effects preventing solitons from entering the system, and calculate
a surface barrier, which is similar to the Bean–Livingston barrier of superconducting vortices.
This may lead a hysteresis observed in experiments for micrometer-sized samples, which is not
related to the discontinuous phase transition mentioned above. In experiment, a large jump is
observed in decreasing field. Our theoretical result shows that the field at which the surface
barrier disappears agrees with the field at jump in magneto-resistance experiments. We also
apply this theory to the surface barrier of skyrmions, and find that its elongation instability to
the soliton occurs before the surface barrier vanishes.

Finally Chap. 5 summarizes our main results, their implications, and future perspectives
associated with this thesis.
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Chapter 1

Introduction

1.1 Background
Topology has been a concept of great importance in condensed matter physics for about half
a century. It had been introduced into condensed matter physics as a mathematical tool in
1970s[1], to classify the topological defects, such as quantum vortices in magnetic systems,
superconductors and superfluids, and dislocation and disclinations in crystals and liquid crys-
tals. Many of topological defects are described and classified by homotopy groups, and are
characterized by the corresponding integer called topological indices or winding numbers. For
an example, a point defect in the two-dimensional space or a line defect in the three-dimensional
space is described by the fundamental group π1(S1) = Z, which is equivalent to how many
times a particular quantity of the order parameter rotates while one rotates in the real space
around the defect. An example of the higher homotopy group is π2(S2) corresponding to the
skyrmion number. Vortices and dislocations are very important to describe the phase transition
in two-dimensional systems, so-called Kosterlitz–Thouless transition[2–4].

In 1980s, after the observation of the quantum Hall effect (QHE)[5] and accompanying
theoretical works[6], a new type of topology was introduced, which is associated with Berry’s
geometrical phase. Thouless, Kohmoto, Nightingale, and den Nijs developed the TKNN
number appearing in the quantized Hall conductivity[7]. The TKNN number picks up the
topology of Bloch wave functions. Later Kohmoto clarified that the TKNN number is identified
with the first Chern number[8]. Haldane constructed the model showing the QHE without a
magnetic field[9], which is called quantum anomalous Hall effect (QAHE). The concept of
the Berry phase is also important for the anomalous Hall effect[10–12]. Kane and Mele
proposed the time-reversal-invariant version of QAHE, which is the quantum spin Hall effect
(QSHE), in 2005[13, 14], motivated by the spin Hall effect[15, 16]. QSHE has attracted
intensive attentions, opening the field of the topological insulator[17, 18]. The topological
invariant charactering quantized spin Hall conductivity is given by Z2 invariant[14], which is
the extension of the TKNN number describing the Haldane’s model. The whole classification
of topological insulators and topological superconductors based on the Altrand–Zirnbauer

1



2 CHAPTER 1. INTRODUCTION

(a)

(b)

(c)

(d)

Figure 1.1: (Left) (a) Néel skyrmion. (b) Bloch skyrmion. (c) Skyrmion on racetrack memory.
(d) Lorentz transmission electron microscopy. Figures (a)–(c) are from [24] and (d) is from
[25]. (Right) Domain wall on racetrack memory. Figure is from Ref. [26]

symmetry groups[19] with the calculation of its Homotopy group was done by Ryu et al.[20–
22]. It is a common property that the non-trivial topology in the bulk is reflected to the presence
of edge mode, and it is so-called bulk-edge correspondence[23]. Topology in these cases is
inherent in their Bloch wave functions in the momentum space and appears through the Berry
curvature. In many topological systems in this family, the spin-orbit interaction (SOI) plays
an important role instead of the magnetic field in QHE. The SOI opened up the field of the
topological insulator in 2000s.

One of the most intensive study in these days may be the field of topological magnets: Much
attention has been paid to studies of topological textures such as domain walls, magnetic bubbles
or skyrmions and magnetic vortices appearing in magnets[27–34] since they are expected to
work as information carriers in the memory device (the race track memory[24, 26, 35–38]) as
well as fundamental interests in dynamics and statics associated with the topological textures.
In particular, skyrmion has attracted more attention since skyrmion can be driven by lower
spin-polarized current[39–41]. Figure 1.1 shows the images of skyrmions and the racetrack
memory using domain wall[25, 26]. By the way, SOI is relevant also in magnets. Ferromagnets,
where such topological textures are often observed, with strong coercive field are highly desired
for stability. A strong coercive field is attributed to the anisotropy, which actually exists in
a real magnetic system and originates from the SOI and crystal fields. SOI plays a role of
reflecting the crystal symmetry in the anisotropy of the spin structure. Anisotropy has relevant
effects on the topological textures: The domain wall width is determined by

√
A/K, where

K is the anisotropy and A is a spin stiffness constant. This width is crucial to achieve a tiny
information carrier and correspondingly a tiny magnetic memory device. A magnetic bubble
is also (meta)stabilized by the anisotropy as well as the dipole-dipole interaction[28–30, 42].
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Another important role of the SOI is the introduction of an antisymmetric interaction between
spins with the combination of the lack of inversion symmetry or mirror symmetry.

The reason of the recent intensive studies is somewhat attributed to the experimental
observations of topological textures in chiral magnets[34, 43] as well as the numerical progress
in frustrated magnets[44–46]. The difference between these two is as follows: The chirality
of the topological structures is fixed in chiral magnets, while left- and right-handed structures
are degenerated in frustrated magnets[47]. [We make a remark on the term “chiral magnet”:
In a magnetic crystal with crystalline chirality or a magnetic chiral molecule, the chirality is
transcribed to the magnetic interaction via spin-orbit coupling. The magnetic interaction is
antisymmtric in the spin Hamiltonian and called Dzyaloshinskii–Moriya interaction (DMI)[48,
49]. The DMI gives chirality to a spin system and we use the chiral magnet for a magnetic
system with DMI.] Thus we can say that the order or topological textures in chiral magnets are
protected by its chirality, while not in frustrated magnets and separated into multiple domain
structures, i.e., mixture of left- and right-handed orders. The stability of each state in chiral
magnet is expected to be controllable because of this chiral protection. Another difference
is the length scale of topological textures. The atomic scale of the modulation realizes in
frustrated magnets, while the scale ranges from 1nm to 100nm in chiral magnets. This rather
large length scale comes from the ratio of the exchange interaction and DMI. Because this
long-scale modulation can be approximated as a smooth variation, the modulation is literally
topologically protected. Therefore chiral magnets are appropriate subjects to study physics of
the topological textures.

How does the DMI modulate spin structures? DMI takes the form of the vector product for
two spins. Within a classical picture of a lattice model, it favors the orthogonal configuration
of two spins, while the exchange interaction does the parallel or antiparallel alignment since it
takes the form of the inner product. The competition leads to the helical structure with finite
rotational angle. More complicated structures are caused by a magnetic field and/or more
than one DMI. The DMI was first introduced by Dzyaloshinskii in order to explain the weak
ferromagnetism of α-Fe2O3 and Cr2O3 on the basis of symmetry considerations[48]. Later
Moriya derived it in a microscopic approach[49]. Their works clarified that the DMI originates
from inversion-symmetry breaking and the SOI.

The recent remarkable developments of experimental techniques have actually revealed the
modulated spin structures: non-trivial structures are observed using the small angle neutron
scattering (SANS)[50–53] and high resolution magnetic microscopies[25, 54–57], and it is also
highly developed to synthesize of bulk chiral magnets, and chiral magnetic thin film structures
with interface induced DMIs[24, 58–60].

In this thesis, we mainly focus on the uniaxial chiral magnet. The material motivating us
is Cr1/3NbS2, which belongs to the space group of P6322[43, 61, 62]. The dominant DMI is
along the c-axis of the crystal and we call this axis the helical axis. For the uniaxial chiral
magnet, though the skyrmion states do not appear, there are still rich phenomena and states
which are rather simple and pedagogical than those for the cubic materials such as MnSi[50,
63] and FeGe[54, 64]. The ordered state at zero field is a helical state propagating along the



4 CHAPTER 1. INTRODUCTION

helical axis. There are two characteristic directions for applications of magnetic field.
(i) One is parallel to the helical axis. This does not change the character of the ordered state.

The ordered state is given by the helical order in the plane perpendicular to the helical axis in
the spin space with the uniform component along the helical axis, which is called a conical
state. However, excitations develop into the fully non-reciprocal magnon in the uniform state,
which is given byEk ̸= E−k for a particular direction of k. Here Ek is the excitation energy of
a single magnon with momentum k[65–73]. In the presence of the DMI, the magnon acquires
the Berry phase during the hopping process. The phase from the uniform DMI is constant
and thus does not contribute to the Hall conductivity1, but it horizontally (i.e. parallel to a
momentum axis) shifts the energy dispersion. This can be interpreted as an analogous situation
for electrons as follows: the phase is equivalent to the constant vector potential, and the kinetic
momentum can be given by the canonical momentum shifted by the vector potential. Shifted
dispersion relation has similarity to the Rashba splitting of the electronic dispersion relation(,
in more general, splitting because of an antisymmetric spin-orbit coupling)[78]. Magnetic field
leaves one of these splitting bands, as the ferromagnetic spin waves have only one direction
of the precession. The non-reciprocity is well known and experimentally confirmed, in the
uniform state[69, 71–73]. The purpose of Chap. 3 is to investigate the non-reciprocity in the
modulated state using the dynamical spin structure factor.

(ii) The other direction of a magnetic field is perpendicular to the helical axis. In this case,
the spins are restricted in the plane perpendicular to the helical axis. This field introduces
higher harmonics into the helical order of the single-q. The helical structure develops into the
periodic structure of a discommensuration[79], so-called chiral soliton lattice[80]. The discom-
mensuration here is a 2π-domain wall which we call a chiral soliton. We can characterize the
chiral soliton by the topological charge or winding number defined by w = (2π)−1

∫
dz∂zφ(z)

with the in-plane angle φ(z) of the spin at z, the coordinate along the helical axis. The inter-
chiral-soliton distance, which is the period of the chiral soliton lattice, goes to infinity as the
field approaches to the critical field and then transforms into the uniform state of the disordered
phase. These chiral soliton lattice state and disordered-incommensurate (D-IC) transition are
obtained by Dzyaloshinskii first through the analytical solution for the sine-Gordon model: [61,
62, 81–83]. Interestingly this phase transition is not accompanied by the instability, neverthe-
less the phase transition is continuous. The phase transition can be described by the melting
of discommensurations and cannot be described by the Landau theory using a small and local
parameter[79]. This is an example of unconventional continuous phase transition caused by
topological textures, and this kind of transition is classified into the nucleation-type continuous
phase transition by de Gennes[84]. Another example of this kind of transition is that at the
lower critical field of type-II superconductors[85].

The whole phase diagram is not well understood yet even for uniaxial chiral magnet. Re-
cently Laliena et al. theoretically addressed phase transitions under the tilted field connecting
these two directions[86]. This work showed the presence of a discontinuous phase transition

1There are cases of magnon Hall effects because of Berry phases on a non-trivial lattice e.g. pyrochlore[74]
or for non-trivial spin structure e.g. skyrmion[75–77].
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line between two continuous-phase-transition lines and corresponding two critical points. The
purpose of Chap. 4 is to comprehend the whole magnetic phase diagram and the origin of
discontinuous phase transitions using the chiral solitons. It should be remarked that the phase
diagram and phase boundary in cubic system are still controversial[53, 87]. In three dimen-
sional systems, the skyrmion phase can stabilize only assisted by the thermal fluctuation[50].
Moreover, the presence of a fluctuation disordered phase and fluctuation-induced first-order
phase transition are proposed near the skyrmion phase pocket called “A-phase”[53, 63, 88].
The reason of the complexity of the skyrmion phase diagram is the presence of a conical phase
propagating along the magnetic field, which competes with the skyrmion phase. In contrary
to the three dimensional case, a skyrmion phase can stabilize in a thin film which suppresses
the stability of the conical phase[89]. In this limit it is predicted that the phase transition
depends on whether the interaction between skyrmions is repulsive or attractive[90, 91]. This
scenario was developed in the contexts of charge density waves by Jacob and Walker[92] and
superconducting vortices in Refs. [93–96]. The magnetic phase diagram is constructed on the
basis of the skyrmion states nevertheless they are not the most stable state. Even in the two
dimensional system, the competition between skyrmion and helical order under the magnetic
field complicates the phase diagram to see phase transition related to the attractive interaction
between skyrmions in experiment. In addition, finite temperature makes the phase transition
further complicated as there is a melting problem[97–99]. Even in the uniaxial chiral magnet,
the controversy between the Monte Carlo simulation[100] and mean field calculation[101, 102]
remains. In these senses, the exhaustive study of a simple uniaxial system at zero temperature
under the tilted field is necessary for more fundamental understanding.

In addition, we describe a characteristic hysteresis observed in the recent magneto-resistance
measurement for micrometer-sized samples[103, 104]. This hysteresis cannot be attributed to
the thermodynamic first order phase transition because it is observed for much wider region in
the phase diagram than that suggested as the first order phase transition. Also note that this
characteristic hysteresis is observed for small samples. As de Gennes mentioned, the hysteresis
is a rather frequent phenomenon for nucleation-type phase transition[84]. For superconducting
vortices, the Bean–Livingston surface barrier causes the hysteresis[85, 105, 106]. We will
discuss the surface barrier of chiral solitons and skyrmions as another example[107].

The purpose of this thesis is, for the uniaxial chiral magnet, to clarify the properties using
the chiral solitons as a particle picture of topological textures and the helical order as a wave
picture.

1.2 Structure of this thesis

We illustrate the structure of this thesis on the basis of the above background.
In Chap. 2, we review the derivation of SOI, DMI, and the Landau–Lifshitz–Gilbert equa-

tion. DMI is the origin of non-uniform structure in chiral magnets and always exist in this
thesis. We also review the chiral sine–Gordon model describing chiral soliton lattice states
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at zero temperature, Schaub and Mukamel’s study on temperature effects, and de Gennes’s
classification of two continuous phase transitions.

Chapters 3 and 4 are the main results of this thesis.
In Chap. 3, we discuss the non-reciprocal spin wave excitations caused by DMI. In particular,

we study the dynamical spin structure factor in order to deal with the non-reciprocity in non-
uniform state.

In Chap. 4, we mainly study a uniaxial chiral magnet which is likely to be a simplified
model of Cr1/3NbS2 in the presence of a tilted magnetic field in terms of two aspects: the
zero temperature phase diagram in the thermodynamics limit, and the surface barrier of chiral
soliton and hysteresis phenomena observed in experiment.

In Chap. 5, we summarize the main results achieved in Chaps. 3 and 4 and discuss the
importance and future problems related to the present study.



Chapter 2

Several basics

In this chapter, we review several theoretical arguments important to this thesis. In the first
two sections we summarize the derivation of SOI and DMI. Then in Sect. 2.3, we derive
the Landau–Lifshitz–Gilbert equation, which is an equation of motion for the local magnetic
moment. We use this equation to compare our theoretical arguments with the numerical
calculation in Chap. 3. In Sect. 2.4, we review the chiral sine-Gordon model, which is expected
to describe the uniaxial chiral magnet at zero temperature in the presence of a magnetic field
perpendicular to the helical axis[81–83]. There we review a construction of the solutions to the
sine-Gordon equation and discuss the stable state in the presence of DMI. In Sect. 2.5, we review
the Schaub and Mukamel’s study based on the Ginzburg–Landau (GL) model[101], which is
equivalent to the GL expansion of the mean field approximation for a uniaxial chiral magnet in
the presence of a magnetic field perpendicular to the helical axis for finite temperature. The GL
expansion is given in Appendix A. Finally we summarize the two continuous phase transition
classified by de Gennes[84]

2.1 Spin orbit interaction
The SOI can be derived from the Dirac equation by taking the non-relativistic limit[108]. The
SOI is necessary to derive the DMI. In this section, we review the derivation of the SOI from
the Dirac equation: [

4∑
µ=1

γµ(∂µ + i(e/c)Aµ) +mc

]
ϕ⃗ = 0⃗, (2.1)

where the electron charge is −e and

γ0 = τ̂0 ⊗ σ̂0, γj = τ̂2 ⊗ σ̂j, γ4 = τ̂3 ⊗ σ̂0, (2.2)

Note that σ̂j(τ̂j) denote the Pauli matrices in the spin (particle-hole) space, and 0-th component
denotes the identity matrix. We define the time as fourth component of the position vector:

7
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x4 = ict. The greek subscripts take 1, 2, 3, or 4, and the roman ones take 1, 2, or 3. The
four-component vector potential is defined as

Aµ = (A1, A2, A3, iV )T, (2.3)

where A = (A1, A2, A3) and V are a vector and scalar potentials, respectively.
We consider an eigenstate of the form ϕ⃗ = ψ⃗e−i(mc2+ϵ)t and assume a non-relativistic case

mc2 ≫ |ϵ|. Note that we neglect the time dependence of the scalar and vector potentials.

σ̂jPjψ2 − [(ϵ+ eV )/c]ψ1 = 0, (2.4)
−σ̂jPjψ1 + [(2mc2 + ϵ+ eV )/c]ψ2 = 0, (2.5)

with Pj ≡ pj + (e/c)Aj and pj ≡ −i∂j . We remark that ψ1 and ψ2 are still two-component
vectors in the spin space. The second equation tells us that the leading order of ψ2 is the order
of ψ1/

√
mc2. We are going to derive the wave equation of order ϵ̄/(mc2), where we write ϵ̄ as

a characteristic energy of the system in the non-relativistic limit, and ϵ̄ is the order of ϵ, P 2
j /2m

and so on. We use the Einstein convention for repeated roman symbols. The second equation
gives us that

ψ2 =
c

2mc2 + ϵ+ eV
σ̂jPjψ1. (2.6)

The integral of ψ†
2ψ2 can be evaluated up to first order in ϵ̄/(mc2) as∫

drψ†
2ψ2 =

∫
drψ†

1

1

2mc2
1

2m
σ̂iσ̂jPiPjψ1. (2.7)

This means ψ†
2ψ2 affects the normalization condition. To eliminate this, we take the unitary

transformation such that

(
ψ̃1

ψ̃2

)
=

1− 1
2

(
σ̂iPi
2mc

)2 σ̂iPi
2mc

− σ̂iPi
2mc 1− 1

2

(
σ̂iPi
2mc

)2
(ψ1

ψ2

)
≡
(
ψ
0

)
+O([ϵ̄/(mc2)]2), (2.8)

where ψ is a normalized spinor and

ψ =

[
1 +

1

4mc2
1

2m
σ̂iσ̂jPiPj

]
ψ1. (2.9)

Here we take summation over i and j.
Next we multiply Eq. (2.4) by (2mc2 + ϵ+ eV )/c and using Eq. (2.5) we obtain

σ̂iσ̂jPiPjψ1 −
e

c
σ̂j(pjV )ψ2 −

[
2m(ϵ+ eV ) +

(
ϵ+ eV

c

)2
]
ψ1 = 0. (2.10)
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The first and third terms are on the order of (ϵ/mc2)0 and thus by dealing with the second and
fourth terms in an appropriate way as

ψ2 ≃
c

2mc2
σ̂jPjψ1, 2m(ϵ+ eV )ψ1 ≃ σ̂iσ̂jPiPjψ1, (2.11)

we obtain with the notation σ̂jPj = σ̂ · P that

(σ̂ · P )2ψ1 −
e

c
σ̂ · (pV )

c

2mc2
σ̂ · Pψ1 − 2m(ϵ+ eV )

[
1 +

1

2mc2
(σ̂ · P )2

2m

]
ψ1 = 0.

(2.12)

Multiplying this by [1− 1
4mc2

(σ̂·P )2

2m
] and retain the terms up to first order in ϵ̄/mc2

(σ̂ · P )2
[
1− 1

4mc2
(σ̂ · P )2

2m

]
ψ1 −

e

c
σ̂ · (pV )

c

2mc2
(σ̂ · P )ψ1

−
[
1− 1

4mc2
(σ̂ · P )2

2m

]
2m(ϵ+ eV )

[
1 +

1

2mc2
(σ̂ · P )2

2m

]
ψ1 = 0. (2.13)

The second line can be transformed into

−2m(ϵ+ eV )ψ +
1

4mc2
[
(p2eV ) + 2(peV ) · P

]
ψ. (2.14)

The leading order of the second term of Eq. (2.13) is

−eσ̂ · (pV )
1

2mc2
(σ · P )ψ = − e

2mc2
{σ̂ · [(∇V )× P ] + (pV ) · P }ψ, (2.15)

which is relativistic correction. Note that the wave function is ψ rather than ψ1 and that the
second term of Eq. (2.15) and the last term of Eq. (2.14) cancel out. Then we summarize the
above calculation.{

(σ̂ · P )2

2m

(
1− 1

2mc2
(σ̂ · P )2

2m

)
− e

4m2c2
σ̂ · [(∇V )× P ]

−(ϵ+ eV ) +
(p2eV )

8m2c2

}
ψ = 0. (2.16)

Finally we rewrite the first and second terms. Note that (σ̂ ·P )2 = P 2+ e
c
σ̂ ·B. We introduce

the Bohr magneton µB = e/2mc. Therefore, the deduced non-relativistic Schrödinger equation
is {

P 2

2m
− 2µB

(
−1

2
σ̂ ·B

)
− eV − 1

2mc2

[
P 2

2m
− 2µB

(
−1

2
σ̂ ·B

)]2
− e

4m2c2
σ̂ · [(∇V )× P ] +

(p2eV )

8m2c2

}
ψ = ϵψ. (2.17)
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2.2 Interaction in magnet
We will introduce several interactions appearing in magnets.

2.2.1 Exchange interaction
First we obtain the exchange interaction originally introduced by Heisenberg. Here we consider
Wannier orbitals coming from d orbitals. Wannier orbitals on different sites are orthogonal and
they include contributions from negative ions. Therefore we can explain the super-exchange
interaction. The original Hamiltonian is given by

H =
∑
σ

∫
drψ†

σ(r)H0(r)ψσ(r) +
1

2

∑
σσ′

∫
drdr′H1(r − r′)ψ†

σ(r)ψ
†
σ′(r

′)ψσ′(r′)ψσ(r),

H0(r) = −∇2

2m
+ V (r), H1(r, r

′) =
e2

|r − r′|
. (2.18)

For the meanwhile, we omit the SOIs. The second term in the one body Hamiltonian V (r)
describes a periodic potential. The basis diagonalizing the one body Hamiltonian is given by
Bloch wave functions with indices n and k, which label a band and a crystal momentum in the
first Brillouin zone, respectively. Then we assume that some of bands have large inner products
with the linear combination of d-orbitals. From those bands, we construct the Wannier orbitals
by

ϕn,i(r) ≡ ϕn(r −Ri) =
1√
N

∑
k

e−ik·Riψnk(r). (2.19)

Each orbital is no longer characterized by the original atomic orbitals. The field operator ψ(r)
can be expanded with this Wannier orbital as

ψσ(r) =
∑
n,i

ϕn,i(r)cn,i,σ. (2.20)

For simplicity, we omit the band index and assume that there is a single band. Then the
Hamiltonian reduces to

H =
∑
i,j

ti,jc
†
i,σcj,σ +

1

2

∑
σ,σ′

∑
i,j,k,l

Ui,j,k,lc
†
i,σc

†
j,σ′cl,σ′ck,σ, (2.21)

ti,j =
1

N

∑
k

ϵke
ik(Ri−Rj), Ui,j,k,l =

∫
drdr′ϕ∗

i (r)ϕ
∗
j(r

′)
e2

|r − r′|
ϕl(r

′)ϕk(r). (2.22)

The first term is called hopping term. The Wannier orbitals are well localized, and thus we
do not have to consider all of the contributions from the above summation. We retain the
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on-site contributions and the nearest-neighbour contribution from the hopping term. Ignoring
the dependence of the hopping on its direction, we then obtain the Hubbard model as

H =
∑
i,σ

ϵdc
†
i,σci,σ −

∑
⟨i,j⟩,σ

tc†i,σcj,σ +
U

2

∑
i,σ

c†i,σc
†
i,−σci,−σci,σ

=
∑
i,σ

ϵdc
†
i,σci,σ −

∑
⟨i,j⟩,σ

tc†i,σcj,σ + U
∑
i

ni,↑ni,↓ = H0 +Ht +HU . (2.23)

Note that −σ describes the opposite direction of σ. Here we have introduced the following
parameters:

ϵd =
1

N

∑
k

ϵk, (2.24)

−t ∼ −tδ =
1

N

∑
k

ϵke
ik·δ with a primitive translation vector δ, (2.25)

U = Ui,j,k,l for i = j = k = l. (2.26)

The first term of the Hubbard model is the “energy level” of the band n, and this just shifts the
origin of the energy.

Kinetic exchange

We see that the above Hamiltonian leads to the interaction between the spins. Let us consider
the case of 0 < t ≪ U and the half-filled case. Then we can treat the hopping term as
a perturbation and we easily see that the ground state of the unperturbed Hamiltonian is
described by the presence of a single electron on a single Wannier orbital. Here we use the
second order perturbation theory, and it suffices to consider two sites, which we label by j and
l. There are two electrons in the half-filled case. The ground states with zero eigen energy
have four-fold degeneracy and are given by c†j,σc

†
l,σ′ |0⟩ ≡ |σ, σ′⟩ for σ, σ′ =↑, ↓. If we consider

the whole system, the ground states have 2N -fold degeneracy. We treat the hopping term by
the perturbative method, and then the second order perturbation Hamiltonian is given by

H(2) = Ht
1

EG.S. −HU

Ht

= − t
2

U

∑
σ,σ′

(
c†j,σcl,σ + c†l,σcj,σ

)(
c†j,σ′cl,σ′ + c†l,σ′cj,σ′

)
. (2.27)

Here we have used the facts that energy of intermediate states is U and that the ground-state
energy is zero. Note that the relations between the fermion operators and the spin operators on
site j are given by

c†j,σcj,σ =
nj + 2σSz

j

2
, c†j,σcj,−σ = Sσ

j . (2.28)
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The symbol σ on the right-hand side of the first relation takes + or −, corresponding to ↑ or
↓. Then we can rewrite the above perturbation Hamiltonian in terms of spin operators. When
σ = σ′,

H(2)
σ=σ′ = − t

2

U

∑
σ=↑,↓

(
c†j,σcl,σ + c†l,σcj,σ

)(
c†j,σcl,σ + c†l,σcj,σ

)
= − t2

4U

∑
σ=±

[
(nj + 2σSz

j )(2− nl − 2σSz
l ) + (2− nj − 2σSz

j )(nl + 2σSz
l )
]

= −4t2

U

[
−16Sz

jS
z
l + (2− nj)nl + nj(2− nl)

]
=

4t2

U

(
Sz
jS

z
l −

1

2

)
. (2.29)

From the third line to the fourth line, the terms with σ become zero by the summation over
σ = ±, and in the last equality, we have used the fact that the states operated by this Hamiltonian
has a single electron on each site. Next we calculate it for the case where σ′ = −σ. Define the
pair annihilation operator bj = cj,↑cj,↓.

H(2)
σ=−σ′ = − t

2

U

∑
σ=↑,↓

(
c†j,σcl,σ + c†l,σcj,σ

)(
c†j,−σcl,−σ + c†l,−σcj,−σ

)
= − t

2

U

∑
σ=↑,↓

(
−Sσ

j S
−σ
l − S−σ

j Sσ
l − b†jbl − b†l bj

)
=

2t2

U

(
S+
j S

−
l + S−

j S
+
l

)
. (2.30)

Again we use the fact that the pair annihilation operator annihilates the states we are considering.
Finally we can summarize the second order perturbation Hamiltonian as

H(2) =
4t2

U

(
S⃗j · S⃗l −

1

2

)
≡ Jkin

(
S⃗j · S⃗l −

1

2

)
. (2.31)

Note that Jkin > 0, which means antiferromagnetic.

Potential exchange

Next we discuss an interaction between spins, which stems purely from the Coulomb interaction,
called a potential exchange interaction. In the above derivation of the Hubbard model, we retain
only the on-site contributions to the Coulomb interaction. Now we consider the Coulomb
interaction between the different sites, in particular, the nearest neighbor sites. This can be
written as

1

2

∑
σ,σ′

Uj,l,j,lc
†
j,σc

†
l,σ′cl,σ′cj,σ +

1

2

∑
σ,σ′

Uj,l,l,jc
†
j,σc

†
l,σ′cj,σ′cl,σ

=
1

2
Uj,l,j,lnjnl − Uj,l,l,j

(
S⃗j · S⃗l +

1

4
njnl

)
. (2.32)
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The sign of Uj,l,l,j is discussed as

Uj,l,l,j =

∫
drdr′ϕ∗

j(r)ϕ
∗
l (r

′)
e2

|r − r′|
ϕj(r

′)ϕl(r) =

∫
dq

(2π)3
4πe2

q2
|Φjl(q)|2 > 0, (2.33)

where Φjl(q) is the Fourier transform of ϕ∗
j(r)ϕl(r). The positive Uj,l,l,j gives a ferromagnetic

spin coupling. Then it is important to consider the competition between kinetic and potential
exchange interactions as well as other mechanism, such as higher order contributions.

2.2.2 Antisymmetric exchange interaction
Next we are going to discuss an antisymmetric exchange interaction, which is given by the form
of the vector product as D⃗ · (S⃗j × S⃗l). This antisymmetric interaction should be zero when
the system has inversion center and it is necessary to consider the inversion symmetry broken
system.

First we discuss a derivation similar to that of the kinetic exchange interaction above. To take
broken-inversion symmetry into account, we introduce the following antisymmetric hopping
terms, which depend on the spin component.

Hδ
s.o. =

∑
i

[
(ty + itx)c

†
i,↑ci+δ,↓ + (−ty + itx)c

†
i,↓ci+δ,↑ + itz(c

†
i,↑ci+δ,↑ − c†i,↓ci+δ,↓) + h.c.

]
=

∑
i,µ=x,y,z

(
itµc

†
i,σσ

µ
σ,σ′ci+δ,σ′ + h.c.

)
. (2.34)

The superscript of the Hamiltonian, δ, denotes the bond-direction of the hopping and takes x
or y for the square lattice, for example, and σµ

σ,σ′ is the Pauli matrix. We treat the hopping term
and these antisymmetric hopping terms as a perturbation Hamiltonian. Then the second order
perturbation theory gives us

H(2) = (Ht +Hδ
s.o.)

1

EG.S. −HU

(Ht +Hδ
s.o.). (2.35)

We consider the contributions associated with the sites j and j + δ ≡ l. In the following
calculations, we use the fact that the occupation number of each site for ground states is
one. Note that energy for intermediate states is U . We use also the relation between fermion
operators and spin operators given by Eq. (2.28). First we see in detail the contribution to the
perturbation Hamiltonian, including ttx as an example, which is given by

− i
ttx
U

∑
σ,σ′

{
c†j,σcl,−σ − c†l,σcj,−σ, c

†
j,σ′cl,σ′ + c†l,σ′cj,σ′

}
=− i

ttx
U

∑
σ,σ′

({
c†j,σcl,−σ, c

†
l,σ′cj,σ′

}
−
{
c†l,σcj,−σ, c

†
j,σ′cl,σ′

})
. (2.36)
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When σ′ = σ, this reduces to

−i
ttx
U

∑
σ

2σ
(
Sσ
j S

z
l − Sz

jS
σ
l

)
=

4ttx
U

(
Sy
j S

z
l − Sz

jS
y
l

)
=

4ttx
U

(
S⃗j × S⃗l

)x
. (2.37)

In a similar way, we obtain the same contribution for σ′ = −σ. Thus we have

8ttx
U

(
S⃗j × S⃗l

)x
≡ Dx

(
S⃗j × S⃗l

)x
. (2.38)

The terms including tty and ttz are obtained as

8tty
U

(Sz
jS

x
l − Sx

j S
z
l ) ≡ Dy

(
S⃗j × S⃗l

)y
, (2.39)

8ttz
U

(Sx
j S

y
l − Sy

j S
x
l ) ≡ Dz

(
S⃗j × S⃗l

)z
. (2.40)

Up to the second order perturbation we can obtain terms which are anisotropic but symmetric.
By defining

Γµν ≡ 8tµtν
U

(1− δµν), (2.41)

we can write ∑
µν

ΓµνS
µ
j S

ν
l . (2.42)

Now we summarize the perturbation Hamiltonian for δ-bond which we derive from the second
order perturbation theory as

H(2) =
∑
j

[
JkinS⃗j · S⃗j+δ + D⃗ ·

(
S⃗j × S⃗j+δ

)
+
∑
µν

ΓµνS
µ
j S

ν
l

]
. (2.43)

The second term is the Dzyaloshinskii–Moriya interaction. This derivation is essentially the
same as that done by Moriya and written in his main text[49]. He considered the first principle
Hamiltonian and also the orbital degrees of freedom. Our Hamiltonian used here is an effective
Hamiltonian analyzed intensively to study the roles of antisymmetric spin-orbit terms in very
wide field such as topological insulators and superconductors[17, 18].

Then we review the conventional derivation, which is referred in quite a lot of books and
originally written in the appendix of Ref. [49]. In this part we consider the SOI as well as the
terms considered in Eq. (2.18). The SOI Hamiltonian is expressed by

Hs.o. =

∫
drψ†

σ(r)V
s.o.
σ,σ′ψσ′(r), (2.44)

V s.o.
σ,σ′(r) ≃

∑
i

λ(r −Ri)L⃗(r −Ri) · S⃗σ,σ′ ≡
∑
i

λi(r)L⃗i(r) · S⃗σ,σ′ with S⃗ =
1

2
σ⃗. (2.45)
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Here σ⃗ is the 2 by 2 Pauli matrices. The field operator ψσ(r) can be expanded using the
Wannier function ϕj,n(r) and its annihilation operator cj,n,σ, which is the Fourier transform of
the Bloch wave function ψn,k(r) as an eigenfucntion of the Hamiltonian H0. We reduce the
SOI Hamiltonian with ϕj,n(r) to

Hs.o. =
∑

i,j,l,m,n,σ,σ′

λL⃗i(j,m; l, n) · S⃗σ,σ′c†j,m,σcl,n,σ′

≃
∑

j,m,n,σ,σ′

λL⃗j(j,m; j, n) · S⃗σ,σ′c†j,m,σcj,n,σ′ , (2.46)

λL⃗i(j,m; l, n) ≡
∫

drϕ∗
j,m(r)λi(r)L⃗i(r)ϕl,n(r) = λL⃗0(j − i,m; l − i, n). (2.47)

To obtain the second line, we use the approximation that the dominant contribution comes from
the on-site integral. In the following we abbreviate Lj(j,m; j, n) as Lj(m,n). The reduced
tight binding Hamiltonian can be written as

H =
∑
j,n,σ

ϵnc
†
j,n,σcj,n,σ +

∑
i,j,m

tmi,jc
†
i,m,σcj,m,σ +

∑
j,m,n,σ,σ′

λL⃗j(m,n) · S⃗σ,σ′c†j,m,σcl,n,σ′ +HC,

(2.48)

where ϵn = N−1
∑

k ϵn,k and tmi,j = N−1
∑

k ϵm,ke
ik·(Ri−Rj). We also use the simplified

notation that
∑

m,n,σ,σ′ L⃗j(m,n) · S⃗σ,σ′c†j,m,σcl,n,σ′ = L⃗j · S⃗j . The hopping term is irrelevant for
the order of perturbation we will consider, as it does not change the spin state and thus in the
following we do not consider this term. Then we discuss the important Coulomb terms included
in HC. We consider the case where the on-site intra and inter band Coulomb interaction terms
are unlimitedly large, and the double-occupancy of each site is forbidden. Generally speaking,
the Coulomb terms include a term such that more than two sites involve. In the following,
however, we focus on two electrons and two sites, which we call j and l, and consider only
exchange integral terms rather than Coulomb (direct) integral terms. They can be written as

HC =
1

2

∑
j,l,m′,m,n′,n,σ,σ′

Uj,l(m
′,m;n′, n)c†l,m′,σc

†
j,n′,σ′cl,n,σ′cj,m,σ,

Uj,l(m
′,m;n′, n) =

∫
drdr′ϕ∗

l,m′(r)ϕ∗
j,n′(r′)

e2

|r − r′|
ϕl,n(r

′)ϕj,m(r). (2.49)

This model never gives antisymmetric spin-orbit coupling since this model itself does not
include the terms breaking inversion symmetry. As we mention later, according to Moriya’s
rule DMI should be zero in this case. Nevertheless the following calculation is instructive and
after the calculation we will discuss what should be changed in the model. The unperturbed
Hamiltonian is the first term of Eq. (2.48) and consider the second order perturbation theory.
We assume that ϵm ̸= ϵn for m ̸= n for simplicity, and thus the ground state n = 0 has only
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spin-degeneracy in each site. The ground state is described as each site is occupied by a single
electron. Let the perturbation Hamiltonian be

H′ =
∑
j

λL⃗j · S⃗j +HC. (2.50)

We consider the perturbation process involving spin-orbit coupling on either site j or l and the
Coulomb interaction, and obtain the following perturbation Hamiltonian:

H(2) =
∑
j

(
λL⃗j · S⃗j

1

EG.S. −H(0)
HC +HC

1

EG.S. −H(0)
λL⃗j · S⃗j

)
. (2.51)

Let us consider the projection operator P =
∏

j,n̸=0,σ(1 − c†j,n,σcj,n,σ). Then a part of the
perturbation Hamiltonian associated with the sites j and l is given by the following. The other
part can be obtained by replacing j ↔ l.

PH(2)P = Pλ
∑
µ,m,n

∑
σ,σ′,σ1,σ2

Lµ
j (0,m)Sµ

σ,σ′c
†
j,0,σcj,m,σ′

× 1

ϵ0 − ϵn
Uj,l(0, 0;n, 0)c

†
l,0,σ1

c†j,n,σ2
cl,0,σ2cj,0,σ1P

+ Pλ
∑
µ,m,n

∑
σ,σ′,σ1,σ2

Uj,l(0,m; 0, 0)c†l,0,σ1
c†j,0,σ2

cl,0,σ2cj,m,σ1

× 1

ϵ0 − ϵn
Lµ
j (n, 0)S

µ
σ,σ′c

†
j,n,σcj,0,σ′P

= −λ
∑

µ,n,σ,σ′,σ1

Lµ
j (0, n)Uj,l(0, n; 0, 0)

ϵ0 − ϵn
Sµ
σ,σ′

× P(c†j,0,σcj,0,σ1c
†
l,0,σ1

cl,0,σ′ − c†j,0,σ1
cj,0,σ′c†l,0,σcl,0,σ1)P . (2.52)

We have used the facts thatUi,j(0, 0;n, 0)(= Uj,i(n, 0; 0, 0)) = Ui,j(0, n; 0, 0) and thatLj(0, n) =
−Lj(n, 0), which follows from the fact that non-degenerated eigenfunctions for a real Hamil-
tonian are real. (Proof: When ϕn(r) is an eigenfunction, ϕ∗

n(r) is also an eigenfunction. There
is no degeneracy. Thus ϕn(r) = ϕ∗

n(r).) Our unperturbed Hamiltonian is real, but we note that
the system does not have degeneracy on each site as the orthogonal eigenfunction is charac-
terized by site and band indices. Also we remark that the angular momentum operator is pure
imaginary and that λ(r) is isotropic. We give a short proof for the matrix element of angular
momentum below. Here we can shift the dummy variable in the integral from r → r+Rj and



2.2. INTERACTION IN MAGNET 17

thus we just investigate it for j = 0.

Lµ
0(0, n) =

∫
dr

1

r

dV (r)

dr
ϕ0,0(r)ϵµνρr

ν

(
−i
∂ϕ0,n(r)

∂rρ

)
=

∫
dr

[
i
∂

∂rρ

(
1

r

dV (r)

dr
ϕ0,0(r)ϵµνρr

ν

)]
ϕ0,n(r)

=

∫
dr

[
irρ

d

dr

(
1

r

dV (r)

dr

)
ϕ0,0(r) +

1

r

dV (r)

dr

(
i
∂ϕ0,0(r)

∂rρ

)]
ϵµνρr

νϕ0,n(r)

=

∫
dr

1

r

dV (r)

dr

(
i
∂ϕ0,0(r)

∂rρ

)
ϵµνρr

νϕ0,n(r) = −Lµ
0(n, 0), (2.53)

where we omit the surface integral. Also note that Lµ
0(0, n) is pure imaginary.

Then we reduce the operators in Eq. (2.52), particularly,∑
σ,σ′,σ1

Sµ
σ,σ′

(
c†j,0,σcj,0,σ1c

†
l,0,σ1

cl,0,σ′ − c†j,0,σ1
cj,0,σ′c†l,0,σcl,0,σ1

)
. (2.54)

In the following we omit the band index “0”. For µ = x,

1

2

∑
σ,σ1

(
c†j,σcj,σ1c

†
l,σ1
cl,−σ − c†j,σ1

cj,−σc
†
l,σcl,σ1

)
=

1

2

∑
σ

(
c†j,σcj,σc

†
l,σcl,−σ + c†j,σcj,−σc

†
l,−σcl,−σ − c†j,σcj,−σc

†
l,σcl,σ − c†j,−σcj,−σc

†
l,σcl,−σ

)
=

1

4

∑
σ

[
(nj + 2σSz

j )S
σ
l + Sσ

j (nl − 2σSz
l )− Sσ

j (nl + 2σSz
l )− (nj − 2σSz

j )S
σ
l

]
= −2i

(
Sy
j S

z
l − Sz

jS
y
l

)
= −2i

(
S⃗j × S⃗l

)x
. (2.55)

In similar ways, for µ = y and z, we obtain

−2i
(
S⃗j × S⃗l

)y
for µ = y, (2.56)

−2i
(
S⃗j × S⃗l

)z
for µ = z. (2.57)

Therefore by taking into account the counter part of j ↔ l, we obtain the antisymmetric
spin-spin interactions in the following form:

H(2) = (D⃗jl − D⃗lj) ·
(
S⃗j × S⃗l

)
, (2.58)

D⃗jl − D⃗lj = 2iλ
∑
n

(
Lµ
j (0, n)Ujl(0, n; 0, 0)

ϵ0 − ϵn
− Lµ

l (0, n)Ujl(0, 0; 0, n)

ϵ0 − ϵn

)
. (2.59)
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A B
C

(a) (b)

Figure 2.1: (a) Two magnetic ions are at the points A and B. The point C is the bisection. (b)
Layered structure from [24].

This is always zero as we mentioned. Then we briefly argue about how to improve our model
Hamiltonian (2.48). The Wannier orbital ϕj,n(r) is well localized at site j or in unit cell j. Now
we consider the case where there are more than one atoms in a unit cell, which is labeled by
α, β, · · · . Our new Wannier orbitals are defined by ϕj,m(r) =

√
N

−1∑
k,n Um,n(k)ψn,ke

ik·Rj .
Now m can be labeled as (α,mα), which denote the αth atom and its mαth level, respectively.
Finally we deduce the model Hamiltonian by omitting the hopping terms between atoms and
levels on an atom. We could apply the above argument for electrons on α site and α′ site of the
deduced model, and in that case generally speaking the term D⃗αα′ − D⃗α′α is non-zero.

We summarize the Moriya rule here[49]. Let two magnetic ions be at positions “A” and
“B”, and we call the bisection point of the line “AB ” “C”.

1. When a center of inversion is located at C, D⃗ = 0.

2. When a mirror plane perpendicular to AB passes through C, D⃗ ∥ mirror place.

3. When there is a mirror plane including A and B, D⃗ ⊥ mirror plane.

4. When a two-fold rotation axis perpendicular to AB passes through C, D⃗ ⊥ two-fold axis.

5. When there is an n-fold axis (n ≥ 2) along AB, D⃗ ∥ AB.

Concerning 3 and 4, the directions are unique except their signs.
Here we only prove the rule 3. We assume that the mirror plane is yz-plane. The mirror

operation transforms the spins as

Sx
A(B) = Sx

A(B), S
y
A(B) = −Sy

A(B), and Sz
A(B) = −Sz

A(B). (2.60)

Thus the DM vector can take the x-direction only as onlyDx(Sy
AS

z
B −Sz

AS
y
B) is even under the

operation.
Now we consider the direction of interfacial DMI proposed by Fert and Levy[58], where

we consider the magnetic layer on a heavy metal layer with strong spin-orbit coupling. The
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Figure 2.2: Schematic picture of the magnetic moment equivalent to the loop current. The
magnetic moment tilts from the magnetic field by angle θ.

configurations of atoms are shown in Fig. 2.1(b). We can take the mirror plane including two
spins and the heavy metal atom. According to the rule 3, the direction of the DM vector is
allowed as shown in the figure.

2.3 Magnetization dynamics
We review the derivation of the equation of motion for local magnetic moments called Landau–
Lifshitz–Gilbert (LLG) equation. The equation without the Gilbert damping, α = 0, is used in
Chap. 3

2.3.1 Torque on magnetic moment
We start by studying a torque on a magnetic moment exerted by magnetic field. One can
consider the magnetic moment, µ⃗, being created by a loop current, I , as shown in Fig. 2.2.

µ⃗ = ISn̂. (2.61)

When the magnetic moment tilts from the field-direction by the angle θ, the Lorentz forces
acting on the edges AB and CD are F⃗AB = BIax̂ = −F⃗CD, which have no contribution to the
torque, and on the other edges are F⃗BC = BIbŷ = −F⃗DA, which give the following torque on
the system:

N⃗ = 1
2
BIab sin θ × 2x̂ = µ⃗× B⃗. (2.62)

The torque causes the change of the angular momentum given by

dJ⃗

dt
= N⃗ . (2.63)
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The magnetic moment is related to the angular momentum through the gyromagnetic ratio
γ = g e

2m by

µ⃗ = −γJ⃗. (2.64)

Here g is a g factor and its value depends on the kinds of angular momentum and the carrier. In
the present case, as we consider the orbital moment, g = 1. Therefore we obtain the equation
of motion for magnetic moment as

dµ⃗

dt
= −γµ⃗× B⃗. (2.65)

2.3.2 Landau–Lifshitz equation
In real system, there are contributions to the magnetic moment from not only orbital moments
but also spin moments. For a spin moment of a free electron, the g factor included in the
gyromagnetic ratio takes the value of 2.0023 · · · very close to 2. The deviation stems from the
interaction between electron and photon. Hence we can describe the motion of the magnetic
moment in the presence of spin moments by choosing the gyromagnetic ratio, while it is
important to derive the equation of motion in spin systems, where the system is described by a
spin Hamiltonian. We start with the action appearing in the path integral expression for a spin
system given with use of the coherent state by

S[θ, ϕ] =

∫
dt

{∫
dr

a3

[
ℏS

dϕr

dt
(cos θr − 1)

]
−H

}
≡
∫

dtL, (2.66)

where the localized spin is described by

S⃗r = Sn̂r = S(sin θr cosϕr, sin θr sinϕr, cos θr). (2.67)

The notation θr means that θ is a function of r and so do others. The action S[θ, ϕ] is the
functional of θr and ϕr, and we can obtain the equation of motion by taking the variation with
respect to θ and ϕ as follows:

d

dt

δL

δθ̇r
− δL

δθr
= 0,

d

dt

δL

δϕ̇r

− δL

δϕr

= 0. (2.68)

They reduce, respectively, to

ℏ
a3
Sϕ̇r sin θr +

δH
δθr

=
ℏ
a3
Sϕ̇r sin θr +

∂n̂r

∂θr

δH
δn̂r

= 0, (2.69)

ℏ
a3
S
d

dt
(cos θr − 1) +

δH
δϕr

= − ℏ
a3
Sθ̇r sin θr +

∂n̂r

∂ϕr

δH
δn̂r

= 0. (2.70)
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Note that the time derivative of n̂r is given by

dn̂r

dt
= θ̇r

∂n̂r

∂θr
+ ϕ̇r

∂n̂r

∂ϕr

≡ θ̇rêθ,r + ϕ̇r sin θrêϕr , (2.71)

we can combine this with the above coupled equation of motion as

sin θr
ℏ
a3

dS⃗

dt
= sin θr

ℏ
a3
S
dn̂r

dt
=

(
sin θrêϕ,r

δH
δn̂r

)
êθ,r −

(
êθ,r

δH
δn̂r

)
sin θrêϕ,r,

↔ ℏ
a3

dS⃗j

dt
= −

∑
k

(
êjϕ,rê

k
θ,r − êjθ,rê

k
ϕ,r

) δH
δn̂k

r

= −
∑
k

ϵjkl (êϕ,r × êθ,r)l
δH
δn̂k

r

= −
(
n̂r ×

δH
δn̂r

)j

. (2.72)

Note that the terms for k = j are always zero on the second line. We have used that n̂r =
êθ,r × êϕ,r. Finally the relation M⃗r = −γℏS⃗r/a

3 reduces this to

dM⃗r

dt
= −γM⃗r ×

(
− δH
δM⃗r

)
≡ −γM⃗r × B⃗eff

r . (2.73)

This equation is called Landau–Lifshitz equation, and describes the time evolution of local
magnetic moments. Any terms of the spin Hamiltonian H possibly contribute to the effective
field as well as external magnetic field. This is the generalization of Eq. (2.65), in which we
can obtain the Landau–Lifshitz equation by replacing B⃗ by B⃗eff

r .

2.3.3 Gilbert damping
The above equation of motion successfully explains the precession motion of the magnetic
moment. However in realistic cases, the magnetic moment relaxes to the direction of the
external or effective magnetic field with precession motion (see Fig. 2.3). Thus we need to
modify the above equation since it conserves the magnetic moment. Although there are a lot
of studies concerning the microscopic derivation of the relaxation, we treat this, for simplicity,
by introducing the Rayleigh’s dissipation function, which is common in classical mechanics.
Analogous to the friction force, the dissipation function is given by

F =

∫
dr
α

2

ℏ
a3S

(
˙⃗
S
)2

=

∫
dr
α

2

ℏS
a3

(
θ̇2r + sin2 θrϕ̇

2
r

)
=

∫
dr
α

2

a3

γℏM0

(
˙⃗
M
)2
. (2.74)

We add the dissipation term to the Euler–Lagrange equation:

d

dt

δL

δẋµ
− δL

δxµ
= −δF

δẋ
with xµ = θ, ϕr. (2.75)
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(a) (b)

Figure 2.3: Precession motion (a) without the Gilbert damping and (b) with the Gilbert
damping.

The dissipation function is not negative since it can be interpreted as the energy loss rate as

dE

dt
=

d

dt

(∫
drẋµ

δL

δẋµ
− L

)
=

∫
drẋµ

(
d

dt

δL

δẋµ
− δL

δẋµ

)
= −

∫
dr

(
ẋµ
δF

δẋµ

)
= −2F < 0. (2.76)

For the last equality, we have used the Euler’s homogenous function theorem as F is homoge-
nous of degree 2 with respect to the time derivatives ẋµ.

Then the dissipation function contributes to the Landau–Lifshitz equation as a torque term
as

ℏ
a3

dS⃗

dt
= −

(
S⃗ × δH

δS⃗

)
− α

ℏ
a3S

(
S⃗ × dS⃗

dt

)
, (2.77)

or by using M⃗ = −γℏS⃗/a3 and M0 = γℏS/a3

dM⃗

dt
= −γM⃗ × B⃗eff +

α

M0

(
M⃗ × dM⃗

dt

)
. (2.78)

This is called the Landau–Lifshitz–Gilbert equation. We remark that there is another but
equivalent expression. That is given by

(1 + α2)
dM⃗

dt
= −γM⃗ × B⃗eff − γ

α

M0

M⃗ ×
(
M⃗ × B⃗eff

)
. (2.79)

The last term on the right-hand side is the torque tilting the magnetic moment along the effective
magnetic field, which is called a damping torque.
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2.4 Chiral soliton lattice at zero temperature
In this section, we review the analysis of uniaxial chiral helimagnet based on the chiral sine-
Gordon model[81–83, 109], which describes the chiral soliton states and the transition between
the disordered and incommensurate states. We represent a classical spin using the polar
coordinates as M⃗(z) = S(cosφ(z) sin θ(z), sinφ(z) sin θ(z), cos θ(z)). Here we consider one
dimensional modulation in the z-direction. In the following, for convenience we omit the
argument of M⃗ , θ, and φ.

The energy functional of the chiral sine-Gordon model is given by

E = J∥S
2a

∫
dz

[
1

2

(
dθ

dz

)2

+
1

2
sin2 θ

(
dφ

dz

)2

−Q0 sin
2 θ

dφ

dz
−m2 sin θ cosφ

]
, (2.80)

where Q0 and m2 are determined by the parameters defined in the lattice model which will be
introduced in the following chapters: Q0 = D/(J∥a), m2 = Hex/(J∥Sa

2). J∥, D, Hex, and a
are strength of the exchange interaction between nearest neighbor spins along the z-direction
and the DMI, an external magnetic field perpendicular to the helical axis H⃗ex = (Hex, 0, 0),
and the lattice constant, respectively. Since the constant polar angle θ = π/2 satisfies the
Euler–Lagrange equation of the functional (2.80) with respect to θ, we focus on this case.
The spatial structure appears through φ, which is determined by the following Euler–Lagrange
equation for φ:

d2φ

dz2
= m2 sinφ. (2.81)

Note that the equation itself does not contain the DMI. For convenience to seek for solutions,
we transform this into

d2φ̃

dz2
= −m2 sin φ̃ cos φ̃, with φ̃ =

φ− π

2
. (2.82)

We can construct the solution by considering the Jacobi’s amplitude function, which is given
by

φ̃am = am(u, κ), u =

∫ φ̃am

0

dθ√
1− κ2 sin2 θ

. (2.83)

This is related to the Jacobi’s elliptic functions as

sn(u, κ) = sin[am(u, κ)], cn(u, κ) = cos[am(u, κ)], (2.84)

dn(u, κ) =
√
1− κ2 sin2[am(u, κ)]. (2.85)
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Figure 2.4: (a) Spatial dependence of φ for several values of field and corresponding κ through
Eq. (2.97). The horizontal axis is normalized by the period for given parameters. (b) Hex/Hc

dependence of the magnetization Mx and the period LCSL/L0, whose values are indicated on
the left- and right-vertical axes, respectively.

The second order derivative of φ̃am with respect to u is given by

dφ̃am

du
=

√
1− κ2 sin2 φ̃am = dn(u, κ), (2.86)

d2φ̃am

du2
= −κ2sn(u, κ)cn(u, κ) = −κ2 sin φ̃am cos φ̃am. (2.87)

Therefore the solution to Eq. (2.81) is given by

φ = π + 2φ̃ = π ± 2am(mz/κ, κ). (2.88)

The modulus κ determines the period LCSL = 2κK(κ)/m,1 and the sign of the amplitude
function control whether the spin structure is right-handed or left-handed. Spatial profiles of φ
are shown in Fig. 2.4(a). Here we connect m ∝ H

1/2
ex and κ through the energy minimization

condition Eq. (2.97), and thus the label of each curve is given by Hex/Hc. The field induces
higher harmonics into the linear evolution of φ at Hex = 0. The sign of Q0 favors the happy

1Note that K(κ) is the complete elliptic integral of the first kind, defined by

K(κ) =

∫ π/2

0

dθ√
1− κ2 sin2 θ

. (2.89)

We also use the complete elliptic integral of the second kind E(κ) defined by

E(κ) =

∫ π/2

0

dθ
√

1− κ2 sin2 θ. (2.90)



2.4. CHIRAL SOLITON LATTICE AT ZERO TEMPERATURE 25

direction. The in-plane spin structure is given by

cosφ = 2 sin2 φ̃− 1 = 2sn2(mz/κ, κ)− 1 =
2

κ2
[
1− dn2(mz/κ, κ)

]
− 1, (2.91)

sinφ = −2 sin φ̃ cos φ̃ = ∓2sn(mz/κ, κ)cn(mz/κ, κ). (2.92)

The sign in the second line corresponds to the sign in Eq. (2.88). The energy per one period is
given by2

ECSL ≡ E

J∥S
2aLCSL

=
4E(κ)

K(κ)

(m
κ

)2
−m2

(
2

κ2
− 1

)
∓ πQ0m

κK(κ)
. (2.94)

To determine the modulus κ, which is an integral constant, we minimize the energy with respect
to κ. The relations

dK(κ)

dκ
=

1

κ

(
E(κ)

1− κ2
−K(κ)

)
,
dE(κ)

dκ
=

1

κ
(E(κ)−K(κ)) (2.95)

lead to

dECSL

dκ
=

2m2E(κ)

K2(κ)κ2(1− κ2)

(
−2E(κ)

κ
± πQ0

2m

)
= 0, (2.96)

→ ±m
κ

=
πQ0

4E(κ)
. (2.97)

The sign is determined according to the sign of Q0, and the other sign gives neither energy
minimum nor maximum solution. Equation (2.97) in the limit κ→ 1 gives the critical field of
D-IC transition

Hc

J∥S
2a

=

(
πQ0

4

)2

. (2.98)

The field dependence of the period for the stable states and its behavior in the Hc limit are
given by

LCSL =
2κK(κ)

m
→ 4

πQ0

ln
16Hc

Hc −Hex

(2.99)

2We use [φ]z=LCSL
z=0 = ±2π and∫ 2K

0

dudn2(u, κ) = 2

∫ π/2

0

dφ

√
1− κ2 sin2 φ = 2E(κ). (2.93)
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We have used K(κ) → ln(4/
√
1− κ2), E(κ) → 1, and (Hc −Hex)/Hc. → 2(1 − κ) in this

limit. The average magnetic moment of the system is given by

Mx

SL
=

1

LCSL

∫ LCSL

0

dz cosφ =
2

κ2
− 1− 2

κ2
E(κ)

K(κ)
(2.100)

→ 1− 4 [ln (Hc/(Hc −Hex))]
−1 (Hex → Hc), (2.101)

which is shown in Fig. 2.4(b) and its value is indicated on the left-vertical axis. We also show
the corresponding period LCSL/L0 on the right-axis for Hex < Hc. The period diverges when
field approaches the critical value, and it is reflected in the slope of the magnetization at Hc.
The differential susceptibility is given by

χ =
1

SL

dMx

dHex

=
1

Hc

E3(κ)

2κK(κ)

2

κ3

(
E2(κ)

K2(κ)

2

1− κ2
+
E(κ)

K(κ)
− 1

)
. (2.102)

2.5 Review of Schaub–Mukamel’s study
In this section, we summarize the study in Ref. [101] by Schaub and Mukamel, as it will be
discussed in Chap. 4.

2.5.1 Model
First we explain the model introduced in Ref. [101]. Essentially their model is equivalent to
the uniaxial chiral magnet at finite temperatures, and the free energy is a functional of the
two component field M⃗(z) = (Mx(z),M y(z)) = M(z)(cosφ(z), sinφ(z)). They consider a
spatial modulation of the field M⃗ only in z-direction. For convenience we omit the argument
of M⃗ , Mx,y, M , and φ. The average of the free energy density functional is given by

F [M⃗ ] =
1

L

∫
dzf(z), (2.103)

f(z) =
1

2
rM2 +M4 +

1

2

(
Mx∂M

y

∂z
−My ∂M

x

∂z

)
+

1

2

[(
∂Mx

∂z

)2

+

(
∂My

∂z

)2
]
− vMx.

(2.104)

They explicitly mentioned that this model is appropriate for describing the ferromagnetic
Dzyaloshinskii spirals under external magnetic field v perpendicular to the helical axis. The
coefficient of the first term r denotes temperature. As we will see later, this model has a phase
diagram with two multicritical points which separate the phase boundary into two continuous
phase transition sectors, and one discontinuous phase transition sector in between. There is
only one phase boundary, and the ordered phase touches the disordered phase on this line.
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2.5.2 Instability-type transition
For understanding whether two continuous phase transition sectors are different or not, it is
important to study instability of the disordered phase. As a result, we see that one sector can
be obtained as a stability limit of the disordered phase, while the other is not. In addition, we
see that one of the multicritical points is a tricritical point, where the fourth order term in the
Landau free energy changes its sign.

From the disordered (uniform) state M⃗c = (Mc, 0), we consider the following expansion of
M⃗ :

Mx = M̄ + ξσx cos(qz) + ξ2σ̄x cos(2qz) + ξ3σ̃x cos(3qz) + · · · , (2.105)
My = −

[
ξσy sin(qz) + ξ2σ̄y sin(2qz) + ξ3σ̃y sin(3qz) + · · ·

]
, (2.106)

M̄ =Mc + αξ2 + βξ4 + · · · , q = qc + ᾱξ2 + β̄ξ4. (2.107)

Here M⃗c satisfies the saddle point condition of the free energy, which reads

rMc + 4M3
c − v = 0. (2.108)

Substituting these into the free energy, we obtain the coefficients in the expansion in ξ

F (ξ) ≃ a0 + a2ξ
2 + a4ξ

4 + · · · , (2.109)

where

a0 =
r

2
M2

c +M4
c − vMc, (2.110)

a2 =
r

4
+M2

c (2σ
2
x + 1) +

1

4
q2c −

1

2
qcσxσy, (2.111)

a4 =
r

4
(σ̄2

x + σ̄2
y + 2α2) + 6α2M2

c +
3− 4σ2

xσ
2
y

8
+M2

c (3σ̄
2
x + σ̄2

y) + 2(2σ2
x + 1)αMc + 2Mcσxσyσ̄y +Mcσ̄x(3σ

2
x − σ2

y)

+ (σ̄2
x + σ̄2

y)q
2
c − qcσ̄xσ̄y +

qc − σxσy
2

ᾱ. (2.112)

We have used Eq. (2.108) for simplifying a4. The parameters should be determined by satisfying
∂a2/∂qc = 0, and ∂a2/∂σx = 0. They lead to

∂a2
∂qc

=
qc − σxσy

2
= 0 → qc = σxσy, (2.113)

∂a2
∂σx

= 4M2
c σx −

qc
2

(
σy −

σ2
x

σy

)
→ 8M2

c + σ2
x − σ2

y = 0. (2.114)

With use of σ2
x + σ2

y = 1, we get

σ2
x =

1

2
(1− 8M2

c ), σ
2
y =

1

2
(1 + 8M2

c ), qc =
1

2

√
1− 64M4

c , (2.115)

a2 =
r

4
+ 2M2

c (1− 4M2
c )−

1

16
+ 4M4

c . (2.116)
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The instability occurs at a2 = 0 and this condition is satisfied when the magnetization takes
the following value:

4M2
c = 1−

√
r + 3/4. (2.117)

Note that Mc should be a decreasing function of r, and we find r < 1/4. We also find that
r > −1/2 from Eqs. (2.115) and (2.117), since σx and qc are real. Finally we get the value of
the critical field

v =
1

2

[
1−

(
r +

3

4

)1/2
]1/2 [

r + 1−
(
r +

3

4

)1/2
]
. (2.118)

This line is shown in Fig. 2.5(a). The transition is continuous if a4 ≥ 0 at a2 = 0, and the
tricritical point is the place where a2 = 0 and a4 = 0. Using the conditions obtained above, a4
is reduced to

a4 = r
σ̄2
x + σ̄2

y + 2α2

4
+ 6α2M2

c + 1− 4

3
σ2
xσ

2
y +M2

c (3σ̄
2
x + σ̄2

y) + 2(2σ2
x + 1)αMc

+2Mcσxσyσ̄y +Mcσ̄x(3σ
2
x − σ2

y) + (σ̄2
x + σ̄2

y)σ
2
xσ

2
y − σxσyσ̄xσ̄y. (2.119)

Other parameters can be also determined by the conditions that ∂a4/∂α = 0:

(r + 12M2
c )α + 2(2σ2

x + 1)Mc = 0 → α = −2(2σ2
x + 1)Mc

r + 12M2
c

, (2.120)

and that ∂a4/∂σ̄x = 0, ∂a4/∂σ̄y = 0:(r
2 + 2σ2

xσ
2
y + 6M2

c −σxσy
−σxσy r

2 + 2σ2
xσ

2
y + 2M2

c

)(
σ̄x
σ̄y

)
=

(
Mc(1− 4σ2

x)
−2Mcσxσy

)
. (2.121)

From these, the tricritical point can be evaluated as rTC ≃ 0.192 and vTC ≃ 0.019. Equa-
tion (2.118) for rTC < r < 1/4 is shown in Fig. 2.5(a) by the solid line and also shown in
Fig. 2.5(b) as the line I.

For determining the whole phase diagram, one need to solve the stationary condition of the
free energy:

d2M

dz2
−M

(
dφ

dz

)2

−M
dφ

dz
+ v cosφ− rM − 4M3 = 0, (2.122)

M2d
2φ

dz2
− vM sinφ+ 2M

dM

dz

dφ

dz
+M

dM

dz
= 0, (2.123)

which have several solutions for a fixed parameters (r, v), and we need to compare the free
energy to determine the realized state. Note that the above analysis works for −1/2 < r < 1/4,
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(a) (b)

Figure 2.5: Phase diagram obtained by Schaub and Mukamel[101]. The horizontal and vertical
axes represent r and v, respectively. (a) The solid line (rTC < r < 1/4) and the dashed line
(−1/2 < r < rTC) are given by Eq. (2.118). TC denotes the tricritical point. (b) The
whole phase boundary consists of instability-type phase transition line (I), discontinuous phase
transition line (thick line), and nucleation-type phase transition line (II). The symbols M, D,
and INCOMM represent the multicritical point, disordered phase, and incommensurate phase,
respectively.

and the continuous phase transition accompanied by the instability of the uniform state occurs
for rTC < r < 1/4. In the low temperature limit r → −∞, the model is reduced to the chiral
sine-Gordon model[110, 111]. The stable ordered state is a periodic structure with higher
harmonics and the phase transition is continuous, as reviewed in the previous section. In such
a case, we cannot explain the continuous phase transition with an instability of the uniform
state by a single q mode. The whole phase boundary is determined as follows: We can solve
Eqs. (2.122) and (2.123), and obtain a single soliton with a periodic boundary condition for
a fixed sized system ∆z. The solution corresponds to the periodic structure of solitons with
period ∆z, and we can obtain the most stable state for a given (r, v) by minimizing the free
energy with respect to ∆z. The phase boundary is given by (r, v) such that the minimized
free energy is the same as that of the uniform state. The whole phase boundary is shown in
Fig. 2.5(b). Actually we can see that the line obtained through the above analysis is equivalent to
a part of the phase boundary for rTC < r < 1/4. Moreover the detailed numerical calculations
clarify that there is another multicritical point around rMC ∼ −0.74, and the phase transition
between rMC < r < rTC is discontinuous. As we will see later, a soliton picture is effective
and a linear analysis introduced in the following subsection is powerful in order to understand
the phase diagram.
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2.5.3 Linear analysis
As mentioned in the previous section, solitons characterize the ordered state in the low temper-
ature side. Near the phase boundary of the continuous phase transition r < rMC, soliton density
is dilute and its property is determined by the asymptotic region of a soliton. In order to study
how the tail structure of a soliton approaches the uniform background M⃗c in the asymptotic
region, we perform the linear analysis regarding the small deviation of M⃗ from M⃗c.

A linear analysis using the asymptotic behavior tells us information about the multicritical
points. Let the soliton center be at the origin z = 0, and set the angle φ(z = 0) = π there. For
z → +∞, M⃗ relaxes to M⃗c and φ approaches 2π. In the region far from the center, we can
describe the asymptotic behavior of the soliton as

|M⃗ | ≈Mc + A1 exp(−κz), φ ≈ 2π + A2 exp(−κz). (2.124)

Substituting these into the equation of motion (2.122) and (2.123), we obtain(
12M2

c + r − κ2 −Mcκ
Mcκ vMc −M2

c κ
2

)(
A1

A2

)
=

(
0
0

)
. (2.125)

The condition for the presence of a non-trivial solution is the zero determinant of the coefficient
matrix, which is the quadratic equation of κ2 given by

M2
c κ

4 − [(12M2
c + r)M2

c + vMc −M2
c ]κ

2 + (12M2
c + r)Mcv = 0. (2.126)

We can distinguish the type of solution depending on whether the solution κ2 is real or complex.
The discriminant of this quadratic equation is

D = [(12M2
c + r)M2

c + vMc −M2
c ]

2 − 4M3
c (12M

2
c + r)v

= 64M4
c − 32M2

c + 1− 4r. (2.127)

For D < 0, both κ2 and κ are complex, while κ2 is real ifD > 0. When κ2 > 0, κ is real, while
when κ2 < 0, κ is pure imaginary3. When κ has a finite imaginary part, we can equivalently
consider the real part of M⃗(z) within the linear approximation. Note that when κ2 = 0, the
left-hand side of Eq. (2.126) is

(12M2
c + r)v = (12M2

c + v/Mc)v > 0, (2.128)

which means that two real solutions of κ2 have the same sign. We notice that the condition
D = 0 coincides with the line of a2 = 0. Let us reconsider the behavior of M⃗(z) when κ is
pure imaginary, κ = iq (q: real). In this case, we assume a small deviation in M⃗(z) by taking
A1 = ξσx and A2 = iξσy/Mc where ξ is sufficiently small and σ2

x + σ2
y = 1 holds. We can see

3When κ is pure imaginary, there is no relaxation to M⃗c. In this case, we assume that (A1, A2) is infinitesimal
to guarantee the linear approximation.
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why there is a prefactor i on A2 from the coupled equation of A1 and A2. Note that in this case
there is no longer soliton at z = 0. Instead we write down the field M⃗ up to first order in ξ as

Mx =M cosφ ≈M ≈Mc + ξσxe
iqz + · · · , (2.129)

My =M sinφ ≈Mφ ≈ iξσye
iqz + · · · . (2.130)

This is equivalent to the expansion we used to study the instability-type transition up to first
order in ξ. When κ has a positive real part, there is an asymptotic solution of an isolated
soliton4. The parameter region of pure imaginary κ faces the region of complex κ on the line
D = 0.

We have seen the meanings of pure imaginary. Next, we consider the soliton interaction
and the difference between real κ and complex κ. Jacob and Walker discussed the interaction
energy between two isolated discommensurations with a finite distance[92]. The conclusion is
that whether κ is real or complex is reflected in whether the interaction is repulsive or attractive.
Let us write the free energy for the uniform state as Funi =

r
2
M2

c +M4
c − vMc and measure the

free energy of a single soliton from it: ∆Fsingle = Fsingle − Funi. Now we define the binding
energy of N solitons as

∆F
(N)
bind = F

(N)
chain − Funi −N∆Fsingle. (2.131)

Here F (N)
chain denotes the free energy of the N -soliton state, and we call the binding energy

Fbind the interaction energy ∆Fint when N = 2. The interaction energy depends on the inter-
soliton distance∆z. Near the phase transition the soliton density is relatively dilute, and thus we
consider only the two body interaction ∆Fint. Consider the repulsive interaction corresponding
to a real κ. Typically ∆Fint exponentially decays with the inter-soliton distance ∆z, and its
range is characterized by the soliton size (Reκ)−1. The equilibrium distance is determined
through the competition between ∆Fsingle and ∆Fint when ∆Fsingle < 0, while there is no
soliton when ∆Fsingle > 0. Therefore the nucleation-type continuous phase transition line is
given by ∆Fsingle = 0.

When the tail of the single soliton oscillates in space, we could show that the interaction
energy oscillates with the distance analytically for ∆z ≫ (Reκ)−1. According to Ref. [101], it
is given for the parameter such that ∆Fsingle = 0 by

∆Fint = (−αA2
1 + αM2

cA
2
2 −McA1A2) exp(−κ∆z) + c.c. (2.132)

When κ is complex, the interaction can be negative in some regions of the inter-soliton distance.
This means that there is a lower energy state than the single soliton solution when the free
energy of the single soliton solution is the same as that of the disordered state (∆Fsingle = 0).

4This is a necessary condition for the existence of an isolated soliton in terms of its asymptotic form.
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Figure 2.6: Examples of the Landau free energy.

2.6 Two kinds of continuous phase transitions

Phase transitions are distinguished depending on whether it is continuous or discontinuous with
respect to the first order derivatives of a free energy, such as magnetization and entropy. More-
over, de Gennes classified continuous phase transitions into two subclasses: instability-type
and nucleation-type[84]. Although de Gennes’s classification might be for general continuous
phase transitions in three dimensions, we restrict ourselves into ordered phases with periodic
modulations for clarity. In the following subsections, we first introduce de Gennes’s argu-
ment on the basis of familiar examples for each class. Second we clarify the classification for
continuous phase transitions with periodic orders.

2.6.1 Instability-type phase transition

First we explain the instability-type phase transition, which is well-known as it is described
by the Landau theory of the phase transition. The ordered phase can be characterized by a
small and local order parameter, which is in general observable5. A familiar example is a
ferromagnetic system, and the magnetizationM denotes the order parameter. The Landau free

5Note that in superconductor, the macroscopic wave function of the condensation is an order parameter, but it
is not observable.
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energy F (M) is given by

F (M) = a2(T )M
2 + a4M

4 with a2 = at(T − Tc), (2.133)

where a2(T ) is a function of temperature T with a positive constant at, and a4 is a positive
constant. The sign of a2(T ) changes at T = Tc, and F (M) takes a minimum at M = 0 for
T > Tc, and at |M | = M0 ≡ [at(Tc − T )/a4]

1/2 for T < Tc, as sketched in Fig. 2.6. When T
approaches to Tc from above, the positive curvature of the free energy around M = 0 becomes
smaller. This represents the enhancement of the susceptibility χ ∝ [∂2F/∂M2|M=0]

−1 =
[a(T − Tc)]

−1 near Tc, namely, a small magnetic field induces a large magnetic moment.
In uniaxial chiral magnets, a transition between a uniformly polarized state and a conical

state under magnetic field is an example with a periodic order. We do not explain the detail,
but obtain the Landau free energy as a special case of the Landau expansion in Sect. 4.4:

E(ξ) = (2J∥ +Hz
ex)−

Hc −Hz
ex

4
ξ2 +

Hz
ex

32
ξ4 with Hc = 2

(√
J2
∥ +D2 − J∥

)
. (2.134)

Here we set K = 0 and Hx
ex = 0 in Sect. 4.4. An order parameter ξ appears in the magnetic

moment M⃗l within the Landau expansion as

M⃗l ≈

ξ cos(qcxl)/√2

ξ sin(qcxl)/
√
2

1− ξ2/4

 with qca = tan−1D/J∥ and xl = al. (2.135)

In this case, we can say that the order parameter is M⃗qc , a Fourier component of Ml. The
Landau free energy (2.134) takes the same form as Eq. (2.133), but in this case a small helical
field, H⃗(r) = Hqc(cos qcz, sin qcz, 0), induces a large helical moment near the critical field. It
is important that the single mode with wave number qc contributes the phase transition, which
characterizes its period, and its higher harmonics do not.

2.6.2 Nucleation-type phase transition
Next we explain the nucleation-type continuous phase transition. On the basis of de Gennes’s
argument[84], we consider a ferromagnetic sphere with macroscopic size in a magnetic field.
The uniformly magnetized state is not the most stable state below a threshold field, and a
domain structure appears because the surface creates the demagnetizing field. For the field
just below the threshold field, the uniform state is stable against all small local fluctuations of
magnetization, and the corresponding Hessian6 remains positive definite. Domains, the Bloch
walls in this case, are related to distortions with the large amplitude and they nucleate near
defects or the surface. Thereby the transition is called nucleation-type. We could not assign

6A Hessian is a matrix consisting of the second order derivatives of the Hamiltonian or free energy with respect
to the degree of freedom in fluctuations.
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a small and local order parameter in the sense of the Landau theory, although it is possible to
characterize the state using topological properties corresponding to the number of domains.
There are several examples of the nucleation-type continuous phase transitions, and one of them
is the transition at the lower critical field in type-II superconductors. The transition occurs
between the Meissner state and the mixed state, and quantized vortices enter the system above
the lower critical field.

The nucleation-type phase transition is characterized by emergent particles such as quan-
tized vortices and domain walls, and topological constraints interpreted as the number of the
particles is kind of an order parameter. In the superconducting vortex case, it is the winding
number, i.e., the number of flux quanta, associated with the magnetization. The emergent
particle picture describes this transition well, in which we consider the competition between
the single particle energy of the emergent particle and its interaction energy, as was reviewed
in Sect. 2.5.3. In the vicinity of the transition in the ordered phase, the interaction is very weak
since it has a finite range. Thus it is possible to form many nearly free particles, which results in
the steep change of the physical quantities such as magnetization. These transitions are contin-
uous, but do not have the small fluctuations leading to the instability and often show hysteresis.
In the superconducting case, the Bean–Livingston barrier[105] causes the hysteresis, as we see
later.

We characterize this phase transition for periodic orders in more explicit way. The
Abrikosov vortex lattice is a periodic structure, and other examples are the D-IC transition
in the Dzyaloshinskii helimagnet, as was reviewed in Sect. 2.4 and the Freédericksz transition
in chiral liquid crystals. The first important feature is the divergence of the period. Let Q be
the corresponding wave vector, and it approaches 0 when the phase boundary is approached
in the ordered phase. The second one is the presence of higher harmonics. Let O(r) be the
field to describe the system. O(r) can be the condensation wave function for superconductors,
or spins for the Dzyaloshinskii helimagnet. In the same limit to the phase boundary as above,
higher harmonics of the fundamental wave exist since there is a localized emergent particle.
Thus for its Fourier components O(q), the ratio O(nQ)/O(Q) is finite in this limit. The third
one is the stability against small and local fluctuations. As mentioned above, the Hessian of the
uniform state remains positive definite even after the phase transition to the ordered phase, and
the Hessian of a state with a finite topological number does in the disordered phase to some
extent. In addition, a topological number changes in the ordered phase without accompanied
by the instability. The fourth feature is the absence of a small and local order parameter related
to the third one. The helical order parameter of the instability-type phase transition is small
and local near the phase transition. The small and local order parameter is necessary to lead
the instability of the disordered phase. Consider the emergent particle density given by the
topological number per a volume. One might construct the Landau free energy for this density
since this vanishes at the transition line and finite in the ordered phase. However the construc-
tion of the Landau free energy does not necessarily mean that the continuous phase transition is
instability-type because the states with different densities are distant in the configuration space
of the original field O, and a process with an infinitesimal distortion to change the density
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Q O(nQ)/O(Q) Hessian OP
instability finite 0 positive & negative 3

nucleation 0 finite positive definite 7

Table 2.1: Summary of continuous phase transitions associated with periodic orders. The
wave vectorQ characterizes the inverse of the period of the periodic structure. We defineO(q)
by the Fourier component of the field describing the system, and the third column describes
whether the ratios of the higher harmonics to O(Q) remain finite or not. The Hessian of the
state which is the most stable before a transition has negative eigenvalues after the transition
for instability-type, while does not for the nucleation-type. The last column about OP explains
the presence/absence of a small and local order parameter.

does not exist. Also one might try to construct the Landau free energy of an order ξ such that
O(nQ) = ξfn with a form factor fn. Thereby we can take account of higher harmonics and
nonzero ratio of O(nQ)/O(Q) at the transition. However it is difficult to determine the form
factors for all n, and obtain the Landau free energy. Even if one did it, again it would not mean
that an instability accompanied the transition because the assembly of the form factor represents
the localized structure of an emergent particle, and O(r) is not infinitesimal. We remark that
it might be possible to describe the nucleation-type phase transition using the above Landau
expansions in a proper way. However the emergent particle picture is much more effective to
describe the phase transition and multicritical point if exists since derivations of the Landau
free energy require tough calculation to obtain a logarithmic divergence of a distance between
emergent particles ∆le.p. and a corresponding singular behavior of magnetization et al. Note
that ∆le.p. ∝ ln(Hc − Hex) [see Eq. (2.99) in the soliton case], and the density of emergent
particles is given by ne.p. = 1/∆le.p. for a soliton lattice and ne.p. = 1/∆l2e.p. for a vortex
lattice. Magnetization can be described by the the magnetization of a single emergent particle
multiplied by the density ne.p.. For example the constitutive relation of type-II superconductors
near the lower critical field is given by

B(H) = 4πM +H =
2ϕ0√
3λ2

{
ln

[
3ϕ0

4πλ2(H −Hc1)

]}−2

(2.136)

with the magnetic flux quantum ϕ0 and the penetration depth λ. These logarithmic behaviors
can be easily obtained through the competition between the energy of a single emergent particle
and its interaction energy[112, 113].

2.6.3 Summary of classification
We summarize the two types of continuous phase transition between the periodic ordered phase
and disordered phase in Table 2.1. Here we have listed four points.
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In the case of the instability-type phase transition, there exists a small and local order
parameter with a finite period, i.e. a finite wave vector Q, and its higher harmonics do not
contribute at the transition. The presence of the small and local order parameter at the transition
means that the instability of the disordered phase exists there. Thus its Hessian of the uniform
state has negative eigenvalues in the ordered state.

On the other hand, in the case of the nucleation-type phase transition, the period diverges,
i.e., Q → 0 in the limit to the phase transition with higher harmonics but without a small and
local order parameter. Correspondingly the Hessian remains positive definite for a state which is
not the most stable state. Since such a state is stable against infinitesimally small fluctuations,
the change of the state is driven by the nucleation of the emergent particles. For type-II
superconductors and Dzyaloshinskii helimagnets, magnetization curves have logarithmically
diverging slopes at the transition, which can be described well by the emergent particle picture.



Chapter 3

Non-reciprocal magnon in chiral magnet

In this chapter, we investigate the non-reciprocity in spin waves developed by a magnetic
field parallel to the direction of DMI. The non-reciprocal spin waves are well known in the
uniform state of non-centrosymmetric ferromagnets. First we review their theory. Then for
uniaxial chiral ferromagnets we introduce a simplified model and calculate the dynamical spin
structure factor to study the non-reciprocal spectral structure in a non-uniform state. Since it
is easy to investigate the spectral structure of the uniaxial chiral antiferromagnet, we calculate
it and discuss the difference from that in the ferromagnetic case. Finally we compare this
result with numerical results calculated by Monte Carlo simulation and simulation based on
the Landau–Lifshitz equation.

3.1 Introduction
Recent studies on chiral magnets are triggered by the observations of several non-trivial mag-
netic states and topological textures stabilized by the DMI[48, 49] such as chiral skyrmions and
chiral solitons[34, 43]. Although a helical (or cycloidal) order due to the competition between
the DMI and the Heisenberg exchange interaction is not a topological texture, the DMI affects
spin wave excitations and leads to a non-reciprocal propagation in the presence of magnetic
field. An example of effects of antisymmetric SOI is the Rashba splitting in the single-electron
energy spectrum in non-centrosymmetric system[78]. A corresponding phenomenon in mag-
nets is non-reciprocal spin wave propagation in non-centrosymmetric ferromagnets[65, 66].
The non-reciprocal spin wave propagation means that spin waves with the wave vector k and
−k have different energies, E−k ̸= Ek. In particular, the group velocity of the spin wave
with k = 0 is finite, and its sign depends on the direction of the magnetic field. Whereas
non-reciprocity can appear in the surface state called Damon–Eschbach mode in ferromagnets
and antiferromagnets[114–117], our present concern is in asymmetric dispersion relations in
the bulk spin wave excitations governed entirely by the DMI. The physical mechanism of
non-reciprocity is as follows: In the presence of the DMI, a magnon acquires the Berry phase
during the hopping process and this phase shifts the wave vector[72]. We can understand this

37
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on the basis of an analogous situation for electrons as follows: the phase is equivalent to a
constant vector potential, and the kinetic momentum can be given by the canonical momentum
shifted by the vector potential. The shift is in one direction owing to the fixed direction of
the precession, and leads to asymmetry in the spin wave dispersion. Observing this effect is
connected to experimental measurement of antisymmetric interactions of spins, i.e. the DMI,
[67–73] and this effect may be used as a logic gate in magnonics field[118].

An important issue is “non-reciprocity” in a non-uniform state, because dispersion is
not defined in non-uniform states such as helical and conical states, instead the elementary
excitation is labeled by a pseudo momentum. Thus it is an interesting issue what is a concept of
non-reciprocity in a non-uniform state, which is naturally connected to that in the uniform state.
A conical state is a field-induced intermediate state between the uniform and helical states,
and it is also interesting to see how magnetic field develops the non-reciprocity in the conical
state toward the uniform state. In Ref. [66], Kataoka argued that the spin wave dispersion in
the uniform state does not coincide with “dispersion” in the conical state at H = Hc, though
the elementary excitation in the conical state is labeled by a pseudo momentum1. A recent
experiment based on an asymmetric microwave response did not exhibit an evidence of the
non-reciprocity belowHc[73]. When the non-reciprocity is concerned, it is not adequate to use
a pseudo momentum labeling the elementary excitations, and thus we study the dynamical spin
structure factor2. We examine here spin waves on the uniaxial chiral magnet, which is one of
the simplest systems and a model of Cr1/3NbS2[61, 62]. The ground state configuration at zero
field is a single helix caused by the DMI propagating along the DM vector D⃗ which appears in
the DMI as D⃗ · (S⃗j × S⃗l). Note that D⃗ is parallel to the bond direction in this case. We call
this direction the helical axis. Magnetic field applied along the DM vector changes the helical
state into a conical state, and above a critical field, polarizes it into a uniform alignment. The
spin configuration is shown in Fig. 3.1 for the three phases. One can go continuously from a
helical state to a uniform spin structure by varying the applied field strength.

We find that there are three branches in the helical state. We define the branch by the
peak position of the dynamical spin structure factor Cµν(q, ω) where µ, ν = x, y, z.3 One of
them appears in Czz(q, ω) and the other two do in Cµν(q, ω) with µ, ν = x, y. These two are
inverse images of each other obtained by shifting the wave vector by the modulation vector
±Q⃗. The branches and their intensities are symmetric in the helical state. Furthermore when
the magnetic field is applied along the DM vector, we find that the intensity of one branch
decreases while the other increases in the transverse spin correlations in the conical state. The
decreasing intensity finally becomes zero, when the system is in the uniform state, and then the
branch is non-reciprocal.

This chapter is organized as follows. On the basis of a chiral ferromagnetic model, we

1Note that he argued that inelastic neutron scattering experiment would not exhibit any discontinuous change
there

2A paper appears on the preprint server during the revision of this thesis, which discusses the dynamical spin
structure factor as well for a cubic helimagnets[119].

3Within the spin wave approximation, spectrum has δ function and we define a branch by its support.
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(a) Helical (b) Conical (c) Uniform

cone angle

Figure 3.1: Sketches of the three states in the chiral magnet: helical, conical, and uniform. The
top image describes the directions of spins { ⃗̃Sj} in the original frame, which have the cone
angle θ0 defined by the angle between ⃗̃Sj and the helical axis parallel to D⃗. (a) The helical
state is described by θ0 = π/2, (b) the conical state when 0 < θ0 < π/2, and (c) the uniform
state by θ0 = 0 in the frame of {S⃗j}.

first obtain the spin wave excitations and calculate the spin correlation functions, and discuss
non-reciprocity in the correlation function. We next consider antiferromagnetic interactions
and find that, as well as the ferromagnetic case, the spin wave modes separate into distinct
branches and show the non-reciprocity in the presence of the magnetic field. In contrast to
the ferromagnetic case, remarkable changes appear in the branches in addition to the intensity
since the Néel-type properties disappear in increasing field. Finally we compare these analytical
results with numerical calculations.
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3.2 Non-reciprocal magnon
In this section, first we review the non-reciprocal magnon spectrum in the uniform state under
the magnetic field along the helical axis, by introducing the following Hamiltonian:

H =
∑
j

[
−J∥S⃗j · S⃗j+ẑ −D

(
Sx
jS

y
j+ẑ − Sy

jS
x
j+ẑ

)
−HSz

j +H⊥,j

]
=
∑
j

{
− J̃
2

[
eiQaS+

j S
−
j+ẑ + e−iQaS−

j S
+
j+ẑ

]
− J∥S

z
jS

z
j+ẑ −HSz

j +H⊥,j

}
, (3.1)

H⊥,j = −
∑
µ=x,y

J⊥S⃗j · S⃗j+µ̂. (3.2)

Here J∥ and D are the exchange and Dzyaloshinskii–Moriya interactions between the nearest
neighbor spins respectively along the z-direction, which is parallel to the helical axis. J̃ =√
J2
∥ +D2 and Qa = tan−1(D/J∥) with a lattice constant a. The subscript j denotes the

site in the three dimensional cubic lattice and µ̂ for µ = x, y, z is the unit vector of the lattice
translation in the µ-direction. We simply use the same lattice constant, a, in any direction. The
magnetic fieldH is applied along the helical axis. Using the Holstein–Primakoff transformation

S+
j =

√
2S
(
1− nj

2S

) 1
2
aj , S

−
j =

√
2Sa†j

(
1− nj

2S

) 1
2
, Sz

j = S − nj , (3.3)

with the number operator nj = a†jaj and the Fourier transform:

ak =
1√
N

∑
j

aje
ik·ja, a†k =

1√
N

∑
j

a†je
−ik·ja, (3.4)

we obtain

H = −N
(
J∥S

2 −KS2 +HS
)
+
∑
q

(
E⊥,q + E∥,q

)
a†qaq, (3.5)

up to second order in ak and a†k operators with

E⊥,q = 2J⊥S [2− cos(qxa)− cos(qya)] , (3.6)
E∥,q = 2J̃S {1− cos[(qz −Q)a]}+H −Hc, (3.7)

and the critical field Hc = 2S(J̃ − J∥). The energy spectrum consists of two parts: E∥,q
and E⊥,q. E∥,q can be regarded as the energy spectrum of the one dimensional spin chain,
independent of the in-plane momenta qx or qy, while it is not symmetric between qz and −qz,
which means that the propagation of the spin wave along the helical axis is non-reciprocal.
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E⊥,q comes from the in-plane exchange interaction and is independent of qz. In addition,
E⊥,q is symmetric with respect to (qx, qy) → (−qx, qy), (qx,−qy), and (−qx,−qy). In general,
E⊥,q+E∥,q is symmetric under the sign reversals of qx or qy in the presence of one dimensional
modulations along the z-direction, and we do not consider the in-plane propagation of spin
waves in the following: we consider only the qz-dependence and set qx = qy = 0. Since we
neglect quantum fluctuation effects on the equilibrium states in the following, it is equivalent
to considering the Hamiltonian for the one dimensional chain.

3.3 Chiral ferromagnetic chain

3.3.1 Hamiltonian

From now on we consider a one-dimensional periodic structure under the magnetic field along
z-direction, which is parallel to the helical axis, in addition to the uniform state considered in
the previous section. We assume that the spin structure is uniform in the xy-plane. Because we
do not consider the in-plane propagation, we focus on the sites on the particular chain, j = lẑ.
The Hamiltonian is

H = −
∑
l

[
J∥
⃗̃Sl · ⃗̃Sl+1 +D

(
S̃x
l S̃

y
l+1 − S̃y

l S̃
x
l+1

)
+HS̃z

l −K
(
S̃z
l

)2]
,

= −
∑
l

{
J̃

2

[
eiQaS̃+

l S̃
−
l+1 + e−iQaS̃−

l S̃
+
l+1

]
+ J∥S̃

z
l S̃

z
l+1 +HS̃z

l −K
(
S̃z
l

)2}
. (3.8)

The parameters are the same as those of the Hamiltonian Eq. (3.1) except K, which denotes
the hard-axis anisotropy about the helical axis. Let Nz be the number of sites in each chain.

In the following calculations, we rotate locally the spin space so that the z-direction is
parallel to the equilibrium spin direction. Note that we have chosen the sign of H such that the
spin favors the +z-direction4. According to Refs. [109, 120], the spin operators in these two
frames are related as follows:

S̃z
l = −1

2
sin θ0(S

+
l + S−

l ) + cos θ0S
z
l , (3.9)

S̃±
l =

1

2

[
(cos θ0 ± 1)S+

l + (cos θ0 ∓ 1)S−
l + 2 sin θ0S

z
l

]
e±iQal. (3.10)

Here θ0 is a cone angle as shown in Fig. 3.1. We substitute these relations into the original

4The actual direction of magnetic field is opposite, i.e., −z-direction because of the relation M⃗ = −gµBS⃗
with the g factor and the Bohr-magneton, and gµB positive.
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Hamiltonian Eq. (3.8), and obtain

H =−
∑
l

[
J̃(γ̃ − 1)

4

(
S+
l S

+
l+1 + S−

l S
−
l+1

)
+
J̃(γ̃ + 1)

4

(
S+
l S

−
l+1 + S−

l S
+
l+1

)
+ J̃ λ̃Sz

l S
z
l+1 + (J̃ − J∥) sin θ0 cos θ0(S

x
l S

z
l+1 + Sz

l S
x
l+1)

+H(− sin θ0S
x
l + cos θ0S

z
l )−K(− sin θ0S

x
l + cos θ0S

z
l )

2

]
. (3.11)

For simplicity, we have introduced

γ̃ = cos2 θ0 + (J∥/J̃) sin
2 θ0, (3.12)

λ̃ = sin2 θ0 + (J∥/J̃) cos
2 θ0. (3.13)

3.3.2 Holstein–Primakoff transformation
We perform the Holstein–Primakoff transformation by introducing boson operators al and a†l

S+
l =

√
2S
(
1− nl

2S

) 1
2
al, S

−
l =

√
2Sa†l

(
1− nl

2S

) 1
2
, Sz

l = S − nl, (3.14)

and retain quadratic terms with respect to al and a†l . The equilibrium condition implies that the
coefficient of (al + a†l ) vanishes and therefore,

sin θ0

[
2(J̃ − J∥ +K)S cos θ0 −H

]
= 0. (3.15)

Ignoring the irrelevant constant energy, we obtain the following quadratic Hamiltonian:

H ≃
∑
k

[
Ak

2
(a†kak + a−ka

†
−k) +

Bk

2
(a−kak + a†ka

†
−k)

]
(3.16)

using the Fourier transform defined by ak =
∑

l ale
−ikal/

√
Nz and a†k =

∑
l a

†
l e

+ikal/
√
Nz.

Here −π ≤ ka = 2πm/Nz < π with integer m, and we have introduced

Ak =− J̃S [(γ̃ + 1) cos(ka)− 2] +KS sin2 θ0

− cos θ0

[
2(J̃ − J∥ +K)S cos θ0 −H

]
, (3.17)

Bk =− J̃S(γ̃ − 1) cos(ka) +KS sin2 θ0. (3.18)

Let us use the following Bogoliubov transformation to diagonalize the Hamiltonian with real
coefficients uk and vk satisfying the condition u2k − v2k = 1:

ak = ukαk + vkα
†
−k, (3.19)

a†−k = vkαk + ukα
†
−k. (3.20)
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H/Hc=0

H/Hc=0.75

H/Hc=1.0

H/Hc=1.5

0

0.1

0.2

-0.5 0 0.5

Figure 3.2: Behaviors of
Ek for several values of the
magnetic field. We set
D/J∥ = 0.5 and K = 0.
The inset is the magnified
image around k = 0.

The Hamiltonian without irrelevant constants reduces to

H =
∑
k

{[
Ak

2
(u2k + v2k) +Bkukvk

]
(α†

kαk + α†
−kα−k)

+

[
Akukvk +

Bk

2
(u2k + v2k)

]
(α†

kα
†
−k + α−kαk)

}
. (3.21)

The condition of vanishing anomalous terms is given by

Akukvk +
Bk

2
(u2k + v2k) = 0, (3.22)

and the Hamiltonian is diagonalized as

H =
∑
k

Ekα
†
kαk, Ek =

√
A2

k −B2
k, u

2
k + v2k =

Ak

Ek

, 2ukvk = −Bk

Ek

. (3.23)

Note that the energy always has the relation Ek = E−k. One should also note that k is not the
wave number in the laboratory frame. We show the behavior of Ek for several values of the
field in Fig. 3.2. The linear dispersion around ka = 0 holds for H < Hc. It becomes quadratic
at H = Hc and then acquires a gap for H > Hc.

3.3.3 Spectral intensity
We consider the dynamical spin structure factor, which shows the structure of the excitation
spectrum in the energy-momentum space. Using the above quantities, now we can calculate
the correlation functions, Cµν(q, t), of ∆S̃µ

q ≡ S̃µ
q − ⟨S̃µ

q ⟩ for µ = x, y, z, where the Fourier
transforms are defined as

S̃±
q =

1√
N

∑
l

S̃±
l e

∓iqrl , S±
q =

1√
N

∑
l

S±
l e

∓iqrl . (3.24)
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Here ∆S̃µ
q (t) is the time evolution of ∆S̃µ

q and defined by ∆S̃µ
q (t) = eiHt∆S̃µ

q e
−iHt. We define

the x-component of the correlation function as

Cxx(q, t) ≡ ⟨∆S̃x
q (t)∆S̃

x
−q⟩ =

⟨(∆S̃+
q (t) + ∆S̃−

−q(t))(∆S̃
+
−q +∆S̃−

q )⟩
4

. (3.25)

There are three independent components except for trivially zero components. Non-zero
(and non-trivially zero) components are Cxx(q, ω) = Cyy(q, ω), Cxy(q, ω) = −Cyx(q, ω),
and Czz(q, ω). We find that ⟨∆S̃+

q (t)∆S̃
+
q ⟩ and ⟨∆S̃−

q (t)∆S̃
−
q ⟩ are zero, because they do not

include the expectation value of the number operator in terms of the Holstein–Primakoff bosons
such as ⟨α†

qαq⟩ in their expansion. Non-zero contributions come from the other two expectation
values. We write down ⟨∆S̃+

q (t)∆S̃
−
q ⟩ in terms of Holstein–Primakoff bosons as

⟨∆S̃+
q (t)∆S̃

−
q ⟩ =

S

2

[
(cos2 θ0 − 1) ⟨aq−Q(t)a−(q−Q)⟩+ (cos θ0 + 1)2 ⟨aq−Q(t)a

†
q−Q⟩

+(cos θ0 − 1)2 ⟨a†−(q−Q)(t)a−(q−Q)⟩+ (cos2 θ0 − 1) ⟨a†−(q−Q)(t)a
†
q−Q⟩

]
.

(3.26)

The other term, ⟨∆S̃−
−q(t)∆S̃

+
−q⟩, is also represented as

⟨∆S̃−
−q(t)∆S̃

+
−q⟩ =

S

2

[
(cos2 θ0 − 1) ⟨aq+Q(t)a−(q+Q)⟩+ (cos θ0 − 1)2 ⟨aq+Q(t)a

†
q+Q⟩

+(cos θ0 + 1)2 ⟨a†−(q+Q)(t)a−(q+Q)⟩+ (cos2 θ0 − 1) ⟨a†−(q+Q)(t)a
†
q+Q⟩

]
.

(3.27)

To calculate the expectation values, we substitute the Bogoliubov transformations into Eqs. (3.26)
and (3.27). The time evolutions of Bogoliubov boson operators are given by α†

q(t) = α†
qe

iEqt

and αq(t) = αqe
−iEqt, respectively. The dynamical spin structure factor, can be obtained by

the time-Fourier transform of the correlation function.

Cµν(q, ω) =

∫ ∞

−∞
dtCµν(q, t)eiωt. (3.28)

For convenience, we consider only positive-frequency region. Thus we need to retain only
the terms like ⟨αq(t)α

†
q⟩ = e−iEqt[1 + nB(Eq)] with the Bose distribution function nB(ω) =

(exp[βω]− 1)−1.

⟨∆S̃+
q (t)∆S̃

−
q ⟩ =

S

2
[cos θ0(uq−Q + vq−Q) + (uq−Q − vq−Q)]

2 ⟨αq−Q(t)α
†
q−Q⟩

+ (other terms). (3.29)
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Figure 3.3: Dynamical spin structure factor of the chiral ferromagnetic chain with D = 0.5J∥
and K = 0. The panels (a)–(d) show its x(y)-component, while the panel (e) shows the
z-component. The panel (f) shows the H-dependence of the strength of z component at peak
position. There is a slight difference between qa = π and π/2, which is shown in the inset as
∆(xq) = (xq=π − xq=π/2)/xq=π/2 with x = A/E.

We can calculate also ⟨∆S̃−
q (t)∆S̃

+
q ⟩ similarly. The time-Fourier transform of Cxx(q, t) =

[⟨∆S̃+
q (t)∆S̃

−
q ⟩+ ⟨∆S̃−

q (t)∆S̃
+
q ⟩]/4 gives

Cxx(q, ω) =
πS

4
[1 + nB(ω)]

×

[
δ(ω − Eq−Q)

(
cos2 θ0

Aq−Q −Bq−Q

Eq−Q

+
Aq−Q +Bq−Q

Eq−Q

+ 2 cos θ0

)

+ δ(ω − Eq+Q)

(
cos2 θ0

Aq+Q −Bq+Q

Eq+Q

+
Aq+Q +Bq+Q

Eq+Q

− 2 cos θ0

)]
(3.30)

≡ πS

4
[1 + nB(ω)]

[
|U+(q)|2δ(ω − Eq−Q) + |U−(q)|2δ(ω − Eq+Q)

]
(3.31)

≡ πS

4
[1 + nB(ω)] C̄

xx(q, ω). (3.32)

In a similar way, we calculate Cyy and find that Cyy(q, ω) = Cxx(q, ω). We will discuss
Cxy and Cyx later. This result shows that the spectrum consists of two δ-functions at energies
ω+(q) ≡ Eq−Q and ω−(q) ≡ Eq+Q. Each branch has a dispersion of Eq with q shifted by
±Q. Reciprocity among these branches are given by ω±(q) = ω∓(−q). Coefficients of delta
functions depend on θ0, i.e., the cone angle. This implies that the spectral intensity changes as
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a function of the magnetic field. In the laboratory frame, the wave number is no longer a good
quantum number, and an elementary excitation consists of intensities for three wave numbers.
Two of them are q − Q and q + Q for given ω. The third one comes from the z-component
given by the following.

Czz(q, ω) =

∫
dt ⟨∆S̃z

q (t)∆S̃
z
−q⟩ eiωt

=

∫
dteiωt

2S

4
sin2 θ0

[
⟨aq(t)a†q + a†−q(t)a−q⟩

]
=

∫
dteiωt

S

2
sin2 θ0(u

2
q + v2q ) ⟨αq(t)α

†
q⟩

= πS [1 + nB(ω)] sin
2 θ0

Aq

Eq

δ(ω − Eq) (3.33)

≡ πS [1 + nB(ω)] |Uz(q)|2δ(ω − Eq) ≡ πS [1 + nB(ω)] C̄
zz(q, ω). (3.34)

Figures 3.3(a)–(d) show C̄xx(q, ω) for different H’s , while the panel (e) shows C̄zz(q, ω).
Figure 3.3(f) explicitly shows the intensity changes of C̄zz as a function of magnetic field. In
the figures we replace the δ-functions by Lorentzian πδ(ω − Eq) = δ/[(ω − Eq)

2 + δ2] with
δ/J∥ = 10−2. We set Nz to 100 and the frequency mesh, ∆ω, to 0.0128J∥ there.

In the absence of the field, there are the three branches with the same shape, but they are
shifted along the horizontal direction. This holds also for H < Hc. We can see these two
aspects from the analytic expressions Eqs. (3.30) and (3.33), where the peaks are located at
Eq−Q, Eq+Q, and Eq. The transverse correlation functions Cxx(q, ω) and Cyy(q, ω) have two
branches given by Eq−Q and Eq+Q. Since cos θ0 in Eq. (3.30) is zero in the absence of the
magnetic field, |U+(q)|2 and |U−(−q)|2 are the same, and the intensities are reciprocal as well
as their branches. We show the q-dependence of the intensity |U(q)|2’s defined in Eqs. (3.31)
and (3.34) in Fig. 3.4(a). Reciprocal relations |Uz(q)|2 = |Uz(−q)|2 and |U+(q)|2 = |U−(−q)|2
hold.

Then let us examine the results for the finite magnetic field. Figure 3.3(b) corresponds to
an intermediate field below Hc, where the conical state occurs. It is obvious that the spectral
intensity of the branch ω−(q) decreases, while that of ω+(q) increases. We show q-dependence
|U(q)|2’s for H/Hc = 0.75 in Fig. 3.4(b). The q-dependence is not remarkable except near
zero energy in each branch. In contrast to the panel (a), the asymmetry between |U+(q)|2 and
|U−(−q)|2 appears obviously, while |Uz(q)|2 = |Uz(−q)|2 holds. Note that the magnetic field
reduces |Uz(q)|2. We can conclude that the spectral function is non-reciprocal in its intensity,
although the branches are still reciprocal. A stronger magnetic field drives the conical state to
the uniform state. At the critical field Hc, the spectral intensity of the ω−(q) branch vanishes,
while the ω+(q) branch keeps a finite intensity. At this point, the energy branch becomes
non-reciprocal. It is obvious that this single, non-reciprocal branch has a gap for H > Hc, as
was shown in the earlier work by Kishine et al.[109]. Our new finding is that non-reciprocity in
spectral intensity grows in the intermediate state. The intensity of the longitudinal component,
Czz(q, ω), is reciprocal and decreases with increasing field. Figure 3.3(f) shows the intensity
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(a) (b)

Figure 3.4: Intensities |U(q)|2’s as a function of qa forH/Hc = 0 (a) andH/Hc = 0.75 (b) on
a log scale. We set D/J∥ = 0.5 and K = 0.

changes as functions of the magnetic field. Inset shows the difference between q = πa and
q = πa/2 since they are hardly distinguished in the main plot. As seen in Figs. 3.4(a) and (b),
the q-dependence is remarkable only near q ≈ 0. This can be understood as follows: |Uz(q)|2
is given by the ratio of the arithmetic mean to the geometric mean between 2J̃(1− cos qa) and
2J̃(1− γ̃ cos qa). Here 1− γ̃ ≈ 0.11 is small. Thus the q-dependence of |Uz(q)|2 appears only
when (1 − γ̃) cos qa ≳ (1 − cos qa), otherwise it vanishes through the cancelation between
both means.

As another remark, we perform the principal axis transformation for the correlation function.
Defining

C̄yy(q, ω) = 4Cyy(q, ω)/[π(1 + nB(ω))], (3.35)
C̄xy(q, ω) = −C̄yx(q, ω) = 4Cxy(q, ω)/[π(1 + nB(ω))], (3.36)

we can write down them with symbolic notations as

C̄xx(q, ω) = C̄yy(q, ω) = |U+(q)|2δ(ω − Eq−Q) + |U−(q)|2δ(ω − Eq+Q), (3.37)
C̄xy(q, ω) = −C̄yx(q, ω) = i

[
|U+(q)|2δ(ω − Eq−Q)− |U−(q)|2δ(ω − Eq+Q)

]
, (3.38)

C̄zz(q, ω) = |Uz(q)|2δ(ω − Eq). (3.39)

Diagonalizing the 3× 3 matrix C̄αβ for a given (q, ω), we obtain

diag
[
2C̄+−(q, ω), 2C̄−+(q, ω), C̄zz(q, ω)

]
, (3.40)

where

C̄+−(q, ω) = |U+(q)|2δ(ω − Eq−Q), C̄
−+(q, ω) = |U−(q)|2δ(ω − Eq+Q) (3.41)

and these are related to the Fourier transform of ⟨∆S̃+
q (t)∆S̃

−
−q⟩ and ⟨∆S̃−

q (t)∆S̃
+
−q⟩.
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3.4 Antiferromagnetic system with uniaxial chirality

We also study a chiral chain with antiferromagnetic exchange interaction. The material
Ba2CuGe2O7 shows an almost-antiferromagnetic cycloidal state, because of a uniform DMI
with D⃗ vector perpendicular to the bond direction [121–128]. This material also has a staggered
DMI, and its DM vector is perpendicular to both the bond direction and the DM vector of the
uniform DMI. This staggered DMI induces the weak ferromagnetism and thus the coexistence
of the weak ferromagnetism and chiral modulation is expected[129]. Moreover, the fluctuation-
induced weak first order phase transition is suggested[128]. Another model material of this
type is BiFeO3 [130–133]. Non-reciprocal spin wave spectrum in a non-centrosymmetric an-
tiferromagnet was recently observed in α-Cu2V2O7 for collinear spin structure using inelastic
neutron scattering measurements[134, 135].

Therefore it is important to study the spin wave spectra in the non-uniform state of the
uniaxial chiral antiferromagnet. We repeat the analysis in the previous section for the antifer-
romagnetic chain with the single DMI. Our starting Hamiltonian is almost the same as that in
the case of the chiral ferromagnet except the sign of exchange coupling:

H =
∑
l

[
J∥
⃗̃Sl · ⃗̃Sl+1 −D

(
S̃x
l S̃

y
l+1 − S̃y

l S̃
x
l+1

)
−HS̃z

l +K
(
S̃z
l

)2]
(J∥] > 0) (3.42)

=
∑
l

[
− J̃
2

(
e−i(Q+QAF)aS̃+

l S̃
−
l+1 + ei(Q+QAF)aS̃−

l S̃
+
l+1

)
+ J∥S̃

z
l S̃

z
l+1

−HS̃z
l +K

(
S̃z
l

)2]
. (3.43)

The difference from the ferromagnetic case consists of two points: Q → −(Q + QAF) with
antiferromagnetic wave number QAFa = π and J∥ → −J∥. Correspondingly the following
changes are required:

S̃z
l = −1

2
sin θ0(S

+
l + S−

l ) + cos θ0S
z
l , (3.44)

S̃±
l =

1

2

[
(cos θ0 ± 1)S+

l + (cos θ0 ∓ 1)S−
l + 2 sin θ0S

z
l

]
e∓i(Q+QAF)l, (3.45)

γ̃ = cos2 θ0 − (J∥/J̃) sin
2 θ0, (3.46)

λ̃ = sin2 θ0 − (J∥/J̃) cos
2 θ0. (3.47)
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Using Eqs. (3.44)–(3.47), the Hamiltonian is reduced to

H =−
∑
l

[
J̃(γ̃ − 1)

4

(
S+
l S

+
l+1 + S−

l S
−
l+1

)
+
J̃(γ̃ + 1)

4

(
S+
l S

−
l+1 + S−

l S
+
l+1

)
+ J̃ λ̃Sz

l S
z
l+1 + (J̃ + J∥) sin θ0 cos θ0(S

x
l S

z
l+1 + Sz

l S
x
l+1)

]
−H

∑
l

(− sin θ0S
x
l + cos θ0S

z
l ) +K

∑
l

(− sin θ0S
x
l + cos θ0S

z
l )

2. (3.48)

Using the Holstein-Primakoff transformation, Eq. (3.14), we obtain the following Hamiltonian
up to quadratic order in a and a†:

H =
∑
k

[
Ak

2
(a†kak + a−ka

†
−k) +

Bk

2
(a−kak + a†ka

†
−k)

]
, (3.49)

with

Ak =− J̃S [(γ̃ + 1) cos(ka)− 2]

+KS sin2 θ0 − cos θ0[2(J̃ + J∥ +K)S cos θ0 −H], (3.50)
Bk =− J̃S(γ̃ − 1) cos(ka) +KS sin2 θ0. (3.51)

To obtain Eq. (3.49), we have used the equilibrium condition

sin θ0

[
2(J̃ + J∥ +K)S cos θ0 −H

]
= 0. (3.52)

Performing the Bogoliubov transformation as in the ferromagnetic case, we diagonalize the
Hamiltonian:

H =
∑
k

Ekα
†
kαk, (3.53)

Ek =
√
A2

k −B2
k, u

2
k + v2k =

Ak

Ek

, 2ukvk = −Bk

Ek

. (3.54)

The dynamical spin structure factor is calculated in a similar way, and its transverse component
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Figure 3.5: Dynamical spin structure factor for the chiral antiferromagnetic chain with D =
0.5J∥ and K = 0. The panels (a)–(d) show the x(y)-component, while the panels (e) and (f)
show the z-component.

is

Cxx(q, ω) =
πS

4
[1 + nB(ω)]

×
{
δ(ω − Eq+Q+QAF

)

[
(1− cos2 θ0)

Bq+Q+QAF

Eq+Q+QAF

+
(1 + cos θ0)

2

2

(
Aq+Q+QAF

Eq+Q+QAF

+ 1

)
+

(1− cos θ0)
2

2

(
Aq+Q+QAF

Eq+Q+QAF

− 1

)]
+δ(ω − Eq−Q+QAF

)

[
(1− cos2 θ0)

Bq−Q+QAF

Eq−Q+QAF

+
(1− cos θ0)

2

2

(
Aq−Q+QAF

Eq−Q+QAF

+ 1

)
+

(1 + cos θ0)
2

2

(
Aq−Q+QAF

Eq−Q+QAF

− 1

)]}
(3.55)

=
πS

4
[1 + nB(ω)] C̄

xx(q, ω). (3.56)

Note that Aq and Bq take different forms from those in the ferromagnetic case. The relation
Cyy(q, ω) = Cxx(q, ω) holds again. The result for the z-component is

Czz(q, ω) = πS [1 + nB(ω)] sin
2 θ0

Aq

Eq

δ(ω − Eq) ≡ πS [1 + nB(ω)] C̄
zz(q, ω). (3.57)

Figures 3.5(a)–(d) and (e)–(f) correspond to C̄xx(q, ω) and C̄zz(q, ω), respectively. We
start to discuss the spin wave branches of the chiral antiferromagnetic chain. It is well known
that there are two linear branches at around qa = (0, · · · , 0) and (π, · · · , π) in the case of
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the usual antiferromagnet. The usual antiferromagnetic case is obtained by taking the limit
D → 0 and correspondingly Qa → 0. Thus the linear branch near zone boundary in Fig. 3.5
corresponds to that appearing at qa = π in the usual antiferromagnet. On the other hand, we
can see that the local minimum near qa = 0 has no longer zero energy and acquires a gap. This
is because the DMI plays a role of a hard axis anisotropy along the helical axis. This kind of
gap appears at around qa = π for the z-component, since the anisotropy does not allow the
out-of phase mode in the z-component to have zero energy. Compared to the ferromagnetic
case, the field increasing process shows a complicated behavior since there are two kinds of
transition: One is a transition from the helical to the uniform state, where characters of the
helical state disappear. One of its characters is represented by the reciprocal spectral intensities
in Cxx(q, ω), which becomes non-reciprocal with increasing field. The other is a transition
from antiferromagnetic to the uniform states, where the characters of antiferromagnetic state
disappear. As we mentioned, the linear dispersion relation appears at qa = 0 in the usual
antiferromagnetic case. The depression at around qa ∼ 0 comes from this linear branch by
opening the gap because of DMI. This depression-structure disappears with increasing field,
and the energy branch takes maximum at around qa ∼ 0 as that in the ferromagnetic case does
at around qa ∼ π.

3.5 Comparison with numerical results
We confirm this non-reciprocity in the spectral intensity by direct numerical calculation. Here
we combine a classical Monte Carlo simulation and the Landau–Lifshitz equation (2.73) as a
standard method to calculate the dynamical spin structure factor of classical spin systems at
finite temperatures [136]. Here we do not discuss the temperature dependence of Cµν(q, ω)
and thus we choose one very low temperature. We remark that the field direction is opposite to
that in the previous sections, since we take the field direction such that the classical magnetic
moment precesses counterclockwise as in Fig. 2.3.

First we review the numerical scheme. The correlation function is defined as follows:

Cµν(r, t) =
1

N ′
rN

′
t

∑
r′,t′

[⟨Sµ(r + r′, t+ t′)Sν(r′, t′)⟩ − ⟨Sµ(r + r′, t+ t′)⟩ ⟨Sν(r′, t′)⟩] ,

which is spatially averaged by the summation over r′. Here the angle bracket ⟨O⟩ denotes the
ensemble average of an observable O. The dynamical spin structure factor is calculated as the
Fourier transform of Cµν(r, t). We transform it under the periodic boundary condition with
N ′

r = Nr = NxNyNz as

Cµν(q, t) =
1

NrN
′
t

∑
t′

[⟨Sµ(q, t+ t′)Sν(−q, t′)⟩ − ⟨Sµ(q, t+ t′)⟩ ⟨Sν(−q, t′)⟩] . (3.58)

In this scheme, we replace the ensemble average by the average over the samples which is
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described with the number of samples A and the index s labeling a sample as

⟨O⟩ = 1

A

∑
s

Os. (3.59)

We prepare A initial states for solving the Landau–Lifshitz equation by performing a classical
Monte Carlo simulationA times at temperature T , where each state is obtained after sufficiently
long relaxation process. Then solving the Landau–Lifshitz equation for an initial state labeled
by s, S⃗s=1,··· ,A(q, t = 0), we obtain the Fourier transform of the spin configuration at time t,
S⃗s(q, t), and calculate the correlation function based on Eq. (3.58).

We discretize time t = n∆t to solve the Landau–Lifshitz equation using the standard
Runge–Kutta method or “RK4” with time step ∆t = 0.01J−1

∥ . We have confirmed that there
is no visible ∆t-dependence by comparing it with smaller time steps. The summation over t′
is taken with N ′

t = 200 and the different time step ∆t̄ = 10∆t for numerical efficiency.
Finally we perform the Fourier transform in time as

Cµν(q, ω) =
∑
t

Cµν(q, t)eiωt−
1
2
(δωt)2 (3.60)

with time step ∆t̄ since we do not need the higher frequency than the upper band edge of
single magnon excitations5. Here the Gaussian factor, e−(δωt)2/2 is introduced to smooth the
ω-dependence as was used in Ref. [136], but here we have not adjusted the parameter δω.

We summarize the parameters used here:

• DMI: D/J∥ = 0.5

• Temperature used in Monte Carlo: T/J∥ = 0.05

• The number of samples A = 200

• System size: Nx = 1, Ny = 1, Nz = 128

• Time step: ∆t = 0.01J−1
∥ , and time length: tmax = 4000J−1

∥

• Smearing parameter: δω = 0.04J∥

Then in Fig. 3.6 we show the numerical results of the correlation functions. We also plot by
black solid lines the analytical branches, given by Eq+Q and Eq−Q+QAF

for the ferromagnetic
and antiferromagnetic cases, respectively. The spin wave approximation well describes the
branches in Cxx(q, ω) obtained numerically even in the antiferromagnetic case, although upon
changing the field the branch shape changes more drastically in the antiferromagnetic case than
that in the ferromagnetic case. Slight differences in the dispersion relations may be due to finite

5The frequency range is determined by the resolution in time, i.e. ∆t̄. Note that the Landau–Lifshitz equation
should be solved using time step ∆t to guarantee the precision of solutions.
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Figure 3.6: Numerical simulations of dynamical spin structure factors for chiral ferromagnets
[(a)–(f)] and chiral antiferromagnets [(g)–(l)]. We setD = 0.5J∥ andK = 0. The values of the
critical field are based on the expression that Hc = 2(J̃ ∓ J∥)S with S = 1 for ferromagnetic
and antiferromagnetic cases, respectively. Thus we do not take account of the effect that the
expectation value of the spin magnitude reduces on the critical field. The black solid lines in
left panels for the ferromagnetic and antiferromagnetic cases are the branches represented by
Eq−Q and Eq−Q+QAF

, respectively.

size effects. The periodic structure with an incommensurate wave vector Qa = tan−1(D/J∥)
usually never realizes on a lattice system under the periodic boundary condition, which leads
to errors of ∆qa ∼ 0.025 in ferromagnetic cases or 0.049 in antiferromagnetic cases. However,
the deviation observed in Fig. 3.6(g) is about 0.076 and this is not so small as expected from the
finite-sized correction, and this requires further analysis. In addition, the difference is likely
to come from the reduction of the effective moment amplitude and interactions between spin
waves at the finite temperatures. This appears in the difference of Hc. The value of the critical
field is calculated on the basis of the expression 2S(J̃ − J∥), but S should be renormalized
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as | ⟨S⃗⟩ |. Thus the values of the critical field would be overestimated and the field ratios in
the figure are underestimated. This may be the reason that the gaps in the panels (c) and (j)
are larger than the analytical values. As a whole, however, the predictions based on the spin
wave approximation do not differ from the numerical results very much, and this relatively
good agreement is owing to the low temperature, where these effects are not large. We expect
at higher temperatures that the energy branch deviates from the analytical results as well as
spectral broadening.

Then we focus on how the spectral intensity evolves with the magnetic field, which is the
main issue of this chapter. As we have discussed in the former sections, the intensity increases
in only one branch, while decreases in the other two branches as the magnetic field increases
in both the ferromagnetic and antiferromagnetic cases. The consistent behavior is confirmed
at low temperature regarding the evolution of the non-reciprocity predicted by the analytical
calculation. The intensity of the ω+(q) branch decreases in the numerical simulation while that
of the ω−(q) branch decreases in the analytical calculation. This is because the field direction
is opposite in these two cases.

Here we make a few remarks about this simulation. First is about the temperature effects.
We prepare a set of initial conditions by a classical Monte Carlo simulation at the very
low temperature. Then we simulate the dynamics by the Landau–Lifshitz equation at zero
temperature. In this case we would wonder if we could take account of the temperature
effect successfully or not. It is considered that the zero temperature dynamics based on the
Landau–Lifshitz equation corresponds to dynamics under the micro-canonical ensemble, while
the canonical ensemble dynamics corresponds to dynamics based on the Landau–Lifshitz–
Gilbert equation with a Langevin torque term. Thus the equivalence of two ensembles in
the thermodynamic limit guarantees to some extent for finite-sized system that the simulation
describes spin dynamics under temperature about T/J∥ = 0.05. Note that we do not discuss
the temperature effects quantitatively. Then once we understand this, we would have a question
about the validity of the finite temperature dynamics in the one dimensional system. In a one
dimensional classical system, there is no long range order at finite temperature, thus we could
not expect the conical state. On the other hand, as temperature goes to zero, the short range
order grows up and the correlation length becomes longer. Our simulation has been performed
for a finite-sized system and if the correlation length exceeds the system size, we may consider
that the system has long range order practically. Thus it is likely that our simulation of the
classical spin systems at finite temperature is valid.

3.6 Summary of this chapter

In this chapter, we have clarified the non-reciprocity appearing in the dynamical spin structure
factor Cµν(q, ω) under the magnetic field. This has three branches, ω±(q) = Eq∓Q and
ωz(q) = Eq determined from the peak positions of Cµµ(q, ω). There exist the reciprocal
relations ω±(q) = ω∓(−q) and ωz(q) = ωz(−q). To discuss the evolution of non-reciprocity,
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one needs to focus on Cxx(q, ω) or equivalently Cyy(q, ω), and intensities at ω±(q) show non-
reciprocity in the presence of the magnetic field below the critical field. With approaching the
critical field Hc, the intensity of one branch, ω+(−)(q), decreases. It finally vanishes at Hc and
the dispersion relation, ω−(+)(q), becomes non-reciprocal above Hc. Kataoka discussed the
discontinuous change of the dispersion relation[66] and obtained the dispersion described as
q2 at H = Hc − 0. Above Hc, the dispersion relation shows a finite group velocity at q = 0.
We find that the non-reciprocity appears continuously through the difference of the spectral
intensity rather than discontinuously at the critical field.





Chapter 4

Chiral solitons under tilted field

In this chapter, we consider the zero-temperature magnetic phase diagram of a uniaxial chiral
spin system under the tilted magnetic field. A candidate material is Cr1/3NbS2, and its helical
spin structure propagates along the c-axis. We call the c-axis the helical axis. This uniaxial
system shows the chiral conical state when we apply magnetic field along the helical axis,
while shows the chiral soliton lattice state for the field perpendicular to the helical axis. The
phase transitions for both directions of the field are continuous, but the inherent characters
are different. The non-linear property never appears for the parallel field and a single q mode
plays a role of an order parameter. On the other hand, the chiral soliton plays an important
role in the phase transition for the perpendicular field. Therefore a natural question is brought
about: How are these two states connected? An earlier work by Laliena et al. approached this
problem, and clarified there are two tricritical points which separates these two continuous phase
transitions[86]. The phase boundary between the two tricritical points shows the discontinuous
phase transition. In the first part of this chapter, we show that the properties of the discontinuous
phase transition can be explained using the soliton picture. The linear analysis with respect to
the asymptotic behavior of the soliton or a helical mode tells us the positions of two multicritical
points on the phase boundary. In the second part, we study the surface barrier which soliton
feels when it enters or escapes from the system through the surface. In experiments for
micrometer-sized samples, magneto-resistance shows clear hysteresis in the wider region in
the phase diagram than the region where the discontinuous phase transition is theoretically
predicted. We compare our theoretical results with experimental data and conclude that the
hysteresis observed in experiment is attributed to the surface barrier of the soliton.

4.1 Introduction
The uniaxial chiral magnet, Cr1/3NbS2, has a strong hard-axis anisotropy along the helical
axis, and thus the magnetic properties under the magnetic field perpendicular to the helical
axis are well-distinguished from those for the field parallel to the helical axis[43, 109]. In
this chapter, we call the former field configuration the perpendicular field, and the latter the

57
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(c)

Figure 4.1: Phase diagram obtained for the continuum model by Laliena et al.[86]. γ/q20
stands for the anisotropy, and is almost equivalent to K/(2Hd) in our definition. βµ=x,z are the
perpendicular and parallel magnetic fields, corresponding to Hµ

ex/Hd. The left panel (a) is the
phase diagram for the realistic value of the anisotropy, while the middle panel (b) is that for the
zero anisotropy case. The anisotropy dependence of the phase diagram is shown in the right
panel (c). Here “TC” denotes the tricritical point, while “CTL” and “DTL” are the continuous
and discontinuous transition lines, respectively. IC and FFM are the incommensurate phase
and the “forced ferromagnetic” phase, respectively, and the latter is nothing but the uniformly
polarized state.

parallel field. The perpendicular field induces the higher harmonics in the helical order and
the spin configuration forms a so-called chiral soliton lattice, i.e. a periodic structure of chiral
solitons. Here a chiral soliton is a 2π domain wall separating the uniformly aligned region and
it is equivalent to the discommensuration proposed by McMillan[79]. This chiral soliton is
topologically stable because of the strong anisotropy, and the control of this soliton is desirable
for application. The parallel field induces the chiral conical phase, in which the spin wave
propagation is non-reciprocal as we have seen in the previous chapter. In this case, the spin
structure does not have the higher harmonics1.

Recently Laliena et al. studied the magnetic states under a tilted magnetic field using a
continuum model[86]. They minimized an energy functional numerically to obtain the ground
state and found that there were two tricritical points on the phase boundary as shown in Fig. 4.1.
The phase boundary separates the ordered and disordered phases. The segment between the
two tricritical points on the phase boundary shows the discontinuous phase transition, while
the other segments are continuous phase transitions. The two limiting cases, i.e., perpendicular
and parallel fields, lead to the continuous phase transition, but these two continuous phase
transitions are different, because of the presence/absence of chiral solitons and actually the
different behaviors of the observables at the critical fields between two continuous transition

1The spin configuration of the conical state is given by M⃗l = Mq
t(cos(qal), sin(qal), 0)+M0ẑ, and the order

parameter is given by the amplitude of Mq .
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(c)

(d)

(a)

(b)

Figure 4.2: Experimentally observed hysteresis. The left panel (a) is the magneto-resistance
for a thin film under the perpendicular field and the helical axis is in the plane. The angles of
the field, which is shown in the figure, are measured from the normal direction to the film. Note
that the field is always perpendicular to the helical axis. The middle panel (b) shows the field
dependence of the magneto-resistance for several tilted angles of the field. Here the field is
rotated in the plane including the helical axis. The upper panel shows the raw data and the lower
shows the normalized resistance by R(0) and data are arranged for visibility. The right panels
are the hysteresis appearing in the magnetic torque measurement, and the upper (c) shows the
typical increasing and decreasing field processes and the lower (d) shows the difference of these
two processes, i.e., the magnitude of the hysteresis. Figures are from Refs. [103, 104].

lines were discussed. However it has not been clear why there are two tricritical points
and what are the roles of helical order and chiral solitons in each part of the phase transition.
Experiments were performed by Togawa’s group with a purpose to test the theoretical prediction
of two tricritical points. They investigated the field-increasing and decreasing processes and
observed a large hysteresis, as shown in Fig. 4.2[103]. The large hysteresis was also observed for
magneto-resistance measurement of the micrometer-sized sample with the field perpendicular
to the helical axis [Fig. 4.2(a)]. Their sample was a thin film of 13µm×0.5µm×13µm (helical
axis), and the field is rotated in the plane normal to the helical axis. We see that 0 degs., which
is normal to the film, has the largest effect of demagnetizing field.

Large hysteresis for the tilted field in the plane including the helical axis is observed in
the magneto-resistance measurement for the sample of 10µm× 0.5µm× 10µm (helical axis)
[Fig.4.2(b)] and in the magnetic torque measurement for the sample of 13.4µm × 12.0µm ×
17.6µm (helical axis) [Figs. 4.2(c) and (d)] [104]. In the magneto-resistance measurement,
the field is applied in the plane spanned by the helical axis and the direction normal to the
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film. The hysteresis of the magneto-resistance similar to that for the perpendicular field is
obtained for almost all the region except the vicinity of the parallel field (89 and 90 degs.)
[Fig. 4.2(b)]. Also the magnetic torque measurement is useful for the tilted field configuration
since the magnetization M⃗ is not parallel to the applied field H⃗ex, which induces the non-zero
torque proportional to M⃗ × H⃗ex. Magnetic torque is sensitive to a relative and small change
of the magnetization. In both experiments, they found the indication of TC1, which is the
tricritical point near the parallel field configuration as shown in Fig. 4.1 judging from the
presence/absence of the hysteresis, and there is no signature of TC2.

In this chapter, we will clarify the mechanisms of the phase transitions and roles of chiral
solitons in the discontinuous phase transition and two continuous phase transitions under tilted
magnetic field. Also we will show that the characteristic large jump in the decreasing field
process is due to the surface barrier of a chiral soliton. In contrary to the earlier work[86], we
use a lattice model in the present study.

4.2 Model and mean field equation
We start with the following spin Hamiltonian for classical spins on a cubic lattice:

H = −
∑
j

[
J∥S⃗j · S⃗j+ẑ +D

(
S⃗j × S⃗j+ẑ

)
z
− K

2

(
Sz
j

)2
+ H⃗ex · S⃗j + J⊥

∑
µ=x,y

S⃗j · S⃗j+µ̂

]
.

(4.1)

We consider |S⃗j | = 1 just for simplicity. µ̂ is the unit vector of µ-direction in the real space.
The summation index j takes all of the lattice sites under the appropriate boundary conditions
discussed later. The first and second terms are the Heisenberg exchange interaction, and the
DMI, respectively, on the nearest neighbor pairs along the helical axis. The third term is a
single ion anisotropy energy, and whenK is positive, the helical axis is a hard axis. The fourth
term describes the tilted magnetic field, which suggests that H⃗ex has x- and z-components, and
the last term is the inter-chain exchange interaction. We consider the zero temperature case, and
consider here only spin configurations that have no modulation in the xy-plane, i.e. the spin
structure has one dimensional modulation. In this case, the spin structure is specified only by the
layer index l. We introduce M⃗l = S⃗j for j · ẑ = l for integer l = −∞, · · · ,−1, 0, 1, 2, · · · ,∞.
For this configuration, the last term of the Hamiltonian just shifts the origin of the energy.
For the configuration M⃗l, we normalize the energy by the number of in-plane spins N2d and
subtract the energy of in-plane exchange couplings as

E =
H
N2d

+
zNz

2
J⊥

= −
∑
l

[
J∥M⃗l · M⃗l+1 +D

(
M⃗l × M⃗l+1

)z
− K

2
(M z

l )
2 + H⃗ex · M⃗l

]
. (4.2)
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Here z = 4 denoting the number of the nearest sites in xy-plane, and Nz denotes the number
of layers. The equilibrium condition, i.e. the equation for M⃗l is given by the zero-torque
condition. The effective field on the site l, H⃗eff

l is given by the variation of the energy with
respect to M⃗l, and the torque is zero when the magnetic moment is parallel to the effective
field. At zero temperature, the modulus of the moment is always 1. Therefore the equation can
be summarized as follows:

M⃗l = Ĥeff
l = H⃗eff

l /|H⃗eff
l |, (4.3)

H⃗eff
l = J∥(M⃗l−1 + M⃗l+1) +De⃗z × (M⃗l−1 − M⃗l+1)−KM z

l e⃗
z + H⃗ex, (4.4)

where e⃗z denotes the unit vector of z-direction in the spin space The solution is the same as that
to the LLG equation in the stationary case. We can obtain this by letting the time derivative
be zero in Eq. (2.78). Equations (4.3) and (4.4) are the non-linear coupled equations, and
determine all static spin profiles: isolated soliton state, soliton lattice state, conical state, and
their mixtures.

4.3 Linear analysis for soliton
In this section, we study the condition of the presence of soliton solution. Since numerical
search of soliton solution takes time and is not easy to cover the whole parameter space, we
try an alternative approach and analyze a small deviation from the uniform state on the basis
of Eqs. (4.3) and (4.4) up to its linear order. This provides a necessary condition for a soliton
solution, and the sufficient condition is discussed in Sect. 4.6.3.

The phase diagram includes the two types of continuous phase transitions: instability-type
in the parallel field configuration and nucleation-type in the perpendicular field configuration.
Near the latter-type transition, solitons are nucleated and their interactions determine the critical
properties at the transition. Since the soliton density is small near the transition, the interaction
is mainly determined by the tail structure of an isolated soliton, and we will study it in the
following.

To this end, we study the asymptotic properties for coupled linear equations (4.3) and (4.4).
As reviewed in Sect 2.5.3, let us assume the presence of an isolated soliton in the uniform
background, and its tail structure described by

M⃗l = M⃗u + A⃗ exp(−κxl) with xl = la (l ≫ 1). (4.5)

The deviation A⃗e−κxl is a small quantity far from the soliton center. We expand the equa-
tions (4.3) and (4.4) up to its linear order and examine the condition that the asymptotic form of
a soliton exists. Note that this is a necessary condition for the existence of an isolated soliton.
Its sufficient condition will be discussed in Sect. 4.6.3.

The uniform background should be determined for each value of external field, and we
can write it as M⃗u = (Mu,⊥, 0,Mu,∥) with the normalization condition |M⃗u|2 = 1. Note that
My

u = 0 since Hy
ex = 0.
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The vector A⃗ = (Ax, Ay, Az) and κ are quantities to be determined. The real part of κ is
the inverse decay-length of the soliton. Note that the deviation in Eq. (4.5) describes not only
a soliton tail but also other types of stable spin structure. When κ is pure imaginary κ = iq, it
corresponds to a distorted conical structure with the wave number q, and this solution can be
also examined by the same linear analysis when the amplitude is small, |A⃗| ≪ 1. We call the
order whose leading term is described by Eq. (4.5) with κ = iq the distorted conical order.

We expand Eqs. (4.3) and (4.4) up to first order with respect to the second term of Eq. (4.5),
in which either A⃗ or exp(−κxl) is considered to be sufficiently small. Let us expand the
amplitude of the moment and reduce the number of components of A⃗.

1 = |M⃗l|2 ≃ |M⃗u|2 + 2M⃗u · A⃗ exp(−κxl) → M⃗u · A⃗ =Mu,⊥A
x +Mu,∥A

z = 0. (4.6)

Thus, there exists a relation between Ax and Az. Then we expand the effective field. For
convenience we define the following quantities:

Hx
u = 2J∥Mu,⊥ +Hx

ex, (4.7)
Hz

u = 2J∥Mu,∥ −KMu,∥ +Hz
ex, (4.8)

Hu =
√

(Hx
u )

2 + (Hz
u)

2, (4.9)

and the effective field can be described up to first order in the deviation as follows:

Hx
l = Hx

u + [2J∥ cosh(κa)A
x + 2D sinh(κa)Ay] exp(−κxl), (4.10)

Hy
l = [2J∥ cosh(κa)A

y − 2D sinh(κa)Ax] exp(−κxl), (4.11)
Hz

l = Hz
u + [2J∥ cosh(κa)−K]Az exp(−κxl), (4.12)

|H⃗l|2 = H2
u +

{
2Hx

u [2J∥ cosh(κa)A
x + 2D sinh(κa)Ay]

+Hz
u [2J∥ cosh(κa)−K]Az

}
exp(−κxl). (4.13)

Note that xl+1 − xl = a. The mean field equation M⃗l = Ĥeff
l leads to the coupled equations

using complementary relation (4.6). Its x-component reads

Mu,⊥ + Ax exp(−κxl)

≃ Hx
u

Hu

+
(Hz

u)
2

H2
u

[2J∥ cosh(κa)A
x + 2D sinh(κa)Ay] exp(−κxl)

Hu

−
Hx

uH
z
u [2J∥ cosh(κa)−K]Az exp(−κxl)

H3
u

, (4.14)

and the y-component is

Ay exp(−κxl) ≃
[2J∥ cosh(κa)A

y − 2D sinh(κa)Ax] exp(−κxl)
Hu

. (4.15)
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The equation for z-component is equivalent to the first one through the relation (4.6). From
the first equation, we obtain the equation for the uniform component

M⃗u = H⃗u/Hu →
(
1− K

Hz
ex

Mu,∥

)
Mu,⊥ − Hx

ex

Hz
ex

Mu,∥ = 0,Mu,⊥ =
√
1−M2

u,∥. (4.16)

When Hz
ex = 0, Mu,⊥ = 1 and Mu,∥ = 0. When K = 0, Mu,⊥(∥) = H

x(z)
ex /Hex. From this, we

see that the relation (4.6) reads H⃗u · A⃗ = 0. We obtain the coupled equation for (Ax, Ay)(
(2J∥ cosh(κa)−KM2

u,⊥)−Hu M2
u,∥2D sinh(κa)

−2D sinh(κa) 2J∥ cosh(κa)−Hu

)(
Ax

Ay

)
= 0 (4.17)

The condition that the nontrivial mode exists is given by the null determinant of the coefficient
matrix. The determinant takes the form that

A cosh2(κa) +B cosh(κa) + C = 0, (4.18)

where

A = 4(J2
∥ +D2M2

u,∥), B = −2J∥(2Hu +KM2
u,⊥), (4.19)

C = −4D2M2
u,∥ +Hu(Hu +KM2

u,⊥). (4.20)

This can be regarded as the quadratic equation with respect to cosh(κa). We can distinguish a
solution κa on the basis of the discriminant of the quadratic equation.

D =
B2

4
− AC, cosh(κa) =

−B ±
√
B2 − 4AC

2A
. (4.21)

When D is positive, coshκa is real. The condition for real κa is given by coshκa ≥ 1, while
pure imaginary κa is obtained for coshκa ≤ 1. When D is negative κa is complex. The
complex κa means that the tail of the soliton is damped oscillation. We will show the typical
profiles and that they are related to the interaction potential of solitons in Sect. 4.6. The pure
imaginary κa means that the trial form we assumed has no decaying solution, but oscillation
of a single q mode. As we see in the next section, this regime is described by a wave structure
with a helical pitch q and roughly speaking the Fourier amplitude with q is the order parameter
in the Landau theory. Note that when κa has a finite imaginary part, we consider the real part
of Eq. (4.5).

4.4 Instability-type phase transition
In the previous section, we determined the region of solutions with pure imaginary κ = iq and
its boundary D = 0. In this region, an isolated soliton cannot exist, and the ordered phase is
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described by the distorted conical spin structure. The line of D = 0 is the instability-field line
of the uniform state. In this subsection, we study the phase boundary between the distorted
conical and disordered phases, and determine it by more rigorous criterion on the basis of
energy analysis. Instead of the microscopic energy functional (4.2), we analyze the Landau
energy of the distorted conical order parameter. Following the Schaub–Mukamel’s study[101],
we expand the spin structure using the order parameter ξ as

(
Mx

l

My
l

)
≃
(
Mx

c

0

)
+ ξ

(
σx cos(qxl)
σy sin(qxl)

)
+ ξ2

(
σ̄x cos(2qxl)
σ̄y sin(2qxl)

)
+ ξ3

(
σ̃x cos(3qxl)
σ̃y sin(3qxl)

)
, (4.22)

Mx
c ≃Mu,⊥ + αξ2 + βξ4, q = qc + ᾱξ2 + β̄ξ4. (4.23)

Here σx,y with the normalization σ2
x + σ2

y = 1, σ̄x,y, σ̃x,y, α, ᾱ, β, β̄, and qc are parameters to
be determined for minimizing the energy for a given ξ. This expansion includes the single q
mode and its self-interactions2. These terms should be enough to describe the instability-type
phase transition, but we make a few remarks. First, the fourth-order harmonic term cos 4qxl
or sin 4qxl is not necessary, because we do not consider the case q = 0, π/2a, or π, and its
contribution vanishes after site summation. In a similar way, an initial phase ϕ which appears
by shifting qxl → qxl + ϕ = yl, is not necessary either since

∑
l cos(nqyl) = 0 when qa is

neither 0 nor π/n for n = 1, · · · , 4. Second, the odd-order terms in ξ do not appear in Mc

and q. We can prove this as follows: First we do not expand Mc and q with respect to ξ, and
calculate the energy density. As we see later, it depends only on even-order terms in ξ. We
obtain ξ dependence of Mc and q from the minimization condition of the energy with respect
to Mc and q, and the equations include the even-order terms in ξ. Thus we can expand Mc and
q as Eq. (4.23). Physically, this means that transformation ξ → −ξ corresponds to shifting of
the spin structure as xl → xl + π/q, and it does not change the uniform magnetization. These
considerations on commensurate wave number q are needed for lattice models in contrast to
continuum models such as a model in Ref. [101].

Another difference from the study [101] is the presence of the third component M z
l , but

this is only technical at zero temperature, and the normalization condition determines it as
M z

l =
√

1− (Mx
l )

2 − (My
l )

2. Calculations of the Landau energy becomes easier using M z
l

expanded up to ξ4:

M z
l ≃M z

c + (ξσz + ξ3σ′
z) cos qxl + (ξ2σ̄z + ξ4σ̄′

z) cos 2qxl + (ξ3σ̃z) cos 3qxl (4.24)

2The nth-order harmonic term is accompanied by ξn.
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with M z
c =Mu,∥ + αzξ

2 + βzξ
4 and

σz = −Mu,⊥

Mu,∥
σx, (4.25)

αz = − 1

4Mu,∥

(
1 + 4αMu,⊥ +

M2
u,⊥

M2
u,∥
σ2
x

)
, (4.26)

σ̄z = − 1

4Mu,∥

(
σ2
x

M2
u,∥

− σ2
y + 4Mu,⊥σ̄x

)
, (4.27)

σ′
z = − 1

2Mu,∥
[2ασx + 2αzσz + σxσ̄x + σyσ̄y + σzσ̄z] , (4.28)

σ̃z = − 1

2Mu,∥
[σxσ̄x − σyσ̄y + σzσ̄z + 2Mu,⊥σ̃x] , (4.29)

βz = − 1

2Mu,∥

(
α2 + α2

z + 2Mu,⊥β +
σ̄2
x + σ̄2

y + σ̄2
z

2
+ σzσ

′
z

)
. (4.30)

Here we keep q without the expansion. Note that the term with 4q modulation is not necessary
for the same reason as the above.

4.4.1 Energy density

We substitute the above forms of M⃗l into Eq. (4.2), and write the Landau energy density up to
fourth order in ξ as E(ξ) = a0 + a2ξ

2 + a4ξ
4. In this subsection, we first expand each term of

the Hamiltonian up to fourth order in ξ and calculate a2 and a4. Expansions are given in the
following.

Exchange

−
J∥
Nz

∑
l

M⃗l · M⃗l+1 ≈ −J∥
{
|M⃗u|2 +

[
2(Mu,⊥α +Mu,∥αz) +

1

2

(
1 + σ2

z

)
cos qa

]
ξ2

+

[
α2 + α2

z + 2(Mu,⊥β +Mu,∥βz) +
1

2
(σ̄2

x + σ̄2
y + σ̄2

z) cos 2qa+ σzσ
′
z cos qa

]
ξ4
}

(4.31)

≈ −J∥
[
M2

u − ξ2

2

(
1 +

Mu,⊥

Mu,∥
σ2
x

)
(1− cos qca)

]
+O(ξ4). (4.32)
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DMI

− D

Nz

∑
l

(
M⃗l × M⃗l+1

)z
≈ −D

(
ξ2σxσy sin qa+ ξ4σ̄xσ̄y sin 2qa

)
(4.33)

≈ −Dξ2σxσy sin qca+O(ξ4). (4.34)

Anisotropy

K

2Nz

∑
l

(M z
l )

2 ≈ K

2

[
M2

u,∥ +

(
2Mu,∥αz +

1

2
σ2
z

)
ξ2 +

(
α2
z + 2Mu,∥βz +

1

2
σ̄2
z + σzσ

′
z

)
ξ4
]

(4.35)

≈ K

2

[
M2

u,∥ −
ξ2

2
(1 + 4αMu,⊥)

]
+O(ξ4). (4.36)

Zeeman coupling

− 1

Nz

∑
l

H⃗ex · M⃗l ≈ −H⃗ex · M⃗c (4.37)

≈ −H⃗ex · M⃗u + ξ2

[
Hz

ex

4Mu,∥

(
1 +

M2
u,⊥

M2
u,∥
σ2
x

)
+ α

(
Mu,⊥

Mu,∥
Hz

ex −Hz
ex

)]
+O(ξ4). (4.38)

The total energy up to the order ξ2 is obtained as follows by taking l-sum, which vanishes
the spatially dependent terms.

E

Nz

=
(H⃗u + H⃗ex) · M⃗u

2

+
ξ2

2

{[
−J∥ cos qca+

(
Hz

u

2Mu,∥
+
K

2

)](
1 +

M2
u,⊥σ

2
x

M2
u,∥

)
− 2Dσxσy sin qca−

K

2

}
. (4.39)

Therefore we conclude that

a2 =
1

2

[
−J∥ cos qca+

(
Hz

u

2Mu,∥
+
K

2

)](
1 +

M2
u,⊥σ

2
x

M2
u,∥

)
−Dσxσy sin qca−

K

4
. (4.40)

The derivative of a2 with respect to qca is given by

2M2
u,∥

∂a2
∂(qca)

= J∥
(
M2

u,∥ +M2
u,⊥σ

2
x

)
sin qca− 2DM2

u,∥σxσy cos qca = 0. (4.41)
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The derivative of a2 with respect to σx is given by3

2M2
u,∥σy

∂a2
∂σx

=

(
−2J∥ cos qca+

Hz
u

Mu,∥
+K

)
M2

u,⊥σxσy − 2DM2
u,∥
(
σ2
y − σ2

x

)
sin qca = 0.

(4.42)

Usually |qca| < π/2 for ferromagnetic systems, and qca > 0 is due to a positive D. By
considering that sin qca, cos qca > 0, we see that σxσy > 0 and σ2

x − σ2
y < 0 from Eqs. (4.41)

and (4.42), respectively. The relation that Hu = Hx
u/Mu,⊥ = Hz

u/Mu,∥ is useful. Let us
combine a2 = 0 and Eq. (4.42), and then we obtain the following equation from 2a2σxM

2
u,∥ +

M2
u,∥σ

2
y∂a2/∂σx = 0 and 2a2σy − σxσy∂a2/∂σx = 0:(

2J∥ cos qca−Hu −K 2DM2
u,∥ sin qca

2D sin qca 2J∥ cos qca−Hu

)(
σx
σy

)
=

(
0
0

)
. (4.43)

The condition for the existence of the non-trivial set of σx and σy is given by for the null
determinant of the coefficient matrix:

A cos2 qca+B cos qca+ C = 0, (4.44)

where A, B, and C are defined by Eqs. (4.19) and (4.20), and we find that

(σx, σy) = (2J∥ cos qca−Hu,−2D sin qca)/W (4.45)

with

W =
√

(2J∥ cos qca−Hu)2 + 4D2 sin2 qca. (4.46)

Using Eqs. (4.44) and (4.45), Eq. (4.41) is reduced to

∓(J∥B + AHu)

√
B2 − 4AC

2A
+
J∥B

2

2A
+
HuB

2
+ J∥(−C + J∥H

2
u + 4D2M2

u,∥) = 0.

Note that cos qca is a solution to Eq. (4.44). We focus on the terms other than the first one.

J∥B
2

2A
− J∥

[
Hu(2Hu +KM2

u,⊥) + C −H2
u − 4D2M2

u,∥
]
= J∥

(
B2

2A
− 2C

)
. (4.47)

Therefore using D = B2/4− AC, we have

±
√
D

[
2J∥

−B ± 2
√
D

2A
−Hu

]
= ±

√
D
[
2J∥ cos qca−Hu

]
= 0. (4.48)

Noting that J∥ cos qca −Hu = J∥ cos qca −Hx
u/Mu,⊥ = −J∥(1 − cos qca) −Hx

ex/Mu,⊥ < 0,
we can conclude that D = 0, i.e., a2 = 0 is equivalent to D = 0. This is reasonable because
the expansion Eqs. (4.22) and (4.24) up to order ξ is the same as the expansion Eq. (4.5).

3Note that σy is related to σx through σ2
x + σ2

y = 1.
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4.4.2 Fourth order terms in ξ4

In this subsection, we derive the coefficient a4 in the Landau energy. Here ξ is a scalar order
parameter associated with this phase transition (a2 = 0), and a4ξ

4 is the only form of the
fourth-order invariants in the Landau expansion. Note that q has a ξ2 term. The fourth order
term in each part of the energy is given as follows:

Exchange

J∥

[
ᾱa

2
(1 + σ2

z) sin qca+
σ̄2
x + σ̄2

y + σ̄2
z

2
(1− cos 2qca) + σzσ

′
z(1− cos qca)

]
ξ4 (4.49)

DMI

−D [ᾱaσxσy cos qca+ σ̄xσ̄y sin 2qca] ξ
4 (4.50)

Anisotropy

K

2

(
α2
z + 2Mu,∥βz +

1

2
σ̄2
z + σzσ

′
z

)
ξ4 (4.51)

Zeeman coupling

− (Hx
exβ +Hz

exβz) ξ
4 (4.52)

We sum up them and obtain a4 using 1− cos 2qca = 2 sin2 qca as

a4 = J∥
[(
σ̄2
x + σ̄2

y + σ̄2
z

)
sin2 qca+ σzσ

′
z(1− cos qca)

]
−Dσ̄xσ̄y sin 2qca

− K

2

(
α2 +

σ̄2
x + σ̄2

y

2

)
+

Hz
ex

2Mu,∥

(
α2 + α2

z +
σ̄2
x + σ̄2

y + σ̄2
z

2
+ σzσ

′
z

)
. (4.53)

Parameters σ̄x, σ̄y, and α should be determined through the stationary condition of a4 with
respect to them. The derivative with respect to α leads to

∂a4
∂α

= J∥σz
∂σ′

z

∂α
(1− cos qca)−K +

Hz
ex

Mu,∥

(
α− Mu,⊥

Mu,∥
αz +

σz
2

∂σ′
z

∂α

)
= −

(
K − Hz

ex

M3
u,∥

)
α +

Hz
ex

Mu,∥

Mu,⊥

4M2
u,∥

(
1 +

M2
u,⊥

M2
u,∥
σ2
x

)

−
[
J∥(1− cos qca) +

1

2

Hz
ex

Mu,∥

]
σxσz

M3
u,∥

= 0. (4.54)
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The derivatives with respect to σ̄x and σ̄y are given by
2J∥
M2

u,∥
sin2 qca− K

2 +
Hz

ex

2M3
u,∥

−D sin 2qca

−D sin 2qca 2J∥ sin
2 qca− K

2 +
Hz

ex
2Mu,∥

(σ̄x
σ̄y

)
=

(
yx
yy

)
, (4.55)

yx =

[
−Mu,⊥

4M2
u,∥

(
σ2
x

M2
u,∥

− σ2
y

)(
2J∥ sin

2 qca+
Hz

ex

2Mu,∥

)

+
σxσz

2M3
u,∥

(
J∥(1− cos qca) +

Hz
ex

2Mu,∥

)]
, (4.56)

yy =
σyσz
2Mu,∥

(
J∥2 sin

2 qca+
Hz

ex

2Mu,∥

)
. (4.57)

We can easily obtain α, σ̄x, and σ̄y, and we find a4 on the basis of Eq. (4.53) for a given H⃗ex.
The condition a4 = 0 on the line a2 = 0 leads to the tricritical point, and its value will be
shown in Sect. 4.6.1

4.5 Numerical techniques
Before going further, we briefly explain a few numerical techniques, which will be used in the
numerical results shown in the following sections. For each problem we use a corresponding
appropriate method from what we list here. The equation to solve is a kind of the self-consistent
one and we solve it by an iterative manner with a given boundary condition. First we choose an
initial condition and calculate the effective field from Eq. (4.4). Then we update all of the spin
configuration by Eq. (4.3). We repeat to this procedure until achieving precision we want4.

The boundary condition we use is the periodic boundary condition or the free boundary
condition, which is given, respectively, as follows:{

M⃗l=Nz = M⃗l=0 periodic boundary condition,
M⃗l=Nz = M⃗l=−1 = 0 free boundary condition.

(4.58)

In both cases, there are Nz spins in the system. The boundary conditions are used to calculate
the effective field. In the updating process, we sometimes impose a condition to fix the soliton
position at the site ls. For this condition, we choose two methods. One update fixes the direction
of the in-plane component of M⃗l=ls:

M⃗ls = (−|Heff,xy
ls

|, 0, Heff,z
ls

)/|Heff
ls | with |Heff,xy

ls
| =

√(
Heff,x

ls

)2
+
(
Heff,y

ls

)2
(4.59)

4Our convergence condition is maxl |∆M⃗l| < 5.0× 10−15 with the change of the moment at site l after one
iteration, ∆M⃗l, except for the case of calculating the phase diagram. In this case, the condition is maxl |∆M⃗l| <
1.0× 10−18, and ∆M⃗l is the change after 1000 iterations.
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for Hx
ex > 0, and the other update completely fixes the direction of M⃗l=ls:

M⃗ls = (Mx,∗
ls
, 0,M z,∗

ls
) ≡ M⃗∗

ls with (Mx,∗
ls

)2 + (M z,∗
ls

)2 = 1, (4.60)

where M⃗∗
l is a given vector to fix the direction of the moment at the soliton center. In contrast

to Eq. (4.60), Eq. (4.59) imposes the condition that the x-component is non-positive and does
not fix the direction of the moment. Note that the solutions obtained under these constraints
are not guaranteed to be stable when we do not impose the constraints. In other words, we can
discuss also a solution which is stable in the restricted configuration space but unstable in the
whole configuration space.

We also mention how to choose initial configurations. There are a lot of solutions which
are stable against all the local and small perturbations when it is related to the nucleation-type
phase transition5. The different solutions are characterized by different topological indices,
although such a stability is lost in some region, for example near the instability-type phase
transition. This requires us to compare the energy (or free energy) between solutions with
different topological indices. We define the following quantity with the parametrization M⃗l =
(cosφl sin θl, sinφ sin θl, cos θl):

w =
1

2π

∑
l

(φl+1 − φl) where − π < φl+1 − φl ≤ π, (4.61)

which is a topological index of this system under the periodic boundary condition. We can
easily imagine that the winding number stands for how many times in-plane spins rotate about
the helical axis in the spin space along the chain direction. For the solution with a specified
winding number, we choose the simple state in which spins rotate with a constant angle as
initial states:

M⃗l = (cosφl, sinφl, 0) with φl = 2πwl/Nz. (4.62)

When the field is applied to the perpendicular direction, this single-harmonic state evolves into
a state with its higher harmonics but the winding number does not change. Note that this does
not necessarily hold. For a field particularly in the region of the phase diagram where κa is pure
imaginary, a state with a winding number far from w0 = (2π)−1Nz tan

−1(D/J∥) may change
its winding number to an integer value closer to w0. As another case, consider a state with
w = 1 when the perpendicular component of the magnetic field is not very weak. This state
is well localized in sufficiently large systems, and it is very different from the initial sinusoidal
state depending on the system size. When the difference is extremely large, the sinusoidal state

5These many stable states in this sense do not necessarily lead to the thermodynamic discontinuous phase tran-
sition. In the thermodynamic limit, all physical quantities show continuous changes except at the thermodynamic
discontinuous phase transition. The metastable states with respect to the Hessian with positive eigenvalues can
be distinguished from the thermodynamic metastable states, which is related to the thermodynamic discontinuous
phase transition. Here we call them solutions to distinguish them from the thermodynamic metastable states.
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with winding numberw = 1 does not evolve into a soliton state. In this case, we need to choose
a trial single soliton solution in a different way. One possibility is

φl = π[1 + tanh(l/∆l)], (4.63)

or under the periodic boundary condition

φl = π{2 + tanh(l/∆l) + tanh[(l −Nz + 1)/∆l]}. (4.64)

Here ∆l denotes the width of soliton and is taken as, for example of order 50. This trial state
can be generalized to an initial state with Ns solitons with or without the surface configuration
which contributes to non-integer part of w when it exists. On the other hand, the number of
solitons Ns is the same as the integer part of w.

Once we construct a localized solution at some value of field, then for close values of field
we may adopt this solution as an initial condition, which facilitates calculation. We also use
the initial condition

M⃗l = (Mx
u cosφl,M

x
u sinφl,M

z
u) with φl = 2πwl/Nz, (4.65)

in a large parallel field under the periodic boundary condition. We have adopted M⃗u for the
coefficients as an example.

4.6 Phase diagram
The numerical results in this section are obtained for Nz = 4000 unless explicitly remarked.
Figure 4.3 shows the phase diagram for the set of the realistic parameters of Cr1/3NbS2. The
horizontal axis is the perpendicular field, Hx

ex/Hd, while the left vertical axis is the parallel
field, Hz

ex/Hd. Here Hd = 2[(J2
∥ + D2)1/2 − J∥]. The phase boundaries are represented

with several symbols corresponding to the types of phase transition. In addition, we show
1 − |M⃗ | with the uniform magnetization M⃗ =

∑
l M⃗l/Nz as the limit from the low-field side

to the phase boundary by the symbol of inverted triangles, which helps us to understand where
discontinuous phase transitions occur. The values are indicated on the right vertical axis. The
two solid rhombuses on the phase boundary are the multicritical points. One is the tricritical
point labeled T and the other is the multicritical point labeled M, which are respectively referred
to as TC1 and TC2 in Ref. [86]. Here point TC1 is a tricritical point in the sense that the point
is determined by a2 = 0 and a4 = 0 with the coefficients of ξ2 and ξ4 in the Landau energy.
On the other hand, we call TC2 the multicritical point following the Schaub and Mukamel’s
study[101]. They suggested that the multicritical point at which the nucleation-type phase
transition line and discontinuous phase transition line meet is not a tricritical point, but is of
different nature(, though the difference is not clear in Ref. [101]). Since we could not exclude
this possibility, we do not identify the multicritical point as the tricritical point. We discuss
one possible difference in Sect. 4.6.2.
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Figure 4.3: Phase diagram for realistic parameters: D/J∥ = 0.16 and K/Hd = 5.68. Two
points denoted by “T” and “M” are the tricritical point and the multicritical point, respectively,
and separate the phase boundary into three segments: nucleation-type continuous phase tran-
sition line, the discontinuous phase transition line, and the instability-type continuous phase
transition line denoted by red squares, blue circles, and pink triangles, respectively. The light-
blue solid line labeled “linear analysis” is the crossover line obtained by the linear analysis,
discussed in Sect. 4.3. In addition, we plot a quantity 1 − |M⃗ | defined in the text, which is
denoted by green inverted-triangles and the values are indicated on the right vertical axis.

Figures 4.4(a) and (b) are the magnified images of Fig. 4.3 around these points. The solid
line colored with light blue separates three regions with different character of κa, and this is
determined by the linear analysis in Sect. 4.3.

4.6.1 Tricritical point

First we consider the tricritical point, T (H⃗tri), and the phase boundary of continuous phase tran-
sition (Hx

ex < Hx
tri). Numerically obtained this phase boundary is consistent with the analytical

line based on the instability-type phase transition. Thus we conclude that the phase transition
in this region is the instability-type continuous one which can be described by the Landau
theory of the helical order. The tricritical point appears when the coefficients of the second
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Figure 4.4: Magnified phase diagrams around (a) the tricritical point and (b) the multicritical
point. The open rhombus in the panel (b) is a multicritical point with error bars estimated by
the curve fitting.

and fourth order terms of the order parameter in the Landau energy both become zero, and the
analysis in the last section gives its position (Hx

tri, H
z
tri) = (0.003920828, 0.164476007)J∥ =

(0.1541313188, 6.465703164)Hd. This result is in good agreement with the numerical calcu-
lation as shown in Fig 4.4(a); The quantity 1− |M⃗ | stays zero on the instability-type transition
line and becomes finite on the line being the other side of the tricritical point. The discon-
tinuous transition line near the tricritical point can be described by taking account of the
sixth order term of the Landau expansion but we do not go further. Instead we make a re-
mark on the discontinuity; Figure 4.4(a) shows that it depends linearly on Hx

c − Hx
tri with

the x-component of discontinuous transition field Hx
c . We assume that the coefficient of ξ6

in the Landau expansion a6 > 0, and a4 changes its sign at the tricritical point along the
phase boundary as ā4(Hx

tri − Hx
c )/H

x
tri with ā4 > 0. The discontinuity of ξ2 is given by

−a4/(2a6) = [ā4/(2a6)](H
x
c −Hx

tri)/H
x
tri. The leading order of the total magnetization in ξ is

calculated from the expansion forms (4.22)–(4.24) and M z
c as follows:

M⃗ =
1

Nz

∑
l

M⃗l ≃ (Mx
c , 0,M

z
c ) → |M⃗ | ≈ 1 + (Mu,⊥α +Mu,∥αz)ξ

2,

→ 1− |M⃗ | ≈
M2

u,∥ +M2
u,⊥σ

2
x

4M2
u,∥

ξ2 ≈
M2

u,∥ +M2
u,⊥σ

2
x

4M2
u,∥

ā4
2a6

Hx
c −Hx

tri

Hx
tri

. (4.66)

We thus obtain the linear dependence of 1− |M⃗ |.
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Figure 4.5: Typical spin structures of isolated solitons. In both panels, red squares, green
triangles, and blue circles with lines stand for the in-plane spin amplitude (=

√
(Mx

l )
2 +My

l )
2),

M z
l , and in-plane angle (= tan−1(My

l ,M
x
l )). The left panel (a) shows them for the field in the

repulsive region of the phase diagram, H⃗ex = (0.4, 0.0, 3.0)Hd, while the right panel (b) for
the field in the attractive region H⃗ex = (0.3, 0.0, 5.7)Hd.

4.6.2 Multicritical point

Next we see how we can understand the multicritical point, M. The phase boundary crosses the
crossover line obtained using the linear analysis at M in Fig. 4.3. The crossover line is defined
by the null discriminant, and separates the phase diagram into three regions on the basis of the
types of κa. For a complex κa, the tail of an isolated soliton decays with oscillation. For a real
κa, the tail exponentially decays without oscillation.

We confirm these for each representative in Fig. 4.5. The left (a) and right (b) panels show
the spin structures of the isolated solitons for real and complex κa, respectively. The field
values are shown in the caption. The isolated soliton solutions are obtained with the periodic
boundary condition for sufficiently large systems, and here we set Nz = 2000. We impose
an additional condition for the in-plane angle φl=0 = π to fix the soliton position. In-plane
amplitude in the left panel shows a small dip at the soliton center and increases with distance,
then finally approaches the asymptotic value from above. On the other hand, the right panel
apparently shows that the asymptotic value is approached from below. Precisely speaking, the
amplitude has damped oscillation and hence has local maxima and minima after the obvious
local minimum near ls = 50. Whether an isolated soliton has an oscillating structure or not can
be seen more easily in the in-plane angle. In the left panel, the angle increases monotonically,
while not in the right panel. We show the oscillation structure appearing in the in-plane
amplitude and angle in Fig. 4.6(b). They are shown as the absolute values of the deviation from
the asymptotic values. For comparison, we show those for a real κa in Fig. 4.6(a). For these
spin configurations, then we see the interaction energy of two isolated solitons. To eliminate the
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(a) (b)

Figure 4.6: Deviations of in-plane amplitude (red squares, left axis) and phase (blue circles,
right axis) from the asymptotic values in log scale for (a) realκa and (b) complexκa. Parameters
are the same as in Fig. 4.5.
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Figure 4.7: Interaction energy of two solitons as a function of inter-soliton distance ∆ls, which
is the variable of horizontal axes. Each vertical axis is the two soliton energy measured from
2E1 with the single soliton energy E1, and the unit of the energy is the intra-chain exchange
coupling. The values of the field are the same as those in Fig. 4.5. The detail including the
definition of energy is described in the text.
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system size dependence, we measure the energy of w soliton (winding) state from the energy
of the uniform state with the moment M⃗l = M⃗u:

Ew = E − Euni with Euni = −Nz(J∥|M⃗u|2 + H⃗ex · M⃗u −K(M z
u)

2/2). (4.67)

Then we obtain the interaction energy of two isolated solitons as

Eint(∆ls) = E2(∆ls)− 2E1, (4.68)

which is a function of the distance between the two solitons, ∆ls, and we explicitly show the
argument. We again use the periodic boundary condition and impose the two soliton conditions.
In this case, we set Nz to 500, which is sufficiently large for the interaction potential to decay
well, as seen in Figs. 4.7(a) and (b). The values of the magnetic field for (a) and (b) are
the same as in Figs. 4.5(a) and (b), respectively. Figure 4.7(a) shows that the interaction is
repulsive, namely the energy becomes lower as the inter-soliton distance increases. From
this, we can understand the nucleation-type continuous phase transition through the following
emergent-particle picture: When the field is lower than the value at E1 = 0, adding solitons
into the system lowers the energy owing to negative single soliton energy, which contrasts with
the positive interaction energy. Their competition determines the number of solitons in the
system. The condition can be approximated asE1+Eint(∆ls = Nz/w) = 0 under the periodic
boundary condition, where we can neglect more than two body interactions near the phase
boundary. The negative E1 approaches zero with the increasing field, and finally w = 1 is
achieved and the critical field is given by the conditionE1 = 0. In the thermodynamic limit, the
winding number density defined by w̄ = limNz→∞w/Nz changes from (2π)−1 tan−1D/J∥ to
0 continuously. For a fixed Hz

ex, we explain the diverging behavior of the period at Hx
ex ≲ Hx

c .
First we approximate the single soliton energy and the interaction energy as

E1 = ϵ1(H
x
ex −Hx

c )/Hc, Eint = ϵinte
−κ∆ls . (4.69)

Consider the balance condition of these two energies and obtain a finite inter-soliton distance,
i.e. a period of the soliton lattice for Hx

ex < Hx
c :

∆ls =
1

κ
ln

(
ϵint
ϵ1

Hx
c

Hx
c −Hx

ex

)
. (4.70)

This logarithmic divergence is consistent with the result of chiral sine-Gordon model Eq. (2.99)
in Sect. 2.4.

On the other hand, the right panel is more complex; the interaction potential steeply decays
as well, but with oscillation which comes from the oscillation of each soliton profile. As a
consequence, the interaction energy has local minima, and the global minimum point is around
∆ls = 50. How does this change the above mechanism? Again we consider a field smaller
than the field giving E1 = 0. The inter-soliton distance is determined from the competition
between the negative single soliton energy and the repulsive interaction for close distances. As
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the field increases, the single soliton energy goes to zero from below. When E1 = 0, the total
energy is the same as the condensation energy of multiple solitons, and takes the minimum
at the finite inter-soliton distance. This distance is approximated by the point which gives the
minimum of interaction energy of two solitons, ∆ls,min, depending on H⃗ex: if H⃗ex is close to
H⃗multi, the distance goes to infinity. The total energy takes the minimum for the finite distance,
which means that the periodic structure of multiple solitons is favored rather than the single
soliton state. This is the soliton lattice state. The single soliton energy becomes positive as the
field increases further. This energy competes with the negative interaction energy and gives
an optimal inter-soliton distance. One finds that the field at which the energy of the soliton
lattice becomes the same as for the uniform state. This is the thermodynamic discontinuous
phase transition point. We consider only the two body interaction, i.e., the global minimum
of the interaction potential, to simplify this picture6, and calculate the magnetic field such
that E1 + Eint(∆ls,min) = 0. The line of this magnetic field is shown in Fig. 4.8 with green
rhombuses. In Fig. 4.8, we also show the discontinuous phase transition line (blue circles) and
the nucleation line H⃗c1 (purple inverted-triangles), defined by E1 = 0. The nucleation line
underestimates the phase boundary of the discontinuous phase transition and is in the ordered
state, while it is the phase boundary when the phase transition is the continuous one of the
nucleation-type. In contrast to Hc1, the curves designated with green rhombuses agrees quite
well, and thus the emergent particle picture is effective.

Now we know theoretically that the sign of the interaction between solitons determines
whether the phase transition is continuous one of nucleation-type or discontinuous one. Ac-
cording to the numerical results shown in Fig. 4.4(b), the crossover line obtained by the linear
analysis crosses the phase boundary between the two end points, the blue circle and the red
square, and thus the calculated data are consistent with the linear analysis. The linear analysis

6Interaction potential decays fast and the other local minimum hardly contributes.



78 CHAPTER 4. CHIRAL SOLITONS UNDER TILTED FIELD

parameters values errors parameters values errors
Hx

multi/Hd 0.495396 0.001010 Hz
multi/Hd 3.90238 0.01287

fx 468.162 164.4 fz 215.505 49.76
ex 0.321416 0.04625 ez 0.334825 0.04636

Table 4.1: Fitting parameters.
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Figure 4.9: Curves obtained through the fitting method. The black arrows represent the region
where we use the curve fitting.

is helpful in determining the multicritical point with high accuracy. The multicritical point is a
critical point at which the sign of the soliton interaction changes. Since the phase boundary of
the nucleation-type continuous phase transition is the same as the nucleation line, we can iden-
tify the multicritical point as the crossing point of the nucleation line and the line obtained by the
linear analysis. The nucleation line can be calculated much more easily than the discontinuous
phase transition line. Its value is (Hx

multi, H
z
multi) ≃ (0.49632895, 3.8909051)Hd.

The multicritical point can be evaluated also using the numerical data about the discontin-
uous jump in the winding number, w, at the discontinuous transition. We perform curve fitting
with a function w = fµ[(H

µ
c − Hµ

multi)/J∥]
eµ(µ = x, z) along the phase boundary (Hx

c , H
z
c ),

where fµ, Hµ
multi, and eµ are fitting parameters. Here eµ is a critical exponent of the discon-

tinuity w of the discontinuous phase transition around the multicritical point. We obtain the
fitting parameters, as shown in Table 4.1, and the obtained fitting curve agrees with the raw
data as shown in Fig. 4.9. As seen from both Table 4.1 and Fig. 4.4(b), the point obtained by
the fitting method is consistent with the calculated multicritical point within the error-bars.

The critical behavior of 1 − |M⃗ | near the multicritical point M is not linear. Because
an inter-soliton distance ∆ls is large, we can expect that 1 − |M⃗ | ≈ w|∆M⃗ |, where ∆M⃗ =

N−1
z

∑
l(M⃗u − M⃗l) with a single soliton profile M⃗l.7 The magnetization reduction owing to a

7The expectation can be valid since the inter-soliton distance diverges as M is approached. Even in our
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Figure 4.10: (a)H0 line shown in the whole phase diagram and (b) its magnified image around
the instability-type phase transition. The same symbols are used as in Fig. 4.3 for the phase
boundaries, critical points, and the line obtained by the linear analysis. TheH0 lines are plotted
from the several aspects. Here DP (OP) stands for the disordered (ordered) phase. See the text
for the difference between DP 0, DP 1, and DP 2.

single soliton, ∆M⃗ does not change from that at M, and thus the behavior may be almost the
same as that of w, i.e.,

1− |M⃗ | ∝
∣∣∣∣Hµ

c −Hµ
multi

Hµ
multi

∣∣∣∣eµ for µ = x, z. (4.71)

We remark that the errors in fµ(µ = x, z) are large, and there are two possibilities to improve
this: perform further calculations near M and/or prepare another function to describe the critical
behavior rather than power law. However the critical behavior is different from the linear one,
and in that sense, M is different from T.

4.6.3 H0 line
Finally we discuss H0 lines in the ordered and disordered phases. They are defined as follows:
In the ordered phase, the line is the boundary where the x-components of the most stable state
become non-negative8, i.e., the winding number is zero for H > H0[101]. In the disordered
phase, we define the H0 line by the limit of the metastability of an isolated soliton, i.e., an
isolated soliton no longer exists in the high field side of this line. We remark that the necessary

calculated data, solitons are separated from each other: 120 ≲ ∆ls ≲ 200 are used for the curve fitting, while the
size of a single soliton is about 50.

8for all l, Mx
l ≥ 0
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condition for existence of an isolated soliton is that Re(κa) > 0, and the H0 line marks the
territory of the soliton in the high field side. The low field boundary is qualitatively given by
the crossover line separating the regions of complex κa and pure imaginary κa. However, the
assumption of small amplitude A⃗ is not valid in the ordered phase, and the line determined by
the linear analysis shifts to slightly lower Hx

ex side than the actual one. We call the instability
at this line the inflation instability and will discuss this in Sect. 4.8.3.

The H0 line in the disordered phase was originally considered for skyrmions in a two-
dimensional chiral ferromagnetic system by Leonov et al.[137]. This line gives the upper
bound of the field for possible observation of the remnant solitons. Numerically the H0 line is
obtained by seeking for the field between the highest field at which an isolated soliton can be
constructed and the lowest field at which an isolated soliton can not be constructed; In the latter
case, the initial profile of an isolated soliton goes to the uniform state. We seek for the field
corresponding to H0 using the bisection method. We use the previous isolated soliton solution
as an initial condition in this seeking process.

The instability of an isolated soliton has three origins: (i) The first one is the spin motion
towards the helical axis. The soliton can be unwound via the zero in-plane amplitude state.
The method to seek for the H0 line in this origin is discussed in detail later. (ii) The second
one is that, when the temperature is finite, thermal fluctuations reduce the moment locally,
which unwinds the soliton through vanishing moment at the soliton center. This was originally
discussed for skyrmion unwinding, and the H0 line was introduced for that system[137]. (iii)
The third origin is specific to the lattice model; At sufficiently large field, the width of the
soliton becomes narrow. No matter how narrow the soliton is, it can exist in the continuum
model. In the lattice model, however, an extremely narrow soliton with the width shorter than
the lattice constant is neither stable nor well defined. In the present case of zero temperature
and small D, we will see that the origin (i) is dominant. Thus we study the H0 line from this
viewpoint.

First of all, the whole structure of theH0 line in the phase diagram is shown in Fig. 4.10(a).
The H0 line can be calculated in several ways, though they are consistent with each other.
Figure 4.10(b) shows a magnified figure of the H0 line in the ordered phase. The H0 line in
the ordered phase actually terminates at H⃗c = (0, 0, Hz

c ): the critical field for the z-direction,
although that part is not shown in the figure. There are non-uniform but unwinding states in
the region between the H0 line and the phase boundary. All of the Mx

l ’s are positive in this
region and the winding number is always zero; The in-plane angle is bounded between −π/2
and π/2. This means that the order near the instability-type-phase boundary is the helical state
rather than the soliton lattice state.

Now let us go to the H0 line in the disordered phase, which is labeled “H0-line (DP)” in
Fig. 4.10. In the disordered phase and the outside of the limit of metastability of the ordered
phase, there is no unwinding-helical state, and we consider the instability field of an isolated
soliton, which is theH0 line in the disordered phase. Note that an isolated soliton can exist as a
metastable state in the disordered phase below the H0 line. As we mentioned, there are several
ways to calculate theH0 line in the disordered state. A simple way is to seek the field where an
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Figure 4.11: Energy landscapes for Mx,∗
ls

. The parallel field, Hz
ex is set to (a) 4.5Hd and (b) 0.

isolated soliton disappears by increase of the magnetic field. In this case, for the lattice model,
there are two choices regarding whether the soliton center is on a site or between sites. We call
the former “direct search 1” and the latter “direct search 2”. If the soliton is very narrow, the
latter case is more stable just because one more spin has a negative x-component compared
with the former case. In Fig. 4.10(a), we have labeled the former one “H0-line (DP 1)” and the
latter one “H0-line (DP 2)”, where DP stands for the disordered phase. From the figure, these
two choices are basically the same. The agreement of DP1 and DP2 suggests that the origin of
the instability is related to the out-of-plane motion mentioned above rather than the narrowing
width. The configuration of an isolated soliton has a negative value Mx

l at l = ls, i.e. the
soliton center. The condition for a stable soliton is that its total energy should be minimized
for some value Mx

l < 0 at least locally. Since we have checked that the soliton center position
or not is not important, we let My

l=ls
= 0. Now the problem is the variation of the energy with

respect to one parameter, Mx
l=ls

, as M z
l=ls

is related to Mx
l=ls

by the normalization condition.
In numerical calculations, we repeat iteration with fixing Mx

ls
to a specified value Mx,∗

ls
in

the update of the variables. We call this scheme “variational search”. Let us see examples.
Figure 4.11(a) shows the energy landscape as a function of Mx,∗

l=ls
for Hz

ex/Hd = 4.5, and the
different curves correspond to the different values of Hx

ex/Hd. We find two local minima for
low Hx

ex: one is for positive Mx,∗
ls

and the other for negative Mx,∗
ls

. The local minimum in the
positive side corresponds to the uniform state. This value of Mx,∗

ls
is equivalent to Mx

u and the
energy is actually zero. Note that we measure the energy from that of the uniform state. The
local minimum in the negative side corresponds to an isolated soliton solution. We also find
that at higher Hx

ex the local minimum disappears in the negative side, which means there is
no stable isolated soliton. This disappearance of the local minimum determines the instability
fieldH0: ∂E1/∂M

x,∗
ls

= 0 and ∂2E1/∂(M
x,∗
ls

)2 = 0. TheH0 line thus obtained is referred to as
“H0-line (DP 0)” and it is marked by solid squares in Fig. 4.10(a). This line overlaps with the
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lines obtained by direct searches, and the origin of the soliton instability of an isolated soliton
is confirmed. Namely the increasing field destabilizes a soliton with negative Mx

ls
and changes

it to the uniform state.
Interestingly, when Hz

ex = 0 as shown in Fig. 4.12, the direct search 2 gives pretty high
value of Hx

0 ,9 which is different from its limiting value at Hz
ex = 0. The direct search for

Hz
ex = 0 restricts the spherical spin space to the xy-plane, and the soliton cannot unwind

through pointing the moment to the z-direction at the soliton center. In this case, the increasing
field squeezes the soliton width, which leads to the instability only in the lattice model. The
rather high H0 field is attributed to this mechanism, i.e. in-plane constraint. The lower value
of Hx

0 obtained by the variational search, is also indicated in the energy landscape for Hz
ex = 0

shown in Fig. 4.11(b). The local minimum structure collapses at around Hx
ex/Hd ≃ 4.3,

which is consistent with the limiting value from the finite Hz
ex. For this realistic parameters of

Cr1/3NbS2, this mechanism is dominant for the instability of an isolated soliton.
Let us consider which mechanism is more dominant for which case, since the instability

of the narrow soliton is not forbidden in principle. If the spins are restricted in the plane, the
motion to the out-of-plane is forbidden. This corresponds to the infinitely large anisotropy.
On the other hand, the narrow soliton is only unstable in the lattice model. This means that
the continuum limit (D → 0 or a → 0) never leads to the instability of the narrow soliton.
From this brief consideration, the motion towards the helical axis is dominant instability
for small D or K, while the narrowing width is dominant in the opposite case. Usually the
information about the hard axis anisotropyK does not appear in the uniaxial chiral magnet with
the perpendicular field and can be obtained by measuring the parallel critical field (0, 0, Hz

c ).
However, if the H0 field depends on K, this effect is important for determining anisotropy

9Direct search 1 basically gives the same value of H0, since the soliton center shifts to the middle point of two
neighboring sites, and thus it is equivalent to the direct search 2.
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the direct search. This
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the anisotropy of Cr1/3NbS2.
We set D = 0.16J∥.

in experiment. To check this, we calculate the K dependence of H0 using the variational
search. Note that for Hz

ex = 0, the variational search cannot access to the soliton narrowing
instability, while the direct search cannot examine the instability of the spin z-component. The
obtained result is shown in Fig. 4.13. For D = 0.16J∥, the instability mechanism changes
at around K/Hd ∼ 34, since H0 related to the hard axis motion becomes larger than the
value of narrowing instability. It should be mentioned that the large anisotropy of Cr1/3NbS2 is
K/Hd = 5.68, which leads to ten times larger critical field in the direction parallel to the helical
axis than that in the perpendicular direction. For larger D, the narrowing width instability is
more feasible. YbNi3Al9 is a material with short range helical structure, which is probably
caused by the next nearest exchange interaction in addition to the DMI. It should be interesting
to examine which kind of instability is dominant for the helical structure with such a short
period. The opposite limit is a continuum model such as the chiral sine-Gordon model, in
which the instability of the narrow width of the soliton never occurs. Therefore we expect that
the H0 field obtained by the variational search describes the H0 field of the chiral sine-Gordon
model as well. We study this further in the next subsection.

4.6.4 H0 field : chiral sine-Gordon model

We study the instability field of a soliton in the chiral sine-Gordon model given by

E = J∥S
2a

∫
dz

[
1

2

(
dθ

dz

)2

+
1

2
sin2 θ

(
dφ

dz

)2

−Q0 sin
2 θ

dφ

dz

−m2 sin θ cosφ+
γ2

2
cos2 θ

]
. (4.72)
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Figure 4.14: (a) (m/Q0)
2 dependence of the excitation energies for the anisotropy (γ/Q0)

2 =
5.68. (b) Bound state eigenfunction for (m/Q0)

2 = 0.75.

Here θ and φ are the variables of the moment in polar coordinates. The model is basically
the same as that introduced in Sect. 2.4: Q0 and m2 are the magnitude of the DMI and
the magnetic field and related to the parameters of the lattice model as Q0 = D/(J∥a) and
m2 = Hex/(J∥Sa

2), respectively. The last term describes the hard axis anisotropy along the
helical axis: γ2 = K/(J∥S

2a2). Since the solutions are constructed with modulus κ as shown
in Eq. (2.88) in Sect. 2.4, we can write down a single soliton solution by taking the limit κ→ 1.
Note that am(u, κ → 1) = 2 tan−1(eu) − π/2, and Q0 > 0. Using a constant of integral zs
denoting the soliton center position, we have

φ0(z) = 4 tan−1[em(z−zs)] (4.73)

for M⃗ = S(cosφ, sinφ, 0). We consider a small fluctuation around this solution: θ = π/2+δθ
and φ = φ0 + δφ. Here φ0 = 4 tan−1(emz) with zs = 0 without loss of generality. The energy
functional is expanded up to second order in δθ and δφ as follows:

E ≈ E0 + JS2a

∫
dz

{
1

2

(
dδθ

dz

)2

+
1

2

(
dδφ

dz

)2

−

[
1

2

(
dφ0

dz

)2

−Q0
dφ0

dz

]
δθ2

+
m2

2
cosφ0

(
δφ2 + δθ2

)
+
γ2

2
δθ2
}
, (4.74)

E0 = JS2a

∫
dz

[
1

2

(
dφ0

dz

)2

−Q0
dφ0

dz
−m2 cosφ0

]
. (4.75)
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By taking variations, we obtain the eigenequations for δθ and δφ:

L̂θδθ = ωθδθ, L̂θ = − d2

dz2
−

[(
dφ0

dz

)2

− 2Q0
dφ0

dz
−m2 cosφ0 − γ2

]
, (4.76)

L̂φδφ = ωφδφ, L̂φ = − d2

dz2
+m2 cosφ0. (4.77)

We can rewrite L̂θ = −d2/dz2 −∆(z) with the spatially dependent potential

∆(z) = m2

(
6

cosh2mz
− 1− 4Q0

m coshmz
− γ2

m2

)
. (4.78)

In the following, we calculate the lowest eigenvalue of δθ-mode. Figure 4.14(a) shows that for
low field, δθ-mode has an energy gap, and increasing field closes the gap, which determine
the instability field. One mode is separated from the continuum and the panel (b) shows that
fluctuations of this mode are well localized around the soliton center. As shown in Eq. (4.78),
the anisotropy γ2 plays a role of the energy shift. In this case, it is easy to determine the
instability anisotropy for the fixed magnetic field m. For convenience, let us consider the
potential ∆̃(z) = ∆(z) + γ2 and the eigenenergy ω̃(m) for the operator −d2/dz2 − ∆̃(z).
Since the true eigenenergy is ω = ω̃(m) + γ2, the instability anisotropy which satisfies the
condition ω = 0 is given as a function of m0 = [H0/(J∥Sa

2)]1/2 by

γ20 = −ω̃(m0) ↔ m0 = ω̃−1(γ20). (4.79)

The anisotropy dependence of the instability field is shown in Fig. 4.15 by green inverted-
triangles. We have added the instability fields of the lattice model for D/J∥ = 0.32, 0.16, and
0.08 for references. The instability fields determined by the in-plane constraint are shown by
dashed lines. This instability is unique in lattice models. The panel (a) shows the instability
fields for the smaller region, and the results for different D’s are close to each other. Actually,
while the continuum limit corresponds to the limit of D → 0, its result is quite similar to that
for D = 0.08J∥. The difference between the continuum limit and the lattice model becomes
visible when the result obtained by the variational search becomes as high as that obtained
with the in-plane constraint, as seen in Fig. 4.15(b). For both D/J∥ = 0.32 and 0.16, a
peculiar increasing behavior, i.e. downward convex curve is observed and this may be caused
by unphysical narrow soliton. Here we use the word unphysical because the field is higher
than the H0 determined by the in-plane constraint. For K/Hd < 120, on the other hand, this
increase cannot be seen for D/J∥ = 0.08 because H0 determined by the in-plane constraint is
rather high. In fact, this increase can be seen at around K/Hd ∼ 450.

We conclude that the K-dependence of H0 has monotonic increase with upward convex if
the instability field of the hard axis motion is lower than the narrowing width instability field,
and otherwise,H0 is independent ofK since it is dominated by the narrowing width instability.
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Figure 4.15: Instability field of an isolated soliton using chiral sine-Gordon model (green
inverted-triangles). Red circles are the same as those in Fig. 4.13 with the in-plane instability
field represented by the blue dashed line. For different values of DMI, the instability fields
are shown by the different colors and symbols (see the legends). The left panel (a) is for the
small anisotropy region, while the right panel (b) is for the larger region of the anisotropy,
in which difference between the lattice model and continuum model is visible. Note that the
normalization in the chiral sine-Gordon model is done using Hd = D2/J∥. In the chiral sine-
Gordon model, Hx

ex/Hd and K/Hd are the parameters and there is no explicit D dependence.

4.7 Discussion on temperature effects

We briefly discuss the similarity and the difference in the phase structure between Hx
ex–

Hz
ex and Hx

ex–T phase diagrams[101, 102, 138, 139]. Two phase diagrams share the case of
H⃗ex = (Hx

ex, 0, 0) at T = 0 and let us discuss their similarity by considering the effects of either
T or Hz

ex. The common feature is the softening of the in-plane amplitude
√
(Mx

l )
2 + (My

l )
2:

The presence of the out-of-plane component in the tilted magnetic field is equivalent to the
reduction of in-plane amplitude, and the reduction is also caused by the temperature effect.

We make a few remarks. Using the realistic material parameters of Cr1/3NbS2, the at-
tractively interacting solitons appear in the very small region of the Hx

ex–T phase diagram, so
that it may be impossible to observe an evidence of the thermodynamic discontinuous phase
transition or even oscillation in spin profiles. Moreover temperature in that region is relatively
high, and thus a question whether the thermal fluctuation changes the scenario or not may be
brought about, which remains unclear as it stands[100]. In the tilted field case, the range where
the softening effect can be visible is relatively large. Because it is zero temperature, there might
be a question about the effect of the quantum fluctuation, but Cr1/3NbS2 has the spin length of
3/2. We may expect that the fluctuation effect is not essential. The tilted field configuration
is experimentally promising in that the richness of the phase diagram can be observed in the
wide region without affected by thermal or quantum fluctuations.
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4.8 Surface barrier
In this section, we consider a surface barrier of chiral solitons and compare the results with
hysteresis accompanied by a sharp jump in magneto-resistance observed in experiment for
micrometer-sized samples[103, 104].

4.8.1 Hysteresis in nucleation-type phase transition
In many cases, hysteresis accompanies a thermodynamic discontinuous phase transition, and
originates from the potential barrier of a metastable state towards the equilibrium state. As
was explained in Sect. 4.1, micrometer-sized samples of Cr1/3NbS2 show a clear hysteresis and
a sharp jump at a field called the jump field in magneto-resistance measurements[103, 104].
This jump field in decreasing field is highly reproducible in small samples at low temperatures
and observed in a fairly wide region of the phase diagram. We will show that this region is
consistent with the region where solitons exist rather than the region of the discontinuous phase
transition. This hysteresis is not directly related to the bulk free energy, but to the metastable
dynamics of solitons. Our purpose is to clarify the mechanisms of this hysteresis on the basis
of solitons.

Emergent particles associated with the nucleation-type phase transition sometimes cause
hysteresis[84]. An example is a hysteresis due to the Bean–Livingston barrier of supercon-
ducting vortices[105]. We study the surface barrier of chiral solitons, and obtain a quantitative
agreement with experimental data on the jump field. Our results suggest that a hysteresis is
described by a classical motion of solitons subject to the surface barrier. At the barrier field, the
surface barrier vanishes and solitons start to enter the system. We note that this simple picture
should be modified in large samples by taking account of thermal fluctuations in the bulk and
inhomogeneity at the surface. These effects smear out this type of hysteresis and sharp jumps,
but this is beyond the scope of this thesis.

Before starting with the surface barrier of solitons, we briefly review the Bean–Livingston
barrier in type-II superconductors[105]. In a proper theory of superconductors in magnetic
field, the solution of vortex line near the surface is constructed by imposing the boundary
condition that no current flows perpendicular to the surface, which is equivalent to the presence
of an image vortex with opposite vorticity. Since the vortex-antivortex interaction is attractive,
the vortex is attracted to the surface while the screening current near the surface push it away
from the system. The competition of these two forces creates a local maximum of the free
energy near the surface. This is the surface barrier. The surface barrier prevents vortices from
entering or escaping from the system, which leads to a hysteresis behavior in magnetization
curves [140], even though the bulk thermodynamic phase transition is continuous. This surface
barrier exists for the field ranging from zero to some value of the field, which we call the barrier
field Hb. We might conclude that the vortices enter the system at H = Hb in increasing field,
while they do not escape from the system in decreasing field because the surface barrier exists
down to the zero field. However we have to note that, as discussed by Bean and Livingston,



88 CHAPTER 4. CHIRAL SOLITONS UNDER TILTED FIELD

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-100 -50  0  50  100

energy barrier

local maximum

local minimum
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local defects on the surface assist vortices to enter through the following mechanism. The field
is not completely uniform on the whole surface, and vortices choose the place with higher field
to enter.

We remark that the barrier mechanism is different from that of solitons in chiral magnets
as we will see in the following subsections. In addition, the corresponding field effect is
opposite. Vortices enter the system in the Meissner state above Hc1, while solitons enter chiral
magnets below the transition field Hc. Otherwise, they are similar and the soliton surface
barrier vanishes at a field different from the thermodynamic critical field. In the following, we
first study the spatial profile of the surface barrier of repulsive and attractive chiral solitons in
detail, and second perform a quantitative comparison with experimental data. Finally we study
the surface barrier of skyrmions and discuss the possibility of related jump behaviors.

4.8.2 Surface barrier of chiral soliton

In chiral magnets, we neglect the dipole-dipole interaction and thus we do not have the mag-
netostatic potential. We impose the free boundary condition on spins. Under this boundary
condition, the surface barrier was obtained by Iwasaki et al. for the lattice model[107]. It
is pedagogical to review the barrier field in the chiral sine-Gordon model[141], since we can
construct the same single soliton solution for the semi-infinite system as that in Sect. 4.6.4.
The energy functional is given by

E = J∥S
2a

∫ ∞

0

dz

[
1

2

(
dφ

dz

)2

−Q0
dφ

dz
−m2 cosφ

]
(4.80)

for M⃗ = S(cosφ, sinφ, 0). Note that the integration interval is from 0 to ∞. Its stationary
solution is determined by the sine-Gordon equation, and the single soliton φ0(z) is identical
to Eq. (4.73). The energy can be calculated by evaluating the integration directly, but here we
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measure the energy from the uniform state.

E1 ≡ E + J∥S
2a

∫ ∞

0

dzm2

= J∥S
2a
[
4m(1 + tanhmzs)−Q0

(
2π − 4 tan−1 e−mzs

)]
. (4.81)

The thermodynamic critical field of D-IC transition is given by the field at which the energy
E1 vanishes for zs → ∞, and we get mc = πQ0/4. This is equivalent to Eq. (2.98). The
derivative of the energy with respect to zs reads

dE1

dzs
=

4J∥S
2am

cosh2mzs

(
m− Q0

2
coshmzs

)
. (4.82)

A positive slope of the energy as a function of zs at zs = 0 corresponds to the energy barrier
when a soliton enters the system. We can easily see that

dE1

dzs

∣∣∣∣
zs=0

= 4J∥S
2am

(
m− Q0

2

)
(4.83)

changes the sign at mb = Q0/2, and the corresponding field Hb = m2
bJ∥Sa

2 is the barrier
field. For m < mb, there is no surface barrier when a soliton enters. The ratio of Hb to Hc

is given by (mb/mc)
2 = 4/π2, which is independent of Q0. The relation Hb/Hc ∼ 0.4 was

first found by a numerical calculation for the lattice spin model[142]. Though this shows the
presence of the surface barrier when the soliton enters the system, a question is whether there
is also an energy barrier when the soliton escapes from the system. We find a finite barrier also
for this case. For m > mb the energy has a maximum where dE1/dzs = 0, and the maximum
position is given by

zs,max =
1

m
cosh−1 m

mb

, (4.84)

which is 0 at m = mb and approaches zero again for m → ∞ as m−1 logm, and therefore
zs,max has a finite maximum value. We show in Fig. 4.16 the energy profiles of the isolated
soliton solutions for several values of the magnetic field. We see that when Hx

ex > Hb, there
is a local maximum inside the system and a local minimum outside the system. The local
maximum structure describes the surface barrier, while the local minimum structure is related
to the surface twisted state[107, 143, 144]. We call the modulated profile around the surface the
surface twisted state following Refs. [143, 144]. We show this later through a direct comparison
between the tail of a virtual soliton and the actual surface twisted state. The surface twisted
state and the surface barrier are the two sides of the same physics.

On the other hand, it is difficult to construct the analytic solution with modulated in-plane-
amplitude of spins under the tilted field10. We, hence, adopt a numerical method to construct

10There is the difficulty also in the case of finite temperature which modulates the amplitude of spin in-plane
components.
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Figure 4.17: Energy profiles of an isolated soliton. Several curves correspond to different
values ofHx

ex. We setHz
ex = 0. The purple dashed lines describe the energy profiles calculated

by Method II. They agree quite well with the results of Method I near the surface barrier. Far
from the surface, a spin profile constructed using Method II includes a single soliton and the
surface twisted structure, and thus the energy is lower than the energy obtained using Method I
by the energy of the surface twisted energy, which is the value of the local minimum in Method I.
The energy profiles shown with red and blue colors correspond to the cases of Hx

ex = Hx
c and

Hx
b , respectively. The precise values of the field are 0.2Hd, H

x
b , 0.4Hd, H

x
c , 0.8Hd from the

lowest field, where Hd = 2(
√
J2
∥ +D2 − J∥).

the solution. In this case, we should be careful about the surface modulation. When the soliton
is deeply inside the system, there is a surface twisted modulation, and this is a realistic situation.
Actually there is an interaction between the soliton and the surface modulation depending on its
position. Thus we consider the position dependence of the single soliton energy while noting
contributions from the surface modulation. We describe how to construct a single soliton
solution with its center at the position ls. We use two methods.

Method I For a given field value, we first construct a single soliton solution with its center
at ls = 0 on the lattice of Nz = 2000 using the periodic boundary condition. Let the
obtained spin profiles be M⃗l,1. Then for the soliton with the center at the position ls,
the solution is M⃗l = M⃗l−ls,1 for l ≥ ls and M⃗l = M⃗l−ls+Nz ,1 for 0 ≤ l < ls. Here we
take −100 ≤ ls ≤ 100, and evaluate the energy by summing up in Eq. (4.2) for the sites
0 ≤ l ≤ Nz/2 = 1000, subtracting the energy of the uniform state. Even for ls = 100,
the decays are fast enough in this summation. Note that Nz is sufficiently large and we
reduce the finite size effect by using the periodic boundary condition. The advantage of
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Figure 4.18: Comparison of spin profiles between Method I and Method II for Hx
ex = 0.8Hd.

The left panel (a) shows the x-component, while the right panel (b) does the y-component.
Note that M z

l = 0 since we set Hz
ex = 0. ls = −9 is a point which gives the local minimum of

the soliton energy as shown in Fig. 4.17. The red squares with a line stand for results obtained
using Method II when a the soliton center is fixed at ls = 100. The blue and green lines are the
spin profiles with ls = 100 and −9, respectively, through Method I. The dashed lines describe
the virtual spin structures outside the system.

this method is that we can consider the case of the soliton outside the system, and also
the case of a single soliton for magnetic field lower than the barrier fieldHb. In the latter
case, multiple solitons actually enter the system from the surface because the surface
barrier is absent.

Method II We directly construct an isolated soliton solution using the free boundary condition.
The system in this case has a surface twisted structure for the field H > Hb. We fix the
position of the soliton center at l = ls by imposing the condition that φls = π in updating.
This is basically consistent with Mx

ls
< 0 and My

ls
= 0. This method is more realistic to

consider surface effects, since the surface twisted structure is present and interacts with
the soliton in the system. The disadvantage of this method is basically equivalent to the
advantage of Method I. We cannot consider negative values of ls, and the energy profile
of a single soliton for the field lower than the barrier field.

First we show in Fig. 4.17, the energy profiles. Here we fix Hz
ex = 0, and change Hx

ex.
The solid lines are the results using Method I, while the dashed lines are obtained using
Method II. At Hz

ex = 0, Hx
b ≃ 0.250Hd and Hx

c ≃ 0.616Hd. The solid lines are calculated for
Hx

ex = 0.2Hd, Hx
b , 0.4Hd, Hx

c , and 0.8Hd for both positive and negative ls. The negative ls
describes the situation where the soliton center is outside of the system.

The figure shows that there is a local minimum structure for negative ls, which traps a
soliton easily. In this case, its tail appears in the system (l ≥ 0) and shows a modulated spin
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Figure 4.19: Energy profiles of the single soliton energy (red squares), the interaction energy
(blue circles) of the virtual soliton at l′s with the soliton in the system at (a) ls = 10, (b) 30, and
(c) 50 , and the total energy (green triangles) of these two. We set Hz

ex = 0 and Hx
ex = 0.5Hd.

structure near the surface. This is related to the surface twisted state, proposed before[107,
143–147]. To see this directly, we show the spin profiles determined in both ways in Fig. 4.18
for Hx

ex = 0.8Hd. The left and right panels show the x- and y-components of spin profiles,
respectively. The red squares with lines are the results using Method II when the center is at
ls = 100, while the blue and green lines without symbols are the results for ls = 100 and −9,
respectively, using Method I. Note that solid and dashed lines are used for l ≥ 0 and l < 0,
respectively. The results using Method II show not only the soliton profile around l = 100 but
also the modulated profile around l = 0. They are well separated and described by the results
using Method I as we see in the following. The isolated soliton structures at l = 100 obtained
using Method I and Method II are the same. As shown in Fig. 4.17, the energy has a local
minimum at−9 < ls < −8. The surface modulated structure shown by squares symbols is well
described by considering another soliton with its center at l = −9. Therefore we can consider
the surface modulation as a soliton that virtually exists at l which gives a local minimum of the
energy profile outside the system.

We remark that the energy profile of a single soliton using Method II is possible only for
Hx

ex > Hx
b . This is because Method II allows multiple solitons to enter the system ifHx

ex < Hx
b ,

and hence it is impossible to construct a single soliton solution. For simplicity, we fix Hz
ex and

change Hx
ex; H⃗b = (Hx

b , 0, H
z
ex). Thus Method I is more useful for H⃗ex around H⃗b. Now let us

compare the energy profile using Method I with that using Method II. The energy profiles with
Method II are drawn by purple dashed lines in Fig. 4.17 and the energy profiles with Method I
and Method II are almost the same near the energy barrier. This means that when the soliton is
very near the surface, the surface twisted state is not important. We can infer that the repulsive
interaction energy is larger than the binding energy of the virtual soliton outside the system,
and that is why the surface twisted state is not important in this case. On the other hand when
the soliton is deeply inside the sample, it is well separated from the virtual soliton, and their
repulsive energy is smaller than that by the energy of the virtual soliton. We assume that the
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total energy of these two solitons is given as follows:

E(ls) = min
l′s≤0

[E1(ls) + E1(l
′
s) + Eint(ls − l′s)] ≡ min

l′s≤0
[E1(ls) + E ′(ls, l

′
s)] , (4.85)

where E1(ls) denotes the energy profile obtained by Method I and the interaction energy,
Eint(∆ls), has been introduced in Eq. (4.68) in Sect.4.6. Note that limls→∞E1(ls) = E1, which
is the single soliton energy in the bulk introduced in Sect.4.6 and that limls→−∞E1(ls) = 0
measured fromEuni. The barrier field may be given by the condition that both of the interaction
energy and the energy barrier of E1(ls) vanish, which can be satisfied simultaneously in this
case. As examples, we show E ′(ls, l

′
s) for ls = 10, 30, and 50 in Fig. 4.19 for Hz

ex = 0 and
Hx

ex = 0.5Hd. The square symbols stand for E1(l
′
s) which takes minimum at around l′s ≃ −8.

This is the energy of the surface modulation and corresponds to limls→∞minl′s≤0E
′(ls, l

′
s). The

interaction energy Eint(ls, l
′
s) is shown by circles for three typical values of ls. The sum of

these two energies, E ′(ls, l
′
s), is shown by triangles. The value of l′s which gives the minimum

of E ′(ls, l
′
s) describes the position of the virtual soliton attributed to the surface modulation.

In Fig. 4.19(a), the soliton inside the system is close to the surface, ls = 10. At the minimum
position of E1(l

′
s), l′s ∼ −8, the interaction energy is larger than the absolute value of the

binding energy and thus the virtual soliton is pushed to −∞, which means that the surface
modulation is absent. Figures 4.19(b) and (c) show the appearance of a surface modulation. For
ls = 50, the soliton in the system is well separated from the virtual soliton and the interaction
energy is negligible: E(ls = 50) ≈ E1(ls = 50) + E1(l

′
s = −8). The intermediate stage can

be seen for ls = 30; the virtual soliton is located at l′s ∼ −11 and the interaction is visible.
The surface barrier which the soliton inside the system feels is given by twice the energy of the
surface modulation.

We next study the surface barrier when the soliton interaction is attractive. For the parallel
field, Hz

ex = 4.5Hd, we study the energy profiles for Hx
ex = 0.15Hd, Hx

b , 0.3Hd, Hx
c1, and

0.5Hd. The whole structure of E1(ls)[Fig. 4.20(a)] is quite similar to the repulsive case, while
there is small oscillation [(b) and (c)]. In attractive case, the phase transition is discontinuous.
For convenience, we use Hx

c1 at which the energy of the single soliton in the bulk is zero,
instead of the thermodynamic transition field Hx

c , at which the phase transition occurs. There
is an oscillation structure in the energy profiles associated with the oscillation of the asymptotic
behavior and this leads to tiny local minimum structures, though they are not visible in this scale.
To visualize the local minimum structure, we magnify the profiles near the first local minimum
in Fig. 4.20(b) or (c). We expect that the local minimum structure attracts a metastable isolated
soliton to the surface, which can be an evidence of the attractive interaction. The binding
energy of the local minimum in (c) is approximated as 5× 10−6J∥ per chain. We consider the
ab-plane of 1µm× 1µm, which reads N2d = 4× 106. Noting that J∥/kB ∼ 10K, the binding
energy of the soliton in the three dimensional system is on the order of 200K.

Finally we discuss the surface twisted state for the field larger than the H0 line. The H0

line is defined, here, by the instability point of an isolated soliton in the disordered phase.
Nevertheless there is a surface twisted state, which is interpreted as a virtual soliton outside the
sample as discussed above. An isolated soliton is absent inside the system, but Fig. 4.21 shows
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Figure 4.20: Energy profiles of a soliton when the soliton interaction is attractive. (a) Energy
profiles obtained for Hz

ex = 4.5Hd and typical values of Hx
ex. Here Hx

c1 ≃ 0.448Hd is not the
thermodynamic critical field, but the field at which the single soliton energy vanishes. The
bottom panels are magnified images of Hx

ex = 0.5Hd with (b) periodic and (c) free boundary
conditions. There is a small local minimum also inside the system, in addition to oscillating
structure further inside the system.

that Mx
ls
< 0 at negative ls. We can consider the single soliton solution in which the soliton

center is at ls and the moment at ls is given by (Mx,∗
ls
, 0,M z,∗

ls
),11 and minimize the energy with

respect to ls and Mx
ls
. Note that ls takes only integer values in our case. For example, for the

field H⃗ex = (1.0, 0.0, 4.5)Hd, we obtain ls = −9 and Mx
ls
≃ −0.97639. Actually we see from

11Mz
ls
=
√
1− (Mx

ls
)2.
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Figure 4.21: Energy profiles. Solid lines are the energy as a function of Mx
ls

when the virtual
soliton center is fixed at ls, and squares are the energy minimized with respect to ls for each
Mx,∗

ls
. The global minimum is at around Mx,∗

ls
= −0.978 and ls = −9. The right panel shows

the magnified image around the global minimum.

Figs. 4.22(a) and (b) that the state where the virtual soliton with its center at ls = −9 describes
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Figure 4.22: Spin profiles describing the surface twisted state for the field H⃗ex =
(1.0, 0.0, 4.5)Hd, which is higher than the H0 line. The red squares with line describe the
result obtained through Method II, while the line without symbol is the solution for the condi-
tion that (Mx

ls
,My

ls
) ≃ (−0.97639, 0). The minimization condition gives that ls = −9.
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very well the surface twisted state appearing as a solution to Method II.

4.8.3 Inflation instability and barrier field

Here we discuss the inflation instability mentioned in Sect. 4.6.3. When the magnetic field
changes from the region of complex κa to the pure imaginary region, Re(κa) vanishes, and
thus the soliton size diverges. Therefore this boundary defines the soliton instability but this is
a crossover. However, we remark that this crossover line has been determined using the linear
approximation. In the ordered phase distant from the phase boundary, this approximation is not
justified and it is important to determine more precisely the instability field. This is necessary
also for studying the barrier field in the whole phase diagram. Figure 4.23 shows the energy
profile of the soliton for Hz

ex/Hd = 5.7, and Hx
ex/Hd is decreased from 0.33. The oscillation

becomes clearly visible with decreasing Hx
ex since the decay length related to the soliton size

increases. In contrast to the cases considered in the previous subsections, the instability of
the soliton-size divergence occurs at Hx

ex ≈ 0.207. Below this, an isolated soliton is unstable,
but a periodic structure appears instead. Note that the periodic structure emerges even without
the surface, while in the previous cases it is formed by the entry of many solitons through
the surface. The instability field thus determined is shown in Fig. 4.24 with violet pentagons.
This instability field shifts to slightly higher Hx

ex side from the crossover line given by the
linear analysis, which is marked by the light-blue solid line. The barrier field line, as shown in
Fig. 4.24 with green solid circles is well defined until it reaches the instability field line.

As a consequence, two processes form a periodic structure upon decreasing field: One is
the entry of solitons from surface as a result of the vanishing surface barrier. The other is the
deformation of unstable single soliton owing to the inflation instability.
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Figure 4.24: Barrier field H⃗b in the phase diagram, by green circles. For reference, we also
show the critical field H⃗c1 by small yellow triangles, at which the energy of a single soliton in
the bulk is zero. The inflation instability field is shown with violet pentagons in addition to the
phase boundary, the line based on the linear analysis, and H0 line.

4.8.4 Comparison to experimentally observed hysteresis
Now we have constructed the surface barriers both in the repulsively and attractively inter-
acting soliton regions. Figure 4.24 shows the barrier field line in the phase diagram. The
barrier field appears in the whole phase diagram, and it is similar to the jump field at which
a large jump in the hysteresis loop is observed in experiments for the micrometer-sized sam-
ples as shown in Fig. 4.25(b). The hysteresis observed in experiment for a given field angle,
θH ≡ tan−1(Hz

ex/H
x
ex), is shown in Figs. 4.2(b) and (c) as examples. However for the direct

quantitative comparison, we need to take into account the effects of demagnetizing field, which
reduces the total magnetization or even change the spin configuration. For the saturation field,
we approximate it by using the demagnetization factor Nd, and the effective external field H⃗ex

is given by H⃗ex = H⃗ex − NdM⃗u, where M⃗u is a function of H⃗ex rather than the applied field
H⃗ex. The effect is complicated because H⃗ex is neither parallel to M⃗u, nor to H⃗ex. Therefore the
configuration excluding the demagnetizing field effect is desirable for more quantitative com-
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Figure 4.25: Phase diagram determined by magneto-resistance and magnetic torque measure-
ments taken from Ref. [104]. Critical points suggested in the figure are obtained by referring to
the critical points in Ref. [86]. The left panel (a) mainly shows the line at which the hysteresis
closes, which is considered to be the thermodynamic phase boundary. The right panel (b)
shows the jump field, at which a large jump of the magneto-resistance or magnetic-torque is
observed in decreasing field.

label width thickness length
sample 1 11.25µm 0.7µm 17.5µm
sample 2 8.5µm 0.5µm 21µm
sample 3 10µm 0.5µm 10µm

Table 4.2: Size of different samples. Length is along the helical axis, i.e. z-direction. Sample
3 is the one used in the magneto-resistance measurement shown in Fig. 4.25.

parison. The sample dimensions used in Fig. 4.25 are 10µm× 0.5µm× 10µm(helical axis)
for the magneto-resistance measurement and 13.4µm× 12.0µm× 17.6µm(helical axis) for
the magnetic torque measurement, which is not even a thin film. In the magneto-resistance
measurement the field is tilted toward the helical axis from the normal direction to the plane,
in which the demagnetization effect is maximized. An advantage of the normal direction is
that the resistance curve in increasing field is smoother than that for the in-plane direction.
(Compare 90 degs. and 0 degs. in Fig. 4.2(a).)

For the direct comparison under the tilted field, we use additional magneto-resistance
measurement data using different samples, which is provided by R. Aoki and Y. Togawa[148].
Their sizes are shown in Table 4.2: Among them, the sample 1 was measured in two different
sequences. In one sequence, the measurement was performed for θH = 0 degs. three times.
The other sequence measured five times for each field angle except for θH = 85 degs. In the
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following we compare the barrier field with the jump field H⃗jump in decreasing field. The barrier
field is defined by the field where the surface barrier disappears. We also compare the saturation
field H⃗sat at which the hysteresis closes in increasing field in the experiments[103, 104] with
Hc1 defined as the field where the single soliton energy becomes zero. This field is equivalent
to the thermodynamic critical field of the nucleation-type continuous phase transition, while
it is less than the field of the thermodynamic discontinuous phase transition. However, the
difference from the latter is small, which means that the limit of metastability of the uniform
state is close to the phase boundary, and we use this field for convenience. Comparison was
made in Ref. [141] for the field perpendicular to the helical axis using the theoretical results
(Hb/Hc = 4/π2) calculated for the sine-Gordon model.

Before comparing, we make a few remarks. It is likely that H⃗jump in decreasing field is H⃗b.
Below Hb, a soliton can enter the system without energy barrier at the surface, and actually a
surface barrier can be constructed again after more than one solitons enter the system depending
on the field step. This implies that many solitons enter the system at the barrier field, and this
leads to a large jump observed in experiments. On the other hand, it is ambiguous to identify
the saturation field as either Hc or Hc1, because the saturation process is not clear. Within the
theory of the surface barrier, a soliton feels the energy barrier when it escapes as well, and the
barrier remains up to the instability field. Note that the instability field at Hz

ex = 0 is about 7
times larger than the critical field Hc. We may identify H⃗sat as either H⃗c or H⃗c1 rather than H⃗0

since the saturation field for θH = 0 degs. in the film plane is almost the same as the Hc of the
sufficiently large film, where the large hysteresis is no longer observed. The reason why the
thermodynamic critical field appears only in increasing field is not clear, but it is likely thatHc

or Hc1 agrees with Hsat in increasing and Hb agrees with Hjump in decreasing.

On the basis of these arguments, let us compare experimental data and our calculations.
Figure 4.26(a) shows the Hb and Hjump obtained by calculations and experiments for three
samples, and Fig. 4.26(b) shows Hc1 and Hsat. Concerning the sample 1’, the experiment
was performed three times and the results are marked by three black solid squares at 0 degs.,
although in this scale they overlap with each other. For the sample 1, the field sweep was done
five times for each angle except 85 degs., for which the field sweep was done once with a smaller
field step. Hysteresis loops are shown in Fig. 4.27. It should be noted that the values of the
jump field did not change within the five measurements for 30 and 80 degs. For 60 degs., there
is a two-jump structure at the jump field in the second field-sweep, and the first small jump
takes at the field higher by 50 Oe and the second large jump is at the field lower by 50 Oe than
theHb in the other field-sweeps. For simplicity, we do not show the jump field obtained for the
second field-sweep in the panel (a). Robustness of the jump field with in the five measurements
implies that the mechanism can be explained without including the randomness and stochastic
process.

The calculated values Hb’s and Hc1’s are scaled so that Hc1(θH = 0) = 1.8 kOe. This
value is the thermodynamic critical field obtained in an experiment where the magnetic field is
applied in the plane of the sufficiently large film to eliminate the effects of the demagnetizing
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Figure 4.26: Comparisons between calculation results and experimental results. (a) Hb and
Hjump and (b)Hc1 andHsat. θH is the angle of the tilted field measured from the perpendicular
field direction. The unit of the field is kOe, and we scale the fields obtained by calculation
using the value of the critical field at θH = 0 degs., which is 1.8 kOe. Note that the dashed
lines of the calculations are just for eye-guides. The experimental data are offered by R. Aoki
and Y. Togawa[149].

field12. In the experiment for a sufficiently large film, a large hysteresis is no longer observed.
Note that the anisotropy is evaluated from the parallel critical field in a sufficiently large thin
film. As a result, the scaled value obtained from the numerical calculation describes very
well the parallel saturation field observed in the experiment for the micrometer-sized samples,
though the agreement might be trivial in this case. This is because the saturation field for the
micrometer-sized samples is the same as the thermodynamic critical field for the instability-
type continuous phase transition. The importance is that the scaled value Hc1 at θH = 0 degs.
is in a good agreement with the saturation field for the micrometer-sized samples. With this
fact, we expect that the saturation field for the micrometer-sized samples is equivalent to the
thermodynamic critical field.

In both panels (a) and (b) in Fig. 4.25, Hb and Hc1 are in good agreement with Hjump and
Hsat, respectively, except for the sample 3. For the sample 3, the magnetic field is applied in
the plane spanned by the helical axis and the direction normal to the film. For small θH , the
field is almost perpendicular to the film, leading to a high demagnetizing field, which reduces
the field inside the sample. Therefore, the demagnetizing field enhances the values of Hc1 and
Hb. This causes a deviation of the calculation result from the experimental data.

Then we see more details of the data of the sample 1’, 1 and 2, for which the in-plane
demagnetizing field is extremely suppressed. First we focus on the barrier field shown in

12Precisely speaking the magnetic moment perpendicular to the film feels large demagnetizing field. Hence the
purpose of the experiment for thin films is to minimize the demagnetization factors in the plane.
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Figure 4.27: Raw data of magneto-resistance for sample1 provided by R. Aoki and Y. Togawa.
Horizontal axes are the magnitude of the external magnetic field and vertical axes are the
magneto-resistance. Five times field-sweeps are plotted in each panel except for θ = 85 degs.

Fig. 4.26(a). The barrier field of the sample 1 is remarkably consistent with the calculation
results. The data of the sample 1 is more reliable than the samples 1’ and 2 upon excluding
other extrinsic effects, because the multiple measurements were done, and the obtained value
was confirmed to be reproducible. Though the data of the samples 1’ and 2 are also in good
agreement with the calculation results, extrinsic effects might cause these slightly higher jump
fields. We speculate possible reasons below. In decreasing field, the uniform state is metastable
belowHc1. It survives down to the spinodal point within the mean field picture. When thermal
fluctuation or any perturbation is comparable to the energy barrier of the metastable state,
solitons enter the sample. In addition, there are arguments on superconducting vortices that
the barrier field does not work in increasing field. Note that increasing field in superconductors
corresponds to decreasing field in the chiral soliton case. The reason why the barrier does not
work is the following. The system is not completely uniform and there may be small areas where
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Figure 4.28: Ratios of Hb to Hc1 and
Hjump toHsat as a function of the field
angle θH . The dashed line is for eye
guide.

the magnetic field is concentrated and stronger than the average strength because of defects or
the sample shape such as corners. Because the vortices are the line defects, the locally strong
field allows the vortices to enter the system. On the other hand, the chiral soliton is much larger
object in the sense that the spins align inside the ab-plane. Thus the effects of inhomogeneous
field around the surface is not dominant but cannot be excluded perfectly. These possible
mechanisms increase the jump field and therefore the line obtained by the calculation can give
the lower bound of the barrier field.

Second, we briefly comment on the saturation field. Though the saturation field is also
in good agreement with calculation results, it tends to be lower than the calculated value in
contrast to the jump field. Interestingly the lowered saturation fields at θH = 60 and 80 degs.
are reproducible. Although we do not basically justify identifying Hsat as Hc1, a possible
reason may be as follows: Thin films reduce the in-plane demagnetization factor, and thus
the out-of-plane component feels larger demagnetizing field. The y-component of the helical
order13 tends to be in the plane. This leads to the reduction of the critical field. In the next
subsection we see the effects of an easy axis anisotropy for θH = 0 degs. When it is weak,
it reduces the critical field but does not affect the barrier field very much. We need further
considerations to justify this scenario. We once again emphasize that the fieldsHjump andHsat

for samples 1’, 1, and 2 are in much better agreement with the calculation results than those for
the sample 3, which is achieved by reducing the demagnetizing effect.

Finally we show the ratios Hb/Hc1 and Hjump/Hsat, since the comparison between theory
and experiment is easier. For example, though the jump field and the saturation field become
about ten times larger at θH = 90 degs. than those at θH = 0 degs., the ratios are between
0.4 and 1. Figure 4.28 shows the ratio as a function of the angle of the tilted applied field. A
theoretical expectation is that the ratio is constant for almost all the angle and grows steeply
near the parallel field. The constant value is about 0.4. The experimental data have a similar

13Note that we define the z-axis by the helical axis and the magnetic field is applied in the xz-plane. In this
geometry, the film surface is spanned by x- and z-axes.
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behavior to the theoretical expectation, but the constant value for low θH is higher than 0.4.
This comes from the tendency that the saturation field becomes lower than the calculated value
for the sample 1. In addition, for the samples 1’ and 2, this deviation can also be attributed
to the high Hb’s as we considered. Actually in this scale, the ratio shows scattered values at
θH = 0 degs. among the three measurements. However it is worthwhile to mention that the
ratios for the samples 1 and 2 are closer to the calculated value than those for the sample 3. In
the sample 3, the behavior of the curve is different: The curve is not flat for low θH’s and show
a slow increase between 70 and 85 degs. The demagnetization factor varies in the sample 3 as
θH changes. This is reason that the behavior is different from that obtained by the calculation.

Before going to the skyrmion surface barrier, we make a general remark on hysteresis and
an accompanying sharp jump. Hysteresis is due to metastable dynamics, and is observed when
the transition to the equilibrium state is blocked. This transition requires nucleation processes,
and sometimes a metastable state survives up to the limit of metastability when dynamics is
adiabatic. The origin of the metastability in micrometer-sized Cr1/3NbS2 is related to the fact
that soliton winding number changes only by solitons entering into the system, i.e., they are
not nucleated in the bulk by low energy processes. The existence of the surface barrier is
ubiquitous for the nucleation-type phase transitions, while the sharpness of the jump at the
vanishing surface barrier depends on the individual details. For examples, superconducting
vortices enter the system gradually and the magnetization curve in increasing field is almost
the same as the thermodynamic one[105]. For skyrmions, the barrier never disappears and
this will be discussed in the next subsection. The metastability of these emergent particles
does not persist in bulk samples, because stochastic nucleation processes dominate. After all,
micrometer-sized samples of Cr1/3NbS2 is a suitable playground to confirm the theory of the
surface barrier.

4.8.5 Extension to skyrmion
Now, let us extend these results to another emergent particle in chiral magnets in higher
dimensions, skyrmion[31, 32, 34]. The Bloch skyrmion in a two dimensional system can be
constructed for the following Hamiltonian:

H =
∑
j

{∑
µ=x,y

[
−JS⃗j · S⃗j+µ̂ −D

(
S⃗j × S⃗j+µ̂

)
· e⃗µ
]
−HexS

z
j −

K

2

(
Sz
j

)2}
, (4.86)

where j runs over the sites of the square lattice. The system is two-dimensional in x- and
y-directions. The first and second terms are the exchange interaction and the DMI of nearest
neighbor pairs. The third and fourth terms are the Zeeman coupling with external magnetic
field and a single ion anisotropy. e⃗µ denotes the unit vector of the µ-direction in the spin space,
while µ̂ in the real space. The magnetic field and anisotropy axis are in the z-direction and
we consider the easy-axis case K > 0. In this subsection we also construct a soliton solution
as well as a skyrmion solution, but note that this soliton is different from the one in previous
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Figure 4.29: Easy axis anisotropy de-
pendence of various magnetic field
lines. The critical field and the elon-
gation instability field of the skyrmion
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subsections. For consistency of the notation to the above, we write S⃗j as M⃗j . The effective
field is given by

H⃗eff
j =

∑
µ=x,y

[
J
(
M⃗j+µ̂ + M⃗j−µ̂

)
+D

(
M⃗j+µ̂ − M⃗j−µ̂

)
× (e⃗z × e⃗µ)

]
+
(
Hex +KM z

j

)
e⃗z.

(4.87)

The energy of the uniform state, M⃗u = e⃗z(|M⃗u| = 1), for the periodic boundary condition is
given by

Euni = −N2d

(
2J +Hex +

K

2

)
. (4.88)

Here N2d = NxNy denotes the number of sites of the square lattice, and Nx and Ny are the
number of sites along the x- and y-directions, respectively. An important remark is that the
surface modulation is not “skyrmionic”, but “solitonic”. Here we have used the skyrmionic
or solitonic surface spin structure in the sense that the surface modulation can be described
by the virtual skyrmion or soliton. The solitonic surface spin structure extends in the surface
area in three dimensions or surface edge in two dimensions and thus it lowers the total energy
more than a skyrmion does. Actually we could consider an array of the skyrmionic surface
spin structures along the edge, and in this case, the solitonic surface spin structure has a lower
energy. We will see this later.

There is an instability mode in the low field, which is an elliptic elongation of a skyrmion.
The excitation spectrum of an isolated skyrmion is calculated by Lin et al. for the lattice
system[150], and by Schütte and Garst for a continuum system[151]. Here we adopt the
lattice model and study the instability field as a function of the easy axis anisotropy, which is
shown in Fig. 4.29. The elongation instability field is denoted by He.i. and the critical field
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Figure 4.30: (a) Energy profile for zero easy-axis anisotropy. The purple line with circle is the
energy of the skyrmion constructed by Method II for Hex/Hd = 0.7, and the energy is shifted
by the energy of the surface spin structure, Esf,sol/J . We show the values of the energy density
for surface spin structure forHex/Hd = 0.7, in the left panel. (b) Spin profiles of the skyrmion
with jxs = 0 at the surface (jx = 0). The red squares and the blue circles are the profiles for
Hex/Hd = 0.7 constructed by Method I and Method II, respectively. A characteristic size may
be evaluated as Nsk ∼ 60 and the energy density of the skyrmionic surface spin structure is
given by the energy gain, which is the local minimum outside the system divided by Nsk.

is denoted by Hc. The phase transition between the skyrmion lattice and the uniform state in
two dimensional system is nucleation-type continuous[137], and thusHc is the same asHc1, at
which the single skyrmion energy becomes zero. We also plot 0.7Hc for an eye guide, which
is quite similar to the elongation instability field. The surface barrier is maintained above
the elongation instability field, below which an isolated skyrmion becomes unstable. This is
a structure similar to that in the chiral soliton case; The instability occurs above the barrier
field in decreasing field (see Sect. 4.8.3). We show the energy profiles as a function of the
skyrmion position, which is mainly plotted using Method I (see Sect. 4.8). For comparison,
we also construct an isolated skyrmion under the free boundary condition, which corresponds
to Method II. We remark that the surface spin structure is solitonic and some of the obtained
solutions are artificial, i.e., a condition imposed to fix the skyrmion position plays a role of
a strong pinning and leads to a distortion of the skyrmion structure. Figure 4.30(a) shows
the energy profiles for K = 0. We see from Fig. 4.30(a) that the energy profile for the field
just above He.i. ≃ 0.56Hd still has the energy barrier for the skyrmion entering and escaping
from the system. When the skyrmion escaping from the system, the skyrmion constructed by
Method II feels larger energy slopes. This is because the skyrmion feels the interaction with the
surface modulation in addition to the energy increase of the single skyrmion near the boundary,
which can be seen from the energy profile constructed by Method I. Let us discuss why the
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surface is solitonic. We show the energy densities of the solitonic and skyrmionic surface spin
structures in Fig. 4.30(a). Here the solitonic surface spin structure is uniform along the surface
and the energy density is obtained by dividing the energy of the surface spin structure by the
number of sites along the surface, Ny. On the other hand the skyrmionic surface spin structure
is not uniform. The skyrmionic surface spin structure could be constructed by considering
the virtual skyrmion array outside the system. The period of the virtual skyrmion array is
determined by the competition between the one virtual skyrmion energy which is given by the
local minimum outside the system in Fig. 4.30(a), and the positive interaction energy between
virtual skyrmion. We neglect the interaction energy, and instead estimate the inter-skyrmion
distance along the surface from Fig. 4.30(b), which shows the spin configuration at the surface
(j · x̂ = 0) for the skyrmion of js = (0, 50), and at the closest arrangement of skyrmions,
the number of sites occupied by one skyrmion is about 60. This can be approximated as the
number of sites contributing the energy gain of the surface spin structure by one skyrmion.
Thus the energy density of the skyrmionic surface spin structure can be estimated by dividing
the energy of the local minimum outside the system by Nsk ∼ 60. Note that the energy gain
is overestimated in this way. Nevertheless, by comparing the energy densities of these two
surface spin structures, we see that the solitonic surface spin structure has lower energy.

The interaction between the skyrmion and soliton is complicated and leads to the distortion
of the skyrmion. Figure 4.31 shows the profiles of isolated skyrmions near the surface. The
upper panels show the configurations using Method I, while the lower panels show those
obtained using Method II. The left, middle, and right panels show the configurations obtained
by imposing the condition that M⃗js = −e⃗z at js = (10, 50), (20, 50), and (50, 50), respectively.
Actually in panels (d) and (e), the skyrmions are noticeably distorted. The solitonic surface
spin structure surrounds the skyrmion fairly close to the surface. The distortion from both
sides below and above jy ∼ 50 is more visible in Fig. 4.30(b). The blue circles represent
M z

j=(0,jy) with the condition that js = (0, 50). The surface modulation is formed around jy
ranging from 0 to 20 and from 80 to 100. The interaction distorts the skyrmion and it becomes
narrower compared with that constructed by Method I. This changes the single skyrmion energy
E1,sk and we actually need to take account of this effect. The distortion in the soliton case
should be slight, because it is one dimensional system and two solitons cannot be so close to
each other. The skyrmions in the panels (d) and (e) are elongated because of the interaction
with the surface modulation. We note the difference between them. The x-coordinate of the
elongated skyrmion center jxe,sk in the panel (d) is shifted to the surface, i.e. jxe,sk < 10. On
the other hand in the panel (e), jxe,sk > 20 and this means the center is shifted to the other
direction. Qualitatively, the direction of the force on the skyrmion in the panel (d) is outward,
while in the panel (e) it is inward, which leads the surface barrier. However we repeat that the
quantitative description is more difficult because the deformation and the interaction with the
surface modulation are important when a skyrmion enters and escapes from the system. The
elongation direction suddenly changes depending on the position of the skyrmion imposed in
the calculation, which is reflected in the purple line in Fig. 4.30(a).

For further interest, we study what enters the system instead of a skyrmion by decreasing
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Figure 4.31: Skyrmion profiles near the surface. We set Hex/Hd = 0.7. The configurations in
the upper panels (a)–(c) are obtained by Method I, while those in the lower panels (d)–(f) are
obtained by Method II. js denotes the position of skyrmion which we specify as the condition
to fix it when solving the equation. Colored arrows represent the in-plane components of spins,
i.e., color describes the angle of the in-plane spin φj = tan−1(My

j /M
x
j ), and arrows are the

direction and magnitude of the in-plane spin. Gray-scale contour map represents M z
j .

the field. BelowHe.i., a skyrmion turns into a soliton, by its elongation. Thus it is important to
study whether the surface barrier for the soliton exists or not. Actually when the anisotropy is
zero the barrier field,Hb,sol is 0.4 times the critical field of the soliton,Hc,sol and the elongation
instability field of the skyrmion He.i. is 0.7 times the critical field of the skyrmion, Hc,sk. By
considering that Hc,sol < Hc,sk, Hb,sol exists below He.i. For finite values of the anisotropy, we
summarize these fields in Fig. 4.29: Yellow triangles represent the critical field of the soliton
and green inverted triangles do the barrier field of the soliton. Yellow dashed line stands for
the line of 0.4Hc,sol for an eye-guide. In the presence of the anisotropy, which distorts the
soliton, the barrier field no longer holds the relation Hb ≃ 0.4Hc. For stronger anisotropy the
barrier field goes to zero rather quickly, and for K > Hd the barrier field is almost zero. Now
we see the decreasing process, in which the uniform state remains even for the field below
Hc,sk. We continue to decrease the field down to the barrier field of the soliton for the relatively
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Figure 4.32: Energy profiles of (a) isolated skyrmion and (b) soliton for finite values of easy-
axis anisotropy. The values are designated in the insets. The profiles are based on the solutions
constructed by Method I, and the red and blue lines are the critical field of the nucleation-type
phase transition and the barrier field, respectively. The values of the magnetic field are shown
on the right side of each panel. The purple circles in the panel (b) are the energy profile based
on Method II for Hex = 0.15Hd.

small anisotropy, and the soliton enters the system instead of the skyrmion. For the relatively
large anisotropy, the uniform state holds, and it is reasonable because the easy-axis anisotropy
stabilizes the uniform state.

Interestingly, the energy profiles for the finite anisotropy are different from those we have
seen before. The energy profiles for several values of the magnetic field for skyrmion and
soliton cases are shown in Fig. 4.32 for the finite values of anisotropy. The values of the
anisotropy and the magnetic field are shown in the figure. The left panel (a) is for the skyrmion
and has no barrier field. The slope of the energy at the origin becomes zero for some value of
field, but the surface barrier still exists. When we decrease the field further, the local minimum
appears inside the system in addition to that outside the system. This double-local minima
structure appears also in the soliton case more clearly as seen in the panel (b). The surface
barrier of a soliton vanishes in contrast to that of a skyrmion. Thus we explain the energy
profile of the soliton instead. At some field betweenHc andHb the slope at the origin becomes
zero, and for the lower field, the additional local minimum structure appears inside the system,
which is the same as in the skyrmion case. This structure can be obtained using Method II, as
shown in Fig. 4.32 with purple circles. The deviation between the purple circles and the black
curve originates from the interaction with the surface modulation and the energy gain of the
surface modulation. In this case, the surface modulation is described by the virtual soliton at
the point giving the local minimum outside the system rather than that inside the system. The
virtual barrier, i.e. the presence of the local maximum outside the system, does not allow the
entry of the solitons. Because of this, it is difficult to achieve the local minimum point inside
the system, but we emphasize that it is in principle possible that the soliton is trapped by the
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relatively deep potential well near the surface. Then we lower the field and finally achieve
the barrier field at which the local minimum and maximum inside the system meet for the
anisotropy ranging from 0.4 to 1. Below the barrier field, solitons can enter the system as well
as the previous cases.

In conclusion of this subsection, we summarize the two dimensional system in decreasing
field. The surface barrier always exists for a skyrmion when it is (meta)stable. Below the
instability field, a skyrmion elongates to be a soliton. Note that the surface barrier of a soliton
is still present, and the uniform state is maintained under the metastable dynamics. Thus we do
not expect a sharp jump owing to the entry of many skyrmions in contrast to the soliton case.
In addition, the instability of a skyrmion does not allow the drastic change of the metastable
state either.

4.9 Summary of this chapter
In this chapter, we have investigated the uniaxial chiral magnet under tilted magnetic field.
Laliena et al. obtained the ground state phase diagram, and found two multicritical points and
discontinuous phase transition between two continuous phase transitions[86]. Following de
Gennes’s classification, continuous phase transitions are distinguished as the instability-type
and nucleation-type[84, 101]. We have clarified the mechanism of the phase transitions and
relation to solitons on the basis of the linear analysis. This analysis gives a clear picture of a
single-q to the instability-type phase transition occurring at around Hx

ex ∼ 0. This transition
can be described by the Landau theory of a distorted conical order. Since the Landau theory
can describe the tricritical point, we expand the microscopic energy functional to obtain the
Landau energy using the distorted conical order parameter and calculate the phase boundary
and the location of the tricritical point. They are consistent with the numerical results, and in
this sense our Landau expansion is valid.

When Hz
ex = 0, the phase transition is nucleation-type and also continuous, but solitons

play important roles there[83, 84]. This transition cannot be characterized by a small and local
order parameter with a single q, but the winding number of solitons can be a generalized order
parameter. This nucleation-type continuous phase transition line terminates at the multicritical
point at which the soliton tail changes from a decay without oscillation to that with oscillation.
This is equivalent to the change of the soliton interaction from repulsive to attractive.

We have also clarified the region where an isolated soliton can exist, and name its boundary
in the uniform state theH0 line. This line gives the upper bound of the magnetic field regarding
the experimental condition for observing remnants of solitons. We have found that the main
mechanism of the instability of an isolated soliton is due to the motion of spins towards the
helical axis.

We have studied the surface barriers of repulsive and attractive solitons and calculated the
barrier field Hb at which the surface barrier vanishes. The field Hb agrees with the field at
which magneto-resistance in micrometer-sized samples is experimentally observed to jump.
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We have concluded that the origin of hysteresis in micrometer-sized Cr1/3NbS2 is the surface
barrier of solitons rather than the discontinuous phase transition in the bulk. In addition, we
have constructed the surface configuration[107, 143, 144] on the basis of a virtual soliton
outside the system. This picture holds even when solitons are unstable in the bulk. We have
also study the surface barrier of skyrmions, which have similar structure in the energy profile.
A skyrmion cannot enter the system from the surface and has an elongation instability field,
which drives it into a soliton structure. Below this instability field, a soliton is still metastable
and has a surface barrier and thus the uniform state is maintained in decreasing field. Hence
we cannot expect no sharp jump related to skyrmions. In the presence of the anisotropy along
the magnetic field and perpendicular to the DM vector, the energy profiles of solitons and
skyrmions become more complicated and another local minimum appears inside the system.

We have understood the properties of the bulk-size system and micrometer-sized system
under the tilted magnetic field without thermal fluctuation on the basis of the tilted chiral
solitons.



Chapter 5

Summary and perspective

We have studied effects of magnetic field on a spin model of uniaxial chiral magnets such as
Cr1/3NbS2 by use of analytical and numerical calculations. In this thesis we neglect temperature
effects, but have found rich properties in this system depending on the field direction. We have
clarified the physical properties inherent in the chiral magnets, particularly in non-reciprocal
magnon dynamics in the conical state, ground states phase diagram in terms of soliton and
single-q pictures, and metastable states, and elucidated richness induced by the field component
parallel to the helical axis.

In Chap. 3, we have clarified the spectral structure of non-reciprocal spin waves when
magnetic field is applied parallel to the helical axis. Transverse dynamical spin structure factor
has two branches of peaks, and the intensity of one branch increases while the other’s decreases
with increasing field. The non-reciprocity grows in the spectral intensity although the two
branches of magnon energy are always reciprocal for the field below the saturation strength.
The spectral intensity is related to the eigenvectors of non-reciprocal magnons, in addition to
the eigenenergies.

In Chap. 4, we have studied properties of chiral solitons[83, 84, 101, 138] under tilted
magnetic field and their roles in the phase transitions of classical spins at zero temperature.
Laliena et al.[86, 138] determined the phase diagram consisting of one ordered phase and
one disordered phase in which the spins are polarized by magnetic field, which are separated
by a single phase boundary. Moreover, they showed that two multicritical points separate
the phase boundary into two continuous phase transition lines and one discontinuous phase
transition line in between. This phase diagram has the same structure as that studied by Schaub
and Mukamel[101] by regarding the parallel component Hz

ex as temperature T . We have
performed a linear analysis of small deviation from the uniform spin structure in Sect. 4.3.
This analysis categorizes the phase transitions into three types and reproduces the previous
result of Laliena et al.[86, 138]: instability-type continuous phase transition, nucleation-
type continuous phase transition, and discontinuous phase transition. Following Schaub and
Mukamel[101], we call in this thesis the point separating the discontinuous and nucleation-
type continuous phase transitions the multicritical point, and the other point separating the
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discontinuous and instability-type continuous phase transitions the tricritical point. The linear
analysis is equivalent to studying the asymptotic behavior of an isolated soliton when it exists.
The multicritical point is located in this region and can be understood as the point on the
phase boundary at which the soliton interaction changes its sign as done in T–Hx

ex phase
diagram[101]. The sign change takes place not only on the phase boundary but also away from
it. A single-q distorted conical order with small amplitude is described in the same analysis
when the tail of soliton does not exist. The phase transition between the distorted conical
and disordered phases is no longer described by the soliton picture. In Sect. 4.4, we have
constructed the Landau energy of the distorted conical order including its higher harmonics in
the instability analysis, which is consistent with the linear analysis, and determined the location
of the tricritical point using the standard condition that the coefficients of the second and fourth
order terms in the Landau expansion vanish.

An isolated soliton becomes unstable at the instability field H⃗0, which is higher than the
critical field H⃗c. We have determined its location called theH0 line and clarified the mechanism
of soliton instability for the realistic value of anisotropy for Cr1/3NbS2. It is caused by the
spin motion towards the helical axis. We calculate the instability field by using the variational
approach with respect to the spin at the soliton center. This idea is also useful in constructing
in Sect. 4.8 the surface spin configuration for fields higher than H0.

The surface barrier exists in a wide region of the phase diagram and leads to hysteresis
experimentally observed in micrometer-sized samples. This is not associated with the discon-
tinuous phase transition in the thermodynamic limit. The barrier disappears at field below
the critical field H⃗c. We have calculated this barrier field H⃗b and confirmed that the results
agree quite well with the jump field at which sharp jumps are experimentally observed in
magneto-resistance and magnetic torque in decreasing field. We have also demonstrated that
the surface modulation[107, 143, 144] and the surface barrier come from the same physics
below the instability field H⃗0. Above H⃗0, the surface modulation survives but the barrier has
no meaning since solitons do not exist in the bulk. These arguments are also applicable to
a skyrmion system. In addition, we have found that when solitons interact attractively, their
interaction with the surface is also attractive.

We close this thesis with a few perspectives. One is about confirmation of attractive
soliton interaction as an experimental evidence of the discontinuous phase transition. A direct
identification of the discontinuous phase transition is still difficult because of extrinsic hysteresis
caused by the surface barrier. One possibility to check attractive interaction is a Lorentz TEM
experiment to observe oscillating spin profiles appearing in the soliton tail, or modulated
structures near the surface or the interface of two domains with opposite chiralities[103]. The
oscillation is an indication of attractive interaction between the solitons. In addition, we expect
to observe a cluster formation of solitons and a soliton bound near the surface as a result
of the attractive interaction. The material Cr1/3NbS2 under the tilted field has the following
advantages for this purpose. First, attractive solitons are realized even at zero temperature, and
thus we do not need to consider thermal fluctuation effects on attractive solitons. These effects
are not obvious as explained in Ref. [100]. Second this region is rather wide for realistic values
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of parameters. Therefore, controlling magnetic field at low temperatures is more promising
than controlling perpendicular field around the critical temperature. We remark that a cluster
structure of skyrmions was already observed in the conical phase, which was attributed to
attractive interaction[152, 153].

Another perspective is about resonance of spin wave excitations and localized modulation,
particularly virtual solitons near the surface or the interface of different chiral domains. One may
measure the dynamical spin structure factor to study a chiral soliton lattice, which emerges under
magnetic field perpendicular to the DM vector. Although this field direction does not induce
non-reciprocity, the data of ferromagnetic resonance experiment has several modes, and some of
them have not been identified yet[154]. To discuss them, it should be helpful to understand the
whole structure of the excitation spectrum. In addition, a recent detailed experiment suggests
the presence of another DM vector in the ab-plane[155], which causes non-reciprocity also in
this configuration of magnetic field. We need further careful consideration on the presence of
another DM vector in both theoretical and experimental studies, because the non-reciprocal
propagation due to different mechanism such as the Damon–Eschbach mode[114–117] is also
possible and the effects of the additional DMI on the spin structure are not clear. The resonance
mode of virtual solitons is also an important issue. The modulated spin structures near the
surface and the interface of two domains with different chiralities can be described by virtual
solitons bound in a potential well. Its resonance frequency ω0 is determined by their mass
m and the curvature k at the potential minimum as ω0 =

√
k/m. However it is not simple

how to formulate the mass m and this is a fundamental new issue. Since in experiments some
unidentified resonance modes depend on the system size[155] and the localized modes have
different size-dependence from that of the spin wave modes in the bulk, they may be related to
these localized modes.





Appendix A

Ginzburg–Landau expansion

This appendix summarizes the systematic derivation of a coarse-grained field theory starting
from microscopic Hamiltonians.

A.1 Ising model

We start with the Ising model as the simplest example. The partition function of this model is
written as

Z = Tre−βH =
∑

{Sj}=±1

e−β[−J
∑

⟨i,j⟩ SiSj−Hex
∑

j Sj]

=
∑

{Sj}=±1

e
1
2

∑
i,j JijSiSj+

∑
j HjSj =

∑
{S}

e
1
2
STĴS+HT·S. (A.1)

For the positive symmetric matrixA, we have the following formula about the gaussian integral
with respect to the N component vector x

∫
Dxe−

1
2
xTÂx+xTS ≡

(
N∏
i=1

∫ ∞

−∞

dxi√
2π

)
e−

1
2
xTÂx+xTS =

1

(det Â)1/2
e

1
2
STÂ−1S. (A.2)

Let us regard the interaction matrix Ĵ as the above inverse matrix Â−1, and we have the
interaction term that

e
1
2
STĴS =

∫
Dxe−

1
2
xTĴ−1x+xTS∫

Dxe−
1
2
xTĴ−1x

. (A.3)
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The partition function also can be written down as

Z =
∑
{S}

e
1
2
STĴS+HT·S =

∑
{S}

∫
Dxe−

1
2
xTĴ−1x+(x+H)T·S∫

Dxe−
1
2
xTĴ−1x

(A.4)

=

∫
Dxe−

1
2
xTĴ−1x

∑
{S}

exp[(x+H)T · S]∫
Dxe−

1
2
xTĴ−1x

(A.5)

This kind of transformation is called Hubbard–Stratnovich transformation. Now it is easy
to carry out the summation over spins. The partition function as a functional of Hubbard–
Stratnovich field x is given by

Z =

∫
Dxe−

1
2
xTĴ−1x

∏
j

2 cosh[(xj +Hj)]∫
Dxe−

1
2
xTĴ−1x

=
1

[det Ĵ ]1/2

∫
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1
2
xTĴ−1x+

∑
j ln[2 cosh(xj+Hj)]. (A.6)

This Hubbard–Stratonovich field x is not convenient to describe the magnetization properties.
Instead, it is better to introduce φ such that x = Ĵφ since the mean value of x is different from
the magnetization. Let us rewrite the formula Eq. (A.2) for Â = Ĵ−1 with respect to φ.

det Ĵ

∫
Dφe−

1
2
φTĴφ+φTĴS ≡ det Ĵ
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= [det Ĵ ]1/2e
1
2
STĴS, (A.7)

and the partition function is given by

Z =

∫
Dφe−

1
2
φTĴφ

∑
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The expectation value of φ can be calculated as

⟨φ⟩ = 1

Z
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det Ĵ
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This Hubbard–Stratonovich field may be convenient to be dealt. Finally we take the summation
over S and obtain

Z =
√

det Ĵ
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φTĴφ

∏
j

2 cosh

(∑
l

Jjlφl +Hj

)
≡
√

det Ĵ
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S[φ] =
1
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φTĴφ−

∑
j

ln

[
2 cosh

(∑
l

Jjlφl +Hj

)]
. (A.15)

Upon taking the continuum limit, the lattice variables are replaced by contniuous functio
φl → φ(r), and the action becomes its functional. Note that the higher order correlations of φj

have nontrivial connection to those of Sj . However the long range correlation can be simplify,
for example as follows:

⟨φiφj⟩ = ⟨SiSj⟩ − [J−1]ij ∼ ⟨SiSj⟩ . (A.16)

A.2 Chiral magnet

In this case, each site spin takes an arbitrary point on the 2-sphere S2 S⃗j = (Sx
j , S

y
j , S

z
j ) with

(Sx
j )

2 + (Sy
j )

2 + (Sz
j )

2 = 1, and the Hamiltonian includes the Dzyaloshinskii–Moriya term in
one bond direction, in which we take the z-axis and call it the chiral axis. We introduce J∥
and J⊥ describing the symmetric exchange interaction along bond directions with the DMI and
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without the DMI, respectively.
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where dΩj = d cos θjdϕj/(4π) for S⃗j = (sin θj cosϕj, sin θj sinϕj, cos θj) The matrix J̌ij is a
3× 3 matrix in spin space for the site pair i and j, and it is not necessarily symmetric. Vectors
S and H have 3N components, and Ĵ is a 3N × 3N symmetric matrix. For later convenience,
we introduce symmetric matrix J̌∥ and antisymmetric matrix J̌D such that J̌jj±ẑ = J̌∥ ± J̌D as
well as J̌jj+δ̂ = J̌⊥ for δ̂ = ±x̂,±ŷ. The Hubbard–Stratonivich transformation is performed
in the same way, and we obtain with the molecular field H⃗eff

j [φ] =
∑

l J̌jlφ⃗l + H⃗j that

Z =
√

det Ĵ

∫
Dφe−

1
2
φTĴφTr{S}

{
exp[(Ĵφ+H)T · S]

}
(A.19)

=
√

det Ĵ

∫
Dφe−

1
2
φTĴφ

∏
j

sinh
∣∣∣H⃗eff

j [φ]
∣∣∣∣∣∣H⃗eff

j [φ]
∣∣∣ ≡

√
det Ĵ

∫
Dφe−S[φ], (A.20)

S[φ] =
1

2
φTĴφ−

∑
j

ln

sinh
∣∣∣H⃗eff

j [φ]
∣∣∣∣∣∣H⃗eff

j [φ]
∣∣∣
 . (A.21)

We have the following:

⟨φ⃗j⟩ = ⟨S⃗j⟩ , ⟨φµ
jφ

ν
l ⟩ ∼ ⟨Sµ

j S
ν
l ⟩ for µ, ν ∈ {x, y, z}. (A.22)

Let us check that the stationary condition of the action with respect to φ⃗j leads to the mean
field equation, Take the variation of the action:

δS[φ]

δφ⃗j

=
∑
l

J̌jlφ⃗l −
∑
l

(
coth |H⃗eff

l [φ]| − 1

|H⃗eff
l [φ]|

)
∂|H⃗eff

l [φ]|
∂φ⃗j

(A.23)

=
∑
l

J̌jlφ⃗l −
∑
l

(
coth |H⃗eff

l [φ]| − 1

|H⃗eff
l [φ]|

)∑
ν

∂|H⃗eff
l [φ]|

∂{H⃗eff
l [φ]}ν

∂{H⃗eff
l [φ]}ν

∂φ⃗j

(A.24)

=
∑
l

J̌jl

{
φ⃗l −

(
coth |H⃗eff

l [φ]| − 1

|H⃗eff
l [φ]|

)
H⃗eff

l [φ]

|H⃗eff
l [φ]|

}
= 0 (A.25)

→φ⃗l =

(
coth |H⃗eff

l [φ]| − 1

|H⃗eff
l [φ]|

)
H⃗eff

l [φ]

|H⃗eff
l [φ]|

= f(|H⃗eff
l [φ]|) H⃗

eff
l [φ]

|H⃗eff
l [φ]|

. (A.26)
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This is nothing but the self consistent equation.
Next we try to derive the GL equation. We consider the expansion of the logarithmic term

in the action.

ln
sinhx

x
≃ ln

(
1 +

x2

6
+

x4

120
+ · · ·

)
∼ 1

6

(
x2 − 1

5
x4
)
+O(x6). (A.27)

We neglect the irrelevant terms on the order of O(φ6, H2
ex, φ

3Hex). Note that

|H⃗eff
j |2 = |

∑
l

J̌jlφ⃗l|2 + 2
∑
l

H⃗j · J̌jlφ⃗l + |H⃗j|2. (A.28)

Therefore we obtain the action expanded with respect to small φ and H as

S[φ] =
1

2
φTĴφ− 1

6

∑
j

{
|
∑
l

J̌jlφ⃗l|2 + 2
∑
l

H⃗j · J̌jlφ⃗l −
1

5
|
∑
l

J̌jlφ⃗l|4
}
. (A.29)

We take the Fourier transform of φ⃗j as φ⃗j =
∑

k φ⃗ke
ik·rj , though we use the different definition

with respect to the normalization for the Fourier transform of the interaction matrix:

N−1
∑
i,j

J̌ije
ik·ri−ik′·rj = N−1

∑
i,j

J̌ije
ik+k′

2
·rij+i(k−k′)·Rij =

∑
rij

J̌ije
ik·rijδk,k′ = J̌−kδk,k′ ,

(A.30)

Rij =
ri + rj

2
, rij = ri − rj. (A.31)

We have the relation that J̌∗
k = J̌−k = J̌T

k .1 The explicit form in this case is given by

J̌k =
∑
δ=x,y

J̌⊥2 cos kδa+ J̌∥2 cos kza− J̌D2i sin kza (A.32)

We obtain the action using to φ⃗k as follows:

S[φ] =
N

2

∑
k

φ⃗T
−kJ̌kφ⃗k −

N

6

[∑
k

|J̌kφ⃗k|2 + 2
∑
k

H⃗−k

N
J̌kφ⃗k

−1

5

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0(J̌k1φ⃗k1)
T(J̌k2φ⃗k2)(J̌k3φ⃗k3)

T(J̌k4φ⃗k4)

]
(A.33)

=
N

2

∑
k

φ⃗T
−kJ̌k

(
1− J̌k

3

)
φ⃗k −

N

3
H⃗J̌k=0φ⃗k=0

+
N

30

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0(J̌k1φ⃗k1)
T(J̌k2φ⃗k2)(J̌k3φ⃗k3)

T(J̌k4φ⃗k4). (A.34)

1Note that J̌T
ij = J̌ji



120 APPENDIX A. GINZBURG–LANDAU EXPANSION

Note that H⃗−k = H⃗Nδk,0. The norm means that

(J̌kφ⃗k)
†(J̌kφ⃗k) = (J̌−kφ⃗−k)

T(J̌kφ⃗k). (A.35)

We consider long wave-length modulations and fluctuations, i.e., expand quantities in k. The
first term is reduced as(

J̌k −
J̌2
k

3

)
= J̌k −

1

3

{
4
[
J̌2
⊥(cos kxa+ cos kya)

2

+2J̌⊥J̌∥(cos kxa+ cos kya) cos kza+ J̌2
∥ cos

2 kza
]

−2i
[
J̌⊥(cos kxa+ cos kya) + J̌∥ cos kza

]
J̌D sin kza− J̌2

D sin2 kza
}

(A.36)

=
3T ∗

c

T
(1− T ∗

c

T
)1̌ + 2i(kza)

(
2
T ∗
c

T
− 1

)
J̌D + (k⊥a)

2

(
2
T ∗
c

T
− 1

)
J̌⊥

+

[(
2
T ∗
c

T
− 1

)
J̌∥ + (kza)

2

(
D

T

)2

1̌D

]
,

(A.37)

where T ∗
c = (4J⊥ + 2J∥)/3 and 1̌D = diag(1, 1, 0). We retain the temperature dependence

only for the first term of Eq. (A.37), and for the other terms set T to T ∗
c . Then we reduce the

action to the form

S[φ]/N = −H⃗Tφ⃗k=0 +
1

2

∑
k

{[
3
T − T ∗

c

T ∗
c

+
J⊥
T ∗
c

(k⊥a)
2 +

J∥
T ∗
c

(kza)
2

]
φ⃗T
−kφ⃗k

+
2iD

T ∗
c

(kza)
(
φx
−kφ

y
k − φy

−kφ
x
k

)
+

(
D

T ∗
c

)2

(kza)
2
(
φx
−kφ

x
k + φy

−kφ
y
k

)}
+

27

10

∑
k1,k2,k3,k4

δk1+k2+k3+k4,0φ⃗
T
k1
φ⃗k2φ⃗

T
k3
φ⃗k4 . (A.38)

Let us take the continuum limit. The procedure is as follows:
∑

k → V
∫
dk/(2π)3, and for

φ⃗j = φ⃗(rj), φ⃗k = N−1
∑

j φ⃗je
−ik·rj = V −1

∫
drφ⃗(r)e−ik·r. With N/V = 1/a3, we obtain

S[φ] =

∫
dr

a3

{
−H⃗Tφ⃗(r) +

3

2

T − T ∗
c

T ∗
c

|φ⃗(r)|2 + 27

10
|φ⃗(r)|4

+
J⊥a

2

2T ∗
c

(∣∣∣∣∂φ⃗(r)∂x

∣∣∣∣2 + ∣∣∣∣∂φ⃗(r)∂y

∣∣∣∣2
)

+
J∥a

2

2T ∗
c

∣∣∣∣∂φ⃗(r)∂z

∣∣∣∣2
+
Da

T ∗
c

(
φx(r)

∂φy(r)

∂z
− φy(r)

∂φx(r)

∂z

)
+

(
Da

T ∗
c

)2
(∣∣∣∣∂φx(r)

∂z

∣∣∣∣2 + ∣∣∣∣∂φy(r)

∂z

∣∣∣∣2
)}

.

(A.39)
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We can neglect the last term since the DMI is usually weak compared to symmetric exchange
interactions. When we recover the inverse temperature in the action, and then we have

S[φ] =
1

T

∫
dr

a3

{
−H⃗T

exφ⃗(r) +
3

2
(T − T ∗

c )|φ⃗(r)|2 +
27

10
T ∗
c |φ⃗(r)|4

+
J⊥a

2

2

(∣∣∣∣∂φ⃗(r)∂x

∣∣∣∣2 + ∣∣∣∣∂φ⃗(r)∂y

∣∣∣∣2
)

+
J∥a

2

2

∣∣∣∣∂φ⃗(r)∂z

∣∣∣∣2
+Da

(
φx(r)

∂φy(r)

∂z
− φy(r)

∂φx(r)

∂z

)}
. (A.40)

Here we neglected the O(D2) term. Let us consider the mean field theory again, and study the
critical temperature in the absence of the magnetic field. The fee energy within the stationary
approximation is given by FMF = TS[φMF]. We assume that φ⃗MF(r) = φ(cos qz, sin qz, 0),
which reduces the free energy to

FMF

N
=

3

2
(T − T ∗

c )φ
2 +

27

10
T ∗
c φ

4 +
J∥q

2a2

2
φ2 +Dqaφ2. (A.41)

We minimize this with respect to φ and q. The equations are given by

J∥a
2q +Da = 0 ↔ q = − D

J∥a
, (A.42)

3(T − T ∗
c )φ+

54

5
φ3 + J∥q

2a2φ+ 2Dqaφ = 0 ↔ φ2 =
5

54

(
3T ∗

c +
D2

J∥
− 3T

)
. (A.43)

Therefore we can evaluate that Tc = T ∗
c + D2/3J∥ = (4J⊥ + 2J∥ + D2/J∥)/3. The critical

temperature in the lattice model is given by T lattice
c = (4J⊥ + 2

√
J2
∥ +D2)/3, and this agrees

with Tc within the lowest order inD/J∥. Next we consider the relations of parameters between
the Schaub–Mukamel paper[101] and the lattice model. Let us consider for a while the case
of J⊥ = J∥ ≡ J . Their model is described by the dimensionless quantities. Here we use J
and λ as units of energy and spatial length, respectively. Here we introduce λ to expect that it
corresponds to the length scale in Ref. [101] though the length scale is not explicitly specified
there. We describe the dimensionless version of a quantity o as ō. The free energy density,
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which is defined by FMF[φ] =
∫
drf is given by

f̄ = ā−3

[
− ⃗̄HT

exφ⃗(r) +
3

2
(T̄ − T̄ ∗

c )|φ⃗(r)|2 +
27

10
T̄ ∗
c |φ⃗(r)|4 +

ā2

2

∣∣∣∣∂φ⃗(r̄)∂r̄

∣∣∣∣2
+D̄ā

(
φx(r)

∂φy(r)

∂z̄
− φy(r)

∂φx(r)

∂z̄

)]
= ā−1

[
−
⃗̄HT
ex

ā2
φ⃗(r) +

3

2

T̄ − T̄ ∗
c

ā2
|φ⃗(r)|2 + 27

10

T̄ ∗
c

ā2
|φ⃗(r)|4 + 1

2

∣∣∣∣∂φ⃗(r̄)∂r̄

∣∣∣∣2
+
D̄

ā

(
φx(r)

∂φy(r)

∂z̄
− φy(r)

∂φx(r)

∂z̄

)]
. (A.44)

We have four parameters now to be fixed independently, which are associated with T̄ ,H̄ex, ā,
D̄:

r =
3

2

T̄ − T̄ ∗
c

ā2
, v⃗ =

⃗̄Hex

ā2
, b =

27

10

T̄ ∗
c

ā2
, Q =

D̄

ā
. (A.45)

The values equivalent to those of the Schaub–Mukamel paper are given by

1 = b =
27

10

T̄ ∗
c

ā2
=

9

5

1

ā2
↔ ā =

3√
5
,
1

2
= Q =

D̄

ā
↔ D̄ =

ā

2
=

3

2
√
5
. (A.46)

In this case, the parameters r, v are given by r = 5
18

(
T̄ − 2

3

)
, v⃗ = 5

9
⃗̄Hex.
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