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Abstract

In the context of ultra-relativistic heavy-ion collisions, most of the phenomenological ap-
proaches typically assume some initial matter distributions in hydrodynamic simulations. While
hydrodynamic models are successful for the late stages of the collision, at early times of the colli-
sion the quarks and gluons emerge from the microscopic dynamics of quantum chromodynamics
(QCD). On top of the QCD dynamics, during the earliest stages extremely high magnetic fields
of the order of eB ∼ 1018G are expected from peripheral collisions. The existence of such strong
magnetic fields leads to a set of novel effects such as the magnetic catalysis of quark matter
and exotic transport phenomena. Much of discussion in the recent literature is focused on the
exciting possibility to observe the CP-violating effects caused by chiral anomalies: the Chiral
Magnetic/Separation Effect (CME/CSE) and the Chiral Vortical Effect (CVE). Anomalous
processes as well as the axial charge generation play an important role and are indispensable
in understanding the anomalous transport in a quark-gluon plasma (QGP). However the lack
of theoretical prediction on a clear-cut signature for anomalous phenomena has frustrated its
observation in heavy-ion collision experiments.

This thesis represents an attempt to formulate the axial charge dynamics in an expanding
geometry using a simplified setup motivated by the heavy-ion collision. Although most of
preceding works assume constant magnetic fields, the lifetime of the magnetic fields is as short
as QCD time scales. Therefore precise knowledge on the initial conditions for the heavy-
ion collision is required to make a theoretical prediction. This early-time regime with strong
magnetic fields is dominated by the coherent gluon fields which can be described well by the
Color-Glass-Condensate (CGC) framework. In this thesis, the generation of the axial charge
density was studied in systems with the CGC inspired initial conditions for constant background
fields. The effect of finite quark masses was given a special attention and the mass suppression
of the axial charge generation was numerically confirmed, which is quite non-trivial not directly
inferred from the axial Ward identity.
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Chapter 1

Introduction

Behaviour of matter under extreme environments has puzzled us for over half a century, starting

with the conjecture of exotic states of matter at high temperatures and density by Fermi during the

early 50’s. Pomeranchuck in [1] had pointed out that the finite size of hadrons implies a critical den-

sity nc, above which nuclear matter cannot be found in a hadronic state. Hagedorn estimated a critical

temperature Tc for nuclear matter around 200 MeV based on the exponential spectrum of hadron

masses [2]. At the time, much of the understanding of strong-interacting matter was limited to the

parton model which had been confirmed by deep-inelastic scattering processes. It was not until 1973,

when the discoveries of asymptotic freedom [3] and infrared slavery [4] lead to the establishment of

quantum chromodynamics (QCD) as the fundamental theory of strong interactions.

Based on the asymptotic freedom property Collin and Perry in [5] parallely with Cabibo and Parisi

in [6] claimed the transition of hadronic matter to a “soup” of deconfined quarks and gluons at high

temperatures and densities. This form of matter is now known as a quark-gluon plasma (QGP). The

temperatures required to achieve this transition are extremely large comparable to the typical scale of

strong interactions ΛQCD ∼ 0.2 GeV. The ideas of setting up high energy beams as a mean to test this

transition phenomenon started at the 1974 Bear Mountain Workshop but did not materialize until the

80’s with the Alternating Gradient Synchrotron (AGS) fixed target program at Brookhaven National

Laboratory (BNL) and the Super Proton Synchrotron (SPS) at CERN. The AGS was eventually suc-
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4 Chapter. 1 Introduction

ceeded by the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven and the SPS by the most recent

Large Hadron Collider (LHC) at CERN. RHIC and LHC perform experiments to collide nuclei at

center of mass energies
√

s = 200A GeV and
√

s = 5500A GeV respectively. The heavy-ion collision

events at the RHIC and LHC are of typical length and time scales of order of 10 fm and 1 fm/c, and the

produced QGP fireball expands emitting different particles as it cools eventually hadronizing. There

are in fact, various striking similarities between studies of the Big-Bang in the early universe and the

“Little-Bang” in heavy-ion collision experiments, specially in the thermalization processes from the

initial condition with quantum fluctuations prominent examples of this. While the inflation scenario is

the most promising candidate for the initial state of the Big-Bang, the Color-Glass-Condensate (CGC)

formalism represents a counterpart for the initial state of the heavy-ion collision.

Besides high temperature and density in the ultra-relativistic collisions that realizes QGP for-

mation, extremely strong magnetic fields of the order of 1018 G are expected [7] from peripheral

collisions. In other words, strongly interacting matter under magnetic fields must be understood to

answer some questions in QGP physics relevant electromagnetic probes. This leads to a brand-new

field of study combining QCD and QED effects expected to take place in the QGP phase. The strong

magnetic field introduces a unique opportunity to study macroscopic manifestations of the quantum

anomaly and topological structure of the QCD vacuum. One of the most notable examples of this,

is the Chiral Magnetic Effect (CME) [8, 9] which corresponds to a non-dissipative electric current

induced by a strong magnetic field at collisions with finite impact parameter on top of chirally im-

balanced matter sourced in topologically distinct states. A series of new novel topological effects

of increasing interest eventually came along; Chiral Separation Effect (CSE), Chiral Magnetic Wave

(CMW) [10] and Chiral Vortical Effect (CVE) [11]. Possible manifestations of these effects are not

limited to the ultra-relativistic heavy-ion collisions but also at much lower energy scales in condense

matter systems. The observation of a quadratic dependence of the electric conductivity on the mag-

netic field was the smoking gun for the CME in condense matter systems of the Weyl semimetals

[12].
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There has been an active search for signatures of the CME in the heavy-ion collisions. Unfortu-

nately, it is a very subtle issue whether an observable in the heavy-ion collisions is a clear-cut signal or

not. RHIC and LHC measured electric charge separation at early times by looking at charge dependent

azimuthal correlations of produced particles. These results have not been met without controversy and

a resolution on a proper observable requires a deeper understanding from the theoretical side. How

do we distinguish the signal from background and what are the relevant time and magnitude scales of

this effect?. In essence, the CME is the electric current produced in response to an electromagnetic B

field on a chirally imbalanced medium and so these two factors of magnetic field and chirality should

be carefully addressed. Although the transient magnetic field is strong, the lifetime is short, less than

Q−1
sat ∼ 0.2 fm/c for RHIC and Q−1

sat ∼ 0.1 fm/c for the LHC with Qsat being the gluon saturation

momentum, that is in fact much shorter than the thermalization time scale. From the chirality imbal-

ance perspective, precise knowledge on the dynamical evolution of the chiral charge is indispensable.

Anomalous hydrodynamics [11, 13, 14] and chiral kinetic theory [15, 16] stand out as notable ex-

amples of recent theoretical developments in the description of chiral transport; however, these two

approaches must be externally supplemented with the initial condition of the heavy-ion collision. De-

scription of the out-of-equilibrium dynamics right after the collision from first principles is important

and how to reliably specify the initial conditions of the system is an extremely challenging yet imper-

ative task. Fortunately, by means of perturbative techniques a successful framework has already been

developed in the form of an effective field theory of CGC [17, 18]. As the colliding nuclei approach

each other at nearly the speed of light, the high energetic partons within the nucleus start to radiate

softer gluons carrying a smaller and smaller fraction of the longitudinal momentum of the nuclei,

until parton recombination starts to take over and the system reaches parton or gluon saturation. Soft

gluons override and so the nucleus in the CGC regime is described by classical coherent color fields

associated with these soft partons and quarks are subleading effects. Most quarks are produced al-

most immediately after the Little-Bang but for most problems, such as how the system thermalization

time scale estimate and the produced particle multiplicity computation quarks can be safely neglected.
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Quark degrees of freedom introduce chirality onto the system which is a basic ingredient in the

generation of the topological current sourced by the quantum anomaly. Searching for experimental

signatures for chiral transport phenomena provides us with a unique opportunity to see manifesta-

tion of the non-trivial topological QCD vacuum related to the quantum anomaly. Therefore when

searching for experimental signatures of CME or CSE, it is of utmost important to come up with a

quantitative description of quark production. However it was just very recent when the precise quark

field initial condition was resolved in an expanding geometry [19]. With such initial condition at

hand, this thesis provides the first attempt to perform the numerical calculation for the axial charge

dynamics.

This thesis is structured as follows: The first two chapters are devoted to reviews of background

physics; Chapter 2 on the basics of the QCD with an emphasis on the introduction of strong-B induced

phenomena and Chapter 3 focused on discussing the theoretical foundations of the small-x physics

and the CGC initial condition relevant to our problem. Chapters 4 and 5 will be about elucidating

the quark spectrum in the heavy-ion collision setup: Chapter 4 shall explain in all detail the initial

condition employed in this work and Chapter 5 contains the original results of this thesis describing

the axial charge generation and its mass dependence before finalizing with the conclusions.



Chapter 2

Fundamental Aspects of QCD

Quantum Chromodynamics (QCD) has been accepted to be the theory that explains strong inter-

actions. The QCD degrees of freedom are quark fields and gluon gauge fields, which possess color

and charge and, up till now, have not been detected as isolated free particles. It is a non-abelian gauge

theory, whose gauge group is the color group SU(3), although it is convenient sometimes to think in

the number of colors as a variable Nc, and so in that case the gauge group becomes SU(Nc). There are

N2
c −1 = 8 gauge bosons for the theory called gluons, and the matter particles are quarks with spin 1/2

of which we find N f = 6 kinds, or flavors of them. The theory has profound contents to be explored

with external parameters such as the temperature, baryon chemical potential and magnetic field, for

what it is high desirable to study its phase structure. However, this construction, represents one the

most difficult tasks up to date. This purpose of this chapter is to outline some basic concepts of QCD.

The underlying gauge group of the theory is color SU(3) (local color symmetry), the Lagrangian of

Quantum Chromodynamics reads,

LQCD = ψ̄
(
iγµDµ − M

)
ψ −

1
4

Fa
µνF

µν
a , (2.1)

where the quark fields ψ belong to the color SU(3) triplet and the gluon fields Aa
µ to the octet of the

same group. The field-strength tensor and covariant derivative are given by

7



8 Chapter. 2 Fundamental Aspects of QCD

Fa
µν = ∂µAa

ν − ∂νA
a
µ + g fabcAb

µAc
ν

(Dµ)cc′ = δcc′∂µ − ig
1
2

(λa)cc′Aa
µ .

(2.2)

It should be noted there is only one coupling constant between quarks and gluons, and that the gluon

field can self interact, this self interaction is the main source of asymptotic freedom. Here the indices

µ, ν = 0, ..., 3 refer to Lorentz vector labels; the labels a, b, c = 1, ..., 8 belong to the adjoint repre-

sentation of color SU(3) and c, c′ = 1, ..., 3 in context are color labels belonging to the fundamental

representation of color SU(3) group. In (2.1) M is a matrix color independent which can always be

brought to its diagonal form through flavor-mixing transformations, so that the fermion mass contri-

bution to LQCD may be written as

Lmass =

Nc∑
α=1

N f∑
f =1

m f ψ̄
f
αψ

f
α . (2.3)

The Lagrangian (2.1) is invariant under color SU(3) gauge transformations U(x) = exp(−iθa(x)λa)

that is, ψ(x) → U(x)ψ, gAµ(x) → U(x)(gAµ(x) − i∂µ)U†(x). This gauge invariance rules out terms

like Aa
µAµ

a and as a result the gluons are massless. On the other hand gauge symmetry does not

restrict the quark’s mass in any way and they are indeed finite. Within the standard model the quarks

mass is described by Yukawa coupling, yet the wide rande of masses among different flavours is not

understood.

QCD is a renormalizable quantum field theory, and as such, its coupling constant αs(Q2) is a

function of the energy scale, the coupling constant of strong interactions (as it can be seen already at

a one-loop order calculation)

αs(Q2) ≡
g2(Q2)

4π
=

4π

(11 − 2
3 N f )ln

(
Q2

Λ2
QCD

) ,
goes to zero as energy goes to infinity, or in other words, at short distances the coupling between

quarks and gluons becomes small therefore the perturbative treatment developed for quantum elec-
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FIG. 2.1: Experimental data contrasted with theoretical prediction of the coupling in constant in QCD,

asymptotic freedom. Figure taken from Ref. [3]

trodynamics can be extended to QCD at energies above the QCD energy scale ΛQCD ' 200 MeV,

behavior is known as asymptotic freedom [20]. On the other hand, at low energies, i.e. at low mo-

mentum transfers Q2, or equivalently at great distances, the coupling constant αs(Q2) grows to the

point that perturbative techniques are no longer valid. And so despite of having a Lagrangian in

which all the dynamics of the system is contained, it is not possible to obtain information of many

physical processes of interest, like properties of hadrons at low energies and their interactions or the

behavior of hadronic matter at high densities. By means non-perturbative frameworks that lead to a

deeper understanding of the complicated vacuum structure of QCD and infrared phenomena in QCD.

A remarkable example of this is the dynamical breaking of chiral symmetry, mechanism responsible

for the mass generation of all visible matter. In order to discuss these subjects, a brief review of QCD

symmetries is presented in the following section.
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2.1 QCD Symmetries and Their Realization

The QCD Lagrangian is quite rich in symmetries. Besides having SU(Nc) local gauge symmetry and

Lorentz invariance as exact symmetries in its core, the QCD Lagrangian also has discrete and approx-

imate symmetries such as isospin symmetry and chiral symmetry which are certainly quite relevant at

the moment of studying hadron phenomena. Among the discrete symmetries there is time-reversal T ,

charge conjugation C and parity P , however the behavior of QCD at quantum level unravels a much

more complicated scenario under CP-transformations, the strong CP-problem. Also, as it shall be

discussed to some brief extent, some symmetries that are gained in the massless limit like dilatation

and axial are broken at the quantum level, referred as anomalies.

We may conveniently separate LQCD for our purposes, with diagonal quark mass matrix in flavor

space emphasizing on the lighter quarks up and down and calling Lscbt to the part of the Lagrangian

associated with the heavier quarks, LQCD = Lud + Lscbt, where

Lud = q̄iγµDµq − (muūu + mdd̄d) +
1
4

Fa
µνF

µν
a , q =

 u

d

 . (2.4)

Leaving out the heavy sector, we find that the Lagrangian is invariant under separate global phase

for both up and down quarks. The conservation law associated with this invariance is that of baryon

number. When mu−md is small compared to the hadronic mass scale then the bilinear present in (2.4)

is now invariant under transformations Uψ→ ψ where U can be some unitary 2×2 matrix in flavor or

Dirac space or a combination of matrices in both spaces. Unitary transformations U(1)V and SU(2)V

are well known symmetries that result on baryonic and isospin conservation, respectively.

The symmetry grows larger when we neglect the up and down quark mass. To see these more explicit,

let us write Lud projecting ψ into left and right components, i.e. ψL/R = 1
2 (1 ± γ5)ψ the quark sector

then reads,

Lud = ψ̄LiγµDµψL + ψ̄RiγµDµψR , (2.5)

where we can see how the vanishing of the mass term implies no crossing term between left and
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right quark fields. Consequently, left and right rotations leave the Lagrangian invariant, and thus the

symmetry group is upgraded to

G = SUL(2) ⊗ SUR(2) . (2.6)

The symmetries of and their manifestation in nature are shown in table (2.1). The corresponding

currents of Lud are given by

∂µJ j
µ = iψ̄[m, λ j]ψ

∂µJ j
µ5 = iψ̄{m, λ j}γ5ψ

∂µJ0
µ5 =

√
2

N f

(
iψ̄mγ5ψ − 2N f

g2

32π2 Fa
µνF̃

µν
a

)
,

(2.7)

where Fa
µν = 1

2εµνλρF
λρ
a corresponds to the dual field strength tensor. The spontaneous breaking of the

global SU(2) symmetry, in this limit an exact, to SUV(2) is identified with pion triplet (π−, π0, π+).

Here we can also see how even in the massless limit the axial charge does not vanishing but from an

extra contribution coming from the quantum effect referred as axial anomaly. This extra term comes

from an extra contribution from the path integral measure which is not invariant under UA(1) axial

rotations. The spontaneous breaking of this symmetry predics yet another Goldstone boson, the η′

meson. As it turns out, the experimental data revealed that the mass for the η′ meson is too large mη′ ∼

975 MeV, far exceeding the upper bound ∼
√

3mπ to be regarded as a NG boson. This inconsistency

implies that there might be a dynamical mechanism that gives the η′ its large mass. It was not until

in Ref. [21] when t’Hooft revisited the U(1) problem considering the instanton configurations that a

resolution was found. To this end let us briefly discuss the QCD θ-vacuum.

2.1.1 Spontaneous Breaking of Chiral Symmetry

The QCD chiral symmetry group governs the dynamics of the light sector, as quarks the actions

remains invariant under URUR transformations, equivalently this symmetry group may be expressed

as UVUA. As opposed to vector rotations, axial rotations mix states with different parities, if this

symmetry was an exact one then there would be parity degeneracy of states with otherwise the same
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Symmetry Transformation Currents Name Manifestation

S UV(2) ψ→ e−iτ·ω/2ψ Jk
µ = ψ̄γµτ

kψ isospin approx. conserved

UV(1) ψ→ e−iαψ jµ = ψ̄γµψ baryonic always conserved

S UA(2) ψ→ e−iτ·θγ5/2ψ Jk
5µ = ψ̄γµγ5τ

kψ chiral CSB; Goldstone mode

UA(1) ψ→ e−iβγ5/2ψ j5µ = ψ̄γµγ5ψ axial ’t Hooft interaction

Table 2.1: Symmetries and their transformation properties associated conserved currents and mani-

festation in nature for two flavors

quantum numbers. However, as briefly mentioned above, this is not the case and so the observed

splittings are large, e.g. the splitting of the vector ρ meson and axial a1 mesons around ∼ 400 MeV.

Let us start by from the Euclidean QCD partition function, for the purposes of our discussion

gauge fixing is not relevant and so absorb the contribution from the Fadeev-Popov ghosts {c̄a(x), ca(x)}

to Z into the gauge sector. We do this by the denoting [DA] for the gauge measure and S̃ g,A

ZQCD =

∫
[DA]D ψ̄Dψ exp

−S̃ g,A +

N f∑
f

∫
d4xEψ

†

f (i /D + im f )ψ f


=

∫
[DA]e−S̃ g,A

N f∏
f

det(i /D + im f ) ,

(2.8)

the covariant derivative in the Dirac operator is expressed in the semiclassical (WKB) approximation

i /D = γµ(∂+ Aclµ + aµ) where the second term corresponds to the classical solution (instanton) subject

of the following section and aµ representing the quantum fluctuations around this solution. With the

partition function at hand we can now define correlation functions, of particular interest is the chiral

condensate, which for a given flavour is defined as,

〈ψ̄ fψ f 〉 = − lim
m f→0

∂ log Z
∂m f

, (2.9)
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without lose of generality we limit the discussion to a single flavor N f = 1, we proceed integrate the

gauge sector out of the functional which means taking the average of the gauge field configurations,

i.e. Z = det(i /D + im). The Dirac operator is not hermititian due to the presence of the im term

in the determinant but it is nevertheless real. We can rewrite Z in terms of the eigenvalues λn and

eigenvectors Ψn of the massless Dirac operator, if there λn is finite then there exists Ψn′ = γ5Ψn whose

eigenvalue is −λn. The determinant can thus be rewritten as,

det(i /D + im) = exp

1
2

∑
n

log(λn + m2)

 = exp
[
1
2

∫
R

dλ ξ(λ)(λ2 + m2)
]
, (2.10)

in the last part of the equality we have introduced a spectral density function ξ(λ) =
∑

n δ(λ − λn).

The resulting expression is real and even with respect to the fermion mass, manifestation of the chiral

invariance. The chiral condensate follows then from the fermion determinant.

〈ψ̄ψ〉 = − lim
m f→0

1
V

∂

∂m

[
1
2

∫
R

dλ ξ(λ) log(λ2 + m2)
]

= − lim
m f→0

1
V

[
1
2

∫
R

dλ ξ(λ)
m2

λ2 + m2

]
, (2.11)

where the overline bar denotes average of field configurations. From this expression one may be

tempted to think that the condensate vanishes at the zero mass limit, such reasoning would certainly

justified for the finite volume system. However, it turns out that in the thermodynamic limit the

volume goes to infinity faster than the mass goes to zero, and so the integrand is instead given by

πsign(m)δ(λ). This translate into the quark condensate,

〈ψ̄ψ〉 = −
1
V

sign(m)ξ(0) , (2.12)

in other words, only the zero modes of the Dirac operator are relevant to the chiral condensate. The

sign function appearing in the expression above denotes the non-analyticity of the QCD partition

function with respect to the mass. The partition function is also even in m reflecting the invariance of

the action under axial transformations and non-analyticity on the symmetry breaking mass parameter

is a typical situation where the symmetry is spontaneously broken.
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2.1.2 Explicit Breaking of UA(1) Symmetry

The non-conservation of the axial current comes from an extra contribution from the path integral

measure which is not invariant under UA(1) axial rotations. As briefly mentioned on the previous

section, the spontaneous breaking of the UA(1) symmetry predicts yet another Goldstone boson, the

η′ meson. The experimental data revealed that the mass for the η′ meson is too large mη′ ∼ 975

MeV, far exceeding the upper bound ∼
√

3mπ to be regarded as a NG boson [22]. Such inconsistency

implies that there must be some dynamical mechanism that gives the η′ its large mass. It was not

until when the U(1) problem was reconsidered by taking into account instanton configurations that

this long standing problem was solved [23]. Let us first briefly review the spontaneous breaking of

UA(1) symmetry.

The classical action is invariant under local axial transformations ψ′ = e−iβ(x)γ5/2ψ at the zero masses

limit, this symmetry is manifested as the conservation of the axial current manifests as the Noether’s

theorem implies. However, as previously explained, the quantum dynamics lead to non-conservation,

more precisely the very invariance of the quantum action against local axial transformations implies

a non-vanishing anomalous divergence. The chiral anomaly has been derived in various different

contexts, here let us sketch its path integral derivation first introduced by Fujikawa [24, 25]. The

generating functional for this system is

Z =

∫
D ψ̄′Dψ′ det

[
e2iγ5β

]
e−S (ψ̄′,ψ′) exp

[∫
d4x β(x)∂µJ5µ

]
=

∫
D ψ̄Dψ e−S (ψ̄,ψ) exp

[
2i Tr(γ5β) −

∫
d4x β(x)∂µJ5µ

]
,

(2.13)

where Jµ5 denotes the axial vector current. As this is a mere change of coordinates Z should remain

unchanged, we can explicitly see this by expanding the exponential term which leads us to the Ward-

Takashi (WT) identity,

∫
D ψ̄Dψ e−S (ψ̄,ψ)

[
−2i Tr(γ5β) +

∫
d4x β(x)∂µJ5µ

]
= 0 . (2.14)
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Naively one may expect that being the trace of γ5 above is vanishes, however, this operator does

not only trace over spin space but also over the infinite dimensional space of eigenmodes which

requires careful treatment. Expanding in terms of the eigenfunctions the trace can be understood as

an alternating sum of the eigenvalues of γ5 implying that the result is sensitive to the way in which

the sum is performed. Gauge invariance tells us that this quantity must not diverge, hence a regulator

a Gaussian regulator is introduced. In this way, one arrives to tr(γ5β) = 1
8π2

∫
S 4 β tr F2. Hence the

effective action is not invariant. It is quite interesting that one arrives to the exact same result when

looking at the index theorem for the Dirac operator or studying fermions on top of an instanton

background, spelling out an intimate relation to topology.

Indeed diving deeper into the relation between the quantum anomaly and the topology, it is perhaps

illuminating to look at the properties of the Dirac operator itself. The spinors on a manifold M may

be decomposed by chirality ψ = P+ψ + P−ψ = φ+ + φ− with the chirality projector P± = 1
2 (1 ± γ5)

allowing us to define two vector bundles for the normalizable spinors modes associated with chirality

± on M as S ±. We may also rearrange the Dirac operator in a similar way /D = D − D† where

D = /DP+ which in turn implies that D† = − /DP−. The γµ matrix has the effect to change chirality and

in fact they provide a one to one map between the chirality spaces. On the other hand, with D one

may construct the Laplacian operator ∆+ = D†D and ∆− = DD† which do not, in other words,

C∞(S +)∆+

D
−−−→←−−−

D†
C∞(S −) ∆− (2.15)

These operators are elliptic, and since the manifold M is compact, the spectrum of ∆± is discrete and

the degeneracy of each eigenvalue is finite. Therefore the Laplacians have a well-defined eigenvalue

problem, this is very helpful since we cannot define the eigenmodes for D and D† because as shown

in (2.15) they connect different spaces, but the Laplacians defined by them don’t. So by looking at

the eigenvalue problem ∆+ϕ+λ = λϕ+λ with Dϕ+ = ϕ− which is an eigenfunction of the ∆− we can

see share the same eigenvalue and thus the spectrum of the Laplacians for non-zero λ is the same.

Denoting the space of eigenfunctions E±(λ) = {ϕ±λ}, we have that their dimensions for finite λ is the

same dim E+(λ) = dim E−(λ), the operators act,
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E+(λ)∆+

D
−−−→←−−−

D†
E−(λ) ∆− (2.16)

this is not the case for the zero-modes λ = 0. The zeros however of the pair of operators {D,∆+} and

{D†,∆−} are the same, and thus ker ∆+ = ker D and ker∆− = ker D†. We can now write the index of

the Dirac operator defined as index( /D) = dim ker[D†D]− dim ker[DD†], which tells us the difference

of the number of linearly independent zero-modes of the Laplacians. It is remarkable that we can in

fact relate this quantity to the Fujikawa’s method of regularization for the trace of γ5 when deriving

the chiral anomaly via path integrals as previously shown described. This is done via Heat Kernel,

the functional trace

trE+
(e−t∆+) − trE−(e

−t∆−) =
∑
λ

e−tλ

∑
ϕ+
λ

〈ϕ+|ϕ+〉 −
∑
ϕ−λ

〈ϕ−|ϕ−〉


=

∑
λ

e−tλ [dim E+(λ) − dim E+(λ)]

= dim E+(0) − dim E−(0) ,

(2.17)

but dim E±(0) = dim ker ∆± which means that the trace difference above is the index of the Dirac

operator as the mentioned above the ker of the Laplacians and the D operators. In this way we can

write the index as,

index( /D) = trS +

(
e−tD†D

)
− trS −

(
e−tDD†

)
= trS +

(
e−t /D2

P+

)
− trS −

(
e−t /D2

P−
)

= trS =S +⊗S −

[
e−t /D2

(P+ − P−)
]

= trS

[
γ5e−t /D2]

,

(2.18)

which is exact same Gaussian regulator chosen in Fujikawa’s method. This expression can be com-

puted by the Heat Kernel method, expanding and taking the limit to zero t arriving to the very same

result. In general the one obtains,
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FIG. 2.2: Transition between two topologically different vacuum states by the instanton corresponding

to the winding number QW = 1. Sphaleron configuration despicted by the dot on the peak.

index( /D) =
1
n!

( i
2π

)n ∫
M 2n

tr Fn , (2.19)

known as the Atiyah-Singer index theorem.

2.2 QCD θ-Vacuum – Instantons and Sphalerons

One of the most fundamental quantity in a quantum field theory is the vacuum to vacuum transition

amplitude, embodied by the Euclidean partition function. For the evaluation of this quantity we must

first obtain the local minimum of the Euclidean action. For simplicity let us consider the SU(2) gauge

theory the Euclidean 4-dimensional space E4 = R4 and discuss the SU(3) case afterwards in this

subsection. The action reads,

S E =
1
4

∫
d4xE Fa

µνF
aµν = −

∫
E4

tr{F2} , (2.20)

in the last line we have expressed in a language more proper to geometry and topology, where the

field strength 2-form F = 1
2 Fa

µν(x)Tadxµ ∧ dxν, T a the group generator and the trace defined under

this group. As we are looking for a configuration for which the action remains finite it is obvious

that F must vanish at infinity. One way to satisfy such condition is having the gauge field vanish at

infinity, however the provides a trivial solution, a more interesting scenario for the vanishing of F is
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also achieved when A becomes a pure gauge, i.e.

A(x)
|x|→∞
−−−−→ U−1(x)dU(x) , (2.21)

in this way F does not vanish in E4 but on its boundary ∂E4 = S 3 (3-dimensional sphere) where A is

a pure gauge. This produces a situation where the gauge elements U(x) ∈ SU(2) represent a mapping

U : S 3 → SU(2) ' S 3, these mapping are classified under the homotopy classes Π3(SU(2)) '

Π3(S 3) ' {n} = Z, determined by the topological winding number n ∈ Z. That is to say, for a given

gauge element U we can define over the manifold, an invariant quantity called Pontryagin index or

Chern-Simons number,

ν[U] =
1

24π2

∫
M

dα1dα2dα3ε i jktr
[
U−1∂iUU−1∂ jUU−1∂kU

]
, (2.22)

in this way the U (0)(x) = 1 corresponds to zero, the identity map U (1)(x) = 1
r (x4 + ix ·σ) yields ν = 1,

and higher order elements U (n)(x) = [U (1)(x)]n correspond to ν = n. The mappings fall into disjoint

homotopy classes and so a gauge configuration of a given ν cannot be continuously deformed into

another of ν′. We can rewrite the above quantity in terms of the field strength,

ν[U] = −
1

16π2

∫
d4xE tr{F̃µνFµν} = −

1
8π2

∫
S 4

tr{F ∗ F} , (2.23)

where we have compactified E4 to the 4-dimensional sphere S 4. The Pontryagin index represents

the winding number of the mapping SU(2). It is certainly a remarkable quantity, only sensible to the

topology of the underlying fiber bundle and so it does not change under diffeomorphisms nor under

local variations of U, i.e. δUν[U] = 0, for this reason ν[U] it is also referred as topological charge

QW . The integrand of the topological charge is a closed form d tr{F2} = 0 which follows from the

Bianchi identity. Therefore, by the Poincare theorem we know that it is locally exact on for instance

the upper hemisphere of S 4, H+. This allows us to write,

QW =
1

32π2

∫
S3

dS nµKµ =
1

32π2

∫
E4

d4x∂µKµ , (2.24)
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in the last equality, Stokes theorem was applied. Given that QW denotes the topological charge, K is

fairly enough referred as the topological current. It is a is 3-form, it reads,

Kµ = εµνρσtr
(
AνFρσ +

2i
3

AνAρAσ

)
. (2.25)

The analytical continuation to imaginary time of the Yang-Mills theory puts the imaginary unit in

Ea field, this allows for a zero Euclidean energy configuration when Ea = ±Ba or in the covariant

language in Euclidean space this means, 1
2ε

µνρσFρσ = F̃µν = ±Fµν or in differential forms simply,

F = ± ∗ F. Configurations that while keeping the action finite satisfy this condition are called self-

dual or anti self-dual instantons. The YM equations of motion are automatically satisfied by virtue of

the Bianchi identity. Since the Euclidean YM action can be rewritten as

S E =
1
4

∫
E4

d4xE tr{(Fµν ± F̃µν)2} ∓
1
2

∫
E4

d4xE tr{F̃µνFµν} , (2.26)

we have that the action may be brought to an utterly simple and elegant form S E = 8π|QW |. In this

way an explicit solution that satisfy the boundary condition at infinity as well as the self-duality of

F may found with help of the ansatz, A(x) = f (r2)U−1(x)dU(x). The simplest function that achieves

this and is regular at the origin is f (r2) = r2/(r2 + ρ2) with ρ being a constant which specifies the

instanton size.

Thus, SU(N) Yang-Mills theories allow for the existence of localized configurations in space-time

that keep the action finite (named instantons by t’Hooft in 1974). Since the Pontryagin term may

be expressed as total derivarive, it does not alter the equations of motion in any way, nevertheless,

it is need to render all physical states gauge invariant. Specifying a classical gauge theory implies

that we must fix a group, however the quantized theory also requires a θ-phase which stems from the

topological properties. The θ-term has thus profound effects at the non-perturbative level leading to

the formation of the gluon condensate and the topological susceptibility solving the UA(1) puzzle. We

can defining QCD vacuum which may now be characterized by the Pontryagin index ν[U] ∈ Z→ |n〉.

This vacuum state, corresponds to an instanton configuration with index ν = n. However a gauge

field configuration with a given Prontryagin number n can be brought down into another by a gauge
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transformation Gm of homotopy class ν = m. More concretely using the additive property of the

winding number we can see that the vacuum state |n〉 changes into |n + m〉 under the action of Gm and

so the vacuum defined in this way is not gauge invariant. On the other hand we can build a proper

vacuum state in terms of the linear combination,

|θ〉 =

∞∑
ν=−∞

eiθν|ν〉 , (2.27)

called θ-vacuum, we can see that we only pick up a complex phase when applying a gauge transfor-

mation physical observables are gauge invariant. It reshapes our understanding of the QCD vacuum

as the superposition of the many quasi-vacua corresponding to a QW , where the θ-parameter is in-

troduced as phase characterizing each state. The only quantum path that can tunnel to another is

the instanton, θ-vacuum. There are several analogies to Bloch states in condense matter physics that

one can spot here; identifying large gauge transformations as lattice translations and the just shown

θ-phase with the Bloch momentum, we can see how the quantum states associated with the θ-vacuum

behave as Bloch waves in a periodic lattice. The θ-phase, arises from quantum tunneling in the gauge

field space [26].

In this regard the Yang-Mills theory is truly exceptional as it allows paths in field space that avoid

the infinitely large energy barriers often encountered in other field theories eventually translating into

spontaneous symmetry breaking. Such paths are the instantons configuration, quantum tunneling

paths that arise in the semiclassical approximation by looking at classical EOM in imaginary time

including classically degenerate vacua while keeping the action finite. For the θ state to be a good

vacuum, we should first see the transition from θ → θ′,

〈θ|e−HQCDT |θ′〉 =
∑
n,m

e−i(nθ−mθ′)〈m|e−HQCDT |n〉

= δ(θ − θ′)
∫

[DA]QW D ψ̄Dψe−(S QCD+S θ) ,

(2.28)

where S θ = iQWθ. Implying on the one hand that thus theta is unique, i.e. there is no transition
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FIG. 2.3: Temporal evolution of a heavy ion collision in the light cone. Hyperbolic lines denote some

critical proper times at each a transition of the produced matter takes place. In particular, the transition

to thermalized matter by τ0, the formation of QGP and the freezeout proper time τ f are shown.

between vacuum states and so the definition above is that of a proper vacuum. And on the other that

QCD action should be modified to accommodate the effective interaction in Minkowski space,

S θ = −
g2

32π

∫
d4xθFa

µνF̃
aµν . (2.29)

2.3 Relativistic Heavy Ion Collision

Most of our knowledge on hadron structure had been achieved by colliding fundamental particles

electron/positron with hadrons. However, as one may anticipate, the collision of two nuclei belongs

to a whole different plane of complexity. Gluons of one nucleus interacting with the gluons of the

other in various ways at very high temperatures and densities behaving like as an almost perfect dense

fluid, a plasma of quarks and gluons. High energy beams collision experiments such as RHIC and

LHC where constructed with the very aim of detecting this exotic and extreme form of matter.
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2.3.1 Establishment of a Quark-Gluon Plasma

Evidence appeared soon enough in the shape of jets, which we can understand as particles very

located in space. What was observed in the heavy ion collision experiments was that in the numerous

collision events jets would be detected however some of them would be much more energetic than

the rest. These particles are formed as the product of the most energetic collisions in the nuclei. In

particular, the collisions near the center of the QGP were observed to produce to highly energetic

beams on opposite sides of the detector, these correlated beams are known as “back-to-back” jets

traveling 180 degrees with respect to the other. The situation is very different however for those

jets that were produced as we get near the edge of the QGP, in this situation the beam only needs

to cross a small portion, when the beam crosses a large portion of it loses energy as a product of

the interaction with the QGP medium. Therefore, a particular, signature for the production of the

QGP was established in this form as some of the jets were observed to be more energetic than their

counterpart.

2.3.2 Magnetic Probe to the QCD θ-Vacuum

Understanding phenomena in the Early Universe, quark matter inside neutron stars, magnetars and

quark gluon plasma in heavy ion collisions, implicates complications beyond the finite temperature

and density scenario as strong magnetic fields are involved. In a certain type of compact stars called

magnetars, the surface magnetic fields reach up to the order of 1015 G while the interior is predicted

to exhibit eB ∼ 1018 G. The most prominent magnetic fields, however, are formed in non-central

relativistic heavy ion collisions. We can obtain a good estimate merely by classical considerations.

Let us approximate the incoming nuclei as a point charges Fig. 2.4, then from the Lienard-Wiechert

potential, the magnetic field at the origin reads,
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FIG. 2.4: (left side) Amplitude of the magnetic fields in non-central collision as a function of impact

parameter. (right side) Time evolution of the magnetic field at finite impact parameter b = 4 fm.

Amplitude in units of the pion mass squared, where mπ = 140 MeV. Fig. taken from Ref. [27]

eB(x, t) =
Ze2

4π
bβ(1 − β2)ey

[(βt)2 + (1 − β2)(b/2)2]3/2 = eB0
ey

[1 + (t/t0)2]3/2

eB0 =
8Zαe

b2 sinh(Y) = (47.6MeV)2
(
1 f m

b

)2

Z sinh(Y)

t0 =
b

2 sinh(Y)
,

(2.30)

where B0 corresponds to the maximum intensity of the magnetic field and t0 the typical time scale

of the decaying field. These quantities are expressed in terms of the beam rapidity Y rather than the

velocity β which are related by β = sinh(Y). One can now give an estimate using typical values at

Au-Au at RHIC provide an estimate; Z = 79 and sinh(Y) ' 0.23 and impact parameter b = 10 fm

implies eB0 ' 3.2 × 1019 G and t0 = 0.05 fm/c. The resulting perpendicular magnetic field reaches

values up 1018 G [7, 28], Fig 2.5.These values are comparable with the QCD scale ΛQCD ' 200 MeV

thus are expected to have a significant influence on the physics governed by the strong interaction.

It turns out to be exactly the case; the produced B in relativistic heavy ion collisions is responsible

for an observed charge asymmetry attributed to the chiral magnetic separation effect. The composi-

tion of compact stars could be importantly affected by the strong B produced. From the field theory

side, magnetically induced QCD effects such as the chiral magnetic effect, chiral magnetic separation
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FIG. 2.5: (left side) Amplitude of the magnetic fields in non-central collision as a function of impact

parameter. (right side) Time evolution of the magnetic field at finite impact parameter b = 4 fm.

Amplitude in units of the pion mass squared, where mπ = 140 MeV. Taken from Ref. [7]

effect, and chiral vortical effect are subjects of increasing interest to which these chapter will focus on.

The existence of topological excitations such as the instanton and sphaleron configurations in the

SU(3) Yang-Mills theory implies the modification of the QCD action by a P and CP violating

Lorentz invariant θ-term. The QCD θ angle violates induces an neutron dipole moment with mag-

nitude proportional to θ. The latter has been eventually observed by experiments and found to be as

low |dn| < 2.9 × 10−26 e cm [29]. This smallness of the θ parameter represents the so called “strong

CP problem”. A solution around this problem has been proposed by Peccei and Quinn [30, 31] by the

Introducing a dynamical field substitute to the θ parameter. This field should take a zero value at the

low energy regime, this particle was latter identified as a light spin zero particle named axion [32, 33].

Therefore, while it is argued that the θ parameter is zero, it is believed that topological fluctuations

take place in the heavy-ion collisions allowing for a space-time inhomogeneous θ [34]. If we permit

an axion-like term in the action, we find that upon an axial transformation couples the θ(x) to the field

strength through θ(x)e2

16π2 εµναβFµνFαβ. After integration by parts we arrive to the vector current,

jµ = −
e2

4π2µ5ε0µρσFρσ , (2.31)
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where the definition for the chiral chemical potential µ5 = ∂0θ has been introduced. The generation

of this vector current is known as the chiral magnetic effect.

Non-trivial topological configurations of the gauge field play a pivotal role when understanding

the QCD vacuum structure. It is necessary to solve the U(1)-problem, it is crucial in the formation of

the gluon condensate and above all it is at the heart of the mechanism of dynamical mass generation

by the spontaneous breaking of chiral symmetry. Now, this begs the question on whether there is a

direct way to detect these topological excitations with experiments. Well, this was exactly one of the

motivations that eventually lead to the discovery of a very novel effect combining QCD and QED, the

chiral magnetic effect. There are in fact many motivations, for one, the detection of the CME current

would imply chiral symmetry restoration.

In fact, quarks in QGP phase are necessary for the CME. The electric current of the CME can be

induced only in the situation that chiral symmetry is restored because if not, then the net chiralities

vanished. That quarks are not confined because quarks flow individually in the system. In this sense,

the CME might be the order parameter for the transition between hadronic and QGP phase.

Interaction between the fermions and the QW , 0 fields produce nonzero parity P and charge parity

CP odd effects. In relativistic heavy ions collisions color flux tubes naturally arise at the initial state,

strong color electromagnetic fields, in addition to this, perpendicular to the color flux tube a magnetic

field is also present. As a result the spin of the particles align in the direction of the magnetic field

resulting in production of chirality this asymmetry corresponds

d(NR − NL)
dt

= −
g2N f

32π2

∫
d3xFµν

a F̃a
µν . (2.32)

Right after the nuclei collides color flux tubes are formed, these tubes play the role of QW . Under a

strong magnetic field B the particle under these tubes have a characteristic momentum distribution as

predicted by CME. The finiteness of the above expression can thus be understood as arising from the

vacuum boundary conditions of the integrated the chiral anomaly, a realization of the index theorem.
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Hot dense matter

FIG. 2.6: (On the left) Cartoon representing a relativistic heavy ion collision event. The formation of

flux tubes and the produced color electromagnetic field is depicted. Figure taken from [35]. (On the

right) Schematic representation of local parity violation, depicting the formation of parity even and

parity odd bubbles within the matter produced after the collision.

The non-zero topological charge induces a transition between different classical vacua, as described

in the previous section, at the zero temperature vacuum this implies the tunneling through a potential

barrier that suppresses the transition rate by an exponential factor, the instanton configuration. How-

ever, the number of transitions induced by QW = 1 per unit of volume becomes severely impaired at

finite temperature,

dN
d3xdtdρ

= e−2π2ρT 2−18A(πρT ) dN
d3xdtdρ

∣∣∣∣∣
T=0

, (2.33)

with A(x) being a function with asymptotics − log(x)/6 when x → ∞ and −x2/36 in the x → 0

limit [36]. This implies that the transitions related to instantons at high temperatures are negligible.

This is the exactly the case for ultrarelativistic heavy ion collision experiments and what occurs in

the electroweak theory. In the latter, the transition between different vacua results into the violation

the baryon plus lepton number relevant for baryogenesis problem. Nevertheless in the SU(2) Yang-

Mills theory also allows for static solutions of finite energy associated with the real-time transitions

between field configurations and half-integer winding number called sphalerons. As it turns out the

sphaleron transitions rate is not suppressed with temperature like the instanton but enhanced, Γsph ∼

T 4 behaviour shared with QCD [37, 38]. Hence the sphaleron expected to play a main role in QCD
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[39] and in the CME current generation.

The CME provides a way to probe strong interacting matter in response to a strong magnetic field

in much the same way as a current is induced in response to an external electric field according in

Ohm’s law. In the latter proportionality constant is given by electrical conductivity of the medium σ.

The QGP medium with electrically charged quarks may be regarded as a conductor but a parallel to

Ohm’s law is not straight forward. In fact, solely by symmetry one may argue that because the vector

current is an P-odd quantity and the B is an P-even quantity, the conductivity must vanish ruling out

the CME current. However, as discussed above the chiral charge of the medium is not conserved due

to the anomaly, the CME is a quantum effect. One intuitively way to understand the formation of the

electric vector CME current is as a polarization effect. Namely, the quark spins align in the direction

of the magnetic field, then the momentum of the nearly massless quarks may be either parallel or

antiparallel to their spin direction Fig. 2.7. The CME is CP-odd effect, let’s say we are in one of the

parity bubbles as depicted in Fig. 2.6, then the previous statement translates into chirallity imbalance

parametrized by µ5, which in turn implies that the net momentum distribution along the direction of

the magnetic fields. In this picture, we have introduced chiral imbalance parametrized by a finite

chiral chemical potential µ5, however, this quantity and thereby the chiral conductivity coefficient

must be determined dynamically. This will be explicitly shown in terms of particle distributions in a

following chapter.

There are several remarkable features of the CME current that should be pointed out. The origin of

the electric current in the CME is topological, therefore it does not dissipate at high temperature nor

it changes at the limit of strong coupling, as shown by holographic computation, where it has been

shown to have profound effects in its QCD phase structure [40]. The produced current and dipole

moment in the CME are exact at the operator level, this can be understood from its intimate relation

to the quantum anomaly which receives no perturbative corrections. Finally, the magnetic field is

also known to trigger the production of axial current under the presence of finite vector density, a

dual effect to the up until now discussed CME known as the Chiral Separation Effect (CSE). The
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FIG. 2.7: (On the top) Schematic representation of the Chiral Magnetic Effect. (On the bottom)

Schematic representation of the Chiral Separation Effect. Figures taken from Ref. [28]

collisions of heavy ions at RHIC and LHC are not only endowed with strong magnetic fields but also

angular momentum where the coupling to vorticity ω = 1
2∇ × u, manifested as a current induced

along the direction of the local angular velocity of the medium ω, known as the Chiral Vortical Effect

(CVE). Along with the CME and CSE, the CVE is also rooted in the quantum anomaly, and so it

enjoys many of the properties discussed above. As it was discussed in this chapter, there is mounting

evidence in the literature connecting the CME and CSE to the chiral anomaly. In the same way, it

is now is widely accepted that the CVE current arises from the gravitational anomaly as first pointed

out by the holographic QCD dual computations at [41]. However, the microscopic mechanism of

currents realization is well known only in the case of chiral magnetic transport while its vortical

cousin has more subtle description at the level of the underlying theory, in any case more research

is needed along this direction. Studies on the anomalous transport phenomena of the chiral medium

was soon enhanced with a richer picture considering the above mentioned effects along with their

manifestation through new type of collective excitations such the Chiral Magnetic Wave (CMW) and

its vortical counterpart, the Chiral Vortical Wave (CVE).
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Nevertheless, it is far from trivial how to see their manifestation in an experimental set-up. The

effect has been realized within condense matter systems studying the response to of Dirac and Weyl

under a magnetic field where a quadratic dependence of the magnetoconductivity on the magnetic

field was observed. However, the situation has been quite different in heavy ion collision experiments.

mostly due to the lack of prediction from the theoretical side on a clear-cut observable.

2.3.3 Charge Separation and the CME

The azimuthal distribution of particles in their final state contains the information of the charge

separation. This comes however at the price of interpreting a P-even observable which is sensible to

background effects as well [42]. Let us start by describing the proposed observable.

dNα

dφ
∝ 1 + 2vα1 cos(φ − ΨRP) + 2aα1 sin(φ − ΨRP) +

∑
n>1

2vαn cos[n(φ − ΨRP)] , (2.34)

where α ∈ {+,−} representing the charges of the particles. The Fourier coefficients vαn of the above

azimuthal-angle distribution characterize the flow of particles in momentum space. The lower schematic

picture in Fig. 2.8 depicts the first coefficients of the expansion. The n = 1 coefficient of the series

corresponds to the directed flow, which has been decomposed into two parts, one associated to the

portion of the flow parallel to the reaction plane v1 and another perpendicular to it, denoted by aα1 .

In a similar way v2 represents to elliptic flow [43], an schematic visualization of the first harmonics

v1 and v2 is shown in Fig. 2.8, higher order harmonics vn are not relevant to this discussion. ΨRP

corresponds to the angle of the of the reaction plane shown in the upper part of Fig. 2.8. Let us now

suppose now that a local domain of positive/negative axial charge is produced by the collision. If

the collision is peripheral then a CME vector current is expected to be induced in the direction (or

opposite) of the induced magnetic field perpendicular to the collision plane. One would thus expect,

that the CME vector current drives the flow of opposite charge particles leading to the formation of a

charged dipole. In this way, aα1 should be sensible to the CME, in the shape of charge separation.

To quantify the magnitude of such P-odd fluctuations, the two particle correlator γα,β ≡ 〈cos(φα +

φβ − ΨRP)〉 observable has been proposed [44], α ∈ {+,−} representing the charges of the particles.
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This comes at the cost of interpreting a now P-even observable that is vulnerable to background

effects. To suppress the background effects, we make a subtraction between the desired out-of-plane

correlation and the in-plane correlation:

γα,β ≡〈cos(φα + φβ − ΨRP)〉 = 〈cos ∆φα cos ∆φβ〉 − 〈sin ∆φα sin ∆φβ〉

= [〈v1,αv1,β〉 + BIN] − [〈aαaβ〉 + BOUT] ' −〈aαaβ〉 + [BIN − BOUT] .
(2.35)

where Bin and Bout correspond to P-even background processes. This quantity was first measured by

the STAR Collaboration Fig. 2.9 as a function of centrality and corroborated by PHENIX Collabora-

tion [45] and the ALICE Collaboration [46] with qualitative agreement. The STAR data shows charge

asymmetry which vanishes at head-on collisions in line with CME-based expectations.

The fireball produced in the aftermath of the high energy collision provides the perfect environ-

ment for the study of the previously discussed anomalous transport. In order to accurately describe

these effects within the nucleus-nucleus collision setup, it is imperative that their manifestation is dis-

entangled from background effects. The complex structure of the space-time evolution of the system

clouds any attempt to quantitative describe the CME and related phenomena. There are increasing

efforts along the direction on how to reduce uncertainties from the observables, and there is current

consensus on the theoretical origin of these recently summarized in the shape of a CME force task

report [48].

To model and constrain for the initial condition is a crucial challenge that must be dealt in the search

of the manifestation of anomalous effects. The theoretical approach to describe charge asymmetry re-

quires the use of the relativistic hydrodynamical simulations enhanced by anomaly induced transport.

The relativist hydrodynamics with the triangle anomaly describes the transport of a system of U(1)V

vector current and the non-conserved U(1)A axial current j5 by the chiral anomaly. The hydrodynamic

equations represent the (non-)conservation laws of energy momentum, vector and axial currents.

∂µT µν = eFνλ jλ, ∂µ jµ = 0, ∂µ jµ5 = −CEµBµ , (2.36)
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FIG. 2.8: (On the top) Schematic depiction of the transverse plane for a heavy ion collision, where

the left ion emerges from the page and the right one goes into the page. The produced particles are

shown in the overlap region, the blue-colored nucleons [47]. (On the bottom) Schematic picture of

Fourier coefficients v1 and v2 describing directed and elliptic flow respectively.

where C is a constant determined by the chiral anomaly C = Nc
2π2

∑
f q2

f , and the definitions Eµ =

Fµνuν and Bµ = F̃µνuν should be understood, uµ being the four velocity. The fluid is assumed to be

dissipationless as the CME is non-dissipative current. The energy-momentum tensor along with the

vector and axial currents read,

T µν = (ε + p)uµuν − pηµν,

jµ = nuµ + κBBµ,

jµ5 = n5uµ + ξBBµ.

(2.37)
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FIG. 2.9: STAR Collaboration results for the three-point correlator, γαβ, measured with 1st and 2nd

harmonic event planes versus centrality for Au+Au and Cu+Cu collisions. Figure taken from [47].

where ε corresponds to energy, p to the hydrodynamic pressure and ηµν to the Minkowsky metric. The

second term in the vector and axial current provides correspond to the chiral magnetic and separation

effects respectively. The specific values for the transport coefficients κB and ξB are determined by

requiring that either the entropy does not increase or by imposing the condition of no entropy pro-

duction from the anomalous current yielding the same results. In order to make the connection to the

hadron particle spectrum one needs to switch from hydrodynamic degrees of freedom to individual

particles via Cooper-Frye formula at freeze-out temperature. The Cooper-Frye formula [49] reads,

E
dN
d3 p

=
1

(2π)3

∫
Στ f

pµdσµ

exp[(pµuµ − µ)/Tfo] ∓ 1
, (2.38)

where the sign in the integrand depends on whether the thermal spectrum corresponds to fermion

or bosons and Tfo denotes the freeze-out temperature. The hydrodynamics allows us to evolve freeze-

out hypersurface at Tfo = 160 MeV which is affected by the currents and with by integrating the

over the thermal distribution of particles in their final state, we can obtain the Fourier coefficients

associated to the above defined observable (2.34).
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There is however, a consensus from the theoretical side as from where these uncertainties originate,

as recently summarized in the shape of a CME force task report [48] these are: The initial distribution

of charges, the evolution of the magnetic field, the dynamics of the CME during the pre-equilibrium

stage and the uncertainties from the hadronic phase and the freeze out.

There are different mechanisms that could be responsible for the generation of chirality imbalance

which feeds the CME current. Topological transitions in particular sphalerons, local fluctuations in

the topological density at the longitudinal color flux tubes, as well as local axial current associated

with the CSE current, are all viable sources local chirality imbalance that must be addressed. The main

production of quark is expected to take place during the pre-equilibrium regime [19], suggesting that

the main source of axial charge must be produced during this stage.
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Chapter 3

Small-x and Saturation Physics

The study of chiral transport phenomena has profound consequences in our understanding of

the topological properties of strong interacting matter. In the search for the smoking gun on these

effects, firm theoretical estimations of the experimental observables are crucial. In this sense, a better

understanding on the physics governing at early-time regime prior QGP formation is essential. The

non-equilibrium early-times dynamics of the collision involves an extremely hard task, in fact, not

possible to describe from first principles. However, an effective description for the nuclei at this stage

is known where particles are from quantum fluctuations on top of coherent fields, called Color Glass

Condensate (CGC) which shall be one of the main aim of chapter. CGC theory arises in the context of

gluon saturation physics and so we devote this chapter to some basic concepts regarding this subject

as well.

QCD is the quantum field theory that governs the dynamics of strong interacting matter. Hadrons

are understood as bound states of quarks and gluons which due the confining property of the theory

have never been directly detected. In fact, it was by means of the deep inelastic scattering (DIS) of

fundamental particles with protons that lead to Bjorken scaling and culminated with the discovery of

quarks as fundamental constituents in QCD. The scattering cross-section σ for instance, the electron-

proton scattering (Fig. 3.1), can be expressed as the product ∼ LµνWµν of the lepton tensor Lµν and

the hadronic tensor Wµν. The latter containing all the strong interacting dynamics and from where the

structure functions are extracted and with these the quark and gluon distributions within the hadron.

35
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FIG. 3.1: (On the top) Deep inelastic scattering of e−p → e−X via exchange of a virtual photon. On

the left hand side, valence quarks of the proton seen by the probed photon. (On the bottom) Parton

distribution functions (PDFs) within the proton plotted as a function of x at Q2 = 10GeV. Valence

quark distributions denoted by xuV , xdV and sea quark and gluon distribution functions denoted by xS

and xG respectively. Figure taken from [50].
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3.1 Evolution of the Parton Distribution Functions

The Hadron Electron Ring Accelerator (HERA) has made precise measurements for the quark

and gluon structure of the proton by means of electron/positron with proton scattering. Hitting the

proton target with a long-wave photon reveals at first three valence quarks, however with increasing

momentum transfer a more complex picture arises as the exchanged photon perceives a larger number

of sea quarks and antiquarks carrying a smaller fraction of the proton’s longitudinal momentum. The

hadronic structure strongly depends on the scale resolved by the external probe and so what might

appear as an isolated quantum at some resolution scale could be seen as much more complex set of

processes at another. In perturbative QCD (pQCD), the evolution equations describe the change in the

hadron wave function with respect to the resolution scale at which they are probed. The kinematics

of the collision is best described in the infinite momentum frame (IMF), also it is convenient to define

the following Lorentz invariants: the virtual photon momentum q2 = −Q2 < 0 exchanged between

the electron and proton target, the center-of-mass energy squared s, ratio of the photon energy to the

electron energy in the proton rest frame y and the longitudinal momentum fraction of a parton in the

proton x. This quantities can x = Q2/ys, Bjorken’s x variable. In terms of these variables two limits

are worth mentioning at this point, one taking Q2 → 0 while keeping x fixed (Bjorken limit) and the

other at going to smaller and smaller x while keeping Q2 fixed (Regge-Gribov limit). Typical values

at the LHC and RHIC at central rapidity involve x ∼ 10−2 and x ∼ 10−4. We also know from data

obtained at HERA that the gluon distribution is completely dominant over the that of quarks as we

approach the Regge-Gribov limit see Fig. 3.1 Therefore, before any attempt at describing what is

observed at the ultra-relativistic heavy ion collision experiments, it is imperative to have deep under-

standing of the dynamics of small x gluons. Observable at these experiments are as sensible to the

bulk properties of the QGP as they are to the initial state. Although proven to be a powerful tool

when describing the QGP system evolution Relativistic Hydrodynamics has not been successful into

predicting the medium transport coefficients, reflection of our lack of knowledge on the initial state.

One could imagine a proton at rest revealing three valence quarks and then as the proton energy
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FIG. 3.2: (Left side) soft gluon emission within the hadron via bremsstralung, single gluon in red and

cascade of n-subsequent gluons where x1 � x2 � x3 · · · � xn. (Right side) gluon recombination

starts to take place represented by the green shaded area.

increases gluons start to be emitted. We are thus interested evolution of the gluon distribution on

x, xG(x,Q2). The basic mechanism that governs the parton evolution in perturbative QCD (pQCD)

is the branching of partons. At the lowest order the emission of small-x partons takes place via

bremstrahlung, the probability of a single gluon emission is,

dPBrem '
CRαs

π2

d2 k⊥
k⊥

dx
x
, (3.1)

where CR is the SU(Nc) Casimir corresponding to Nc for gluons and (N2
c − 1)/2Nc for quarks. This

differential probability is divergent at x→ 0, manifestation of the soft singularity of the QCD splitting

functions and also divergence at k⊥ → 0. The probability per one gluon emission then proportional to

αs log(1/x), similarly the emission of collinear gluons is logarithmically enhanced. Small x translates

into small value of the coupling constant however the log-enhancement completely overrides and so

successive emissions start to take place. Each radiated gluon further suppresses the probability by αs

until the cascade ends, and so an n−gluon emission process involves

αn
s

∫ 1

x

dxn

xn

∫ 1

xn

dxn−1

xn−1
· · ·

∫ 1

x2

dx1

x1
=

1
n!

(
αs log

1
x

)n

, (3.2)

pQCD evolution equations provide us with a systematic way to perform the resummation of these

ladders to all orders. RG equations such as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

or Balitsky-Fadin-Kuraev-Lipatov (BFKL) [51, 52] achieve on taking these log contributions in the
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the scale dependence of the parton distributions. For the Bjorken limit it is relevant to know how

the parton functions change with the Q2 scale once x is fixed, the DGLAP equation provides a set

of differential equations describing the evolution of parton functions with Q2, it describes a dilute

system. The x dependence is modulated by the splitting functions, at small x only the gluon splitting

function matters and it translates into an explosive growth of the gluon distribution function. On the

other hand, the BFKL equation describes the parton evolution with the scale x while keeping Q2 fixed.

We can compactly express this equation as,

∂φ(x, k⊥)
∂ log(1/x)

= K ⊗ φ(x, k⊥), (3.3)

here φ represents the unintegrated gluon distribution which as the name suggests is given by xG(x,Q2) =∫ Q2

d2 k⊥φ(x, k⊥), and on the right we have the convolution of the BFKL kernel K with φ. To leading

order in αs log(1/x), this equation admits the solution x−αs(4Nc log 2)/π implying the exponential growth

of the gluon distribution in rapidity log(1/x) for small x similar behaviour to what is observed by

the DGLAP equations. Of course, radiation of softer and softer gluon cannot continue indefinitely

as unitary of the theory would be violated. What is it eventually found is that as the system reaches

the high-density regime at smaller and smaller x the non-linear dynamics of the soft gluons start to

become relevant taming the avalanche of gluons and thereby restoring unitarity. This phenomenon

implies the emergence of a dimensionful scale Qsat, embodying the concept of gluon saturation.

As an improvement of BFKL equation, the Balisky-Kovchegov (BK) equation takes non-linearities

responsable are taken into account by means of gluon recombination [53, 54]. At heart, the DGLAP as

well as the BFKL equations assume a dilute system at each step and so their linear character does not

allow for the interference between cascades. Indeed non-linear contributions stemming from gluon

recombination should be taken into account introduced as a quadratic term in the BFKL evolution

equation Fig. (3.2). In this picture, we can now understand the saturation momentum Qsat(x) as

the dynamically generated momentum transverse momentum scale at which the linear effects com-

ing from gluon emission and the non-linear corrections stemming from recombination become of the
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FIG. 3.3: (On the left) Phase diagram of High-Energy QCD in (x,Q2) plane. Horizontal and vertical

lines represent the DGLAP and BFKL regimes where as the diagonal line corresponds to saturation

scale and the left stripe to the non-perturbative region. Schematic picture of the nucleon at that region

is presented. (On the right) Saturation of the gluon density at small transverse momentum. Figure

taken from Ref. [55]

same order.

∂

∂Y
NY(x, k2

⊥) = αsKBFKL ⊗
{
NY(x, k2

⊥) −NY(x, k2
⊥)2

}
, (3.4)

where ⊗ denotes convolution. The very presence of the non-linear term in the equation above already

implies the emergence of a dimensionful scale, known as the gluon saturation scale Qsat, which signals

the transverse momentum scale at which the emission contribution corresponding to the linear term

becomes of the same order as of gluon recombination contribution associated with the non-linear. The

onset of saturation effects also leads to a geometrical interpretation as due to the overlap of gluons in

the transverse plane, known as geometric scaling.
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3.2 Gluon Saturation and the Color Glass Condensate

As described in the previous section the density of gluons within the parton grows as α−1
s at the

relativistic heavy-ion collision. In this section, we will introduce the basics behind the McLerran-

Venegopalan model (MV) model, the precursor to the color-glass condensate (CGC) formulation.

This model comes as an effective theory aiming to describe the gluon correlations in the hadron

wave-function measured in small-x DIS. The relevant degrees of freedom are hard (large x) and

soft (small x) partons. It is therefore useful to introduce an intermediate scale Λ allowing us to

distinguish between these modes in the hadron wave function. Fast modes are identified as excitations

with longitudinal momentum p+ � Λ+ and soft modes with p+ � Λ+. Hard partons are treated

as quantum but perturbatively integrated out and in this way the classical source ρ emerges as a

way to describe the fast modes whereas the soft partons are non-perturbative because of their large

occupation numbers, yet can be regarded as classical for this reason. The difference in longitudinal

momentum between slow and fast partons translates into a difference in light cone energies and light

cone time scales between them. That means that the lifetime of the soft gluons is much shorter their

fast counterparts. It is in this sense that, from the soft partons perspective fast gluons appear as colored

on-shell propagating particles. The soft gluons are thus taken as localized static color charge sources

moving along the light cone in the x+ direction, namely

DµF µν = δν+ρ(1)(x−, x⊥). (3.5)

in the saturation regime the source and fields are strong and ∼ 1/g and thus the classical problem

becomes fully non-linear. Once an exact solution for the classical Yang-Mills equation of motion

is obtained, gluon correlation functions can be computed by taking the average over color charges

randomly distributed according to the probability distribution function W[ρ].

Our current task is to thus solve the classical Yang-Mills equation of motion for the current (3.17),

namely

DµF µν = δν+ρ(1)(x−, x⊥). (3.6)
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To solve this equation we choose light-cone gauge A+ = 0, however we shall first assume A− = 0

and then perform a gauge rotation onto the solution back to A+ = 0. With A− = 0 the solution is

simply,

A+(x−, x⊥) = −∇−2ρ(x−, x⊥), Ai = 0 . (3.7)

We gauge rotate back to the light-cone using Aµ = V†AµV + (i/g)V†∂µV , in this way we rewrite the

solution in terms of the color matrix V , i.e. A± = 0 and Ai = − 1
igV†(x−, x⊥)∂iV(x−, x⊥) where the

rotation matrix V being found to be

V†(x−, x⊥) = P exp
−∫ x−

−∞

dξ−∇−2ρ(ξ−, x⊥)
 , (3.8)

with P corresponding to the path-ordering operator.

To describe the quantum evolution of the theory in terms of gluon correlators we first need to write

down the partition function,

Z[J] =

∫
DρWΛ[ρ]


∫ Λ

DAµ
a δ(A+

a )eiS[A,ρ]−iJ·A∫ Λ
DAµ

a δ(A+
a )eiS[A,ρ]

 . (3.9)

The action in this expression for the partition function is composed by the gluon’s kinetic term and

an interaction term,

S[ρ, A] = −
1
4

∫
d4xFa

µνF
µν
a −

i
Nc

∫
d2x⊥dx−δ(x−)ρa(x⊥)tr{TaV†−∞,∞[A−](x⊥)} , (3.10)

where the Wilson operator has been evaluated at x+ → ∞. and color charge density ρ corresponds to

a C-number stochastic variable on the sheet. The action above the contains the solution (3.7) to the

Yang-Mills equation and so the classical saddle point represents the tree level contribution. This sep-

aration between soft and hard gluons introduces a momentum separation scale and as a consequence

one can expect that any physical observable from the above effective action will inherit this cut-off.
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The color charges are described by WΛ+[ρ], i.e. we only have probabilistic knowledge on the hard

gluons and so, ultimately what determines the dynamics of the color charges is the evolution of W[ρ].

The Wilsonian renormalization group equation provides a way out this problem, the strategy is the

following. We start off with a generating functional at some scale Λ+ with some initial source distribu-

tion, usually a Gaussian profile is assumed for such initial probability distribution. We are interested

in gluon correlation in the softer scale Λ
′+ which means that we should focus on obtaining WΛ

′+[ρ].

Such weight function should contain the semi-fast gluons with longitudinal momentum between these

two scales. To obtain the distribution, we take fluctuations around the classical background modes of

the effective action,

Aµ
b = Aµ

b[ρ] + aµb + δAµ
b , (3.11)

calligraphic fonts will be reserved for the classical fields. Aµ
b[ρ] represents the tree-level contribution,

aµb the semi fast fluctuations and δAµ
b are unwanted modes outside this strip. There is a problem with

small fluctuations in the effective action, there are large corrections to the classical effective action,

this implies that the Gaussian weight functional is fragile under the quantum evolution of the sources.

The Jalilian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) renormalization group equation

provides a way out this problem [56, 57, 58]; We attain invariance of the partition function (3.9) on

the momentum cut-off Λ by allowing this probability function on it,

Λ+∂Z[J]
∂Λ+

= 0 , (3.12)

where Λ+ is related to x by Λ+ = log(1/x). The dependence of the Wx[ρ] on x is dictated by the

JIMWLK renormalization group equation.

∂Wx[ρ]
∂ log(1/x)

= αs

{
1
2

δ2

δρa
x(x⊥)δρb

x(y⊥)
[Wx[ρ]χab

xy] −
δ

δρa
x(x⊥)

[Wx[ρ]σa
x]
}
. (3.13)

This equation has clearly the structure of a diffusion Fokker-Planck equation: It is a second-order

(functional) differential equation whose r.h.s. is a total derivative (as necessary to conserve the total
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probability). In fact, the quantum evolution of the probability weight function can be interpreted as

the diffusion of probability density. The coefficients σ, χ correspond to one- (two-) point functions of

the color charge and must explicitly computed [55]. Eq. (3.13) describes a diffusion in the functional

space spanned by ρ from where we can interpret αsρ as the -drift velocity- and αsχ as the associated

diffusion constant. It is often more useful to rewrite the RG equation in terms of a gauge field α in

which case the JIMWLK equation can be expressed as,

∂Wx[α]
∂ log(1/x)

=
αs

2

∫
d2x⊥d2y⊥

δ

δαa
x(x⊥)

{
ηab

xy[α]
δ

δαb
x(y⊥)

Wx[α]
}
≡ −HWx[α] (3.14)

where H is the JIMWLK Hamiltonian. In this way, we are in position to calculate observables of

interest accordingly,

∂〈O[α]〉x
∂ log(1/x)

=
αs

2

〈∫
d2x⊥d2y⊥

δ

δαa
x(x⊥)

{
ηab

xy[α]
δ

δαb
x(y⊥)

O[α]
}〉

x
(3.15)

Usually the x dependence is traded by the rapidity Y = log(1/x). It is important to remark at the

JIMWLK equation describes how the probability distribution changes for different x but does not

determine the Wx[ρ] itself for a given target. In order to do so, one must be provided an initial

condition at a given value of the cut-off, such value is non-perturbative in nature and must be thus

modelled. In fact, it is the Gaussian ansatz assumed for the profile of color charges at Wx[ρ] that

defines the MV model. Such Gaussian form is equivalent to requiring the correlator of color charge

densities,

〈ρa(x−, x⊥)ρb(y−, y⊥)〉 = µ2
xg2δ(x− − y−)δ(2)(x⊥ − y⊥). (3.16)

3.3 Initial Condition for the Relativistic Heavy Ion Collision

In this thesis, we will be interested in the collision of two nuclei. For simplicity of exposition, let

us focus first in the case of one nuclei moving along the x+-axis of the light cone.
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Jµ = δµ+δ(x−)ρ(x⊥) (3.17)

The δµ+ enforces the fact that the source is moving near the speed of light whereas the second one

depicts the source as a this sheet. Similar treatment for its color source living in the other side of the

light-cone. We have now the tools to address the relativist heavy-ion collisions set-up by modelling

the collision of two color sources, i.e.

DµF µν = δν+ρ(1)(x−, x⊥) + δµ−ρ(2)(x+, x⊥) (3.18)

the notation (i), i = 1, 2 is reserved for labeling between the incoming nuclei from the opposite regions

of the light-cone, I and II. For the next step we are interested into solving the Yang-Mills equation in

the forward light-cone, in the particular in the τ→ 0+ surface. We adopt the following ansatz,

Ai = αi
⊥(τ, x⊥), A± = ±x±α(τ, x⊥) (3.19)

where the specific form of the introduced functions α, αi should be determined by the Yang-Mills

equation of motion. This ansatz is, by construction, consistent with the Fock-Schwinger gauge and

on explicitly drops dependence on the space-time rapidity as we are looking for a boost invariant

solution,

A+(x) = Θ(x+)Θ(x−)x+α(τ, x⊥),

A−(x) = −Θ(x+)Θ(x−)x−α(τ, x⊥),

Ai(x) = Θ(x+)Θ(−x+)αi
(1)(τ, x⊥) + Θ(x+)Θ(−x−)αi

(2)(τ, x⊥)

+ Θ(x+)Θ(x−)α(τ, x⊥)

(3.20)

From this expression, one would naively expect singular terms stemming out from the derivatives in

the EOM [Dµ,F µν] = 0 as the product of deltas. However, these singularities are avoided altogether,

provided that A = A1 + A2. In the same way, matching the singular terms from both sides in the
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FIG. 3.4: Schematic representation of the glasma initial condition. Showing the longitudinal color

electric and magnetic fields, or color flux tubes after the collision. Figure taken from Ref. [59]

remaining EOM DµF µν = Jν yields the initial conditions,

α3
i (0, x⊥) = α(1)

i (x⊥) + α(1)
i (x⊥) (3.21)

α(τ, x⊥)
∣∣∣∣
τ=0

= −
1
2

[α(1)
i (x⊥), α(2)i(x⊥)] (3.22)

While the transverse component of the resulting gauge field is simply given by a linear superposition,

a finite longitudinal component stems out as a result of the non-abelian character of the color fields.

From the explicit form of the YM equations exhibits a singularity in the τ = 0 surface, hence, for

regular solutions we should also require that the derivatives ∂ταi and ∂τα vanish at τ = 0. Although

one may find an analytical solution by perturbative methods via power expansion of the {αi, α}, the

classical solutions in the non-perturbative regime are only accessible by numerical means. For this

purpose, it is useful to translate the problem to construct the Hamiltonian for this system. The initial

conditions are boost invariant by construction therefore it is only natural that the same holds for

general solution and thus the solution does not depend on η.
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S =

∫
dτd2xdη τ tr

{
(∂τAi)2 −

1
2

Fi jFi j +
1
τ2 (∂τφ)2 −

1
τ2 [D, φ][D, φ]

}
(3.23)

The explicit τ factors arise from the Bjorken metric, specifically from the overall τ in the above

expression appears from
√
|g| in volume factor. For the YM Hamiltonian, the canonical conjugate

momenta given Ei = τ∂τAi and Ei = τ−1∂ηAη are needed. While the longitudinal component has

the right mass dimension for an electric field, the transverse component does not. The Hamiltonian

density can be straightforwardly obtained from (3.23), leading to a 1+2 dimensional YM Hamiltonian

coupled to an adjoint scalar field whose discretized version is corresponds to the well known Kogut-

Susskind Hamiltonian. The Hamiltonian classical equations for the continuum version are,

∂τE i = τ[D j,F ji] −
ig
τ

[φ, [D, φ]]

∂τE η = −
1
τ

[Di, [Di, φ]]
(3.24)

From here we can extract the CGC initial conditions for the chromo-electric and -magnetic fields.

Bi = 0; Bη = F12 = −igε i j[α(1)
i , α(1)

j ] (3.25)

After taking the color average assuming a assuming a Gaussian probability distribution, one finds that

the expectation values for the chromo electric and magnetic fields are eventually the same.
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Chapter 4

Quark Production

As described by the CGC theory right after the collision, the coherent background fields produce

longitudinal color flux tubes whose effective diameter is of order Q−1
sat. These topological flux tubes

play the role of QW of the CME integrated current and so the particles that are produced inside

these tubes possess a characteristic momentum distribution with respect to the direction of the strong

magnetic field that stems during the collision [60, 61]. To address on how this phenomenon takes

place better, it is necessary to develop a deeper understanding of the real-time dynamics of the CME,

in a framework that allows us to understand the formation of these topological currents in terms

of the quark production process, including the Schwinger mechanism. A serious simulation of quark

production during the early-time regime with the glasma background is indispensable in the prediction

of a concrete experimental signal. To perform our simulation, it is crucial that we know the initial

condition of the quark fields in the presence of the proper CGC background, which is to what this

chapter shall be devoted to. First, lets us start by the study of the topological current production in

the context of quark production and in the finite box and then we shall proceed to the study the quark

spectrum in the expanding geometry.

We are ultimately interested in the quark spectrum and the induced observables associated with it.

The basic ingredients for such computation are the time-evolved quark wave functions from x0 → −∞

into the forward light-cone. Thus, our first task will be able to solve the Dirac equation in the presence

of color sources. This chapter will be devoted to this purpose, in particular, to derive an expression

49
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for the initial condition of the quark fields proper to the CGC setup.

4.1 General Formalism

The interactions of a quantum field with a time-dependent background, whether it be an external

gravitational or electromagnetic field, modifies the fields energy manifesting into the spontaneous

creation of quanta with respect to the initial vacuum. For instance, let us consider the evolution in

time of a quantum field from its vacuum state that starts to interact with the background at some

initial time ti. If a measurement is performed at a latter time t f revealing the number of particles in

this state then, we interpret that the interaction has translated into the creation of particles. Let us

illustrate the above by considering a fermion field ψ(x) coupled to a classical gauge field. Since the

Dirac equation is linear in the field operator we can expand it by a complete set of orthonomal modes

{ fini, f ∗ini} associated with in state,

ψ̂(tini, x) =
∑

k

( f ini
k aini(k) + f ini∗a†ini(k)) (4.1)

Let us assume that there is no electromagnetic field at asymptotic times and take limt→−∞ Aµ(x) = 0

for the initial condition. Let us also fix the gauge A0 = 0. Although a gauge condition has been set, a

residual gauge invariance remains corresponding to spatially dependent gauge transformations. The

in-mode functions expanding the fermion field are free plane waves at t → −∞. Similarly one may

also expand can do the same for the final out states, by means of the orthonormal modes {ψout, ψ
∗
out}.

Because the scalar field may represented by both of the complete sets, one can relate one in terms of

the other. The out modes in terms of the in modes can thus be expressed as,

ψ̂(tout, x) =
∑

k

( f out
k aout(k) + f ini∗a†out(k)) , (4.2)

for instance let’s consider that the background is vanishes at both ti → −∞ or some other finite time

and at t f → ∞ or some other finite time. Then by means of the orthonormal relation of this set one
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can define a Bogoliubov tranformation relating the in and out vacuum.

For a system of massless fermion particles, the problem of net particle production can be tackled

with 2-component Weyl spinors using only its right-handed sector. Due to symmetry, the chiral imbal-

ance can be addressed in this way by means of (right-handed) particle and antiparticles. However, the

inclusion of finite mass breaks the symmetry and thus both sectors must be taken into account, Dirac

spinors are more appropriate for this task. As mentioned in order to compute net-particle production,

first we are to solve the Dirac equation in real-time. The Dirac equation with a gauge field Aµ reads,

(
iγµ∂µ − eγµAµ − m

)
ψ(x) = 0 . (4.3)

For the gauge field a homogeneous step profile is considered and a gauge where A0 = 0 is cho-

sen. The solution of the Dirac equation in such a background is nothing but the free solution with

displaced momenta, and so it is straight forward to write down. The positive energy solution reads

ψ = uh(p; A) e−iEp,A x0+ip·x,

uh(p; A) =


√

(pA · σ) ξh√
(pA · σ̄) ξh

 . (4.4)

Where we have defined pA as the displaced four-momentum with p±A = p∓eA and Ep,A =

√
p2

A + m2

and h denotes helicity. This 4-spinor solution is obtained from boosting the rest frame solution and its

manifestly Lorentz invariant so it constitutes the most general solution to the Dirac equation, ξs is a 2-

spinor normalized as ξh†ξh = 12. Since we are dealing with helicity eigenstates a concrete expression

for ξh can be worked out by computing the square root operator in the above matrix. Consider for

instance the second component of a positive energy 4-spinor with + helicity,

u+
2 (p; A) ≡

√
(pA · σ̄) ξ+ =

1√
2(Ep,A + m)

(pA · σ̄ + m)ξ+ , (4.5)

In order to go further, we have to obtain an expression for ξ+ which is chirality eigenstate. To see this
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clearly, let us first consider massless fermions. In this case,

u+
2 (p; A) =

1√
2Ep,A

(Ep,A + pA · σ)ξ+ =

√
|pA|

2
(1 + Σ)ξ+ (4.6)

This spinor is also eigenstate of helicity, thus [Σ, (p · σ̄)] = 0 and so Σ ξ = +ξ which constrains sigma

and the explicit form for this positive energy spinor is follows as,

u+
2 (p; A) =

√
2|pA|ξ

+ =


√
|pA| + p3

A

eiθ(p)
√
|pA| − p3

A

 , eiθ(pA) =
p1

A + ip2
A√

(p1
A)2 + (p2

A)2
, (4.7)

where we note that u+
2 (p; A) has a well-defined chirality. Similarly, the corresponding spinor solution

to the negative energy Dirac solution can be obtained. The 2 component spinor ξh also normalized

ξh†ξs = 12 where Ep,A =

√
p2

A + m2. The complete explicit expression for the + helicity spinor reads,

u+(pA) =
1√

4|pA|Ep,A

1√
2(Ep,A + m)



γ−


√
|pA| + pz

A

eiθ(pA)
√
|pA| − pz

A


γ+


√
|pA| + pz

A

eiθ(pA)
√
|pA| − pz

A




. (4.8)

Where γ± = (Ep,A + m± |pA|) has been introduced and the phase factor e±iθ(pA) is given by p̃A/| p̃A| with

p̃A = px
A ± ipy

A. In an exact analogy the negative energy solution ψ = vh(p; A) eiEp,A x0−ip·x is given by

the same expression as Eq (4.4) but with the lower 2-components negative. Following the same logic,

we obtain an explicit expression for the negative energy free spinor,

v+(pA) =
1√

4|pA|Ep,A

1√
2(Ep,A + m)



−γ−


√
|p−A| + pz

−A

e−iθ(p−A)
√
|p−A| − pz

−A


γ+


√
|p−A| + pz

−A

e−iθ(p−A)
√
|p−A| − pz

−A




. (4.9)
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The quantized fermionic field operator in this representation can be expanded as,

ψ̂+(x) =

∫
d3 p

(2π)3

[
â+

p
u+(pA)√

2 Ep,A
e−iEp,A x0+ip·x + b̂+†

p
v+(p−A)√

2 Ep,−A
eiEp,−A x0−ip·x

]
. (4.10)

The idea is to evolve the field in in time allowing it to interact and project out its positive energy

part. Each wave function evolves and changes through interaction effects induced by a change in

our vector gauge potential A → A′. The temporal profile of the electromagnetic pulse considered,

specifically the electric field allows us to define these two asymptotic states. As advertised earlier

once we have well defined asymptotic states the problem of net particle production is well-defined.

Assuming both “in/out” vector gauge fields constant the associated Hilbert space is complete and we

can quantize our fermion fields. What we are doing corresponds to this change of basis between

these two representations, this defines our Bogoliubov transformation operators. As expected the

expectation value of the particle density operator vanishes in vacuum for the free particle case. As

we shall see this is not the case when we introduce the homogeneous gauge A′. Explicit computation

will be performed through a Bogoliubov transformation of in and out states picking up a non-trivial

contribution coming these coefficients. Let us now assume a Schwinger problem and postulate that

the wave-functions change through interaction effects

u+(pA)√
2 Ep,A

e−iEp,A x0+ip·x −→

∫
d3q

(2π)3

[
αq,p

u+(qA′)√
2 Eq,A′

e−iEq,A′ x0+iq·x

− β∗−q,−p
v+(−qA′)√

2 Eq,A′
eiEq,A′ x0+iq·x

]
,

v+(p−A)√
2 Ep,−A

eiEp,−A x0−ip·x −→

∫
d3q

(2π)3

[
ᾱ∗q,p

v+(q−A′)√
2 Eq,−A′

eiEq,−A′ x0−iq·x

+ β−q,−p
u+(−q−A′)√

2 Eq,−A′
e−iEq,−A′ x0−iq·x

]
.

(4.11)

Concrete expressions for the introduced Bogoliubov coefficients can and will be worked out, how-

ever let us keep them for the moment. The “particle” number, (αpâp + βpb̂
†
−p)†(αpâp + βpb̂

†
−p), then

picks up a contribution from |βp|
2b̂−pb̂

†
−p, which shall be relevant for non-vanishing of the quantities
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we are to compute. Imposing anti-commutation relation on the Bogoliugov transformed operators

results into the normalization condition:

|αp|
2 + |βp|

2 = 1 . (4.12)

preserving the fermi statistics. Let us consider a more conventional way to calculate the vacuum

expectation value of the current operator directly: We now proceed to work out a concrete expression

for the current operator J′µ produced by the given change in the gauge potential and calculate its

expectation value with respect to the initial vacuum state. It reads, where all exponentials have been

integrated out yielding the corresponding delta functions,

J′µ+ = e
∫

d3 p
(2π)3

{ b̂′−pâ
′+
p

2 Ep,A′
[v̄+(−pA′)γ

µu+(pA′)] e−2iEp,A′ x0
+

â′†p â′p
2 Ep,A′

[ū+(pA′)γ
µu+(pA′)]

+
b̂′pb̂

′†
p

2 Ep,−A′
[v̄+(p−A′)γ

µv+(p−A′)] +
â′†p b̂′†−p

2 Ep,A′
[ū+(pA′)γ

µv+(−pA′)] e2iEp,A′ x0

}
.

(4.13)

The first and last term vanish due to the orthogonal relations of the Dirac spinors and thus can be

discarded,

J′µ = e
∫

d3 p
(2π)3

{ â′†p â′p
2 Ep,A′

[ū+(pA′)γ
µu+(pA′)] +

b̂′pb̂
′†
p

2 Ep,−A′
[v̄+(p−A′)γ

µv+(p−A′)]
}
, (4.14)

= e
∫

d3 p
(2π)3

{
pµA

Ep,A′
â′†p â′p +

pµ
−A

Ep,−A′
b̂′pb̂

′†
p

}
. (4.15)

Now, we are interested in the expectation values of these operators, let us first take the normal ordering

before proceeding. As mentioned earlier, equivalent to anti-symmetrizing the bilinear of the current

operator we consider normal ordering and thus,

: J′µ : = e
∫

d3 p
(2π)3

{
pµA

Ep,A′
: â′†p â′p : +

pµ
−A

Ep,−A′
: b̂′pb̂

′†
p :

}
= e

∫
d3 p

(2π)3

{
pµA

Ep,A′
â′†p â′p −

pµ
−A

Ep,−A′
b̂′†p b̂′p

}
.

(4.16)
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However the quantity we to compute is the expectation value associated with the initial state, that is,

〈
: Ĵ′µA′ :

〉
A

= e
∫

d3 p
(2π)3

{
pµA

Ep,A′

〈
â′†p â′p

〉
A −

pµ
−A

Ep,−A′

〈
b̂′†p b̂′p

〉
A

}
= e

∫
d3 p

(2π)3

{
pµA

Ep,A′
|βp|

2〈b̂−pb̂
†
−p

〉
A −

pµ
−A

Ep,−A′
|β̄p|

2〈â−pâ
†
−p

〉
A

}
= e

∫
d3 p

(2π)3

{
pµA

Ep,A′
|βp|

2 −
pµ
−A

Ep,−A′
|β̄p|

2
}
,

(4.17)

from where the charge and vector expectation values follow as

j0 =
〈
: Q̂A′ :

〉
A

= e
∫

d3 p
(2π)3

{
|βp|

2 − |β̄p|
2
}
,

j =
〈
: Ĵi

A′ :
〉

A
= e

∫
d3 p

(2π)3

{
pA

Ep,A′
|βp|

2 −
p−A

Ep,−A′
|β̄p|

2
}
.

(4.18)

The natural next step in this computation of particle densities and their currents towards a more

general setup where more complicated time evolutions are involved is the inclusion of a magnetic

field and thus spatial inhomogeneity, in this case the evolution of the wave functions are given by,

Once again comparing the wave function in both bases allows us identify the change in the creation

and annihilation operators, i.e. their corresponding Bogoliubov transformation,

âσp −→ â′σp =

∫
d3q

(2π)3

(
αp,qâσq + βp,qb̂σ†−q

)
b̂σ†p −→ b̂′σ†p =

∫
d3q

(2π)3

(
ᾱ∗p,qb̂σ†q − β̄

∗
p,qâσ−q

)
.

(4.19)

As we saw in the previous section, only βp,q is needed for the desired observables, and so what remains

is to write down a concrete expression for the Bogoliubov coefficient. To compute βp,q, we evaluate

the transition amplitude from a negative (positive) energy state to a positive (negative) energy state for

particle (anti-particles) after the system has been evolved to a time t f . For definiteness, let us define

f r
−p(x0, x) and f̄ r

−p(x0, x) as the numerical solutions to the Dirac equation at a time x0 for particle and
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anti-particle respectively.

f +
−p(x0 ∼ −∞, x) =

v+(−pA)√
2 Ep,A

eiEp,A x0+ip·x −→∫
d3q

(2π)3

[
α∗−q,−p

v+(−qA′)√
2 Eq,A′

eiEq,A′ x0+iq·x + βq,p
u+(qA′)√

2 Eq,A′
e−iEq,A′ x0+iq·x

]
.

f̄ +
−p(x0 ∼ −∞, x) =

u+(−p−A)√
2 Ep,−A

eiEp,−A x0−ip·x −→∫
d3q

(2π)3

[
ᾱ−q,−p

u+(−q−A′)√
2 Eq,−A′

e−iEq,−A′ x0−iq·x − β̄∗q,p
v+(q−A′)√

2 Eq,−A′
eiEq,−A′ x0−iq·x

]
.

(4.20)

where the arrows denote the change that a shift on the gauge field has on the wave functions. From

here the explicit expression for the βp,q Bogoliubov coefficient is trivial; using the proper orthogonality

and normalization of the spinors above. The coefficients read,

βq,p =

∫
d3x

u+†(qA′)√
2 Eq,A′

eiEq,A′ x0−iq·x f +
−p(x0, x) (4.21)

similarly, the corresponding expression for antiparticles gives,

β̄q,p =

∫
d3x

v+†(q−A′)√
2 Eq,−A′

e−iEq,−A′ x0+iq·x f̄ +
−p(x0, x) (4.22)

4.2 Test Simulations in a Finite Box

The essential ingredient to compute the above defined currents and distribution is the time-evolved

fermionic wave function under a certain background gauge field. We are therefore, in need to solve

Dirac’s equation on top of a discrete lattice. The Dirac equation for + helicity fermion field under

external electromagnetic reads,

[(
iγ0∂0 − eγ0A0

)
+

(
iγi∂i − eγiAi

)
− m

]
ψ+(x) = 0 . (4.23)
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The interaction is contained in the covariant derivative, to this end we are in the need of link variables,

Uµ(x) = e−iaµeAµ(x) , (4.24)

with these we can approximate the derivatives

dt(∂0 − ieA0)ψ+(x) ≈ U0(x)ψ+(x + 0̂) − ψ+(x)

ai(∂i − ieAi)ψ+(x) ≈
1
2

[
Ui(x)ψ+(x + î) − U†i (x − î)ψ+(x − î)

]
,

(4.25)

allowing us to rewrite the discretized version of the Dirac equation. The updated field is,

ψ+(x + 0̂) ≈ U†0(x)(1 − im dtγ0)ψ+(x) +
dt
2

U†0(x)γ0γi
[
Ui(x)ψ+(x + î) − U†i (x − î)ψ+(x − î)

]
. (4.26)

With this algorithm, we numerically solve the Dirac equation under an external electromagnetic field

allowing us to compute the desired observables.

We will first check the consistency of our formulation with Schwinger pair production by applying

an homogeneous electric field in the z direction, to this end we consider a time-dependent A3 = −E0t.

The duration of the electric step to be applied is tE =
√

10/E0. Even when no external magnetic

field is applied, the sole presence of an external electric field can trigger particle production via the

Schwinger mechanism. In this case CP-symmetry is conserved and although pairs are produced no

net current can be observed. Particle and antiparticle distributions are shown for a pulsed electric field

at zero mass in Fig. 4.1. Both distributions correspond to an step in the pz axis from 0 to tE · E0. The

particle/anti-particle pair production rate is given by,

Γ = e2 E0B‖
4π2 coth

(
B‖
E0
π

)
e−m2π/|eE0 | , (4.27)

Γ
B‖→0
−−−−→ ΓSchwingere−m2π/|eE0 | , ΓSchwinger = e2 E2

0

4π3 , (4.28)

corresponding to the Schwinger pair production rate [62, 63]. The net currents will be presented
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FIG. 4.1: Particle and anti-particle momentum distributions in the Schwinger mechanism. Lattice size

was set to 243 and the applied electric field to 0.1 for massless fermions. (Above) Full Brillouin zone

with unsupressed doublers. (Below) Half Brillouin zone cut-off corresponding to the shaded region in

the figure above

later on are normalized in units of n0 = ΓSchwinger · tE. The inclusion of finite fermionic mass results

into a suppression of the particle antiparticle distributions. When only the electric field is present this

mass damping affects particle and antiparticle distributions alike as it can be appreciated in Fig. 4.2.

In order to make an more explicit comparison with (4.28), let us compute the pair production rate

defined Γrate =
npair

tE
, where we have defined pair number density as,

npair =

∫
d3 p

(2π)3

{
|βp|

2 + |β̄p|
2
}
. (4.29)

In Fig. 4.3 the numerical pair production rate is shown to agree with the analytical expectation (4.28)

revealing an exponential damping from the fermion’s mass. The computation of observables once
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FIG. 4.2: Particle and anti-particle momentum distributions in the Schwinger mechanism. Lattice

size was set to 243 and the applied electric field to 0.1. On the right massless particles and on the left

a system with m = E0/2 was considered.
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FIG. 4.3: Pair production rate (4.29) revealing exponential damping by the mass in agreement with

(4.28). The considered lattice size is 173 and electric field fixed at E0 = 0.1.

a finite magnetic field is turned on is much numerically expensive than our previous case dealing

only with E. Now non-diagonal components of the βp,q must be calculated for every lattice point in

momentum space. The homogeneous magnetic field included on top of this picture is considered to

have the same time pulse profile as that of the electric field. Such magnetic field is implemented by

introducing the vector potential Ax = (B⊥z − B‖y)ε(t) and Ay = 0, where ε(t) defines the time profile

as ε(t) = 1 when −tE/2 ≤ t ≤ tE/2 and zero otherwise as prescribed in Ref. [64].
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FIG. 4.4: Particle and anti-particle distributions under a finite magnetic field parallel to the back-

ground electric field, B‖ = E0/2. The lattice considered in this figure is 173 and the applied electric

field E0 = 0.1.

In particular a configuration in which the magnetic field and electric fields are orthogonal, particle and

antiparticle distributions are smeared and spread across momentum space as the intensity increases.

This spreading is symmetrical and as it can be read from Eq. (4.17), the four-current expression is

zero for all components in the orthogonal configuration. Also, as observed in the massive Schwinger

case mass damps but maintains the symmetry altogether. On the other hand, any departure from the

orthogonal EB-background results the breaking of the particle-antiparticle symmetry. Indeed, the in-

clusion of a finite magnetic field can break the CP-invariance of the system when E ·B is finite, i.e. the

magnetic field has a non-vanishing component parallel to the background electric field. The breaking

of the symmetry is manifested through an enhancement of the particle momentum distribution over

its antiparticle counterpart Fig. 4.4. This imbalance results thus, in an increment of charge carriers

of the systems, a flow of helicity in the system as shown in figure 4.5. For instance, in a system of

massless fermions where chirality is well-defined quantum number, particle number conservation is

broken through the Adler-Bell-Jackiw quantum anomaly which is turned on in a CP breaking back-

ground, such as the one considered. We can in this sense observe a dynamically induced µ5 with

this background. The anomaly equation becomes non-trivial. Such imbalance from the particle and

antiparticle is often parametrized through the inclusion of an axial chemical potential µ5, which we

have set in dynamical way. However as the expression which summarizes CME shows, finite µ5 alone
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FIG. 4.5: Induced axial charge density by finite E · B for fixed intensity of the electric field set at

E0 = 0.1 and increasing B‖. Suppression by finite fermion mass is shown. The considered lattice size

is 173.

is not enough trigger the current, A magnetic field on top is needed. This fact can be observed in

the case in which E and B are exactly parallel to each other: although the number of charge carriers

available increase with the magnitude of B‖ the current along the y-direction, corresponding to jCME

remains zero. Therefore becomes non-trivial as the angle between the E and B, θ ∈ [0, π/2] achiev-

ing a maximum when π/2. Fig. 4.6 displays the time evolution of the produced currents for various

masses consistent with the results [64] when m = 0.

The sharp localized distributions spread across momentum space more and more as the magnitude

of magnetic field grows. And so, it is not unlikely that contribution coming from spurious states would

eventually interfere with the physical distribution on the inner portion of the BZ. Thus it becomes

important to quantify such effect for the reliability of simulation results with UV and IR cut-off

approach. To this end we will perform simulations considering Wilson fermions on top of the full

BZ instead of the naive fermion approach taken until now.

In solving the discretized Dirac equation one encounters, as an inevitable consequence of approx-

imating the derivatives as finite differences operators, spurious states in the high momentum region

and low energy. Such states cannot be gotten rid off by improving precision on the lattice model and

remain as we approach the continuum limit. Furthermore, a no-go theorem for this phenomenon,
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FIG. 4.6: Real time evolution of y-component of vector current jy/n0 corresponding to the chiral

magnetic effect for B‖ = B⊥ = E0/2 and different fermion masses. The purple line corresponds to

particle density j0/n0 at m = 0 and is left as reference. The analytical values for both, anomaly

equation and the chiral magnetic current at m = 0 are shown by the dotted orange line with a common

offset of −0.25. Lattice size is taken as Ni = 8.

termed as the fermion doubling problem, was formulated by Nielsen and Ninomiya [65]. Several ap-

proaches around the fermion doubling problem have been developed by the lattice community. One

method to eliminate these unphysical contributions was proposed by K. G. Wilson in [66] and consists

in the addition of an extra term to the action, the Dirac-Wilson action reads,

S = S f −
r
2

∑
h=±

∫
d4x ψ̄hDiDiψh , (4.30)

where Di corresponds to the spatial covariant derivative. The inclusion of this term is allowed as it

preserves lattice gauge symmetry and also enables us to get rid of the unwanted spurious states; This

extra term contributes as p2 to the dispersion relation lifting the minimum that spawns at the edge

of the BZ and thus raising the energy for the unphysical doublers. This is, the mass term becomes

develops a momentum dependence,

MW(pi) = m +
2r
a

∑
i

(1 − cos(pia)) . (4.31)

This modification to the dispersion relation is of course expected to vanish at the continuum when
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m=0
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with Wilson term

FIG. 4.7: Fermion doublers in the Schwinger mechanism. (Above) particle and antiparticle distribu-

tion are displayed over the full BZ using naive fermions. (Below), The same setup implemented for

Wilson fermion with r = 0.2 coupling. Lattice size was set to 173 and the applied electric field to 0.1.

a → 0 implies the generation of a momentum dependent mass. The spinors in the initial conditions

of our Cauchy problem are thus accordingly modified by the replacement (m → MW(pi)). From this

expression one can appreciate how Wilson fermions become massive at the edge of the BZ, rising

the energy of spurious states and at same time how it also affects physical states although in a much

diminished way as fermions get lighter and lighter as we get away from the edges. In fact, because

of this, the chiral limit m = 0 cannot be attained as physical states are perturbed by the momentum

dependent contribution and thus chiral symmetry is inevitably broken. Therefore, the implementation

of Wilson fermions inevitably breaks chiral symmetry. A temporal component of the Wilson term

would turn the Dirac equation to second order in time, however dt � ai and so we do not need to deal

with doublers in the temporal direction. The corresponding equation of motion leads us to the field
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FIG. 4.8: Particle and anti-particle momentum distributions at B‖ = B⊥ = E0/2 for Wilson fermions

with r = 0.5. Lattice size is taken as Ni = 8 and electric field E0 = 0.1.

update algorithm,

ψ+(x + 0̂) = U†0(x)[1 − idt(m + 3r)γ0]ψ+(x)

+
dt
2
γ0U†0(x)

[
(γi + ir)Ui(x)ψ+(x + î) − (γi − ir)Ui(x − î)ψ+(x − î)

] (4.32)

In a sense, the Wilson-term contribution acts as an inhomogeneous mass term and so a light damping

on the currents is to be expected. In Fig. 4.9 we compare the anomalous current production from this

two approaches in order to test the reliability of the approximation of introducing a UV and IR cut-off

on the BZ.

4.3 Formulation in the Expanding Geometry

To describe the time-evolution of observables in the forward light-cone, the Bjorken chart suits us

best. This is R2 × H2 equipped with the following Lorenzian metric,

ds2
Bjorken = dτ2 − dx2

⊥ − τ
2dη2, (4.33)

it trades time t and the longitudinal coordinate z for proper time τ and rapidity η, which are related

by t = τ cosh η, z = τ sinh η depicted in Fig. 4.10. The Bjorken chart represents an expanding
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FIG. 4.9: Comparison between the two approaches. The upper two curves correspond to the net par-

ticle number density produced as a result of the anomaly; The green curve is obtained by considering

naive fermions on a BZ with lower and upper cut-offs and the orange curve to net particle number

considering Wilson fermions with r = 0.2 coupling over the full BZ. The blue curve corresponds to

the case of naive fermions over the FBZ, which is consistent with the Nielsen-Ninomiya theorem.

Lattice size is Ni = 8 and parallel E and B equal to E0 are considered.

1 + 1-dimensional geometry in the longitudinal direction. From the metric it seems as if there is a

singularity at τ = 0. This is nothing but a coordinate artifact since the metric is flat and it can always

be brought back to the regular Minkowski metric by a suitable coordinate transformation. However,

as in the case of other hyperbolic space-times (e.g. Rindler), it is incomplete. This implies that two

causal patches will be needed to express the initial condition. The Dirac equation is linear and this

allows us to look for a solution written as the sum of left- and right- movers, like one usually would

in other incomplete manifolds.

Given that the partial waves live in disconnected regions of the light-cone, they are completely

independent. This provides us with the freedom to choose a different gauge for the background field
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FIG. 4.10: Forward light cone in the Bjorken coordinate chart. Hyperbolic green lines denote constant

proper time τ and the straight blue lines denote constant space-time rapidity η. Magnitude in both

cases increases from the darker to lighter shades.

on each patch of the manifold, simplifying the problem. And finally, bring them to a common gauge

at τ0 by a gauge rotation; The light-cone gauge A− = 0 can be used for the right moving partial wave

and A+ = 0 for the left mover. Once an explicit expression for the spinors is obtained, the solution is

rotated to the Fock-Schwinger gauge at the forward light-cone. Before going on with this program,

it should be emphasized that the singularity at τ = 0 is physical, though it does come from geometry

but from the color sources themselves.

4.4 Initial Conditions on the Light Cone

Owing to the symmetry between left and right movers it is enough to solve for one the partial

waves (say the right mover). The starting point is a free negative energy spinor at x± < 0. This spinor

interacts with the gauge field produced by the nucleus moving in the −z. Evolving into the x+ > 0,

x− < 0 region, we must deal with the pure background gauge field Ai
2 = i

gU†2∂
iU2. The covariant

derivative in this region can thus be written as Dµ = U†2∂
µU2, this allows us to define a spinor U2ψ
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obeying the free Dirac Equation. For this initial value problem, ψ should be evolved from the x− = 0+

surface, this admits a formal solution written in terms of the retarded quark propagator,

ψ = i
∫

y=0+

dy−d2y⊥S 0
R(x, y)ψ(−) (4.34)

denoting the propagation of the spinor field from the y = 0+ surface. The y− integration produces a

delta, the transverse y⊥ is absorbed in the definition of the Fourier conjugate of the Wilson line defined

below and so the pole integration from the retarded propagator can be computed in a straightforward

way yielding,

ψ(−)
ksa(x) = U†2(x⊥)

∫
d2 p⊥
(2π)2 eip⊥·x⊥ei(k+x−+

M2
p

2k+ x+)Ũ2(p⊥ + k⊥)

×

(
1 − γ+ piγi + m

2k+

)
P+vs(k)

(4.35)

In this expression Mp has been defined as the transverse mass, and the projector P+ has been intro-

duced. The Fourier transform for the Wilson line conjugated to the transverse variable x⊥ has been

defined as Ũ. For the final expression for this partial wave, one must consider the spinor evolution

across the x+ > 0, x− = 0+ stripe of the light cone. This implies a contribution from the nuclei moving

along the x− as well. Given that the associated gauge field involved has no A−1 component, we can

decouple the Dirac equation into two, one for each projection P± = γ∓γ±/2 of the spinor.

i∂−P+ψ(−)
ksa =

m − iγiDi

2
γ−P−ψ(−)

ksa

i(∂+ − igA+
1 )P−ψ(−)

ksa =
γ+(iγiDi + m)

2
ψ(−)

ksa

(4.36)

One of which is independent of A1. These pair of equations can be trivially decoupled result-

ing into a second-order differential equation. Here, the derivative ∂+ and A+
1 are large, inversely

proportional to the thickness of the stripe that supports the A+
1 field. On the other hand −D2

⊥ +

m2 is associated with the transverse diffusion, however in the limit in which the thickness of the
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shock wave goes to zero, this term can be safely neglected. This all simply implies that the covari-

ant derivative i(∂+ − igA+
1 )P−ψ(−)

ksa = 0 and so the solution of this projection is trivially given by

U1(x−, x⊥)P−ψ(−)
ksa(0, x+, x⊥). The remaining projection is given by the line in Eq. (4.36).

As previously mentioned, before adding the two partial waves in the forward light-cone region,

they must be brought down to a common gauge. The chosen gauge for this region is the Fock-

Schwinger gauge, we achive by a

P−ψ(−)
ksaFS(x) = U†2(x⊥)

∫
d2 p⊥
(2π)2 eip⊥·x⊥ei

M2
p

2k+ x+

× Ũ2(p⊥ + k⊥)
piγi − m

2k+
γ+vs(k)

P+ψ(−)
ksaFS(x) =

(
iγiDi

FS − m
)
U†2(x⊥)

∫
d2 p⊥
(2π)2 eip⊥·x⊥ei

M2
p

2k+ x+

× Ũ2(p⊥ + k⊥)
piγi − m

2k+
γ+vs(k)

(4.37)

Taking the P−-projection of this expression and replacing P−ψ at Eq. (4.36).

P−ψ(−)
ksaFS(x) =

√
τU†2(x⊥)

∫
d2 p⊥
(2π)2 × eip⊥·x⊥∫ ∞

−∞

dy′ exp
[
i
Mpτ

2
e−(y′−η)

]
Ũ2(p⊥ + k⊥)

× eiνy′ p
iγi − m
√

2Mp
e−y′γ+[e

y+η
2 P+ + e−

y′+η
2 P−]vs(k⊥, 0)

=
√
τ

∫
d2 p⊥
(2π)2 eip⊥·x⊥U†2(x⊥)Ũ2(p⊥ + k⊥)

∫ ∞

−∞

dy′ exp
[
i
Mpτ

2
e−(y−η)

]
× eiνy′ p

iγi − m
√

2Mp
e−

1
2 (y′−η)γ+vs(k⊥, 0)

(4.38)

As we are now in the forward light-cone the Bjorken coordinate chart (τ, x⊥, η) suits us best. They

are related to light-coordinates by x± = τ
√

2
e±η and p± traded for momentum rapidity in a similar way,

p± =
y
√

2
e±η. In the first line we have explicitly spelled out the rapidity dependance of the spinor

e
y
2γ

0γ3
vs(k⊥, 0) from where the e

y+η
2 γ0γ3

term appears. This term is rewritten in terms of projectors
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e
y+η

2 γ0γ3
= cosh(

y + η

2
) + γ0γ3 sinh(

y + η

2
)

= (P+ + P−) cosh(
y + η

2
) + (P+ −P−) sinh(

y + η

2
)

= e
y+η

2 P+ + e−
y+η

2 P−

(4.39)

In the second line of (4.38), the momentum rapidity can be integrated out, from where

ψ(−)
k⊥νsa FS(x) =

τ→0+
−

ei π4
√

Mk
eiνη

∫
d2 p⊥
(2π)2

e+ip⊥·x⊥

Mp

×

e
πν
2

 M2
pτ

2Mk

iν

Γ

(
1
2
− iν

)
U†2(x⊥)Ũ2(p⊥ + k⊥)γ+

+e−
νπ
2

 M2
pτ

2Mk

−iν

Γ

(
1
2

+ iν
)

U†1(x⊥)Ũ1(p⊥ + k⊥)γ−
 (piγi + m)vs(k⊥, y = 0)

(4.40)

the initial condition for the quark fields is obtained.
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Chapter 5

Quark Spectrum in the Forward Light-Cone

To further understand what is actually observed and better interpret the measured charge asymme-

try at heavy-ion collisions, one must characterize the evolution of axial charge taking into account the

complex space-time evolution of the pre-equilibrium regime of the collision. Besides the remarkably

short lifetime of magnetic fields expected at the collision, quark degrees of freedom, the necessary

ingredient to discuss chirality are produced at the very early stages as well [60, 61]. Where it has

been shown that QCD matter formed in the collision experiments is from the very beginning in local

kinetic equilibrium and quark-antiquark pairs close to the chemically equilibration with the gluons.

In this approach, the basis of mode functions used was expressed only in τ, y and z making the longi-

tudinal boost invariance of the system highly non-obvious and the sum of modes in the expansion was

only restricted to small subset. However, as discussed in the previous chapter, these short-comings

have been overcomed and the initial condition has been recently worked out, providing the tools to

correctly describe the quark fields in the forward light-cone [19]. The initial conditions for the quark

field have been specified and now we are in interested in the quark spectrum. To that end, we first

focus on the proper time evolution of the quark fields in the forward light-cone. Using the initial con-

dition (4.40) for the quark wave functions and proceed to compute the resulting currents determined

by the proper time evolved wave functions under a non-abelian constant background motivated by the

CGC initial conditions. Finally, the generation of axial charge density is simulated in the expanding

geometry and the effects arising from finite quark mass are discussed.

71
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In this part, we focus on the analytical solution of the free Dirac equation in Bjorken coordinates

{τ, x⊥, η} where t = τ cosh η and z = τ sinh η, with the purpose to establish basic definitions, conven-

tions and notation used throughout this chapter. The starting point is of course,

(
iγµ∂µ − m

)
ψ(x) = 0, (5.1)

we can rewrite the derivatives,

∂0

∂3

 =

 cosh η −1
τ

sinh η

− sinh η 1
τ

cosh η


∂τ∂η

 . (5.2)

Changing the coordinates without taking into account the change of the spinor, leads us to the follow-

ing form of the Dirac equation

[
ie−ηγ

0γ3

(
γ0∂τ +

1
τ
γ3∂η

)
+ iγ⊥ · ∂⊥ − m

]
ψ = 0. (5.3)

Alternatively we can aim at solving,

(
iγaeµa[∂µ + Γµ] − m

)
ψ(x) = 0, (5.4)

using the usual choice for the vielbeins, the spin connection for this coordinate chart reads,

Γµ =
1
8

[γaγb]eνa(∂µeνb + Γνµσeσb )→ Γη =
1
2
γ0γ3, (5.5)

where only the longitudinal component provides a non-trivial contribution. This gives us the equation,

[
i
(
γ0∂τ +

1
τ
γ3∂η +

1
2τ
γ0 + γ⊥ · ∂⊥

)
− m

]
ψ = 0. (5.6)

At any case these two forms are related by the ψ = e−ηγ
0γ3
ψflat where the later corresponds to the

solution of equation (5.3). On the following section, we shall focus on solving (5.3).
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5.1 The Free Solution

Squaring the Dirac operator as usual in these coordinates can be easily shown to reproduce the

Bessel equation. However, to see each of its components, it is useful to consider instead,

ψ̂k⊥ysa =
√
τe−

η
2γ

0γ3
ψk⊥ysa. (5.7)

The overall factor
√
τ has been introduce for convience as in this way the equation to solve is reduced

to a much simpler form,

[
i
(
γ0∂τ +

1
τ
γ3∂η + γ⊥ · ∂⊥

)
− m

]
ψ̂ = 0. (5.8)

It is also useful to change from a basis of definite momentum rapidity y to one of fixed Fourier

conjugate ν to the spacetime rapidity η.

ψ̂(−)
k⊥νsa(x) =

√
τe−

η
2γ

0γ3
∫ ∞

−∞

dy eiνy ψ(−)
k⊥ysa. (5.9)

The advantage of such basis is obvious, ν is a conserved quantum number and Dirac equation obeyed

by the spinors is effectively 2 dimensional. Its solution reads,

ψ̂(−)
k⊥νsa(x) = −iπ

√
τe

πν
2 eiνη−ik⊥·x⊥

{
e−i π4 H(1)

− 1
2−iν

(Mkτ) P+

+ ei π4 H(1)
1
2−iν

(Mkτ) P−

}
vs(k⊥, y = 0),

(5.10)

where P± correspond to the projector operators 1
2 (1±γ0γ3) and the negative energy spinor which can

be computed from,

vs(k) =


√

(k · σ) ξs

−
√

(k · σ̄) ξs

 =
1

√
2(E + m)

 (k · σ + m)ξs

−(k · σ̄ + m)ξs

 . (5.11)

Choosing ξs eigenvalues of σ3 and setting the longitudinal component of the momentum to zero, we
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FIG. 5.1: Schematic picture of the setup of our simulation. The initial condition fot the proper time

evolution is computed at [19] by evolving left/right partial waves through both sides of the light cone

as they interact with the pure gauge field corresponding to the colliding nuclei.

can explicitly write down the spinor components,

v+(k⊥, y = 0) = −
1

√
2(Mk + m)



−(Mk + m)

kx + iky

Mk + m

kx + iky


v−(k⊥, y = 0) = −

1
√

2(Mk + m)



kx − iky

−(Mk + m)

kx − iky

Mk + m


,

(5.12)

using the proper asymptotic expansion of the Hankel funtions for τ → 0+ one obtains the correct

expression. The initial condition in presence of a background field can also be easily constructed

in the Fock-Schwinger gauge by evolving the left-right movers partial waves through the x− > 0,

x+ < 0 and x− < 0, x+ > 0 regions respectively where interacting with a background color gauge field

induced by the nuclei moving along the x± axis, Fig. 5.1.
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ψ̂(−)
k⊥νsa FS(x) =

τ→0+
−

ei π4
√

Mk
eiνη

∫
d2 p⊥
(2π)2

e+ip⊥·x⊥

Mp

×

e
πν
2

 M2
pτ

2Mk

iν

Γ

(
1
2
− iν

)
U†2(x⊥)Ũ2(p⊥ + k⊥)γ+

+e−
νπ
2

 M2
pτ

2Mk

−iν

Γ

(
1
2

+ iν
)

U†1(x⊥)Ũ1(p⊥ + k⊥)γ−
 (piγi + m)vs(k⊥, y = 0).

(5.13)

In the case of no background field the Wilson line becomes U(1,2)(x⊥) = 1 and its Fourier transform

Ũ(1,2)(p⊥ + k⊥) = (2π)2δ(p⊥ + k⊥), one can trivially check that expression consides with that of the

free spinor at τ→ 0+.

Let us now proceed to discretize the equation of motion for ψ̂, the updated fields reads,

ψ̂(−)
τ+dτ =

(
1 − imdτγ0

)
ψ̂(−)
τ −

dτ
2 dxiγ

0γi
(
ψ̂(−)xi+dxi

τ − ψ̂(−)xi−dxi

τ

)
−

1
2τ

1
dη

dτγ0γ3
[
ψ̂(−)η+dη
τ − ψ̂(−)η−dη

τ

]. (5.14)

We apply periodic boundary conditions for along the transverse direction of the lattice while our

treatment for the longitudinal dimension is trivial (we deal an effective 1+2 dimensional system) in

the ν basis and so we can just simply solve for,

ψ̂(−)
τ+dτ =

(
1 − imdτγ0

)
ψ̂(−)
τ −

dτ
2 dxiγ

0γi
(
ψ̂(−)xi+dxi

τ − ψ̂(−)xi−dxi

τ

)
− iν

1
τ

dτγ0γ3ψ̂(−)
τ

. (5.15)

As a check of consistency we compared the analytical expression for free of interactions with the

numeric solution corresponding to the initial condition (5.13). The approximation of the initial con-

dition at is governed by the asymptotic behavior of the Hankel functions at early proper time. It is

imperative to take a small enough τ to attain better accuracy, however due to the highly oscillatory

behaviour of H(1,2)
± 1

2−iν
(Mkτ), a finer and finer discretization is required as τ → 0. Such fine cutting is
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FIG. 5.2: Plots of the τ > 0 evolution of the real part of the wavefunction ψ̂(−)
p⊥,ν,+(τ, x⊥0) components

at arbitrary point x⊥0 = (1, 1) for mass m = 0.5 and momentum nx = 1, ny = 2, ν = 1. The

numerical/analytic solutions are denoted by solid/dashed lines. Lattice size Nx = Ny = 4. Initial tau

τ0 is set to 0.001. With τ in units of fm.

not needed and at larger τ and so we implement dτ as a function of τ that satisfies our purpose.

5.2 The Constant SU(2) Background Solution

In this section we study the wave-function in response to a constant SU(2) gauge field. We choose the

two nuclei with different color configuration. This way, due to its non-abelian nature, we can expect

a finite electric magnetic field and magnetic field as a result of a non-vanishing commutator.

A1
(1) = Q0σ

1, A2
(1) = Q0σ

1,

A1
(2) = Q0σ

2, A2
(2) = 0,

(5.16)

being Q0, a constant. The general gauge link variables corresponding to a SU(2) configuration is
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FIG. 5.3: Plots of the τ > 0 evolution of the real part of first component of the wavefunction

ψ̂(−)
p⊥,ν,+(τ, x⊥0) at arbitrary point x⊥0 = (1, 1) for mass m = 0.5 and momentum nx = 1, ny = 2,

ν = 1 as in the figure (5.2) now for increasing magnitude of the Q0 in mass units.

given by,

[Uµ(x⊥)]ab = exp
( i
2

gaAa
µσ

a
)

= δab cos
(
1
2

ga||Aa
µ||

)
+ i(~σ · ê)ab sin

(
1
2

ga||Ab
µ||

)
.

(5.17)

As explicitly shown, the initial condition (5.13) depends on the Wilson lines U(1,2) given by,

U(m)(x⊥) = P exp
(

i
2

g
∫
γ

dzµAa
µσ

a

)
. (5.18)

The path γ is confined to the transverse plane and so it does not pick up a contribution from the

longitudinal component of the gauge field, which in this case is non-vanishing. For this particular

choice of the background the Wilson lines can be explicitly written as,
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U(1)(x⊥) = e
i
2 gaQ0(x+y)σ1

= cos
(
1
2

gQ0(x + y)
)

+ iσ1 sin
(
1
2

gQ0(x + y)
)

U(2)(x⊥) = e
i
2 gaQ0 xσ1

= cos
(
1
2

gQ0x
)

+ iσ2 sin
(
1
2

gQ0x
)
.

(5.19)

For the background acting on the quark fields in the forward light cone, we must define the appropriate

minimal gauge link variable. One could naively consider the addition of the gauge field corresponding

to both nuclei, however such a prescription fails to preserve unitarity, instead,

Ui = (U (1)
i + U (2)

i )(U (1)†
i + U (2)†

i )−1, (5.20)

one can easily confirm that such prescription is consistent at τ→ 0+ since the above expresion reduces

to U (1)
i at x+ = 0, x− > 0 and to U (2)

i at x− = 0, x+ > 0 as it should. The discretization procedure

that takes into account a nontrivial background should be expressed through the above defined link

variables in the covariant derivatives, namely

ψ̂a
τ+dτ =

(
1 − imdτγ0

)
ψ̂a
τ −

dτ
2 dxiγ

0γi
(
Uab

i (x⊥)ψ̂b, xi+dxi

τ − U†ab
i (x⊥ − î)ψ̂b, xi−dxi

τ

)
− iν

1
τ

dτγ0γ3Uab
i (x⊥)ψ̂b

τ,

(5.21)

the wavefunctions correspond to the negative energy solutions but for the sake of clearness of the

notation we omit them from this point on. At τ → 0+ the quark fields feel as a result a finite electric

and magnetic field. The components Aa
(m)µ have the same color configuration and so the magnetic field

easily follows from the commutator indicated below.

The gauge field at initial time is composed by the addition of the gauge vector of both nuclei,

Ai(τ = 0, x⊥) = Ai
(1)(x⊥) + Ai

(2)(x⊥). (5.22)

From the initial conditions we have both chromo -electric and -magnetic fields given by,
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Eη = ig
(
[A(1)

1 , A(2)
1 ] + [A(1)

2 , A(2)
2 ]

)
,

Bη = −ig
(
[A(1)

1 , A(2)
2 ] + [A(2)

1 , A(1)
2 ]

)
.

(5.23)

With our parametrization for the constant SU(2) background gauge fields (5.16), the chromo -electric

and -magnetic fields are Eη = 2gQ2
0σ

3 and Bη = 2gQ2
0σ

3 respectively. It is worth noting that we

are no longer required to impose a time profile onto the gauge field configuration to achieve finite

electric field as in the Abelian U(1) field case where Ei = F0i. Instead we have finite longitudinal

chromo-electric and magnetic fields arising from the commutator and so we are no longer bound to

the unphysical switch on and switch off singularities from the previous simulation.

5.3 Expectation Values of the Currents

In this section we will compute some physical observables of interest such as number density

currents produced as a response of the interaction. The quantized quark field operator in the forward

light cone can be expanded as,

Ψ̂(x) =
∑
a=1,2

∑
s=±

∫
d2 k⊥dν
2(2π)4

[
âk⊥νsa ψ

(+)
k⊥νsa(x) + b̂†k⊥νsa ψ

(−)
k⊥νsa(x)

]
, (5.24)

Ψ̂(x) =
∑
a=1,2

∑
s=±

∫
d2 k⊥dν
2(2π)4

[
b̂k⊥νsa ψ

(+)
k⊥νsa(x) + â†k⊥νsa ψ

(−)
k⊥νsa(x)

]
, (5.25)

where the hat notation over the wave-functions is omitted to avoid unnecessary confusion. The

four-current operator is then given by jµ(x) = ψγµψ however we will find a divergence in its zero-

component in order to avoid it, anti-symmetrization over pairs of fermion fields can get rid of this

divergences. An expression of the form ψ†αAαβψα with Aαβ a matrix of complex numbers, then

1/2Aαβ(ψ
†
αψα − ψαψ

†
α) ≡ [ψ†, Aψ] We can evaluate the “vacuum” expectation of this current oper-

ator and find that only the b̂pb̂
†
p term remains non-vanishingly as
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Jµ = gτ
∫

dηd2x⊥ψγµψ −→ g
τ

2

∫
dηd2x⊥

[
ψ, γµψ

]
, (5.26)

from where charge and vector currents can be computed,

Q = g
τ

2

∫
dηd2x⊥

[
ψ†, ψ

]
, Ji = g

τ

2

∫
dηd2x⊥

[
ψ, γiψ

]
. (5.27)

This is a standard calculation, it is not hard to show that the quantity above yields,

Q = g
∑
a=1,2

∑
s=±

∫
dνd2 k⊥
2(2π)4

[
âs†

p âs
p − b̂s†

p b̂s
p

]
. (5.28)

As expected the expectation value of the particle density operator vanishes in vacuum for the free

particle case. As we shall see this is not the case when we introduce the homogeneous gauge A′. Let

us, perform the evaluation for the expectation value of the chiral charge j0
5(τ) at a given τ. Since the

mode functions satisfy the free initial condition, the creation and annihilation operators from (5.25)

define the in-vacuum. The vacuum expectation of any bilinear operator, and in particular the currents,

can be expressed in terms of the mode functions. For the operator in the form Ψ̂(x)MΨ̂(x) we compute

its expectation value by expanding in the mode functions,

〈0|Ψ̂(x)MΨ̂(x)|0〉 =
∑
s,a

∫
dνd2 k⊥
2(2π)4 ψ̂

(−)†
k⊥νsa(x)γ0Mψ̂(−)

k⊥νsa(x), (5.29)

where could be M = γmu or some other spin matrix, in our case of interest M = γµγ5. We are

particularly interested in axial density current jµ5 = 〈0|Ψ(x)γµγ5Ψ(x)|0〉. However, since this current

is defined in the Cartesian coordinates, the field operator that appears in the right hand side is as well.

Ψ is related to its boosted counterpart Ψ̂ in the same way its mode functions are in (5.7), that is,

Ψ̂ =
√
τe−

η
2γ

0γ3
Ψ, (5.30)
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rewritting the axial current in terms of these boosted field operator yields,

jµ5(x) =
1
τ
〈0|Ψ(x)e−

η
2γ

0γ3
γµγ5 e

η
2γ

0γ3
Ψ(x)|0〉. (5.31)

However we are considering a boost invariant expanding system and so it is more convenient to com-

pute the current which is observed in the Bjorken frame. This can be achieved by simply applying a

Lorentz boost to the previously defined current ĵµ5 = Λ
µ
ν jν5, where the hat denotes a boosted quantity.

In this way ĵµ5(x) = 1
τ
〈0|Ψ̄(x)γµγ5Ψ̄(x)|0〉 the boosted current is no longer dependent on the η coor-

dinate, since the η dependence of the wave functions also disappears when the background is boost

invariant. The overall 1/τ which appears in the currents is natural if one recalls that the quantity we

are dealing with is a current density.

We are now interested in evolution of the chiral charge density which under the effect of a non-

abelian CP-odd background field. To this end we once more make use of the gauge field configuration

as described in the previous section (5.16). First, let us compute the expectation value of j0
5 when

τ→ 0 making use of the explicit expression for the initial condition (5.13),

ĵ0
5(τ) =

1
τ
〈0|Ψ̂(x)γ0γ5Ψ̂(x)|0〉 =

1
τ

∑
s,a

∫
dνd2 k⊥
2(2π)4 ψ̂

(−)†
k⊥νsa(x)γ5ψ̂

(−)
k⊥νsa(x), (5.32)

for this purpose let us compress the initial condition by making use of the following definitions,

φ(1)
p = e−

νπ
2

 M2
pτ

2Mk

−iν

Γ

(
1
2

+ iν
)

U†1(x⊥)Ũ1(p⊥ + k⊥)

φ(2)
p = e+ νπ

2

 M2
pτ

2Mk

+iν

Γ

(
1
2
− iν

)
U†2(x⊥)Ũ2(p⊥ + k⊥).

(5.33)

As it is now usual, we proceed to evaluate this quantity by making use of the explicit expression for

negative energy wave function and performing the spin and color sums,
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∑
s,a

∫
dνd2 k⊥
2(2π)4 ψ̂

(−)

k⊥νsaγ
0γ5ψ̂

(−)
k⊥νsa =

1
2(2π)2

∑
s,a

∫
dν

∏
σ={k⊥,p⊥,q⊥}

∫
σ

1
Mσ

e−i(p⊥−q⊥)·x⊥

× χ†av̄s(k⊥, 0)(piγi + m)
(
φ(1)†

p γ+ + φ(2)†
p γ−

)
γ0γ5

(
φ(1)

q γ
+ + φ(2)

q γ
−
)

× (qlγl + m)vs(k⊥, 0)χa

=
1

2(2π)2

∫
dν

∏
σ={k⊥,p⊥,q⊥}

∫
σ

1
Mσ

e−i(p⊥−q⊥)·x⊥

× trsp×c

[
(piγi + m)(Mkγ

0 − k jγ j − m)(qlγl + m)

×
(
φ(1)†

p γ+ + φ(2)†
p γ−

)
γ0γ5

(
φ(1)

q γ
+ + φ(2)

q γ
−
)]
,

(5.34)

again, just like the calculation of the fermion number density j0, we focus on the spin trace to break

down this expression into a more compact form.

trsp×c

[
(piγi + m)(Mkγ

0 − k jγ j − m)(qlγl + m)
(
φ(1)†

p γ+ + φ(2)†
p γ−

)
γ0γ5

(
φ(1)

q γ
+ + φ(2)

q γ
−
)]

= i trsp×c

[
γ0(piγi + m)(Mkγ

0 − k jγ j − m)(qlγl + m)γ1γ2
(
φ(1)†

p γ+ + φ(2)†
p γ−

)
γ3

(
φ(1)

q γ
+ + φ(2)

q γ
−
)
γ0

]
.

(5.35)

Here, let us rewrite the last portion of the trace,

(
φ(1)†

p γ+ + φ(2)†
p γ−

)
γ3

(
φ(1)

q γ
+ + φ(2)

q γ
−
)
γ0 =

(
φ(1)†

p φ(1)
q − φ

(2)†
p φ(2)

p

)
+ γ0γ3

(
φ(1)†

p φ(1)
q + φ(2)†

p φ(2)
p

)
(5.36)

From this point it is not hard to see that the spin trace picking up the later term will automatically

vanish as neither i,j or l involve the third component and thus such term can be dropped. Terms with

pair number of gamma matrices survive, out of these, only the term proportional to Mk survives, this

leads to,
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M=0.63 Q0

M=0.01 Q0

FIG. 5.4: τ > 0 evolution of the expectation value of j0
5(τ) computed by means of the τ-evolved wave

function at arbitrary point x⊥ = (1, 1), η = 1 under constant SU(2) background field parametrized by

Q0 = 0.5. The lattice volume 83, i.e. Nx,y,η = 8. τ0 = 10−5 was considered for the initial wave function

5.13. Axial charge and proper time were scale to dimensionless units by Q0.

ĵ0
5 =

1
2(2π)2τ

−1
∫

dν
∏

σ={p⊥,q⊥}

∫
σ

1
Mσ

e−i(p⊥−q⊥)·x⊥4i(q1 p2 − q2 p1)
∫
{k⊥}

trc

(
φ(1)†

p φ(1)
q − φ

(2)†
p φ(2)

p

)
= 0.

(5.37)

Here, the integration of k⊥ integration in the right side can be carried out explicitly by making use of

the explicit form of φ(1,2)
p defined at (5.33). However, for arbitrary gauge configurations, due to the

unitarity of the U-matrices the following relation holds,

∫
{k⊥}

Ũ†i (p⊥ + k⊥)Ũi(q⊥ + k⊥) = (2π)2δ2(p⊥ − q⊥), (5.38)

from where it is evident that j0
5 will vanish as the k⊥ integration implies through Eq. (5.38) that

p⊥ = q⊥ and thus the is exactly zero for τ→ 0.
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While the electric current can be obtained by an analogous expression. In the latter case its zero-

component should tell us about the time evolution of the particle number density. Whatever the case,

since we are working with massive quark fields. For the numerical computation, we restricted the

momentum domain only to half of the first Brillouin zone as to avoid cancellation of the anomaly by

the doublers. The longitudinal momentum integration has been performed discretizing the η direction

where periodic boundary conditions where imposed.

Let us finally see how the axial charge density responds to finite mass. As it can be seen from the

numerical simulation shown at 5.4, the proper time evolution of j0
5 is damped by the finite mass. This

is very non-trivial as it cannot be directly inferred from axial Ward identity,

∂µ jµ5 = −
g2

16π2 tr{FµνF̃µν} + 2mψ̄iγ5ψ, (5.39)

where the time integrated zero component yields,

j0
5 = −

g2

4π2

∫ t

0
〈Ea · Ba〉 dt′ + 2im

∫ t

0

〈
ψ̄γ5ψ

〉
dt′, (5.40)

on the right hand side we recognize the first term as the contribution coming from the chiral anomaly

responsible for the axial charge non-conservation in the massless limit and the second term propor-

tional to the quark mass responsible for the mixing of different chiral components. However, given

the proper conditions chirality might be conserved. For instance, in the case electromagnetic -electric

and -magnetic fields explored in the previous chapter, no axial charge is generated for perpendicular

fields even for massive quarks starting from the vacuum state. The chirality for a massive quark is a

Lorentz-frame dependent quantity and therefore not necessarily conserved in every frame. The mass

term is usually neglected in the axial Ward identity, e.g. when studying the axial charge, however we

do know that from the Schwinger pair production, as discussed in the previous chapter, that the quark

mass can considerably suppress pair production and hence affect chirality imbalance. The quark ini-

tial conditions (5.13) are crucial to the description of j0
5, in Fig. 5.4 we present the production of

chirality imbalance for different quark masses as a function of proper time.

All quantities have been scaled by the intensity of the gauge field Q0. To get an order of magnitude



5.3 Expectation Values of the Currents 85

estimates we have to set the scale, let us assume chromo-electric and chromo-magnetic field intensities

of the order of the gluon saturation scale, i.e. g|Ea| = g|Ba| ∼ Q2
sat [67, 68]. Considering the RHIC

values for the gluon saturation momentum Qsat ∼ 1 GeV, implies Q0 ∼ 0.7 GeV. This translates

in Fig. 5.4 as quark mass values m = 7 MeV of the order of the up and down quark masses in

the upper plot and for m = 420 MeV between the strange and bottom quark mass at the bottom.

The magnitude of the axial charge follows in the same manner; τQ0 = 0.4, which means proper

time τ ∼ 0.1 fm where the axial charge density is j0
5 ∼ 10−2Q3

0, for our value of Q0, this means

j0
5 ∼ 3.5 × 10−3GeV3 for the light sector. This estimate falls in line with the initial profile of axial

charges used in the anomalous hydrodynamic simulations [14] where by assuming spatially random

configuration for the axial charge density. In [14], the charge-dependent correlation functions γ++,

γ−− and γ+− are computed as a function of centrality included in the profile of the magnetic field

via impact parameter b and compared to the STAR data Fig. 2.9. The results in show qualitative

agreement however are inevitably subject of large uncertainties coming from the lack of knowledge

on the initial configuration which arises from the dynamics at the early-time regime. The initial

distribution of axial charges is indispensable to the observed charge asymmetry at the relativistic

heavy ion collisions. It is not known how to disentangle the signal from background effects in the

observable γαβ with α, β ∈ {+,−} proposed for observations. In fact, model calculations have shown

that under certain circumstances the background contributions could in principle mimic the observed

charge asymmetry at the STAR data [69], and it is therefore imperative to improve the description of

the early-time regime dynamics.

We have here provided the first real-time simulation of axial charge production in the expanding

geometry and studied the systems response to finite quark mass. We have assumed for simplicity

a constant SU(2) background field, the non-abelian nature of the background allowed us to get rid

of the unphysical ambiguity of the sudden switch on and switch off as it is no longer necessary to

impose a time profile as in the abelian case. However, it would be interesting to enhance this picture

by introducing dynamical soft gluon modes instead. This extension is can be readily implemented in

our formulation and represents the immediate follow-up to this work, to presented elsewhere. Further
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extensions including non-trivial interplay with external electromagnetic U(1) fields would be of inter-

est, as it would provide a way to study chiral plasma instabilities within the heavy-ion collision setup

that must be explored. With this work, we attempt to provide a better understanding on the dynamics

of axial charge generation within the early-stages of the heavy-ion collisions with CGC motivated

setups, considering for the expanding geometry and its response to finite quark mass.
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Conclusion

The ultra-relativistic heavy-ion collision experiments represent a unique laboratory for the most

intriguing phenomena unique to strong interacting systems. The Chiral Magnetic Effect has been the

focus of attention for several years now, providing a promising path to test the topologically non-trivial

vacuum and it could denote a signal for deconfinement in heavy ion collisions. Given its implications,

it is highly desirable to search for signals of the vector current within heavy ion experiments. The

CME current requires strong magnetic fields on top chirallity imbalanced medium. There have been

several studies in which by means of anomalous hydrodynamics and chiral kinetic theory approaches

attempt to characterize the CME current. The intensities of the magnetic fields generated at the

peripheral collisions are indeed enough to trigger the current generation, however, they are short

lived. The lifetime of the transient magnetic fields is as short as Q−1
sat ∼ 0.2 fm/c for RHIC and

Q−1
sat ∼ 0.1 fm/c for LHC. On top of this, most of quarks and antiquark pairs are produced from the

very beginning [19]. This implies that the relevant the production of the current should be studied

in the early-time regime of the collision whose dynamics is governed by the Color-Glass-Condensate

framework. In this thesis, the dynamics of axial charge density was addressed in terms of quark

production using CGC-motivated setups. Previous studies usually neglect the mass term contribution,

however, fermion pair production is severely suppressed as it can be understood from Schwinger

effect. We showed the suppression of axial charge by finite quark mass in a finite box and expanding

systems. The generation of the dynamical Chiral Magnetic Effect current was simulated, enhanced

87
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by finite perpendicular component of the magnetic field on top of chirally imbalanced medium but

inheriting the same exponential damping behaviour induced by finite mass. Discretization of Dirac

equation inevitably gives rise to unphysical doublers which cancelling the chiral anomaly according to

the Nielsen-Ninomiya theorem. In order to pick up the right contribution from the anomaly, the effect

coming from the unphysical doublers were studied. The simulations were performed by introducing

a cut-off in momentum space restricting to only half of the Brillouin zone. The validity for this

prescription was established by contrasting the naive fermion set-up in the half-cut Brillouin and a

system of Wilson fermions in the full Brillouin zone. This is quite non-trivial as the smearing of

the particle distribution functions in momentum space by the magnetic field could in principle be

contaminated by the doublers if the distribution does not decay rapidly enough at the edges.

The effects of the quantum anomaly in out-of-equilibrium system are believed to be of crucial

importance in the astrophysical context [70] where it has been reported that the exchange of fermionic

chirality and magnetic helicity could lead to instability of the system, phenomenon known as chiral

plasma instability [71, 72]. In these scenarios the fermion mass is believed to have the role suppressing

the production of chirality and must be taken into account when studying chiral plasma instability

[73]. Such a situation might also take place in ultra-relativistic heavy-ion collisions as well, hence,

characterizing the damping effect of the axial charge by finite quark mass becomes necessary. Besides

the finite box system, we showed in this thesis, that the damping effect perdures in the expanding

geometry. Using the quark initial conditions at τ → 0+ recently reported in [19], simulations of the

axial charge density were performed for constant SU(2) background field. The non-abelian nature

of the background gauge fields allowed implement longitudinal chromo -electric and magnetic fields

without the need to impose a time profile onto them as one would in the U(1) case. In this way we

disposed of the unphysical singularity coming from the sudden switch on and off of the background

manifested in the oscillations of the momentum distribution.

As an extension of this work, it is of interest to see whether the observed mass effect hold in more

realistic setups considering the dynamical color fields from the CGC framework, characterizing the

proper time scales and magnitudes relevant to the anomalous transport in a more quantitative way. It
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is of interest is see how the CGC color fields affect pair production and the proving this setup with

external electromagnetic fields attaining a more realistic frame that addresses the ultra-relativistic

heavy ion collision experiments. It would be amusing to extend our real-time simulations of out-

of-equilibrium axial charge density performed here to scenarios of electroweak baryogenesis [74] as

well.
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Appendix A

Concistenty Checks

A.1 Computation of the j0 Expectation Value

First let us restrict to the case of vanishing external fields. In this case, we have that both positive

and negative energy wave functions are described by Hankel functions of first (second) type. j0 can

be explitly obtained,

ĵ0(τ) =
1
τ

∑
s,a

∫
dνd2 k⊥
2(2π)4

(
|ψ̂(−)

k⊥νsa|
2 − |ψ̂(+)

k⊥νsa|
2
)
. (A.1)

For the sake of brevity we adopt the notation
∫
{k⊥}

=
∫

d2 k⊥
(2π)2 . The explicit form of the negative energy

quark field in the absence of a backgauge field reads,

ψ̂(−)
k⊥νsa(x) = −iπ

√
τe

πν
2 eiνη−ik⊥·x⊥

{
e−i π4 H(1)

− 1
2−iν

(Mkτ) P+

+ ei π4 H(1)
1
2−iν

(Mkτ) P−

}
vs(k⊥, y = 0),

(A.2)

where the positive energy free quark field is similarly obtained, in terms of second type Hankel func-

tions. Taken into account these two expressions the zero component of the vector current (A.1) yields,
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ĵ0(τ) =
π2

2(2π)2

∑
s,a

∫
dν

∫
{k⊥}

χ†a

[
eπνv̄s(k⊥, 0)γ0

(
|H(1)
− 1

2−iν
(Mkτ)|2P+ + |H(1)

1
2−iν

(Mkτ)|2P−

)
vs(k⊥, 0)

−e−πνūs(k⊥, 0)γ0
(
|H(2)
− 1

2−iν
(Mkτ)|2P+ + |H(2)

1
2−iν

(Mkτ)|2P−

)
us(k⊥, 0)

]
χa.

(A.3)

We can readily perform the spin and color sums of this operator resulting into the following trace,

ĵ0(τ) =
1
8

∫
dν

∫
{k⊥}

trsp×c

[
eπνγ0

(
|H(1)
− 1

2−iν
(Mkτ)|2P+ + |H(1)

1
2−iν

(Mkτ)|2P−

)
(Mkγ

0 − piγi − m)

−e−πνγ0
(
|H(2)
− 1

2−iν
(Mkτ)|2P+ + |H(2)

1
2−iν

(Mkτ)|2P−

)
(Mkγ

0 − piγi + m)
]
.

(A.4)

Because of the spin trace only terms most terms vanish and the only term that contributes comes from

Mkγ
0,

ĵ0(τ) =
Nc

8

∫
dν

∫
{k⊥}

Mk trsp

[
eπν

(
|H(1)
− 1

2−iν
(Mkτ)|2 + |H(1)

1
2−iν

(Mkτ)|2
)

−e−πν
(
|H(2)
− 1

2−iν
(Mkτ)|2 + |H(2)

1
2−iν

(Mkτ)|2
)]
.

(A.5)

On the first term we perform the change of variable ν→ −ν,

ĵ0(τ) =
Nc

2

∫
dν

∫
{k⊥}

Mk

[
e−πν|H(1)

− 1
2 +iν

(Mkτ)|2 + eπν|H(1)
1
2−iν

(Mkτ)|2

−e−πν|H(2)
− 1

2−iν
(Mkτ)|2 − eπν|H(2)

1
2 +iν

(Mkτ)|2
]
.

(A.6)

At this point by noting that analityc continuation of these Hankel functions, i.e. [H(1,2)
w (z)]∗ =

H(2,1)
w∗ (z∗), we can readily see how the cancellation takes place,
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ĵ0(τ) =
Nc

2

∫
dν

∫
{k⊥}

Mk

[
e−πνH(2)

− 1
2−iν

(Mkτ)H(1)
− 1

2 +iν
(Mkτ) + eπνH(2)

1
2 +iν

(Mkτ)H(1)
1
2−iν

(Mkτ)

−e−πνH(1)
− 1

2 +iν
(Mkτ)H(2)

− 1
2−iν

(Mkτ) − eπνH(1)
1
2−iν

(Mkτ)H(2)
1
2 +iν

(Mkτ)
]

= 0.
(A.7)

In the case of finite external fields we can still calculate analytically once obtained the explicit

expresions for the wave function of both positive and negative energy wave functions. That is from

the initial condition of the quark field Eq. (5.13) and

ψ̂(+)
k⊥νsa FS(x) =

τ→0+
πe−i π4 U†1(x⊥)U†2(x⊥)

√
2

Mk

eiνηe+ik⊥·x⊥

cosh(πν)

×

 e
πν
2

Γ
(

1
2 − iν

) (Mkτ

2

)−iν

P+ +
e−

πν
2

Γ
(

1
2 + iν

) (Mkτ

2

)iν

P−

 us(k⊥, y = 0).
(A.8)

Let us examine the ψ̂(+)
k⊥νsa(x) and ψ̂(−)

k⊥νsa(x) separately, just as observed in the previous case we expect

cancellation between this two parts at the end,

∑
s,a

∫
dνd2 k⊥
2(2π)4 |ψ̂

(−)
k⊥νsa|

2 =
1

2(2π)2

∑
s,a

∫
dν

∏
σ={k⊥,p⊥,q⊥}

∫
σ

1
Mσ

e−i(p⊥−q⊥)·x⊥χ†av̄s(k⊥, 0)

× (piγi + m)
(
φ(1)†

p γ+ + φ(2)†
p γ−

)
γ0

(
φ(1)

q γ
+ + φ(2)

q γ
−
)

(qlγl + m)vs(k⊥, 0)χa

=
1

2(2π)2

∫
dν

∏
σ={k⊥,p⊥,q⊥}

∫
σ

1
Mσ

e−i(p⊥−q⊥)·x⊥

× trsp×c

[
(piγi + m)(Mkγ

0 − k jγ j − m)(qlγl + m)
(
φ(1)†

p γ+ + φ(2)†
p γ−

)
γ0

(
φ(1)

q γ
+ + φ(2)

q γ
−
)]
,

(A.9)

where we have used the following definitions,
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φ(1)
p = e−

νπ
2

 M2
pτ

2Mk

−iν

Γ

(
1
2

+ iν
)

U†1(x⊥)Ũ1(p⊥ + k⊥)

φ(2)
p = e+ νπ

2

 M2
pτ

2Mk

+iν

Γ

(
1
2
− iν

)
U†2(x⊥)Ũ2(p⊥ + k⊥).

(A.10)

By evaluating the trace above one obtains,

∑
s,a

∫
dνd2 k⊥
2(2π)4 |ψ̂

(−)
k⊥νsa|

2 =
1

2(2π)2

∫
dν

∏
σ={k⊥,p⊥,q⊥}

∫
σ

1
Mσ

e−i(p⊥−q⊥)·x⊥

× trsp×c

[
(piγi + m)(Mkγ

0 − k jγ j − m)(qlγl + m)γ0

×
(
φ(2)†

p φ(2)
q γ

−γ+ + φ(1)†
p φ(1)

q γ
+γ−

)]
=

2
(2π)2

∫
dν

∫
{k⊥}

∫
{p⊥}

1
Mp

∫
{q⊥}

1
Mq

e−i(p⊥−q⊥)·x⊥(q⊥ · p⊥ + m2)

× trc

[
φ(2)†

p φ(2)
q + φ(1)†

p φ(1)
q

]
.

(A.11)

The integrand depends on k⊥ only through the gauge fields and so in can be its integral can be

explicitly performed,

∫
{k⊥}

Ũ†i (p⊥ + k⊥)Ũi(q⊥ + k⊥) = (2π)2δ2(p⊥ − q⊥), (A.12)

∑
s,a

∫
dνd2 k⊥
2(2π)4 |ψ̂

(−)
k⊥νsa|

2 =
4Nc

(2π)2

∫
dν

∫
{p⊥}

cosh(νπ)
M2

p

∣∣∣∣∣∣Γ
(
1
2
− iν

)∣∣∣∣∣∣2 (p2
⊥ + m2)

=
4Nc

(2π)2

∫
dν

∫
{p⊥}

∣∣∣∣∣∣Γ
(
1
2
− iν

)∣∣∣∣∣∣2 cosh(νπ) =
Nc

π

∫
dν

∫
{p⊥}

,

(A.13)

where we have made use of the identity,

Γ

(
1
2
− iν

)
Γ

(
1
2

+ iν
)

=
π

cosh(πν)
. (A.14)
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Similarly we compute the contribution from the positive energy wave function to the j0,

∑
s,a

∫
dνd2 k⊥
2(2π)4 |ψ̂

(+)
k⊥νsa|

2 =
1
4

∑
s,a

∫
dν

∫
{k⊥}

1
Mk

χ†aūs(k⊥, 0)γ0

×
1

cosh(πν)2

 e
πν
2

Γ
(

1
2 − iν

) (Mkτ

2

)−iν

P+ +
e−

πν
2

Γ
(

1
2 + iν

) (Mkτ

2

)iν

P−


×

 e
πν
2

Γ
(

1
2 − iν

) (Mkτ

2

)−iν

P+ +
e−

πν
2

Γ
(

1
2 + iν

) (Mkτ

2

)iν

P−

 us(k⊥, 0)χa,

(A.15)

due the projectors in the integrand this quantity can be readily be written a compact form,

∑
s,a

∫
dνd2 k⊥
2(2π)4 |ψ̂

(+)
k⊥νsa|

2 =
1
4

∑
s,a

∫
dν

∫
{k⊥}

1
Mk

1
cosh(πν)2χ

†
aūs(k⊥, 0)γ0

×
1∣∣∣∣Γ (

1
2 + iν

)∣∣∣∣2
(
eπνP+ + e−πνP−) us(k⊥, 0)χa.

(A.16)

Now we take the spin and color sums as usual which yields,

∑
s,a

∫
dνd2 k⊥
2(2π)4 |ψ̂

(+)
k⊥νsa|

2 =
1
4

∫
dν

∫
{k⊥}

1
Mk

1
cosh(πν)2

1∣∣∣∣Γ (
1
2 + iν

)∣∣∣∣2
× trsp×c

[
(Mkγ

0 − k jγ j + m)(γ0 cosh(πν) + γ3 sinh(πν))
]

= Nc

∫
dν

∫
{k⊥}

1
cosh(πν)

1∣∣∣∣Γ (
1
2 + iν

)∣∣∣∣2 =
Nc

π

∫
dν

∫
{k⊥}

,

(A.17)

and so we can clearly see how at τ → 0+ both contributions from the negative and positive energy

wave functions are independant of the background gauge field and cancel each other our resulting in

vanishing fermion number j0.
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A.2 Orthogonality Relation

The quark fields in the forward light-cone are orthonormal under the conserved inner product at

the constant τ hypersurface, defined as

(
ψ
∣∣∣χ)

τ
= τ

∫
dηd2x′⊥ψ̂

†(τ, x′⊥, η)χ̂(τ, x′⊥, η), (A.18)

where the hat notation denotes that we are dealing with the boosted spinors. The orthonormality of

the quark fields under this product follows as,

(
ψ(−)

k⊥νsa

∣∣∣∣ψ(−)
k′⊥ν′s′a′

)
= 2(2π)4δ(k⊥ − k′⊥)δ(ν − ν′)δss′δaa′ . (A.19)
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