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Abstract

Materials can be classified into metals or insulators from the viewpoint of the electric
conduction. Exploration of exotic electronic phases beyond the conventional framework
of the band theory has been a challenging subject in condensed matter physics.

More than 50 years ago, emergence of the excitonic insulator phase, a quantum con-
densed state of electron–hole pairs, was theoretically proposed as a new ground state at
the boundary between metal and insulator. Although numbers of experimental attempts
have been devoted to search the realization of the excitonic insulator phase, the concrete
evidence have never been reported up to the present.

The boundary region between metal and insulator comes to attract renewed inter-
ests in viewpoints of topology in condensed matter physics. The topological materials
are characterized by their non-trivial band topology and high mobility carriers obeying
the relativistic Dirac equation. Since Dirac equation originally describes the motion of
particles with high velocity close to the light speed, transport properties of topological
materials attract general interest beyond the field of condensed matter physics. Actually,
numbers of unconventional behaviors have been reported experimentally, yet the essence
stemming from the non-trivial topology of the band structure remains unclear since
the interpretation of experimental results is often hindered by their complex electronic
structures.

Common to these topics, model materials having simple and controllable band struc-
ture are needed. As candidates for such materials, two narrow-gap semiconductors, black
phosphorus (BP) and lead telluride (PbTe), were investigated in this thesis.

We utilized static magnetic fields up to 14 T and pulsed magnetic fields up to 55
T. The electrical transport measurements under pressure were performed in static fields
with piston-cylinder-type pressure cell. Resistivity, magnetization, and ultrasonic mea-
surement techniques under pulsed high magnetic fields were utilized in this study.

BP is known as a high mobility semiconductor with narrow direct band gap. The
band gap is suppressed by applying hydrostatic pressure, and is expected to collapse
at a certain pressure. This suggests that the band structure can be tuned continuously
from semiconductor to semimetal, which is an ideal playground to explore the exotic
states in the vicinity of the semiconductor-semimetal (SC-SM) transiton. Since only
carriers near the narrowest band gap govern the physical properties, BP under pressure is
regarded as a quite simple playground. Although several previous studies demonstrated
the metallization under pressure, the details of the electronic states around the SC-SM
transition was unclear. Thus, we intend to clarify the electronic structure in the vicinity
of the SC-SM transition.

We investigated the electrical transport properties in pressurized BP under high mag-
netic fields. In semiconducting states below 1 GPa, we observed the magneto-phonon
resonance (MPR), which is a quantum transport phenomenon showing up in high mobil-
ity semiconductors. Through the analysis of the MPR, we identified a reduction of the
cyclotron mass with applying pressure, which is understood as a result of the band gap
reduction. At higher pressures, we observed clear Shubnikov-de Haas (SdH) oscillations,
which directly demonstrate the pressure-induced SC-SM transiton. We revealed the light
cyclotron masses and small carrier densities in the semimetallic state, which are compa-
rable with conventional elemental semimetals, bismuth and graphite. Further, the Fermi



surface of semimetallic BP becomes monotonically larger as pressure increases, which in-
dicates the tunability of carrier density by hydrostatic pressure. The origin of large and
non-saturating magnetoresistance in semimetallic BP was discussed by the semiclassical
two-carrier model. We found that the magnetoresistance cannot be fully reproduced by
the Drude model. Therefore, additional mechanisms such as change in carrier relaxation
time in magnetic fields have to be considered. In addition, the nearly compensated
nature and large difference of the mobilities between electrons and holes were clarified
from the two-carrier analyses. To explore the exotic electronic states near the SC-SM
transition, we measured the temperature dependence of the resistivity down to 43 mK
in magnetic fields. Although apparent semimetal-to-insulator-like change was observed
in the temperature dependence of the longitudinal and transverse magnetoresistance,
these phenomena were reasonably reproduced as trivial effects within the conventional
theory for metals in high magnetic fields.

PbTe is known as a degenerate direct-gap semiconductor, which has moderate carrier
density of ∼ 1018 cm−3 at low temperature. Substitution of Sn for Pb and application
of hydrostatic pressure reduce the band gap, and cause the topological phase transition
to the topological crystalline insulator (TCI). Recent theoretical study suggested that
the ratio of Zeeman energy to cyclotron energy (ZC ratio) can be used as a quantita-
tive index to determine the degree of similarity to the Dirac electron system, namely,
“Diracness” of materials. ZC ratio is known to be unity in a system with ideal two-
band Dirac Hamiltonian. Theoretical calculation expected that the ZC ratio increases
by substitution of Sn, and becomes unity at the zero-gap state, namely, the topological
phase transition point. This suggests the ralization of ideal Dirac electron system in
this material. PbTe is suitable to testify above new criterion to identify the “Dirac-
ness” for its simple band structure and strong spin-orbit effect. Besides, we can seek the
unconventional behavior by tuning the band topology from a trivial semiconductor to
TCI via the zero-gap state by manipulating external parameters. Based on motivations
mentioned above, we investigated various physical properties of PbTe and Pb1−xSnxTe
in magnetic fields.

We studied the electrical transport, magnetization, and elastic properties in PbTe,
and observed clear SdH, de Haas-van Alphen (dHvA), and acoustic dHvA oscillations.
We explained that the large second harmonic observed in the quantum oscillations is
due to the prominent spin-splitting in PbTe. We analyzed the spin-splitted quantum
oscillation based on the conventional Lifshitz-Kosevich formula, and found the oscillation
pattern was reproduced by the ZC ratio. The simple band structure of PbTe and high-
field measurements up to 55 T enabled us to unambiguously determine the ZC ratio
of 0.52. From these results, we clarified that PbTe is in the spin-polarized quantum
limit state above ∼35 T. We also observed large and non-saturating magnetoresistance
effect in both transverse and longitudinal configurations, which origin was remained as
an open question. In transport measurements under pressure, we observed slight upturn
of the ZC ratio in one sample, which indicates that the Diracness of PbTe is enhanced
by pressure.

ii



Acknowledgments

First of all, I would like to express my sincerest gratitude to my supervisor, Prof. M.
Tokunaga for his considerable support and a lot of insightful discussion during my mas-
ter’s and doctor’s courses. His passionate, sincere attitude toward science have always
stimulated my motivation to study.

To accomplish this work, I have received full cooperation from following people:
Dr. A. Miyake for overall experimental support; Prof. Y. Akahama for providing black
phosphorus samples; Prof. K. Matsubayashi and Prof. Y. Uwatoko for supporting
high-pressure experiments; Mr. H. Arai and Prof. Y. Fuseya for supporting theoretical
aspects; Prof. H. Sakai, Mr. K. Katayama, Mr. T. Sakamoto, Prof. N. Hanasaki,
and Prof. S. Takaoka for preparing PbTe and Pb1−xSnxTe samples; Prof. Y. Nakanishi
and Prof. M. Yoshizawa for supporting ultrasonic measurements under pulsed high
magnetic fields; and Dr. A. Matsuo, Mr. K. Kawaguchi, and Prof. K. Kindo for
providing opportunities to utilize high magnetic field environment. I am grateful to
their indispensable supports and discussion.

I also appreciate all members of International MegaGauss Science Laboratory, The
Institute for Solid State Physics, The University of Tokyo (Kindo, Tokunaga, Kohama,
Takeyama, Matsuda, and Osada groups) for variable discussion and fun time in daily
life.

I would like to appreciate JSPS Research Fellowship for Young Scientists for financial
support over two years in my doctoral course.

Finally, I express my gratitude for my family and friends for their support and
encouragement.

Kazuto Akiba

iii



Contents

Abstract i

Acknowledgments iii

List of figures vii

List of tables viii

1 General Introduction 1

1.1 Exotic States Near the Metal-Insulator Transition . . . . . . . . . . . . . 1

1.2 Topological Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 General Issues and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Experimental Methods 10

2.1 Essentials of the Electrical Transport Measurements . . . . . . . . . . . . 10

2.2 Resistivity Measurements under Pressure . . . . . . . . . . . . . . . . . . 13

2.3 Generation of Pulsed Magnetic Fields . . . . . . . . . . . . . . . . . . . . 16

2.4 Cryostat System in High-Field Measurements . . . . . . . . . . . . . . . . 20

2.5 Resistivity Measurements in Pulsed Magnetic Fields . . . . . . . . . . . . 22

2.6 Magnetization Measurements in Pulsed Magnetic Fields . . . . . . . . . . 24

2.7 Ultrasonic Measurements in Pulsed Magnetic Fields . . . . . . . . . . . . 26

2.8 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.1 Black Phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.2 PbTe and Pb1−xSnxTe . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Black Phosphorus 34

3.1 Basic Properties of Black Phosphorus . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Energy Band Structure . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Physical Properties at Ambient Pressure . . . . . . . . . . . . . . . 36

3.1.4 Physical Properties under Pressure . . . . . . . . . . . . . . . . . . 40

3.2 Purpose of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Temperature Dependence of the Resistivity at Various Pressures . 44

3.3.2 Quantum Transport Phenomena in Semiconducting Black Phos-
phorus —Magneto-Phonon Resonance— . . . . . . . . . . . . . . . 46

3.3.3 Quantum Transport Phenomena in Semimetallic Black Phospho-
rus —Shubnikov-de Haas Oscillation— . . . . . . . . . . . . . . . . 50

iv



3.3.4 Analyses of the In-Plane Transport Properties Based on the Two-
Carrier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.5 Exploration of Unconventional Electronic Phases on the Boundary
between Semiconducting and Semimetallic States . . . . . . . . . . 63

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Lead Telluride 67
4.1 Basic Properties of PbTe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Crystal and Energy Band Structure . . . . . . . . . . . . . . . . . 67
4.1.2 Physical Properties of PbTe . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Physical Properties of Pb1−xSnxTe . . . . . . . . . . . . . . . . . . 72
4.1.4 Topological Properties of Pb1−xSnxTe . . . . . . . . . . . . . . . . 73
4.1.5 Ferroelectric Transition in Pb1−xSnxTe . . . . . . . . . . . . . . . 77
4.1.6 Physical Properties of Pressurized PbTe . . . . . . . . . . . . . . . 78

4.2 Purpose of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Pristine PbTe at Ambient Pressure . . . . . . . . . . . . . . . . . . 80
4.3.2 Pb0.7Sn0.3Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Concluding Remarks 105
5.1 Summary of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Publications 108

A Computer Programs Composed for This Study 109
A.1 Numerical Lock-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2 Data Acquisition with Tektronix DPO5104B . . . . . . . . . . . . . . . . 115
A.3 Numerical Analysis of Ultrasonic Measurements . . . . . . . . . . . . . . . 125

v



List of Figures

1.1 Quantum limit state in high magnetic fields. . . . . . . . . . . . . . . . . . 2
1.2 Excitonic insulator phase in solids. . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Topological materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Basis of the electrical transport measurements. . . . . . . . . . . . . . . . 10
2.2 Resistivity measurements under high pressure. . . . . . . . . . . . . . . . 15
2.3 Structure of pulse magnets. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Generation of pulsed magnetic fields. . . . . . . . . . . . . . . . . . . . . . 18
2.5 Cryostat system in high-field measurements. . . . . . . . . . . . . . . . . . 20
2.6 Resistivity measurements under pulsed magnetic fields. . . . . . . . . . . . 22
2.7 Magnetization measurements in pulsed magnetic fields. . . . . . . . . . . . 24
2.8 Pulse-echo method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Digital technique for ultrasonic measurements in pulsed magnetic fields. . 28
2.10 Calculation flow diagram of the ultrasonic measurements. . . . . . . . . . 30
2.11 Samples investigated in this study. . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Crystal structure of black phosphorus. . . . . . . . . . . . . . . . . . . . . 35
3.2 Energy band structure of black phosphorus. . . . . . . . . . . . . . . . . . 37
3.3 Transport properties of black phosphorus at ambient pressure. . . . . . . 38
3.4 High pressure phases of black phosphorus. . . . . . . . . . . . . . . . . . . 41
3.5 Transport properties of black phosphorus under pressure. . . . . . . . . . 42
3.6 Pressure dependence of the optical phonon frequencies in black phosphorus. 42
3.7 Temperature dependence of the resistivity under pressure. . . . . . . . . . 44
3.8 Estimation of band gap from the temperature dependence of the resistivity. 45
3.9 Magneto-phonon resonance at ambient pressure. . . . . . . . . . . . . . . 47
3.10 Magneto-phonon resonance under pressure. . . . . . . . . . . . . . . . . . 48
3.11 SdH oscillations at 1.64 GPa under B ∥ a. . . . . . . . . . . . . . . . . . . 49
3.12 SdH oscillations at various pressures and their FFT spectra. . . . . . . . . 51
3.13 Pressure dependence of the FFT frequencies and cyclotron masses. . . . . 52
3.14 Longitudinal magnetoresistance ρzz and Landau-level fan diagram. . . . . 53
3.15 SdH oscillations and their FFT spectra under B along the b- and c-axis. . 55
3.16 Summary of the pressure dependence of the oscillation frequencies along

three field directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.17 First-principle calculation of the band structure and Fermi surface. . . . . 57
3.18 Two-carrier analyses at the semiconducting state. . . . . . . . . . . . . . . 59
3.19 Two-carrier analyses near and above the SC-SM transition. . . . . . . . . 61
3.20 Temperature dependence of resistivity under magnetic fields. . . . . . . . 63
3.21 Resistivity measurements using dilution refrigerator. . . . . . . . . . . . . 65

4.1 Crystal and energy band structures of PbTe. . . . . . . . . . . . . . . . . 68

vi



4.2 SdH oscillations in PbTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Spin-splitting in PbTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Composition dependence of the lattice constant and band structure in

Pb1−xSnxTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Topological surface states in Pb0.6Sn0.4Te. . . . . . . . . . . . . . . . . . . 73
4.6 Composition dependence of the inverse masses, g-factors and ZC ratios in

Pb1−xSnxTe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7 Ferroelectric transition in Pb1−xSnxTe. . . . . . . . . . . . . . . . . . . . . 76
4.8 Pressure induced topological phase transition in PbTe. . . . . . . . . . . . 77
4.9 Transport properties of #T sample. . . . . . . . . . . . . . . . . . . . . . 80
4.10 Angular dependence of the SdH oscillations. . . . . . . . . . . . . . . . . . 82
4.11 Magnetization of #T sample. . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.12 Origin of the large second harmonic observed in #T sample. . . . . . . . . 85
4.13 Simulation of the SdH oscillations based on the LK formula. . . . . . . . . 87
4.14 Angular dependence of the ZC ratio. . . . . . . . . . . . . . . . . . . . . . 88
4.15 Landau-level structures at several ZC ratios. . . . . . . . . . . . . . . . . . 89
4.16 Resistivity, magnetization, and elastic properties in pulsed high magnetic

fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.17 SdH oscillations of PbTe under pressure. . . . . . . . . . . . . . . . . . . . 92
4.18 Analysis of the SdH oscillations under pressure. . . . . . . . . . . . . . . . 94
4.19 Transport properties of #S sample. . . . . . . . . . . . . . . . . . . . . . . 96
4.20 Transport properties of #S sample under pulsed magnetic fields. . . . . . 97
4.21 Selection rule of carrier scattering in longitudinal magnetoresistance. . . . 98
4.22 Transport properties of #T30 sample. . . . . . . . . . . . . . . . . . . . . 100
4.23 Landau-level fan diagram of #T30 sample. . . . . . . . . . . . . . . . . . 101
4.24 Ultrasonic measurements of #T30 sample under pulsed magnetic fields. . 102
4.25 Fan diagrams constructed from various quantum oscillation phenomena. . 102

vii



List of Tables

1.1 Carrier densities and cyclotron masses of several semimetals and narrow-
gap semiconductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Comparison of the characteristic parameters between the electron-proton
and electron-hole systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Capacitor banks utilized for pulsed field generation. . . . . . . . . . . . . 16
2.2 Representative combinations of pulse magnets and capacitor banks. . . . . 16
2.3 Physical properties of PbTe (#T, S) and Pb0.7Sn0.3Te (#T30) samples. . 32

3.1 Structural parameters of black phosphorus . . . . . . . . . . . . . . . . . . 34
3.2 Physical quantities estimated from the transport measurements on p- and

n-type BP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Cyclotron and effective masses of black phosphorus. . . . . . . . . . . . . 39
3.4 Optical phonon modes in black phosphorus . . . . . . . . . . . . . . . . . 40

4.1 Cyclotron masses normalized by the electron mass, ZC ratios, and effective
g-factors of PbTe estimated in a previous study. . . . . . . . . . . . . . . . 71

viii



Chapter 1

General Introduction

1.1 Exotic States Near the Metal-Insulator Transition

Materials in the world can be classified into either insulator of metal from the viewpoint
of the electric conduction. Insulators are characterized by the energy gap between the
valence and conduction bands, and Fermi level (ϵF ) is inside the band gap. Ideally,
such materials do not have electrical conductivity at 0 K. The others are called metals,
in which ϵF is inside either the valence or conduction band. As a result, metals have
finite charge carriers even at 0 K. If we assume that the band structure can be continu-
ously controlled from insulator to metal by external parameters, what kind of electronic
state is expected in the marginal region between these two phases? Semiconductor and
semimetal are simple answers for above question based on the conventional band theory.
Semiconductor is characterized by moderate band gap G > 0 as shown in Fig. 1.1(a),
and shows finite conductivity by thermally excited carriers at low temperatures. Typi-
cal examples of the single-element semiconductor are Si, P (black), Ge etc. If a overlap
G < 0 between valence and conduction bands arises at ϵF as shown in Fig. 1.1(b), the
system is called semimetal, in which electrons and holes coexist even at 0 K. The typical
examples for compensated semimetals are bismuth and graphite, which have almost the
same numbers of electrons and holes with extremely small effective masses.

In semiconductors and semimetals, the physical properties are mainly determined by
the band structure only near the band gap or band overlap in the reciprocal space. Here,
we overview the general character of such a low-carrier system based on the simple k ·p
perturbation. We start from the one-electron Schrödinger equation,[

− ℏ2

2m0
∇2 + V (r)

]
Ψn,k(r) = En(k)Ψn,k(r). (1.1)

Here, ℏ = h/(2π), m0, V (r), Ψn,k(r) = eik·run,k(r), and En(k) represent reduced Planck
constant, bare mass of electron, periodic potential, Bloch function of nth band , and nth
eigen energy, respectively. For simplicity, the spin-orbit interaction is omitted in Eq.
(1.1). By substituting Ψn,k(r) in Eq. (1.1), we can obtain the expression with un,k(r)
as [

− ℏ2

2m0
∇2 + V (r) +

ℏ2k2

2m0
− ℏ

m0
k · p

]
un,k(r) = En(k)un,k(r), (1.2)

where p = iℏ∇. We assume that the exact solution of Eq. (1.2) is known in case of
k = 0:

H (0)un,0(r) =

[
− ℏ2

2m0
∇2 + V (r)

]
un,0(r) = En(0)un,0(r). (1.3)

1



2 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.1: Schematic energy band structure of (a) semiconductors with energy gap
G > 0 and (b) semimetals with band overlap G < 0. (c) Landau quantization of the
energy band in magnetic fields. k∥ represents the wavenumber along the magnetic field
direction. (d) Quantum limit state realized in high magnetic fields. Red arrow represents
the nesting vector with wavenumber 2kF characterizing the density wave state in the
quantum limit state. (e) Cyclotron orbit of electron in the quantum limit state.
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Bi (B ∥ Trigonal) [1, 2] graphite (B ∥ c) [3, 4] InSb [5] PbSe [6]

carrier electron hole electron hole electron electron
n (cm−3) 2.88× 1017 3.00× 1017 ∼ 3× 1018 ∼ 3× 1018 2× 1014 2.9× 1017

m∗/m0 0.0125 0.0678 0.038 0.057 0.0146 0.0410

Table 1.1: Carrier densities (n) and cyclotron masses (m∗) of typical semimetals (Bi and
graphite) and narrow-gap semiconductors (InSb and PbSe). The cyclotron masses are
normalized by the bare mass of electron (m0).

Then, we regard H ′(k) = ℏ2k2/(2m0) − ℏk · p/m0 as a perturbation to H (0) and
evaluate the energy band structure in the vicinity of k = 0. Assuming that un,0(r) are
non-degenerated, En(k) up to the order of k2 is expressed as

En(k) = En(0) +
ℏ2k2

2m0
+ ℏ2

∑
m ̸=n

⟨n|k · v |m⟩ ⟨m|k · v |n⟩
En(0)− Em(0)

(1.4)

= En(0) +
∑
µν

ℏ2

2
kµ

δµν
m0

+ 2
∑
m̸=n

⟨n| vµ |m⟩ ⟨m| vν |n⟩
En(0)− Em(0)

 kν (1.5)

= En(0) +
ℏ2

2
kα̂k. (1.6)

Here, v = p/m and µ, ν = x, y, z. 3× 3 matrix α̂ is called inverse mass tensor, and each
component is defined as

αµν =
δµν
m0

+ 2
∑
m ̸=n

⟨n| vµ |m⟩ ⟨m| vν |n⟩
En(0)− Em(0)

. (1.7)

In case that specific two bands are located quite close at k = 0 and the matrix elements of
velocity operator are finite, the contribution from the second term in Eq. (1.7) becomes
large because of the small denominator, and as a result, αµν takes large value. This
results in the small carrier effective mass mµν defined as inverse matrix of α̂, as seen in
many narrow-gap semiconductors and semimetals.

In such a system with low carrier density and small effective mass, we can observe
anomalously large response to the external magnetic fields, and have been extensively
studied as playgrounds for novel physics. In general, the energy band of a solid is
quantized into the Landau subbands EL

n with integer n = 0, 1, 2, . . . ignoring the effect
of spin as

EL
n =

(
n+

1

2

)
ℏωc +

ℏ2k2z
2mz

, (1.8)

where ωc = eB/m∗, kz, and mz represent the cyclotron frequency with cyclotron mass
m∗, wavenumber along the magnetic field, and effective mass along the magnetic field,
respectively. The Landau quantization is schematically shown in Fig. 1.1(c). In the
case of semimetals or narrow-gap semiconductors, m∗ can be much smaller than that
of normal materials as mentioned above. m∗/m0 of representative materials are shown
in Table 1.1. As a result, the quantity EL

n+1 − EL
n = ℏωc, namely, the separation be-

tween the adjacent Landau subbands can be greatly modified by increasing B. That is
why semimetals or narrow-gap semiconductors show remarkable “quantum effect” un-
der moderate magnetic fields. Actually, the quantum oscillation phenomena such as
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Figure 1.2: (a) Hydrogen atom and (b) exciton in solids. aBe-p,e-h represent the binding
radii in Bohr model (see text for details). (c) Phase diagram of the excitonic insulator
phase in the T–G plane [12]. T and G represent the temperature and band gap (overlap),
respectively.

Shubnikov-de Haas [7, 8] and de Haas-van Alphen [9, 10] oscillations were firstly discov-
ered in bismuth. The magneto-phonon resonance in high mobility semiconductor, which
is shown later in Sec. 3.3.2, can be cited as another example. We can consider an ex-
treme case called “quantum limit state”, in which all carriers are confined to the lowest
Landau level EL

0 in high-field limit as shown in Fig. 1.1(d). Although the realization
of the quantum limit state requires extremely high magnetic field more than 10000 T
in typical metals with ∆ ∼ 1 eV in Fig. 1.1(d) and m∗ ∼ m0, it can be realized below
100 T in some semimetals and degenerate semiconductors for their small ∆ and m∗.
Owing to the recent improvement of high-field generation techniques, magnetic fields up
to 100 T came to be generated in several pulsed high-field facilities. In the quantum
limit state, the orbital motion in the plane perpendicular to the field direction is con-
fined to the cyclotron orbit with the smallest radius as shown in Fig. 1.1(e), and thus,
only translational motion along the magnetic field direction is allowed. Owing to such
a “quasi-one-dimensional” band character, the system under quantum limit state has
an instability toward the density wave state, which has carrier modulation with Fermi
wavenumber 2kF [11] along the magnetic field direction.

Under the coexistence of electrons and holes, we can expect more fruitful physics
which originates from the Coulomb correlation between them. Here, we overview the
fundamental interest in electron-hole system by comparing it with electron-proton system
[13]. The simplest element in electron-proton systems is a hydrogen atom 1

1H [Fig.
1.2(a)]. The energy of electron orbit EBohr

n and its radius aBohr
n for the hydrogen atom
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system EB(eV ) aB (Å) EC at 10 T (eV)

electron-proton (e-p) 13.6 0.529 1.16× 10−3

electron-hole (e-h) 1.36× 10−5 5290 5.80× 10−2

Table 1.2: Comparison of the characteristic parameters between the electron-proton
and electron-hole systems. In electron-hole system, the effective mass and dielectric
constant are assumed to be 0.02m0 and 100ϵ0, respectively.

are expressed by well-known Bohr model with integer n = 1, 2, . . . as

EBohr
n = − e2

8πϵ0an
, (1.9)

aBohr
n =

ϵ0h
2n2

πe2µ
. (1.10)

Here, e, ϵ0, and h represent the elemental charge of electron, dielectric constant of
vacuum, and Planck constant, respectively. µ = M0m0/(M0 + m0) is the conversion
mass of proton (M0) and electron (m0) mass, and is approximated µ ∼ m0 in case of
hydrogen atom (M0 ≫ m0). Based on Eqs. (1.9) and (1.10), the ground state of 1

1H
has the binding energy EB

e-p = |EBohr
0 | = 13.6 eV and radius aBe-p = aBohr

0 = 0.529 Å.
Here, we assume the application of the magnetic field of 10 T to hydrogen atom. The
energy scale of the magnetic field is represented by cyclotron energy EC

e-p = eℏB/m0 =

1.16 × 10−3 eV, which is found to be merely perturbative effect on EB
e-p. If we try to

achieve the situation that the energy scale of the magnetic field is larger than that of
Coulomb interaction (EB

e-p < EC
e-p), B exceeds ∼ 100000 T, which is far beyond the

technical limit of high-field generation. Such a extremely high magnetic field is expected
to exist on a neutron star in the universe. Then, we consider an exciton in crystals, a
bounding state of electron and hole by Coulomb attraction [Fig. 1.2(b)]. We assume
large dielectric constant [ϵ0 is substituted by 100ϵ0 in Eqs. (1.9) and (1.10)] and small
effective masses of m∗ = 0.02m0 for both electron and hole, which are similar with those
of bismuth. In this case, the conversion mass becomes µ = 0.01m0, and the binding
energy is EB

e-h = 10−6EB
e-p = 1.36× 10−5 eV, which is quite lower than that of hydrogen

atom due to the large binding radius aBe-h = 104aBe-p = 5290 Å. On the other hand, the
effect of the magnetic field becomes relatively larger than that in a hydrogen atom due to
the small m∗. The cyclotron energy is estimated as EC

e-h = eℏB/m∗ = 5.80×10−2 eV at
B = 10 T, which is no longer a perturbation on EB

e-h. Actually, the situation EB
e-h < EC

e-h

is satisfied under the magnetic field of ∼ 0.002 T, which indicates that the electron-hole
system under the magnetic field at 10 T corresponds to the extremely-high-field limit
in electron-proton system. Thus, the physics of electron-hole system in high magnetic
fields can contain common essence with that of electron-proton system on a neutron star,
which stimulate a general interest of physics beyond the framework of condensed matter
physics. The comparison of the characteristic parameters between electron-proton and
electron-hole systems are summarized in Table 1.2.

One of the novel ground states expected in the electron-hole system with the con-
dition EB

e-h > |G| is “excitonic insulator phase”. The concept of the condensed phase
of excitons has firstly been proposed more than 50 years ago [14]. Since exciton is elec-
trically neutral, the realization of such a phase is assumed to accompany insulation of
the system. Theoretically, excitonic insulator phase is expected to exist in the vicinity
of the semiconductor-semimetal boundary as shown in Fig. 1.2(c). In the semimetallic
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region (G < 0), excitonic insulator phase is known to be formulated by analogy with
the BCS theory in superconductivity. In semiconducting region (G > 0), on the other
hand, it is regarded as a Bose-Einstein condensation (BEC) state of excitons. Thus, the
investigation of excitonic insulator phase is expected to bring important knowledge of es-
sential phenomena in condensed matter physics, such as BCS, BEC, and their crossover
phenomena. Theoretically, the application of magnetic fields to semimetals or semicon-
ductors is known to enhance the binding energy of excitons due to the shrinkage effect of
the cyclotron orbit [15,16]. In addition, since the band overlap generally becomes smaller
as the magnetic field increases, the condition EB

e-h > |G| is expected to be satisfied on
the way to increase the magnetic field. Fenton predicted the realization of the excitonic
insulator phase in high magnetic fields based on the advantages mentioned above [17].
Actually, recent experimental studies of graphite suggested the realization of excitonic
insulator phase in high magnetic field [18–20]. Other than graphite, there are several
reports on the possible realization of the excitonic insulator in other materials, such
as bismuth [21–23], Ta2NiSe5 [24, 25], 1T -TiSe2 [26–28], TmSe1−xTex [29], and excited
semiconductor [30]. However, the concrete thermodynamic evidence and understanding
of the physical properties have been still lacking. Thus, a simple model material has been
desired, in which the band structure can be continuously tuned between semiconductor
and semimetal.

1.2 Topological Materials

The boundary between a metal and an insulator has recently been focused on in a context
of topology in solids. Materials with non-trivial band topology are called “topological
materials”, which do not belong to the categories based on the conventional band theory.
The exploration of novel physical properties in this kind of materials is now one of the
main streams in condensed matter physics. One of the outstanding features of the topo-
logical materials is the presence of “Dirac fermions” which obey the relativistic Dirac
equation and have extremely high mobility. Dirac equation has been originally used to
describe the motion of high-velocity particles in high energy physics or particle physics.
Hence, if we can observe the behavior of such a high energy particle in topological mate-
rials, the knowledge can be beneficial in other fields of physics. The first prediction and
experimental discovery of “topological insulators” [35,36], which possess Dirac fermions
at their surfaces, initiate the research of topological nature in solids. More recently,
“three-dimensional (3D) topological semimetals” such as Dirac semimetals [31, 37] and
Weyl semimetals [38–40] have been actively investigated owing to their exotic character,
in which Dirac fermions contribute the bulk physical properties.

The identification of the topological materials mostly relies on the experimental or
computational verification of linear energy dispersion relation, which is a consequence
from the Dirac equation. Actually, 3D topological semimetals such as Cd3As2 and Na3Bi
has been confirmed the linearity of the dispersion relation by both ARPES experiments
and band calculations [37, 41, 42]. As an example, the case of Cd3As2 is shown in Fig.
1.3(a) and (b). Many other materials have been proposed as candidates of topological
materials based on the above criteria.

The point of interest is novel transport properties which emerge as a result of the rel-
ativistic equation of motion in these materials. One of the intriguing properties expected
in the topological materials is the non-trivial Berry’s phase accompanied with the singu-
larity of the energy band structure. Mikitik et al. theoretically suggested that a closed
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Figure 1.3: Linear energy dispersion relation in topological semimetal Cd3As2 appeared
in (a) ARPES measurement [31] and (b) band calculation [32]. (c) Landau-level fan
diagrams in case that closed orbit in momentum space accompanies Berry’s phase ΦB =
(c)π and (d)0. δ is 1/8 for 3D and 0 for 2D system. (e) Linear magnetoresistance observed
in Cd3As2 [33]. (f) Negative longitudinal magnetoresistance observed in Na3Bi [34].
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orbit in momentum space which surrounds a Dirac point in a two-dimensional (2D) sur-
face state or band-contact line in a 3D bulk has non-trivial Berry’s phase ΦB = π [43].
They also pointed out that whether a material has the non-trivial Berry’s phase can be
discernable by focusing on the phase of quantum oscillations. Based on their suggestion,
many experimental attempts have been made to detect the non-trivial Berry’s phase in
topological insulators and 3D topological semimetals. The observation of SdH oscilla-
tion and construction of Landau-level fan diagram, as shown in Figs. 1.3(c) and (d), are
frequently-used method for the identification of the Berry’s phase [44]. In case of the
SdH oscillation, the conductivity σxx is firstly plotted against the inversed magnetic field
(1/B). Then, a peak position (1/Bn) is assigned to an integer Landau index n. Through
above assignment, the Landau-level fan diagram (1/Bn against n) is constructed. Here,
oscillation component of the SdH oscillation ∆σxx is assumed by

∆σxx = cos

[
2π

(
F

B
+ γ ± δ

)]
, (1.11)

where F is the frequency of oscillation. γ = 1/2 − ΦB/(2π) is called Onsager phase
factor with Berry’s phase ΦB, which originates from the Bohr-Sommerfeld quantization
rule for closed orbit in momentum space surrounding the area Sn:

Sn =
2πeB

ℏ
(n+ γ). (1.12)

δ take ±1/8 and 0 for three-dimensional (3D) and two-dimensional (2D) systems, re-
spectively. Based on Eq. (1.11), the system has a non-trivial Berry’s phase ΦB = π
when the horizontal intercept takes ±1/8 (3D bulk) or 0 (2D surface) [Fig. 1.3(c)]. In
contrast, trivial Berry’s phase ΦB = 0 is identified when the horizontal intercept takes
−1/2± 1/8 (3D bulk) or −1/2 (2D surface) [Fig. 1.3(d)]. In case that only single kind
of carrier contributes the transport properties, the condition σxx ≪ |σxy| is generally
fulfilled when the quantum oscillations are observable. Thus, the dips in σxx correspond
to those in ρxx, and the analysis for ρxx is also valid. However, we should be careful in
multi-carrier cases in which σxx ≪ |σxy| is not necessarily satisfied [45]. In this case,
the analysis based on ρxx can lead to wrong result. In numbers of research, non-trivial
Berry’s phase detected through this analysis has been proposed as an evidence of a
topological material. However, the precise determination of the phase factor of quantum
oscillation accompanies many difficulties since most of the actual materials have multiple
kinds of carriers. Owing to the complexity accompanying with the analyses, there exists
several cases that the estimated Berry’s phase varies by research groups even in the same
material [46].

Also, there are many reports which suggest the observation of unconventional trans-
port properties owing to the presence of the Dirac fermions. One example is large linear
transverse magnetoresistance in high magnetic fields. This behavior has been theoreti-
cally proposed by Abrikosov [47, 48] under the situation that the energy dispersion has
linear dependence upon the momentum and the carriers are all confined to the lowest
Landau subband (namely, under the quantum limit state). Later, Wang et al. theoreti-
cally showed the possible emergence of the linear and non-saturating magnetoresistance
even when other subbands cross the Fermi level and the thermal broadening is compa-
rable to the separation of Landau subbands in the presence of the topological surface
state [49]. Experimentally, the observation of large linear magnetoresistance, for exam-
ple in Cd3As2 [Fig. 1.3(e)] [33], and many other materials have been reported until
now. In [33], the possible contribution of topologically protected back scattering has
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also been suggested as a mechanism of the phenomenon. On the other hand, Parish et
al. proposed that macroscopic disorder can cause the non-saturating magnetoresistance
based on the calculation, which does not suppose the existence of linear dispersion [50].
Kisslinger et al. also suggested a mechanism without the existence of linear dispersion
that linear magnetoresistance should emerge when the system has low density charge
carriers, distorted current path, and high magnetic field [51].

Another example of the intriguing phenomena is the negative longitudinal magne-
toresistance (magnetic field is applied parallel to the electric current). This behavior is
believe to stem from the Adler-Bell-Jackiw chiral anomaly (or merely chiral anomaly)
in quantum field theory [52]. We can find numbers of reports which insist on the obser-
vation of the chiral anomaly, for example, in Na3Bi as shown in Fig. 1.3(f) [34]. On the
other hand, the negative longitudinal magnetoresistance is also shown to occur without
topological nature. Arnold et al. suggested that the strong inhomogeneity of electric
current in a magnetic field due to the high-mobility of the carriers can cause apparent
negative magnetoresistance [53]. This effect is referred as the current jetting effect.

Considering the situations mentioned above, the universal nature of topological ma-
terials has not fully been clarified at the moment.

1.3 General Issues and Solutions

Although the exotic states in narrow-gap semiconductors and semimetals have been
searched for more than 50 years, there is only limited experimental knowledge about that.
To overcome such stagnation, a model material is needed, in which the carrier density is
sensitively controllable by external parameters over the wide range from semiconductor
to semimetal.

With respect to the study of topological materials, on the other hand, there are nu-
merous reports which claim the observation of novel phenomena stemming from their
non-trivial topology. At present, however, it is very difficult to distinguish whether ob-
served physical properties originate from the universal nature of topological materials.
To clarify truly special behavior in the topological materials, it is crucially important
to faithfully analyze the obtained results based on the well-known theoretical frame-
work, and then, elucidate the phenomena which are essentially unable to explain in the
traditional framework. The nature stemming from their non-trivial topology should be
latent in them. Common to both topics, the material investigated should have electronic
structure as simple as possible to eliminate the ambiguity in extracting the nature or
comparing with the theoretical framework. Otherwise, the essence can be obscured by
the complexity. Besides, controllable band structure by external parameters is desirable,
which enables us systematic investigation with tuning the carrier density or topology of
the band structure as desired.

Based on these problem consciousness and philosophy, we focus on the narrow-gap
semiconductors, black phosphorus and lead telluride as ideal model materials satisfying
above properties. In the subsequent chapters, we explain the experimental methods of
investigations, background of each material, and newly obtained results.



Chapter 2

Experimental Methods

2.1 Essentials of the Electrical Transport Measurements

In this section, we review the rudimentary knowledge of the electrical transport measure-
ments. Electrical resistance (or merely resistance) R represents the degree of difficulty
in flowing the electrical current I through a material, and defined using the voltage drop
V as

V (B) = R̂(B)I (2.1)

=

 Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

 Ix
Iy
Iz

 . (2.2)

Here, we explicitly showed the dependence on magnetic flux density (B) following the
realistic situation. To measure the resistance, we shaped the sample into rectangle and
attached gold wires (typically 30 µm-diameter) to the sample with conductive paste.
We mainly utilized carbon epoxies, MRX-713J (Tamura Corporation) and DOTITE
XC-12 (Fujikura Kasei Co.,Ltd.) to attach the gold wires to the sample. It is desirable
that the contacts on the sample has sufficient mechanical strength and small contact
resistance. High contact resistance on current path limits the maximum of the current
in the measurement at low temperature due to the possible heating.

Figure. 2.1(a) shows typical setting for the five-terminal method utilized in this
study. Two pairs of contacts (I± and V±) are used for current injector and voltage

Figure 2.1: (a) Five-terminal method for electrical transport measurements. (b) An
example of actual setting for five-terminal measurement on PbTe.

10
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probe, respectively. Another contact (VH) is formed on the facing side of either V+

or V− for the measurement of Hall resistance. In the five-terminal method, we can
measure the resistance and Hall resistance simultaneously on a sample (we abbreviated
VH contact and adopted four-terminal method for only resistance measurement). Five-
(or four-) terminal method allows us, in principle, to measure the resistance of the sample
Vsample(I,B) = Rsample(B)I without contact resistance or resistance of wires, and thus,
it is advantageous to precisely measure the small resistance. An example of actual setting
for PbTe is shown in Fig. 2.1(b). Generally, there is a temperature gradient (∆T ) on
lead wires connecting between the sample and a voltmeter at room temperature. Thus,
the thermal voltage Vtherm(∆T ) by Seebeck effect is included in obtained voltage drop.
In case of a measurement under time-dependent magnetic fields, in addition, the change
of magnetic flux running through an open loop of the circuit causes induced voltage
VEM (B). Especially in pulsed magnetic field, VEM (B) can be comparable or even larger
than the voltage drop by the sample. The voltage drop obtained by five-terminal method
V (I,B) is generally represented as

V (I,B) = Vsample(I,B) + Vtherm(∆T ) + VEM (B), (2.3)

taking above extrinsic effects into consideration. We have to extract only Vsample(I,B)
from Eq. (2.3).

We firstly consider the case of DC measurement with a fixed current (I = I0
is independent of time). Since Vtherm(∆T ) and VEM (B) do not depend on I, and
Vsample(±I,B) = ±Vsample(I,B), V (±I0, B) is represented as

V (±I0, B) = ±Vsample(I0, B) + Vtherm(∆T ) + VEM (B). (2.4)

As is clear from Eq. (2.4), Rsample(B) is obtained by

Rsample(B) =
V (+I0)− V (−I0)

2I0
. (2.5)

In case of AC measurement [I = I0 sin(2πft) is oscillatory current with frequency
f ], V (I,B) is expressed as

V (I,B) = Vsample(I0, B) sin(2πft) + Vtherm(∆T ) + VEM (B). (2.6)

Here, we consider the amount VL(I,B) = V (I,B) sin(2πft), which is represented as

VL(I,B) =
Vsample(I0, B)

2
−
Vsample(I0, B)

2
cos(4πft)+[Vtherm(∆T ) + VEM (B)] sin(2πft).

(2.7)
We can extract Vsample(I0, B) from Eq. (2.7) by attenuating the oscillating components,
and obtain Rsample(B). The details of the analysis in AC measurements will be described
in Sec. 2.5.

By the five-terminal DC or ACmeasurement, we can obtainRsample(B) andRH
sample(B)

using potential difference V+ − V− and V+ − VH in Fig. 2.1(b), respectively. Here, the
sign of RH

sample(B) was defined to correspond to that of carrier assuming single-carrier
conduction. When the shape of the sample and the geometry of the contacts are per-
fect, Rsample(B) and RH

sample(B) are exactly the resistance Rxx(B) and Hall resistance

Ryx(B), respectively. In realistic case, however, Rsample(B) and RH
sample(B) contain

finite residual components due to the misalignment of the contacts:

Rsample(B) = Rxx(B) + δRyx(B), (2.8)

RH
sample(B) = δRxx(B) +Ryx(B). (2.9)
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Here, δ represents small dimensionless constant. To separate these components, we focus
on the following properties of Rxx(B) and Ryx(B) [see Fig. 1.3(e) for example]:

Rxx(±B) = Rxx(B), (2.10)

Ryx(±B) = ±Ryx(B). (2.11)

Thus, we can obtain Rxx(B) and Ryx(B) using Rsample(±B) and RH
sample(±B) as

Rxx(B) =
Rsample(B) +Rsample(−B)

2
, (2.12)

Ryx(B) =
RH

sample(B)−RH
sample(−B)

2
. (2.13)

Using Rxx(B) and Ryx(B), we can finally obtain the resistivity [ρxx(B)] and Hall resis-
tivity [ρyx(B)], which are independent of the shape of the sample as

ρxx(B) = Rxx(B)
wt

l
, (2.14)

ρyx(B) = Ryx(B)
wt

w
(2.15)

= Ryx(B)t. (2.16)

Here, w, t, and l are defined in Fig. 2.1(a).
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2.2 Resistivity Measurements under Pressure

In this section, we explain the setup of resistivity measurements under pressure per-
formed in this study. We utilized two kinds of piston-cylinder-type pressure cells with
different diameters of sample space to realize high pressure environment. One has the
diameter of 5 mm (max ∼2.5 GPa), and the other 4 mm (max ∼3 GPa). The former
and latter are provided by Uwatoko group (ISSP, The University of Tokyo) and C&T
Factory Co., Ltd., respectively. The overall view of the piston-cylinder-type pressure
cell is shown in Fig. 2.2(a). The cylinder is composed of inner shell (NiCrAl alloy) and
outer cylinder (CuBe alloy). Such a double-layered cylinder (called hybrid cylinder) is
known to improve the efficiency of pressure generation and maximum pressure [54]. The
applied load is held by upper and lower lock nuts made of CuBe. Figure 2.2(b) shows
an illustration of the sample cell which is pressurized in the cylinder. Copper wires are
twisted and passed through a plug made of NiCrAl or CuBe (the number of wires varies
according to the measurement). The wires and plug are tightly glued by STYCAST
2850FT in order to prevent the leakage of the pressure medium outside the cell. The
sample and pressure sensor are enclosed in the cell made of Teflon with appropriate pres-
sure medium. We utilized glycerine, Daphne7373, or Daphne7474 as pressure mediums
(the second and last ones are provided by Idemitsu Kosan Co., Ltd.). The sample cell
is inserted into the hybrid cylinder together with two seal rings made of CuBe, piston,
and two backups both made of tungsten carbide. The sample space is pressurized using
an oil hydraulic press and push rod up to maximum load of ∼6 ton. Pure lead (Pb) was
used for a pressure sensor. It is well known that the pressure (P , GPa) dependence of
the superconducting transition temperature (Tc, K) of Pb at zero magnetic fields obeys
the following empirical formula [55]:

Tc = 7.19− 0.384P. (2.17)

We measured temperature dependence of resistivity of Pb at low temperature everytime
after we changed the load, and determined the actual pressure in the sample space.
Here, we paid sufficient attention to exclude the effect of the remnant magnetic field of
superconducting magnet when we determine Tc: Even if the control panel of the magnet
indicates 0 T, slight remnant magnetic field can exist. Thus, we checked the value of
remnant magnetic field and compensated it every time before determining the pressure.

For the measurements of black phosphorus, we used two different setups to direct the
field direction with respect to the stacking direction. The detailed sketches are shown
in Fig. 2.2(c) and (d). For in-plane field configuration, sample was placed on a flexible
glassfiber sheet placed parallel to the field direction as shown in Fig. 2.2(c). For out-
of-plane configuration, a tube made of Fiber-Reinforced Plastics (FRP) or machinable
ceramics (MACOR) was put in the Teflon cell: the outer diameter of the tube is almost
the same with the inner diameter of the Teflon tube so that the stacking direction is
automatically aligned to the field direction when the tube was inserted into the Teflon
cell. The sample was mounted on a chip of paper or glass to prevent the sample from
falling into the borehole of the tube [the lower inset of Fig. 2.2(d)].

We performed resistivity measurements under pressure and magnetic field using
Physical Property Measurement System (PPMS, Quantum Design), which can generate
low temperature down to 1.8 K and static magnetic fields up to 14 T. We measured
resistivity ρxx (and Hall resistivity ρyx) of the sample, and resistivity of Pb pressure sen-
sor simultaneously using typical resistivity option implemented in PPMS. Several jigs
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developed by ElectroLAB [shown with ※ in Fig. 2.2(a)] were attached to the pressure
cell to combine it with the PPMS.
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Figure 2.2: (a) The overall view of piston-cylinder-type pressure cell utilized in this
study. “※” represent jigs for PPMS measurement. (b) Detailed view of the sample cell.
The magnetic field is applied along the cell. (c) The magnified view of the configuration
for B (c) perpendicular to and (d) parallel to the stacking direction of layered material.
The lower insets in (c) and (d) show magnified views around the sample from different
viewpoints.
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installation site Vmax (kV) C (mF) Wmax = CV 2
max/2 (kJ)

Building C, ISSP 10 18 900
Building K, ISSP 20 2.5 500

Table 2.1: Capacitor banks utilized for pulsed field generation. Vmax, C, and Wmax rep-
resent the maximum charging voltage, capacitance, and maximum accumulation energy,
respectively.

magnet type bore (mm) driving bank T0/2 (ms) Bmax (T)

mid pulse 18 Building C 38 55 (9 kV discharging)
60 T 18 Building C 38 60 (9 kV discharging)
short pulse 15 Building K 4 75 (15 kV discharging)

Table 2.2: Representative combinations of pulse magnets and capacitor banks. T0/2 and
Bmax represent the pulse duration time and maximum magnetic field, respectively.

2.3 Generation of Pulsed Magnetic Fields

In this section, we briefly review how to generate pulsed high magnetic fields. In this
study, we utilized non-destructive pulse magnets developed in Kindo group (ISSP, The
University of Tokyo) [56]. These magnets are basically multilayered solenoids made by
specially developed Cu-Ag alloy wires. A picture and schematic view of the magnet are
shown in Figs. 2.3(a) and (b), respectively. Magnets with different self-inductance (L)
were manufactured by changing the number of turns and layers, diameter, and length of
solenoids. In addition, a capacitor bank with large accumulation energy is necessary for
high magnetic field generation. We utilized two kinds of capacitor banks with different
capacitance (C) in ISSP, as shown in the Table 2.1. We can control the properties of
magnetic fields (such as pulse duration or maximum field) by changing the combination
between the magnet and capacitor bank, as shown in Table 2.2.

The circuit for pulsed magnetic field generation is schematically shown in Fig. 2.4(a).
Here, R and V0 represent the resistance of the magnet and DC voltage supply for charging
capacitor bank, respectively. Strictly speaking, R is the combined resistance of magnets
and whole current path, but the latter is sufficiently smaller than the former. The
capacitor bank can be charged or discharged depending on the state of the switch. Now,
we consider the situation that the charge CV0 is discharged to the magnet at t = 0.
Then, we can describe the time (t) dependence of this circuit according to Kirchhoff’s
law as

L
di(t)

dt
+Ri(t) =

q(t)

C
. (2.18)

Here, i(t) and q(t) represent the current passing through the circuit and charge stored
in the capacitor bank at t, respectively. Moreover, we can rewrite Eq. (2.18) using the
relationship i(t) = −dq(t)/dt as

d2q(t)

dt2
+

R

L

dq(t)

dt
+

1

LC
q(t) = 0. (2.19)

By assuming the solution of Eq. (2.19) as q(t) = eλt, we can obtain the representation
for constant λ as

λ = −D ±
√
D2 − 1

LC
. (2.20)
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Figure 2.3: (a) Picture of typical pulse magnet utilized in this study. (b) Cross-sectional
view of the pulse magnet.

Here, D = R/(2L). In this study, we generated magnetic fields under the condition
D2 − 1/(LC) < 0 [namely, q(t) can be described as damped oscillation]. For this case,
we can write down the general form of q(t) with constants A and B as

q(t) = e−Dt [A cos(ωt) +B sin(ωt)] . (2.21)

Here, ω =
√
1/(LC)−D2. A and B are determined by initial condition at t = 0

[q(0) = CV0 and dq(t)/dt|t=0 = 0], and thus, q(t) is written as

q(t) = e−Dt

[
CV0 cos(ωt) +

CDV0

ω
sin(ωt)

]
. (2.22)

Then, i(t) is obtained as

i(t) = −dq(t)

dt
(2.23)

= Dq(t) + e−Dt [ωCV0 sin(ωt)− CDV0 cos(ωt)] (2.24)

=
e−DtV0

Lω
sin(ωt). (2.25)

From Eq. (2.25), we can see that the period of oscillation (T0) is represented as T0 =
2π
√

LC/(1− LCD2) and the amplitude of oscillation decreases as time goes by due to
the coefficient exp(−Dt). For example, we can plot i(t) as Fig. 2.4(b) by substituting
typical parameters (V0 = 9000 V, C = 18 mF, L = 8.7 mH, and R = 0.2 Ω) into
Eq. (2.25), and determine T0 = 79.2 ms. Only the highest current peak (t from 0 to
T0/2 = 39.6 ms) is used for the field generation, and capacitor bank is connected to
the earth at t ∼ T0/2. In simplified case that the length of the solenoid is sufficiently
long, and it is put in the vacuum, the magnetic flux density (B) generated inside the
solenoid is proportional to i: B(t) = µ0ni(t). Here, µ0 and n represent the magnetic
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Figure 2.4: (a) Simplified circuit diagram for pulsed magnetic field generation. (b)
Simulated electric current i(t) flowing through the circuit shown in (a). We assumed
V0 = 9000 V, C = 18 mF, L = 8.7 mH, and R = 0.2 Ω. (c) Actual field property of mid
pulse magnet in Table. 2.2.
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permeability of vacuum and number of turns per unit length, respectively. Although
B(t) cannot be represented such a simple form in realistic case, actual field property
shown in Fig. 2.4(c) coincide well with the simulated i(t).

We can simulate the Joule heat (WJ) generated at the magnet assuming above pa-
rameters. WJ is represented by integrated form as

WJ =

∫ t

0
dt′Ri2(t′). (2.26)

Assuming R = 0.2 Ω is independent of time, we obtain WJ ∼ 437 kJ by substituting
t = 39.6 ms. Comparing with the input energy W0 = CV 2

0 /2 = 729 kJ, which is
initially stored in the capacitor bank, 60 % of the total energy is converted to heat
at the magnet. Since the repetition of such a huge heating can cause a fatal damage
on the magnet, magnet is always cooled by liquid nitrogen during the operations, and
we arrange appropriate time interval after field generation until the resistance of the
magnet returns to the equilibrium value in liquid nitrogen. We also roughly estimate
the Lorentz force (FL) acting on the Cu-Ag wire. We adopt simple formula for FL,

FL = IBl sin(θ). (2.27)

Here, I, l, and θ are current flowing through the wire, the length of wire, and the angle
between B and I. We assume a segment of the wire near the center of the magnet,
and that maximum current is passing through into it: the flowing current and generated
magnetic field are approximately I = 10.5 kA and B = 55 T, respectively. Then, FL

acting on the Cu-Ag wire with length of 1 cm reaches FL ∼ 5.8×103 N = 5.9×102 kgw.
Also note that FL always acts outward of the magnet, regardless of the current direction.
To prevent the breakdown of the magnet by such a huge electromagnetic stress, the wire
itself and insulating layer put on the surface of the wire should be sufficiently tough. In
addition, multilayered coil is enclosed by a high strength ring made of Maraging steel
to reinforce the strength against the Lorentz force, as shown in Figs. 2.3(a) and (b).
The maximum fields are determined by the strength of the wire and insulating layer. In
other words, the development of the high strength and conductive wire is important to
improve the maximum magnetic field.
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Figure 2.5: (a) Structural drawing of the cryostat system in high-field measurements.
(b) Magnified view of the sample space on the tip of a resistivity measurement probe.
The body of the probe is made of FRP with diameter of 5 mm. (c) Cryostat system
installed in a pulse magnet.

2.4 Cryostat System in High-Field Measurements

In this section, we review the cryostat used in high-field measurements. In order to
measure physical properties of materials in pulsed magnetic fields, we used several home-
made measurement probes and glass dewers shown in Fig. 2.5(a).

We used several probes specialized for electrical transport, magnetization, and ultra-
sound measurements. Although the details of the probes depend on the purpose of the
measurement, all of them basically satisfy the following essential requirements:

1. Capable of holding the sample in a cryostat andS at the center of the pulse magnet.

2. Possess several lead wires to transmit the electrical signal from and to the sample
space.

3. Possess a thermometer to measure the temperature around the sample.

4. Possess a field pick-up coil to measure the magnetic field applied to the sample.

An example of the sample space on the tip of resistivity measurement probe is shown
in Fig. 2.5(b). Since typical space in cryostats for pulse magnets is a cylinder with
diameter of 10 mm, the measurement probe is made sufficiently thin and long to satisfy
the requirement 1. Additionally, we have to exclude metallic components around the
sample as possible to avoid heating by eddy current. We used non-metallic materials such
as FRP as a body of the probe. In regards to requirement 2, we should pay attention to
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eliminate looped paths in the electrical wiring. Otherwise, the signal from the sample can
be hidden in significant induced voltage by pulsed fields. We used Cernox thermometers
(CX-1030-BG-HT, Lake Shore Cryotronics, Inc.) to satisfy the requirement 3. In regards
to requirement 4, we wound copper wire several times just below the sample space. The
voltage induced between both ends of the pick-up coil (Vp) is proportional to the amount
NS×dB/dt. Here, N , B, and S represent the number of turns of the coil, magnetic flux
density passing through the coil, and cross-section of the coil, respectively. In principle,
we can calculate B from the time integration of Vp assuming N and S are known.
However, S varies by thermal deformation at low temperature, which can cause a error
determining B. Thus, we evaluate the actual S referring to physical phenomena at low
temperature which occur at well-defined magnetic field value. We used the spin-flop
transition in MnF2 (9.24 T) or SdH oscillation of Kish graphite below 10 T (the last
oscillation occurs at 7.40 T) to calibrate the pick-up coil.

The measurement probe is inserted into the dewer made of glass. The sample space
is isolated from the air outside, as shown in Fig. 2.5(a). Thermal insulation layer of
the dewer is evacuated by vacuum pump, which enables us to maintain low temperature
with cryogen. For precise temperature control from 4.2 to 300 K, we used additional
tubular heater with several turns of manganin wire, which covers just around the sample
space of the probes. The current flowing through the manganin wire was controlled by
temperature controller (Lake Shore Model 335 or Cryo-con Model 32) to maintain the
desired temperature. The sample installed into the dewer is inserted into the magnet as
shown in Fig. 2.5(c).
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Figure 2.6: (a) Circuit diagram for four-terminal resistivity measurements. (b) Calcu-
lation flow diagram of numerical lock-in technique.

2.5 Resistivity Measurements in Pulsed Magnetic Fields

In this section, we mention how to measure the electrical transport properties under
pulsed magnetic fields. Basically, we adopted four-terminal (for only ρxx measurement)
or five-terminal (for simultaneous measurement of ρxx and ρyx) method in this study.
The circuit diagram of the four-terminal resistivity measurement is shown in Fig. 2.6(a).
The resistor put near the current source is used to monitor the current I passing through
the curcuit, and is called shunt resistor. Shunt resistor can be abbreviated in case of
constant-current measurement.

We chose either AC or DC current for the measurements considering the conditions
of the measurement. Since the analysis of the DC measurement is quite straightforward,
we do not explain the details here.

In AC measurements, we obtain the resistivity of the sample from the response to
the AC current. We briefly explain the principle of the numerical analysis utilized in
this study. We assume that the AC current [I = I0 sin(2πft)] with the frequency of
f = ω/2π is injected to the sample, and the response obtained by an oscilloscope with
the sampling rate of Ms is represented by

V [I,B(tn)] = Vsample[I0, B(tn)] sin(2πftn) + α(tn), (2.28)
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following Eq. (2.6). Here, tn = n/Ms with natural numbers n. α(tn) in Eq. (2.28)
represents the extrinsic contributions which do not depend on I, and is assumed to
change sufficiently slower than the first term. In pulsed magnetic fields used in this
study, which have typical time durations of ∼ 40 ms, f should be taken sufficiently large
(typically ∼ 100 kHz) to obtain the precise field dependence. Also, Ms should be enough
larger than f : in most measurements, we set Ms = 5 MHz. We multiply a referential
wave sin(2πftn) by the right hand side of Eq. (2.28) on a computer, and then, we obtain
VL[I,B(tn)] as

VL[I,B(tn)] =
Vsample[I0, B(tn)]

2
−

Vsample[I0, B(tn)]

2
cos(4πftn) + α(tn) sin(2πftn).

(2.29)
To obtain the field dependence of the sample voltage Vsample[I0, B(tn)] we concern, there
are two possible procedures. One is to apply a digital low-pass filter to attenuate the
periodic terms of Eq. (2.29). In this method, however, we should pay attention not to
attenuate intrinsic structures such as quantum oscillation with high frequency and so
forth. Second is to sum VL[I,B(tn)] over the interval of T = 1/f . We can eliminate the
periodic terms by summing over Eq. (2.29), and obtain the relationship

N∑
n=1

VL[I,B(tn)] =

N∑
n=1

Vsample[I0, B(tn)]

2
, (2.30)

where N = Ms/f represents the number of data point contained in T . Here, we assume
that the magnetic field dependence of Vsample[I0, B(tn)] is ignorable within the time
interval T = 1/f . Then, Eq. (2.30) is represented as

N∑
n=1

VL[I,B(tn)] =
Vsample[I0]

2
N, (2.31)

and finally, we obtain the relationship

Vsample[I0] = 2
N∑

n=1

VL(tn)

N
. (2.32)

We regard that Vsample[I0] represented by Eq. (2.32) is the signal at the magnetic

field value
∑N

n=1B(tn)/N , and thus, we obtain the field dependence of Vsample[I0] by
performing the summation represented by Eq. (2.32) over the whole measured time. We
implemented above routines as a computer program written on Igor Pro (WaveMetrics,
Inc.). The source code is shown in App. A.1, and the calculation flow diagram is given
in Fig. 2.6(b). This principle is also commonly used in commercial lock-in amplifiers.
Recent progress in digitizer enabled us to perform fast multi-channel analyses of the
data in high dynamic range, which could not be done with using commercial products.
Therefore, we utilized numerical lock-in analyses after recording all the oscillating voltage
signals. Generally, AC measurement provides more accurate data than DC measurement
does, since the random noise (such as Johnson noise or white noise) is attenuated by
filtering or averaging in above processes. However, the accuracy of AC measurement can
be impaired by unintentional contamination of stray capacitance or inductance, which
causes delay or advance in phase of signals. When the phase difference between a sample
and shunt resistor is too large, we utilize the standard DC measurement instead.
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Figure 2.7: (a) Magnetization pick-up coil in pulsed magnetic field. (b) Circuit diagram
for magnetization measurement.

2.6 Magnetization Measurements in Pulsed Magnetic Fields

In this section, we overview the magnetization measurement technique in pulsed mag-
netic fields. If the magnetization of a sample varies, the magnetic flux around the sample
is also modified. Basically, we detect the time derivative of magnetic flux density B(t)
as an induced voltage in a pick-up coil with the number of turn N and cross-sectional
area S as,

V (t) = −N
dΦ(t)

dt
= −NS

dB(t)

dt
, (2.33)

B(t) = µ0[H(t) +M(t)] (2.34)

Here, Φ(t) is the magnetic flux which penetrates the coil, and H(t) and M(t) represent
the magnetic field and magnetization, respectively. In high magnetic fields, H(t) is
much larger than M(t). Therefore, it is important to accurately extract the signal of
the sample from huge background.

We utilized a pair of coils (referred as A and B coils) which are turned in opposite
direction with each other and typically 4 mm in length. They are connected in series
and placed coaxially as shown in Fig. 2.7(a). Here, product of N and S of the both
coils are set to be nearly the same, i.e., NASA ∼ NBSB, where the number of turns and
areas are NA(B) and SA(B) for A (B) coil, respectively. Therefore, spatially homogeneous
contribution from H(t) is cancelled out by two coils, while inhomogeneous contribution
from M(t) is selectively detected. We review the principle of measurement more in
detail.

Firstly, we consider the situation that there is no sample in the coaxial coils, and
the magnetic field H(t) is applied parallel to the coil axis. Then, the voltage VAB arose
between the starting point of A coil and the ending point of B coil is represented as
follows:

VAB = −µ0
dH(t)

dt
(NASA −NBSB). (2.35)
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In the ideal condition, NASA = NBSB, namely, VAB = 0 is strictly fulfilled. However,
even if we carefully prepare the coils to fulfill above condition at room temperature,
it should be disturbed by a deformation of coils by lowering the temperature or slight
non-uniformity of the magnetic field. In order to compensate above effects, we add
another coils having the number of turn NC = 1–3 and area of SC [referred as C coil in
Fig. 2.7(a)]. The both ends of C coil are connected to the variable resistor R as shown
in Fig. 2.7(b): it divides the voltage VC(t) = −µ0SCNCdH(t)/dt generated by C coil
into (R − r)VC(t)/R and rVC(t)/R. Then, ±rVC(t)/R is added to VAB. we adjust the
variable resistor to satisfy the condition

− µ0
dH(t)

dt
(NASA −NBSB)± µ0NCSC

r

R

dH(t)

dt
= 0. (2.36)

Here, the double sign in Eq. (2.36) is selectable by the switch in the compensation
mechanism shown in Fig. 2.7(b).

We assume that a sufficiently long columnar sample with an area of Sp is inserted in
the A coil and H(t) is applied to them under the condition represented by Eq. (2.36).
Then, the magnetic flux which penetrate A, B, and C coils [ΦA,B,C(t)] are represented
as

ΦA,B,C(t) = µ0M(t)Sp + µ0H(t)SA,B,C. (2.37)

Using Eq. (2.36), the voltage Vin(t) which appears between X and Y in Fig. 2.7(b) is
represented as

Vin(t) = −NA
dΦA(t)

dt
+NB

dΦB(t)

dt
±NC

r

R

dΦC(t)

dt
(2.38)

= −µ0Sp

(
NA −NB ± r

R
NC

) dM(t)

dt
. (2.39)

As we can see from Eq. (2.39), Vin(t) is proportional to dM(t)/dt of the sample. In
principle, we can obtain M(t) by integrating Eq. (2.39) when Eq. (2.36) is strictly
satisfied. Practically, however, there remains residual background which could not be
eliminated with this procedures. Thus, we measure the background signal without the
sample [Vout(t)], and obtain the final data Vin(t)− Vout(t).

In addition, we also carry out a correction for sample length: above formulation is
only true when the sample are sufficiently longer than the pick-up coils. The correction
coefficient was determined by magnetization measurements of a set of standard samples,
like Ni-powder, having different length.
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2.7 Ultrasonic Measurements in Pulsed Magnetic Fields

In this section, we explain the method of ultrasonic measurements under pulsed magnetic
fields. We utilized a common technique called pulse-echo method in this study. In this
method, ultrasonic pulse is injected to a sample using a ultrasound transducer attached
to a surface of the sample, and transmitted pulse is detected by another transducer
attached to the confronted surface [Fig. 2.8(a)]. Drive pulse with a frequency of f = 10-
100 MHz is used for ultrasound generation. The pulse are generated repeatedly with the
typical repetition frequency of fR = 50-100 kHz in order to obtain precise time (field)
dependence within a duration time of pulsed magnetic fields. The number of cycles
in a drive pulse is typically set to Nc = 10. We utilized piezoelectric LiNbO3 single
crystals with thickness of 0.1 mm as transducers. The direction of displacement can be
controlled according to the orientation of the crystal. We used crystals with 36◦ Y-cut
(41◦ X-cut) for longitudinal (transverse) oscillation. Gold is evaporated on the surface
of the transducers as electrical input/output and ground terminals. The appearance of
the transducers utilized in this study are shown in Fig. 2.8(b). The transducers are
attached to the surface of the samples with either THIOKOL LP31, LP32, and LP33
(Toray Industries, Inc.), or one-component RTV rubber KE44 and KE45 (Shin-Etsu
Chemical Co., Ltd.). An example of actual setting is shown in Fig. 2.8(c). Generated
pulse repeats reflecting at the edge of the sample, and thus, a series of “echo” is observed
at the receiving-side transducer. Hereafter, we call the echo which travels through the
sample (2n + 1) times as En, where n = 0, 1, 2, · · · . For example, the echo which is
generated on the transducer and arrived directly to the other transducer is called E0.
From the time interval Ti between the adjacent echos and known sample thickness L,
we can evaluate the sound velocity of the sample as v = 2L/Ti. Also, it is known that
the amplitude of the nth pulse An is represented as

An ∝ exp(−βt), (2.40)

using the attenuation coefficient β per unit time. We can also express An with attenua-
tion coefficient α per unit length as

An ∝ exp [−α(2n+ 1)L] . (2.41)

When v increases (decreases) with magnetic field, time interval between the adja-
cent echos decreases (increases), correspondingly. In addition, the envelope of the echo
amplitude varies by the field dependence of ultrasonic attenuation. In order to evaluate
these changes in pulsed magnetic fields, we utilized measurement apparatus developed in
Yoshizawa-Nakanishi group (Iwate University), or new digital technique which is imple-
mented as a computer program by the author. The details of the former technique are
described in [57,58]. In the latter technique, we record the whole echo spectrum during
the pulse field generation (typically 50 ms), and then analyze the data on a computer.
We can reanalyze the data at any time by saving raw data to a storage device. The
simplified diagram of the latter system is shown in Fig. 2.9.

Here, we briefly review the principle of the analysis. We assume that En is repre-
sented by the following form:

En(t, ϕn) = An sin(2πft− ϕn). (2.42)

Whereas, we need a reference wave yR(t,Θ), which has the same frequency f with that
of injected ultrasound:

yR(t,Θ) = sin(2πft−Θ). (2.43)
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Figure 2.8: (a) Schematic diagram of the pulse-echo method. The upper trace represents
the electrical signal applied to sender transducer, and the lower acquired electrical signal
from receiver transducer. (b) Ultrasound transducer for longitudinal (left) and transverse
(right) sound wave. q represents the direction of displacement. (c) An example of
actual setting for ultrasonic measurement with transverse sound wave. k represents the
direction of propagation of ultrasound wave.
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Figure 2.9: Schematic diagram of the digital technique for ultrasonic measurement in
pulsed magnetic field.

For simplicity, we assume Θ = 0 and focus on a relative phase shift against the reference.
Firstly, we consider two quantities, yR(t, 0)En(t, ϕn) and yR(t, π/2)En(t, ϕn): they are
expressed as

yR(t, 0)En(t, ϕn) =
An

2
[cos(ϕn)− cos(4πft− ϕn)] , (2.44)

and

yR(t, π/2)En(t, ϕn) =
An

2

[
sin(ϕn)− cos(4πft− π

2
− ϕn)

]
. (2.45)

We can see that Eqs. (2.44) and (2.45) contain non-periodic and periodic terms. In
order to extract the former terms which is directly connected with ϕn, a low-pass filter
or boxcar averaging is applied. As a result, we obtain

yR(t, 0)En(t, ϕn) →
An

2
cos(ϕn) ≡ R (2.46)

from Eq. (2.44), and

yR(t, π/2)En(t, ϕn) →
An

2
sin(ϕn) ≡ I (2.47)

from Eq. (2.45). Then, we can obtain the amplitude An and phase ϕn of En as

An = 2
√
R2 + I2, (2.48)

ϕn = arctan(I/R). (2.49)

Above procedures are summarized as a flow diagram shown in Fig. 2.10. In measurement
apparatus developed in Yoshizawa-Nakanishi group, above procedures are functionalized
by combinations of analog circuit elements. In new digital technique, they are all imple-
mented as a computer program. In digital technique, the sampling rate of oscilloscope
should be sufficiently larger than the frequency of ultrasound: we usually set it to ∼ 1
GHz or more. Because the number of the total data point becomes enormous (roughly
1 GHz × 50 ms = 5× 107 points for one wave), it is practically important to deal with
such big data without long processing time. To reduce the size of data and acceler-
ate the data transfer, we treat acquired data in binary format, and directly transfer it



2.7. ULTRASONIC MEASUREMENTS IN PULSED MAGNETIC FIELDS 29

through the LAN cable. The data acquisition was mainly carried out with DPO5104B
(Tektronix), and data acquisition was performed with Virtual Instrument Software Ar-
chitecture (VISA). In addition, we improved the processing speed by employing parallel
computing algorithms to the main calculation part. Typical processing time for raw
echo trace having 6.5 × 107 data points is ∼ 30 sec with Intel Core i7 7700HQ CPU (8
threads). We confirmed that the processing time with 8 threads can be approximately
1/4 compared to that with single thread. The program for the data acquisition and data
analysis are shown in Apps. A.2 and A.3, respectively, which are written on IgorPro.

From An and ϕn, we can obtain the magnetic field dependence of the ultrasound
attenuation coefficient and sound velocity.

Using Eq. (2.41), the ratio An/An+1 is represented as

An

An+1
= exp(2αL). (2.50)

Thus, the attenuation coefficient per unit length is represented using An/An+1 as

α[dB/unit length] =
20

2L
log

(
An

An+1

)
. (2.51)

Here, if we assume [cm] as a unit of L, α has a unit of [dB/cm], correspondingly. In this
study, we mainly focus on the magnetic field dependence of α(B) on the basis of that in
zero-magnetic field α(0). We refer dα = α(B)− α(0) and define as

dα =
20

(2n+ 1)L
log

(
An(0)

An(B)

)
. (2.52)

Next, we consider the sound velocity. There exists following relationship between
the sound velocity v(B), ultrasonic frequency f , and the time interval T (B) between En

and En+1:

v(B) =
2L

T (B)
, (2.53)

T (B) = T (0) + dT (B), (2.54)

dT (B) =
1

f

ϕn+1(B)− ϕn(B)

2π
. (2.55)

In this formulation, dT < 0 in case v(B) increases. If we assume the field dependence
of L (magnetostriction) is sufficiently small, then, the change of the sound velocity from
zero-magnetic field dv = v(B)− v(0) is given by taking total derivative of Eq. (2.53):

dv = −v(0)
dT

T (0)
(2.56)

= −v(0)
ϕn+1(B)− ϕn(B)

2πfT (0)
. (2.57)

Therefore, the ratio dv/v(0) is represented as

dv

v(0)
= −ϕn+1(B)− ϕn(B)

2πfT (0)
, (2.58)

which means that dv/v(0) is proportional to the phase difference between the adjacent
echos. Here, we use the relationship about ϕn(B),

ϕn(B) = (2n+ 1)ϕ0(B), (2.59)
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Figure 2.10: Calculation flow diagram of the ultrasonic measurements.
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and simplify Eq. (2.58) as

dv

v(0)
= − ϕn(B)

(2n+ 1)πfT (0)
. (2.60)

From Eq. (2.60), we can see that dv/v(0) is represented only with ϕn(B).
We can also convert dv/v(0) into the field dependence of the elastic constant dC/C(0).

The elastic constant C(B) is represented using v(B) and density of the sample ρ as

C(B) = ρv2(B). (2.61)

Taking the total derivative of Eq. (2.61), we can obtain the similar relationship with
Eq. (2.57) as

dC = 2ρv(0)dv (2.62)

= −2ρv2(0)
ϕn+1(B)− ϕn(B)

2πfT (0)
. (2.63)

Therefore, the ratio dC/C(0) is represented by

dC

C(0)
= −2× ϕn+1(B)− ϕn(B)

2πfT (0)
(2.64)

= −2
dv

v(0)
. (2.65)
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sample name synthesis method n (1018cm−3) µ (104 cm2V−1s−1)

PbTe (#T) vapor transport 3.7 (hole) 37
PbTe (#S) Bridgmann 0.99 (hole) 28

Pb0.7Sn0.3Te (#T30) vapor transport 51 (hole) 0.095

Table 2.3: Physical properties of PbTe and Pb0.7Sn0.3Te samples. n and µ represent
the carrier density and mobility, respectively.

2.8 Samples

2.8.1 Black Phosphorus

Single crystals of black phosphorus sample were synthesized under high pressure and
temperature, and supplied by Prof. Y. Akahama (University of Hyogo). The synthesis
method is basically the same with that mentioned in [59]. Appearance of the single
crystal utilized in this study is shown in Fig. 2.11(a), and all measured samples were
cut from this crystals. Clear Laue spots were observed as shown in Fig. 2.11(b), which
assure the high quality of the sample. Figure. 2.11(c) shows simulated Laue spots
assuming the orthorhombic Cmca space group, which show good agreement with the
observed pattern. The simulation of the Laue patterns was performed using QLaue.

2.8.2 PbTe and Pb1−xSnxTe

Single crystals of PbTe were synthesized by the vapor transport (referred as #T) or
Bridgmann method (referred as #S) by Prof. H. Sakai, Mr. K. Katayama, Mr. T.
Sakamoto, Prof. N. Hanasaki, and Prof. S. Takaoka (Osaka University). Appearances
of #T and #S samples are shown in Figs. 2.11(d) and (e), respectively. Figure 2.11(f)
shows the Laue pattern of #T sample, which is well reproduced by simulated pattern
shown in Fig. 2.11(g) assuming the cubic Fm3̄m structure. We also confirm clear
Laue patterns and correspondence with the simulation in regards to #S sample. Both
samples are easily cleaved along the cubic crystal axis, and showed linear and positive
ρyx, which indicate that only single hole carrier contributes the physical properties. The
typical carrier densities and mobilities of the samples determined by the Hall resistivity
measurements at 2 K are summarized in Table 2.3. The carrier density of #T sample
are approximately 3.8 times larger than that of #S sample, while the mobilities were
not so different with each other.

Single crystal Pb0.7Sn0.3Te (#T30) were synthesized by the vapor transport method.
The composition is determined by energy dispersive X-ray spectroscopy (EDX) mea-
surements. The observed Laue pattern was reproduced assuming Fm3̄m structure. The
carrier density and mobility determined by the Hall resistivity measurements are listed
in Table 2.3. #T30 also showed linear and positive ρyx, and thus, the conduction carrier
is assumed to be a single kind of hole. The carrier density is more than 10 times higher,
and the mobility is much lower than that in pristine PbTe.
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Figure 2.11: (a) Single crystal of black phosphorus. (b) Laue diffraction pattern of
black phosphorus sample. (c) Simulated Laue pattern assuming Cmca space group. (d)
Single crystal PbTe (#T). (e) Single crystal PbTe (#S). (f) Laue diffraction pattern of
#T sample. (g) Simulated Laue pattern assuming Fm3̄m space group.



Chapter 3

Black Phosphorus

3.1 Basic Properties of Black Phosphorus

Phosphorus is known to form various allotropes at ambient condition. Black phospho-
rus (BP), one of the targets in this study, is the most stable allotropes among them,
and is known as an elemental narrow-gap semiconductor with a characteristic layered
structure. Since the first discovery of BP by P. W. Bridgmann under high pressure and
high temperature condition in 1914 [60], it has attracted many researcher’s attention not
only for its bulk properties as a semiconductor with high mobility, but also for recent
application as a thin film device. In this section, we review the previous studies of BP
and clarify the purpose of this study.

3.1.1 Crystal Structure

At first, we review the crystal structure of BP. The crystal structure is shown in Fig.
3.1(a), which belongs to an orthorhombic crystal system with a space group of Cmca
[61, 62]. BP consists of characteristic puckered honeycomb layers, in which phosphorus
atoms are covalently bonded to zigzag and armchair chains along the a- and c-axes,
respectively [Fig. 3.1(b)]. The monolayer is called “phosphorene” and recently shed light
because of the application to a thin film device owing to its high mobility and appropriate
band gap [63]. In bulk BP, these layers are alternatively stacked along the b-axis like
Bernal graphite, which is commonly referred to as AB stacking. In contrast with the
firm covalent bonds in the ac plane, the interlayer coupling along the b-axis is weak van
der Waals interaction. The lattice constants determined by the X-ray diffraction study

parameter value (unit)

a 3.3136 (Å)
b 10.478 (Å)
c 4.3763 (Å)
d1 2.224 (Å)
d2 2.244 (Å)
α1 96.34 (◦)
α2 102.09 (◦)

Table 3.1: Structural parameters of BP. a, b, and c represent the lattice constants. The
definitions of d1,2 and α1,2 are shown in Fig. 3.1(b). The values are taken from [61].

34
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Figure 3.1: (a) Crystal structure of bulk BP and corresponding crystal axes. (b)
Schematic view of the in-plane crystal structure. [64]. The values of d1,2 and α1,2 are
listed in Table 3.1.

on single crystalline BP [61] are listed in Table 3.1. Here, the lengths d1 and d2 are
the nearest and next nearest neighbor distances, respectively, and α1 and α2 are bond
angles shown in Fig. 3.1(b).

3.1.2 Energy Band Structure

Next, we review the energy band structure of BP at ambient pressure. Before we enter
the details of band structure of bulk, we firstly focus on phosphorene constructing BP.
Since the primitive cell of the monolayer phosphorene has four P atoms, there are twenty
valence electrons contributing the physical properties. They occupy the lowest ten energy
bands, and the residual bands remain fully empty: thus, monolayer phosphorene is a
semiconductor. Figure 3.2(a) shows the energy band structure of monolayer phosphorene
calculated by the Linear Combinations of Atomic Orbitals (LCAO) method, in which a
direct gap of ∼2 eV opens at the Γ point in two-dimensional Brillouin zone illustrated
in Fig. 3.2(d) [65]. As is clear at the X point, the energy bands are divided into eight
pairs. The two pairs with the lowest energy, the next three pairs below the energy gap,
and the rest three pairs above the energy gap can be roughly regarded as 3s, 3p bonding,
and 3p anti-bonding orbitals, respectively.

The band gap is known to decrease taking interlayer hopping of the carriers into
consideration by stacking these layers. Figure 3.2(b) and (c) show the energy band
structure of bilayer and five-layer phosphoren calculated by LCAO method [65], which
clearly depicts the reduction of the band gap at the Γ point with increasing number of
layers. Note that, in multilayer case, band structures are projected on a two-dimensional
Brillouin zone showin in Fig. 3.2(d). The reduction of the band gap has been exper-
imentally confirmed by optical reflection measurements on few-layer phosphorene [66].
As a result of infinite stacking, bulk BP has a narrow direct band gap of ∼0.3 eV at
the Z point in the three-dimensional Brillouin zone [Fig. 3.2(e) and (f)]. A remarkable
point on the band structure of bulk BP is that the dispersion along the Γ-Z line is
relatively steeper than those along the other directions. In a previous study, this point
has been qualitatively explained by taking the orbital characters of wave functions in
valence and conduction bands into account [67]. This brings an unique character to the
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physical properties of bulk BP that the effective mass, which is roughly proportional
to the reciprocal of curvature of the energy dispersion, is relatively light even along the
interlayer direction. Takao et al. [67] and Asahina et al. [68] calculated the effective mass
of electron and hole, and predicted large anisotropy and unconventionally light effective
mass along the interlayer direction. This has been experimentally confirmed, which will
be reviewed later with the previous results of cyclotron resonance experiments. Note
that in graphite, which is also a layered material, the effective mass along the interlayer
direction is approximately 200 times larger than that within a layer [3].

3.1.3 Physical Properties at Ambient Pressure

Experimental progress on BP has been made with improvements of synthesis technique.
In the early stage of study (1950–60s), Keyes [69] and Warschauer [70] reported the elec-
trical transport properties of p-type polycrystalline BP synthesized under high pressure
(1.1–1.4 GPa) and high temperature (200–260 ◦C). They assumed that the resistivity ρ
has Arrhenius-type temperature dependence above room temperature as

ρ = ρ0 exp

(
∆g

2kBT

)
, (3.1)

and estimated the intrinsic band gap at ∼0.35 eV. Here, ρ0, ∆g, kB, and T represent a
constant, intrinsic band gap, Boltzmann constant, and temperature, respectively.

On the other hand, it has also been known that needle-like small single crystals can
be obtained from a solution of white phosphorus in liquid bismuth [61]. Maruyama et al.
synthesized single crystals of BP with typical dimensions of 5× 0.1× 0.07 mm3 (needle
direction corresponds to the a-axis) by the bismuth flux method, and measured transport
and optical properties [71]. They reported that the intrinsic band gap is estimated to
be 0.31 eV from the temperature dependence of the resistivity, which is consistent with
the studies on polycrystalline BP mentioned above and calculations by Takao et al. [67]
and Asahina et al [68].

In 1980s, Shirotani et al. [72] and Endo et al. [59] succeeded in the synthesis of
large single crystals of BP under pressure with refined high pressure apparatuses, which
enabled precise and various investigations in BP.

Akahama et al. investigated detailed transport properties using undoped p- and
Te-doped n-type large single crystals synthesized under pressure [73]. Since our study
focus on the undoped BP, here we mainly review the transport properties of undoped
p-type samples. Figure 3.3(a) shows the resistivities along the three principal axes as a
function of inverse temperature. Apparent anisotropy of resistivity was observed at room
temperature: the resistivities along the a- and b- axes are higher than that along the
c-axis. The increase of resistivities with decreasing temperature observed above 100 K is
due to the reduction of thermally excited carriers via the intrinsic band gap, which is well
explained by Eq. (3.1). The band gap of 0.335 eV reported in their study is similar to the
previous reports mentioned above. We can also recognize that the resistivities rapidly
increases below 20 K in Fig. 3.3(a), which is ascribed to the reduction of thermally
excited carriers via the impurity gap.

In their study, the hole density and mobility were evaluated based on simple single-
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Figure 3.2: Energy band structure of (a) monolayer, (b) bilayer, and (c) five-layer
phosphorene obtained by LCAO method [65]. (d) Two-dimensional Brillouin zone of
monolayer phosphorene [65]. (e) Energy band structure of bulk BP obtained by the
tight binding method [67]. (f) Three-dimensional Brillouin zone of bulk BP [67].
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Figure 3.3: (a) Resistivities along the three crystal axes as a function of inversed
temperature [73]. (b) 1/(eRH) and (c) RHσ of p-type BP single crystal estimated by
single-carrier model [73]. See text for detailed explanations.

carrier model in the intermediate temperature range:

RH =
γ

ep
, (3.2)

σ =
1

ρ
= epµh, (3.3)

1

eRH
=

p

γ
, (3.4)

RHσ = γµh, (3.5)

where µh and p are hole drift mobility and density, respectively. γ is a constant and taken
to 3π/8 assuming that acoustic phonons dominantly contribute to the carrier scattering.
As Eqs. (3.4) and (3.5) represent, 1/(eRH) and RHσ are proportional to the hole density
and mobility, respectively. Figure 3.3(b) shows the temperature dependence of 1/(eRH)
as a function of temperature. The hole density was estimated to 2–5 × 1015 cm−3 just
below room temperature, where the temperature dependence of 1/(eRH) becomes weak.
From the slopes of temperature dependence shown in Fig. 3.3(b), the impurity gap was
estimated to 11–19 meV. Figure 3.3(c) shows the temperature dependence of RHσ as
a function of temperature. From 200 to 50 K, RHσ obeys T−3/2 law, which indicates
the dominance of the acoustic phonon scattering in this temperature range [74]. At
low temperature below 15 K, RHσ turns to decrease, which is attributed to an effect of
impurity scattering. The maximum of RHσ for current direction along the c-axis is the
highest, which reaches 6.5 × 104 cm2V−1s−1 at ∼20 K, as shown in Fig. 3.3(b). The
results obtained by Akahama et al. are summarized in Table 3.2 including the results
on n-type BP. Above results certified the low-carrier density and high-mobility natures
of carriers in semiconducting BP.

Successful synthesis of large single crystals also enables us to perform precise optical
measurements. Narita et al. [75] and Takeyama et al. [76] investigated the cyclotron
resonance of single crystalline BP, and experimentally determined the effective masses
along the three principal axes. The cyclotron masses in a magnetic field parallel to the a-
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p-type n-type
crystal axis a b c a b c

RHσ at 200 K (cm2V−1s−1) 1300 540 3300 460 400 2300
maximum of RHσ (×103 cm2V−1s−1) 20 8.5 65 2.2 1.0 16
activation energy of impurity level ∼18 meV ∼39 meV
carrier concentration 2–5×1015 cm−3 2–3×1016 cm−3

Table 3.2: Physical quantities estimated from the transport measurements on p- and
n-type BP [73]. Hall mobility RHσ at 200 K and their maxima are separately shown
along the three principal axes.

cyclotron masses
hole electron

m∗
a/m0 m∗

b/m0 m∗
c/m0 m∗

a/m0 m∗
b/m0 m∗

c/m0

Exp. [75] (at 20 K) 0.146 0.222 0.427 0.103 0.291 0.362
Exp. [76] (at 30 K) 0.166 0.238 0.436 0.120 0.330 0.380

effective masses
hole electron

ma/m0 mb/m0 mc/m0 ma/m0 mb/m0 mc/m0

Exp. [75] (at 20 K) 0.648 0.280 0.076 1.03 0.128 0.083
Exp. [76] (at 30 K) 0.625 0.304 0.091 1.14 0.127 0.096
Calc. [68] 0.81 0.36 0.09 1.16 0.17 0.09

Table 3.3: Cyclotron masses in magnetic fields applied along the a, b, and c axes (m∗
a,b,c)

and effective masses along the a, b, and c axes (ma,b,c). Experimental values are taken
from [75] and [76], and calculation from [68].

(m∗
a), b- (m

∗
b), and c- (m∗

c) plane are represented as geometrical averages: m∗
a =

√
mbmc,

m∗
b =

√
mcma, and m∗

c =
√
mamb. Here, ma,b,c represent the effective masses along the

three crystal axes. Therefore, ma,b,c are calculated as ma = m∗
bm

∗
c/m

∗
a, mb = m∗

cm
∗
a/m

∗
b ,

andmc = m∗
am

∗
b/m

∗
c . Narita et al. investigated the cyclotron resonance in both p- and n-

type samples and reported only single resonance peak for each type. Whereas, Takeyama
et al. reported different results on p-type BP. They observed basically single resonance
peak (CR1) in most of the samples, while some samples show additional resonance peak
(CR2). They found that the effective masses determined from CR1 and CR2 correspond
to that of hole and electron determined by Narita et al., respectively, which suggests the
coexistence of electrons and holes in a sample. Since CR2 peaks often disappeared by
partially masking the surface of the samples, they regarded that small n-type regions
can mix in a p-type sample in the synthesis processes. The results of their studies are
summarized in Table 3.3. Although BP has a layered structure along the b-axis, mb is
not the heaviest but ma for both carrier types, as mentioned in Sec. 3.1.2. Table 3.3 also
shows good correspondence between experiments and theoretical calculation by Asahina
et al [68].

Phonon structure has been also investigated both experimentally and theoretically.
Group theoretically, the orthorhombic structure has 12 phonon modes at the Γ point,
2Ag + B1g + B2g + 2B3g + Au + 2B1u + 2B2u + B3u [77, 78]. The first 6 modes (2Ag,
B1g, B2g, and 2B3g) are Raman active, and 2 modes (one of the B1u and one of the
B2u) are infrared active ones. The rest modes are optically inactive ones. Sugai et al.
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phonon frequency at the Γ point (cm−1)
Exp. Calc.

mode type Sugai et al. [78] Kaneta et al. [80]

A1
g R 365 356

A2
g R 470 480

B1g R 197 194
B2g R 442 439
B1

3g R 233 228

B2
3g R 440 439

B1u (T) IR 136 129
B1u (L) IR 138 135
B2u (T) IR 468 461
B2u (L) IR 470 462

Table 3.4: Comparison between experimental and theoretical frequencies of optical
phonons at the Γ point. “R” and “IR” in “type” column represent Raman active and
infrared active, respectively.

performed Raman scattering and infrared reflection spectroscopy at room temperature,
and reported the observation of 6 Raman active modes and 2 infrared active modes with
transverse (T) and longitudinal (L) splitting [78]. Theoretically, Kaneta et al. calculated
the lattice dynamics of BP using valence force field model (VFFM) [79] and adiabatic
bond charge model (BCM) [80]. They found that BCM can successfully reproduces the
experimental results including infrared active modes which could not be explained by
VFFM. Identified optical phonon frequencies at Γ point are listed in Table 3.4, which
shows good correspondence between the experiment and calculation.

3.1.4 Physical Properties under Pressure

Next, we focus on the pressure effects on the physical properties of BP. BP is known
to transform into various structures under pressure. The pressure-temperature phase
diagram is summarized in Fig. 3.4(a). The first structural transition from orthorhombic
to rhombohedral (A7) structure takes place at ∼5 GPa [81]. The A7 structure is known
as ambient structures of Bi, Sb, and As [82], which is the same family elements with
P in the periodic table. Thus, A7 phosphorus is considered to be a semimetal. Then,
A7 structure undergoes a transition to a metallic simple cubic (SC) structure at ∼10
GPa [81]. SC phase is known to be stable up to ∼100 GPa [83]. The SC phase shows
superconductivity at low temperature. The pressure dependence of superconducting
transition temperature has been investigated [84].

The detailed pressure dependence of the lattice constants has been investigated by
Cartz et al. by neutron diffraction [85] and Kikegawa et al. by X-ray diffraction [86].
The both studies report that the lattice constants b and c decrease with almost the
same degree as pressure increases, while a is almost independent of the applied pressure,
at least up to 3 GPa [Fig. 3.4(b)]. These results indicate that there exists a large
compressive anisotropy between armchair and zigzag directions in a layer. The average
linear compressibilities along the three principal axes are estimated as Ka = 0.7× 10−4,
Kb = 119× 10−4, and Kc = 124× 10−4 GPa−1 in [85].

The pressure dependence of the intrinsic band gap has been discussed by several
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Figure 3.4: (a) Temperature-pressure phase diagram of BP [64]. (b) Pressure depen-
dence of the lattice constants [85].

reports. Earlier, Keyes reported the pressure dependence of the resistivity up to 0.8 GPa
and pointed out that the band gap decreases by applying pressure [69]. He commented on
a possible band overlapping above 2 GPa by simply extrapolating pressure dependence
of the band gap to higher pressure.

Okajima et al. also reported the pressure dependence of resistivity under pressure up
to 15 GPa [87], which is higher than that in Keyes et al. Two resistivity anomalies were
observed at ∼4.2 and 10.8 GPa in their measurement, which are ascribed to correspond
to the structural phase transitions from orthorhombic to A7 phase and A7 to SC phase,
respectively. Further, they estimated the pressure dependence of the intrinsic band
gap assuming the Arrhenius-type thermal excitation, and pointed out that the band
gap remained finite at around 2 GPa at which Keyes et al. assumed to occur band
overlapping, and band gap became zero at around 4 GPa [Fig. 3.5(a)], at which resistivity
anomaly corresponding to A7 to SC phase transition observed.

On the other hand, Akahama et al. reported the temperature dependence of the
resistivity at various pressures and estimated pressure dependence of the intrinsic band
gap, as shown in Fig. 3.5(b) and (c) [88]. Unlike the results of Okajima et al., the
band gap decreases proportional to the applied pressure, and becomes zero at around
1.7 GPa, which supports Keyes’s suggestion. This indicates that the semiconductor-
metal transition takes place without structural phase transition in the orthorhombic
phase. Akahama et al. later investigated the pressure dependence of optical properties
by infrared absorption, and obtained identical pressure dependence of the band gap [89].

In addition, the pressure dependence of the phonon frequencies has been reported
by Sugai et al. on needle-like samples [77], and Vanderborgh et al. on polycrystalline
samples [90]. Both groups reported the pressure dependence of the phonon frequencies
for A1

g, B2g, and A2
g modes in the orthorhombic phase. In their results, energies of B2g,

and A2
g branches are almost independent of the applied pressure, while energy of A1

g

branch showed tendency of gradual increase as pressure increases (Fig. 3.6).
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Figure 3.5: (a) Pressure dependence of the intrinsic band gap estimated from the tem-
perature dependence of the resistivity by Okajima et al [87]. (b) Temperature depen-
dence of the resistivity at various pressures reported by Akahama et al [88]. (c) Pressure
dependence of the intrinsic band gap estimated from the temperature dependence of the
resistivity by Akahama et al [88].

Figure 3.6: Pressure dependence of the optical phonon frequencies [77].
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3.2 Purpose of the Study

The various properties including the transport, optical, and phonon properties have been
investigated at ambient pressure, as mentioned in the previous section. In regards to
the physical properties under pressure, however, there is relatively few available infor-
mation about the electronic states. Although observation of the SdH oscillation can
provide the most direct evidence for metallization and a wealth of information on the
Fermi surface, there has been no such a report. If the metallization is realized under
pressure, anticipated metallic phase should be semimetallic to fulfill a charge neutrality
condition. Thus, pressurized BP can be a novel candidate for elemental semimetals after
bismuth and graphite. The possible realization of unconventional electronic phases due
to the strong carrier correlation has been discussed in previous literatures in bismuth and
graphite, and thus, BP can be a possible stage to realize such a phases. In case of BP, the
carrier density can be continuously controlled by tuning applied pressure, which is unique
character for BP and favorable for exploring the unconventional electronic phase in the
vicinity of semiconductor-semimetal transition. In order to clarify the electronic state of
BP under pressure and testify the possible pressure-induced semiconductor-semimetal
transition in pressurized BP, we investigated the detailed transport properties in the
pressure range from ambient pressure to 2.5 GPa.
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Figure 3.7: (a) Temperature dependence of the resistivity along the c-axis (ρc) at various
pressures. Measurements were performed on #2017 sample. (b) Pressure dependence
of the resistivity ratio [ρc(300 K) / ρc(2 K)] between 300 K and 2 K. (c) Pressure
dependence of the resistivity along the c- (ρc) and a- (ρa) axes at 2 K.

3.3 Results and Discussion

3.3.1 Temperature Dependence of the Resistivity at Various Pressures

Firstly, we introduce the results of the temperature dependence of the resistivity on
two samples (referred as #2015 and #2017), and explain the behaviors by following the
previous studies. The #2015 and #2017 samples are identical with those investigated in
[91] and [92], respectively, and both were cut from the same single crystal bulk described
in Sec. 2.8.

Figure 3.7(a) shows the temperature dependence of the resistivity of #2017 sample
along the c-axis (ρc) at various pressures up to 2.24 GPa. The behaviors of ρc at 0.13,
0.29, and 1.01 GPa are explained well by assuming that BP is an extrinsic semiconductor
[89]. As an example, we focus on the behavior of ρc at 0.13 GPa. In the temperature
region between 300 to 200 K, which corresponds to region I in Fig. 3.8(a), ρc increases
as temperature goes down. This behavior can be understood as a reduction of thermally
activated carriers across the intrinsic band gap ∆g. We can estimate ∆g assuming the
temperature dependence of ρc to follow Eq. (3.1). The fitted curve assuming Eq. (3.1)
is shown in Fig. 3.8(a) as a dashed line, which reproduces the experimental results
well. The estimated ∆g is approximately 0.15 eV, which is slightly smaller than the
previous studies [73, 88]. The ∆g appears to vary with sample pieces as shown in Fig.
3.8(b). This dispersion might come from the limited fitting region for the estimation of
∆g. In the temperature region between 200 to 50 K, which corresponds to region II in
Fig. 3.8(a), ρc decreases as temperature goes down in contrast to the region I. This is
ascribed to the enhancement of the mobility, which is reported in previous study (Fig.
3.3). In the temperature region between 50 to 10 K, which corresponds to the region
III in Fig. 3.8(a), ρc drastically increases with lowering the temperature. This can be
regarded as the reduction of carriers due to the suppression of the thermal activation
via the energy gap between the valence and impurity bands ∆i. We estimated the ∆i
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Figure 3.8: (a) ρc of #2017 sample as a function of inverse temperature (T−1) at several
pressures. Dashed lines are fitting curves assuming the Arrhenius-type temperature
dependence (see text). The energy gap between (b) valence and conduction bands (∆g)
and (c) valence and impurity bands (∆i) estimated by curve fittings.

by similar function with Eq. (3.1):

ρc = ρ0 exp

(
∆i

2kBT

)
, (3.6)

and obtain ∆i ∼ 10 meV at 0.13 GPa, which is consistent with other studies [73, 93].
The fitted curve reproduces the experimental behavior as shown in Fig. 3.8(a). In the
temperature region below 10 K, which is referred as region IV in Fig. 3.8(a), ρc tends
to saturate, which might be governed by the variable range hopping conduction between
impurity levels. At 0.29 and 1.01 GPa, we can also recognize similar temperature de-
pendence and define region I to IV for each ρc vs. T−1 curves. As we can see in Figs.
3.7(a) and 3.8(a), gap-like behaviors observed in region I and III are suppressed as the
pressure increases, which can be understood as a reduction of both ∆g and ∆i. The
pressure dependences of ∆g and ∆i estimated from curve fittings in the region I and III
are shown in Figs. 3.8(b) and (c), respectively. We can recognize the common behavior
between #2015 and #2017 samples that both ∆g and ∆i monotonically decrease as pres-
sure increases. We can roughly estimate by linear extrapolation [shown as dashed lines
in Fig. 3.8(b)] that ∆g becomes zero at around 1.5 GPa, which suggests the realization
of pressure-induced semiconductor-semimetal (SC-SM) transition. This critical pressure
coincides with the previous report by Akahama et al. [88, 89]. Above 1.38 GPa, the
temperature dependence becomes totally metallic over the entire temperature range as
shown in Fig. 3.7(a). Here, we note that the temperature dependence of the resistivity
seems to be strongly affected by the quality of the samples, since other groups have re-
ported qualitatively different results and slightly low SC-SM transition pressure [93,94].
Figure 3.7(b) shows the the pressure dependence of the resistivity ratio between 300 K
and 2 K [ρc(300 K)/ρc(2 K)]. We can see the change of slope at around 1.2 GPa, at which
magnetoresistance starts to increase (as shown in later section): this is consistent with
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the previous report [93]. We also observed the pressure dependence of the anisotropy in
the in-plane resistivities. Figure 3.7(c) shows ρc (I ∥ c) and ρa (I ∥ a) at 2 K. While ρa
is more than 10 times larger than ρc near the ambient pressure, the difference between
ρa and ρc becomes small as pressure increases.

3.3.2 Quantum Transport Phenomena in Semiconducting Black Phos-
phorus —Magneto-Phonon Resonance—

In this section, we focus on the quantum transport phenomena under magnetic fields
observed in the semiconducting state. Figure 3.9(a) shows the field dependence of ρxx at
77 K with a magnetic field of up to 55 T applied along the a-axis and current along the
c-axis. The ρxx shows positive magnetoresistance accompanied by some hump structures
below 30 T. These structures are periodic in terms of B−1 as shown in Fig. 3.9(b). This
periodic structure has been ascribed to the magneto-phonon resonance (MPR) [95].
The MPR is the resonant scattering of carriers by optical phonons and observed as an
enhancement of resistance when the following resonance condition is fulfilled:

ℏωO = Nℏωc (N = 1, 2, 3, . . . ), (3.7)

where ℏωO is the energy of the optical phonon and ωc = eB/m∗ is the cyclotron fre-
quency [96]. e and m∗ represent the elemental charge and cyclotron mass, respectively.
Observation of the MPR indicates the existence of well-defined Landau levels in BP, i.e.,
ωcτ = µB > 1 above 4 T (τ and µ denote the relaxation time and mobility of carriers,
respectively). Therefore, µ > 0.25 T−1 = 2500 cm2 V−1 s−1 at 77 K, which is consistent
with previous reports (Table 3.2). Figure 3.9(c) shows the temperature dependence of
the second derivatives of resistivity (−d2ρxx/dB

2). The MPR is the most remarkable at
50 K, and then suppressed as the temperature increases or decreases. The suppression
of oscillating component by decreasing temperature is ascribed to the suppression of
thermal excitation of the optical phonons which cause the carrier scattering. Hence, the
MPR becomes hardly visible at 4.2 K. On the other hand, the suppression by increasing
temperature is regarded as the effect of thermal broadening of Landau subbands: there is
no well-defined Landau subband structure due to the shortening of τ , and thus, resonant
scattering does not occur anymore in higher temperature. The trend mentioned above
is clearly shown in the FFT spectrum in Fig. 3.9(d): FFT spectrum at 50 K has the
highest magnitude at around 23 T. We can also recognize that the position of the peak
(the period of the MPR) is almost independent of the temperature. Here, Eq. (3.7) can
be transformed to the relationship between the inversed field and the integer index as

B−1 =
e

m∗ωO
N, (3.8)

and the FFT frequency identified in Fig. 3.9(d) corresponds to the coefficient e/(m∗ωO).
Thus, temperature-insensitive FFT frequency peak seen in Fig. 3.9(d) results from the
temperature-insensitive m∗. Actually, the temperature coefficient of the effective masses
along the three principal axes have been reported as dma,b,c/dT = 10−5–10−4 [76], which
is consistent with our results.

Next, we discuss pressure dependence of the MPR. Figure 3.10(a) shows pressure
dependence of the second derivative−d2ρc/dB

2 at 77 K, in which the period of oscillation
becomes long with applied pressure. To understand this behavior, we focus on the
relationship between peak/dip position of MPR (B−1) and integer index (N) shown
in Fig. 3.10(b). Here, integer (half-integer) indices correspond to the local maxima
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Figure 3.9: (a) Magnetoresistance ρxx at ambient pressure and temperature of 77 K.
A magnetic field of up to 55 T was applied along the a-axis and current along the
c-axis. (b) The second derivative of magnetoresistance −d2ρxx/dB

2 as a function of
inverse field B−1. The numbers indicate the integer indices N of the magneto-phonon
resonance (see text). (c) The temperature dependence of the magneto-phonon resonance
in −d2ρxx/dB

2. (d) The temperature dependence of the FFT spectra calculated from
the data shown in (c).
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slopes of the B−1 vs. N plot.
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Figure 3.11: (a) Magnetoresistance ρxx at 1.64 GPa under magnetic fields along the
a-axis. (b) Second derivatives of ρxx as a function of B−1. The red and blue arrows
correspond to α and β peaks in (c), respectively. (c) FFT spectrum calculated from
the data shown in (b). The inset shows self-consistently linearized Amassplot at α and β
peaks (see text for details). The broken lines shows the linear fits of each Amassplot.

(minima) in Fig. 3.10(a). We can recognize that B−1 is proportional to N and the slope
of the line becomes steep with applied pressure. As is clear in Eq. (3.8), the change of
slope by applying pressure is regarded as a change of coefficient e/(m∗ωO). Generally,
both m∗ and ωO in Eq. (3.8) can vary with applied pressure. In the case of BP, however,
it has been shown in the previous report that the phonon energy was insensitive to the
pressure, at least in the pressure range of this study (Fig. 3.6). Thus, the increase of
the slopes in Fig. 3.10(b) can be regarded as the reduction of m∗ by applying pressure
assuming ωO as a constant. According to the simple k · p perturbation introduced in
Sec. 1.1, effective mass becomes small as the energy gap decreases. Hence, the reduction
of m∗ implies the suppression of the energy gap by pressure. By using ωO = 2.60× 1013

s−1 (138 cm−1), which is the frequency of the B1u (L) mode optical phonon identified
experimentally (Table 3.4), m∗ estimated from Eq. (3.8) is 0.153m0 at ambient pressure,
which is consistent with the previously reported values of 0.146 m0 at 20 K [75] and
0.166 m0 at 30 K [76] determined by experiments of cyclotron resonance (Table 3.3).
The change of m∗/m0 with applied pressure is summarized in the inset of Fig. 3.10(b).
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3.3.3 Quantum Transport Phenomena in Semimetallic Black Phospho-
rus —Shubnikov-de Haas Oscillation—

Next, we focus on the electrical transport properties in semimetallic BP. We succeeded in
observing the Shubnikov-de Haas (SdH) oscillations in the semimetallic BP. This section
is mainly dedicated to the elucidation of the electronic state in semimetallic BP based
on detailed analysis of the SdH oscillations.

Firstly, we focus on the transport properties under magnetic fields applied along the
a-axis, in which the cyclotron mass m∗ in the semiconducting state is smaller than those
of other principal axes. Figure 3.11(a) shows ρxx at 1.64 GPa as a function of magnetic
field at several temperatures. We observed non-saturating increase of ρxx, and the
magnetoresistance normalized by the value at zero field reaches [ρc(B)− ρc(0)]/ρc(0) ∼
1000 at 14 T and 2 K. Such a marked change in magnetoresistance has been known
in bismuth [97] and graphite [98], which are typical elemental semimetals, and attracts
renewed interest in other semimetals [99]. The origin of the large magnetoresistance will
be discussed in later part together with the in-plane transport properties.

In addition to this approximately linear magnetoresistance, we can identify the su-
perposed modulation. The modulated components are clearly visible in their second
derivatives shown in Fig. 3.11(b). Contrary to the MPR in the semiconducting state,
the oscillating component periodic to B−1 grows up as the temperature decreases and is
hardly visible at 50 K. Thus, this structure can be ascribed to the SdH oscillations. We
can see a major oscillation (red arrows) and additional small structures (an blue arrow)
in Fig. 3.11(b), suggesting that there are at least two frequency components. Since
semimetallic BP is expected to have at least one electron and one hole Fermi pockets,
above result is reasonable. The fast Fourier transform (FFT) spectrum and its tem-
perature dependence are shown in Fig. 3.11(c). FFT was carried out for −d2ρxx/dB

2

shown in Fig. 3.11(b) with Hanning window function. We can see two distinct peaks, α
(4.9 T) and β (11 T), and the second harmonic 2α (9.8 T) as marked by broken lines.
The frequency of the SdH oscillation (F ) is proportional to the cross-sectional area (S)
surrounded by the closed orbit in reciprocal space:

F =
ℏS
2πe

. (3.9)

The cross-sectional areas of each Fermi surface are 0.47× 10−3 and 1.0× 10−3Å−2 for α
and β, which are approximately 0.017 and 0.037% of those of the first Brillouin zone at
the kz = 0 plane, respectively. If we assume spherical Fermi surfaces, these small pockets
roughly correspond to carrier densities of 1016 cm−3, which is comparable to those in
bismuth and graphite (c.f. Table 1.1). More detailed discussion about the Fermi surface
will be made later in this section. Owing to such a small Fermi surfaces, the quantum
limit state is expected to achieve above 11 T at this pressure.

The SdH oscillations are represented theoretically by the Lifshitz-Kosevich (LK)
formula [100]. The cyclotron mass was determined by the temperature dependence of
the SdH amplitude as described below. In the LK formula, the amplitude of the quantum
oscillation A(T ) as a function of temperature T is represented by

A(T ) = A0
am∗T/B

sinh(am∗T/B)
. (3.10)

Here, A0 is a constant which is independent of the temperature, and a = 2π2kB/(eℏ)
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Figure 3.12: (a) Magnetoresistance ρxx at various pressures. B was applied along
the a-axis. (b) −d2ρxx/dB

2 calculated from the data shown in (a). (c) FFT spectrum
calculated from the data shown in (b). The pressure dependence of α and β peaks are
traced by red and blue allows, respectively. (d) Squared FFT magnitude. The pressure
dependence of β peak is traced by blue arrows.

using Boltzmann constant kB. Further, we can rearrange Eq. (3.10) to

ln [A(T ) [1− exp (−2am∗T/B)] /T ] = C − am∗T

B
, (3.11)

where C is a constant which is independent of temperature. We can see that the left hand
side of Eq. (3.11) (referred as Amassplot) should be linear as a function of T . We firstly
substitute appropriate m∗

old to m∗ in Amassplot, and next, plot Amassplot as a function
of T , and then, obtain the new m∗

new from the slope of Amassplot and update m∗
old to

m∗
new. We recurred above procedure until the cyclotron mass sufficiently converges, more

specifically, until |m∗
old−m∗

new|/m∗
old < 10−6 is satisfied. m∗ is determined from the final

slope of the Amassplot after the recursive calculation. The inset of Fig.3.11(c) shows the
most linearized Amassplot for α and β peaks, and m∗ ∼ 0.02 m0 is obtained for both
peaks.

Next, we argue the magnetoresistance at various pressures. Figure 3.12(a) shows ρxx
at 2 K under several pressures. Application of pressure significantly suppresses positive
magnetoresistance and modifies superposed oscillating structure. The change of the SdH
oscillation is more obvious in −d2ρxx/dB

2 as shown in Fig. 3.12(b). As illustrated in
the FFT spectra [Fig. 3.12(c)], the peaks α and β detected at 1.64 GPa move toward
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Figure 3.13: (a) Pressure dependence of the FFT frequencies for α and β peaks. The
open markers represent the results of another sample piece, which shows good repro-
ducibility. (b) Pressure dependence of the cyclotron mass obtained from the analyses of
the MPR and SdH oscillations.

higher frequency, indicating the enlargement of the Fermi surfaces by applying pressure.
This behavior can be understood by the increase of band overlap by pressure. Although
the magnitude of β peak is considerably weaker than that of α peak as shown in Fig.
3.12(c), It can be clearly recognized in squared FFT magnitude and definable as shown
in Fig. 3.12(d).

Figure 3.13(a) summarizes the pressure dependence of the SdH frequencies with the
magnetic field applied along the a-axis. We investigated the pressure dependence of
these peaks in another sample piece as shown by the open symbols in Fig. 3.13(a), and
confirmed the reproducibility. The pressure dependence of m∗ determined through the
analyses of the MPR and the SdH is shown together in Fig. 3.13(b). In semimetallic
state, m∗ takes the value between 0.02 to 0.03 m0, which indicates that the semimetallic
BP has considerably light effective mass comparable to typical semimetals, bismuth and
graphite (c.f. Table 1.1). In addition, it is approximately an order of magnitude smaller
than that of the semiconducting state.

We also investigated the magnetoresistance in the longitudinal configuration (B ∥
I ∥ a), in which the cyclotron motion due to the Lorenz force is irrelevant to the charge
current. Figure 3.14(a) shows the longitudinal magnetoresistance (ρzz) in magnetic field
along the a-axis at 1.65 GPa. Even in this geometry, we clearly observed the SdH oscilla-
tions. The frequency was confirmed to be consistent with that in transverse geometry at
1.64 GPa. In addition, we observed large and non-saturating magnetoresistance also in
this longitudinal configuration. At 2 K, the ratio [ρzz(B)−ρzz(0)]/ρzz(0) reaches approx-
imately 50 at 14 T. According to a conventional Drude-type formulation, σzz(= 1/ρzz)
is independent of B and described by the following equation:

σzz =
nhe

2τh
mh

+
nee

2τe
me

. (3.12)

In this equation, τh(e) and mh(e) represent the relaxation time and the effective mass of
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Figure 3.14: (a) ρzz in the longitudinal configuration (B ∥ I ∥ a, at 1.65 GPa).
(b) The comparison of the Landau-level fan diagram for α peak between transverse
(B ⊥ I) and longitudinal (B ∥ I) configurations. B was applied along the a-axis in both
configurations. (c) ρzz at 1.5 K and 100 mK in the configuration of B ∥ I ∥ a at 1.80
GPa.



54 CHAPTER 3. BLACK PHOSPHORUS

the holes (electrons), respectively. Since the observed SdH oscillations can be analyzed
using fixed values of nh,e and mh,e, we have to introduce a field dependence of τh,e so as
to reproduce the observed longitudinal magnetoresistance in this classical framework.

Here, let us comment on the phase of the SdH oscillations, i.e., so-called Landau-
level fan diagram analysis. In Fig. 3.14(b), we plot the relationship between the inverse
fields showing peak/dip in ρxx (B ∥ a and I ∥ c) and ρzz (B ∥ I ∥ a) against the Landau
index. Similar analyses are frequently utilized in topological materials to evaluate the
Berry’s phases from the values of the horizontal intercept in this diagram. Here, only
major oscillations from α peak were extracted by attenuating oscillations from β peak by
digital filter, and dips were assigned to integer indices. Although whether peaks or dips
should be assigned to integer indices is not trivial since semimetallic BP is multi-carrier
system, we follow the case of graphite in which the dip of ρxx is known to correspond
to the depopulation of Landau subbands [101]. The intercept for ρc is 0.00 ± 0.01
similar to a two-dimensional Dirac system, whereas that for ρa is 0.15 ± 0.02 even in
the same field direction. The origin of above difference seems to come from the failure
of the prerequisite σxx ≪ |σxy| for analysis in ρxx [45]. Actually, the occasion ρxx ∼ ρyx
can realize in semimetallic BP as shown later. Therefore, we cannot make a reliable
argument from the analyses of this diagram.

Further, we measured ρzz at lower temperature down to 100 mK and higher magnetic
field up to 17 T to explore the existence of additional heavier carriers and field-induced
exotic phases. Figure 3.14(c) shows ρzz at T = 100 mK and 1.5 K. The observed SdH
oscillation at 100 mK is almost identical to that observed at T = 1.5 K, and no additional
components in the oscillation can be identified down to this temperature. High-field
studies on clean elemental semimetals of bismuth and graphite show anomalous behavior
in the vicinity of the quantum limit state [19, 102–107], yet we do not find any features
indicating a phase transition at least up to 17 T in the case of semimetallic BP.

Next, we show the pressure depencence of the SdH oscillations under magnetic field
along the b- and c-axes. Figure 3.15(a) shows the pressure dependence of −d2ρxx/dB

2

at 2 K from 1.28 to 2.24 GPa in magnetic fields applied along the b-axis. As the pres-
sure increases, oscillatory structure becomes more prominent, and the frequency clearly
becomes larger. Figure 3.15(b) shows the pressure dependence of the FFT spectra from
1.43 to 2.24 GPa at 2 K. FFT was carried out for −d2ρxx/dB

2 shown in Fig. 3.15(a) with
Hanning window function. We identified two frequency peaks marked with red (referred
to as a major peak) and blue (referred to as a minor peak) arrows. The major peak
first becomes discernible at 1.43 GPa with a frequency of about 5 T, while the minor
peak appears at 1.75 GPa with a frequency of about 9.5 T. Both frequencies monoton-
ically become larger as pressure increases. Although SdH oscillation-like structures can
be seen in −d2ρxx/dB

2 at 1.28 and 1.38 GPa, we cannot define the reliable frequency
through FFT due to the limited number of cycles of the oscillations. We also note that
there are some additional structures at higher frequencies than that of major peaks as
marked by green arrows at 1.43 and 1.54 GPa in Fig. 3.15(b). Since these peaks do not
show systematic dependence on temperature as shown in the inset of Fig. 3.15(a), we
focus on the other two peaks in the following discussion. Figures 3.15(c) and (d) show
the pressure dependence of −d2ρxx/dB

2 and the FFT spectra, respectively, in magnetic
fields applied along the c-axis. Similar with the results of the other directions, we can
recognize two peak frequencies [red and blue branches in Fig. 3.15(d)], which mono-
tonically increase as pressure increases. The frequency assigned by blue arrows has tiny
amplitude compared to another one. We estimated the cyclotron masses of major peaks
for all three principal axes, and obtained m∗

a ∼ 0.02m0, m
∗
b ∼ 0.04m0, and m∗

c ∼ 0.14m0.
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Figure 3.15: (a) −d2ρxx/dB
2 from 1.28 to 2.24 GPa at 2 K in magnetic fields along

the b-axis. The data were vertically offset for clarity. The inset shows the temperature
dependence of the FFT spectra at 1.43 GPa. (b) FFT spectra of −d2ρxx/dB

2 from 1.43
to 2.24 GPa in magnetic fields along the b-axis. The major and minor peaks are indicated
by the red and blue arrows, respectively. Several additional peaks which appear at 1.43
and 1.54 GPa are indicated by the green arrows. Each magnitude of the spectrum is
normalized by the amplitude of each major peak and vertically offset for clarity. (c)
−d2ρxx/dB

2 from 1.61 to 2.22 GPa at 2 K in magnetic fields along the c-axis. The data
were vertically offset for clarity. (d) FFT spectra of −d2ρxx/dB

2 from 1.61 to 2.22 GPa
in magnetic fields along the c-axis. The major and minor peaks are indicated by the red
and blue arrows, respectively.
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Figure 3.16: Pressure dependence of the SdH frequencies in magnetic fields along the
(a) a-, (b) b-, and (c) c-axes. In all of the field directions, the major peak with a large
FFT amplitude (red), and the minor peak with smaller one (blue), were observed.

These values are less sensitive to the pressure in the semimetallic states. We comment
that the anisotropy of hole cyclotron mass in the semiconducting state, m∗

a < m∗
b < m∗

c

(Table 3.3) is also held in that of major peaks in the semimetallic state.

The results of the pressure dependence of the SdH frequencies are summarized in Figs.
3.16(a) to (c). As described above, two branches with larger (red) and smaller (blue)
amplitudes are observed in all of the orientations. They will be also referred to as the
major and minor peaks, respectively. We can estimate the SC-SM transition pressure as
1.2-1.4 GPa where FFT frequencies for the magnetic field along the three principal axes
(Fa−c) becomes zero by extrapolating from the data shown in Figs. 3.16(a)-(c). Note
that this roughly corresponds to the pressure where ∆g and ∆i becomes zero discussed
in Figs. 3.8(b) and (c). Since we did not find any other peaks down to the lowest
temperatures in this study as shown in Fig. 3.14(c), we attribute these two frequencies
to that of the quantum oscillations from the electron and hole Fermi pockets. However,
we cannot identify which frequency corresponds to the electron/hole pocket for all of the
three field directions, only from the experimental results.

Finally, we introduce the results of the band calculation under pressure performed
by Mr. H. Arai and Prof. Y. Fuseya (The University of Electro-Communications), and
compare them with the experimental results. Figure 3.17(a) shows the band structure at
a pressure of 2.0 GPa determined by the first-principles calculations within the general-
ized gradient approximation using the OpenMX code [108]. Corresponding first Brillouin
zone and symmetric points are shown in Fig. 3.17(b). Two and one primitive orbitals
for s- and p-orbitals are used for the pseudo-atomic orbitals basis functions, respectively.
Crystal structure parameters at 2.0 GPa was determined by linear extrapolation of pa-
rameters at ambient pressure and 0.8 GPa shown in [68] Almost the same results as
those in Fig. 3.17(a) was obtained even by using the crystal structure parameters given
in [85]. At ambient pressure, the obtained band structure (not shown) is consistent
with previous works, [68, 109] and the direct band gap at the Z point is 130 meV. At
a pressure of 2.0 GPa, the band overlap between the conduction and valence bands at
the Z point is 140 meV. Figure 3.17(c) shows the calculated Fermi surface. There are
one hole pocket at around the Z point and four electron pockets located between the
Γ-A lines (their energy minima are slightly off the Γ-A lines). Their calculation resulted
in the indirect band overlap: the energy band other than near the Z point contributes
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Figure 3.17: (a) Band structure at pressure of 2.0 GPa. (b) Brillouin zone and some
of the symmetric points. (c) Fermi surfaces: one hole pocket at around the Z point and
four electron pockets between the Γ-A lines. The a-, b-, and c-axes correspond to the
Z-A, Γ-Z, and Γ-X directions, respectively.

to the semimetallizaton. Drop of the energy band on the Γ − A path with pressure is
explained by change of the in-plane hopping due to the shrinkage of the puckered hon-
eycomb layers along the c-axis [110]. The hole pocket is highly anisotropic: the ratio
of Fermi wave vectors is kZ−A

F : kZ−Γ
F : kZ−L

F = 21 : 13 : 3, while the electron pockets
are rather isotropic. For the nearly compensated condition, which will be quantitatively
validated in the next section, the total volume of the electron pockets should be equal
to that of the hole pocket.

Now, we compare the theoretical results mentioned above with our experimental
results. For the sake of simplicity, we approximate the Fermi surfaces as spheroids that
are characterized by three axes, La, Lb, and Lc: i.e., the Fermi surfaces are represented
in the reciprocal space by (ka/La)

2 + (kb/Lb)
2 + (kc/Lc)

2 = 1. Here the a-, b-, and c-
directions in the real space correspond to the ka-, kb-, and kc- directions in the reciprocal
space. From the first-principles calculation, the anisotropy of the hole pocket is estimated
as La : Lb : Lc = 21 : 13 : 3 at 2 GPa. As a result, the ratio of the cross-sections
perpendicular to the a- (Sa), b- (Sb), and c- (Sc) axis is Sa : Sb : Sc = 13 : 21 : 91 based
on the above theoretical estimation. By assuming that the major peaks originated from
the hole pockets and using extrapolated Fa,b,c at 2 GPa [indicated with red dashed lines
in Figs. 3.16(a)-(c)], the hole density calculated from the volume of the spheroid is about
2.6× 1017 cm−3. In addition, this identification satisfies the relationship Sc > Sb > Sa,
which was suggested by the theoretical calculation. In this case, however, the electron
pocket constructed from Fa,b,c of minor peaks [blue dashed lines in Fig. 3.16(a)-(c)], has
an almost identical volume to that of the hole even for one pocket, which does not match
the first-principles calculation. Recently, several theoretical studies reported different
band structures of BP in the semimetallic state [111,112], which also could not reproduce
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the observed SdH frequencies in the present study. For complete determination of the
Fermi surfaces in semimetallic BP, additional information such as angle-resolved SdH
measurements, and careful comparison with theoretical studies should be necessary.

3.3.4 Analyses of the In-Plane Transport Properties Based on the
Two-Carrier Model

In this section, we quantitatively evaluate the carrier density and mobility based on
the semiclassical two-carrier model. Firstly, we focus on the transport properties in
the semiconducting state at 0.29 GPa. Figure 3.18(a) shows the magnetoresistance
(ρxx) at T =2, 15, and 30 K with magnetic field applied parallel to the b-axis. ρxx
first decreases below 2 T and then increases as the magnetic field increases at 2 K.
The negative magnetoresistance below 2 T is ascribed to the suppression of the two-
dimensional Anderson localization [113]. On the other hand, it monotonically increases
with the magnetic field at 15 and 30 K. Figure 3.18(b) shows the Hall resistance (ρyx) at
2, 15, and 30 K. Nonlinear behavior becomes pronounced as the temperature increases,
which is also reported in another report [114]. The nonlinear ρyx suggests that at least
two kinds of carriers exists, and that they have different densities and mobilities. Since
ρyx is always positive up to 14 T, the majority of the carriers is expected to be holes.
Figure 3.18(c) shows the Hall conductivity (σxy) as calculated from both ρxx and ρyx as

σxy =
ρyx

ρ2xx + ρ2yx
. (3.13)

Here, Eq. (3.13) is for the isotropic case with ρxx = ρyy and ρxy = −ρyx in the original
definition:

σxy =
ρyx

ρxxρyy − ρxyρyx
. (3.14)

In the case of BP, It has been reported that the resistivity along the a-axis (ρa) is
approximately 10 times larger than ρc at ambient pressure [73]. We actually observed
the anisotropy in the semiconducting state, as shown in the Fig. 3.7(c). However, since
ρa/ρc was confirmed to be nearly constant as functions of temperature and magnetic
field, we utilized the isotropic two-carrier model and focus on qualitative change in the
parameters in the semiconducting state. By assuming two kinds of carriers (labeled 1
and 2) with densities (n1,2) and mobilities (µ1,2), we can obtain σxy [115]:

σxy = eB

(
± n1µ

2
1

1 + µ2
1B

2
± n2µ

2
2

1 + µ2
2B

2

)
. (3.15)

In Eq. (3.15), e > 0 is the elementary charge and B is the magnetic flux density, respec-
tively. The plus and minus signs in Eq. (3.15) should be taken into consideration when
the corresponding carrier is a hole or electron, respectively. It should be noted that the
signs of ρyx and σxy are the same in this formulation. Our discussion of the result in
the semiconducting state assumes the coexistence of two kinds of hole carries [i.e., plus
signs are taken in Eq. (3.15)]. The dashed lines in Fig. 3.18(c) show the fitted curves
of σxy, based on Eq. (3.15), and we adjust for the four fitting coefficients: namely, the
densities (nh1,h2) and mobilities (µh1,h2) of the hole carriers. The temperature depen-
dence of these coefficients is shown in Figs. 3.18(d) and (e). For simplicity, we ignored
the effects of the Anderson localization that are observed at 2 K. We can see that the
carrier densities (nh1,h2) increase with increasing temperature, which can be explained
by the thermal excitation of carriers from the impurity levels as discussed in earlier Sec.
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Figure 3.18: (a) Resistivity (ρxx) and (b) Hall resistivity (ρyx) as a function of the
magnetic field that is applied along the b-axis at 0.29 GPa. (c) Hall conductivity (σxy)
at 2, 15, and 30 K, as calculated from both ρxx and ρyx using Eq. (3.13). Dashed lines
indicate the fitted curves based on the two-carrier model (see text). The inset shows the
magnified view of σxy at 2 K. The temperature dependence of the (d) densities (nh1,
nh2) and (e) mobilities (µh1, µh2) of the holes estimated by the two-carrier model fittings
at 0.29 GPa. The error bars are smaller than the diameter of the circles.
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3.3.1. The mobilities (µh1 and µh2) also increase with increasing temperature, which is
consistent with the positive temperature coefficient of the Hall mobility that had been
observed at ambient pressure up to 20 K [Fig. 3.3(c)].

Here, we comment on the statistical error accompanying the two-carrier fit. Eguchi et
al. recently pointed out that there is a large uncertainty in the fitting coefficients of the
two-carrier model analyses of the resistivities (ρxx and ρyx) [116,117]. We also recognized
that significant errors in the fitting coefficients occur in the analyses of resistivities, and
thus, we adopted a fitting to the Hall conductivity (σxy). The parameters we obtained
had a much lower error and resulted in physically reasonable behavior, as mentioned
above. One important point to make is that, contrary to that of recent report on
BP [114], our experimental results cannot be reproduced by assuming the coexistence of
electrons and holes: our results indicate that the existence of two kinds of hole carriers
with different densities and mobilities is crucial to reproduce the experimental results.
Since semiconducting BP is assumed to be a direct band gap semiconductor and has no
band degeneracy near the narrowest gap [the Z point, see Fig. 3.2(e)], the origin of the
“two kinds of hole” is unclear.

Next, we show the in-plane magnetoresistance and Hall resistance (B ∥ b, I ∥ c) near
and above the SC-SM transition pressure. Figure 3.19(a) shows ρR(B) ≡ [ρxx(B)−ρxx(0
T)]/ρxx(0 T) at 2 K at several pressures from 1.01 to 2.24 GPa. The details about
the SdH oscillation superposed on ρR(B) has already been discussed in earlier Sec.
3.3.3. We do not see any tendency of saturation in ρR(B) until at least 14 T in the
semimetallic state. The magnetoresistance effect reaches its maximum value of ρR(14
T) ∼= 8000 at 1.75 GPa and then decreases with increasing pressure, as shown in Fig.
3.19(e): meanwhile the ρc at 2 K is monotonically suppressed by pressure, as shown
in Fig. 3.7(a). Figure 3.19(b) shows ρyx at 2 K from 1.01 to 2.24 GPa, which shows
non-linear behavior at all pressures suggesting a contribution from multiple kinds of
carriers also in this pressure region. The sign inversions of ρyx were observed at this
pressure region below 2 T, as shown in the inset of Fig. 3.19(b), which agrees with the
previous report [93]: this sign inversion in ρyx, however, cannot be recognized at 0.29
GPa, as shown in Fig. 3.18(b). In addition, the magnetic field where the sign inversion
takes place systematically increases with increasing pressure. Thus, we regard this sign
inversion as an important feature in this pressure region.

In order to discuss whether the large and non-saturating magnetoresistance in BP
is explained within the semiclassical theory or not, careful analysis closely following the
conventional Drude model is important. Thus, we analyzed σxy at 2 K based on the
isotropic two-carrier model. As shown in Fig. 3.7(c), the anisotropy between ρa and ρc at
2 K becomes small above 1.2 GPa at zero field. In addition, the magnetoresistance along
the a- and c-axes was reported to be less anisotropic in the semimetallic state [93]. We
can reasonably reproduce σxy by assuming the coexistence of electron and hole carriers
at pressures from 1.01 to 2.24 GPa [opposite signs between the first and second terms
are taken in Eq. (3.15)]. Curve fittings were carried out in the magnetic field from 0 T
to 4 T where the effect of the quantum oscillations is negligible. Figure 3.19(c) shows
the pressure dependence of the electron (ne) and hole (nh) densities with vertical error
bars: both ne and nh monotonically increase with increasing pressure, which indicates
that the Fermi pockets become larger due to the enhancement of the band overlap. This
result is consistent with the pressure dependence of the SdH frequencies (Fig. 3.16).

This result shows that carrier density is continuously controlled by hydrostatic pres-
sure in semimetallic BP. It is also shown in Fig. 3.19(c) that ne and nh have similar
values at all pressures, which indicates the nearly compensated semimetallic nature of
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Figure 3.19: (a) ρR(B) = [ρxx(B)−ρxx(0 T)]/ρxx(0 T) from 1.01 to 2.24 GPa at 2 K. (b)
Hall resistivity (ρyx) from 1.01 to 2.24 GPa at 2 K. The inset of (b) shows the magnified
view of ρyx below 2 T. (c) Pressure dependence of the hole (nh, red markers) and electron
(ne, blue markers) densities with vertical error bars. (d) The pressure dependence of
the hole (µh, red markers) and electron (µe, blue markers) mobilities with vertical error
bars. (e) The experimental (filled red circles) and simulated (open black circles) values
of ρR(14 T) using Eq. (3.19).
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BP. Figure 3.19(d) shows the pressure dependence of the electron (µe) and hole (µh)
mobilities with vertical error bars: The µe and µh have similar values at 1.01 GPa, while
µe becomes more than 10 times larger than µh above 1.28 GPa. The coexistence of
electrons and holes, and the large difference between µe and µh, reasonably explains the
sign inversion of ρyx that is shown in the inset of Fig. 3.19(b). In the electron-hole
two-carrier model, σxy is represented by Eq. (3.15):

σxy = eB

(
nh

µ−2
h +B2

− ne

µ−2
e +B2

)
. (3.16)

In the strong-magnetic field limit (µ−1
e,h ≪ B), Eq. (3.16) can be simplified:

σxy ∼ e

B
(nh − ne). (3.17)

This equation indicates that the sign of σxy is only determined by the carrier imbalance,
nh−ne. σxy is always positive in the strong-field limit in the present case, since nh > ne

holds at the all studied pressures. In the weak-magnetic field limit (µ−1
e,h ≫ B), on the

other hand, σxy is represented by the following equation:

σxy ∼ eB(µ2
hnh − µ2

ene). (3.18)

As can be seen, the sign depends also on the mobilities. Since ne ≃ nh and µ2
e > µ2

h in
the present case, σxy is negative in a weak magnetic field. Therefore, the sign inversion
takes place in a magnetic field where the first term is equal to the second term in Eq.
(3.16). Above features well explain our results.

Here, we discuss the large and non-saturating magnetoresistance of semimetallic
BP. Recently, several theoretical groups have suggested the possible realization of the
Dirac electron system in semimetallic BP under pressure [111, 118]. In recent magneto-
transport study of Cd3As2, which is a candidate of three-dimensional Dirac system, linear
and no-saturating magnetoresistance originated from the non-trivial band topology has
been suggested [33]. Whether the magnetoresistance effect obserbed in semimetallic BP
contains such a non-trivial origin is of great interest. To clarify the above point, we
analyze the magnetoresistance based on the two-carrier model. In the present model,
ρR(B) is represented by the following equation [119]:

ρR(B) =
B2nenhµeµh(µe + µh)

2

(µene + µhnh)2 +B2µ2
eµ

2
h(ne − nh)2

. (3.19)

In the case of a completely compensated semimetal (ne = nh), ρR(B) can be reduced
to µeµhB

2: the resistance continuously increases without showing saturation within the
classical model. In the present case, however, incomplete compensation leads to the
saturation of ρR(B) to a finite value. We calculated ρR(14 T) by Eq. (3.19) using
ne,h and µe,h shown in Figs. 3.19(c) and (d). The open circles in Fig. 3.19(e) show
that the calculated ρR(14 T) is much smaller than the experimental values at the all
studied pressures, and it cannot reproduce the peak structure at 1.75 GPa. Therefore,
the observed XMR in BP involves some additional physics beyond the conventional
two-carrier model for nearly compensated semimetals. In addition, the observed large
longitudinal magnetoresistance, which is shown in Fig. 3.14, cannot be explained through
this semi-classical approach.
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Figure 3.20: (a) The temperature dependence of ρc in several magnetic fields at 1.64
(solid lines) and 2.00 GPa (broken lines) in transverse configuration (B ∥ a and I ∥ c). (b)
The temperature dependence of ρa in several magnetic fields at 1.65 GPa in longitudinal
configuration (B ∥ I ∥ a). (c) The temperature dependence of ρa normalized by the
resistivity at zero field ρa(0). Fitting curves based on Eq. (3.22) in the text are shown
by broken lines.

3.3.5 Exploration of Unconventional Electronic Phases on the Bound-
ary between Semiconducting and Semimetallic States

In the vicinity of the SC-SM transition pressure, the quantum limit state in which all
the carriers are accommodated in the lowest Landau subband can be realized in order of
10 T as shown in earlier Sec. 3.3.3. Recent experimental studies of graphite suggested
the emergence of an excitonic phase in the vicinity of the quantum limit state in high
magnetic fields [19, 107]. Since semimetallic BP is an ideally clean low-carrier system,
shielding of the Coulomb interaction will be weaker than that in ordinary metals. In order
to look for anomalous quantum states caused by the charge correlation in this electron-
hole system, we studied the temperature dependence of the resistivity, as shown in Fig.
3.20(a). The temperature dependence at zero field is metallic as mentioned above, while
in magnetic fields, they become semiconductor-like ones at temperatures of up to 200
K. Although this kind of behavior is sometimes interpreted as a field-induced SM-SC
transition, such apparent semiconductor-like behavior in semimetals can be explained
by a simple two-carrier model [120]. The transverse resistivity (ρxx) is expressed as [121]

ρxx(B) =
ρeρh(ρe + ρh) + (ρeR

2
h + ρhR

2
e)B

2

(ρe + ρh)2 + (Re +Rh)2B2
, (3.20)

where Re,h = 1/(ne,hqe,h) is the Hall coefficients of electron and hole carriers (ne,h and
qe,h represent the density and charge of electron and hole carriers, respectively) and
ρe,h = 1/(ne,heµe,h) is the resistivity of each carrier at zero field. For simplicity, we
assume the completely compensated case. Then, we can set −qe = qh and ne = nh, i.e.,
−Re = Rh = R. Further, we assume that ρe and ρh have the same metallic temperature
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dependence, i.e., ρe(T ) = ρh(T ) = ρ0(T ) at zero field. Then, Eq. (3.20) is reduced to

ρxx(B, T ) =
ρ0(T )

2
+

R2B2

2ρ0(T )
. (3.21)

In low-carrier systems, the second term in Eq. (3.21) becomes dominant at high magnetic
fields since R is generally large, and thus ρxx can show the superficial insulating-like
behavior even in a metallic sample. Since transverse magnetoresistance shows this kind
of artificial metal-insulator transition-like behavior, we next focus on the longitudinal
magnetoresistance.

As shown in Fig. 3.20(b), the longitudinal magnetoresistance shows a peak structure
at around 30 K as a function of temperature. Such nonmonotonic behavior, however, may
not be ascribed to the emergence of a novel phase below this temperature. Figure 3.20(c)
shows the temperature dependence of the ρa(B) normalized by the value at zero field
ρa(0). The traces show monotonic behaviors at all the fields. According to a transport
theory in the quantum limit state [122], the longitudinal resistivity ρ∥(B, T )/ρ∥(0, T )
for classical statistics, in which the Fermi energy is smaller than kBT , is represented by,

ρ∥(B, T )

ρ∥(0, T )
=

1

3

(
ℏωc

kBT

)
=

ℏe
3kBm∗

B

T
(3.22)

when the scattering mechanism is dominated by the δ-function impurity potential or
acoustic phonon. As shown by broken lines in Fig. 3.20(c), ρa(B, T )/ρa(0, T ) is rea-
sonably reproduced by Eq. (3.22) at all the fields by adjusting the single parameter
m∗ = 0.005 m0 above 20 K. Although the m∗ used in this analysis is different from that
estimated above, this discrepancy is not unusual considering the crudeness of the model
and coexistence of electrons and holes. Therefore, the unusual temperature dependences
of the transverse and longitudinal magnetoresistances in semimetallic BP do not show
the emergence of a gapped phase at a high magnetic field, but can be simply under-
stood as characteristic behavior in a high-mobility and low-carrier-density semimetal
comparable to bismuth and graphite.

Finally, we focus on the magnetotransport properties at lower temperatures, which
was achieved through the use of a dilution refrigerator. Figure 3.21 and its inset show
the temperature dependence of ρa at 1.80 GPa in various fields that were applied along
the a-axis. No anomalous features in the ρa-T curves were observed down to 43 mK.

We comment on the necessary condition to realize the excitonic insulator phase based
on rough estimation. The energy ratio of the lowest Landau level at 10 T [ℏωc/2 =
ℏeB/(2m∗) = 28.9 meV] to exciton binding energy [EB

e-h = e2/(8πϵaBe-h) = 0.945 meV]
is estimated as γ = ℏωc/(2E

B
e-h) ∼ 30.6, assuming the cyclotron and conversion masses

are m∗ = 0.02m0 and µ = 0.01m0, respectively. Since we do not have exact ϵ in
semimetallic state, we used ϵ ∼ 12ϵ0 determined at ambient pressure [123]. According
to Yafet et al., the binding energy is expected to become ∼ 5 times larger than that
in zero field at γ ∼ 30 [124]. Thus, the exciton binding energy at 10 T is expected
to be 5EB

e-h ∼ 4.73 meV. Although we do not know the precise value of |G| in present
case, it is approximately the same order with ℏωc = 57.9 meV. Comparing EB

e-h at 10
T and |G|, we can expect the situation EB

e-h ≳ |G| in higher pulsed magnetic field. In
addition, smaller |G| is desirable, which can be controlled by hydrostatic pressure in case
of semimetallic BP.
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Figure 3.21: Temperature dependence of the resistivity along the a-axis (ρa) at 1.80
GPa down to 43 mK. The inset shows the temperature dependence of ρa below 1 K
under various magnetic fields along the a-axis.
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3.4 Summary

We investigated the electrical transport properties of black phosphorus under high mag-
netic fields and pressure. In semiconducting state, we observed the magneto-phonon
resonance, which is marked by the high mobility nature of black phosphorus. The pres-
sure dependence of the magneto-phonon resonance indicates that the cyclotron mass
becomes lighter as pressure increases, which can be understood as a result of band
gap closure. In semimetallic state above 1.4 GPa, we observed clear Shubnikov-de
Haas oscillation and large magnetoresistance effect. From the analysis of Shubnikov-
de Haas oscillations, we identified the light cyclotron mass and small carrier density in
the vicinity of semiconductor-semimetal transition, which is comparable to bismuth and
graphite. Further, Fermi surfaces become monotonically larger as pressure increases,
which denotes that the carrier density is tunable by hydrostatic pressure. More detailed
experiments such as angular dependence of the quantum oscillations and careful com-
parison with theoretical studies are necessary to completely determine the number and
geometry of the Fermi surfaces. Also, we quantitatively determined the carrier densities
and mobilities of electrons and holes based on the two-carrier model, which confirmed
the nearly compensated nature in the semimetallic state, and large mobility difference
between electrons and holes. The large magnetoresistance observed in the semimetal-
lic phase cannot be fully reproduced by conventional two-carrier model, which suggests
additional mechanisms beyond the semiclassical framework, such as magnetic field de-
pendence of the relaxation time. To seek unconventional electronic states in the vicinity
of the semiconductor-semimetal transition, we measured temperature dependence of the
resistivity under magnetic field and temperature down to 43 mK. Temperature depen-
dence of the resistivity apparently became semiconductor-like under magnetic field, yet
this behavior can be explained within already-known conventional theory. Experiments
in higher fields are desirable to explore exotic electronic phases in the semimetallic black
phosphorus.



Chapter 4

Lead Telluride

4.1 Basic Properties of PbTe

PbTe is known as an degenerated narrow-gap semiconductors with high mobility carriers.
Since before, PbTe have attracted attention as an optical and thermoelectric material
owing to their tunable band gap by alloying and high thermoelectric figure of merit.
Besides, they are now being recognized as a candidate for novel topological material
called “topological crystalline insulator” and “three-dimensional Dirac electron system”.
In this section, we overview the fundamental properties of this system with related
literatures and clarify the scope of this study.

4.1.1 Crystal and Energy Band Structure

PbTe, one of the IV-VI compounds, is known to form the NaCl-type face-centered cubic
(FCC) crystal structure as shown in Fig. 4.1(a), which belongs to the space group
Fm3̄m. As shown in Fig. 4.1(b), PbTe is a semiconductor with the narrowest direct
gap of approximately 0.18 eV at the L point of the first Brillouin zone shown in Fig.
4.1(c). Presence of the band gap has also been confirmed experimentally by optical
measurements [125]. The band structure is considerably altered whether the spin-orbit
interaction is taken into account or not [126,127], which implies the primary importance
of the relativistic effect in this system.

Although stoichiometric PbTe should be an insulator at 0 K, real samples are ei-
ther p- or n-type degenerated semiconductor (have moderate number of carries at low
temperature) due to the natural defect or impurities. It has been known that Pb and
Te vacancy introduces acceptor and donor levels, respectively [128]. The number of the
Fermi surface depends on the doping amount. While the doping is very small, ellipsoidal
Fermi pockets are located only at the L points. As the doping increases, additional
Fermi pockets show up on the Γ–K path. This doping dependence is common to p- and
n-type cases, since the band structure is approximately symmetric with respect to the
ideal Fermi level as shown in Fig. 4.1(b).

4.1.2 Physical Properties of PbTe

Here, we overview the previous literatures related to pristine PbTe. In 1950s, Allgaier
et al. investigated the carrier mobility of lead salts PbS, PbSe, and PbTe [131]. They
found that the carrier concentrations are the order of 1018 cm−3 and carrier mobilities
rapidly increase as temperature decreases. Extremely high mobility 105 cm2V−1s−1 at

67



68 CHAPTER 4. LEAD TELLURIDE

Figure 4.1: (a) Crystal structure of PbTe. (b) Energy band structure of PbTe [129].
(c) The first Brillouin zone of the FCC crystal [130].

4.2 K in PbTe is comparable with that in semimetallic BP [Fig. 3.19(d)]. Allgaier also
investigated the magnetoresistance in lead salts up to 0.43 T at low temperature and
reported anomalous behavior that longitudinal magnetoresistance (current I ∥ magnetic
fields B) is larger than transverse one (I ⊥ B) [132].

In the early 1960s, successive observations of the SdH oscillation [133, 134], dHvA
oscillation [135], and cyclotron resonance [136, 137] has initiate the detailed Fermiology
on PbTe. Owing to the high mobility and light effective mass, PbTe shows notable
quantum oscillation even in relatively weak magnetic fields.

Burke et al. investigated the SdH oscillations and their angular dependence in p-
type PbTe with hole density of 3.0 × 1018 cm−3 [138]. Figure 4.2(a) shows the SdH
oscillation at 1.3 K. Clear oscillation was observed in a magnetic field less than 3.5 T,
which reflects high mobility nature of PbTe. In this report, the elongated ellipsoidal
Fermi pockets along the ⟨111⟩ directions are assumed to locate only at the L points as
shown in Fig. 4.2(b). From the FFT spectrum of the SdH oscillation shown in Fig.
4.2(c), they assigned the peaks at 11.6, 21.8, and 39.6 T to the cross-sectional extrema
originated from A, C, and B pockets in Fig. 4.2(b), respectively. Figure 4.2(d) shows the
angular dependence of the SdH oscillation with the magnetic field swept from the [110]
to [001] direction. The angular dependence of the fundamental SdH frequency Ffund (in
unit of T) is analytically calculated from the cross-sectional area of ellipsoid cut by the
plane perpendicular to the field direction as [138]:

Ffund = 31.5(npocket
p /1018)2/3K1/6[1 + (K − 1) cos2Θ]−1/2. (4.1)

Here, npocket
p (in unit of cm−3) and Θ are hole density enclosed in the ellipsoid and angle

between the ⟨111⟩ and magnetic field direction, respectively. K = (b/a)2 represents the
anisotropy of the ellipsoid with radii perpendicular (a) and parallel (b) to the ⟨111⟩ direc-
tion. They determined these parameters to reproduce the observed angular dependence
as shown by solid lines in Fig. 4.2(d), and obtained K ∼ 13 and npocket

p = 0.75 × 1018

cm−3. Since there are 4 ellipsoids in the first Brillouin zone, the total hole density is
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Figure 4.2: (a) SdH oscillation in PbTe [138]. (b) Fermi surfaces of PbTe assumed
in [138]. (c) FFT spectrum of the SdH oscillation [138]. (d) Angular dependence of the
SdH oscillation [138].
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Figure 4.3: (a) Schematic Landau-level diagram with spin-splitting [100]. (b) SdH
oscillation of PbTe with spin-splitting [138].

4 × npocket
p = 3 × 1018 cm−3, which showed good agreement with that estimated from

the Hall coefficient. Note that relatively large second harmonic was also reported in the
FFT spectrum of SdH oscillation as shown with open symbols in Fig. 4.2(d). As is clear
in Fig. 4.2(c), the amplitude of the second harmonics at 23.6 T became even larger
than that of fundamental one at 11.6 T. Although they pointed out the possible effect of
spin-splitting for such a large harmonics, no quantitative explanation was made in their
report. On the other hand, similar large second harmonic was also recently reported
by Giraldo-Gallo et al. in their study of Pb1−xNaxTe, yet the reason for that was not
attributed to the spin-splitting [139].

Burke et al. also revealed the effective g-factor (g∗) along several field directions.
Here, we review how they deduced g∗ from the experimental results. When a magnetic
field B is applied to the materials, the electronic state is quantized into the Landau
subbands, and they cross the Fermi level at the inversed magnetic field positions given
by [100]

F

B
= n+ γ ± 1

2
MZC ± 1

8
, (4.2)

including the effect of spin. F = ℏSF /(2πe) is the fundamental frequency of quantum
oscillation with cross-sectional extrema SF . γ is identical with that introduced in Sec.
1.2, which stems from the Bohr-Sommerfeld quantization rule. MZC = g∗µBB/ℏωc =
m∗g∗/(2m0) is the ratio of the Zeeman splitting to the cyclotron energy, and we call it
“ZC ratio”, hereafter. The ± on the fourth term in Eq. (4.2) is chosen whether SF is
the maximum (+) or minimum (−) extremal cross-section. Figure 4.3(a) schematically
shows the inverse magnetic field position of Landau levels described by Eq. (4.2), in
which γ is set to 1/2 assuming the trivial case (Berry’s phase ΦB = 0). In case that
spin-splitting is pronounced, we can determine g∗ from the SdH oscillation by following
relationship [138]:

(1/B)n+ − (1/B)n−
(1/B)n+ − (1/B)(n−1)+

= MZC , (4.3)
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field direction m∗/m0 MZC g∗

⟨111⟩ 0.036± 0.002 0.58± 0.01 32± 3
⟨001⟩ 0.051± 0.008 0.58± 0.01 23± 5
⟨110⟩ 0.080± 0.014 0.27± 0.01 7± 2

Table 4.1: Cyclotron masses normalized by the electron mass (m∗/m0), ZC ratios (MZC),
and effective g-factors (g∗) of PbTe along the ⟨111⟩, ⟨001⟩, and ⟨110⟩ directions [138].

assuming that the cyclotron mass m∗ is known from the temperature dependence of SdH
oscillation. In Eq. (4.3), (1/B)n+ etc. is the value of the inverse field at which the energy
level n+ crosses the Fermi level. However, there remains ambiguity in determination of
g∗ only from Eq. (4.3). For example, all the cases shown in Fig. 4.3(a) result in quite
similar oscillatory structures in small B, except phases of the oscillations.

To restrict the possible cases, they focused on the phase of SdH oscillation. Ac-
cording to the Lifshitz-Kosevich (LK) formula which describes the quantum oscillation
phenomena, the quantum oscillation Aosc is represented as follows:

Aosc ∝
∞∑
p=1

A(p)RT (p)RD(p)RS(p) cos

[
2πp

(
F

B
+ γ ± 1

8p

)]
. (4.4)

Here, natural number p denotes the number of harmonics. The ± is chosen whether SF

is the minimum (+) or maximum (−) extremal cross-section. Since A(p), RT (p), and
RD(p) are all positive factors, they do not affect the phase of oscillation. Thus, only the
factor RS(p) = cos[πpm∗g∗/(2m0)] = cos(πMZC) can alter the phase. For simplicity,
they consider only p = 1 case:

Aosc ∝ cos(πMZC) cos

[
2π

(
F

B
+ γ ± 1

8

)]
. (4.5)

As is clear in Eq. (4.5), the apparent phase of oscillation changes whether cos(πMZC)
is plus or minus, the range of MZC can be restricted. The corresponding signs of
cos(πMZC) are shown in the right edge of Fig. 4.3(a). Burke et al. estimated g∗

focusing on the p = 1 fundamental wave, and determined g∗ along several crystal direc-
tions as shown in Table 4.1. An example of SdH oscillation is shown in Fig. 4.3(b), in
which the magnetic field was applied along the [001] direction. Using doubled-peak posi-
tions observed in high magnetic field region and phases of the oscillations, they deduced

M
[001]
ZC = m∗

[001]g
∗
[001]/(2m0) = 0.58. Here, m∗

[001] and g∗[001] represent the cyclotron mass

and effective g-factor with magnetic field along the [001] direction, respectively. We note

that they reported remarkable anisotropy in MZC , namely, M
[110]
ZC is smaller than those

in other directions as shown in Table 4.1.
Jensen et al. investigated the angular dependence of the SdH oscillation on 9 p-

type samples with different hole density [140]. They reported that the anisotropy of

the ellipsoidal Fermi surface K ∼ 13 and M
⟨111⟩
ZC ∼ 0.6 were almost independent of hole

density from 4.0× 1017 to 1.1× 1019 cm−3. Quantum oscillations with spin-splitting has
also been reported in elastic properties and magnetostriction in magnetic fields [141,142].

Note that the MZC obtained above scheme is not unique but possible smallest value:
to eliminate the possibility MZC > 1, magnetic field high enough to reach the quan-
tum limit state is necessary to determine the MZC without any ambiguity. Yet, full
Landau-indexing of the quantum oscillations over such a high magnetic field has not
been reported.
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Figure 4.4: (a) Composition dependence of the lattice constant in Pb1−xSnxTe [143].
(b) Composition dependence of the band gap in Pb1−xSnxTe [144]. (c) Schematic band
structure model in Pb1−xSnxTe [144].

4.1.3 Physical Properties of Pb1−xSnxTe

Here, we review the change of the lattice constant and electronic structure by substitution
of Sn for Pb. The composition dependence of the lattice constant has been investigated
by X-ray diffraction [143, 145, 146]. The lattice constant of Pb1−xSnxTe (aPb1−xSnxTe)
monotonically decreases from PbTe (aPbTe = 6.46 Å) to SnTe (aSnTe = 6.31 Å) as shown
in Fig. 4.4(a), which is qualitatively understood by empirical Vegard’s law:

aPb1−xSnxTe = (1− x)aPbTe + xaSnTe. (4.6)

Similar effect is expected to be brought by applying hydrostatic pressure to pristine
PbTe, which will be mentioned in Sec. 4.1.6.

The effect of Sn substitution for the band gap has also been investigated in several
previous studies. Dimmock et al. investigated the photoluminescence of Pb1−xSnxTe
at 12 K and found that the band gap was suppressed with increment of x as shown in
Fig. 4.4(b) [144]. The similar tendency was reported by later experiment [147]. On the
other hand, fully substituted material SnTe is also known as a narrow-gap semiconductor
with a gap of 0.3 eV at the L point, which is larger than that of PbTe. Further, the
band gap of SnTe is smaller at 300 K than that at low temperature, i.e., the band
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Figure 4.5: (a) The brillouin zone of FCC cubic lattice and Dirac surface states observed
in Pb0.6Sn0.4Te [151].

gap of SnTe has negative temperature coefficient, which is opposite to that of PbTe.
From these facts, Dimmock et al. proposed a band structure model at the L point
schematically shown in Fig. 4.4(c), in which the valence and conduction band in SnTe
are inverted from those of PbTe. In PbTe, the valence and conduction band edges are
group-theoretically belong to L+

6 and L−
6 states, respectively. According to this model,

the band gap decreases as L+
6 and L−

6 states approach each other by Sn substitution,
and becomes zero at specific composition with degeneration of these two states. At this
band contact, the inversion of valence and conduction bands takes place. Then, the band
gap increases as Sn substitution since the order of L+

6 and L−
6 are inverted compared

to that in PbTe. From Fig. 4.4(b), we can expect the realization of zero-gap state at a
critical composition of xc ∼ 0.35. Such a composition-dependent band inversion is also
known in Bi1−xSbx [148].

The composition dependence of the band gap mentioned above can be qualitatively
understood by the difference between the relativistic effects in Pb and Sn atoms [144].
According to a band calculation, 36% of the valence L+

6 state comes from a Pb s state
and 31% of conduction L−

6 states comes from Pb p state. Comparing the difference of
the relativistic effect between s (Pb 6s and Sn 5s) and p (Pb 6p and Sn 5p) states,
the relativistic shift of the s and p states are estimated as 2.75 eV and 0.73 eV [149],
respectively. Thus, the energy of L+

6 and L−
6 states increase by 2.75 × 0.36 = 0.99 eV

and 0.73 × 0.31 = 0.23 eV, respectively, with going from PbTe to SnTe. As is clear in
schematic energy diagram shown in Fig. 4.4(c), L+

6 and L−
6 should cross at a certain

composition, which suggests the realization of a zero-gap state. Also, the reason why
the energy gap of SnTe can be larger than that of PbTe is qualitatively explained by
this model.

In order to clarify the change of electronic properties of Pb1−xSnxTe alloy system,
quantum oscillations have been investigated through various physical properties in pre-
vious literature. Melngailis et al. investigated the Sn composition (x) dependence of the
SdH oscillations in p-type Pb1−xSnxTe samples, and reported the decrease of ellipsoidal
anisotropy K [150]. They also suggested that the spin-splitting of x = 0.22 sample is
larger than that in previous result in pure PbTe.

4.1.4 Topological Properties of Pb1−xSnxTe

Quite recently, the anomalous character of the energy band structure of Pb1−xSnxTe
has attracted attention in a topological context. A novel class of topological materials
“topological crystalline insulator” (TCI) was theoretically predicted by Fu [152], and
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Figure 4.6: (a) Schematic energy band structure of PbTe at the L point. Carrier type
is assumed to be hole, and ∆1–3 is the energy difference from the top of the valence
band (E0) defined as ∆n = E0 − En. Calculated Sn content (x) dependence of the (b)
inverse masses, (c) g-factors, and (d) ZC ratios [154]. ∥ and ⊥ indicates the magnetic
field direction parallel and perpendicular to the ⟨111⟩ direction, respectively.

then, Pb1−xSnxTe system with x > xc ∼ 0.35 was shown as a candidate of TCI [153].
In other words, the electronic system of Pb1−xSnxTe undergoes topological phase tran-
sition at the critical composition xc. TCI has metallic surface states with linear energy
dispersion inside the bulk band gap. Unlike conventional topological insulator, in which
metallic surface states protected by the time-reversal symmetry, surface states of TCIs
are protected by its crystal symmetry. Recent ARPES study on Pb1−xSnxTe with in-
verted band structure reported observation of the surface states, which construct a Dirac
cone in the vicinity of the Fermi level (Fig. 4.5) [151]. Although there are several recent
reports which focus on the unconventional surface state, we do not introduce them since
we focus on the bulk properties in this study.

Hayasaka et al. theoretically investigated the effect of spin-orbit interaction in
Pb1−xSnxTe focusing on the ZC ratio [154], and deepened the understanding of rela-
tionship between the ZC ratio and Dirac electron system. The general formulae for
inverse mass tensor and g-factor have been known according to the multiband k · p
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theory [155]. Hayasaka et al. applied above framework to the Pb1−xSnxTe system and
obtained the exact formulae for the ZC ratio:

M
∥
ZC =

1− λ|X|2 + λ′|Y |2

1 + λ|X|2 + λ′|Y |2
, (4.7)

M⊥
ZC =

|1− λ′Y Z∗|√
(1 + λ′|Z|2)(1 + λ|X|2 + λ′|Y |2)

. (4.8)

In this formulation, the carrier type is assumed to be hole, and the suffixes ⊥ and ∥
indicate the magnetic field direction perpendicular and parallel to the ⟨111⟩ direction,
respectively. λ = ∆1/∆2 and λ′ = ∆1/∆3, and ∆n = E0 − En (n = 1, 2, 3) is defined
as the energy difference from the top of L+

6 (L1) valence band as shown in Fig. 4.6(a).
X, Y , and Z are constants determined by the degree of interband couplings. Note
that the contributions from the lower bands [L+

45(L3) and L+
6 (L3)] with the same parity

vanish, and we can consider only upper bands [L−
6 (L

′
3), L−

45(L
′
3), and L−

6 (L
′
2)] with

different parity. When the band gap |∆1| → 0, namely, the Hamiltonian of this system

is approximated to be two-band Dirac Hamiltonian, both M
∥
ZC and M⊥

ZC become 1
since λ, λ′ → 0 in Eqs. (4.7) and (4.8). This means that MZC is unity regardless of
magnetic field direction, which is known as a common consequence of the two-band Dirac
system. When the contributions from the other band cannot be ignored, on the other

hand, M
∥
ZC and M⊥

ZC vary from unity, and can depend on the magnetic field direction.
From these properties of MZC , they pointed out that the MZC can be an index to see
how the system is close to the ideal two-band Dirac system, so to speak, “Diracness”
of materials: we can estimate the “Diracness” of a material by the measurement of
MZC and qualitatively evaluate similarity to the Dirac system. Compared to rather
sensuous judgment of “Diracness” such as the appearance of the band dispersion based
on calculations or ARPES measurements, or observation of the linear magnetoresistance,
MZC provides quantitative framework to determine the “Diracness”, and further enables
us to compare the “Diracness” between different materials with each other. MZC can
be estimated by the measurements of quantum oscillations, which indicates that MZC

becomes a new experimental criterion to evaluate the “Diracness” of the system.

They also numerically calculated inverse mass (α⊥,∥), g-factor (g⊥,∥), and ZC racio

(M
⊥,∥
ZC ) in whole x range from 0 to 1, which are shown in Figs. 4.6(b), (c), and (d),

respectively. As we can see in Fig. 4.6(d), MZC gradually increases as x increases, and

satisfy M⊥
ZC = M

∥
ZC = 1 at x = 0.381, which is just the calculated band inversion point.

This indicates that the zero-gap state realized in Pb1−xSnxTe can be regarded as an
ideal “Dirac electron system”.

There are several reports which investigate the bulk physical properties in the vicinity
of topological phase transition. Assaf et al. reported the magneto-optical study of
Pb0.54Sn0.46Te, which is assumed to be the TCI [156]. They reported absorption peaks
originated both from the bulk and surface, and the Landau-level fan diagram constructed
from the bulk absorption energy was explained by the massive Dirac model. The Landau-
level fan diagram were well fitted by

√
B dependence, which is characteristic of the Dirac

system. Further, spin-split was missing in their report, which is ascribed to the situation
that spin-splitting and cyclotron energy is almost equal. We note that similar magneto-
optical properties were reported on Pb1−xSnxSe system [157].
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Figure 4.7: (a) Atomic displacement of the ferroelectric transition in Pb1−xSnxTe [158].
(b) Resistivity anomalies corresponding to the ferroelectric transition in Pb0.6Sn0.4Te
[159]. (c) Sn content (x) dependence of the ferroelectric transition temperature (Tc) in
Pb1−xSnxTe [160].
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Figure 4.8: (a) Band structure calculations in PbTe under pressure. Upper, middle,
and lower windows show the band structure at a volume ratio of V/V0 = 1.00, 0.91, and
0.86, respectively. V0 represents the volume at ambient pressure. (b) Corresponding
representations of the high symmetry points in Brillouin zone [161].

4.1.5 Ferroelectric Transition in Pb1−xSnxTe

SnTe is known to form the NaCl-type crystal structure at room temperature, while at
low temperature, SnTe undergoes a structural phase transition to the rhombohedral A7
structure. This transition is explained by the relative displacement of sublattice along
the ⟨111⟩ direction as shown in Fig. 4.7(a) [158]. As a result, rhombohedral SnTe is
ferroelectric. On the other hand, PbTe forms NaCl-type structure down to 0 K and does
not show any structural phase transition. Therefore, the critical temperature of the
ferroelectric transition TFE

c , which is ∼100 K in pure SnTe, decreases as x decreases,
and reaches TFE

c = 0 at a critical composition xFE
c . The phase transition has been

experimentally identified by an anomaly appeared in the temperature dependence of
the resistivity. Figure 4.7(b) shows the resistivity anomaly observed in Pb0.6Sn0.4Te
corresponding to the ferroelectric transition. In this composition, TFE

c is approximately
18 K, and it was found to increase by an application of a magnetic field. Takaoka et
al. explained the magnetic field dependence of TFE

c by a possible contribution of the
interband electron-transverse optical phonon coupling [159]. Figure. 4.7(c) shows the
Sn content dependence of TFE

c . Although xFE
c is regarded to be close to xc ∼ 0.35 at

which the topological phase transition takes place, the relationship between band gap
closure and ferroelectric transition remains unclear.
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4.1.6 Physical Properties of Pressurized PbTe

In this section, we review the effect of another external parameter, hydrostatic pressure
on PbTe. In earlier literature, the band gap at the L point was reported to decrease with
applying pressure at a rate of −74 meV/GPa at room temperature [128]. The pressure
dependence of the band gap at the L point was also investigated by calculation, in which
the pressure coefficient of the band gap closure of ∼ −40 meV/GPa was reported [162].
Based on these facts, we expect that the band gap of 0.18 eV becomes zero within a
moderate pressure range below 10 GPa. Recent theoretical calculation predicted the
pressure-induced topological phase transition from topologically trivial semiconductor
to non-trivial TCI in IV-VI chalcogenides [161]. In case of PbTe, the band inversion at
the L point was expected to realize at a volume ratio of V/V0 = 0.91 (∼ 4 GPa). Here,
V0 is the volume at ambient pressure. The crystal structure of PbTe under pressure
was reported by several experimental groups [163–166]. PbTe undergoes the first struc-
tural phase transition to the Pnma structure with increment of the pressure. Although
the reported transition pressure (4.5–7.5 GPa) varies with research groups, topological
phase transition mentioned above can occur within the NaCl-type structure. However,
there are few experimental investigation regarding to the electronic state of PbTe under
pressure, the details remains unclear.



4.2. PURPOSE OF THE STUDY 79

4.2 Purpose of the Study

In recent studies of topological materials, numbers of novel phenomena have been re-
ported experimentally. However, the universal nature of topological materials are buried
in their complex band structure, and hence, it is very hard to accurately extract the
essence from the experimental results. PbTe and its alloy system can be one of the
best candidates to solve the problem. In PbTe, the physical properties are expected
to be governed by the carriers only in the vicinity of the narrow gap at the L point.
This simplicity is notable compared to other topological materials with multiple kinds
of carriers. Further, the manipulation of parameters such as composition or hydrostatic
pressure enables us to continuously control the band structure of PbTe from degenerate
semiconductor to TCI via the zero-gap state. This character posses great possibility to
evaluate the true nature originated from the non-trivial band topology with precisely
controlling the band topology.

Another problem in previous research of topological material is how to identify their
non-trivial topology. Although the observation of linear band dispersion is commonly
accepted as an evidence of topological materials, this criteria can bring sensuous discus-
sion. Alternative criteria with firm quantitativity should be necessary. We thus focus
on the possibility of the ZC ratio which quantitatively reflects the degree of “Diracness”
of materials. However, determination of the ZC ratio accompanies ambiguities, and
thus, high magnetic field measurements are necessary for precise determination. The
firm methodology for determining the ZC ratio from the experimental data, and careful
confirmation of its validity is firstly needed.

Based on this cognition, we investigated PbTe by tuning its band topology with Sn
substitution and hydrostatic pressure.
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Figure 4.9: (a) Temperature dependence of the resistivity from 2 to 300 K. (b) Mag-
netoresistance ρxx and (c) Hall resistance ρyx up to 14 T. (d) FFT spectrum of SdH
oscillation superimposed on ρxx. The inset of (d) shows the mass plot for cyclotron
mass determination. The dashed lines are fitting results based on Eq. (3.11).

4.3 Results and Discussion

4.3.1 Pristine PbTe at Ambient Pressure

Firstly, we investigated the transport properties of PbTe at ambient pressure synthesized
by the vapor transport method (referred as #T sample). As shown in Sec. 2.8, the #T
sample has higher carrier density than those synthesized by the Bridgemann method.
Figure 4.9(a) shows the temperature dependence of the resistivity with electric currents
applied along the [001] direction. Resistivity showed metallic dependence in whole tem-
perature range from 300 to 2 K, which indicates that the sample has finite number of
degenerated carriers at low temperature. The RRR [ρ(300 K)/ρ(2 K)] is obtained as 453
from the data shown in Fig. 4.9(a). Figure 4.9(b) shows the magnetoresistance (ρxx)
up to 14 T at various temperatures. In the following resistivity measurements, magnetic
fields and currents were applied along the [100] and [001] directions, respectively, unless
otherwise specified. Although [100], [010], and [001] are symmetrically equivalent, we
use these notations to specify the relationship between applied magnetic field and elec-
tric current. Shubnikov-de Haas (SdH) oscillations are clearly observed at 2 K, which
are damped with increasing temperature. In these experiments, the magnetoresistance
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effect is less sensitive to magnetic flux density (B). However, it seems to vary with
samples as will be mentioned later. Figure 4.9(c) shows the magnetic field dependence
of Hall resistance (ρyx). The ρyx is positive and increases linearly as B increases up to
14 T, which suggest that a single kind of hole carriers are responsible to the transport
properties. The slope of ρyx is almost independent of temperature up to 25 K, which
indicates that the hole density (np) is insensitive to temperature. It is notable that ρyx
is almost 100 times larger than ρxx. Hence, SdH oscillations are inconspicuous in ρyx
owing to the huge linear background. The hole density (np = 3.7 × 1018 cm−3) and
mobility (µp = 3.8× 105 cm2V−1s−1) are estimated by the single carrier Drude model:

ρxx =
1

eµpnp
, (4.9)

ρyx =
B

npe
. (4.10)

We evaluated µp using ρxx at B = 0. Above values are consistent with the previous
report [140]. Here, we comment on the magnitude relationship between σxx and σxy.
Since ρxx ≪ ρyx in this case, conductivities are represented as σxx ∼ ρxx/ρ

2
yx and

σxy ∼ 1/ρyx. Thus, σxx ≪ σxy is satisfied, and the peak/dip relation between σxx and
ρxx is almost identical. We actually confirm this by comparing ρxx and σxx.

Here, we focus on the frequency of the SdH oscillations superimposed on ρxx. Figure
4.9(d) shows the FFT spectra of the SdH oscillations. We can recognize two obvious
peaks (labeled by Fα and Fβ) showing systematical dumping as temperature increases.
The inset of Fig. 4.9(d) shows the mass plots for Fα and Fβ. Small cyclotron masses of
0.037 m0 for Fα and 0.068 m0 for Fβ were identified. Existence of two kinds of Fermi
pockets with different cross-section may result in this two-peak feature with different
cyclotron masses, while it is inconsistent with the single-carrier-like ρyx shown in Fig.
4.9(c). Since Fβ ≃ 2Fα, we can alternatively interpret the β as the second harmonic of
α. In this case, reasonable explanation is needed for why amplitudes of higher harmonics
are larger than those of fundamental wave.

To obtain the insight into the origin of these frequency peaks, we investigated the
angular dependence of the SdH oscillations. If Fα and Fβ peaks originate from multi-
ple Fermi pockets, these peaks vary independently; If Fβ is the second harmonic of Fα,
the relationship Fβ ≃ 2Fα should be maintained regardless of a magnetic field direc-
tion. Figure 4.10(a) shows the angular dependence of the SdH oscillations superimposed
on ρxx. Here, ∆ρxx indicates the oscillatory components obtained by subtraction of
polynomial curve. Magnetic field was tilted between the [010] to [100] directions. SdH
oscillation pattern complicatedly varied with the field direction. Detailed analysis and
Landau indices for this oscillation pattern will be discussed later. Here, we focus on the
angular dependence of oscillation frequencies. Figures 4.10(b) and (c) show the FFT
spectra calculated from ∆ρxx in various field directions, and a contour plot based on
(b), respectively. In Fig. 4.10(c), the left axis and color bar represent the frequency and
amplitude of the SdH oscillations, respectively. It is clearly shown that the relationship
Fβ ≃ 2Fα is always satisfied, which supports that Fα and Fβ stem from the same Fermi
pocket at the L point. To quantitatively confirm this, we fitted the observed angular
dependence of SdH frequencies by single Fermi pocket model. We assume that the Fermi
pocket at the L point is simple ellipsoid aligned along the ⟨111⟩ direction, which is char-
acterized by the length of short (a) and long (b) axes of the ellipsoid in the k-space
[Fig. 4.10(d)]. In this case, the fundamental frequencies Ffund are calculated by Eq.
(4.1). Solid lines overlayed on Fig. 4.10(c) show the angular dependence of fundamental
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Figure 4.10: (a) Angular dependence of the ∆ρxx. Magnetic field was swept between
[100] and [110] in the plane perpendicular to the [001] direction, which is shown in (e).
The angles from [110] direction are shown. (b) Angular dependence of the FFT spectrum
calculated from ∆ρxx. (c) The contour plot of SdH frequency with the direction of the
magnetic field. The magnetic field is rotated between [010] and [100] directions in the
plane perpendicular to [001] direction, which is shown in (e). The color bar indicates the
magnitude of FFT spectra of the SdH oscillations. Solid and dashed curves shows the
fundamental frequencies and higher harmonics, respectively, calculated by assuming the
ellipsoidal Fermi pocket as shown in (d) (see text in detail). (d) The ellipsoidal Fermi
surface assumed in the analysis. (e) The relationship between crystal axes and current
directions. The magnetic field is always applied perpendicular to the current.
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frequencies Ffund calculated from cross section of the ellipsoid perpendicular to the field
direction. In this calculation, we set the carrier density which is enclosed inside the
ellipsoid as 1.1 × 1018 cm−3 and the anisotropy of ellipsoid to be K = (b/a)2 = 13.7.
This anisotropy factor reproduces well the previous report [138, 140]. Since there are 4
ellipsoids in the first Brillouin zone, the total carrier density corresponds to 4.4 × 1018

cm−3, which is in good agreement with np = 3.7 × 1018 cm−3 determined from ρyx.
Moreover, we can reproduce whole angular dependence of SdH frequency up to 100 T
by introducing higher harmonics 2Ffund, 3Ffund, and 4Ffund [shown with broken lines
in Fig. 4.10(c)], which supports the validity of the above model. The difference of the
cyclotron masses in Fα and Fβ mentioned in the inset of Fig. 4.9(d) also supports this
interpretation. Since ordinal cyclotron mass analysis, the contribution from the higher
harmonics is ignored, and thus, Eq. (3.10) or (3.11) can be used only under the condition
that the higher harmonics are sufficiently negligible compared to the fundamental one.
The present case apparently violates this condition. If we intend to estimate accurate
cyclotron mass from the peak of 2nd harmonic, m∗ should be replaced by 2m∗, which is
evident in detailed LK formula [Eq. (4.11)]. Without this correction, m∗ is overestimate
by a factor of 2, which explains the difference of cyclotron masses shown in the inset of
Fig. 4.9(d). From these results, we conclude that Fermi pockets are located only at the
L points, and Fβ is the second harmonic of Fα.

Next, we focus on the magnetization (M), which is a thermodynamic quantity. Figure
4.11(a) shows the magnetic field dependence of M up to 7 T. Here, B was applied
along the [100] direction. Clear de Haas-van Alphen (dHvA) oscillations overlap on the
diamagnetic linear slope. Such a linear diamagnetism is reported on elemental bismuth,
graphite [167], and Pb1−xSnxSe [168]. For reference, the magnetization of bismuth,
which is known to show titanic diamagnetism at low temperature, was also measured.
Figure 4.11(b) shows the comparison of diamagnetism between the #T sample and
bismuth. Here, M was normalized by the molar mass, 334.8 g/mol for PbTe and 418
g/mol for Bi2. Although the magnitude of diamagnetism in PbTe is about 1/6 of that
in bismuth, the significant diamagnetism is worth mentioning. Figure 4.11(c) shows the
FFT spectrum of the dHvA oscillations. The positions of FFT peaks reproduce the
result of transport measurements. Since the maximum magnetic field is lower than that
in transport measurements, the magnitude of the second harmonic is smaller than the
fundamental one. As we showed in the analysis of the SdH oscillation, the cyclotron
masses approximately 2 times differ between Fα and Fβ, which supports that Fβ is the
second harmonic of Fα.

Here, we consider the reason why the amplitude of 2Fα can be larger than that of
Fα by taking the effect of Zeeman-splitting into account. According to the Lifshitz-
Kosevich (LK) theory, the oscillatory component of ρxx is represented by the following
form including the ZC ratio MZC = g∗µBB/(ℏωc) [44,122]:

∆ρxx
ρ0

≃ 5

2

∞∑
p=1

√
B

2pFα

×RT (T, p)RD(TD, p)RS(MZC , p)

× cos

[
2πp

(
Fα

B
+

1

2

)
− π

4

]
.

(4.11)

Here, ∆ρxx, ρ0 and TD are ρxx after subtracted background, resistivity at B = 0,
and Dingle temperature, respectively. The natural number p represents the number of
harmonics. The phase factor γ in Eq. (4.4) was set to 1/2 since PbTe is assumed
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Figure 4.11: (a) Magnetic field dependence of the magnetization up to 7 T. (b) Com-
parison of diamagnetism between PbTe (red) and bismuth (black). (c) FFT spectra of
the dHvA oscillations in #T. The inset of (c) shows the mass plot for cyclotron mass
determination.
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Figure 4.12: (a) Simulated oscillatory components in ρxx as a function of Fα/B at
MZC = 0.00, 0.35, 0.50, 0.65, and 1.00. (b) Comparison of oscillatory components
between the experiment (red) and simulation (black) in magnetic field region Fα/B > 4.
Simulation was performed for cases of MZC = 0.52 (upper) and 0.48 (lower). Shallower
dips are indicated by arrows. (c) Comparison of whole SdH oscillation between the
experiment at 2 K (red) and simulation (black). (d) Comparison of the FFT spectra
between the experimental data at 2 K (red symbols) and simulated data (black broken
line).



86 CHAPTER 4. LEAD TELLURIDE

to be trivial semiconductor. In addition, the Fermi surface of PbTe was found to
be simple ellipsoidal, and thus, double sign in the third terms inside cos function in
Eq. (4.4) was set to −. Each cosine term has three damping factors: temperature
factor RT (T, p) = 2π2pkBT/(ℏωc)/ sinh[2π

2pkBT/(ℏωc)], Dingle factor RD(TD, p) =
exp[−2π2pkBTD/ℏωc], and spin factor RS = cos(pMZCπ). We consider a case where
g∗µBB is equal to a half of ℏωc, namely, MZC = 0.5. In this case, RS(0.5, p) = 0 for
odd p, while RS(0.5, p) = ±1 for even p. Although the RT and RD exponentially de-
creases with increasing p, the second harmonics can dominate over the fundamental one
when MZC is close to 0.5. Therefore, we can expect relatively large second harmonic
in the vicinity of MZC = 0.5. Figure 4.12(a) shows the simulated modification of SdH
oscillation by increment of MZC from 0 to 1. Each curve is simulated by Eq. (4.11)
substituting appropriate values in m∗, Fα, and TD. Peaks of resistivity initially split into
two indicated by + and − in Fig. 4.12(a), and move to opposite directions with each
other as MZC increases toward 1. Then, at MZC = 1, two peaks having different Landau
indices merge into the same peak. Here, the phase of oscillation differs by π compared
to that in MZC = 0. As expected above, the period of oscillation at MZC = 0.5 becomes
just a half of that at MZC = 0 or 1. Then, we compare our experimental results with
simulated SdH oscillation around MZC = 0.5, and find suitable MZC . Figure 4.12(b)
shows the comparison between experimental result (red) and simulated curves (black)
based on Eq. (4.11). These curves are vertically shifted for clarity. Simulation was
performed for MZC = 0.52 and 0.48 assuming the parameters as m∗ = 0.05 m0, TD = 10
K, and Fα = 22.6 T. Relatively small contributions from p ≥ 3 are ignored. Although
the wave forms of MZC = 0.52 and MZC = 0.48 look quite similar, we can see that the
simulated curve with MZC = 0.52 better reproduce the experimental result than that
with MZC = 0.48 [focus on the positions of the shallower dips indicated in Fig. 4.12(b)].
Figure 4.12(c) shows the comparison of whole SdH oscillation between experimental re-
sult (red) and simulated curves (black) with MZC = 0.52. Both the peak/dip structures
and phase of oscillation agree well with the experimental result. Landau indices of the
last three peaks are shown assuming MZC = 0.52. Figure 4.12(d) shows the FFT spec-
trum of experimental data at 2 K (red circles) and simulated curve (broken line). We
can reasonably reproduce the amplitude ratio between Fα and Fβ and anomalously large
second harmonics.

Although the difference in the vicinity of MZC = 0.5 as shown in Fig. 4.12(b) may
look insignificant, this can cause crucial change in the construction of Landau-level fan
diagram as shown below. We assume typical system which have light carrier mass of
m∗ = 0.08m0, fundamental frequency of Fα = 100 T, and moderate Dingle temperature
of TD = 10 K. We performed the numerical simulation for above case based on the LK
formula [Eq. (4.11)]. The results are shown in Figs. 4.13(a) and (b). Here, we assumed
relatively high temperature T = 20 K, and showed the case of MZC = 1, 0.55, 0.45,
and 0. As is clear in Figs. 4.13(a) and (b), the spin-splittings are discernible only for
Fα/B < 10. Thus, in both Figs. 4.13(a) and (b), the peak/dip positions look identical
at a glance in magnetic fields with Fα/B > 10. That is, in case that magnetic field is not
strong enough to observe the spin-splitting effect, fan diagram analysis cannot distinguish
MZC = 1 and 0.55, or MZC = 0.45 and 0 in spite of the significant difference of the ZC
ratio. Further, we focus on the cases of MZC = 0.45 and 0.55 in Fig. 4.13. Although
the difference of the ZC ratio is only 0.1 between these case, the phase of the oscillations
differs by π. Consequently, fan diagram analysis may conclude the realization of non-
trivial Berry’s phase even in trivial materials with MZC = 0.55 when only the oscillation
in the region Fα/B > 10 is available. From this considerations, we have to be careful
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Figure 4.13: Comparison of the simulated oscillation structures between (a) MZC = 1
and MZC = 0.55 cases, and (b) MZC = 0.45 and MZC = 0 cases. Simulations were
performed based on the LK formula, assuming m∗ = 0.08m0, T = 20 K, Fα = 100 T,
and TD = 10 K.

in the fan diagram analysis in case that the effect of spin-splitting is smeared out in the
quantum oscillations in lower field. This point is not necessarily considered in widely-
adopted Landau-level fan diagram analysis. High-field experiments for Fα/B < 10 are
necessary to distinguish whether the spin-sprit exists or not in above situation.

As mentioned in Sec. 4.1, Burke et al. determined MZC = 0.58 from the spin-
splitting and phase of SdH oscillation, which agree well with our result MZC = 0.52.
In their result, distinct anisotropy is reported in MZC as shown in Table 4.1 [138]. To
clarify this, we focus on the detailed structure of SdH oscillations. Figure 4.14(a) shows
the ∆ρxx with the magnetic field rotated from [100] to [110] in the (001)-plane as shown
in the inset in Fig. 4.14(b). The horizontal axis is normalized by each Fα obtained by
the FFT. Starting from the indices for B||[100] showin in Fig. 4.12(c), we can identify
Landau indices at various field directions. If MZC has anisotropy as suggested by Burke
et al., peak positions should vary with field direction. However, Figure 4.14(a) shows
that the peaks are almost independent of field direction, which indicates the isotropic
MZC . We obtained the angular dependence of MZC based on Eq. (4.3). MZC shown
in Fig. 4.14(b) is the averaged value over n = 5, 4, 3 cases in Eq. (4.3). MZC is almost
independent of the field direction and shows the isotropic nature. The isotropy of MZC

is consistent with recent theoretical prediction by Hayasaka et al. [154] The anisotropy
of MZC reported in a previous report [138] was not identified in our results.

Up to here, we found that oscillation structure was well reproduced assuming MZC =
0.52, and MZC is almost independent of field direction. However, MZC = 0.52 and
Landau indices shown in Figs. 4.12(c) and 4.14(a) is not unique as explained below.
Figure 4.15 shows the Landau-level structures at several MZC up to 3.48 following Fig.
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Figure 4.14: (a) Angular dependence of ∆ρxx. Magnetic field was swept between [100]
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Figure 4.15: Landau-level structures at several ZC ratios. The horizontal and longitu-
dinal axis represent the values of Fα/B and MZC , respectively.
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4.3(a). Since the oscillation frequency was found to Fα = 22.6 T, all the level-crossing
field can be calculated. Observed peak position in ρxx up to 14 T are shown by the
vertical bold lines. Cases with MZC > 3.48 apparently cannot explain the observed
peak positions, and hence, not shown. Among the cases shown in Fig. 4.15, we can
see that MZC =0.52, 1.48, 2.52, and 3.48 can reproduce the observed peak positions up
to 14 T. We cannot eliminate this ambiguity by current data. To further restrict the
possible cases, experiments up to higher magnetic fields is crucial. If two oscillations
are observed at around 18 and 30 T (indicated by vertical thin lines in Fig. 4.15), MZC

is 0.52 or 1.48. If only one oscillation is observed, MZC is 2.52 or 3.48. To clarify this
point, we performed the quantum oscillation measurements in pulsed magnetic fields up
to 55 T.

Figures 4.16(a) and (b) show the magnetic field dependence of resistivity and mag-
netization, respectively. The red and blue lines indicate the raw field dependences and
oscillation components obtained by subtraction of backgrounds, respectively. We ob-
served two local maxima (∼20 and 32 T) in both resistivity and magnetization, and no
oscillation was found in higher fields up to 55 T. In addition, diamagnetism shown in Fig.
4.11(a) was found to continue to increase up to 55 T. We note that the field dependence
of the background in ρxx is different from that in Fig. 4.9(a) measured in a different
sample piece. Although the reason is not clear for us at present, the background tends
to enhance in poor RRR samples. In spite of the difference in the underlying magne-
toresistance, the peak/dip positions of the SdH oscillations are reproduced well between
the samples with different background, and thus, the quantum oscillation itself is almost
sample-piece-independent. Further, we measured elastic properties through ultrasound
measurements in pulsed magnetic fields. Figures 4.16(c) and (d) show the ultrasonic at-
tenuation coefficient and sound velocity, respectively, as a function of magnetic field up
to 55 T. In both traces, clear acoustic quantum oscillations are observed with the higher
S/N ratio compared to resistivity and magnetization, which is due to the absence of huge
background in the elastic property measurements. Hence, ultrasonic measurements can
be a powerful probe to investigate the quantum oscillations in pulsed magnetic fields.
Also in ultrasonic attenuation coefficient and sound velocity, we recognize clear anoma-
lies at approximately 18 and 30 T, and no noticeable structure was observed in higher
field, which are consistent with the resistivity and magnetization measurements.

From these results, we identified the two quantum oscillations at around 18-20 T
and 30-32 T, which certificate depopulations of the Landau subbands from the Fermi
level at these magnetic fields. These values agree well with the expected values shown
in Fig. 4.15. Therefore, we can restrict the possible MZC to 0.52 or 1.48. In both
cases, the system enters the spin-polarized quantum limit state in which all conduction
carriers are confined into the lowest 0− subband. The difference between these two cases
is the order of spin + and −. To distinguish these two cases experimentally, we should
perform a measurement to identify corresponding spins of each subbands. Since such
a measurement is not available at the current stage, we finally adopt recent theoretical

suggestion. According to [154], the analytic forms of M
∥
ZC and M⊥

ZC are represented by
Eqs. (4.7) and (4.8). Since ∆1–3 < 0 in case of PbTe, λ, λ′ > 0 is satisfied. Thus, the
denominators are always larger than numerators in Eqs. (4.7) and (4.8), which leads to
MZC < 1 for PbTe. Thus, we conclude that MZC = 0.52 is realized in our #T sample.
Figure 4.16(e) shows the Landau-level fan diagram constructed from those in ρxx up to
55 T. The blue symbols are taken from the experiment up to 14 T, and red symbols in
pulsed magnetic fields. Dashed line are averaged Fα/B of + and − subbands, which has
x-intercept of ∼ 0.47.
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Figure 4.16: Magnetic field dependence of (a) magnetoresistance, (b) magnetization,
(c) ultrasonic attenuation coefficient, and (d) sound velocity up to 55 T. In (a) and (b),
blue traces are oscillatory components obtained by subtracting linear background from
the red traces. In (a) to (d), newly identified structures in high-field measurements are
indicated by solid arrows. (e) Landau-level fan diagram obtained experimentally from
SdH oscillations in magnetoresistance. Closed and open symbols represent + and −
subbands, respectively. Blue and red symbols were obtained from the measurements in
static fields up to 14 T and pulsed magnetic fields up to 55 T, respectively. The broken
lines represents the averaged Fα/B of + and − subbands.
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Figure 4.17: Pressure dependence of (a) magnetoresitance and (b) Hall resistance from
0.083 to 2.13 GPa in sample #TP1. Pressure dependence of (c) magnetoresitance and
(d) Hall resistance from 0.45 to 2.27 GPa in another sample #TP2. Pressure dependence
of SdH oscillation in (e) #TP1 and (f) #TP2. The changes of the peak positions are
traced with broken lines in each spectrum.
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Up to here, we have elucidated the SdH oscillation based on the LK formula which
includes the effect of Zeeman-splitting and determined the value of MZC to 0.52 at am-
bient pressure. If the pressure-induced topological transition takes place as suggested
in [161], we expect that MZC becomes unity at the critical pressure. Namely, systematic
change in the SdH oscillation as shown in Fig. 4.12(a) should be detectable when ap-
plying hydrostatic pressure. Based on this prospect, we performed electronic transport
measurements under high pressure environment. Here, we show the results of the elec-
tronic transport properties measured on two different sample pieces, which we refer as
#TP1 and #TP2. These pieces were cut from the identical bulk of #T sample. Identical
pressure medium (Daphne7373) was utilized in these measurements.

Figures 4.17(a) and (b) show the magnetic field dependence of ρxx and ρyx of #TP1 at
2 K and various pressures up to 2.2 GPa. Clear SdH oscillations were always observed in
ρxx between 0.083 and 2.13 GPa. The resistivity monotonically increases with increasing
pressure in the whole field region up to 14 T. The ρyx is always linear as a function of
B up to 2.13 GPa, which indicates that no additional valleys contribute the transport
properties by applying pressure. Slope of the ρyx gradually increases with applying
pressure. The origin for this behavior is not clear at present since the carrier density
is expected to be independent of pressure in single-carrier system due to the charge
conservation. We confirmed the common tendency mentioned above in ρxx and ρyx of
#TP2, as shown in Fig. 4.17(c) and (d). However, the pressure dependence of the SdH
oscillation shows different behavior depending on the samples, as shown in Fig. 4.17(e)
and (f). In #TP1, as shown in Fig. 4.17(e), the Zeeman-splitted peaks with different
Landau indices observed near the ambient pressure basically approach each other as
pressure increases. At 2.13 GPa, the peaks with n = 1+ and n = 2− are almost being
merged, and the double-peak structure can be hardly recognized in the other peaks. This
can be regarded as the change of MZC toward unity as shown in Fig. 4.12(a), and thus,
suggest that PbTe actually approaches the ideal 3D Dirac electron system by applying
pressure. More quantitative analysis of ZC ratio at 1.95 and 2.13 GPa will be described
later. Note that in this sample, there is additional split between 1.06 and 1.64 GPa.
We regard that this may be caused by possible inhomogeneity of hydrostatic pressure,
and do not enter the detailed discussion. On the other hand, we cannot observe such
a behavior in #TP2, as shown in Fig. 4.17(f). In this sample, the peak positions are
almost independent of the applied pressure, which indicates that the ZC ratio of #TP2
is almost unchanged by pressure.

In #TP1, we can determine the ZC ratio under pressure experimentally by comparing
the experimental data with the numerical simulation based on Eq. (4.11). We varied the
MZC in Eq. (4.11) to most satisfactorily reproduce the peak positions of experimental
data as shown in Fig. 4.18(a) and (b). As a result, we obtained MZC = 0.58 at 1.95 GPa
and 0.65 at 2.13 GPa. The overall pressure dependence of MZC is shown in Fig. 4.18(c)
with red symbols. This result quantitatively indicate the enhancement of “Diracness”
under pressure. In #TP1, the cyclotron mass (m∗) estimated from the temperature
dependence of the SdH amplitude tends to decrease as shown in Fig. 4.18(d), which
qualitatively agree with the sharpening of the energy dispersion near the L point. We
can estimate the effective g-factor (g∗) from the relationship

g∗ =
2MZC

m∗ (4.12)

using MZC and m∗ obtained from the measurements. As shown in Fig. 4.18(e), g∗

monotonically increases as a function of pressure and reaches approximately 50 above
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Figure 4.18: Comparison between experimental SdH oscillation (red) and simulation
(black) based on Eq. (4.11) at (a) 1.95 GPa and (b) 2.13 GPa in #TP1. (c) ZC
ratio estimated from the Zeeman-splitting, (d) the cyclotron mass estimated from the
temperature dependence of the amplitude, and (e) effective g-factor calculated from Eq.
(4.12). In (c)-(e), red (blue) marker represents #TP1 (#TP2), respectively.
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2 GPa. In the case of #TP2, on the other hand, m∗ tends to increase as pressure is
applied in contrast to #TP1 [Fig. 4.18(d)], and therefore, calculated g∗ does not show
the increase at high pressure as shown in Fig. 4.18(e). Increase of the cyclotron mass is
inconsistent with the expected band-gap closure. This difference may be caused by the
sensitivity to the quality of hydrostatic pressure.

In the following, we mention the transport properties of the sample made by Bridg-
mann method (referred as #S sample), which has lower carrier density than that of #T
(see Sec. 2.8). Figure 4.19(a) shows the temperature dependence with current along the
[001] direction. The RRR [ρ(300 K)/ρ(2 K)] is 384, which is slightly lower than that
of #T sample. The metallic behavior over the temperature range from 2 to 300 K is
identical with that of #T. Figure 4.19(b) shows ρxx up to 14 T at several temperatures.
The magnetoresistance is approximately linear unlike that of #T shown in Fig. 4.9(b).
Also in #S, SdH oscillation was observed at wide temperature and magnetic field range,
which reflect the light effective mass and high mobility nature of carriers in the #S sam-
ple. Figure 4.19(c) shows ρyx up to 14 T. The slope of ρyx is steeper than that of #T
shown in Fig. 4.9(c) due to the less carrier density of #S, while the linearity and sign of
ρyx is identical with those of #T. Then, we focus on the SdH oscillation on ρxx in detail.
Figure 4.19(d) shows the FFT spectra at several temperatures from 2 to 50 K. We can
identify two obvious peaks, at 9.5 and 19 T, and assume that the fundamental frequency
Fα is 9.5 T, and the other frequency Fβ with 9.5× 2 = 19 T is the second harmonic due
to the spin-splitting. Actually, the estimated cyclotron masses from Fβ is apploximately
two times larger than that from Fα. As is clear in second derivative of ρxx shown in Fig.
4.19(e), the structures denoted by solid arrows in higher magnetic field region are not
represented by single component. We performed the peak-position fitting based on the
LK formula and successfully reproduced the experimental result by taking MZC = 0.57.
Also in present case, we cannot distinguish MZC = 0.57 and 1.43 since corresponding
spins of Landau levels cannot be distinguished experimentally. We assume, however,
MZC = 0.57 by similar assumption made in the discussion on #T sample. This value is
close to that in #T, and thus, we can regard that the carrier-density dependence of the
ZC ratio is sufficiently weak at least from 0.99–3.7×1018 cm−3. These results indicate
that the criterion for “Diracness” based on ZC ratio is less sensitive to the position of
the Fermi level from the band-crossing point at least up to this carrier density.

Then, we studied transport properties of #S in high magnetic fields. Figure 4.20(a)
shows ρxx up to 55 T. As shown in the inset of Fig. 4.20(a), the SdH oscillation was
observed in lower field region, and the last two peaks correspond to the depopulation of
1− and 0+ subbands were observed at 7.1 and 10.8 T. Above 10.8 T, no oscillation was
observed up to 55 T, which confirms the realization of spin polarized quantum limit state
in which only 0− sate is occupied below the Fermi level. In the quantum limit state,
ρxx continues to increase. The slope is steeper at 1.4 and 4.2 K than that of 20 K. ρyx
was linear in the whole magnetic field range without showing non-linearity as shown in
Fig. 4.20(b). Lastly, we show the longitudinal magnetoresistance ρzz (both B and I are
parallel to the cubic axis) in pulsed high magnetic fields. Figure 4.20(c) represents the
ρzz up to 55 T. The quantum oscillation was also observed in longitudinal configuration
in lower field range as shown in the inset of Fig. 4.20(c).

We note that the peak at 10.8 T observed in ρxx is absent in ρzz, which seems to
be related to the selection rules of carrier scattering between Landau subbands. Narita
et al. [169] and Takafuji et al. [170] measured the SdH oscillation of n-type samples of
Pb1−xSnxTe alloy, and found that the one-side peaks of spin-splitted pairs are absent
in longitudinal configuration. They explained this behavior based on the selection rule
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Figure 4.19: (a) Temperature dependence of the resistivity from 300 to 2 K in #S
sample. Magnetic field dependence of (b) ρxx and (c) ρyx up to 14 T in #S sample. (d)
FFT spectra at several temperatures. The inset shows the mass plot for determination
of the cyclotron mass. (e) Second derivative of ρxx at 2 K in terms of B. (f) Compar-
ison between experimental oscillation ∆ρxx and calculation based on the LK formula
assuming MZC = 0.57.
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Figure 4.20: Magnetic field dependence of (a) ρxx and (b) ρyx up to 55 T under
transverse configuration (B ⊥ I) in #S sample. The inset of (a) shows the magnified
view of SdH oscillations observed on ρxx. (c) Magnetic field dependence of ρzz up to 55
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Figure 4.21: Landau-level structures at MZC = 0.57 and 1.43. Allowed carrier scatter-
ing in longitudinal configuration are shown in bidirectional arrows.

of the carrier scattering under strong spin-orbit interactions. According to [169], the
selection rule of the carrier scattering in longitudinal magnetoresistance is represented
as

n− ⇌ (n− 1) + . (4.13)

Allowed carrier scattering is schematically shown in Fig. 4.21 with solid bidirectional
arrows in cases of MZC = 0.57 and 1.43. We consider the present MZC = 0.57 case (the
second column in Fig. 4.21). We assume that n = 3− level crosses the Fermi level with
increasing magnetic field. Since the scattering transition between n = 3− and n = 2+ is
allowed in this case, the resistivity is expected to increase at the depopulation of n = 3−
subband. On the other hand, when n = 2+ level cross the Fermi level, there is no
available scattering transition, and thus, peak is almost absent in the resistivity. Since
this situation is common in every Landau indices n, depopulations of spin+ subbands
is not obvious in the SdH oscillation in longitudinal configuration at MZC = 0.57. This
situation is identical in MZC = 1.43 (the third column in Fig. 4.21) except the order of
subbands between n− and (n−1)+, and therefore, we cannot experimentally distinguish
the case of MZC = 0.57 and 1.43 from this phenomenon.

Above 10 T, ρzz is continuously and linearly increases as a function of magnetic
field. The slope at high magnetic field region show slight temperature dependence,
and is steeper at 1.4 K than that of 4.2 K. Such a drastic increase of ρzz is unusual
since the electric current is not ideally affected by the magnetic field in the longitudinal
configuration.

Although linear and non-saturating ρxx observed in #S sample resembles linear mag-
netoresistance in the quantum limit state as Abrikosov predicted [47, 48], the pristine
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PbTe is found to have the MZC deviate from unity, and hence, such a mechanism seems
not to fit in the present case. We also note that recent study on SrTiO3 reported
linear and non-saturating ρxx and non-linear I-V characteristic in the quantum limit
regime [171]. In their study, possible realization of a field-induced charge density wave
or Wigner crystal states stabilized by spacial inhomogeneity was suggested. On the
other hand, temperature-dependent non-saturating magnetoresistance is believe to oc-
cur in the “Hall insulator” state expected in the quantum limit state [172, 173]. Hall
insulator state is characterized by the diverging ρxx at T → 0 in spite of the almost
constant ρyx. In case of PbTe, however, the magnetoresistance seems to vary with sam-
ples as mentioned previously, and hence, further careful investigation for the origin of
magnetoresistance in high magnetic field should be necessary. The origin for anomalous
behavior observed in ρxx and ρzz in the quantum limit state is an open question at the
present stage.

4.3.2 Pb0.7Sn0.3Te

As introduced in Sec. 4.1, Sn substitution also reduces the band gap, and is expected
to induce topological phase transition at around x = 0.35. At this point, the ZC ratio is
expected to be unity. In order to obtain the Sn-content dependence of the ZC ratio, we
performed resistivity, magnetization, and ultrasonic measurements on Pb0.7Sn0.3Te. We
refer this sample as #T30, hereafter. Figure 4.22(a) shows temperature dependence of
the resistivity. The resistivity showed metallic dependence without showing anomalous
behavior over the whole temperature range. From this measurement, we cannot identify
any anomaly suggestive of the ferroelectric transition expected in this alloy system [159].
Figure 4.22(b) shows ρxx up to 14 T at several temperatures. The SdH oscillation is
visible especially in the high-field region, and the background magnetoresistance slightly
increases as B increases. Figure 4.22(c) shows ρyx up to 14 T. The ρyx is linear and
positive, which suggests the existence of the single hole carrier. In #T30, the SdH
oscillation is also visible in ρyx. We estimated the carrier density and mobility as 5.1×
1019 cm−3 and 950 cm2V−1s−1, respectively, based on the simple single-carrier model.
The carrier density is more than 10 times larger, and the mobility is 100 times smaller
than those of pristine one. Figure 4.22(d) shows the FFT spectra of SdH on ρxx. We can
identify only single peak in this spectra, and no higher harmonics was observed. The
annihilation of the large second harmonic stemming from the spin-splitting indicates
the change of the ZC ratio. From the temperature dependence of the FFT spectra, the
cyclotron mass of 0.11m0 was estimated, which is heavier than that of PbTe.

Since SdH oscillation showed no signature of spin-splitting, we cannot evaluate the
ZC ratio in #T30 sample. Then, we constructed the Landau-level fan diagram and
evaluated the phase of SdH oscillation. Figure 4.23(a) shows the oscillation components
of resistivity (∆ρxx) and conductivity (∆σxx) subtracted their background. In case of
#T30, ρxx and ρyx have comparable magnitude, and thus, the condition σxx ≪ σxy is
not necessarily satisfied. Reflecting this circumstance, the peak/dip positions in σxx do
not coincide with those of ρxx. Figure 4.23(b) shows the Landau-level fan diagram con-
structed from both resistivity and conductivity. In this diagram, the peak positions are
assigned in integer indices, and hence, the x-intercept near −0.5 meansMZC = 0, 2, 4, · · ·
case. Both diagrams take x-intercept near −0.5 as shown in the inset of Fig. 4.23(b),
which suggests non-unity value of MZC in this system, although the band structure of
#T30 is expected to be sufficiently close to the topological phase transition. At this
point, however, there remains a possibility: since the obtained peak/dip is all far from
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Figure 4.22: (a) Temperature dependence of the resistivity from 300 to 2 K in #T30
sample. (b) Magnetic field dependence of (b) ρxx and (c) ρyx up to 14 T in #T30 sample.
(d) FFT spectra at several temperatures. The inset shows the mass plot for cyclotron
mass determination.
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the quantum limit, determined x-intercepts have possible uncertainty. In order to refine
the fan diagram, we performed ultrasonic measurement under pulsed high magnetic field
on #T30. In case of the acoustic dHvA oscillation in ultrasonic attenuation coefficient,
the peak corresponds to the depopulation of the Landau subband since only carriers hav-
ing velocity close to the Fermi velocity interact with the ultrasonic wave in metal [100].
Thus, ultrasonic attenuation coefficient is critical for determining the phase factor of the
fan diagram.

Figures 4.24(a) and (b) show the acoustic dHvA oscillations in attenuation coefficient
and sound velocity, respectively. In this measurement, the magnetic field and transverse
ultrasound were applied along the [100] direction [propagation (k) and displacement
(q) directions are k ∥ [100] and q ∥ [010], respectively]. In both quantity, quite large
oscillations were observed. Focusing on the relatively low field region in sound velocity as
shown in Fig. 4.24(b), the oscillation seems to have multiple component. To clarify this,
we calculate the FFT spectrum from the data of sound velocity, which is shown in Fig.
4.24(c). The two peaks are identified in the spectrum, and these frequencies slightly differ
with each other. This cannot be explained by the fundamental and second harmonic
waves. One possibility for this spectrum is slight misalignment of the sample. If the
field direction is slightly off from the [100] direction, more than two cross-sectional areas
with slightly different value can arise. Another possibility is the ferroelectric transition.
If the rhombohedral structure was realized at this temperature, the degeneracy at the L
point will be solved. As a result, the two cross-sectional area can come up. In this case,
however, we could not observed firm evidence for ferroelectric transition in transport
measurement as shown in Fig. 4.22(a), and thus, we regard this FFT spectrum as a
result of slight misalignment.

Finally, we summarize the fan diagram of #T30 in Fig. 4.25 including all physical
quantities investigated in this study. The brown circles were plotted from the peaks of
the attenuation coefficient shown in Fig. 4.24(a). In addition, we plotted the results
from the ultrasound measurement with different field direction (green circles), transport
measurements [red squares and blue triangles, identical with Fig. 4.23(b)], and magneti-
zation measurement (black circles). As shown in the inset of Fig. 4.25, the x-intercepts
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are all close to −0.5, which indicates that #T30 has non-unity ZC ratio. We should
further clarify how carrier density affects the experimental determination of ZC ratio.
Since the carrier density is more than 10 times larger than pristine sample, this might in-
fluence the results. More investigations should be needed for samples with intermediate
compositions between x = 0 and 0.3.
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4.4 Summary

We investigated the electric transport, magnetization, and elastic properties in PbTe and
Pb0.7Sn0.3Te. Pristine PbTe showed clear quantum oscillations on resistivity, magneti-
zation, ultrasonic attenuation, and sound velocity. We identified large second harmonic
in FFT spectra of the quantum oscillations, and pointed out that this is a firm evidence
for large spin-splitting in PbTe. The simple band structure and distinct spin-splitting
caused by strong spin-orbit interaction in PbTe enable us to testify the evaluation of the
Zeeman-cyclotron ratio. By numerical simulation based on Lifshitz-Kosevich formula, we
consistently explained the oscillation structure, and determined the Zeeman-cyclotron
ratio to 0.52 in pristine PbTe. The Landau level indices are unambiguously determined
by measurements in pulsed high magnetic fields, which takes PbTe to the spin-polarized
quantum limit state. From the angular dependence of the Shubnikov-de Haas oscilla-
tions, we confirmed that the Zeeman-cyclotron ratio is almost independent of the field
direction, which is consistent with the theoretical prediction. By the resistivity measure-
ments under hydrostatic pressure, we obtained an indication that the Zeeman-cyclotron
ratio in one sample approaches unity as pressure increases, which suggests that PbTe
approaches the ideal Dirac electron system. On the other hand, above behavior was not
reproduced in another sample, which suggests possible sensitivity to the inhomogeneity
of pressure. In PbTe with relatively low carrier density, we observed large and non-
saturating magnetoresitance in both transverse and longitudinal configurations. This
behavior cannot be fully explained in the present stage, and was remained as an open
question. We also investigated the electrical transport and ultrasonic measurements in
Pb0.7Sn0.3Te to obtain the Sn content dependence of the Zeeman-cyclotron ratio. We
pointed out that too heavy carrier doping causes an inaccuracy in experimental deter-
mination of the Zeeman-cyclotron ratio.



Chapter 5

Concluding Remarks

5.1 Summary of This Thesis

In this thesis, we investigated two narrow gap semiconductors, black phosphorus (BP)
and lead telluride (PbTe).

In Chap. 1, we reviewed the previous studies of unconventional electronic states
in solids expected to realize in the vicinity of the metal–insulator transiton. Then, we
specify the problems in those studies, and clarify our approach to solve these problems.
We pointed out that BP and PbTe can be model materials to solve these problems owing
to the simple and tunable electronic structure.

In Chap. 2, we explained the experimental techniques (the resistivity measurements
under high pressure, generation of pulsed high magnetic fields, and several measurement
techniques in pulsed high magnetic fields), and described the properties of BP, PbTe,
and Pb1−xSnxTe samples investigated in this thesis.

In Chap. 3, we reviewed the fundamental properties of BP, and demonstrated our
results. In the semiconducting state, we investigated magneto-phonon resonance and its
pressure dependence. We showed that the cyclotron mass becomes lighter as pressure
increases, which is ascribed to the narrowing of the band gap. Above 1.4 GPa, we ob-
served clear Shubnikov-de Haas (SdH) oscillations and large magnetoresistance effect.
From the analysis of SdH oscillations, we identified the light cyclotron masses and small
densities of carriers in semimetallic BP. We also showed the monotonic enlargement
of Fermi surfaceses, which indicates the tunability of the carrier density by controlling
pressure. Two-carrier analysis affirmed the nearly compensated nature of semimetallic
BP and enhancement of carrier density by pressure. Large and non-saturating magne-
toresistance obserbed in semimetallic state was not fully reproduced by the two-carrier
model, which suggests additional mechanism for this phenomena. To seek the uncon-
ventional electronic states in the vicinity of the semiconductor–semimetal transition, we
investigated the temperature dependence of the resistivity under magnetic field. The ap-
parent insulating-like temperature dependence of resistivity observed in magnetic fields
was reasonably explained by the conventional theory. Thus, truly anomalous behavior
stemming from the emergence of the excitonic insulator phase could not be observed in
this study.

In Chap. 4, we introduced the fundamental properties of PbTe and Pb1−xSnxTe,
and demonstrated our results. We observed clear SdH oscillations in pristine PbTe, and
identified anomalously large second harmonic in the Fourier spectra of SdH oscillations.
We pointed out that the large second harmonic is originated from the large spin-splitting

105



106 CHAPTER 5. CONCLUDING REMARKS

in PbTe. We experimentally determined the ratio of Zeeman energy to cyclotron energy
(ZC ratio) to 0.52. The ZC ratio and Landau indices for oscillation were unambiguously
confirmed by pulsed high-field measurement. We performed resistivity measurements
by controlling the band gap with pressure. We obtained an indication that the ZC
ratio approaches unity as pressure increase in one sample, which suggests that PbTe
approaches the Dirac electron system on the way to the topological phase transition.
We also observed the large and non-saturating magnetoresistance in the quantum limit
state of PbTe in both transverse and longitudinal magnetoresistance, which was remained
as an open question. We also investigated the electrical transport and elastic properties
in Pb0.7Sn0.3Te. We pointed out that too heavy carrier doping causes inaccuracy on the
determination of ZC ratio.

We finally comment on the current position of this study from the global viewpoint.

One of our main results on the study of BP is successful observation of SdH oscil-
lations, which revealed that semimetallic BP is band-tunable electron-hole system with
low carrier density and high mobility comparable to bismuth and graphite. We should
then establish the firm understanding of its Fermi surface to proceed our study. The
present situation of BP is like that of bismuth about 90 years ago, when the SdH effect
was discovered for the first time in bismuth. Looking back on the research history of
bismuth, we can learn that how difficult the precise determination of the Fermi surface
is: it took more than 30 years to consistently explain the whole experimental data by
theory [174]. To deal with the Fermiology of semimetallic BP, we should then learn from
the history of bismuth, in which the experimentalists and theorists closely worked and
fed back their results with each other.

Within the scope of this study, we could not confirm the realization of unconven-
tional electronic transition in BP. Although there are numerous semimetals and narrow-
gap semiconductors, graphite is the only an example which shows obvious electronic
transition in high magnetic fields at present, as far as we know. The problem of uni-
versal interest is that “what is the necessary condition for the emergence of such an
electronic transition in high magnetic fields?”. The dimensionality of the crystal and
band structure is considered to be one of the important factors to tackle the problem.
We now obtained the ideal electron-hole systems with different crystal dimensionality,
graphite (two-dimensional nature), bismuth (three-dimensional nature), and BP (inter-
mediate nature between two- and three- dimension). The similarity between ferroelec-
tric Pb1−xSnxTe and bismuth is worth mentioning, which both form rhombohedral A7
structure. Comprehensive study for these materials posses great possibility to reveal
the universal nature of electronic phase realized in the electron-hole systems in high
magnetic fields.

In regards to PbTe, our main result is summarized to the successful determination of
ZC ratio, namely, “Diracness” of this material. This established the new experimental
criterion to evaluated the band topology of materials, and basis to investigated more
detailed physical properties in the vicinity of the ideal Dirac system in PbTe by con-
tinuously tuning the band topology. Future advances of the quantitative study based
on the ZC ratio can supply a guideline to organize the present chaotic situation on the
transport studies of topological materials.
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5.2 Future Prospects

There remains several open questions in our studies. In regards to BP, we compared the
experimentally obtained SdH oscillations along the three principal axes with the Fermi
surfaces estimated by calculation. However, we could not fully determine the geometry
of the Fermi surface in semimetallic BP. In order to complete full mapping of the Fermi
surface of semimetallic BP, we should perform the angular dependence measurements of
SdH oscillations under magnetic fields and pressure.

Although such a measurement is expected to be technically difficult, a diamond anvil
cell of small size (18 mm in diameter and less than 40 mm tall) and rotating mechanisms
for the cell have been developed by Dr. A. Miyake, ISSP. Above system is all made of
non-metallic materials to reduce the effect of eddy currents in measurements in pulsed
magnetic fields. A wide-bore (64 mm diameter) pulse magnet, which is developed by
Kindo group, ISSP, is now available for resistivity measurements up to ∼ 25 T using
this system. We are dealing with the angular dependence of the resistivity in pulsed
high magnetic fields with these equipments. Also, we could not obtain a firm evidence of
realization of excitonic insulator phase in BP. To explore such phases, higher magnetic
fields are preferable to increase the binding energy of excitons. Collaborating with Kindo
group, we intend to increases the maximum magnetic fields up to ∼ 50 T in the near
future.

In PbTe, we observed the increase of ZC ratio by applying pressure, yet this be-
havior was not reproduced in measurements in another sample piece. To confirm the
enhancement of the “Diracness” in pressurized PbTe, we should perform some supple-
mental measurements. The possible effect from inhomogeneity of pressure or sample
dependence should be carefully clarified in future. The large magnetoresistance in PbTe
was also remained as an open question. We observed non-saturating magnetoresistance
in the quantum limit state. While, we observed different magnetoresistance effect even
in the same sample batch. To clarify the nature of the magnetoresistance in PbTe, we
should carefully measure the transport properties avoiding geometrical effects such as
current-jetting. Fabrication of PbTe thin-film can be possible solution to exclude the in-
homogeneity of the electric current. In regards to Pb1−xSnxTe, we pointed out that the
heavy hole doping causes the deviation of ZC ratio from true value. In order to confirm
the enhancement of the Diracness in Pb1−xSnxTe, samples having less carrier density
should be investigated. Further, if the critical temperature of ferroelectric transition
(TFE

c ) satisfied TFE
c > 0 in the vicinity of band gap closure as suggested in previous

reports, the inversion symmetry of the crystal is broken below TFE
c . As a results, the

zero-gap state is Weyl electron system below TFE
c , and is Dirac electron system above

TFE
c . This property means the possibility that Dirac and Weyl system can be switched

by temperature in Pb1−xSnxTe. To confirm this intriguing feature, we should investigate
the relationship between ferroelectric transition and band gap closure in detail.
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Appendix A

Computer Programs Composed
for This Study

In this appendix, we show the source codes of the computer programs composed for this
study. All programs are composed by the author, and implemented in Igor Pro language
(WaveMetrics, Inc.).

A.1 Numerical Lock-In

#pragma rtGlobals =3 // Use modern global access method.

#pragma version =3.4

//20150819 AKB

Menu "Numerical Lockin"

"Activate LOCKIN", LOCKIN_INIT ()

End

Macro LOCKIN_INIT(sIpt0 ,sIpt1 ,sIpt2 ,sIpt3 ,sIpt4 ,sIpt5 ,vSamplerate ,vTotalpoint ,vFreq)

String/G sgIpt0 , sgIpt1 , sgIpt2 , sgIpt3 , sgIpt4 , sgIpt5

String sIpt0=sgIpt0 ,sIpt1=sgIpt1 ,sIpt2=sgIpt2 ,sIpt3=sgIpt3 ,sIpt4=sgIpt4 , sIpt5=sgIpt5

Prompt sIpt0 , "magnetic field (T):"

Prompt sIpt1 ," input1 (do not use = \"off\"):"

Prompt sIpt2 ," input2 (do not use = \"off\"):"

Prompt sIpt3 ," input3 (do not use = \"off\"):"

Prompt sIpt4 ," input4 (do not use = \"off\"):"

Prompt sIpt5 ," input5 (do not use = \"off\"):"

Variable/G vgSamplerate

Variable vSamplerate=vgSamplerate

Prompt vSamplerate , "samplerate (/s):"

Variable/G vgTotalpoint

Variable vTotalpoint=vgTotalpoint

Prompt vTotalpoint , "total data point :"

Variable/G vgFreq

Variable vFreq=vgFreq

Prompt vFreq ," reference frequency (Hz):"

Variable/G vgPhase =0

Variable/G vgPointofcycle

String/G sgFilename

Variable/G vgPshift

String/G sgTimestamp =" timestamp_Lockin"

String/G sgReference =" refsignal", sgReferenceImg =" refsignal_img"

Variable/G vgActtime

INITIALIZE(sIpt0 ,sIpt1 ,sIpt2 ,sIpt3 ,sIpt4 ,sIpt5 ,vSamplerate ,vTotalpoint ,vFreq)

End

Function INITIALIZE(sIpt0 ,sIpt1 ,sIpt2 ,sIpt3 ,sIpt4 ,sIpt5 ,vSamplerate ,vTotalpoint ,vFreq)

String sIpt0 ,sIpt1 ,sIpt2 ,sIpt3 ,sIpt4 , sIpt5

Variable vSamplerate

Variable vTotalpoint

Variable vFreq

Variable i

Make/T/O/N=(6) Ipt

Ipt [0]= sIpt0; Ipt [1]= sIpt1; Ipt [2]= sIpt2; Ipt [3]= sIpt3; Ipt [4]= sIpt4; Ipt [5]= sIpt5;

Make/T/O/N=(6) Num

Num [0]="0"; Num [1]="1"; Num [2]="2"; Num [3]="3"; Num [4]="4"; Num [5]="5";
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Make/T/O/N=(6) IptTuned

i=0

Do

IptTuned[i]=" input"+Num[i]+"_t"

i+=1

While (i<6)

Make/T/O/N=(6) IptTunedImg

i=0

Do

IptTunedImg[i]=" input"+Num[i]+" _tImg"

i+=1

While (i<6)

Make/T/O/N=(6) IptLocked

i=0

Do

IptLocked[i]=" input "+Num[i]+" _locked"

i+=1

While (i<6)

Make/T/O/N=(6) IptLockedImg

i=0

Do

IptLockedImg[i]=" input "+Num[i]+" _lockedImg"

i+=1

While (i<6)

Make/T/O/N=(6) IptPhaseshift

i=0

Do

IptPhaseshift[i]=" input "+Num[i]+" _phaseshift"

i+=1

While (i<6)

Make/T/O/N=(6) IptNorm

i=0

Do

IptNorm[i]=" input "+Num[i]+" _norm"

i+=1

While (i<6)

Make/O/N=(6) Ampgain

Make/O/N=(6) Color1

Color1 [1]=65280; Color1 [2]=0; Color1 [3]=0; Color1 [4]=65280; Color1 [5]=0;

Make/O/N=(6) Color2

Color2 [1]=43520; Color2 [2]=65280; Color2 [3]=0; Color2 [4]=0; Color2 [5]=0;

Make/O/N=(6) Color3

Color3 [1]=0; Color3 [2]=0; Color3 [3]=65280; Color3 [4]=26112; Color3 [5]=26112

Make/O/N=(6) Flag

i=1

Do

Flag[i]=0

i+=1

While (i<6)

NVAR vgActtime

if (vgActtime ==0)

Print "Send bug or error reports to: k_akiba@issp.u-tokyo.ac.jp"

endif

vgActtime +=1

SVAR sgIpt0

SVAR sgIpt1

SVAR sgIpt2

SVAR sgIpt3

SVAR sgIpt4

SVAR sgIpt5

NVAR vgSamplerate

NVAR vgTotalpoint

NVAR vgFreq

sgIpt0=sIpt0; sgIpt1=sIpt1; sgIpt2=sIpt2; sgIpt3=sIpt3; sgIpt4=sIpt4; sgIpt5=sIpt5

vgSamplerate=vSamplerate

vgTotalpoint=vTotalpoint

vgFreq=vFreq

i=1

Do

Make/O/N=( vgTotalpoint) $IptTuned[i]

i+=1

While (i<6)

i=1

Do

Make/O/N=( vgTotalpoint) $IptTunedImg[i]

i+=1

While (i<6)

SVAR sgReference
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SVAR sgReferenceImg

SVAR sgTimestamp

NVAR vgPshift

NVAR vgPhase

Make/O/N=( vgTotalpoint) $sgReference=sin (2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase)

Make/O/N=( vgTotalpoint) $sgReferenceImg=sin (2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase -pi/2)

Make/O/N=( vgTotalpoint) $sgTimestamp=p/vgSamplerate

i=1

Do

if (cmpstr(Ipt[i],"off")==0)

Flag[i]=0

else

Flag[i]=1

endif

i+=1

While (i<6)

if( (Flag [1]==0) *(Flag [2]==0) *(Flag [3]==0) *(Flag [4]==0) *(Flag [5]==0) ==0)

i=1

Do

DUPLICATE_IPT(Ipt[i],IptTuned[i],Flag[i])

i+=1

While (i<6)

Display/N=phase_tuning $sgReference vs $sgTimestamp

ModifyGraph/W=phase_tuning margin(top)=20

i=1

Do

APPEND_IPT (" phase_tuning",Ipt[i],sgTimestamp ,Flag[i],Color1[i],Color2[i],Color3[i])

i+=1

While (i<6)

Legend/W=phase_tuning/C/N=text0/A=RB

Label/W=phase_tuning bottom "Time (sec)"

Label/W=phase_tuning left "Raw input"

SetVariable setpshift win=phase_tuning ,size ={100 ,20} ,value=vgPshift

SetVariable setpshift proc=UPDATE_REFERENCE ,title="point shift"

SetVariable setfreq win=phase_tuning ,size ={100 ,20} ,value=vgFreq

SetVariable setfreq proc=UPDATE_REFERENCE , title="freq"

Button plus win=phase_tuning ,size ={50 ,20} ,proc=PLUS , title ="+pi/2"

Button minus win=phase_tuning ,size ={50 ,20} ,proc=MINUS , title="-pi/2"

Button multiply win=phase_tuning ,size ={70 ,20} ,proc=MULTIPLY_REFERENCE , title=" multiply"

else

Doalert 0, "There is no input data."

endif

End

Function DUPLICATE_IPT(sIpt ,sOpt ,vFlag)

String sIpt ,sOpt

Variable vFlag

NVAR vgTotalpoint

if (vFlag ==1)

Duplicate/O/R=(0, vgTotalpoint -1) $sIpt $sOpt

endif

End

Function APPEND_IPT(sWinname ,sIpt ,sXwave ,vFlag ,vColor1 ,vColor2 ,vColor3)

String sIpt ,sXwave ,sWinname

Variable vFlag ,vColor1 ,vColor2 ,vColor3

if (vFlag ==1)

AppendToGraph/W=$sWinname $sIpt vs $sXwave

ModifyGraph/W=$sWinname rgb($sIpt)=(vColor1 ,vColor2 ,vColor3)

endif

End

Function UPDATE_REFERENCE(ctrlName ,varNum ,varStr ,varName) : SetVariableControl

String ctrlName ,varStr ,varName

Variable varNum

svar sgReference , sgReferenceImg

UPDATE_REFERENCE_SUB($sgReference , $sgReferenceImg)

End

Function UPDATE_REFERENCE_SUB(wName1 , wName2)

wave wName1 , wName2

nvar vgFreq , vgPshift , vgSamplerate , vgPhase

wname1 []=sin(2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase)

wname2 []=sin(2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase -pi/2)

End

Function PLUS(ctrlName):ButtonControl

String ctrlName

svar sgReference , sgReferenceImg

PLUS_SUB($sgReference , $sgReferenceImg)

End

Function PLUS_SUB(wName1 , wName2)

wave wName1 , wName2

nvar vgFreq , vgPshift , vgSamplerate , vgPhase

vgPhase +=pi/2

wName1 []=sin(2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase)

wName2 []=sin(2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase -pi/2)

End
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Function MINUS(ctrlName):ButtonControl

String ctrlName

svar sgReference , sgReferenceImg

MINUS_SUB($sgReference , $sgReferenceImg)

End

Function MINUS_SUB(wName1 , wName2)

wave wName1 , wName2

nvar vgFreq , vgPshift , vgSamplerate , vgPhase

vgPhase+=-pi/2

wName1 []=sin(2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase)

wName2 []=sin(2*pi*vgFreq *(p-vgPshift)/vgSamplerate -vgPhase -pi/2)

End

Function MULTIPLY_REFERENCE(ctrlName):ButtonControl

String ctrlName

Variable i

NVAR vgSamplerate , vgFreq

Wave Flag , Color1 , Color2 , Color3

Wave/T Ipt , IptTuned , IptTunedImg

SVAR sgReference , sgReferenceImg , sgTimestamp

if (mod(vgSamplerate , vgFreq) != 0)

Doalert 0, "Samplerate/Frequency is not integer ."

endif

i=1

Do

TUNING(Flag[i], Ipt[i], IptTuned[i], sgReference)

i+=1

While (i<6)

i=1

Do

TUNING(Flag[i], Ipt[i], IptTunedImg[i], sgReferenceImg)

i+=1

While (i<6)

Killwindow phase_tuning

Display/N=locked

ModifyGraph/W=locked margin(top)=20

i=1

Do

APPEND_IPT (" locked",IptTuned[i],sgTimestamp ,Flag[i],Color1[i],Color2[i],Color3[i])

i+=1

While (i<6)

Legend/W=locked/C/N=text0/A=RB

Label/W=locked bottom "Time (sec)"

Label/W=locked left "Refsignal * Raw input"

if (Flag [1]==1)

SetVariable amp1 win=locked ,size ={80,20} , value=Ampgain [1], title="amp1"

endif

if (Flag [2]==1)

SetVariable amp2 win=locked ,size ={80,20} , value=Ampgain [2], title="amp2"

endif

if (Flag [3]==1)

SetVariable amp3 win=locked ,size ={80,20} , value=Ampgain [3], title="amp3"

endif

if (Flag [4]==1)

SetVariable amp4 win=locked ,size ={80,20} , value=Ampgain [4], title="amp4"

endif

if (Flag [5]==1)

SetVariable amp5 win=locked ,size ={80,20} , value=Ampgain [5], title="amp5"

endif

Button calculate win=locked ,size ={60 ,20} ,proc=CALCULATION , title=" calculate"

End

Function TUNING(vFlag , sIpt , sTuned , sRef)

variable vFlag

string sIpt , sTuned , sRef

if (vFlag == 1)

wave wIpt=$sIpt

wave wTuned=$sTuned

wave wRef=$sRef

wTuned []= wIpt[p]*wRef[p]

endif

End

Function CALCULATION(ctrlName):ButtonControl

String ctrlName

Variable i

NVAR vgPointofcycle , vgSamplerate , vgFreq , vgTotalpoint

Wave/T IptLocked , IptLockedImg , IptPhaseshift , Ipt , IptTuned , IptTunedImg , IptNorm

Wave Flag , Ampgain , Color1 , Color2 , Color3

vgPointofcycle=vgSamplerate/vgFreq

i=0

Do

Make/O/N=( vgTotalpoint/vgPointofcycle) $IptLocked[i]

i+=1

While (i < 6)

i=1

Do

Make/O/N=( vgTotalpoint/vgPointofcycle) $IptLockedImg[i]
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i+=1

While (i<6)

i=1

Do

Make/O/N=( vgTotalpoint/vgPointofcycle) $IptPhaseshift[i]

i+=1

While (i<6)

i=1

Do

Make/O/N=( vgTotalpoint/vgPointofcycle) $IptNorm[i]

i+=1

While (i<6)

FIELD_CALC($Ipt[0], $IptLocked [0])

i=1

Do

AVERAGE_IPT(Flag[i],$IptTuned[i],$IptLocked[i],Ampgain[i])

i+=1

While (i<6)

i=1

Do

AVERAGE_IPT(Flag[i],$IptTunedImg[i],$IptLockedImg[i],Ampgain[i])

i+=1

While (i<6)

i=1

Do

PHASESHIFT_CALC(Flag[i], $IptPhaseshift[i], $IptLockedImg[i], $IptLocked[i])

i+=1

While (i<6)

i=1

Do

NORM_CALC(Flag[i], $IptNorm[i], $IptLockedImg[i], $IptLocked[i])

i+=1

While (i<6)

Killwindow locked

Display/N=result

ModifyGraph/W=result margin(top)=20

i=1

Do

APPEND_IPT (" result",IptLocked[i],IptLocked [0],Flag[i],Color1[i],Color2[i],Color3[i])

i+=1

While (i<6)

Legend/W=result/C/N=text0/A=RB

Label/W=result bottom "Magnetic field (T)"

Label/W=result left "Absolute value"

Button savewaves win=result ,size ={60 ,20} ,proc=SAVE_WAVES , title ="save"

SetVariable setfilename win=result ,size ={200 ,20} , value=sgFilename , title=" filename"

Display/N=phaseshift

ModifyGraph/W=phaseshift margin(top)=20

i=1

Do

APPEND_IPT (" phaseshift",IptPhaseshift[i],IptLocked [0],Flag[i],Color1[i],Color2[i],Color3[i])

i+=1

While (i<6)

Legend/W=phaseshift/C/N=text0/A=RB

Label/W=phaseshift bottom "Magnetic field (T)"

Label/W=phaseshift left "Phase shift (deg)"

Button OK win=phaseshift ,size ={60 ,20} ,proc=OK, title="OK"

TextBox/C/N=text1/F=0 "\\ Z18Phase shift check"

End

Function AVERAGE_IPT(vFlag ,sIpt ,sOpt ,vAmp)

Variable vFlag , vAmp

wave sIpt ,sOpt

NVAR vgPointofcycle

NVAR vgTotalpoint

Variable i

i=0

if(vFlag ==1)

do

Wavestats/Q/R=(i*vgPointofcycle ,i*vgPointofcycle +( vgPointofcycle -1)) sIpt

sOpt[i]=2* V_avg/vAmp

i+=1

while(i<vgTotalpoint/vgPointofcycle)

endif

End

Function FIELD_CALC(sIpt ,sIptLocked)

wave sIpt , sIptLocked

NVAR vgPointofcycle

NVAR vgTotalpoint

Variable i

i=0

do
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Wavestats/Q/R=(i*vgPointofcycle ,i*vgPointofcycle +( vgPointofcycle -1)) sIpt

sIptLocked[i]=V_avg

i+=1

while(i<vgTotalpoint/vgPointofcycle)

End

Function SAVE_WAVES(ctrlName):ButtonControl

String ctrlName

Variable i

NVAR vgTotalpoint , vgPointofcycle

SVAR sgFilename

Wave/T IptLocked , Num

Wave Flag , Color1 , Color2 , Color3

Make/O/N=( vgTotalpoint/vgPointofcycle) $sgFilename +" _field"

Duplicate/O/R=(0, vgTotalpoint/vgPointofcycle -1) $IptLocked [0], $sgFilename +" _field"

i=1

Do

COPY_IPT(Flag[i],"_input "+Num[i],$IptLocked[i])

i+=1

While (i<6)

Killwindow result

Display/N=saved_waves

i=1

Do

APPEND_IPT (" saved_waves",sgFilename +" _input "+Num[i],sgFilename +" _field", Flag[i],Color1[i],

Color2[i],Color3[i])

i+=1

While (i<6)

Legend/W=saved_waves/C/N=text0/A=RB

SAVE_WAVES_FROM_GRAPH (" saved_waves ")

Killwindow saved_waves

Killwaves $sgFilename +" _field"

i=1

Do

if (Flag[i]==1)

KILL_IPT($sgFilename +" _input "+Num[i])

endif

i+=1

While(i<6)

End

Function PHASESHIFT_CALC(vFlag , sPhaseshift ,sLockedImg ,sLocked)

variable vFlag

wave sPhaseshift , sLockedImg , sLocked

if (vFlag == 1)

sPhaseshift []= atan(sLockedImg[p]/ sLocked[p])*180/ pi

endif

End

Function OK(ctrlName):ButtonControl

string ctrlName

Killwindow phaseshift

End

Function NORM_CALC(vFlag , sNorm , sLockedImg , sLocked)

variable vFlag

wave sNorm , sLockedImg , sLocked

if (vFlag == 1)

sNorm []= sqrt(sLockedImg[p]^2+ sLocked[p]^2)

endif

End

Function SAVE_WAVES_FROM_GRAPH(graphName)

String graphName

String list , traceList , traceName

SVAR sgFilename

Variable index = 0

list = ""

traceList = TraceNameList(graphName , ";", 1)

traceName=StringFromList (0,traceList ,";")

Wave refx=XWaveRefFromTrace(graphName , traceName)

list+= GetWavesDataFolder(refx ,2) + ";"

do

traceName = StringFromList(index , traceList , ";")

if (strlen(traceName) == 0)

break

endif

Wave w = TraceNameToWaveRef(graphName , traceName)

list += GetWavesDataFolder(w,2) + ";"

index += 1

while (1)

if (strlen(list) > 0)

Save/G/W/B/M="\r\n" list as sgFilename +". txt"

endif

End

Function KILL_IPT(sIpt)

Wave sIpt

Killwaves sIpt
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End

Function COPY_IPT(vFlag ,sChar ,sIpt)

Variable vFlag

String sChar

wave sIpt

NVAR vgTotalpoint

NVAR vgPointofcycle

SVAR sgFilename

if (vFlag ==1)

Duplicate/O/R=(0, vgTotalpoint/vgPointofcycle -1) sIpt , $sgFilename+sChar

endif

End

A.2 Data Acquisition with Tektronix DPO5104B

#pragma rtGlobals =3 // Use modern global access method.

#pragma version =2.0

// TEKTRONIX control

//real -time control

//all waves will be saved (not only active waves)

//160223 AKB (k_akiba@issp.u-tokyo.ac.jp)

Menu "TEKTRONIX"

"Activate TEKTRONIX", TEKTRONIX ()

End

function TEKTRONIX ()

newdatafolder/o/s root:TEKTRO

variable/g vgSrate , vgDatalength , vgInterval , vgHorizPosition

string/g sgAddress ="TCPIP ::169.254.88.181:: INSTR"

string/g sgDest1 =" TEKTRO_ch1", sgDest2 =" TEKTRO_ch2", sgDest3 =" TEKTRO_ch3", sgDest4 =" TEKTRO_ch4"

variable/g vgSelect1 , vgSelect2 , vgSelect3 , vgSelect4

variable/g vgScale1 , vgScale2 , vgScale3 , vgScale4

variable/g vgPosition1 , vgPosition2 , vgPosition3 , vgPosition4

variable/g vgOffset1 , vgOffset2 , vgOffset3 , vgOffset4

variable/g vgUnit1 , vgUnit2 , vgUnit3 , vgUnit4

variable/g vgDig_unit1

variable/g vgCom=0

string/g sgAcq

make/o TEKTRO_ch1 =0

make/o TEKTRO_ch2 =0

make/o TEKTRO_ch3 =0

make/o TEKTRO_ch4 =0

newpanel/w=(315 ,10 ,1000 ,250)/n=TEKTRONIX_MAIN_PANEL

SetDrawEnv textrgb= (26368 ,0 ,52224),fname= "Times New Roman",fstyle= 1,fsize= 64

DelayUpdate

DrawText/w=TEKTRONIX_MAIN_PANEL 399,222 ," Tektronix"

SetDrawEnv linefgc= (65280 ,0 ,0),linethick= 3.00

DrawLine/w=TEKTRONIX_MAIN_PANEL 643 ,210 ,626 ,238 //red line

SetDrawEnv fname= "Times New Roman"

DrawText 400,230 ," DPO 5104B"

SetDrawEnv linefgc= (65280 ,65280 ,0),linethick= 3.00

DrawLine/w=TEKTRONIX_MAIN_PANEL 54,36,78,36

SetDrawEnv linefgc= (0 ,43520 ,65280),linethick= 3.00

DrawLine/w=TEKTRONIX_MAIN_PANEL 54,86,78,86

SetDrawEnv linefgc= (65280 ,0 ,52224),linethick= 3.00

DrawLine/w=TEKTRONIX_MAIN_PANEL 54 ,136 ,78 ,136

SetDrawEnv linefgc= (0 ,65280 ,0),linethick= 3.00

DrawLine/w=TEKTRONIX_MAIN_PANEL 54 ,186 ,78 ,186

SetDrawEnv fillpat= 0

drawrect/w=TEKTRONIX_MAIN_PANEL 6,25,374,71

SetDrawEnv fillpat= 0

drawrect/w=TEKTRONIX_MAIN_PANEL 6 ,75 ,374,121

SetDrawEnv fillpat= 0

drawrect/w=TEKTRONIX_MAIN_PANEL 6 ,125 ,374 ,171

SetDrawEnv fillpat= 0

drawrect/w=TEKTRONIX_MAIN_PANEL 6 ,175 ,374 ,221

setvariable Address win=TEKTRONIX_MAIN_PANEL , size ={300 , 25}, value=sgAddress , pos={1,3}, title="

Address: "

button update win=TEKTRONIX_MAIN_PANEL , size = {60, 20}, proc = UPDATE , title = "receive", pos

={316 ,3}

button apply win=TEKTRONIX_MAIN_PANEL , size = {60, 20}, proc = APPLY , title = "send", pos={386 ,3},

disable =2

button read win=TEKTRONIX_MAIN_PANEL , size = {70, 20}, proc = READ , title = "read data", pos ={480 ,3}
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button graph win=TEKTRONIX_MAIN_PANEL , size = {70, 20}, proc=GRAPHPANEL , title = "graph", pos ={590 ,3}

checkbox Select1 size ={80, 25}, title ="Ch1", variable=vgSelect1 , proc=STATE1 , pos ={10 ,30}

setvariable Dest1 disable=2, win=TEKTRONIX_MAIN_PANEL , size ={200, 25}, value=sgDest1 , pos ={100 ,30} ,

title="Dest1: "

setvariable Scale0 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgScale1 , title ="Scale: ", pos

={10,50} , proc=APPLY_SETTING_SV

setvariable Position0 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgPosition1 , title=" Position:

", pos ={140 ,50} , proc=APPLY_SETTING_SV

setvariable Offset0 disable=2,win=TEKTRONIX_MAIN_PANEL , size ={100, 25}, value=vgOffset1 , title ="

Offset: ", pos ={270 ,50} , proc=APPLY_SETTING_SV

button stop win=TEKTRONIX_MAIN_PANEL , size = {60, 20}, proc = STOP , title = "stop", fcolor

=(65280 ,0 ,0), pos ={400 ,30}

checkbox Select2 size ={80, 25}, title ="Ch2", variable=vgSelect2 , proc=STATE2 , pos ={10 ,80}

setvariable Dest2 disable=2, win=TEKTRONIX_MAIN_PANEL , size ={200, 25}, value=sgDest2 , pos ={100 ,80} ,

title="Dest2: "

setvariable Scale1 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgScale2 , title ="Scale: ", pos

={10 ,100} , proc=APPLY_SETTING_SV

setvariable Position1 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgPosition2 , title=" Position:

", pos ={140 ,100} , proc=APPLY_SETTING_SV

setvariable Offset1 disable=2, win=TEKTRONIX_MAIN_PANEL , size ={100 , 25}, value=vgOffset2 , title="

Offset: ", pos ={270 ,100} , proc=APPLY_SETTING_SV

button run win=TEKTRONIX_MAIN_PANEL , size = {60, 20}, proc = RUN , title = "run", fcolor =(0 ,65280 ,0),

pos ={400 ,50}

checkbox Select3 size ={80, 25}, title ="Ch3", variable=vgSelect3 , proc=STATE3 , pos ={10 ,130}

setvariable Dest3 disable=2, win=TEKTRONIX_MAIN_PANEL , size ={200, 25}, value=sgDest3 , pos ={100 ,130} ,

title="Dest3: "

setvariable Scale2 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgScale3 , title ="Scale: ", pos

={10 ,150} , proc=APPLY_SETTING_SV

setvariable Position2 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgPosition3 , title=" Position:

", pos ={140 ,150} , proc=APPLY_SETTING_SV

setvariable Offset2 disable=2, win=TEKTRONIX_MAIN_PANEL , size ={100, 25}, value=vgOffset3 , title ="

Offset: ", pos ={270 ,150} , proc=APPLY_SETTING_SV

button single win=TEKTRONIX_MAIN_PANEL , size = {60, 20}, proc = SINGLE , title = "single",fcolor

=(0 ,65280 ,0), pos ={400 ,80}

checkbox Select4 size ={80, 25}, title ="Ch4", variable=vgSelect4 , proc=STATE4 , pos ={10 ,180}

setvariable Dest4 disable=2, win=TEKTRONIX_MAIN_PANEL , size ={200, 25}, value=sgDest4 , pos ={100 ,180} ,

title="Dest4: "

setvariable Scale3 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgScale4 , title ="Scale: ", pos

={10 ,200} , proc=APPLY_SETTING_SV

setvariable Position3 win=TEKTRONIX_MAIN_PANEL , size ={125, 25}, value=vgPosition4 , title=" Position:

", pos ={140 ,200} , proc=APPLY_SETTING_SV

setvariable Offset3 disable=2, win=TEKTRONIX_MAIN_PANEL , size ={100 , 25}, value=vgOffset4 , title="

Offset: ", pos ={270 ,200} , proc=APPLY_SETTING_SV

setvariable horizposition win=TEKTRONIX_MAIN_PANEL , size ={175, 25}, value=vgHorizPosition , title="

HorizPosition: ", pos ={500 ,30} , proc=APPLY_SETTING_SV

setvariable datalength win=TEKTRONIX_MAIN_PANEL , size ={175, 25}, value=vgDatalength , title ="

Datalength: ", pos ={500 ,60} , proc=APPLY_SETTING_SV

setvariable srate win=TEKTRONIX_MAIN_PANEL , size ={175, 25}, value=vgSrate , title=" Samplerate: ", pos

={500 ,90} , proc=APPLY_SETTING_SV

// valdisplay totaltime win=TEKTRONIX_MAIN_PANEL , size ={175, 25}, value = #" vgDatalength/vgSrate",

title = "totaltime: ", pos ={500 ,120}

// button NO win=TEKTRONIX_MAIN_PANEL , size = {150, 20}, noproc , title = "numerical ORPHEUS",pos

={470 ,215} //to access numerical ORPHEUS directly.

popupmenu acq win=TEKTRONIX_MAIN_PANEL , size ={150, 25}, value =" SAMPLE;PEAKDETECT;HIRES;AVERAGE;WFMDB;

ENVELOPE;", pos ={385 ,140} , title ="Acq. mode", proc=ACQ

setvariable acq_string win=TEKTRONIX_MAIN_PANEL , size ={100, 25}, value = sgAcq , title = "Acq: ", pos

={385 ,110} , disable =2

end

Function ACQ (ctrlName ,popNum ,popStr) : PopupMenuControl

String ctrlName

Variable popNum // which item is currently selected (1-based)

String popStr // contents of current popup item as string

svar sgAcq

sgAcq=popStr

APPLY_SETTING ()

End

Function STATE1 (ctrlName ,checked) : CheckBoxControl

String ctrlName

Variable checked // 1 if selelcted , 0 if not

setdatafolder root:TEKTRO

nvar vgSelect1

vgSelect1=checked

APPLY_SETTING ()

End

Function STATE2 (ctrlName ,checked) : CheckBoxControl

String ctrlName

Variable checked // 1 if selelcted , 0 if not

setdatafolder root:TEKTRO

nvar vgSelect2
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vgSelect2=checked

APPLY_SETTING ()

End

Function STATE3 (ctrlName ,checked) : CheckBoxControl

String ctrlName

Variable checked // 1 if selelcted , 0 if not

setdatafolder root:TEKTRO

nvar vgSelect3

vgSelect3=checked

APPLY_SETTING ()

End

Function STATE4 (ctrlName ,checked) : CheckBoxControl

String ctrlName

Variable checked // 1 if selelcted , 0 if not

setdatafolder root:TEKTRO

nvar vgSelect4

vgSelect4=checked

APPLY_SETTING ()

End

function UPDATE(ctrlName) : ButtonControl

string ctrlName

setdatafolder root:TEKTRO

nvar vgCom

vgCom=1

ASK_STATE ()

ASK_SCALE ()

ASK_POSITION ()

ASK_OFFSET ()

ASK_LENGTH ()

ASK_SRATE ()

ASK_HORIZPOSITION ()

ASK_ACQ ()

vgCom=0

end

function ASK_STATE ()

variable defaultRM , instr

svar sgAddress

nvar vgSelect1 , vgSelect2 , vgSelect3 , vgSelect4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "SELect:CH1?"

visaread instr , vgSelect1

visawrite instr , "SELect:CH2?"

visaread instr , vgSelect2

visawrite instr , "SELect:CH3?"

visaread instr , vgSelect3

visawrite instr , "SELect:CH4?"

visaread instr , vgSelect4

viClose(instr)

viClose(defaultRM)

end

function ASK_SCALE ()

variable defaultRM , instr

svar sgAddress

nvar vgScale1 , vgScale2 , vgScale3 , vgScale4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "CH1:SCAle?"

visaread instr , vgScale1

visawrite instr , "CH2:SCAle?"

visaread instr , vgScale2

visawrite instr , "CH3:SCAle?"

visaread instr , vgScale3

visawrite instr , "CH4:SCAle?"

visaread instr , vgScale4

viClose(instr)

viClose(defaultRM)

end

function ASK_POSITION ()

variable defaultRM , instr

svar sgAddress

nvar vgPosition1 , vgPosition2 , vgPosition3 , vgPosition4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "CH1:POSition ?"

visaread instr , vgPosition1

visawrite instr , "CH2:POSition ?"

visaread instr , vgPosition2

visawrite instr , "CH3:POSition ?"

visaread instr , vgPosition3

visawrite instr , "CH4:POSition ?"

visaread instr , vgPosition4

viClose(instr)

viClose(defaultRM)

end

function ASK_OFFSET ()

variable defaultRM , instr
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svar sgAddress

nvar vgOffset1 , vgOffset2 , vgOffset3 , vgOffset4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "CH1:OFFSet ?"

visaread instr , vgOffset1

visawrite instr , "CH2:OFFSet ?"

visaread instr , vgOffset2

visawrite instr , "CH3:OFFSet ?"

visaread instr , vgOffset3

visawrite instr , "CH4:OFFSet ?"

visaread instr , vgOffset4

viClose(instr)

viClose(defaultRM)

end

function ASK_LENGTH ()

variable defaultRM , instr

svar sgAddress

nvar vgDatalength

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "HORizontal:MODE:RECOrdlength ?"

visaread instr , vgDatalength

viClose(instr)

viClose(defaultRM)

end

function ASK_SRATE ()

variable defaultRM , instr

svar sgAddress

nvar vgSrate

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "HORizontal:MODE:SAMPLERate ?"

visaread instr , vgSrate

viClose(instr)

viClose(defaultRM)

end

function ASK_HORIZPOSITION ()

variable defaultRM , instr

svar sgAddress

nvar vgHorizPosition

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "HORizontal:POSition ?"

visaread instr , vgHorizPosition

viClose(instr)

viClose(defaultRM)

end

function ASK_ACQ ()

variable defaultRM , instr

svar sgAddress

svar sgAcq

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "ACQuire:MODe?"

visaread/T="\r\n" instr , sgAcq

viClose(instr)

viClose(defaultRM)

end

function APPLY(ctrlName) : ButtonControl

string ctrlName

setdatafolder root:TEKTRO

nvar vgCom

vgCom=1

ASSIGN_STATE ()

ASSIGN_SCALE ()

ASSIGN_POSITION ()

ASSIGN_OFFSET ()

ASSIGN_LENGTH ()

ASSIGN_SRATE ()

ASSIGN_HORIZPOSITION ()

ASSIGN_ACQ ()

vgCom=0

end

function APPLY_SETTING ()

setdatafolder root:TEKTRO

nvar vgCom

vgCom=1

ASSIGN_STATE ()

ASSIGN_SCALE ()

ASSIGN_POSITION ()

ASSIGN_OFFSET ()

ASSIGN_LENGTH ()

ASSIGN_SRATE ()

ASSIGN_HORIZPOSITION ()

ASSIGN_ACQ ()

vgCom=0

end
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function APPLY_SETTING_SV(ctrlName ,varNum ,varStr ,varName) : SetVariableControl

String ctrlName

Variable varNum // value of variable as number

String varStr // value of variable as string

String varName // name of variable

setdatafolder root:TEKTRO

nvar vgCom

vgCom=1

ASSIGN_STATE ()

ASSIGN_SCALE ()

ASSIGN_POSITION ()

ASSIGN_OFFSET ()

ASSIGN_LENGTH ()

ASSIGN_SRATE ()

ASSIGN_HORIZPOSITION ()

ASSIGN_ACQ ()

vgCom=0

end

function ASSIGN_STATE ()

variable defaultRM , instr

svar sgAddress

nvar vgSelect1 , vgSelect2 , vgSelect3 , vgSelect4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "SELect:CH1 "+ num2str(vgSelect1)

visawrite instr , "SELect:CH2 "+ num2str(vgSelect2)

visawrite instr , "SELect:CH3 "+ num2str(vgSelect3)

visawrite instr , "SELect:CH4 "+ num2str(vgSelect4)

viClose(instr)

viClose(defaultRM)

end

function ASSIGN_SCALE ()

variable defaultRM , instr

svar sgAddress

nvar vgScale1 , vgScale2 , vgScale3 , vgScale4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "CH1:SCAle "+ num2str(vgScale1)

visawrite instr , "CH2:SCAle "+ num2str(vgScale2)

visawrite instr , "CH3:SCAle "+ num2str(vgScale3)

visawrite instr , "CH4:SCAle "+ num2str(vgScale4)

viClose(instr)

viClose(defaultRM)

end

function ASSIGN_POSITION ()

variable defaultRM , instr

svar sgAddress

nvar vgPosition1 , vgPosition2 , vgPosition3 , vgPosition4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "CH1:POSition "+ num2str(vgPosition1)

visawrite instr , "CH2:POSition "+ num2str(vgPosition2)

visawrite instr , "CH3:POSition "+ num2str(vgPosition3)

visawrite instr , "CH4:POSition "+ num2str(vgPosition4)

viClose(instr)

viClose(defaultRM)

end

function ASSIGN_OFFSET ()

variable defaultRM , instr

svar sgAddress

nvar vgOffset1 , vgOffset2 , vgOffset3 , vgOffset4

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "CH1:OFFSet "+ num2str(vgOffset1)

visawrite instr , "CH2:OFFSet "+ num2str(vgOffset2)

visawrite instr , "CH3:OFFSet "+ num2str(vgOffset3)

visawrite instr , "CH4:OFFSet "+ num2str(vgOffset4)

viClose(instr)

viClose(defaultRM)

end

function ASSIGN_LENGTH ()

variable defaultRM , instr

svar sgAddress

nvar vgDatalength

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "HORizontal:MODE MANual"

visawrite instr , "HORizontal:MODE:RECOrdlength "+ num2str(vgDatalength)

viClose(instr)

viClose(defaultRM)

end

function ASSIGN_SRATE ()

variable defaultRM , instr

svar sgAddress

nvar vgSrate

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)
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visawrite instr , "HORizontal:MODE MANual"

visawrite instr , "HORizontal:MODE:SAMPLERate "+ num2str(vgSrate)

viClose(instr)

viClose(defaultRM)

end

function ASSIGN_HORIZPOSITION ()

variable defaultRM , instr

svar sgAddress

nvar vgHorizPosition

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "HORizontal:POSition "+ num2str(vgHorizPosition)

viClose(instr)

viClose(defaultRM)

end

function ASSIGN_ACQ ()

variable defaultRM , instr

svar sgAddress

svar sgAcq

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "ACQuire:MODe "+ sgAcq

viClose(instr)

viClose(defaultRM)

end

function SINGLE(ctrlName) : ButtonControl

string ctrlName

setdatafolder root:TEKTRO

variable defaultRM , instr

svar sgAddress

nvar vgCom

vgCom=1

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "ACQuire:STOPAFTER SEQUENCE"

visawrite instr , "ACQuire:STATE 1"

viClose(instr)

viClose(defaultRM)

vgCom=0

end

function STOP(ctrlName) : ButtonControl

string ctrlName

setdatafolder root:TEKTRO

variable defaultRM , instr

svar sgAddress

nvar vgCom

vgCom=1

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "ACQuire:STOPAFTER RUNSTOP"

visawrite instr , "ACQuire:STATE STOP"

viClose(instr)

viClose(defaultRM)

vgCom=0

end

function RUN(ctrlName) : ButtonControl

string ctrlName

setdatafolder root:TEKTRO

variable defaultRM , instr

svar sgAddress

nvar vgCom

vgCom=1

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "ACQuire:STOPAFTER RUNSTOP"

visawrite instr , "ACQuire:STATE RUN"

viClose(instr)

viClose(defaultRM)

vgCom=0

end

function READ(ctrlName) : ButtonControl

string ctrlName

setdatafolder root:TEKTRO

Variable defaultRM , instr

variable vDatalength , vInterval , vDig_unit , vOffset , vPosition

nvar vgSelect1 , vgSelect2 , vgSelect3 , vgSelect4

svar sgAddress

nvar vgCom

vgCom=1

// UPDATE

ASK_STATE ()

ASK_SCALE ()

ASK_POSITION ()

ASK_OFFSET ()

ASK_LENGTH ()

ASK_SRATE ()
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ASK_HORIZPOSITION ()

ASK_ACQ ()

// UPDATE

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

visawrite instr , "HORizontal:MODE:RECOrdlength ?"// ask the record length.

visaread instr , vDatalength

visawrite instr , "HORizontal:MODE:SAMPLERate ?"// ask the time interval.

visaread instr , vInterval

vInterval =1/ vInterval

viClose(instr)

viClose(defaultRM)

//make/o/n=( vDatalength) TEKTRO_time

// TEKTRO_time=p*vInterval

viOpenDefaultRM(defaultRM)

viOpen(defaultRM , sgAddress , 0, 0, instr)

make/o/n=( vDatalength) TEKTRO_ch1 =0

make/o/n=( vDatalength) TEKTRO_ch2 =0

make/o/n=( vDatalength) TEKTRO_ch3 =0

make/o/n=( vDatalength) TEKTRO_ch4 =0

if (vgSelect1 == 1)

vDig_unit =0

vOffset =0

vPosition =0

visawrite instr , "DATa:SOUrce CH1"

visawrite instr , "DATa:ENCdg SRIbinary"

visawrite instr , "DATa:START 1"

visawrite instr , "DATa:STOP "+ num2str(vDatalength)

visawrite instr , "WFMOutpre:BYT_Nr 1"

string vNop_wfm

visawrite instr , "WFMOutpre ?"

visaread/T=",\r\t" instr , vNop_wfm

print vNop_wfm

visawrite instr , "WFMOUTpre:YMUlt ?"// ask the convert coefficient.

visaread instr , vDig_unit

visawrite instr , "WFMOUTpre:YZEro ?"// ask the offset.

visaread instr , vOffset

visawrite instr , "WFMOUTpre:YOFf ?"// ask the position.

visaread instr , vPosition

visawrite instr , "CURVe?"

visareadbinarywave/type =(0x08)/b/y={-vPosition+vOffset/vDig_unit , vDig_unit} instr ,

TEKTRO_ch1

endif

if (vgSelect2 == 1)

vDig_unit =0

vOffset =0

vPosition =0

visawrite instr , "DATa:SOUrce CH2"

visawrite instr , "DATa:ENCdg SRIbinary"

visawrite instr , "DATa:START 1"

visawrite instr , "DATa:STOP "+ num2str(vDatalength)

visawrite instr , "WFMOutpre:BYT_Nr 1"

// string vNop_wfm

visawrite instr , "WFMOutpre ?"

visaread/T=",\r\t" instr , vNop_wfm

print vNop_wfm

visawrite instr , "WFMOUTpre:YMUlt ?"// ask the convert coefficient.

visaread instr , vDig_unit

visawrite instr , "WFMOUTpre:YZEro ?"// ask the offset.

visaread instr , vOffset

visawrite instr , "WFMOUTpre:YOFf ?"// ask the position.

visaread instr , vPosition

visawrite instr , "CURVe?"

visareadbinarywave/type =(0x08)/b/y={-vPosition+vOffset/vDig_unit , vDig_unit} instr ,

TEKTRO_ch2

endif

if (vgSelect3 == 1)

vDig_unit =0

vOffset =0

vPosition =0

visawrite instr , "DATa:SOUrce CH3"

visawrite instr , "DATa:ENCdg SRIbinary"

visawrite instr , "DATa:START 1"

visawrite instr , "DATa:STOP "+ num2str(vDatalength)

visawrite instr , "WFMOutpre:BYT_Nr 1"
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// string vNop_wfm

visawrite instr , "WFMOutpre ?"

visaread/T=",\r\t" instr , vNop_wfm

print vNop_wfm

visawrite instr , "WFMOUTpre:YMUlt ?"// ask the convert coefficient.

visaread instr , vDig_unit

visawrite instr , "WFMOUTpre:YZEro ?"// ask the offset.

visaread instr , vOffset

visawrite instr , "WFMOUTpre:YOFf ?"// ask the position.

visaread instr , vPosition

visawrite instr , "CURVe?"

visareadbinarywave/type =(0x08)/b/y={-vPosition+vOffset/vDig_unit , vDig_unit} instr ,

TEKTRO_ch3

endif

if (vgSelect4 == 1)

vDig_unit =0

vOffset =0

vPosition =0

visawrite instr , "DATa:SOUrce CH4"

visawrite instr , "DATa:ENCdg SRIbinary"

visawrite instr , "DATa:START 1"

visawrite instr , "DATa:STOP "+ num2str(vDatalength)

visawrite instr , "WFMOutpre:BYT_Nr 1"

// string vNop_wfm

visawrite instr , "WFMOutpre ?"

visaread/T=",\r\t" instr , vNop_wfm

print vNop_wfm

visawrite instr , "WFMOUTpre:YMUlt ?"// ask the convert coefficient.

visaread instr , vDig_unit

visawrite instr , "WFMOUTpre:YZEro ?"// ask the offset.

visaread instr , vOffset

visawrite instr , "WFMOUTpre:YOFf ?"// ask the position.

visaread instr , vPosition

visawrite instr , "CURVe?"

visareadbinarywave/type =(0x08)/b/y={-vPosition+vOffset/vDig_unit , vDig_unit} instr ,

TEKTRO_ch4

endif

viClose(instr)

viClose(defaultRM)

vgCom=0

end

function graphpanel(ctrlName):ButtonControl

string ctrlName

setdatafolder root:TEKTRO

variable/g vgIntOffset , vgCh , vgFpc , vgXch

variable/g vgDisp1 , vgDisp2 , vgDisp3 , vgDisp4

wave TEKTRO_ch1 , TEKTRO_ch2 , TEKTRO_ch3 , TEKTRO_ch4

dowindow TEKTRO_CH

if (V_flag == 1)

dowindow/f TEKTRO_CH

setaxis/a

else

display/w=(201 ,157 ,740 ,528)/n=TEKTRO_CH TEKTRO_ch1 , TEKTRO_ch2 , TEKTRO_ch3 , TEKTRO_ch4

ModifyGraph/w=TEKTRO_CH margin(left)=120, margin(top)=35, gbRGB= (0,0,0), grid=1,gridStyle =1

ModifyGraph/w=TEKTRO_CH rgb(tektro_ch1)=(65280 ,65280 ,0)

ModifyGraph/w=TEKTRO_CH rgb(tektro_ch2)=(0 ,43520 ,65280)

ModifyGraph/w=TEKTRO_CH rgb(tektro_ch3)=(65280 ,0 ,52224)

ModifyGraph/w=TEKTRO_CH rgb(tektro_ch4)=(0 ,65280 ,0)

checkbox disp1 win=TEKTRO_CH , size = {70, 25}, value=1, variable=vgDisp1 , proc=checkboxproc ,

title = "TEKTRO_ch1", pos ={100 ,15}

checkbox disp2 win=TEKTRO_CH , size = {70, 25}, value=1, variable=vgDisp2 , proc=checkboxproc ,

title = "TEKTRO_ch2", pos ={250 ,15}

checkbox disp3 win=TEKTRO_CH , size = {70, 25}, value=1, variable=vgDisp3 , proc=checkboxproc ,

title = "TEKTRO_ch3", pos ={400 ,15}

checkbox disp4 win=TEKTRO_CH , size = {70, 25}, value=1, variable=vgDisp4 , proc=checkboxproc ,

title = "TEKTRO_ch4", pos ={550 ,15}

button datasave win=TEKTRO_CH , size = {70, 20}, proc=DATASAVE , title="save", pos={20, 50}

button dataload win=TEKTRO_CH , size = {70, 20}, proc=DATALOAD , title="load", pos={20, 100}

button integ win=TEKTRO_CH , size = {70, 20}, proc=INTEG , title =" integrate", pos={20, 150}

button detect_max win=TEKTRO_CH , size = {70, 20}, proc=DETECT_MAX , title=" detectmax", pos

={20, 200}

button buildyx win=TEKTRO_CH , size = {70, 20}, proc=BUILD_YX , title="Y-X", pos={20, 250}

SetDrawEnv linefgc= (65280 ,65280 ,0),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=TEKTRO_CH 140 ,17 ,155 ,17

SetDrawEnv linefgc= (0 ,43520 ,65280),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=TEKTRO_CH 255 ,17 ,270 ,17
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SetDrawEnv linefgc= (65280 ,0 ,52224),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=TEKTRO_CH 370 ,17 ,385 ,17

SetDrawEnv linefgc= (0 ,65280 ,0),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=TEKTRO_CH 485 ,17 ,500 ,17

endif

end

function checkboxproc(name , checked):CheckBoxControl

string name

variable checked

setdatafolder root:TEKTRO

variable vCh

string sWavename

make/o/n=(4, 3) ColorParam

ColorParam [0][0]=65280; ColorParam [0][1]=65280; ColorParam [0][2]=0;

ColorParam [1][0]=0; ColorParam [1][1]=43520; ColorParam [1][2]=65280;

ColorParam [2][0]=65280; ColorParam [2][1]=0; ColorParam [2][2]=52224;

ColorParam [3][0]=0; ColorParam [3][1]=65280; ColorParam [3][2]=0;

strswitch (name)

case "disp1":

vCh=1

break

case "disp2":

vCh=2

break

case "disp3":

vCh=3

break

case "disp4":

vCh=4

break

endswitch

sWavename =" TEKTRO_ch "+ num2str(vCh)

if (exists(sWavename) == 0)

checkbox $name , value = 0

else

if (checked == 1)

appendtograph/w=TEKTRO_CH $sWavename

modifygraph/w=TEKTRO_CH rgb($sWavename)=( ColorParam[vCh -1][0] , ColorParam[vCh -1][1] ,

ColorParam[vCh -1][2])

else

removefromgraph/w=TEKTRO_CH $sWavename

endif

endif

end

function DATASAVE(ctrlName):ButtonControl

string ctrlName

setdatafolder root:TEKTRO

string sSavelist =""

nvar vgDisp1 , vgDisp2 , vgDisp3 , vgDisp4

//if (vgDisp1 == 1)

sSavelist +=" TEKTRO_ch1 ;"

// endif

//if (vgDisp2 == 1)

sSavelist +=" TEKTRO_ch2 ;"

// endif

//if (vgDisp3 == 1)

sSavelist +=" TEKTRO_ch3 ;"

// endif

//if (vgDisp4 == 1)

sSavelist +=" TEKTRO_ch4"

// endif

Save/G/W/B/M="\r\n" sSavelist

print ssavelist

end

function INTEG(ctrlName):ButtonControl

string ctrlName

setdatafolder root:TEKTRO

variable vCh

prompt vCh , "Channel", popup "TEKTRO_ch1;TEKTRO_ch2;TEKTRO_ch3;TEKTRO_ch4"

doprompt "Integrate", vCh

nvar vgCh

vgCh=vCh

string sWavename =" TEKTRO_ch "+ num2str(vgCh)

duplicate/o $sWavename , Int_wave

duplicate/o Int_wave Int_wave_copy

nvar vgIntOffset

Int_wave=Int_wave_copy+vgIntOffset /1e5

integrate Int_wave

display/w=(201 ,157 ,740 ,528)/n=FIELD_PROP Int_wave

ModifyGraph/w=FIELD_PROP margin(top)=35, gbRGB= (0,0,0), grid=1,gridStyle =1
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setvariable offset_op win=FIELD_PROP , size ={160 , 25}, value=vgIntOffset , proc=INTEGRATE_OP , pos

={1,3}, title =" Offset (x10E -5): "

setvariable fpc win=FIELD_PROP , size ={100, 25}, value=vgFpc , noproc , pos={250,3}, title="F.P.C.: "

button integrate_op win=FIELD_PROP , size = {50, 20}, proc=OK_TEKTRO , title="OK", pos ={500 , 3}

end

Function INTEGRATE_OP (ctrlName ,varNum ,varStr ,varName) : SetVariableControl

String ctrlName

Variable varNum

String varStr

String varName

setdatafolder root:TEKTRO

nvar vgIntOffset , vgCh

wave Int_wave , Int_wave_copy

Int_wave=Int_wave_copy+vgIntOffset /1e5

integrate Int_wave

End

proc OK_TEKTRO(ctrlName):ButtonControl

string ctrlName

setdatafolder root:TEKTRO

string sWavename =" TEKTRO_ch "+ num2str(vgCh)

$sWavename=Int_wave*vgFpc

killwindow FIELD_PROP

killwaves Int_wave , Int_wave_copy

end

function DETECT_MAX(ctrlName):ButtonControl

string ctrlName

setdatafolder root:TEKTRO

variable vCh

prompt vCh , "Channel", popup "TEKTRO_ch1;TEKTRO_ch2;TEKTRO_ch3;TEKTRO_ch4"

doprompt "detect max", vCh

nvar vgCh

vgCh=vCh

string sWavename =" TEKTRO_ch "+ num2str(vgCh)

silent 1

wavestats/q $sWavename

Doalert 0, "Max = "+ num2str(V_max)+" (Min = "+ num2str(V_min)+")"

printf "Max = "+ num2str(V_max)+" (Min = "+ num2str(V_min)+")\r"

end

function DATALOAD(ctrlName):ButtonControl

string ctrlName

setdatafolder root:TEKTRO

loadwave/q/g/n=TEKTRO_LOAD

string sDestwave =" TEKTRO_ch"

string sSourcewave =" TEKTRO_LOAD"

variable i=0

do

sDestwave += num2str(i+1)

sSourcewave += num2str(i)

duplicate/o $sSourcewave $sDestwave

sDestwave =" TEKTRO_ch"

sSourcewave =" TEKTRO_LOAD"

i+=1

if (i+1 > V_flag)

break

endif

while (i < 4)

i=0

do

sSourcewave += num2str(i)

killwaves $sSourcewave

sSourcewave =" TEKTRO_LOAD"

i+=1

while (i < V_flag)

print "TEKTRO LOAD "+ S_fileName

end

function BUILD_YX(ctrlName):ButtonControl

string ctrlName

setdatafolder root:TEKTRO

variable vXch

prompt vXch , "X wave", popup "TEKTRO_ch1;TEKTRO_ch2;TEKTRO_ch3;TEKTRO_ch4"

doprompt "Build YX" vXch

string sXch=" TEKTRO_CH"

nvar vgXch

wave TEKTRO_ch1 , TEKTRO_ch2 , TEKTRO_ch3 , TEKTRO_ch4

vgXch=vXch

sXch+= num2str(vXch)
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nvar vgIntOffset , vgCh , vgFpc

dowindow YX_PROP

if (V_flag == 1)

dowindow/f YX_PROP

setaxis/a

else

display/w=(201 ,157 ,740 ,528)/n=YX_PROP TEKTRO_ch1 , TEKTRO_ch2 , TEKTRO_ch3 , TEKTRO_ch4 vs $sXch

ModifyGraph/w=YX_PROP margin(left)=120, margin(top)=35, gbRGB= (0,0,0), grid=1,gridStyle =1

ModifyGraph/w=YX_PROP rgb(tektro_ch1)=(65280 ,65280 ,0)

ModifyGraph/w=YX_PROP rgb(tektro_ch2)=(0 ,43520 ,65280)

ModifyGraph/w=YX_PROP rgb(tektro_ch3)=(65280 ,0 ,52224)

ModifyGraph/w=YX_PROP rgb(tektro_ch4)=(0 ,65280 ,0)

checkbox yxdisp1 win=YX_PROP , size = {70, 25}, value=1, proc=yxcheckboxproc , title = "

TEKTRO_ch1", pos ={100 ,15}

checkbox yxdisp2 win=YX_PROP , size = {70, 25}, value=1, proc=yxcheckboxproc , title = "

TEKTRO_ch2", pos ={250 ,15}

checkbox yxdisp3 win=YX_PROP , size = {70, 25}, value=1, proc=yxcheckboxproc , title = "

TEKTRO_ch3", pos ={400 ,15}

checkbox yxdisp4 win=YX_PROP , size = {70, 25}, value=1, proc=yxcheckboxproc , title = "

TEKTRO_ch4", pos ={550 ,15}

SetDrawEnv linefgc= (65280 ,65280 ,0),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=YX_PROP 140 ,17 ,155 ,17

SetDrawEnv linefgc= (0 ,43520 ,65280),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=YX_PROP 255 ,17 ,270 ,17

SetDrawEnv linefgc= (65280 ,0 ,52224),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=YX_PROP 370 ,17 ,385 ,17

SetDrawEnv linefgc= (0 ,65280 ,0),linethick= 3.00, xcoord= abs ,ycoord= abs;DelayUpdate

DrawLine/w=YX_PROP 485 ,17 ,500 ,17

endif

end

function yxcheckboxproc(name , checked):CheckBoxControl

string name

variable checked

setdatafolder root:TEKTRO

variable vCh

string sWavename

nvar vgXch

string sXwavename =" TEKTRO_ch "+ num2str(vgXch)

make/o/n=(4, 3) ColorParam

ColorParam [0][0]=65280; ColorParam [0][1]=65280; ColorParam [0][2]=0;

ColorParam [1][0]=0; ColorParam [1][1]=43520; ColorParam [1][2]=65280;

ColorParam [2][0]=65280; ColorParam [2][1]=0; ColorParam [2][2]=52224;

ColorParam [3][0]=0; ColorParam [3][1]=65280; ColorParam [3][2]=0;

strswitch (name)

case "yxdisp1 ":

vCh=1

break

case "yxdisp2 ":

vCh=2

break

case "yxdisp3 ":

vCh=3

break

case "yxdisp4 ":

vCh=4

break

endswitch

sWavename =" TEKTRO_ch "+ num2str(vCh)

if (exists(sWavename) == 0)

checkbox $name , value = 0

else

if (checked == 1)

appendtograph/w=YX_PROP $sWavename vs $sXwavename

modifygraph/w=YX_PROP rgb($sWavename)=( ColorParam[vCh -1][0] , ColorParam[vCh -1][1] ,

ColorParam[vCh -1][2])

else

removefromgraph/w=YX_PROP $sWavename

endif

endif

end

A.3 Numerical Analysis of Ultrasonic Measurements

#pragma TextEncoding = "UTF -8"

#pragma rtGlobals =3 // Use modern global access method and strict wave access.

// Ultrasonic measurement in pulsed magnetic fields.

//AKB (k_akiba@issp.u-tokyo.ac.jp)
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Menu "Numerical ORPHEUS"

"Activate NUMERICAL_ORPHEUS", NO_INIT ()

End

macro NO_INIT ()

newdatafolder/o/s root:TEKTRO

NUMERICAL_ORPHEUS ()

end

macro NUMERICAL_ORPHEUS(vSrate_NO , vDatalength_NO , vUsfreq_NO , vPulsefreq_NO , sEcho , sField)

variable/g vgSrate_NO , vgDatalength_NO , vgUsfreq_NO , vgPulsefreq_NO // fundamental parameters

string/g sgEcho , sgField // input waves

variable vSrate_NO=vgSrate_NO , vDatalength_NO=vgDatalength_NO , vUsfreq_NO=vgUsfreq_NO , vPulsefreq_NO=

vgPulsefreq_NO //load parameters

string sEcho=sgEcho , sField=sgField //load input wave names

prompt vSrate_NO , "Sampling rate (Hz)"

prompt vDatalength_NO , "Data length"

prompt vUsfreq_NO , "Ultrasonic freq (Hz)"

prompt vPulsefreq_NO , "Pulse freq (Hz)"

prompt sEcho , "Echo signal"

prompt sField , "dBdt"

silent 1

// begin of save parameters

vgSrate_NO=vSrate_NO

vgDatalength_NO=vDatalength_NO

vgUsfreq_NO=vUsfreq_NO

vgPulsefreq_NO=vPulsefreq_NO

sgEcho=sEcho

sgField=sField

//end of save parameters

variable/g vgPointofcycle_p_NO

vgPointofcycle_p_NO=vSrate_NO/vPulsefreq_NO // number of points in a cycle of repetition

if (mod(vSrate_NO ,vPulsefreq_NO)!=0)

doalert/t=" warnig" 0, "mod(sampling freq./ repetition freq.) is non -zero.\r I recommend

changing the parameters ."

endif

make/o/n=( vgPointofcycle_p_NO) Signal_NO =0 // single snapshot of signal

setscale/p x, 0, 1/vgsrate_NO , "s", Signal_NO

FRAME_SUB () //for acceleration

wavestats/q Signal_NO

variable/g vgRefampl

vgRefampl=V_max /12 // amplitude of reference wave

variable/g vgPhase_NO =0, vgZero_NO =0

make/d/o/n=( vgPointofcycle_p_NO) Ref_NO=vgRefampl*REFERENCE(p, vgUsfreq_NO , vgFrame ,

vgPointofcycle_p_NO , vgSrate_NO , vgPhase_NO , vgZero_NO , 0)

// reference wave to calculate Re

setscale/p x, 0, 1/vgsrate_NO , "s", Ref_NO

dowindow Phase_determination

if (V_flag == 1)

dowindow/f Phase_determination

setaxis/a

else

display/n=Phase_determination Ref_NO , Signal_NO

ModifyGraph/w=Phase_determination margin(top)=45, grid=1,gridStyle =1

ModifyGraph/w=Phase_determination rgb(Ref_NO)=(0 ,0 ,65280)

setvariable phase win=Phase_determination ,size ={80 ,20} ,value=vgPhase_NO , proc=SHIFT_REF ,

title="phase"

button SET_ZERO win=Phase_determination , size ={70,20}, proc=SET_ZERO , title ="set zero"

setvariable frame win=Phase_determination ,size ={80 ,20} ,value=vgFrame , proc=FRAME_SELECT ,

title="frame"

variable/g vgFrom=0, vgTo=vgPointofcycle_p_NO -1, vgTo_mod , vgfrom_mod

// setvariable from win=Phase_determination ,size ={90 ,20} ,value=vgFrom , title="from", disable

=2

// setvariable to win=Phase_determination ,size ={70 ,20} ,value=vgTo , title="to", disable =2

// button region win=Phase_determination , size ={50,20} , proc=CUR , title =" cursor"

variable/g vgEPB =0.1e6, vgSRB =1e6, vgfilcoef =101

setvariable EPB win=Phase_determination ,size ={85 ,20} ,value=vgEPB , title ="EPB"

setvariable SRB win=Phase_determination ,size ={85 ,20} ,value=vgSRB , title ="SRB"

setvariable filcoef win=Phase_determination ,size ={70 ,20} ,value=vgfilcoef , title ="coef"

button MULT win=Phase_determination , size ={70,20}, proc=MULT , title =" calculate", fcolor

=(65280 ,0 ,0)

variable/g vgParallel =1

checkbox para win=Phase_determination , size ={40,20} , variable=vgParallel , title =" parallel

algorithm", proc=PARALLEL

endif

end

Function FRAME_SUB ()

setdatafolder root:TEKTRO

svar sgEcho

wave Echo=$sgEcho , Signal_NO

nvar vgPointofcycle_p_NO

variable/g vgFrame =0

variable i
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for (i=0;i<trunc(vgPointofcycle_p_NO);i+=1)

Signal_NO[i]=Echo[vgFrame*vgPointofcycle_p_NO+i]

endfor

end

Function PARALLEL (ctrlName ,checked) : CheckBoxControl

String ctrlName

Variable checked // 1 if selected , 0 if not

nvar vgParallel

vgParallel=checked

End

Function FRAME_SELECT (ctrlName ,varNum ,varStr ,varName) : SetVariableControl // update when vgFrame is changed

String ctrlName

Variable varNum

String varStr

String varName

setdatafolder root:TEKTRO

svar sgEcho

wave Echo=$sgEcho , Signal_NO , Ref_NO

nvar vgFrame , vgSrate_NO , vgPointofcycle_p_NO , vgRefampl , vgUsfreq_NO , vgPhase_NO , vgZero_NO

variable i

for (i=0;i<trunc(vgPointofcycle_p_NO);i+=1)

Signal_NO[i]=echo[vgFrame*vgPointofcycle_p_NO+i]

endfor

Ref_NO=vgRefampl*REFERENCE(p, vgUsfreq_NO , vgFrame , vgPointofcycle_p_NO , vgSrate_NO , vgPhase_NO ,

vgZero_NO , 0)

end

function SET_ZERO(ctrlName):buttoncontrol //set the origin of phase

string ctrlName

setdatafolder root:TEKTRO

nvar vgPhase_NO , vgZero_NO

vgZero_NO += vgPhase_NO

vgPhase_NO =0

end

Function SHIFT_REF (ctrlName ,varNum ,varStr ,varName) : SetVariableControl // update when vgPhase_NO is changed

String ctrlName

Variable varNum

String varStr

String varName

setdatafolder root:TEKTRO

wave Ref_NO

nvar vgFrame , vgUsfreq_NO , vgSrate_NO , vgPhase_NO , vgRefAmpl , vgZero_NO , vgPointofcycle_p_NO

Ref_NO=vgRefampl*REFERENCE(p, vgUsfreq_NO , vgFrame , vgPointofcycle_p_NO , vgSrate_NO , vgPhase_NO ,

vgZero_NO , 0)

end

function CUR(ctrlName) : ButtonControl

String ctrlName

nvar vgfrom , vgto

variable vtemp

vgfrom=hcsr(A)

vgto=hcsr(B)

if (vgfrom > vgto)

vtemp=vgfrom

vgfrom=vgto

vgto=vtemp

endif

return 0

end

function MULT(ctrlName):buttoncontrol //main body of calculation

string ctrlName

setdatafolder root:TEKTRO

svar sgEcho , sgField

wave Echo=$sgEcho , Field=$sgField

nvar vgSrate_NO , vgPulsefreq_NO , vgDatalength_NO , vgUsfreq_NO , vgPhase_NO , vgRefAmpl , vgFrame ,

vgZero_NO , vgPointofcycle_p_NO , vgDatalength

nvar vgfrom , vgto

nvar vgParallel

nvar vgEPB , vgSRB , vgfilcoef

killwindow Phase_determination

make/d/o/n=( vgDatalength_NO) Re_NO=0 //real part

setscale/p x, 0, 1/vgsrate_NO , "s", Re_NO

make/d/o/n=( vgDatalength_NO) Im_NO=0 // imaginary part

setscale/p x, 0, 1/vgsrate_NO , "s", Im_NO

variable t_0 , t_1 , t_s , t_f //for benchmark

t_0=stopMSTimer (-2)

variable i, j
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if (vgParallel ==1)

// begin of parallel processing

printf "applying reference and low -pass filter ... "

variable nthreads=ThreadProcessorCount

for (i=0; i<nthreads;i+=1) // create working waves

make/o/n=( vgPointofcycle_p_NO) $"work_re "+ num2str(i)

make/o/n=( vgPointofcycle_p_NO) $"work_im "+ num2str(i)

endfor

variable mt=ThreadGroupCreate(nthreads)

variable col

variable waittime =50

for (col =0; col < vgDatalength_NO/vgPointofcycle_p_NO ;)

for(i=0;i<nthreads;i+=1)

// ThreadStart mt,i,APPL_REF(col , vgSrate_no , vgPulsefreq_no , vgDatalength_no ,

vgUsfreq_no , vgPhase_no , vgFrame , vgZero_no , vgPointofcycle_p_no , Echo ,

Re_NO , Im_NO)

ThreadStart mt,i,APPL_REFv6(col , vgSrate_no , vgPulsefreq_no , vgDatalength_no ,

vgUsfreq_no , vgPhase_no , vgFrame , vgZero_no , vgPointofcycle_p_no , Echo ,

Re_NO , Im_NO , vgEPB/vgSrate_NO , vgSRB/vgSrate_NO , vgfilcoef , $"work_re

"+ num2str(i), $"work_im "+ num2str(i))

col+=1

if( col >= vgDatalength_NO/vgPointofcycle_p_NO)

break

endif

endfor

do

variable tgs= ThreadGroupWait(mt ,waittime)

while( tgs != 0 )

endfor

variable dummy= ThreadGroupRelease(mt)

for (i=0; i<nthreads;i+=1) // kill working waves

killwaves $"work_re "+ num2str(i)

killwaves $"work_im "+ num2str(i)

endfor

//end of parallel processing

t_1=stopMSTimer (-2)

printf "done (time = %g s, parallel)\r", (t_1 -t_0)/1e6

else

printf "applying ferefence ... "

// begin of non -parallel processing

for (j=0;j<vgDatalength_NO;j+=1)

Re_NO[j]=Echo[j]* REFERENCE(j, vgUsfreq_NO , 0, vgPointofcycle_p_NO , vgSrate_NO ,

vgPhase_NO , vgZero_NO , 0)

Im_NO[j]=Echo[j]* REFERENCE(j, vgUsfreq_NO , 0, vgPointofcycle_p_NO , vgSrate_NO ,

vgPhase_NO , vgZero_NO , 1)

endfor

//end of non -parallel processing

t_1=stopMSTimer (-2)

printf "done (time = %g s, serial)\r", (t_1 -t_0)/1e6

t_0=stopMSTimer (-2)

printf "applying low -pass filter ... "

make/o/d/n=0 coefs_NO

make/o/d coefsMag

setscale/p x, 0, 1/vgSrate_NO , "s", coefs_NO

FilterFIR/COEF/LO={vgEPB/vgSrate_NO , vgSRB/vgSrate_NO , vgfilcoef} coefs_NO

FFT/OUT=3/ WINF=Hanning/PAD ={(2* numpnts(coefs_NO))}/DEST=coefsMag coefs_NO

coefsMag= 20*log(coefsMag)

setscale d, 0, 0, "dB", coefsMag

// begin of applying low -pass filter

FILTER( Re_NO , vgEPB/vgSrate_NO , vgSRB/vgSrate_NO , vgfilcoef)

FILTER( Im_NO , vgEPB/vgSrate_NO , vgSRB/vgSrate_NO , vgfilcoef)

//end of applying low -pass filter

t_1=stopMSTimer (-2)

printf "done (time = %g s, serial)\r", (t_1 -t_0)/1e6

endif

make/d/o/n=( vgSrate_NO/vgPulseFreq_NO) Signal_gating

make/d/o/n=( vgSrate_NO/vgPulseFreq_NO) Gate_gating =0

for (i=0; i<trunc(vgSrate_NO/vgPulseFreq_NO); i+=1)

Signal_gating[i]=sqrt(Re_NO[vgFrame *( vgSrate_NO/vgPulseFreq_NO)+i]^2+ Im_NO[vgFrame *(

vgSrate_NO/vgPulseFreq_NO)+i]^2)

endfor

dowindow Gating

if (V_flag == 1)

dowindow/f Gating

setaxis/a

else

display/n=Gating Signal_gating , Gate_gating

ModifyGraph/w=Gating margin(top)=35, grid=1, gridStyle =1

ModifyGraph/w=Gating rgb(Gate_gating)=(0 ,0 ,65280)

button determ_gate win=Gating , size ={70,20} , proc=APPL_GATE , title ="gate"
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setvariable frame_gate win=Gating ,size ={100 ,20} ,value=vgFrame , proc=FRAME_SELECT_GATE , title

=" frame"

button save_gate win=Gating , size ={70 ,20}, proc=SAVE_GATE , title="save"

variable/g vgConnect =0

checkbox connect_gate win=Gating , size ={70,20} , variable=vgConnect , title=" connection

algorithm", proc=CONNECT

endif

end

Function FRAME_SELECT_GATE (ctrlName ,varNum ,varStr ,varName) : SetVariableControl

String ctrlName

Variable varNum

String varStr

String varName

nvar vgFrame , vgUsfreq_NO , vgPulseFreq_NO , vgSrate_NO

wave Signal_gating , Re_NO , Im_NO

setdatafolder root:TEKTRO

variable i

for (i=0; i<trunc(vgSrate_NO/vgPulseFreq_NO); i+=1)

Signal_gating[i]=sqrt(Re_NO[vgFrame *( vgSrate_NO/vgPulseFreq_NO)+i]^2+ Im_NO[vgFrame *(

vgSrate_NO/vgPulseFreq_NO)+i]^2)

endfor

end

Function CONNECT (ctrlName ,checked) : CheckBoxControl

String ctrlName

Variable checked // 1 if selected , 0 if not

nvar vgConnect

vgConnect=checked

End

function APPL_GATE(ctrlName):buttoncontrol

string ctrlName

setdatafolder root:TEKTRO

svar sgField

wave Gate_gating , Signal_gating , Re_NO , Im_NO , Field=$sgField

variable vS_int , vE_int , d, i, vInvcoef =0

nvar vgDatalength_NO , vgUsfreq_NO , vgPulsefreq_NO , vgSrate_NO , vgConnect , vgPointofcycle_P_NO

vS_int=hcsr(A)

vE_int=hcsr(B)

if (vS_int > vE_int)

d=vS_int

vS_int=vE_int

vE_int=d

endif

Gate_gating =0

wavestats/q/r=(vS_int ,vE_int) Signal_gating

for(i=0; vS_int+i < vE_int +1; i+=1)

Gate_gating[vS_int+i]=V_max/2

endfor

make/d/o/n=( vgDatalength_NO/vgPointofcycle_P_NO) Avg_Re

make/d/o/n=( vgDatalength_NO/vgPointofcycle_P_NO) Avg_Im

make/d/o/n=( vgDatalength_NO/vgPointofcycle_P_NO) Result_ampl =0

make/d/o/n=( vgDatalength_NO/vgPointofcycle_P_NO) Result_phase =0

make/d/o/n=( vgDatalength_NO/vgPointofcycle_P_NO) Result_dBdt =0

for(i=0; i < trunc(vgDatalength_NO/vgPointofcycle_P_NO); i+=1)

wavestats/q/r=[ vgSrate_NO/vgPulseFreq_NO*i+vS_int , vgSrate_NO/vgPulseFreq_NO*i+vE_int] Re_NO

Avg_Re[i]=V_avg

wavestats/q/r=[ vgSrate_NO/vgPulseFreq_NO*i+vS_int , vgSrate_NO/vgPulseFreq_NO*i+vE_int] Im_NO

Avg_Im[i]=V_avg

wavestats/q/r=[ vgSrate_NO/vgPulseFreq_NO*i+vS_int , vgSrate_NO/vgPulseFreq_NO*i+vE_int] Field

Result_dBdt[i]= V_avg

endfor

Result_ampl=sqrt(Avg_Re[x]^2+ Avg_Im[x]^2)

Result_phase=atan2(Avg_Im[x],Avg_Re[x])

duplicate/o Result_phase , Result_phase_N_connect

if (vgConnect ==1)

variable vThreshold =3.5

for(i=1; i < trunc(vgDatalength_NO/vgPointofcycle_P_NO); i+=1)

//===== attempt connecting phase

if(( Result_phase[i-1] >0)*( Result_phase[i]<0)*(abs(Result_phase[i-1]- Result_phase[i])>

vThreshold)==1)

vInvcoef +=2*pi

elseif (( Result_phase[i-1] <0)*( Result_phase[i]>0)*(abs(Result_phase[i-1]- Result_phase[

i])>vThreshold)==1)

vInvcoef -=2*pi

endif

//===== attempt connecting phase

Result_phase_N_connect[i]= Result_phase[i]+ vInvcoef

endfor

endif
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duplicate/o Result_ampl , Result_ampl_N

duplicate/o Result_phase , Result_phase_N

wavestats/q/r=(0, 24) Result_ampl

// wavestats/q/r=(1400 , 1500) Result_ampl

Result_ampl_N=Result_ampl/V_avg

wavestats/q/r=(0, 24) Result_phase_N_connect

// wavestats/q/r=(1400 , 1500) Result_phase_N_connect

Result_phase_N =( Result_phase_N_connect -V_avg)/(pi/2)

dowindow results_gated

if (V_flag == 1)

dowindow/f results_gated

setaxis/a

else

Display/n=results_gated Result_dBdt ,Result_ampl_N ,Result_phase_N

ModifyGraph/w=results_gated rgb(Result_dBdt)=(0,0,0),rgb(Result_phase_N)=(0 ,0 ,65280)

Legend/C/N=text0/J/A=MC/w=results_gated "\\s(Result_dBdt) dBdt\r\\s(Result_ampl_N) ampl_N (in

units of ampl(B=0))\r\\s(Result_phase_N) phase_N (in units of pi/2)"

endif

end

function SAVE_GATE(ctrlName):buttoncontrol

string ctrlName

setdatafolder root:TEKTRO

wave Result_ampl_N , Result_Phase_N , Result_dBdt , Result_ampl

Save/G/W Result_ampl_N , Result_Phase_N , Result_dBdt , Result_ampl

killwindow Gating

killwindow results_gated

end

function REFERENCE(i, f, frame , poc_p , srate , phase , zero , dig)

variable i, f, frame , poc_p , srate , phase , zero , dig

return sin(2*pi*f*(frame*poc_p+i)/srate -( phase+zero)/180*pi-pi/2*dig)

end

Function FILTER(wOpt , vEPB_n ,vSRB_n , vCoef)

wave wOpt

variable vEPB_n , vSRB_n , vCoef

nvar vgSate_NO

FilterFIR/DIM=0/LO={vEPB_n ,vSRB_n , vCoef} wOpt

End

threadsafe Function FILTER_TS(wOpt , vEPB_n ,vSRB_n , vCoef)

wave wOpt

variable vEPB_n , vSRB_n , vCoef

nvar vgSate_NO

FilterFIR/DIM=0/LO={vEPB_n ,vSRB_n , vCoef} wOpt

End

threadsafe function APPL_REF(col , Srate , Pulsefreq , Datalength , Usfreq , Phase , Frame , Zero , Pointofcycle_p ,

TEKTRO_ch1 , Re_NO , Im_NO)

variable col , Srate , Pulsefreq , Datalength , Usfreq , Phase , Frame , Zero , Pointofcycle_p

wave TEKTRO_ch1 , Re_NO , Im_NO

// String pathre = "root:TEKTRO:Work_Re_NO "+ num2str(ind)

//make/d/o/n=( Pointofcycle_p) $pathre

//wave wr=$pathre

// String pathim = "root:TEKTRO:Work_Im_NO "+ num2str(ind)

//make/d/o/n=( Pointofcycle_p) $pathim

//wave wi=$pathim

variable j

for (j=0;j<Pointofcycle_p;j+=1)

Re_NO[col*Pointofcycle_p+j]= TEKTRO_ch1[col*Pointofcycle_p+j]* REFERENCE_TS(j, Usfreq , col ,

Pointofcycle_p , Srate , Phase , Zero , 0)

Im_NO[col*Pointofcycle_p+j]= TEKTRO_ch1[col*Pointofcycle_p+j]* REFERENCE_TS(j, Usfreq , col ,

Pointofcycle_p , Srate , Phase , Zero , 1)

endfor

end

threadsafe function APPL_REFv6(col , Srate , Pulsefreq , Datalength , Usfreq , Phase , Frame , Zero , Pointofcycle_p ,

TEKTRO_ch1 , Re_NO , Im_NO , EPB , SRB , coef , wr, wi)

variable col , Srate , Pulsefreq , Datalength , Usfreq , Phase , Frame , Zero , Pointofcycle_p , EPB , SRB ,

coef

wave TEKTRO_ch1 , Re_NO , Im_NO , wr, wi

variable j

for (j=0;j<Pointofcycle_p;j+=1)

wr[j]= TEKTRO_ch1[col*Pointofcycle_p+j]* REFERENCE_TS(j, Usfreq , col , Pointofcycle_p , Srate ,

Phase , Zero , 0)

wi[j]= TEKTRO_ch1[col*Pointofcycle_p+j]* REFERENCE_TS(j, Usfreq , col , Pointofcycle_p , Srate ,

Phase , Zero , 1)

endfor

FILTER_TS(wr, EPB ,SRB , Coef)

FILTER_TS(wi, EPB ,SRB , Coef)

for (j=0;j<Pointofcycle_p;j+=1)

Re_NO[col*Pointofcycle_p+j]=wr[j]
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Im_NO[col*Pointofcycle_p+j]=wi[j]

endfor

end

threadsafe function REFERENCE_TS(i, f, frame , poc_p , srate , phase , zero , dig)

variable i, f, frame , poc_p , srate , phase , zero , dig

return sin(2*pi*f*(frame*poc_p+i)/srate -( phase+zero)/180*pi-pi/2*dig)

end
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