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Chiral magnets are noncentrosymmetric magnets with Dzyaloshinskii–Moriya interaction (DMI). The DMI
stabilizes a helical order with a period determined by the competition with the Heisenberg exchange interaction.
Magnetic field and anisotropy induce higher harmonics of the mode of helical order and localized structures such
as skyrmion and chiral soliton emerge.

In this thesis, we study a spin model of uniaxial chiral magnets representing the material Cr1/3NbS2. In the
absence of magnetic field, the ground state shows a helical order propagating in the direction of the helical axis,
which is set to the z-axis. The main results of this thesis consist of two parts. One is about non-reciprocal spin
waves when the field is applied parallel to the helical axis, and the other is about the classical ground state phase
diagram under tilted magnetic field and the surface barrier, which explains the hysteresis experimentally observed
in micrometer-sized samples. We mainly study the following Hamiltonian on the tetragonal lattice:

H = −
∑
j

[
J∥S⃗j · S⃗j+ẑ +D

(
S⃗j × S⃗j+ẑ

)z

+ H⃗ex · S⃗j −
K

2

(
Sz
j

)2
+

∑
µ=x,y

J⊥S⃗j · S⃗j+µ̂

]
. (1)

The second term is the Dzyaloshinskii–Moriya interaction (DMI) and the third term is the Zeeman coupling with
the external magnetic field H⃗ex = (Hx

ex, 0,H
z
ex).

In Chap. 2, we review several theoretical basics related to this thesis. Chiral magnets show non-trivial and non-
uniform spin structures, such as conical and skyrmion states due to the DMI. Their dynamics is described by the
Landau–Lifshitz–Gilbert equation, used for the numerical calculations in Chap. 3. We then focus on a chiral soliton
lattice emerging in the perpendicular field (H⃗x

ex = (Hx
ex, 0, 0)). It is a periodic structure of discommensurations

called chiral solitons and shows a logarithmic divergence of the inter-soliton distance with increasing field. We
review analytical solutions of the chiral sine-Gordon model[1] and temperature-field (T–Hx

ex) phase diagram



Fig 1: Dynamical spin structure factors, Cxx(yy)(q, ω) (a)–(d) and Czz(q, ω) (e), and the field depen-
dence of the intensity for several values of q (f). D = 0.5J∥ and K = 0.

studied by Schaub and Mukamel[2]. The phase diagram has a single phase boundary consisting of two lines of
continuous phase transitions and a line of discontinuous phase transition in between, and the discontinuous phase
transition was attributed to attractive interaction of solitons. Their analysis will be applied to the tilted-field case
in Chap. 4. We summarize the two types of continuous phase transitions classified by de Gennes[3].

In Chap. 3, we discuss the non-reciprocity in spin waves. This non-reciprocity is known in the uniform state
in non-centrosymmetric ferromagnets. We calculate the dynamical spin structure factor Cµν(q, ω) in the conical
state in the field below the saturation. We find that there are two branches of peaks in its transverse component, and
that the non-reciprocity develops through the asymmetry in their intensity between +q and −q rather than the peak
energies in Figs. 1 (a) and (b). At and above the critical field, the weaker peak disappears and is absent, as shown
in Figs. 1 (c) and (d). We also investigate the case of the exchange antiferromagnetic coupling, which is related
to Ba2CuGe2O7 and α-Cu2V2O7. We also simulate the Landau–Lifshitz equation starting from the configuration
generated by the classical Monte Carlo simulation, and calculate Cµν(q, ω), which agree well with the results of
the spin wave approximation.

In Chap. 4, we study the properties of uniaxial chiral magnets with classical spins in tilted magnetic field
H⃗ex = (Hx

ex, 0,H
z
ex). In the first part of this chapter, we discuss the phase transitions using the soliton and

wave pictures. Laliena et al. determined the ground state phase diagram and found two multicritical points and
discontinuous phase transition between two continuous phase transitions[3, 4]. By regarding the parallel component
Hz

ex as temperature T , the structure of the phase diagram is the same as that studied in Ref. [2]. The phase boundary
is shown in Fig. 2 (a). According to de Gennes’s classification, upper and lower continuous transitions are the
instability type and nucleation type, respectively. The nucleation-type continuous phase transition can be explained
by a condensation of solitons. Following Ref. [2], we perform a linear analysis of small deviation from the uniform
state, and identify three regions separated by the light-blue line. The region labeled “κa: pure imaginary”, does not
have solitons, but a distorted conical order appears. Because there is no coarse grained field theory describing this
order, we derive its Landau energy in a similar way to Ref. [2] but with some technical difference, and determine
its phase boundary and the location of the tricritical point. They are consistent with the numerical results, and
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Fig 2: (a) Ground state phase diagram under the tilted magnetic field. “PT”, “DP”, and “OP” represent
phase transition and disordered phase, and ordered phase, respectively. Phase diagram consists of
two phases: Ordered phase with periodic modulation in the low field side of the phase boundary and
disordered phase (uniformly polarized state) in the high field side. (b) Profile of the attractive interaction
between two solitons as a function of inter-soliton distance. D = 0.16J∥ and K = 5.68Hd with
Hd = 2[(J2

∥ +D2)1/2 − J∥].

in this sense our Landau expansion is valid. In the other two regions labeled “κa: real” and “κa: “complex”,
tails of solitons decays in space without and with oscillations, respectively. The spin profile determine the sign of
soliton interaction. In the tilted-field (Hz

ex–Hx
ex) case, we find that the origin of the discontinuous phase transition

is also the cluster formation due to the attractive interaction and the soliton interaction changes its sign at the
multicritical point, which are the same mechanism as in T–Hx

ex phase diagram[2]. Figure 2(b) shows an example
of the attractive interaction. We actually construct the effective description using solitons on the discontinuous
phase transition line, by considering two competing energy: the nearest neighbor attractive interaction of solitons
Eint ≡ min∆ls(E2 − 2E1) < 0 and the single soliton energy E1 > 0. A line determined by the condition
E1 + Eint = 0, describes very well the true discontinuous phase transition line in the wide range and thus we
demonstrate that the soliton picture is also effective in the attractive soliton region. We also study the instability
of soliton by taking account of the spin structure around its center, and evaluate the instability field line called the
H0 line in this thesis. We find that the instability mechanism is the unwinding of the soliton structure due to the
spin motion toward the helical axis to unwind the soliton structure.

In the second part of Chap. 4, we study a surface barrier of solitons in a semi-infinite system, and find that
when solitons interact attractively, their interaction with the surface is also attractive. We attribute the origin of a
large hysteresis observed in experiments for micrometer-sized Cr1/3NbS2 to the presence of this barrier through
the quantitative comparison between calculation results and experimental data. Note that in the phase diagram the
hysteresis exists in a wider region than the region where the discontinuous phase transition is theoretically predicted.
We calculate two fields related to the hysteresis loop in micrometer-sized Cr1/3NbS2: The barrier field Hb, at
which the surface barrier of entering solitons vanishes, and the nucleation field Hc1, at which the energy of a single
soliton vanishes. Hc1 is equivalent to the thermodynamic critical field Hc for the nucleation-type continuous phase
transition, while slightly lower than the discontinuous phase transition line. In magneto-resistance experiments,
hysteresis closes at the saturation field Hsat, which is almost the same as the thermodynamic transition field, in
increasing field, and in decreasing field, magneto-resistance shows a clear jump at the jump field Hjump, which
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Fig 3: (a) Comparison between the jump field Hjump (experiment) and the barrier field Hb (calculation).
(b) Comparison between the saturation fieldHsat (experiment) and the nucleation fieldHc1 (calculation).
There are large demagnetizing effects in the case of sample 3. Experimental data are obtained by R. Aoki
and Y. Togawa. Theoretical results are obtained by the present author (Y. M.).

is highly reproducible. We compare Hb and Hc1 with Hjump and Hsat, respectively, and find good agreement,
as shown in Fig. 3 except for the sample 3, with large demagnetizing effects. The theory of the surface barrier is
applicable to a skyrmion system, but a sharp jump may not be expected because of its elongation instability.

In summary we have first found the non-reciprocity in the non-uniform state through the spectral intensity. We
have also elucidated the roles and properties of chiral solitons in tilted magnetic field, particularly, the region of
attractive solitons which cause the discontinuous phase transition and the new mechanism for solitons to destabilize
at high fields, and the soliton surface barrier related to the hysteresis in experiments. We have clarified that the
interaction between the attractive soliton and the surface is also attractive. This suggests the possibility to observe
attractive solitons bound near the surface in experiments.
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