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Abstract

According to the current measurement of the standard model parameters, the Higgs potential
may develop a true minimum deeper than the electroweak vacuum in a large field value
region, indicating that the electroweak vacuum is metastable. In this thesis, we study
cosmological implications of the electroweak vacuum metastability in the context of the
inflationary universe. We pay special attention to the Higgs-inflaton preheating dynamics
after inflation, and find that the electroweak vacuum can be destabilized due to resonant
Higgs particle production. We study this process in detail both analytically and numerically,
and specify the parameter region where the electroweak vacuum destabilization happens.



Contents

1 Introduction
1.1 Overview . . . ... .. e
1.2 Organization of this dissertation . . . ... ... .. .. .......... ...

2 Electroweak vacuum metastability

2.1 Lightning review on effective potential . . . . . .. ... .. ... .. ......
211 Definition . . ... ... L
212 Example . . . ... .
213 RGimprovement . . . . ... ... ... ...
2.2 Electroweak vacuum metastability . . . ... ... ... ... .. .. ......

3 Metastability during inflation

3.1 Fokker-Planckequation . ... ... ........................
3.2 Higgs dynamics during inflation . . . .. ... ... ... ... .. ... ..
321 Preliminary . ... ... .. ... ... ..
322 Numericalanalysis . . . ... ... ... ... ... .. ... .. ...
3.3 Stabilization by effectivemass . . . . . ... ... .o L o oo

4 Metastability after high-scale inflation

41 Overview . . . . . . .. e

411 Setup .. ... ... e

412 Mainidea . ... ... .. ...
42 Higgs-inflaton quarticcoupling . . . . ... ... ... .. ... ..o ...
43 Higgs-gravity non-minimal coupling . . . . .. ... ... ... .........
4.4 Both quartic and non-minimal couplings . . . ... ... .. .. ........
45 Higgs-inflaton trilinear coupling . . . . .. .. ..................
4.6 Higgs-radiationcoupling. . . . .. ... ... ... . ... . ... . ..

4.6.1 Instantpreheating . .. ... ... ... ... ... .. L.

46.2 Annihilation . . . ... ... o L oL oo

5 Metastability after low-scale inflation

51 Setup . . . ...
5.2 Higgs dynamics during inflation . . ... ... .. ... ... .. .. ......
5.3 Particle production after inflation . . . . . .. ... ... .. 000 0L



5.3.1 Inflaton dynamics during tachyonic oscillation . . . . . . ... ... ..
5.3.2 Higgs dynamics during preheating . . . . ... ... ..........
5.4 Numerical simulation and constraints on couplings . . . .. ... ... ....

Summary and future directions

Notations and conventions

AT Unit . .. e e e e
A2 MetriC. . . . . o e e e e e
A3 Cliffordalgebra . .. ... ... ... . ... .. L o
A4 Couplingsandfields . ... ... .. ... ... ... . . ... .. . ...

More on EW vacuum metastability

B.1 One-loop contributions . . . . . ... ... ... ... . o L
B.11 Scalar. . ... ... ... . ... ..
B.1.2 Fermion . ...... ... ... .. ... ..
B.1.3 Gauge/Goldstonebosons . . .. ... ........... .. ......

B.2 RG evolutions of SM parameters . . . .. .. ... ... .............
B.2.1 Anomalousdimensions . .. ... ... .......... ... ...
B.2.2 Higgsquarticcoupling . . . ... ........ .. .. .. .. ......
B.23 TopYukawacoupling ... ........... ... ... . ... ...
B.24 Gaugecouplings . . ... ... ... ... ... o
B.2.5 Gauge/scheme (in)dependence . . . . ... .. ... ... ..... ...

Review on inflation

C.1 Inflation . . . . . . . . . e e
C.1.1 Mainidea . . . . . . . . . . . e
C.1.2 Slow-rollinflation . . . .. .. . . . . . . .. .. .

C.2 Perturbations . . . . . . . . . . e
C.21 Curvature perturbation . . ... ... ... ... ... ... . ...
C.22 Tensor perturbation . ... ......... ... ... . ... . ... .
C.2.3 Comparison with observation. . . . ... ... . ... . ... ......

C.3 Spectator field dynamics . . . ... ... ... L Lo Lo
C3.1 Powerspectrum ... .......... ... .. .. ... ...
C.3.2 Langevin and Fokker-Planck equations . . . .. ... ... .......

Review on preheating
D.1 Inflaton dynamics after inflation . . ... ... ... ... ... ... ......
D.2 Formalism . . . . . . . . . . e e
D.3 Broadresonance . . . . . . . . ... e e e
D.4 Tachyonicresonance . . . .. ... ... .. .. ... ... ... ...
D.5 Resonance with allcouplings . . .. ... ... .. .. ..............
D.6 Floquettheory . . . .. ... .. ... ... ...
D.6.1 Floquetexponent . . . . .. ... ... ... ... . ... .. ...,
D.6.2 Boundary of stability/instability regions . . . . ... ... ... ... ..

2



D.7 Effects of cosmicexpansion . . ... ... ... . ... . ... . ... 120

Classical lattice simulation 124
E1l Wignerfunction . . . . ... ... .. ... . ... 124
E.1.1 Definition and characteristics . . . . . . . . .. .. ... ... ...... 124
E.1.2 Example: harmonic oscillator . . . . ... ... ..... ... .. .... 127
E.1.3 Timeevolution . .. .. . .. . . . . . . . . . . e 128
E.2 [Initial condition for classical lattice simulation . .. ... .. ... ... .... 130
E.2.1 Wave functionofavacuum . . . . .. . .. ... . ... ... .. 130
E.2.2 Semiclassical behavior . . . . . . .. .. ... ... ... .. .. ..., . 132
E.3 Practical implementation . . . . ... ...... ... ... .. .. .. ...... 133
E.3.1 Spatial discretization . . . . ... ... ... ... ... .. ... 133
E.3.2 Time discretization . . . . . . . . . . . . . ... 134
E.3.3 Initial condition and 3d-2d conversion . . . . . . .. ... ... ... .. 135
E.3.4 Massrenormalization . .. .. ... ... ... ... ... . ... .... 135



List of Figures

21

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49
4.10
411

51
52

B.1
B.2
B.3
B.4

C1

D.1
D.2
D.3
D4
D.5

RG evolution of the Higgs quartic self coupling withinSM . . . . ... .. .. 15
Constraints on the inflationary scale from the EW vacuum stability . . .. .. 22
Probability distribution function of the Higgs during inflation . . . . ... .. 23
Time evolution of the inflaton and the Higgs with A, . . . . . . ... ... .. 34
Higgs comoving number density with Ay, . .. . ... .00 oL 35
The time evolution of the inflaton and the Higgs with &,. . . . ... ... ... 40
Higgs comoving number density with &,. . . .. ... .............. 41
Stability/instability chart of the Mathieu equation. . . . . ... ... ... ... 43
EW vacuum stability region in the g-A plane and the &,~A; plane. . . . . . . 44
Floquet exponent along the trajectory A/g=2and A/q=3. . . . .. ... ... 44
EW vacuum stability region with Aygand &, . . . ... .. .o 45
Stability/instability chart of the Whittaker-Hill equation. . . . ... ... ... 47
EW vacuum stability region with oy, . . . . . o000 47
Time evolution of the inflaton, the Higgs and a light scalar field x. . . . . . . . 52
Time evolution of the inflaton and the Higgs for v, = 10°Mp;. . . . . . . . .. 66
Time evolution of the inflaton and the Higgs for v, = 10°Mp;. . . . . . . . .. 67
RG evolution of SM parameters . . . . ... ... ... ... ... 0 L. 78
Diagrams that contribute to the Higgs anomalous dimension. . . . ... ... 79
Diagrams that contribute to the top quark anomalous dimension. . . . . . .. 81
Diagrams that contribute to the top Yukawa vertex correction. . . . ... ... 84
ns-r plane for the hill-top inflationmodel. . . . . .. ... ... ... .. .... 97
Stability/instability chart of the Mathieu equation (the same as Fig. 4.5).. . . . 113
Stability/instability chart of the Whittaker-Hill equation (the same as Fig. 4.9). 116
Time evolution of the number density with Ajg.. . . . ... ... ..o . 120
Effective Floquet exponent pregr. . . . . . . . . ... L oo oo 121
Time evolution of the number density with &,. . . .. .. ... ... ... ... 122



List of Tables

4.1
4.2

51
E.1

Parameters of the classical lattice simulation with Aje. . . . . . .. 000 L. 32
Parameters of the classical lattice simulationwith &,. . . ... ... ... ... 38
Parameters of the classical lattice simulation (hill-top). . . . . . ... ... ... 63
Coefficients for the discretized version of the Laplacian. . . . . . .. ... ... 134



Chapter 1

Introduction

1.1 Overview

After the Higgs mass measurement by the large hadron collider (LHC), all the parameters
in the standard model (SM) are now fixed. One of the most important consequences is
probably the so-called electroweak (EW) vacuum metastability. Assuming that the SM is
valid up to high energy scale, we can compute the high energy behavior of the Higgs
quartic self coupling by using the renormalization group (RG) equation. With the current
center values of the Higgs and top quark masses, it actually turns to negative at around the
renormalization scale of 10 GeV, which we call an instability scale. It indicates that the SM
Higgs potential develops a true minimum deeper than the EW vacuum at a large field value
region. It does not necessarily contradict with the present universe since the lifetime of the
EW vacuum is longer than the age of the universe. This situation is called the EW vacuum
metastability.

If the EW vacuum is indeed metastable, we should carefully follow the dynamics of the
Higgs field during the whole cosmological history. The universe, especially in its early state,
is controlled by high energy phenomena, and hence it is possible that the Higgs field rolls
down to the true minimum at some cosmological epoch. Once it happens, it is expected
to be difficult to realize the present universe where the Higgs field lies in the EW vacuum.
Thermal effects are not likely to cure this situation since particles that couple to the Higgs
tield must be quite heavy due to the large Higgs field value once the Higgs rolls down to
the true minimum. Thus the EW vacuum metastability has non-trivial implications on the
cosmology, especially in the early universe, and this is the main topic of this thesis.

In this dissertation, we study implications of the EW vacuum metastability in the context
of the inflationary cosmology. In particular we pay attention to the Higgs-inflaton dynamics
after inflation. Aninflaton typically oscillates at around its potential minimum after inflation,
and it causes resonant Higgs particle production if there are sizable couplings between the
inflaton/gravity sector and the Higgs sector. Provided that the inflaton mass scale is higher
than the instability scale, the produced Higgs particles induce a tachyonic mass to the Higgs
itself due to finite density effect, and push the Higgs to roll down to the true minimum.
Thus we can obtain bounds on the strength of the interaction between the inflaton/gravity
sector and the Higgs sector by requiring that the EW vacuum survives such a “preheating”
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epoch. More specifically, we assume that there exists the following interaction between the
inflaton/gravity sector and the Higgs sector:

Line = —Ap®* [HP — onp IHI? — &R |HP, (1.1.1)

where H is the SM Higgs doublet, ¢ is the inflaton, R is the Ricci scalar, and A4, & and oy, are
coupling constants. These couplings are expected to be present in general, and are also useful
to stabilize the Higgs during inflation for high-scale inflation models. Thus our primary goal
of this dissertation is to determine in what parameter region the EW vacuum destabilization
occurs during the preheating epoch with the above interaction for both high-scale/low-scale
inflation models.

1.2 Organization of this dissertation

Chaps. 2 and 3 are the review part of this dissertation. In Chap. 2, we review the global
structure of the Higgs potential. We first briefly explain the idea of the effective potential and
the renormalization group (RG) improvement in Sec. 2.1. Then we move on to the SM Higgs
potential in Sec. 2.2. There we show the RG evolution of the Higgs quartic self coupling.
We shall see that it turns to negative at high energy scale, indicating that the EW vacuum is
metastable. This chapter is the basis of the subsequent chapters.

In Chap. 3, we review the Higgs dynamics during inflation. Light scalar fields including
the Higgs experience stochastic dynamics during inflation whose noise term is controlled by
the Hubble parameter. In Sec. 3.1 we introduce the Fokker-Planck equation that describes this
stochastic dynamics. In Sec. 3.2 we study the Higgs dynamics during inflation. In particular,
if the inflationary scale is high enough, the noise term may push the Higgs to roll down to
the true minimum during inflation. Thus we obtain bounds on the Hubble parameter from
the EW vacuum stability during inflation. We slightly extend previous studies by including
the time-dependence of the Hubble parameter there. In Sec. 3.3, we discuss one possible way
to avoid the constraint. If the Higgs acquires an effective mass during inflation from, e.g. the
interaction (1.1.1), it stabilizes the Higgs at the origin of its potential during inflation. Hence
we can indeed avoid the constraint, and this fact motivates us to study the interaction (1.1.1)
in detail. It typically induces, however, resonant Higgs particle production after inflation,
which may cause the EW vacuum destabilization during the preheating epoch. This is the
main topic of this thesis.

Chaps. 4 and 5 are the main parts of this dissertation, based on the author’s original
works [1-3] in collaboration with Mindaugas Karc¢iauskas, Oleg Lebedev, Kyohei Mukaida,
Kazunori Nakayama and Marco Zatta. We study the Higgs-inflaton dynamics after inflation
for a high-scale inflation model in Chap. 4. We first give an overview of this system in Sec. 4.1.
We then study effects of the Higgs-inflaton quartic coupling Ay, or the Higgs-curvature non-
minimal coupling ¢, after inflation, and derive bounds on A, or &, both analytically and
numerically in Secs. 4.2 and 4.3, respectively. In Sec. 4.4, we study the case with both A,
and &, being present. We shall find that the resonance is actually suppressed for some finite
parameter region, and relatively large values of A,y and &, are allowed in such a case. In
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Sec. 4.5, we study the Higgs-inflaton trilinear coupling 0,4. We derive bound on 0,4 almost
independently of A4 and &;. In Sec. 4.6, we study effects of the couplings between the Higgs
and the other SM particles. We will find that they do not significantly affect the preheating
dynamics of the EW vacuum.

In Chap. 5, we study the Higgs-inflaton dynamics after inflation for a low-scale inflation
model. We take the hill-top inflation model as a representative example of low-scale inflation
models in this chapter. We first explain the setup in Sec. 5.1. In Sec. 5.2, we briefly explain the
Higgs dynamics during inflation. For low-scale inflation models with the Hubble parameters
being sufficiently small, the Higgs dynamics during inflation is rather trivial. Still, we have
some constraints on the couplings in order not to induce a tachyonic mass to the Higgs
during inflation. In Sec. 5.3, we analytically discuss particle production of the Higgs and the
inflaton after inflation. For low-scale inflation models such as the hill-top inflation model,
not only the Higgs but also the inflaton particles are resonantly produced. Indeed, the latter
determines the end of the preheating. We roughly estimate bounds on the couplings from
the EW vacuum stability by taking these effects into account there. In Sec. 5.4, we perform
numerical simulation to study the EW vacuum destabilization during the preheating epoch
more precisely, and confirm our analytical estimation.

In Chap. 6, we summarize this dissertation with some possible future directions.

The appendices are organized as follows. In App. A, we summarize the notations and
conventions used in this dissertation. App. B is devoted to supplementary materials on the
EW vacuum metastability. In particular, we derive one-loop RG equations of the relevant
SM parameters there. In App. C, we review the basis of inflation. We shall derive the
power spectrum of the scalar and tensor perturbations that are the primary observables used
to constrain the inflationary models. We also discuss derivation of the Langevin and the
Fokker-Planck equations that are used extensively in Chap. 3. In App. D, we review resonant
particle production after inflation, or the preheating epoch. The idea of the broad/tachyonic
resonance is extensively discussed there. Finally in App. E, we review some basics about the
classical lattice simulation. We also give some details on the practical implementation of our
numerical simulations there.






Chapter 2

Electroweak vacuum metastability

In this chapter we review the global structure of the SM Higgs potential. We pay special
attention to the large field value region of the Higgs potential. Indeed, the effective Higgs
potential turns to negative at a large field value region, indicating that the EW vacuum is not
absolutely stable. It is called the EW vacuum metastability, and is the fundamental subject
of this dissertation.

2.1 Lightning review on effective potential

In order to understand the EW vacuum metastability, the idea of the effective potential and
the renormalization group (RG) improvement plays the key role, and hence we briefly review
them at first. We refer Coleman-Weinberg’s original paper [4] for more details.

2.1.1 Definition

In this section we review the theoretical foundations on the effective potential. For simplicity,
we consider only a real scalar field ¢ in this section. We define Z[]] as

Z[]]=fi)¢exp[ifd4x(£+f¢>

where the boundary states are taken as the in/out vacua, £ is the Lagrangian for ¢, and |
is a c-number external source term. We define the generating functional for the connected
Green’s function W[]] as

, (2.1.1)

W = —ilog Z (2.1.2)
Note that
%
0 (o). (2.1.3)
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More generally we define a background field value ¢ as

1
P(x) = 50 (2.1.4)

that is, ¢ is the expectation value of ¢ in the presence of the source term J. Now we define

the effective action I'[¢] as the Legendre transformation of W[J] as

1161 Wil - [ a5, (2.15)

In this formula, | should be understood as the solution of Eq. (2.1.4) (or Eq. (2.1.6) below) for
a given @, as it is usual for the Legendre transformation. Then we obtain

or
@ =-]. (2.1.6)
In particular, if we find a configuration ¢ that satisfies
g =0, (2.1.7)
6¢ (i):‘bsol

we do not need any external force | to keep the configuration of ¢ as ¢s.. In other words,
¢ = s is the configuration realized by the Lagrangian £ with quantum effects taken into
account. In this sense, Eq. (2.1.7) is understood as the quantum version of the equation of
motion of the scalar field ¢. For a generic field configuration ¢ that does not satisfy Eq. (2.1.7),
we need an external force | determined by Eq. (2.1.6) to keep it asitis. Indeed, as we shall see
below, the source term | is used to cancel tad-pole terms in the effective potential in practical
computations.
Now we perform the gradient expansion as

I[}] = f dy l_veff@)—@(aq‘b)ﬂ...l, (2.1.8)

where the leading term V. is called the effective potential. Then a constant ¢ is the expec-
tation value of ¢ at a vacuum if it satisfies

Wit _

9P
Thus the effective potential characterizes locations of vacua for a given theory including
quantum effects. It is this effective potential that is the main target in this chapter.

0. (2.1.9)

2.1.2 Example

In this subsection we consider the following action
1 2 A
L=—5(90) -V@), V@) =79, (2.1.10)
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as an example, and demonstrate how to obtain the effective potential by means of perturba-
tive expansion. The effective potential is defined as

exp (—i f d4xveff(q3)): f D exp [i f d'x(L+ ](q;—(z)))], (2.1.11)

where ¢ is now constant. We define xy = ¢ — ¢, and expand the Lagrangian up to quadratic
order in y. It is rewritten as

exp (—i fd4xVeff((]5)) = fZ))( exp li fd‘*x (—V(q_b) + .[ZX) (2.1.12)
where the quadratic Lagrangian for y is given by
L= =5 @07 = 3@ + (] = ) + 000, (2113)
with the mass term of y being given by
m(P) = 3N, (2.1.14)

Here the source term ] is fixed such that the expectation value of ¢ is equal to ¢, and thus
it just erases the term linear in x up to the quadratic level, which means | = 1,¢>. Now the
integration over y is trivial since it is Gaussian, and we obtain

1 9)2 d*\ 25\] -,
Verr(9) = [/\ t o2 (ln (W) - ?)l ¢, (2.1.15)
where the counter terms are determined by the conditions
2 4
4 ‘_/gff =0, and d ‘_/fo =61, (2.1.16)
dp? |5y ddp* |5 u

with M being some field value. For more details on the computation, see App. B.1. Note
that the correction comes with the factor A In(¢?/M?), not A, and hence it is applicable only
at around ¢ ~ M. In order to make it applicable for larger field value region, we have to
perform the RG improvement of the effective potential. After the RG improvement, the
effective potential is valid as long as the (running) coupling is small enough.

2.1.3 RG improvement

Now we discuss the RG improvement procedure of the effective potential. As we saw in the
previous subsection, perturbations come with the factor A In(¢?/M?), and hence the effective
potential in the previous section is valid only when this factor is small, not A. In order to
remedy this point, we consider the following equation:

N 9 p)
0=M i [M8M - Zﬁlagi ;Va—mn%] Vett, (2.1.17)
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where we have defined the beta functions and the anomalous dimensions as

_ B d = A 2.1.18
Pi= dinnmt ™ V= (2.1.18)

It means that the effective potential should not depend on the renormalization scale M,
or different choices of M can be compensated by corresponding changes/rescalings of the
parameters/fields. This equation is exact, and once we know the shape of V¢ at some M, then
we can know the shape of V¢ for any M by using it. Of course we usually use perturbative
expansions to obtain ; and y,, but they are expansions with respect to couplings, not to
couplings times In(¢p?/M?). Hence it is valid for any ¢ as long as the couplings remain small
enough, which is the virtue of the RG improvement procedure. In order to illustrate this
procedure more concretely, we consider again the ¢* theory as an example in the following.

From now we consider the ¢* theory as an example. Just from the dimensional analysis,
the effective potential must be parametrized by

- Y(t,A) -
Vert(P) = %qﬁ‘*, (2.1.19)
where t is defined as
_ (P
t= ln(M ) (2.1.20)

with M being some renormalization scale. Here A is the renormalized coupling defined by

the renormalization condition as

d*Vess
do*

If we instead impose a renormalization condition at ¢ = M’ # M, then we should use

a different numerical value A’ to make the theory intact. In this sense, the renormalized
coupling depends on M. It is governed by

6A =

(2.1.21)

$=M

dA
L = B, (21.22)

It just tells us how to reparameterize A. Then the prefactor Y satisfies

Jd - .. d
where we have defined
. P N 4
p(A) = T+y and y(A) = T4y (2.1.24)
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Note that f and y depend on t only through A, and hence commute with the partial derivative
d/dt. In general, the solution to this equation is given by

Y(t, L) = f (At L) exp [—4f at'y (A, /\))l , (2.1.25)
0
where A satisfies
oA - -
= =B, (2.1.26)

The boundary condition of A at t = 0 is given as a function of A by the renormalization
condition. In order to show Eq. (2.1.25), it is useful to note that

OREPY
_d/\ =t. (2.1.27)
1 BAV)
By taking derivative with respect to A, we obtain
A B(A
oA = & (2.1.28)
IA - BA)

Once we have this relation, it is trivial to show that Eq. (2.1.25) is indeed a solution by
substituting it directly to Eq. (2.1.23). The functional form of f is fixed by the renormalization
condition at t = 0, and hence we finally obtain the effective potential as
o AA) L
Vet (P) = (4 )gb4 exp [—4f dat'y (A(t ,/'\))]. (2.1.29)
0

From this expression, it is clear that the beta function plays a crucial role to determine the
global structure of the effective potential, and hence the vacuum structure of the theory. For
this reason, we discuss in detail the RG evolution of the Higgs quartic self coupling in the
next section.

So far we have not used any information of the one-loop effective potential we obtained
in the previous subsection, but it is indeed useful to determine the beta function. In order to
see this point, we first expand Eq. (2.1.29) by t assuming that ¢ is small:

p(A) —4A7(A) In ( ¢? )] 7

o1
Veir(@) = 7 A + 5 VB o?, (2.1.30)

where we have concentrated only on the coefficient of . On the other hand, Eq. (2.1.15)
should also be valid as long as t is small, and hence we obtain

9
B(A) = @AZ +4Ay, (2.1.31)
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102 10° 10° 10° 10 10 10™ 10%° 10'®
M [GeV]

Figure 2.1: The RG evolution of the Higgs quartic self coupling at the one-loop level within the SM.
We take the Higgs/top quark masses as m;, = 125GeV and m; = 173.1 GeV, respectively. It turns to
negative at around M ~ 10° GeV at the one-loop level, while it occurs at around M ~ 10'° GeV once
we include higher order corrections [5].

by matching the coefficient of t. Note that 8 ~  and 7 ~ y at the one-loop level. Since y = 0
in the ¢* theory as we see in App. B.2.1, we get
9
A) = —A% 2.1.32
B = 5 (2132)
Thus, the loop expansion of the effective potential is useful to determine the RG running
of the parameters in the scalar potential. We shall use the same method to compute the
one-loop beta function of the Higgs quartic self coupling in the SM in App. B.2.2. The
effective potential with the one-loop beta function (2.1.32) being used to find A is called the
RG improved one-loop effective potential.

2.2 Electroweak vacuum metastability

As we discussed in the previous section, RG evolutions of couplings are crucial in under-
standing the vacuum structure of a system. In particular, the RG running of the quartic
coupling is most important for the simplest ¢* theory. The situation is similar in the SM
model, where the Higgs potential is almost purely quartic for a field value much larger than
the EW scale. For this reason, in Fig. 2.1, we show the RG evolution of the Higgs quartic
coupling A, computed within the vanilla SM. It includes the one-loop contributions, and the
input Higgs/top quark masses are m;, = 125GeV and m; = 173.1 GeV, respectively. For the
derivation of the one-loop beta functions, see App. B. For higher-loop contributions, we refer
the readers to Ref. [5]. From Fig. 2.1, we can see that the Higgs quartic coupling A;, turns to
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negative at high energy scale. Itindicates that the Higgs effective potential develops a deeper
minimum in a larger field value region. It does not contradict with the present universe, since
the lifetime of the EW vacuum is likely to be longer than the age of the universe, as calculated
in detail in Refs. [6-8]. Thus we call this situation as the EW vacuum metastability [5,6,9-19],
and we assume that it is indeed the case throughout this dissertation. For the one-loop case,
the Higgs quartic self coupling A, turns to negative at around M =~ 10° GeV, but it happens
at M ~ 10'° GeV after including higher loop effects [5], where M is the renormalization scale.
Hence we denote the latter scale as Mint, and use it as a rough estimation of the instability
scale.”

Aswe said above, the EW vacuum decay rate is small enough for the current center values
of the SM parameters. However, in order to check whether the EW vacuum metastability
is truly consistent with the present universe, it is mandatory to study not only the vacuum
tunneling rate, but also the whole cosmological evolution of the Higgs field. The universe,
in particular in its early stage such as inflation, is controlled by high energy phenomena.
Hence it may be possible that the Higgs tends to roll down to the deeper region during some
cosmological epoch, resulting in difficulty to realize the present universe. Thus the EW
vacuum metastability has deep implications on the dynamics in the early universe, which
is the main subject of this dissertation. In particular, we study in detail the Higgs dynamics
during/after inflation in the presence of the EW vacuum metastability in the following
chapters.

"1 The instability scale here is an energy scale, not a field value of the Higgs.
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Chapter 3

Metastability during inflation

In this chapter, we review the dynamics of the Higgs field during inflation, following mainly
the discussion in Ref. [20]. In particular, we derive constraints on the Hubble parameter
during inflation by requiring that the EW vacuum is stable during inflation.

3.1 Fokker-Planck equation

In this section we briefly explain the Langevin and the Fokker-Planck equations that describe
the dynamics of the super-horizon mode of a spectator field [21,22]. Homogeneous modes
of a light"! scalar field x obey the following Langevin equation during inflation:

19V

X= _ﬁa + f(trf)/ (311)

where H is the Hubble parameter and V is the scalar potential of . Here x should be
understood as a homogeneous mode where the modes with the momentum k/a < eH are

summed over, and € < 1 is a numerical factor with eH being constant during inflation. The
noise term f satisfies

3 -
(ft, ) f(t, %)) = H’ sinz

42 z

S(t-t), z:eaH|9?—f'

) (3.1.2)

where (...) denotes the average over possible noise configurations. It originates from the
quantum fluctuations during inflation. In particular, within the same Hubble patch it satisfies

’ H3 ’
(fOfE)) = Ré (t-t). (3.1.3)
It may be instructive to rewrite the Langevin equation in terms of the number of e-folds N as

dx 19V H
=g * el (31.4)

"1 Here “light” means that a mass is much smaller than the Hubble parameter during inflation.
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where  now satisfies
(C(N)C(N")) = (N = N"). (3.1.5)

Thus the light field x experiences the Brownian motion with the step size of H/2m for each
one e-fold. For the derivation of the Langevin equation, see App. C.3.2

For our purpose, it is more convenient to rewrite the Langevin equation to the time
evolution equation for the probability density function of y. We define P(x, N) as

P(x,N) = (6 (x(N) = X)) - (3.1.6)

Note that
(F(N))) = f 4% P(%, N) E(D), (3.17)

and hence P should be indeed understood as the probability density function of . Then the
Langevin equation is written in terms of P as

2
oP _d |av P H 8P]’ (3.18)

N oy |ax3m T Eoy

where we have dropped the tildes for notational ease. It is the Fokker-Planck equation that
describes the time evolution of the probability distribution function of a light scalar field
during inflaiton. For more details on the derivation, see again App. C.3.2. In the next section
we extensively use it to study the stochastic dynamics of the Higgs during inflation.

3.2 Higgs dynamics during inflation

As we reviewed in Chap. 2, the EW vacuum may be metastable according to the current
measurement of the SM parameters. In such a case the EW vacuum can be destabilized
during inflation, and hence we can obtain an upper bound on the inflationary energy scale
by requiring that the EW vacuum be stable during inflation [20,23-32]. In the following, we
tirst describe qualitative properties of this system, and then perform numerical computation
to derive the upper bound. We follow the discussion in Ref. [20] in this section.

3.2.1 Preliminary

Without any Hubble induced mass terms, the Higgs is light during inflation, and hence its
superhorizon mode grows stochastically due to the quantum fluctuations. The size of the
noise term is controlled by the Hubble parameter (see Eq. (3.1.3)). If the noise term is much
larger than the instability scale of the Higgs potential (~ 10'° GeV), it easily kicks the Higgs
to roll down to the deeper region of the potential. Thus, in order to avoid such a catastrophe,
we obtain an upper bound on the Hubble parameter during inflation. Below we quantify
this idea.
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The stochastic dynamics of the Higgs is well described by the Fokker-Planck equation
introduced in the previous section:
oP  J |9V P  H?IP
oN = on l%ﬁ * @%]' (3-2.1)
where h is the radial component of the Higgs. In the following analysis we approximate the
Higgs potential as that around M? _, or

inst”

inst

2 4 12\ J
V ~ —bolog(H th )h—
where by = 0.12/1672."2 Here we take the renormalization scale as M? = H? + h? following
Ref. [28]. This is because the dispersion relation of the SM particles is modified in the de-Sitter
space, and its effect appears as an additional H? factor in the logarithms when computing the
one-loop effective potential. For more details, see e.g. Refs. [28,33] and references therein.”
In this system, there are two important quantities in addition to Mj,s. One is the field value
hq above which the classical drift term overcomes the quantum noise term. It is defined as

OV | P

oh C2n

It is derived as follows. The displacement of Higgs due to the potential within one e-folding
is estimated with the slow-roll approximation as h/H ~ —(dV/dh)/3H?, while that due to the

quantum noise is H/2m. Hence we obtain the above expression for /1y by equating them. The
other is the field value kg, at which the slow-roll condition is violated:

1 JV
“3m o o)

he) (3.2.3)

hSI‘V =

(3.2.4)

They satisty
Minst < hcl < hsrv; (325)

as long as Minst < H and |A,] < 1. For h < hq, the Higgs just experiences the Brownian
motion without feeling the potential. Once the Higgs grows due to the quantum noise term
so that hy < h < hgy, the potential dominates over the quantum noise, and hence the Higgs
rolls down along the potential. Still, it takes some e-foldings for the Higgs to reach the region
hsv < h since the slow-roll condition is satisfied. After the Higgs reaches the region hg, < h,
it rapidly rolls down to the deeper region. Thus, we may require”

P(|h| > hew, N) N <1, where P(Jh| > hg, N) = 2 f dh P(h,N), (3.2.6)
hsrv

»2 Here we are dealing with the super-horizon mode, and it may justify to use the effective potential for the
Higgs equation of motion in the sense of the gradient expansion.

»3 We must include a non-minimal coupling between the Higgs and the Ricci scalar to renormalize a log-
arithmic divergence as well. Its size at the inflationary scale depends on the boundary condition. Here we
simply ignore it assuming that it is small. Its effect is discussed separately in Sec. 3.3 and Chap. 4.

"4 See Ref. [30] for the gauge invariance of this requirement.
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during the whole inflationary history for the EW vacuum stability during inflation.”® In
other words, we require that there is no single Hubble patch where the Higgs rolls down to
the true minimum during inflation in our past light-cone. This is because a Hubble patch in
which the Higgs rolls down to the true minimum is expected to expand with the speed of
light after inflation, and hence even single such patch would eventually swallow our entire
universe. For more details on the dynamics of such a patch, see Refs. [20,30]. Thus we should
multiply *V, or the number of the independent Hubble patches in our past light-cone, since
h in the Fokker-Planck equation describes the Higgs field value averaged over one Hubble
patch. Note that thermal potential after inflation is unlikely to change the situation much.
This is because the Higgs rapidly rolls down to the large field value region once it exceeds
hsv, and hence particles that couple to the Higgs must be decoupled from thermal bath due
to large masses coming from the large Higgs field value.

3.2.2 Numerical analysis

Now we numerically solve the Fokker-Planck equation to obtain an upper bound on the
Hubble parameter during inflation. In order to check the requirement (3.2.6), we should
treat a tiny value of P(|h| > hg, N) precisely due to the large factor eN. For this reason, we
change the variable as

(3.2.7)

X(h,N) = log (P(h' N)) ,

P(0, 0)

and solve the Fokker-Planck equation for X(, N) in our numerical code following Ref. [20].
We assume that the Higgs is initially set at the origin of its potential to obtain a conservative
bound. More explicitly, we take the initial condition as Gaussian:

2 ’ Norm
P = 21 = exp (—%), where o2 = 21|/\ |12_I_71 tanh( 122}’), (3.2.8)
V2mo V2 |Ay

with |A;] = 0.01. The precise value of ¢ is unimportant as long as 0 < H? since it quickly
spread with its size determined by H. The boundary condition is taken as

oP o°P
h = o (3.2.9)
atthe end-point, but the precise form is again unimportant. We have used the Crank-Nicolson
(implicit) method as a differential equation solver.

The numerical results are shown in Fig. 3.1. In the left panel we fix the Hubble parameter
at the beginning of the inflation H;,;, and plot the maximal number of e-foldings with which
the condition (3.2.6) is not violated. In the right panel we instead fix the Hubble parameter at
the end of the inflation Henq. We have included the time-dependence of the Hubble parameter

Y5 In a strict sense, we cannot rely on the Fokker-Planck equation for hs., < h since it uses the slow-roll
approximation. However, the Higgs never comes back to /i < hg,, once it exceed hgy even if we (wrongly) use
the Fokker-Planck equation. Thus we safely ignore this subtlety to obtain P(|l| > k).
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Figure 3.1: The constraints on the inflationary scale from the EW vacuum stability. The initial Hubble
parameter Hiy; is fixed in the left panel, while the final Hubble parameter Hng is fixed in the right
panel. Here we have defined Amax = Minst/ +e.

in the case where the inflaton potential is monomial: V(¢) o« ¢” where ¢ is the inflaton. In
this case the Hubble parameter is estimated by using the slow-roll approximation as

4 pl4
H(N) = Hena (1 + ; (N, — N)) , (3.2.10)

where N, is the e-folding at which M3V’2/2V? = 1 with the prime denoting the derivative
with respect to ¢. In Fig. 3.1, the gray regions are excluded since inflation must last at least
50-60 e-folds depending on the reheating temperature. The plot of the pure de-Sitter case
(the red one) agrees well with Ref. [20]. The plots with finite p are also easy to understand
qualitatively. If we fix Hi,;, H is smaller in later time for larger p, and hence the constraint
must be weaker. If we instead fix Heng, H is larger in earlier time for larger p, and hence the
constraint must be stronger. Anyway, the instability scale is of order 10'° GeV, and hence the
upper bound is roughly given by

H < 10° GeV. (3.2.11)

Thus it is a tight constraint on high-scale inflation models. For instance, the simple chaotic
and the R?-type inflation models are excluded since the Hubble parameters of these models
are of order 10'2-10'* GeV fixed by the cosmic microwave background (CMB) observations.

It might also be instructive to see the time evolution of P(h, N) shown in Fig. 3.2. The prob-
ability P(|h| > hs, N) always increases with time, so does the right-hand-side of Eq. (3.2.6).
Thus although we require Eq. (3.2.6) during the whole history of inflation, it is actually
equivalent to require Eq. (3.2.6) just at the end of inflation. As another thing, we can see that
P(lh| > hgv, N) is indeed quite tiny. Nevertheless it has a dramatic consequence due to the
large factor ¢®™ in Eq. (3.2.6).
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Figure 3.2: Time evolution of the probability distribution function P(h, N) for H/ Amax = 0.07 in the
pure de-Sitter space. The gray lines show the field values i = hq and hgy in the unit of the Hubble
parameter during inflation.

3.3 Stabilization by effective mass

As we saw in the previous sections, the EW vacuum metastability puts a tight constraint on
the Hubble parameter during inflation. Still, there are several ways to avoid this constraint.
Probably the simplest way is to introduce an effective mass to the Higgs during inflation. The
noise term in the Langevin equation originates from the quantum fluctuations, and hence it
is suppressed if the Higgs is massive (see App. C.3.1). Such an effective mass is induced if
there are, e.g. the following couplings [23, 34]:

_ /\h(?’ 2 Eh 2
Line = — (7¢ + ?R h, (3.3.1)

where ¢ is the inflaton, R is the Ricci scalar, A is the Higgs-inflaton quartic coupling and
&y is the Higgs-curvature non-minimal coupling, respectively. It induces a Higgs effective
mass as

m; = Ape® + 12&,H?, (3.3.2)
where @ is the inflaton field value and R ~ 12H? during inflation. Thus it suppresses the
quantum fluctuations if

2

Mg 2 ek

and/or &, 0.1, (3.3.3)
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so that we can avoid the tight constraint on the Hubble parameter during inflation.

Once we consider the dynamics of the Higgs after inflation, however, the situation is
totally different: the very couplings (3.3.1) that stabilize the EW vacuum during inflation may
cause the EW vacuum destabilization after inflation. This is because the induced effective
mass term oscillates during the inflaton oscillation epoch after inflation (or the “preheating”
epoch), resulting in Higgs particle production. If the couplings are large enough, the Higgs
production is so efficient that it can kick the Higgs to roll down to the deeper region. Thus
in the following chapters, we study the dynamics of the Higgs after inflation in detail. We
assume that the inflaton/gravity sector and the Higgs sector is connected by the following
interaction:

1
Line = =5 [Ag® + 010 + &R | 1. (3.3.4)

We also include the trilinear coupling oy, in our discussion since it is allowed in general,
to say the least. The typical energy scale of the system after inflation is controlled by the
inflaton mass mg, and hence the EW vacuum may be destabilized even for low-scale inflation
models as long as mg > M. Thus we study high-scale and low-scale inflation models in
Chaps. 4 and 5, respectively.
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Chapter 4

Metastability after high-scale inflation

In Chap. 3, we have seen that the Higgs-inflaton and/or Higgs-gravity non-minimal couplings
help to stabilize the Higgs during inflation for high-scale inflation models. After inflation,
however, the same couplings may cause the EW vacuum destabilization due to resonant
particle production as long as m, > Mi,s, where m,, is the inflaton mass scale. Thus, we
study the Higgs dynamics after inflation, or during the inflaton oscillation epoch, with such
couplings and with m, > M in this and next chapters. In this chapter we concentrate on a
high-scale inflation model, and obtain upper bounds on the couplings by requiring that the
EW vacuum survives the preheating epoch. This chapter is based on the author’s original
works [1,2].

The organization of this chapter is as follows. In Sec. 4.1 we give an overview of our study
in this chapter. In Secs. 4.2 and 4.3, we study the cases where there is only the Higgs-inflaton
quartic coupling Ay, and the Higgs-curvature non-minimal coupling &, respectively. Then
we study the case where there exist both A, and &, in Sec. 4.4. In Sec. 4.5 we study effects
of the Higgs-inflaton trilinear coupling o04. Finally in Sec. 4.6, we discuss effects of the
interaction between the Higgs and the other SM particles.

41 Overview

4.1.1 Setup

First we summarize our setup. In this chapter we consider the following Lagrangian:

MZ
L= TPIR + Lq) + Ly + Ling, (4.1.1)

where Mp is the reduced Planck scale, R is the Ricci scalar, £ (£) is the Lagrangian for the
inflaton (Higgs) sector, and Ly, is the interaction between the Higgs and the inflaton/gravity.
We explain each term in detail in the following.

m Inflaton sector
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We take the inflaton sector as the simplest one,

£,=5(00) - Vo), @12

where the inflaton potential at around its origin is assumed to be quadratic:

V(p) = %mé(j)z, (4.1.3)

with mg being the inflaton mass. This is just for simplicity, and our analysis can be extended
to more generic inflaton sectors. We assume that inflation occurs in the ¢ > 0 region without
loss of generality, and 11, > M, that holds in most of high-scale inflation models. Indeed,
the mass scale m, is typically of order 10'2-10" GeV for high-scale inflation models in order
to be consistent with the CMB observations as we see in App. C.2.3.

m Higgs sector
The Higgs sector is given by

L, =—=(h) - %h‘*, (4.1.4)

1

2
where Ay, is the Higgs quartic self coupling.”! We ignore the bare mass term since it is much
smaller than the typical energy scale my. As we have seen in Sec. 2.2, the quartic coupling
A, becomes negative at a high energy (or large field value) region. The precise shape is not
important for our purpose, and hence we approximate it as

Ay (M) = =0.01 X sgn (M — Mingy) - (4.1.5)

We take the renormalization scale M as M = max (H, (h2>) with H being the Hubble
parameter. The Higgs obtains a dispersion of order (h*) > mé after the first oscillation of the
inflaton, and hence it is almost equivalent to take M ~ m,. In other words, we simply use the
tree-level Higgs potential with the renormalization scale chosen at the typical energy scale
of the preheating dynamics in this (and next) chapter.

H Interaction sector

We take the interaction sector as

Uhqb

An
‘[«int = __(P(PZhZ - 2

> dh* — %R W, (4.1.6)

where A; is the Higgs-inflaton quartic coupling, oy, is the Higgs-inflaton trilinear coupling
and &, is the Higgs-gravity non-minimal coupling, respectively. As we have seen in Sec. 3.3,
they stabilize the EW vacuum during inflation as long as they are large enough with the
correct sign, and we concentrate on such a case in the following.

"1 We consider only one degree of freedom for simplicity, but the results change only logarithmically even if
we take into account the full SU(2) doublet.
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4.1.2 Main idea

The inflaton typically oscillates at around the origin after inflation. In our setup it is well
described as

¢ = D(t) cos (myt), (4.17)

before the back-reaction is effective, where the inflaton oscillation amplitude ®(t) gradually
decreases due to the Hubble expansion as

q)ini
D(t) =

= (4.1.8)

Here we take the scale factor at the beginning of the inflaton oscillation as unity. For more
details, see App. D.1. The inflaton oscillation acts as a time-dependent background for the
Higgs since we introduce the interaction terms (4.1.6), and hence Higgs particle production
is triggered. In our case the typical energy scale (~ m) is well beyond the instability scale,
and hence such produced Higgs particles induce a tachyonic mass to the Higgs itself though
the Higgs self quartic coupling. It is estimated as

me = =311 (1), (4.1.9)

in the mean field approximation. It pushes the Higgs to roll down to the true minimum, and
hence destabilizes the EW vacuum. In order to prevent such a catastrophe, the couplings
Ay, & and oy are required to be small enough. This is the main idea of our study.

In the following we elaborate this idea, and obtain quantitative upper bounds on A, &,
and 0. We study four cases separately: Ay > 0,044 = &, = 0inSec. 4.2, &, > 0, Ay = 04 = 0
in Sec. 4.3, Ay, & # 0, 03y = 0in Sec. 4.4 and Ay, 0ny, &, # 0in Sec. 4.5, respectively.

4.2 Higgs-inflaton quartic coupling

Here we consider the case Ay > 0, oy = &, = 0. First we analytically estimate an upper
bound on Angps and then perform numerical simulations to confirm it.

Analytical estimation

We expand the Higgs field by modes as

A3k - -
h(x) = f— [c%h De** + athr (e ). 421
(0= | Gy 1O + 3500 (42.)

The linearized equation of motion for the mode function is given by

fi + [wl(t) + A®)] e = 0, (4.2.2)
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where the dot denotes the derivative with respect to t, A(t) = —9H?/4 — 3H/2, and the
frequency wi(t) is given by

k2
w(t) = S+ A @ (t) cos? (mgt) (4.2.3)
It is rewritten as
P2
= + Ax +2gcos (2z) |l = 0, (4.2.4)
where
K2 A]1¢(D2 /\hgbq)Z
z=myt, Ax= ——+——, g= ) 425
"o g a2m§> Zmé 1 4m§) ( )

It is the so-called Mathieu equation. Here we keep only leading terms in H?/w? expansion,
which is justified for g > 1. In this system, the Higgs fluctuations with k/a < p. are efficiently
produced if the following inequality holds:

pt) 2 my, p.(t) = myq'?, (4.2.6)
or equivalently
72 0(), 42.7)

where p.(= k./a) is a typical momentum scale of the produced Higgs particles (see App. D.3
for details). We assume that the above inequality is indeed satisfied at the onset of the

inflaton oscillation. Hence the quartic coupling should satisfy A, @5 . > mé, or

2
"o ]2 [ \/EM“] ) (4.2.8)

A 2x 1071 [
hp > 15x108GeV| | @

where @y, is the initial inflaton amplitude. This inequality implies A, @2, > HZ2 | since
m; % HZ , holds generically. Thus the Higgs is stabilized during inflation, *
consider this situation hereafter. We may define the comoving number density of Higgs for
each mode as

and we

1 SNT 2] 1
) = 5o [|hlz(t)| + (8 o) ] -5 (4.2.9)
The total physical number density is given as
dk
ny(t) = f e Hin(8).- (4.2.10)

"2 If there is a hierarchy mg > Hend (0r @i < Mp), it is possible to choose H2 < Ayp®3, < m3. Insucha
T

ini

case, the Higgs is stabilized during inflation while there is no violent Higgs production after inflation.
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In the case where Eq. (4.2.8) holds, it grows exponentially after several times of the inflaton
oscillation as (see Apps. D.3 and D.7 for more details)

Pk Aot 1 [ =
£) ~ ~ 2uqeMoty3 (1) 4211

where y is a momentum dependent function, which has a maximum value g >~ O(0.1) at
k/a ~ p./2. We have used the steepest descent method to evaluate the integral, and estimated
the second derivative of yy as By~ 2pqee/ ok? with 6k/a ~ p./2.

As the Higgs particles are continuously produced, the finite density effect of the produced
particles starts to play a role. It affects the dynamics of the inflaton and the Higgs itself via
Anp*h? and Ayh*, respectively. In our case, |4, is much larger than A, and hence we need
to consider only the latter effect. The coupling A, is negative in the case of our interest since
my > Ming. Therefore, the self coupling induces a tachyonic mass term m>

tac

3
n () = —3 1) f TE (oF ~ ~31 = ()(t) (4212)
a=p

It forces the Higgs to roll down to the true minimum.
Now let us derive the condition where the Higgs rolls down to the true vacuum. There are
two important contributions to the Higgs effective mass: A;4¢* from the quartic coupling, and
m? . from the Higgs self coupling. The former is oscillating, and hence the latter inevitably
overcomes the former for some small time interval At as ¢ approaches the origin even if
Ap®? > |mc|*. The time interval At is estimated as

2
mgq(meA? ~ | *, or A# ~ @ (4.2.13)

P+

where we have used ¢ =~ ®mgyAt around the potential origin. The tachyonic mass mz,
enhances the Higgs during this time interval. The growth rate is estimated as Imtacl At ~
[micl” /p2. If it exceeds unity, the Higgs field increases by a large amount due to m2, , and the
EW vacuum is destabilized. Thus the EW vacuum is destabilized at

N
'm%aC(t)|¢~° =p) = 16m? \ 2uqiemgt et = 1, (4.2.14)

where the subscript ¢ ~ 0 indicates that the effective mass is evaluated at the passage of
¢ ~ 0. It implies that the EW vacuum decays at

1 1673
fdec ~ In . 42.15
T (3Mhl) #.215

tac’

"3 Otherwise the radiative correction from Ay, easily spoils the flatness of the inflaton potential.
** All the modes with p < p. tend to grow due to the tachyonic effective mass at this time. The transition is
hence expected to be dominated by the scale below p..
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Before this time, the resonant Higgs production should be killed due to the cosmic expansion
for the EW vacuum to survive the preheating epoch. The cosmic expansion kills the resonance

at p.(tena) ~ mgy, OF

2 8 MMy,
end ~ 32 m2 ’ (4216)
¢ ¢

where we have used Eq. (D.1.8). Thus the EW vacuum survives the preheating for teng < fdec,
which yields the following upper bound:

m2 :22 2 2 m 2
Mo < o — |in 2222 = 107 | 2L [ L ] (4.2.17)
sul Mz |\ 31 tae| 1108 Gev

Note that pg ~ O(0.1) almost independently of ®;,; and g in the case with only A, as we see
in App. D.7. In the following we verify it by using the classical lattice simulation.

Numerical simulation

Now we show the results of the classical lattice simulations for the case with A;s. The main
purpose here is to confirm the upper bound given in Eq. (4.2.17).

We solve the following classical equations of motion numerically in the configuration
space:

. . 1
0= +3Hp~ ¢ + (m2 + Augh?) (4.2.18)
. 1
0=+ 3Hh - a—zafh + (Anp® + Auh?) , (4.2.19)
for the scalar fields, and
H? = ﬂ, (4.2.20)
3MZ,

for the metric, where the total energy density is given by

. 2 .
p :% (q;z + al—z(ai(p) + mjﬂﬂ) + % (h2 + al—z (aih)z) + %W + %Ahq)q)zh% (4.2.21)
and (...) denotes the spatial average. We ignore fluctuations of the metric because their
effects are suppressed by Mp;. Actually there is another equation of motion in the metric
sector, and it is redundant. We have checked that our numerical calculation satisfies the
redundancy at least at O(107°) precision. The simulation parameters are summarized in
Tab. 4.1. The inflaton mass is fixed as m, = 1.5 X 103 GeV. We show results for Anp = 1078
and Ay =4 %1078,

Now we explain some details of the lattice simulation. We solved the discretized version
of the classical equations of motion with the initial inflaton amplitude ®;,; = V2 My, or
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i N, L dt

= =3, -1
3+1 128 10m¢ 10 qu)

Table 4.1: The parameters of the classical lattice simulation, where d is the spacetime dimension, N <
is the number of grid in each spatial dimension, L is the size of the lattice, dt is the size of the each
time step.

V0.2 My, By changing ®;,;, we tested whether the inflation scale changes the bounds on
the coupling strength. We took d,; = 0, but our results are insensitive to this choice.
We also introduced gaussian initial fluctuations on the inflaton and Higgs field following
Refs. [35,36], which mimic the quantum fluctuations. We renormalized the inflaton and the
Higgs masses originating from the initial fluctuations. We also added an h° term to the Higgs
potential to avoid numerical divergence. We took the coefficient of the 1® term such that the
Higgs field value /iy, at the true minimum is A 12, = 5x 1078M,. We verified that the EW
vacuum decay is not affected by the additional /° term. See App. E.3 for more details.

In Fig. 4.1, we show the time evolution of (¢)* (black), (¢p?) — (¢p)* (red) and (h?) (blue).
They are multiplied by a®> with the initial value taken as a;,; = 1. We take the coupling
as Ayy = 1078 for the left panels and Ay, = 4 x 107° for the right panels, respectively. The

initial inflaton amplitudes are ®@;,; = V2 My in the upper panels and ®;; = V0.2 Mp, in the
lower panels, respectively. As it is clear from Fig. 4.1, the Higgs stays at the EW vacuum for
Ay = 107%, while it rolls down to the true vacuum for Ay, = 4 x 107%, independent of the
initial inflaton amplitude. It is consistent with Eq. (4.2.17). Indeed, an interesting feature of
Eq. (4.2.17) is that it does not depend on the initial inflaton amplitude as long as Eq. (4.2.6) is
satisfied initially. This is because the growth rate 14 does not much depend on the inflaton
amplitude for the broad resonance.” Thus, the Higgs fluctuations are efficiently produced at
the latest epoch independent of ®;,;, since the number of the inflaton oscillation is dominated
by that epoch.

We also plot the time evolution of the comoving number density of the Higgs defined

in Eq. (4.2.9) for @y, = V2 Mp in Fig. 4.2. For the motivation of this definition, see the
discussion around Eq. (D.2.12). The left panel shows the case with A;, = 107 and the right
panel does the case with A, = 4 X 107%. In the left panel, the Higgs is efficiently produced
at the beginning of the oscillation, but the resonance shuts off due to the Hubble expansion.
After t ~ 30/mgy, the comoving number density of the Higgs remains almost constant. On the
other hand, in the right panel, the comoving number density of the Higgs continues to grow
resonantly. As a result, Higgs rolls down to the true vacuum once the condition (4.2.14) is
satisfied. Also, we can see that modes below p. is efficiently produced as expected. The time

evolution of the number density for @;,; = V0.2 Mp; is quite similar.

"> As we shall see below, the situation is completely different for the tachyonic resonance case.
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Summary

In summary, we obtain an upper bound on the Higgs-inflaton quartic coupling A, by
requiring that the EW vacuum be stable during the preheating epoch. Since A is also
bounded from below from the requirement of the EW vacuum during inflation, the favorable
Ane is limited in a finite parameter region. For instance, if we consider a quadratic chaotic
inflation model with ®;,; = Mp; and m =~ 10" GeV, the quartic coupling A, must be within
the following window:

1079 < Ay $107°, (4.2.22)

where the upper (lower) bound comes from the EW vacuum stability during the preheating
(inflation). See Egs. (3.3.3) and (4.2.17). The allowed region can be larger for an inflation
model with ®,; < Mp; (or Hiyy < my), since the resonance does not happen if the condi-
tion (4.2.8) is violated, which may make the upper bound looser.
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Figure 4.1: The time evolution of the inflaton and the Higgs. The black line is (¢)?, the red line
is (qbz) — (¢>2 and the blue line is (h?), where the angle brackets denote the spatial average. They
are multiplied by a®, and normalized by ®@ini. Upper left: App = 1078, @iy = V2 Mpy, upper right:
A = 4x1078, Dy = \/EMpl, lower left: Ay = 1078 @,y = \/ﬁMpl, lowerright: Ay, = 4x1078, @y =
V0.2 Mpy.
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4.3 Higgs-gravity non-minimal coupling
in this section we consider the case &, > 0, A4 = oy = 0. First we analytically estimate an
upper bound on &, and then perform numerical simulations to confirm it.
Analytical estimation
In the present case, the linearized equation of motion for the Higgs mode function is
i + [wl(t) + A®)] e = 0, (4.3.1)

where the frequency wi(t) is given by

2 _ k2
WD) = — + &R, (4.3.2)

Assuming that the inflaton condensation dominates the universe, the Ricci scalar is given as

1

- ) 2 42
R= M [ +2m2¢?], (4.3.3)
and hence the frequency is rewritten as
k2 éhmz 35]177/12
W) = = + — % + ——L 0% cos (2myt). (4.3.4)
a>  2M3, 2Mz,

where we have kept only leading terms in H?>/w?. Thus, the modes can be tachyonic in
one oscillation in contrast to the case with A,4. An efficient resonance occurs only when

&En®? /M3, > O(1), and hence we concentrate on the case with"®

@M] |

(4.3.5)

Eh g [ CDini

In this case an efficient particle production occurs via the tachyonic instability, which we
call tachyonic resonance. For more details, see App. D.4. If this condition is satisfied, the
EW vacuum stability during inflation is ensured since ®y,; < M, leads to &, 2 O(l).b7 The
linearized equation of motion is rewritten in the form of the Mathieu equation as

P2
= + Ar +2qcos (2z) | e =0, (4.3.6)
where
2 (DZ (DZ
z=myt, Ax= k— + n , 4= % (4.3.7)
azmé 2M3, 4M3

"6 We do not consider the case with —&;, > O(1) since it destabilize the EW vacuum during inflation.
b7 If Dy < Mpy, it is possible that O(0.1) < &, < (Mp /®ini)?. In such a case, Higgs is stable during inflation
while no tachyonic resonance occurs after inflation.
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The growth rate of the number density Xi(t) is estimated as [37]:
X
Xi(t) = ——=Ar + 2x /g, (4.3.8)
N i

with x =~ 0.85. Recalling that ®(t) o 1/, the first a few oscillations play the dominant role
in the tachyonic resonance. The typical physical momentum enhanced by the tachyonic
resonance is given by

peIt) = %mw”‘*(t)- (4.3.9)

In terms of p{?, the condition for the resonant particle production is similar to Eq. (4.2.6):
P9t 2 my, or gz O1). (4.3.10)
The number density of the Higgs produced after the j-th passage of ¢ = 0 is estimated as

d3k d3k ;
(t) = ———my(t)) = T 2% Xt
npt; f <2na(t].))3 My \1; f (zna(t '))36

1 ’ neff(t]) Herv \/_q)ml/]\/IPllZ (tlnl) (tac (t ) (4 3 11)
2 mi e

" 16m? a3(t])
where U, =~ 2xV4/3 ~ 2 for & 2 O(1), and Qini is the initial inflaton amplitude. The
effective number of times of oscillation neg(t;) = le D(t;)/ Din; grows logarithmically in time.

We estimate n.¢ =~ 1 for @i,y 2 Mp. This is because the amplitude drastically decreases
within the first oscillation, and hence the first one or two oscillations dominate the Higgs
production. On the other hand, for ®@;,; < Mp, the later oscillations can also be important
since the amplitude decreases rather slowly. For ®;,; = V0.2 Mp,, for instance, we roughly
estimate 7. ~ 1.5-2. See also App. D.7. Once the Higgs particles are produced, they induce
the tachyonic mass to the Higgs itself as

3
m () = -3 1) f TE (o ~ -3 —2_ (43.12)
a)k/a p(tac)(t)
in the same way as the case with Aj.

Now we derive the condition where the EW vacuum is stable during the preheating.
Contrary to the case with A;,, the Higgs effective mass from &,R becomes tachyonic every
crossing around ¢ ~ 0. Thus, the effect of [Mic|* overcomes that from the curvature coupling
only when M = qmé. Once this condition is satisfied, the tachyonic mass M exceeds
the effective mass &R even at around the end point of the inflaton oscillation, and the EW
vacuum decay is triggered. Thus, we may conservatively estimate the condition for the EW
vacuum stability as’®

3 1A a(tend) V5
7}’[2 . m2 — ne (ten )Hcrv EnPini /M
| tac(t])|5hR~0 S q ¢ 1672 Zq( 11’11) Ll( 11’11) o } "=l (4313)

"§ Not only the long wave length mode but all the modes below g'/%m,, grows towards the deeper minimum
if this condition is violated.
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i N, L df
3+1 128 20mq‘b1 or 40711;51 10‘311@1

Table 4.2: The parameters of the classical lattice simulation, where d is the spacetime dimension, N <
is the number of grid in each spatial dimension, L is the size of the lattice, dt is the size of the each
time step. We take L = 20/m,, for @y = V2 Mp; and L = 40/ mg for Opn; = V0.2 Mpy

where the end time of the preheating t.nq is estimated from the condition pitac)(tend) ~ my. As
a result, the EW vacuum survives the tachyonic resonance for

2 2 2
1 [MpT? 16m2 [2 2 V2M
cfhs#—z[q)—f’?] [111(3'/\]1' ;)] ~ 10 [MM ] [ 5 .I’ll , (4.3.14)

eff l’l crv

where we have taken g ~ 1 in the logarithm and ignored the scale factor dependence.

Numerical simulation

In the following, we show the results of the classical lattice simulations for the case with &j,.
The main purpose is to confirm Eq. (4.3.14).

We numerically solve the following classical equations of motion in the Einstein frame in
the configuration space:

En
0=¢+3Hep - —aqu + 2= |ph — a@al-h (1 + —) 20, (4.3.15)
M2, [ ] Mz )"
0 =i + 3Hi - —82h n Ai’; [2m¢(]b N R1C ]h LA, (4.3.16)

for the scalar fields, and

H? = ﬂ, (4.3.17)
3M?,

for the metric, where the energy density is given by

TS R T (I TS R IR TS

We retain terms only up to first-order in &,h?/M3 and &h*/M3Z. Tt is justified because
Enh? MG, E30* MR, < 1 always holds in our numerical calculation. Again we have verified
that our numerical calculation satisfies the redundancy for the equations of motion at least
at O(107%) precision. The parameters of the classical lattice simulation are summarized in
Tab. 4.2. The inflaton mass is fixed as m, = 1.5 X 10" GeV.

Now we explain some details of the lattice simulation. We solved the discretized version

of the classical equations of motion with @y, = V2 Mp, or V0.2 Mp.. We set ,,, = 0. We
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introduced gaussian initial fluctuations in the inflaton and the Higgs fields which arise from
the quantum fluctuations. Concerning the interaction terms, we again renormalized the
inflaton and the Higgs masses originating from the initial fluctuations. We added an h° term
to the Higgs potential to stabilize it in our calculation as well. We took the coefficient such
that the Higgs field value at the true minimum is [A;| k2, = 5 x 10°M3,, and checked that
it does not affect the EW vacuum decay. For more details, we again refer the readers to
App. E3.

In Fig. 4.3, we show the time evolution of (¢)* (black), (¢p?) — (¢p)* (red) and (h?) (blue).
They are multiplied by 4> whose initial value is a;; = 1, and normalized by ®;,;. We take
&, and @y as follows: &, = 10 and @y = V2 My, for the upper left panel, &, = 20 and
Opy = V2 My, for the upper right panel, &, = 20 and @y, = V0.2 My, for the lower left panel
and &, = 30 and ®,; = V0.2 Mp, for the lower right panel, respectively. For the ®;,; = V2 Mp
cases (the upper panels), the Higgs remains in the EW vacuum for &, = 10, while it rolls
down to the true vacuum for &, = 20. Thus, the condition (4.3.14) is consistent with our
numerical calculation within a factor of two.” On the contrary to the case with A, the

upper bound on &, depends on @;;. Indeed, for the ®;,; = V0.2 Mp| cases (the lower panels),
the Higgs remains in the EW vacuum for &, = 20, while it rolls down to the true vacuum for
&n = 30. Again, it is consistent with Eq. (4.3.14) once we include the effect of n.¢ ~ 1.5-2.

In Fig. 4.4, we plot the time evolution of the comoving number density of the Higgs
(defined in Eq. (4.2.9)) for @y, = V2 Mp,. The curvature coupling is &, = 10 for the left
panel and &, = 20 for the right panel, respectively. We evaluated the number density at
the end points of the oscillations since it is well-defined only at around these points. The
Higgs particles are created dominantly within the first a few oscillations. This is because the

growth rate depends on ®. The result for @;,; = V0.2 Mp; is quite similar.

Summary

In summary, we obtain an upper bound on the non-minimal coupling &, by requiring that
the EW vacuum be stable during the preheating epoch. Again it is also bounded from below
from the requirement of the EW vacuum during inflation, and hence the favorable &, is
limited in a finite parameter region. For instance, if we consider a quadratic chaotic inflation
model with ®;; ~ Mp; and m, ~ 101 GeV, the non-minimal coupling &, must be within the
following window:

0.1< & < 10. (4.3.19)

where the upper (lower) bound comes from the EW vacuum stability during the preheating
(inflation). See Egs. (3.3.3) and (4.3.14). As in the case of the quartic coupling Ay, the allowed
region is larger for an inflation model with ®;; < Mp; (or Hip¢ < my). In particular, the lower
bound does not change while the upper bound becomes looser by a factor of M3, /®:

ini’

" The difference between Eq. (4.3.14) and our numerical calculation may be due to the fact that the inflaton

amplitude decreases drastically within the first oscillation for @iy = V2 Mp;, while we assume that the ampli-
tude is constant to derive Eq. (4.3.14). Our main purpose is, however, an order estimation of the bound on &,
and hence Eq. (4.3.14) is enough.
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Figure 4.3: Time evolution of the inflaton and the Higgs. The black line is ((]))2, the red line is
(gbz) - (¢)2 and the blue line is (h?), where the angle brackets denote the spatial average. They
are multiplied by 4%, and normalized by the initial inflaton amplitude ®i,; = V2Mp;. Upper left:
& =10, = V2 Mp,, upper right: &, = 20, Qi = V2 Mpy, lower left: &y = 20, Dy = V0.2 Mp), lower
right: &, = 30, Djpi = V0.2 Mpy.
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Figure 4.4: The Higgs comoving number density. The parameters are m, = 1.5 X 10> GeV and
®ini = V2Mpy. Left: &, = 10, right: &, = 20.
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4.4 Both quartic and non-minimal couplings

Now we consider the case Ay, & # 0 and oy, = 0. We first give a qualitative overview of
this system, and then show results of numerical simulations.
Qualitative discussion

In the presence of Ay, and &, the linearized equation of motion of the Higgs is given by the
Mathieu equation as

dZ
= + Ax +2gcos (2z) | by = (4.4.1)
where
12 Ehmé 02 3£hm @2
=met, Ar = + [ Ape + —— , Ao + ——— | — 4.4.72
Z m¢ k azmé [ ho MZ 2m 2 q ho MZ 477%5 ( )

Here again we have kept only leading order terms in H*>/w?. Note that A; and g can vary
independently for fixed k since we have now two parameters: A;4 and &;,. The stability
during inflation requires that

A +29 2 0(1), (4.4.3)
or
Ao + 2&n m_j > 10710 (4.4.4)
o+ e 2 , 4.,

for my ~ 10" GeV and @, =~ Mp, and hence we concentrate on this parameter region in
the following. Without the Hubble expansion, the Mathieu equation is characterized by
the stability/instability chart of Fig. 4.5. If the point (A, g) lies in the white regions, the
corresponding solution grows exponentially with time as f oc e with u called the Floquet
exponent. On the other hand, the shaded regions lead to stable solutions. For more details,
see App. D. With the Hubble expansion, both A, and g decrease with time crossing many
instability regions. The resonance ends when the system enters the last stability region at
g < 1. In particular, an interesting feature of Fig. 4.5 is that a larger A/|g| leads to a weaker
resonance, where A is defined as

éhm¢ D2
A= Agzo = [Angp + —5— AE, L (4.4.5)
Mo
In particular, g4 ~ 0 or
"2
/\hqb +3&,— ~0, (4.4.6)
My,
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Figure 4.5: The stability/instability chart of the Mathieu equation. An exponentially growing mode
exits in the white region, which means that the resonance occurs in that region. The gray lines are
Ay = 2g and 24q/3 that correspond to the mode k = 0 with Ay, and &, respectively. The chart is even
with respect to g.

kills the resonance completely. It is actually sufficient to have A/|g| ~ a few to avoid the EW
vacuum destabilization. Such a relation is not quite unnatural: since m(zz) /M, ~ 10719, |&]

between 1-10* corresponds to A; between 107'°-107°. In reality, the Mathieu equation gives
only an approximate description of the system due to the Hubble expansion, and hence we
perform the classical lattice simulations to determine the stability region in the the following.

Numerical simulation

Now we show the results of the classical lattice simulation. Our main concern is the pa-
rameter region with larger A/|q|. The results are presented in Fig. 4.6. These show maximal
allowed |g| for a given A and the corresponding range of éhmé /M%1 for a given Ayy. The
orange points correspond to stable configurations in the sense that the EW vacuum does not
decay before the end of the resonance. As we can see from Fig. 4.6, a wide range of positive
Any and negative & is allowed. On the other hand, a negative A4 leads to smaller A/q, and
hence are ruled out (apart from small values around the origin). The line A = 2|g| separates
the broad resonance from the tachyonic one.

The qualitative behavior of our bound can be understood as follows. We are mostly
interested in a region with a substantial ratio A/|g|. At A/|g| > 2.3 or so, the broad resonance
with the Hubble expansion simplifies. Whether the EW vacuum is destabilized or not is
mostly determined by the last instability region closest to the origin. This is because, in the
parameter range of interest, the system spends little time in other instability bands since
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Figure 4.6: The EW vacuum stability region (the shaded region) in the q—A plane (left) and the &,~Ay
plane (right) with mg = 10" GeV. The red points represent the numerical results for the boundary of
the stability/instability region for fixed Aj. The shaded region is the interpolation of the red points,
indicating the stability region.
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Figure 4.7: The Floquet exponent u along the trajectory A/q = 2 (left) and A/q = 3 (right). The initial
value of g is taken as g = 2000. See App. D.6 for the computation of the Floquet exponent.

the band widths get narrower (Fig. 4.5) and the inflaton evolves faster at earlier times. This
tendency is clearly seen in Fig. 4.7: at A/q = 3 only the last band contributes significantly,
whereas in the usual case of A/g = 2 many bands are important. The growth rate of the Higgs
for a given k, which can be taken k = 0 as a representative value, is determined approximately
by the Floquet exponent

Hy—g oc eHetiMoht (4.4.7)

where ¢ is an averaged Floquet parameter u along the relevant trajectory in the last insta-
bility band and At is the time the system spends there. Since both A and g are proportional
to @2, the system evolves along a straight line in the (4, q) plane.”’’ The resonance becomes
inefficient for pegmyAt < O(1). The quantity m,At depends on two factors: (1) the width Ag

"10 We have verified that it also applies to the relevant range of k # 0.
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Figure 4.8: The EW vacuum stability region (the shaded region). The horizontal axis is Ehmé /M3,

while the vertical axis is Ajy. The EW vacuum is stable during the preheating epoch in the shaded
region. The red dots indicate the boundary of the stability region obtained with the lattice simulations.

of the last instability band determined by A/gq with larger A/q leading to smaller Ag; (2) the
rate of the decrease of @ in the last band which is controlled by the initial g, or g;,;. We have
Aq/q = 2At[teng and Mgpteng o< qllr{ 12, and thus get the following scaling relation:

2
g,

yeffmq)At oc J/\hq) + 3thM—2 ‘Llefqu. (448)
Pl

This shows that the resonance can be suppressed at larger couplings Ay + 3§hm§) /M%l (or
larger gini) by increasing A/q (which decreases Ag and pi.¢). For instance, a tenfold increase
in gini can be compensated by increasing A/q from 2 to 3. This is roughly what we observe in
Fig. 4.6. While for larger A/q the above scaling works well, at A/q < 2.3 this approximation
breaks down and many instability bands contribute to the resonance.

The final result of our numerical study is shown in Fig. 4.8. The shaded region corresponds
to the parameter region where the EW vacuum is stable during and after inflation. The region
is finite due to the large couplings being cut off by the constraint of sufficiently flat inflaton
potential. Negative A;, and positive &, lead to stronger resonance and thus are excluded
except close to the origin. The red dots indicate the boundary of the stability region obtained
with the lattice simulations. These center around the g4 = 0 line. The allowed parameter
region extends to about Ay, ~ 6 X 107°, although the tip of this region is not shown in the
plot. The Higgs stability during inflation (Eq. (4.4.4)) is satisfied in the shaded region.

4.5 Higgs-inflaton trilinear coupling

Finally we consider the case Ayg, &4, 0ny # 0. We give a brief overview first, and then show
numerical results.
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Qualitative discussion

The trilinear coupling o, ¢h? can be ignored during inflation as long as |0 |® < A4 ®?, 12&,H?,
but it can be dominant as @ decreases in the preheating epoch. Actually the quartic as well as
the curvature interactions decrease as t~?, while the trilinear one decreases only as ¢! since
it is linear in ¢. Hence it dominates at late times resulting in a tachyonic resonance. Thus
we can obtain a strong bound on o;¢ almost independently of A, and &;. See also App. D.5
and Ref. [38].

Ignoring the Hubble expansion and the Higgs self-interaction, the Higgs dynamics are
described by the so-called Whittaker-Hill equation:

2

= + Ai + 2p cos 2z + 2q cos 42] h. =0, (4.5.1)

where the resonance parameters are defined as

2 2

m¢t 4k2 mqb q)z 20h¢q) m¢ q)Z
z=—, Av= — 42N+ E— | —, p= , = A + 38— | — 45.2
2 g mé [ h ghM%)l mé P m(zp 1 h EhMl%l m?} ( )

This is a good approximation as long as A, p and g change adiabatically. The relevant
stability charts for the Whittaker-Hill equation are shown in Fig. 4.9. If the parameters are
in the white region, there exits an exponentially growing mode, resulting in the resonant
particle production. See App. D.5 for more details.

Numerical simulation

In order to obtain a bound on o¢y,, we have performed the classical lattice simulation. We
have chosen A4 and &;, such that they are in the shaded region in Fig. 4.6, and see whether the
trilinear coupling oy, destabilizes the EW vacuum or not. The results are shown in Fig. 4.10.
The EW vacuum is stable in the shaded region, while it is destabilized in the white region.
From this figure, we may require that

|ows| < 10° GeV, (4.5.3)

for my ~ 10" GeV, in order for the EW vacuum to be stable during the preheating epoch. Itis
almost independent of Anp and &, since the trilinear coupling eventually dominates over the

other terms as we explained just above. The constraint is expected to scale as o mé since the

end of the preheating is estimated as mgteng ~ |ong|Mp1/ m(zp, assuming that the dependence of

the Floquet exponent on Ong 18 mild. Positive and negative Opg are slightly inequivalent due
to the Universe expansion.
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Figure 4.9: The stability/instability chart of the Whittaker-Hill equation. The green shaded (white)
region corresponds to the stability (instability) region. The first three panels fix g as 4 = 0 (upper left,

equivalent to the Mathieu equation), 4 = 2 (upper right) and q = 5 (lower left). The last panel (lower
right) shows the result with Ay = 2q. The charts are even with respect to p.
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Figure 4.10: The EW vacuum stability region (shaded region) with y,. Left: oy, > 0, right: 04 < 0.
The red dots indicate the boundary of the stability region obtained with the lattice simulations.
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4.6 Higgs-radiation coupling

In the previous sections, we have neglected effects of the SM Yukawa and gauge couplings.
In this section, we investigate whether these couplings modify the above analysis or not. In
particular, we discuss the instant preheating and the annihilation processes that might affect
the Higgs dynamics during preheating. Here we concentrate on the cases where there is only
Anp or &, but a generalization to the case with all the couplings should be straightforward.

m Instant preheating

For a relatively large A;, the Higgs particles produced at ¢ ~ 0 decay into top quarks at a
large field value of the inflaton where the Higgs is heavy [39]. If it is prompt, the efficiency
of the resonance is reduced and the decay products may stabilize the EW vacuum.

m Annihilation

If the number density of the Higgs grows, the annihilation of the produced Higgs into top
quarks and EW gauge bosons may become significant [40,41]. It reduces the efficiency of
the resonance, and the produced particles may stabilize the EW vacuum as well.

4.6.1 Instant preheating

Since the Higgs couples with the top quark via the sizable Yukawa coupling, it decays into
top quarks at a large field value region of the inflaton where the Higgs effective mass is large.
We first give an overview of this process.

At the early stage of the preheating, effects of the top Yukawa coupling significantly differ
depending on whether we consider A or &;. For the quartic coupling A4, the growth rate
of the resonance is almost independent of Aj,. Hence the Higgs decay (ec A;) overcomes
the resonance at the early stage. Radiation is effectively produced at this epoch, which may
stabilize the EW vacuum. For the curvature coupling &5, on the contrary, both the growth
rate of the resonance and the decay rate are proportional to V&;,. Thus, the resonance always
dominates over the Higgs decay. At the late stage, the Higgs resonant production dominates
over the Higgs decay even in the case with A;;, and hence the Higgs decay just reduces the
efficiency of the resonance.

From now we first discuss its effect in the early stage for the case only with A;4. Then we
move on to the discussion in the late stage.

m Instant decay of Higgs [Early stage with A, ]

At the early stage of the preheating, the Higgs decay may dominate over the resonant Higgs
production in the broad resonance case. If Ay is so large that the decay is efficient enough,
then the EW vacuum can be stabilized by the produced particles. In the following we
estimate the boundary of A, above which it occurs.

The Higgs obtains the effective mass of m; = A;,,®* cos? (m¢t), and hence it is heavy
enough to decay into the top quarks when the inflaton is away from its potential origin. The
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oscillation averaged decay rate is roughly estimated as

D =~ % iy ~ /\1/2 D, (4.6.1)
where the bar indicates the oscillation average, and a; = y?/4n with y; being the SM top
Yukawa coupling. If it satisfies I',_; > m/m, the Higgs particles produced at ¢ ~ 0 decay
completely before the inflaton moves back to its potential origin. While this condition holds,
the Higgs particles decay at

My

4.6.2
Al/Z atCD ( )

fdec
f dtl'yg ~ 1, or mé (tqec — to)* ~
te

where t. is the time at which the inflaton crosses the origin. The Higgs is non-relativistic due
to the factor al/ ? < 1atits decay, and hence the Higgs energy density at its decay is given by

3

An
pi(taed) ~ p—mh<tdec>~ O 2. (4.6.3)

e, ¢
Note that n, ~ p?/(2n)* for the large inflaton field value region since the adiabaticity is
satisfied in that region (see App. D.3). The top Yukawa coupling comes in the denominator
since the Higgs is heavier at its decay for smaller a; as long as I'_;; > mg/7 is satisfied.
This energy density is converted to the top quarks within one oscillation of the inflaton, and
hence we can define an effective inflaton decay rate as [42,43]

_my ph(tdec) An

I-|1n =
T n Po 87140(1/2 -

(4.6.4)

If the conditions T4 > my/m and p? > m3 are satisfied until Ting =~ H, with my, being
the thermal mass of the Higgs from the produced SM particles, the inflaton condensation
completely decays before the Higgs resonant production overcomes the Higgs decay. Hence
the EW vacuum is stable in such a case. The former condition is satisfied if

L Mg )2/3 (0.02 )1/3
Anp > 5x%x10 (1013 Cov a0 , (4.6.5)
while the latter is satisfied if
Ang > 0.1 (150). (4.6.6)

Thus, the instant preheating process can kill the inflaton condensation for the case with
Ay as large as Ay 2 0.1. Otherwise we expect that the inflaton condensation survives the
instant preheating epoch, and the Higgs resonant production eventually dominates over the
decay in the late time. Here note that the coupling as large as A;s 2 0.1 is unlikely for the
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vanilla chaotic inflation model. The quartic coupling A, induces the Coleman-Weinberg
potential [4] as

Vew (4.6.7)

- 2 2
64m m p

Bt )

n .
If we stick to the quadratic inflaton potential, A,y should satisfy A, < 107 [34] for the flatness
of the inflaton potential. In this case the instant preheating is not efficient. It may be possible
to have Ay, 2 0.1 for other inflation models such as with the non-minimal coupling [44] or
the modified kinetic terms [45-47], but we do not dig into these models here to avoid model
dependent discussions.

m Slow decay of Higgs [Late stage with A, or with &,]

Now we discuss the case where the resonance dominates over the Higgs decay. More
specifically, we consider the case where

_ m(p
g < — (4.6.8)

in this subsection. Then only a part of the Higgs produced by the inflaton oscillation decays
within one inflaton oscillation, and hence the decay reduces the efficiency of the resonance.
We study its effect here. We consider the case with Ay in detail. A similar discussion holds
in the case with &,,.

A typical decay rate of the Higgs is given by

3ar 15
A2, (4.6.9)
242

rh—>tf =

It reduces the growth rate of Higgs as
Inny, oc 2ugeemet — Tt (4.6.10)
As a result, the decay time in Eq. (4.2.15) becomes slightly longer:

12
1 1n(167'(%) . V3a; Ahqb Mpy
2u 31 g My

Mtdec ~ (4.6.11)

qtc

By comparing it with f.g given in Eq. (4.2.16), we estimate the impacts of the Higgs decay
on the upper bound as follows:

2 -2
_ 0.1 mql) 2 ay 0.1
<1078 [ ] 1- 1(—) . 46.12
Ao 5 10 lyqtcl 1083 GeV [ 1002 Hate (46.12)

Similarly, in the case with &, we find

2 H\/EMmr [1_0.04(&)( 2 )r, (4.6.13)

Neff Uerv CI)ini 0.02 Herv

& <10 X
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Thus it does not significantly change the upper bound. Note that the decay of Higgs into
the top quarks may be much suppressed in reality. This is because the typical life time
of the Higgs should be longer since the Higgs is relativistic, and because the top quarks
acquire a finite density mass correction from the Higgs fluctuations. Since our estimation is
not affected drastically even if we optimistically estimate the Higgs decay rate, we do not
investigate these effects further.

4.6.2 Annihilation

In the broad/tachyonic resonance, the number density of the Higgs grows exponentially. If
the number density is large enough, the Higgs can annihilate into top quarks and EW gauge
bosons. In particular, the Higgs may rapidly excite the gauge bosons to exponentially large
number densities [48]. If the number densities of the gauge bosons become comparable to
the Higgs before the EW vacuum destabilization, they might stabilize the EW vacuum.

In order to see whether the annihilation can indeed stabilize the EW vacuum or not, we
consider the following simplified Lagrangian:

-£ = L(p + -£h + ‘LX + ‘Lint + Lann/ (4614)

where Ly, £, and L are the same as Egs. (4.1.2), (4.1.4) and (4.1.6) with the couplings being
Anp #0,En = ony =0 0r & # 0, A4y = oy = 0. In addition, we take the Lagrangian for a light
scalar field y as

1 1
£X=§&myx—zgﬂﬁ (4.6.15)

1
‘&mz—igﬁy% (4.6.16)

Here x schematically represents the SM gauge bosons, where we model the gauge interac-
tions as the quartic interactions.

We have solved the classical equations of motion derived from the Lagrangian (4.6.14)
numerically. We take d = 3+ 1, N, = 128, dt = 1073 /mg, my = 1.5 x 10 GeV, @y = V2 Mpy,
api = 1, @y = 0 and iy = xy = 0.5. In Fig. 4.11, we show the time evolution of (gb)z (black),
(P?) — () (red), (h*) (blue) and (x?) ( ). They are multiplied by %, and normalized by
®ypi. The left panel is the result of the quartic coupling case with Anp = 4X 10%and L = 10/ My,
and the right panel is that of the curvature coupling case with &, = 20 and L = 20/m,. As we
can see from Fig. 4.11, the Higgs rolls down to the true vacuum well before yx is sufficiently
produced. In fact, the dynamics of the Higgs is almost the same as those in Figs. 4.1 and 4.3.
Thus, the annihilation process cannot stabilize the EW vacuum in our simplified setup. The
results do not change even if we take the couplings of x larger, say gn, = gy = 1.

Now let us take a closer look at Fig. 4.11. In the case with &, (the right panel), the Higgs
rolls down to the true vacuum at the first a few oscillations of the inflaton, regardless of
the existence of the annihilation channel. It seems that this is because the time scale of the
EW vacuum decay is too short for the annihilation to be effective. We believe that the same
argument holds for the realistic model where the Higgs couples to the EW gauge bosons,
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m(pt

Figure 4.11: The time evolution of the inflaton and the Higgs. The black line is (¢)?, the red line is
(qbz) - (qb)Z, the blue line is (h?) and is (x?), where the angle brackets denote the spatial
average. They are multiplied by a® and normalized by ®ini = V2 Mpy. Left: Ahp =4 X 1078,&, = 0,
right: Ay =0, &, = 20.

since the annihilation rate is not much different from our simplified model. In the case with
Ang, the Higgs remains in the EW vacuum for the first O(1-10) times of oscillation of inflaton.
Even in such a case yx is not efficiently produced via the annihilation process. It might be
understood as follows. If the Higgs is produced, it induces an effective mass to x as

N ny,(t)
My (1) = g1, oD (4.6.17)

The phase space of the produced y is kinematically restricted by the effective mass miff:x’

and hence it might suppress the annihilation rate. Provided that this description is correct,
the dynamics should be similar for the realistic case where the Higgs couples to the gauge
bosons. Thus, we may expect that the annihilation process cannot stabilize the EW vacuum
during the preheating stage in the realistic case either. More rigorous analysis requires
lattice simulations including the gauge bosons [49-51], which is beyond the scope of this
dissertation.

Even if we properly take into account the degrees of freedom of the gauge bosons and
the Higgs, the situation is not expected to change. In order for the gauge boson to stabilize
the EW vacuum, its dispersion must satisfy

g ) (A% z ) (1), (4.6.18)

where ¢ is the EW gauge coupling, A is the gauge boson and / is the Higgs. The sums
are for the six degrees of freedom for A and the four degrees of freedom for /, respectively.
Expecting that (A%) ~ (x*), we can see from Fig. 4.11 that the produced amount of the gauge
boson is far below Eq. (4.6.18).
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Chapter 5

Metastability after low-scale inflation

In Chap. 4, we have seen that the EW vacuum can be destabilized during the preheating
epoch once the inflaton mass scale m,, is larger than the instability scale Mj,y. There we
have concentrated on the high-scale inflation models. However, m, can be larger than M
even for low-scale inflation models with My > Hins where Hiy¢ is the Hubble parameter
during inflation. Actually it is usually the case that m, > Hi, for low-scale inflation models.
Thus, in this chapter, we study the EW vacuum stability during the preheating epoch for a
low-scale inflation model. This chapter is based on the author’s original work [3].

5.1 Setup

First we summarize our setup. We take the Lagrangian as

MZ
L= TI”R - %(6’(}5)2 = %(8}1)2 — U(p, h), (5.1.1)

where Mp; is the reduced Planck scale, R is the Ricci scalar, ¢ is the inflaton, and 4 is the
Higgs.”! We assume that the inflaton is singlet under the SM gauge group, and hence the
trilinear as well as quartic portal couplings between the inflaton and Higgs are allowed in
general. Thus we take the following generic form for the potential:

~ 2

U(p, h) = V(p) + @thz + @gﬂﬂ ¢ D ﬁh‘*, (5.1.2)
2 2 2 4

where V is the inflaton potential, mi is the bare mass of Higgs, and 65,4, Any, and Ay are

coupling constants.” Note that the inflaton can have some gauge charges other than the SM

such as U(1)g_. In that case, ¢ should be regarded as a radial component of the complex

scalar, and ¢ = 0. In this chapter, however, we keep 63,4 # 0 to make our discussion generic.

Below we explain each term in detail.

"1 Again we consider only one degree of freedom for simplicity.
»2 We can consider the non-minimal Higgs-curvature interaction &,Rh? as well, but it is effective only when

the non-minimal coupling &, is quite sizable: |&,] > mi /HZ > 1.
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Inflaton potential

As a representative example of low-scale inflation models, we consider the hilltop model [52—
55] (see Refs. [56-59] for supergravity embeddings):

V() = A* [1 - (ﬂ)l , (5.1.3)
Vg

where 1 > 2 is an integer and vy > 0 is the vacuum expectation value (VEV) of the inflaton
at the minimum of its potential. The inflaton mass around the minimum is

A2
Mg = VanA? (5.1.4)

U¢

Since we are interested in small field inflation models, we assume that v, < Mp. Otherwise,
the model would be rather similar to high-scale inflation models. Inflation takes place in the
region |¢| < vy. Here and in what follows, we concentrate on the region ¢ > 0 without loss
of generality. The Hubble parameter at the end of inflation Hnq is indeed much smaller than
the inflaton mass m,, in this case:

Hend o U¢
Mg V6nMp,

The CMB constraints on this model are discussed in App. C.2.3.

< 1. (5.1.5)

Higgs-inflaton couplings and bare mass term

In terms of ¢ = v, — ¢, the potential is given as

1
U(¢, h) :V(U(p - (p) + E (Wl% + 5h¢0¢ + /\;@Ué)]’lz

Ohp o o 515 Angg
+ Pt T+ I (5.1.6)
where we have defined
Ohp = — (5;@ + 2A;@U¢) . (517)

Note that ¢ = 0 at the minimum of the inflaton potential. Here comes our crucial observation.
In order to realize the EW scale, the bare Higgs mass and the mass coming from v, must be

cancelled:

My + GipVs + A0 = 0. (5.1.8)

»3 We have ignored the EW scale since the typical energy scale of our interest is much higher.
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It is of course a tuning, but it is inevitable since we assume that the SM is valid up to some
high energy scale aside from the inflaton sector. Thus, the potential is now given by

U, h) =V (v — ) + %(phz A;‘p o*H? + A4hh (5.1.9)
In particular, the Higgs is almost massless at ¢ = 0.

Now we discuss quantum corrections to the inflaton potential. The potential of the low-
scale inflation model has to be extremely flat, and hence only a small change might spoil
the successful inflation. Suppose that the effective potential around the vacuum (¢) ~ vy
is given by Eq. (5.1.9) at the end of inflation for some renormalization scale M. We will
take M as the typical scale of the preheating dynamics (M % m,), and put bounds on the
couplings defined at this scale. At the one-loop level, the radiative correction induces the
Coleman-Weinberg effective potential,

Vew(¢) = (5.1.10)

4(qb) (mi(qb))
sare M\ )
where we define m2(¢) = m; + GupP + Appp*, and the couplings are evaluated at M. We have
assumed m:(¢) > 0 during inflation. Otherwise, the Higgs potential might be destabilized
during inflation (see Sec. 5.2). In order not to change the tree-level inflaton potential too
much during inflation, we need [0V cw/d¢| < [dV/d|. It roughly indicates

n=1

1
0, n—2 0 -
|ahcp| < My (M(;) , | hq)' Mm (M(;) B , (5.1.11)
for 6,4 # 0 and
U(P m(f’
oo Sy [Ao| Moy (5.1.12)

for dnp = 0. We require these conditions in the following.

Higgs potential

Finally, we discuss the Higgs quartic coupling A;,. In the present case, in order to understand
the high-energy behavior of A;,, we must carefully consider the mixing between ¢ and
h [60-62]. Once we ignore A4, the potential at around the minimum is written as

mZ o h2 1 02
u=~—2 [(p TR ] (/\h N (5.1.13)

2 qu) 4 2m¢

Thus the Higgs potential below the energy scale of m,, is

Veu(h) = ASMh‘* Aop = A — ZL‘Z (5.1.14)
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It is clear that Agy in the low-energy effective theory is different from A,

Up to the energy scale of m,, the running of Agy is just that of the SM, and hence it turns
to negative at around 10" GeV as we saw in Sec. 2.2. For simplicity, we again approximate
it as

Asm = —0.01 X sgn (M — M) for M < my, (5.1.15)

where M is the energy scale of the system and M, is the instability scale of the Higgs
potential which we take Mg = 10 GeV. If mgy < Minst, A is positive at least up to at
around M = M;,.”* Thus, to overcome the potential barrier, the Higgs must be enhanced

as (h*) 2 M, > mé However, such an enhancement requires large A4 and o, which are

likely to spoil Eq. (5.1.11).” Therefore, we concentrate on the opposite case:
My > Minst. (5.1.16)

By matching at M = m,, the boundary condition for A is roughly given as

qu)
Mltem, = =001+ 5. (5.1.17)
@ MZM¢

If aéh / m(zp > 0.01, it may significantly affect A so that it helps to stabilize the Higgs potential at

the high-energy region.”® In such a case, t here may be another minimum at around h = m,
and ¢ =~ —oy, because of Egs. (5.1.13) and (5.1.16), and it may affect the dynamics of the
Higgs in the early universe. Instead of being involved in such a complexity, here we simply
concentrate on the case”

I,
— <001 (5.1.18)
m

¢
Then, we may approximate the quartic coupling as

Ap = =0.01 X sgn (M — Minst) - (5.1.19)

We take the renormalization scale as M = max (H, vV (hz)) during preheating as in Chap. 4.
Namely, we again simply use the tree-level Higgs potential with the renormalization scale
chosen as the typical energy scale of the system.

b4 The potential can be even absolutely stable depending on oﬁ ® / mé and the sign of A [60-62].

"> The hilltop model (1 = 6) with m,, < Mins cannot have large resonance parameters because of Eq. (5.4.2).

"6 If Ay, is negative, the potential may not be absolutely stable anyway, depending on the details of V(¢).

"7 In principle, the same argument can be applied for the high-scale inflation case we studied in Chap. 4 if
o is present. In practical, the upper bound on gy from the EW vacuum stability during the preheating is
much below this value (|loy| < 10° GeV and my, =~ 10'2-10"3 GeV), and hence we safely ignore it.
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5.2 Higgs dynamics during inflation

Before studying the preheating stage, we summarize the Higgs dynamics during inflation
in this section. As we saw in Chap. 3, the EW vacuum can be destabilized during inflation
if the inflation scale is too high. It is instructive to see what happens if the inflation scale
is so low that Hinf << Mjnst. In the present model, since ¢ < v, during inflation, the Higgs
potential during inflation is approximately given by

m? A
V(h) ~ =21 + Z2pt, 5.2.1
(= S+ 621)
where m? satisfies Eq. (5.1.8). There are two possibilities: #; < 0 and m; > 0.
First, let us consider the case with mi <0, or G4¢ + Apgve > 0. In this case, the parameters
must satisfy

inst

Al M > 3], (52.2)

since otherwise the potential decreases monotonically toward large / and the Higgs may roll
down to the deeper minimum during inflation. As long as Eq. (5.2.2) is satisfied, the EW
vacuum is stable during inflation if Hins << Minst. Otherwise, the de-Sitter fluctuation of the
Higgs field is too large to stay at the local minimum of the potential. Next, let us consider
the opposite case: mi > 0, or Gy + Appvg < 0. In this case, h = 0 is always a local minimum
of the potential, and it is stable against the de-Sitter fluctuation if

H2, < max [M2,,, m2/IA]. (5.2.3)
If the condition (5.2.2) or (5.2.3) is satisfied, the EW vacuum is stable during inflation.

However, it does not guarantee the vacuum stability after inflation, since the Higgs fluctuation
can be resonantly enhanced during the preheating stage as studied in detail from now.

5.3 Particle production after inflation

In this section, we describe the preheating dynamics of our system. We first discuss resonant
inflaton production in Sec. 5.3.1. Since the inflaton potential at around the minimum is far
from quadratic in the present case, inflaton particles are also resonantly produced. In fact,
the inflaton particles can be even tachyonic, and hence the inflaton production is so efficient
that the backreaction kills the inflaton condensation within several times of the oscillation.
It sets the end of the preheating epoch, which is the time until which we follow in this
chapter. Then we discuss resonant Higgs production in Sec. 5.3.2. There we use a crude
approximation that the inflaton potential is quadratic. It is still useful to understand the
Higgs production qualitatively, and to make an order estimation of the constraints on the
couplings. More rigorous analysis is performed numerically in the next section.
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5.3.1 Inflaton dynamics during tachyonic oscillation

The inflaton oscillation for a low-scale inflation model is typically dominated by the flat
part of the potential just after inflation, and it causes a so-called tachyonic preheating phe-
nomenon. Below we closely follow the discussion in Ref. [63].

There are two stages of the tachyonic preheating. The first stage is from the beginning of
the tachyonic growth to the first passage of ¢ = v, and the second stage is tachyonic inflaton
oscillation regime. The first stage is further divided into the epoch between the point || =1
and € = 1, and the interval between € = 1 and the first passage of ¢ = v,. Here € and 7 are
the slow-roll parameters: € = M3, (V'/V)?/2, n = M3 V" [V, where V is the inflaton potential
and the prime denotes the derivative with respect to ¢.

The inflaton fluctuations with k/a < Hiy start to develop after || > 1. Note that still
€ < 1 is satisfied at the beginning of this stage since there is a large hierarchy between
Inl and € in low-scale inflation models. While the inflaton is rolling down the potential,
higher momentum modes with Hj < k/a < my also experience tachyonic growth, but the
modes with low k/a (< Hin¢) are most enhanced since they have more time to develop. For
the inflaton fluctuatiosn with momentum as low as k/a < Hiyy, the linearized equation of
motion is the same as that of the velocity of the homogenous mode. Hence we estimate the
enhancement factor from || = 1 to the first passage of ¢ = v, as

OP(P(t) = v9) _ P(P(t) = vg) (Mpl)n/(n_Z)
Shelnl =1) — (i =1) % :

(5.3.1)

where we have used ¢(In| = 1) ~ (vs/Mp)* 2 and the slow-roll approximation to estimate
¢(Inl = 1). The condition for 6¢ to remain perturbative after the first passage of ¢ = v, reads

A4 271/(?1—2) A v 1/(71—2)
<5¢2> ~— (@) SV, or — (—¢) : (5.3.2)
MPI ’()¢ U(P Mpl
Using the CMB normalization, it translates into
Y% ~6_10-5
— 2 107°-1077, 533
Y (5.3.3)

independently of n. Otherwise, even within one inflaton oscillation, the inflaton condensate
may be broken, and the subsequent inflaton-Higgs dynamics would be too complicated. To
avoid this complexity, we focus on the case where the above condition is satisfied so that we
can reliably discuss the Higgs dynamics in the second stage.

The second stage is tachyonic inflaton oscillation regime. During this stage, the inflaton
oscillation is far from harmonic since the most oscillation period is consumed at the flat part
of the potential ¢ < v,,. We first estimate the lower endpoint field value of the inflaton after
j-th oscillation ¢;, and the time t; at which ¢ = ¢;. From the energy conservation, it satisfies

V)=V = [ i3t (534

j
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The integrand is dominated by the potential minimum where |dtq§| ~ vy and |(i)| ~ A. Thus

we obtain
O (foo\"
v—; ~ AT;: . (5.3.5)

Note that ¢j1 > ¢(e = 1) where ¢(e = 1) ~ v4(vy/Mp)"/~D. The mass scale at ¢ = ¢;is much
smaller than the mass scale at the bottom of the potential m4 ~ A?/vs. Hence the period of
the oscillation is mostly determined by this region as

(n-2)/2
1 1 Uq))
tigp —t; ~ /—fv— — . (5.3.6)
j+1 — k V”(ij)| Mg (QDJ

It is much longer than m(;l, as clearly seen in the numerical results in the next section. Now
we consider the growth of the inflaton particles 6¢, with the momentum k in the linear regime
during t; < t < t;,;. We further divide it into three phases: (a) t; <t <t,, (b) t,, <t <t;, and
(c) ty, < t < tj;1, where t;, denotes the time when ¢ = ¢,,, with ¢, being the field value at
which V" takes negative maximum value, or

qu_ n_" 1/n
v, \2@n-1)) -

(5.3.7)

First, in the stage (a), modes with k < m experience tachyonic instability within ¢ < ¢ <
¢, where

Prac . Pi o ll(k) ] (5.3.8)
Uq_’, Uqb ky,

with k, ~ mg(jos/Mp)"?/?" being the tahcyonic mass scale at ¢ = ¢;. Then 5¢ is enhanced
by a factor of e** with

D 7 _ _
X, = f VIVl - i 1)1og(¢’”). (5.3.9)
¢

—d} ~

tac (P ¢ 2 ¢tac
Here it should be noticed that the same mode experiences exponential decay in the stage (c)
in the limit k — 0.”® Thus a phase shift in the stage (b) is crucial to obtain a net growth of the
fluctuations. Schematically, the phase of d¢ is rotated during the stage (b) as

1.2
exp (i Jr2 + R (6 - t;l)) ~ gt [1 + %] (5.3.10)

b8 The linearized equation of motion of 6¢y in the limit k — 0 is the same as gb as we said before, and the
latter indeed decreases during the stage (c).
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where we have used k < my and t;, — £, ~ m;!. Thus the fraction k*/m, is connected to the

growing mode in the stage (c), and hence the net enhancement factor within one oscillation
Fy is estimated as

OPk(tj+1)

5e(0) (5.3.11)

PkE‘

1.2
N‘ iZXk

2
Mg

It is peaked at k =~ k, as

m2 )" J2n(n =1
ka( ¢] R ) (5.3.12)

k_f n—-2

It is much larger than unity, and hence 8¢y, is enhanced by orders of magnitude within
one oscillation for vy < Mp. The variance of the inflaton after the j-th oscillation is now
estimated as

(n-2)(2j(xn—1)-1)/n
M
—“) . (5.3.13)

(007) ~ g ~ g 4
It is valid for x, > 3/2 or n < 27. It indicates that the fluctuation becomes nonlinear, i.e.,
(Op?y ~ vé, within several times of oscillation.

In summary, the inflaton sector becomes nonlinear within several times of oscillation
due to the tachyonic preheating. To avoid complications arising from the nonlinearity and
thermalization, in this dissertation we just require that the EW vacuum remains stable at least
until the inflaton fluctuation becomes nonlinear. Otherwise we cannot avoid the catastrophe
anyway. Thus, the tachyonic production of the inflaton particles sets the upper limit of the
time until which we follow the dynamics in this chapter.

5.3.2 Higgs dynamics during preheating

Now we study the Higgs particle production during the preheating stage. In this subsection,
we crudely approximate the inflaton potential as quadratic, although the actual inflaton
potential is typically far from quadratic for low-scale inflation models. Nevertheless, it helps
us to understand the numerical results at least qualitatively.

The potential of the inflaton and the Higgs at the inflaton oscillation phase is

U h mé 2 /\h¢ KA Ohe K2 A¢h 25,2 5.3.14
()= @t e e 6319
The inflaton potential is (crudely) approximated as quadratic around the potential minimum.

We study resonant Higgs particle production due to the inflaton oscillation in this system.
The linearized equation of motion of the Higgs is

e+ (K + 0upp + Angpp?) I = 0. (5.3.15)
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We have moved to the momentum space with k being the momentum, and ignored the
Hubble expansion because of Eq. (5.1.5). The inflaton oscillation is described as

@ = ini cos (myt), (5.3.16)

under the quadratic approximation. Here ¢y, is the initial inflaton oscillation amplitude,
which is roughly @iy ~ v, (remember that ¢ = v, — ¢). By substituting it to Eq. (5.3.15), we
obtain the Whittaker-Hill equation:

h! + [Ax +2p cos 2z + 2g cos 4z] Iy = 0, (5.3.17)
where
4k2 20 ini A 2 mt
Ap= v p= P s D0 B (53.18)
U U U 2

and the prime denotes the derivative with respect to z. In Fig. 4.9 in Sec. 4.5, we showed
the stability/instability charts of the Whittaker-Hill equation. If the parameters are in the
instability region (the unshaded region), Eq. (5.3.17) has exponentially growing solutions,
resulting in the resonant Higgs production. The resonance parameters p and g are useful for
estimating the strength of the resonance even for a potential that is far from quadratic, as in
the case of the hilltop potential. In terms of the resonance parameters, the condition

p+2q>0, (5.3.19)

is necessary for the Higgs not to be tachyonic during inflation. Although it does not neces-
sarily cause a problem as long as Eq. (5.2.2) is fulfilled, we will assume that Eq. (5.3.19) holds
in the following for simplicity.

Once the resonant Higgs production occurs, it forces the EW vacuum to decay into the
deeper minimum in the same way as we studied in Chap. 4: the produced Higgs particles
induce the following tachyonic mass from the Higgs self-quartic coupling:

m2 = 3\, (5.3.20)

where we have used the mean-field approximation. Note that the dispersion is (h?) > mé for
the resonant particle production, and thus we expect A, < 0 as can be seen from Egs. (5.1.16)
and (5.1.19). Thus we can constrain the resonance parameters, or the couplings, by requiring
that the EW vacuum is stable during the preheating. The tachyonic resonance is effective if
Ip| exceeds of order unity (see Fig. 4.9), so we may require

| s 0(), (5.3.21)

for the EW vacuum stability during the preheating. We will confirm this expectation by
means of the classical lattice simulation with a full hilltop inflaton potential in the next
section. Note that Eq. (5.3.21) implies |g| < O(1) without any accidental cancellation between
o, and Ay, However, we will also discuss the case [p| < O(1) and |g] > O(1) at the end of
the next section for completeness.”

" Note that g 2 —O(1) from Egs. (5.3.19) and (5.3.21).
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d N, L dt dk
2+1 2048 1500m)  5x10°m)  42x107°my

Table 5.1: The parameters of the classical lattice simulation, where d is the spacetime dimension, N <
is the number of grid in each spatial dimension, L is the size of the lattice, df is the size of the each
time step, dk = 21t/L is the resolution of the momentum.

5.4 Numerical simulation and constraints on couplings

In this section we perform classical lattice simulations to study the EW vacuum stability
during the preheating epoch. Note that the results in this section include effects of the anhar-
monicity of the inflaton potential as well as the Hubble expansion, although we ignored them
in the previous subsection. For concreteness, we take n = 6 in the inflaton potential (5.1.3).
The CMB normalization implies

4

A ~ '0¢ 3 N -5/2
— ) ~7x10 14(—) (—) ) 5.4.1
(Mpl) Mp /] \60 ( )

See App. C.2.3 for more details. For instance, A/Mp; =~ 2 X 107>, Hins =~ 4 X 10° GeV and m, =~
5% 10" GeV for vs/Mp = 1072, and A/Mp = 3 X 107, Hip¢ = 107 GeV and mg =~ 2 x 10" GeV
for vy /Mpy = 1073, Thus the parameters satisfy Hinf < Mingt < my, and hence this model
is indeed a good example of our general argument in the previous sections. The condition
(5.1.11) is given in terms of p and g as

Uy ( Vo 5/4 Ve [ Vo 5/4
|P|Sm—¢(M—H) : |q|sm—¢(M—H) : (5.4.2)

For n = 6, the right-hand sides are larger than unity for v,/Mp 2 107

We numerically solved the discretized version of the classical equations of motion derived
from Eq. (5.1.1) as well as the Friedmann equations. We start to solve the equations when
€ = 1. It corresponds to @i =~ 0.74v, for v, = 1072Mpi, and @i = 0.84v, for vy = 107°Mp.
We took the initial velocity of the inflaton as zero. We also introduced initial Gaussian
fluctuations that mimic the quantum fluctuations for the inflaton and the Higgs. We have
assumed that they are in the vacuum state initially. This is justified for Vg /Mp; = 1076-107°
since we can safely neglect inflaton particle production at the first stage in this case as
discussed in Sec. 5.3.1. We have also added /° term in the Higgs potential just for numerical
convergence. We have checked that it does not modify the dynamics before the EW vacuum
decay. The parameters of our lattice simulations are summarized in Tab. 5.1. Since we have
two different momentum scales (k. and m,), we must take the number of grids N, to be large.
This is why we took the spatial dimension to be two instead of three (see Tab. 5.1). As far as
the linear regime is concerned, the results are not expected to change drastically for different
numbers of spatial dimensions. For more details, see App. E.3.

We show our numerical results for v, = 102Mp, and Uy = 1073Mp, in Figs. 5.1 and 5.2,
respectively. We have followed the dynamics until m4t = 150 and 250 for v, = 107Mp; and
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1073Mp,, respectively, since the inflaton condensation is broken slightly before these times.
The black line is {(@)?, the red line is (¢?) — (p)?, and the blue line is (h*), where the angle
brackets denote the spatial average. They are normalized by ¢;,i. The values of p and g are
written at the tops of these figures.

In the upper panels in Figs. 5.1 and 5.2, p 2 O(1) and both g4 > 0 and g < O cases are
considered. As we can see, the EW vacuum is actually destabilized during the preheating
for these cases. On the other hand, we have taken p = g < O(1) in the lower left panels in
Figs.5.1 and 5.2. In these cases, the EW vacuum survives the preheating. Thus the numerical
results are consistent with our expectation in Sec. 5.3.2:

_ zgh(/)(Pini
|P | - mé

<0(1), (5.4.3)

is required for the stability of the EW vacuum during the preheating. We have checked that
this criterion is indeed satisfied for several other values of p and 4. In particular, we have
also calculated the case p < 0. In this case, the Higgs becomes tachyonic in the region ¢ > 0,
where it takes more time for the inflaton to oscillate. Hence the Higgs is more likely to be
enhanced and the EW vacuum decays faster compared to the case p > 0. In any case, the
EW vacuum is stable during the preheating as long as Eq. (5.4.3) holds and |g| ~ |p|. The
bound (5.4.3) does not strongly depend on v, since it is expressed solely by the resonance
parameters. It is consistent with the numerical results with two different values of v,.

Eq. (5.4.3) is our main result in this chapter, and it also implies |g| < O(1) if there is no
tuning of the parameters. Still, we have also considered the case [p| < g for completeness.
Note again that an accidental cancellation between o4 and A4 is necessary to achieve
g > O(1) while satisfying Eq. (5.4.3) (see the footnote 09). In this case, the situation is more
complicated. When the broad resonance is dominant, the condition for the EW vacuum
destabilization is estimated as

Al (7?) 2 12, (5.4.4)

where p. = myq'/* as we discussed in Sec. 4.2. The growth factor piq. depends little on g for
the parametric resonance, and hence the value of g is not so important in this condition. As
a result, it is likely that the EW vacuum does not decay during the linear regime even if we
take g to be larger, since we have restricted the number of times of the inflaton oscillations
in our analysis (only several times) to avoid complications associated with the nonlinear
behavior of the inflaton. However, as the inflaton fluctuations grow and become nonlinear,
they can also produce the Higgs particles through the scatterings. It corresponds to the
beginning of the thermalization, which is studied in detail in, e.g., Ref. [64]. In this regime,
the variances of the inflaton and the Higgs tend to converge to a similar value though the
scattering. Therefore, as q (or Ajy) becomes larger, (h?) approaches to (¢?) faster. In the
present case, it might destabilize the EW vacuum since [A;| > Ajs. Actually, in the lower
right panels in Figs. 5.1 and 5.2, the EW vacuum is destabilized at almost the same time as

"10 Note that p necessarily dominates over g as the inflaton approaches to the minimum of its potential.
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the system becomes nonlinear for g4 > O(10). Thus, it might be expected that

Ah‘b(pizni .
7=—7"5000) if [p[<0q), (5.4.5)
¢

is at least necessary for the stability of the EW vacuum during and also after the preheating.
Egs. (5.4.3) and (5.4.5) are translated to upper bounds on A4 and oy as

. my  \? (10 GeV
o] < 10 GeV(lolz GeV) o) (5.4.6)
my \2 (10 GeV’
<1 -7( i ) . 47
|A h¢| 0 1012 GeV Pini (5.4.7)

Note that the initial inflaton amplitude ¢;y; is of order the inflaton VEV v,

If we follow the thermalization process for a longer time, the constraints probably become
tighter than Egs. (5.4.3) and (5.4.5). In this sense, Egs. (5.4.3) and (5.4.5) are just necessary
conditions, and we must also follow the dynamics after the preheating to determine an
ultimate fate of the EW vacuum. In order to address this issue, however, we should take
into account the couplings between Higgs and the SM particles, which might stabilize the
EW vacuum. It seems interesting to study further on this direction although it is more
complicated.
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Figure 5.1: The time evolution of the inflaton and the Higgs for vy = 10~2Mp; up to mgt = 150. The
black line is the inflaton condensation ((p)2, the red line is the inflaton two point function ((pz) - ((p>2
and the blue line is the Higgs two point function (h?), where the angle brackets denote the spatial
average. They are normalized by the initial inflaton amplitude ¢j,;. The EW vacuum is stable for
(p,q9) = (0.5,0.5), while it is destabilized during the preheating for the other cases. The lower right
panel corresponds to the case with an accidental cancellation between oy and Ayg.

66



p=15 q=15 p=10, g=-5

0 50 100 150 200 250 0 50 100 150 200 250
m(pt m(pt
p=05 g=05 p=0.5, g=200

0 50 100 150 200 250 0 50 100 150 200 250
mgt mgt

Figure 5.2: The time evolution of the inflaton and Higgs for v, = 10Mp; up to myt = 250. The
black line is the inflaton condensation ((p)z, the red line is the inflaton two point function (goz) - (qo)z
and the blue line is the Higgs two point function (h?), where the angle brackets denote the spatial
average. They are normalized by the initial inflaton amplitude ¢in;. The EW vacuum is stable for
(p,q) = (0.5,0.5), while it is destabilized during the preheating for the other cases. The lower right
panel corresponds to the case with an accidental cancellation between oy and Ajg.
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Chapter 6

Summary and future directions

In this dissertation, we have investigated the cosmological implications of the EW vacuum
metastability in the context of the inflationary cosmology. According to the current measure-
ment of the SM parameters, the Higgs potential may develop a true minimum deeper than
the EW vacuum, called the EW vacuum metastability. It has interesting consequences on
the cosmology, especially in its early stage. In this dissertation, we pay special attention to
the Higgs-inflaton dynamics during the inflaton oscillation epoch after inflation. If there are
sizable couplings between the inflaton/gravity sector and the Higgs sector, resonant Higgs
particle production occurs during the inflaton oscillation epoch, which we call the preheat-
ing. The typical energy scale of this process is the inflaton mass scale. Hence, as long as the
inflaton mass scale is higher than the instability scale of the Higgs potential, the produced
Higgs particles may push the Higgs itself to roll down to the true minimum due to the finite
density effect. We have specified the parameter region where the EW vacuum destabiliza-
tion indeed happens during the preheating epoch for both high-scale and low-scale inflation
models. See Egs. (4.2.17), (4.3.14), (4.5.3), (5.3.21), and Figs. 4.1, 4.3, 4.8, 4.10, 5.1, 5.2.

As concluding remarks, we list some possible future directions here. First of all, it is
definitely interesting to implement the SM gauge bosons to the classical lattice simulation
as well. The SM Higgs inevitably couples to the gauge bosons, and hence they are expected
to be produced during the preheating epoch at least to some amount. We have imitated
their effects by introducing a light scalar field y in Sec. 4.6, and found that its effect is rather
minor. However, it is of course just an approximation, and it is mandatory to include the
gauge bosons without any approximation in order to judge whether it is truly ineffective or
not. Such a study is partly done by Ref. [51] that supports our argument that the effect is
minor, but the authors considered the case with only the non-minimal coupling &;. As we
saw in Sec. 4.2, it takes more time for the EW vacuum to be destabilized for the case with
the quartic coupling A;4. Hence the gauge bosons may have larger impacts on the case with
Ane- It is still worth investigating further on this direction.

Another direction may be to investigate the inflationary model dependence of our results.
In Chaps. 4 and 5, we take the quadratic and the hill-top type potentials as examples, but it is
interesting to see how results change quantitatively or even qualitatively once we consider
different types of the inflaton potential. One example may be to consider the inflation model
with the non-minimal coupling to the gravity [65,66], or the R2-type inflation models [67-70].
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For these models, once we move to the Einstein frame, the inflaton has interaction with the
Higgs that is not described by Eq. (1.1.1) we have considered in this thesis. Another example
may be to consider the quartic inflaton potential instead of the quadratic one. In this case the
system has classical scale invariance. Hence the Hubble expansion does not kill the resonance
since the scale factor decouples from the equation of motion by redefining the inflaton and
the Higgs fields properly [71]. The resonance is terminated only by the backreaction, and
such a situation is quite dangerous for the EW vacuum. This is because the absolute value
of the Higgs quartic coupling is typically larger than the Higgs-inflaton coupling and the
inflaton quartic self coupling.

Finally, we comment on the EW vacuum stability after the preheating epoch. We have
discussed the EW vacuum stability during the inflationary and the preheating epoch, but
the Higgs dynamics after the preheating could be quite non-trivial as well. The EW vacuum
is likely to be stable once the system is in thermal equilibrium [23,72]. However, it is still
non-trivial under what condition the EW vacuum is stable from the end of the preheating to
the end of thermalization. The Higgs momentum distribution at the end of the preheating
is far from thermal equilibrium, and it evolves due to the scatterings towards thermal
equilibrium. It is possible that the EW vacuum decay is activated during this thermalization
process depending on the detailed shape of the momentum distribution. For instance, if the
Higgs fluctuations are larger than the other SM particles at some time, the EW vacuum decay
can be enhanced. The resonant Higgs production may be viewed as an extreme example of
this case. This issue is worth investigating in detail since it determines an ultimate fate of
the EW vacuum. Thus, we still have a lot to do to completely understand the cosmological
implications of the EW vacuum metastability.
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Appendix A

Notations and conventions

In this appendix we summarize the notations and conventions used in this dissertation.

A.1 Unit

In this dissertation we take the natural unit where the speed of light ¢, the reduced Planck
constant /1 and the Boltzmann constant kg are all taken to be unity: ¢ = /i = kg = 1. We retain
the Planck mass explicitly. We denote the reduced Planck mass as Mp;.

A.2 Metric

We take the almost-plus convention for the metric in this dissertation. Thus the metric in the
Minkowski space is given by

N = diag(-1,1,1,1), (A.2.1)
while that in the Friedmann-Lemaitre-Robertson-Walker (FLRW) space is given by
Quv = diag (—1,a2, a2, az), (A.2.2)

where a is the scale factor of the universe. We denote the Hubble parameter as H = d/a,
where the dot denotes the derivative with respect to time.

A.3 Clifford algebra

We define the gamma matrices as
ey =-2n", (A.3.1)

where {...} denotes the anti-commutator. Thus, with our almost-plus convention of n*, )° is
hermitian while )" is anti-hermitian. In this convention, in particular, we obtain

dh=—a-b, (A.3.2)
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where the slashed variables are contracted with y#. This convention is the same as Refs. [73,
74], and opposite to Ref. [75]. Indeed, we can easily go back and forth between our convention
and that in Refs. [73,74] just by changing the sign in front of quantities contracted by n*”,
such as p? with p* being the four-momentum. Note that a factor of i difference often appears
in literature due to these differences. We define ys as

vs = iy’yly*y°. (A.3.3)

It anti-commutes with y#, and is hermitian. The projection operators to the left-handed and
right-handed components are respectively defined as

:1—')/5 PR:1+)/5

PL P ’ 2

, (A.3.4)

We define the Dirac conjugate as

b= yphy. (A.3.5)

It is again the same as Refs. [73,74], and different by a factor of i from Ref. [75]. The latter
difference is because our )° is hermitian while their 1 is anti-hermitian due to the different
conventions of the Clifford algebra.

A4 Couplings and fields

Here we summarize the notations for the couplings and fields used in this dissertation. The
U(1), SU(2) and SU(3) SM gauge couplings are g’, ¢ and g, respectively. The top Yukawa
coupling is y;, and the Higgs quartic self coupling is A;. The Higgs-inflaton quartic and
trilinear couplings are A, and oy, respectively. The Higgs-curvature non-minimal coupling
is &. The Higgs SU(2) doublet is decomposed as

1 P+
H=— . A4l

We also use h to denote the radial component of the Higgs field. We use ¢ as the inflaton. The
inflaton mass is denoted as m,;. We often denote a light scalar field other than the inflaton
and the Higgs as x.
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Appendix B

More on EW vacuum metastability

In this appendix we derive the one-loop beta functions and anomalous dimensions within
the SM. We also derive the 1-loop Higgs effective potential.

B.1 One-loop contributions

Here we give formulae of the scalar, fermion and gauge/Goldstone bosons’ one-loop contri-
butions to the effective potential.

B.1.1 Scalar

We start with a scalar field contribution. Suppose that the Lagrangian for the scalar fluctua-
tion is given by

L= % x(a-m2m)x, (B.1.1)

where the mass term m, depends on the background Higgs field value h. Then the Gaussian
integration is performed as

f Dy exp li f d4x£x] o [Det (o - mg)]‘“z

1 (" d*xd*k m?
o exp [_Ef 2 In (1 + ﬁ)] , (B.1.2)

where we have not cared the overall constant, and used the relation TrIn = In Det. Thus, the
scalar one-loop contribution is

i d% ( m) 1 f Ak ( m)
Vy=—= Inll+=]== Inf1+ =], B.1.3
2f @2n)* k) 2J @rt k2 (513
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where we have performed the Wick rotation with k) = —ik” in the second line. It is divergent,
and hence we need to regularize it. Here we just use the hard cut-off regularization, and
then the effective potential is given by

1 A 3 m?
Vo= — fo dkcke ln(l + E) (B.1.4)

The integration is performed as

A 2 4 rl 2
3 mi) _ A s _
j; dkEkEln(1+k%)— > ‘fodxxlln(x+A2) lnxl

A[m? 1 m> 1\ 1\m m®
== |=+z|Inl=-3|-3]|= — 1, B.1.5
2[A2+2(H(A2 2)72) a9\ A (B.15)
and hence the scalar contribution before renormalization is given by
A2, mi m*\ 1
V, = 32n2ms + 642 lln(ﬁ - E . (B16)

After the renormalization, the quadratic divergent term is subtracted, while A in the loga-
rithmic is replaced by the renormalization scale M.

B.1.2 Fermion

Next we consider a fermion contribution. Suppose that the Lagrangian is given by

Ly = |id—m)|y, (B.1.7)

where 1 is the Dirac field. The mass m(h) is assumed to be dependent on the Higgs field
value h. Then the integration for the Grassmannian variables is performed as

f DYDY exp [i f d4x£fl o Det [ia? —m f]
d*xd*k
o ex Trf In(f-m l, B.1.8
p[ e ") B
where the trace in the last line is taken over the spinor indices. Here it is useful to note that

f d'kn (k- my) = f d'kIn (=K - my), (B.1.9)
since they are connected by the change of the integration variable, and hence we obtain
1
4 _ 4
[ atin(e=m) =5 [ ae]in (= mp) 1o (k- )]

1 "3

f
=5 fd4k1n (1 + F) + (const.). (B.1.10)
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Then, the fermion contribution to the effective potential before renormalization is obtained
in the same as the scalar one, and the result is

4
A? 2 mf

82 T Tem2

2
f

A2

m 1

In - —], (B.1.11)

Vi=— >

where the factor 4 difference comes from the fact that the Dirac field has 4 components. We
should multiply instead 2 in the case of a Weyl/Majorana fermion. Note that the overall sign
is opposite to the scalar case due to the Grassmannian (or fermionic) nature of the field.

B.1.3 Gauge/Goldstone bosons

Finally we discuss the gauge/Goldstone boson contributions. We shall work with the Landau
gauge in this subsection and also the next section. Here we consider the abelian Higgs model
for simplicity, but it is straightforward to extend the discussion to the electroweak SU(2)xU(1)
case. Thus we assume that the Lagrangian is given by

* 1 g
Lawn = ~DyH'D'H = 2F*Fyyy = m; IHP? = Ay [HI, (B.1.12)
where the covariant derivative and the field strength are respectively given as
D.H = (9, —ieA,)H and Fy, =duA, - d,A,. (B.1.13)

We expand the Higgs field as

_h+)(+i(p
\/E 7

where h is the background Higgs field value, x is the Higgs fluctuation and ¢ is the (would-
be) Goldstone boson. Then the Higgs kinetic term is given as

H (B.1.14)

~D,H'D'H =~ —% 0,10 x + Dyt + PP ALA" | + ehA g, (B.1.15)

up to quadratic in the fields. We choose the Rs-gauge, where the gauge fixing term is given
by
1 /., 2

Lor = 5% (QFA# + evgo) ,
with & and v being a gauge fixing parameter. Note that the Lagrangian should be defined
before introducing the external classical field /1, and hence it may be inconsistent to take
v = &h. In this gauge, there is generally a kinetic mixing between the divergence part of
the gauge boson and ¢ except the Landau gauge where v = 0 and & — 0. For this reason,

(B.1.16)
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we work with the Landau gauge in the following. Then the quadratic Lagrangian for the
gauge/Goldstone bosons is given by

Lo+ Lar = (0 m200) x + 3 (0~ m2(0) g

1 1 14 v
+ oA, (nw o-— (1 _ E)awa - mj(h))Av, (B.1.17)
where the mass terms are respectively given by
my = 3N+ my,  oml = NP+ g, = e (B.1.18)
Note that we have ignored the term linear in y since it is cancelled with the source term.

The contributions from x and ¢ can be computed by using the result in App. B.1.1. The
coefficient of the kinetic term of the gauge boson in the momentum space is given by

k2 & k?

where the latter part corresponds to the mode A, « d,,0. It decouples in the Landau gauge
with £ — 0, and thus we need to consider only the contribution from the former part. Hence
we obtain the effective potential as

1 d*k ktk m? m? me,
‘/ = — wv _— - -
rwir =2 f e [Tr In ((17 2 )(1 + 2 )) +In (1 + 5 +In|1+ 2 || (B.1.20)

Note that

v m? v m? m>
Trin ((nw - kkf )(1 + k—;“)) = N (nw - kk’; )ln(l + k—zA) = 31n(1 + k—zf*) (B.1.21)

where we have used the fact that n*” — k#k”/k? is a projection operator. Hence we obtain
AZ
32m?

2
U Lo (i (™2) 2 1) ot (1 (75) 1) ot 1) 2
+64n2 {3mA(ln(Az) 2)+mX In )73 + 1, [ In e > (B.1.22)

before renormalization, where the mass terms are given in Eq. (B.1.18). In general we should
also consider the ghost sector, but in the Landau gauge it decouples from the scalar sector at
least at the one-loop level, and hence we do not discuss it here.

e (k4 2 ) + (1 - %)k”k” . (nw - ﬁ) (@+n)- 2 (e v em2),  (B119)

Vs = (3”1124 + mé + m)z()

B.2 RG evolutions of SM parameters

In this section we derive one-loop renormalization group equations of the SM parameters.
We work in the Landau gauge with the dimensional regularization and the MS scheme in
this section, but the results do not change in other gauge/scheme at least up to the 1-loop
level, as we discuss at the end of this section. The resultant one-loop RG running of the SM
parameters are shown in Fig. B.1.
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Figure B.1: The RG evolution of the SM parameters within the one-loop beta functions. We have
used Egs. (B.2.39), (B.2.48) and (B.2.49) with m;, = 125GeV, m; = 173.1GeV, ¢'(M = m;) = 0.35,
g(M = my) = 0.64 and g3(M = m;) = 1.16. Note that g; and g» often used in literature are related to g’
and gas g1 = V5/3¢’ and g2 = g.

B.2.1 Anomalous dimensions

First we compute the anomalous dimensions of the Higgs and the top quark. In order to
obtain the anomalous dimensions, we fix divergent parts of the wave function renormaliza-
tion, and hence we concentrate on the divergent parts of the two point functions that depend
on external momenta. For this reason, we only need to consider diagrams whose superficial
degrees of divergence are two, since the degree of divergence of the momentum dependent
parts should be lower than the leading part by two.

m Higgs

Here we compute the anomalous dimension of the Higgs field. The relevant diagrams are
shown in Fig. B.2. We first consider the scalar contribution, whose diagrams are given in (a)
and (b) in Fig. B.2. They actually do not contribute to the anomalous dimension, since the
superficial degree of divergence of (a) is zero, while the loop integral of (b) does not depend
on the external momentum.

Next we consider the top quark contribution whose diagram is given in (c) in Fig. B.2. It

is given as
. 2 . :
iy d'q iq i(g-»)
= -N. T .
0= (g [ r[—q“zé —(q—P)2+i6]

dq q-(9-p)
= 2N.y? B.2.1
Y f @2n)* (-g2 + ie) (— (g—p) + ié) ( :
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(d) (e) (f)

Figure B.2: The diagrams that may contribute to the Higgs anomalous dimension at the one-loop
level. The dashed line is the Higgs and the would-be Goldstone bosons, the solid line is the top
quark and the wavy line is the gauge boson, respectively. The Feynman diagrams here and below
are produced by TikZ-Feynman [76].

where the minus sign comes from the fermion loop and N, = 3 is the color degree of freedom.
Here we ignored the top quark mass since it is irrelevant for the anomalous dimension. By
using the relation

i—fﬂ ! (B22)
AB  Jy T[A+B-A) -
we obtain
q-(g-p)
(c) = ZNCytf dxf
(271) (q—xp)z—A+i5)2

—A

= 2N, 1’ MM ith A=x(1-2x)p? B.2.3

where we have dropped odd parts in g since they vanish after integration, and used the
dimensional regularization with the dimensionful parameter M being introduced to make
the total mass dimension intact. The d-dimensional integrations are given by

dg 1 i 1 ( d)
= r2--|, (B.2.4)
f Q) (-2 - A+i6)>  (4m)"*AT2 2
dig g d i 1 ( d)
_d r(1-2), (B.2.5)
f Qn)? (-g2 = A+i6)> 2 (4m)* A2 2
and hence the integration is easily performed to give
— 4i d-1 2 f4—d _ é fl dj2-1
(c) = P (d — 2)Ncth F(Z 2) i dxA" =, (B.2.6)
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We now take d = 4 — € and treat € as small. Then the divergence appears as a pole in €:

iNCyt P
82 €

O, =~ (B2.7)

Finally we consider the gauge/Goldstone boson contributions, whose diagrams are given
by (d), (e) and (f) in Fig. B.2. Actually we need to care only (f), since the superficial degree of
divergence of (d) is just zero while the loop integrand of (e) does not depend on the external
momentum. Note that the interaction in (f) includes derivatives that make the superficial
degree of divergence higher. We first compute the kinetic part of (f), and then sum up the
result over the possible couplings. It is given by

d'q i q“q”) i
f).. = w— 2.
(Biin. f(z i (9 -2p), (=q +2p), —q2+ia(’7 P B (B.2.8)
4 204 _ 2 (A 2
__ f d 74 (g 210)2 (9-(q 22p)) . (B2.9)
@r)* (—2 + i6)* (— (9 - p)* + i)
By using the relation
1 2(1—x)
Yk fo dx[A T x(B —A)]3' (B.2.10)
it is rewritten as
g 80 -x) (>~ (p-q)’)
f = . B.2.11
B f f 2n)* [-4? —A+16] ( )

We can replace (p - 9)> — p?g*/4 inside the integration due to the Lorentz symmetry, and
hence we obtain

1 ddq q2
() = —6 f dx (1 - x)p*M* f v =, (B.2.12)
0 2n)" [-9? — A + 0]

where we have used the dimensional regularization. The relevant integration is given by

dg g d i 1 d
=———-—(2- ], B.2.13
f Qn)' [-¢2 - A + 5] 4 (4m)"> AAl ( 2) ( :

and hence it is now trivial to obtain the pole of € after replacing d = 4 — €. The result is

3i p?
. . =__—T B.2.14
( )km.,dlv, 87'(2 € ( )

After taking into account the couplings, we obtain
— 2
By, = — wz [f+g} (B.2.15)
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(a) (b)
Figure B.3: The diagrams that contribute to the top quark anomalous dimension.
We define the wave function renormalization of the Higgs as h;, = Z}Z/ 21, where h; is the

bare Higgs field, and expand it as Z;, = 1 + §;. Then the divergent part of 6, at the one-loop
level is given by

5 |12 +98% + 387 (B.2.16)

" 32n2e
The bare Higgs field does not depend on M, and hence we obtain

_ dink 1 dy,
VhETTAM T 2dInM’

(B.2.17)

By counting the mass dimension and using the fact that the bare couplings do not depend
on M, we obtain

dlny; ding’> ding?
dinM  dlnM  dInM

—€, (B.2.18)

to the leading order in the couplings, and hence we finally obtain the Higgs anomalous
dimension as

1
= 1247 - 9¢% - 387 (B.2.19)

m Top quark

Next we compute the anomalous dimension of the top quark. The relevant diagrams are
shown in Fig. B.3. We first consider the diagram (a) with # and ¢ running in the loop. It is
given as

@0, = (—iﬂ)zf dq g i
ez V2 Qn)* —4* +10 —(q - p)* +id
2 .
Sy (e 1 i
+( «ﬁ) f(zn)‘*%—q2 ¥io!? —(g-p) +id

d4q g
—2
Y f 2n)* (—g% + 1) (—(q — p)? + id) (B.2.20)
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The computation is quite similar to the case of the Higgs, and the divergent part is given by

71,2
_ Wiy
(a)h,q)z,diV. - 167—(2 E' (B.2.21)

In the same way we can compute the contribution from ¢., and we obtain as a total

iy p

@ = 77 75 [2Pr+ PL]. (B.2.22)

Next we consider the contributions from the gauge boson, whose diagram is given by
(b) in Fig. B.3. We first pay attention only to the kinetic part, getting rid of the contributions
from the couplings. It is given as

(bl = ”f ., 9-») Yyt

@2n)* g (- p)2 +i6" —q*+id

, 4

After using the Feynman parameter, we obtain the divergent part as

d'q (x 1)(3x—1)q
b d 4—d
(iin,awv. = 3 f M f 2n) —A+id]
3i p

= “8dc ) dx(x—l)(3x 1). (B.2.24)

It vanishes after integrating over x, and hence we conclude that
(b)ge. = O. (B.2.25)

We define the wave function renormalization of the top quark as t; /g, = Z}L//i tr/r, where t1 g
is the bare top quark, and expand it as Z;, , = 1 + 6y, .. Then the divergent part of 6;, , at the
one-loop level is given by

_ ]/t 1
6, = = Terie (B.2.26)
5 = U1 (B.2.27)

. 8n2e

In the same way as the Higgs, we obtain the anomalous dimension of the top quark as

]/2

Vi = 32—;_(2, (8228)
Yi

Vie = T3 (B.2.29)

These results are used to compute the beta function of the Higgs quartic coupling and the
top Yukawa coupling below.
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B.2.2 Higgs quartic coupling

We use the effective potential to compute the beta function of the Higgs quartic coupling.
The necessary ingredients are already given in App. B.1, and hence we summarize the mass
terms of the relevant particles as functions of the Higgs field value /& below. Here we care
only the top quark among the SM fermions since the other Yukawa couplings are small.

m Top quark

The mass term is given by

_ i
5

Note that we should count the color degree of freedom N, = 3.

niy

m Gauge boson

In the case of our interest, W= and Z are relevant. Their mass terms are given as

m Higgs + Goldstone bosons
We may expand the Higgs field as

1 ( ¢1tip
H=— N
V2 \h+ x +ip,
Then the mass terms are given respectively by

2 _ 2 2 2 _ .2 _ .2 _ 2 2
mX—SAhh +my, Mg =g, = Mg, = Aph® +m;.

Thus the one-loop SM Higgs effective potential is

Ay, 1

m? 3 W
~_h12 > 4 2 2 22\ _n. A4
Vaalt) =17+ 0+ s [ 5 (65 + 2577 +.¢7) =i 1n(Mz)

2 2
. (m2+3002) (2 4 30,h2\  B(mE+ Ak?) (4 A2
ooz T\ M2 642 M)

(B.2.30)

(B.2.31)

(B.2.32)

(B.2.33)

(B.2.34)

after the renormalization, where we have concentrated only on the terms that depend loga-

rithmically on h. By substituting it to

AVeg

MdM

0,
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(a) (b) ()
Figure B.4: The diagrams that contribute to the divergent part of the top Yukawa vertex correction.

There is also a digram with the wavy and dashed lines being inverted within the loop compared to
the diagram (c).

and comparing the first order terms in ¢?, g%, y?, A, we obtain

dlnm?> 32
h h
= =12 T2 B.2.
e Ty VT (B.2.36)
3
= 2 4 4 2 n ”
Pr = 1¢2 [24% —6y + 3 (3g* +28°¢7 +¢ )] + 45y, (B.2.37)
where y), is the anomalous dimension of the Higgs. We know from App. B.2.1 that
y= o 1247 - 98> - 387 (B.2.38)
642 g ’

and thus we finally obtain the one-loop beta function of the Higgs quartic self coupling as

Br, = 161n2 [Z‘ME — 6y} + 3 (3g* +28°¢% + 8”) + (12v7 - 9¢* - 3¢?%) Ah] : (B.2.39)

Note that the coefficient of the y} term is negative due to the fermionic nature of the top
quark. It is this y; term that forces A, to be negative in the high energy region.

B.2.3 Top Yukawa coupling

We now compute the beta function of the top Yukawa coupling. The anomalous dimensions
of the Higgs and the top quark are already computed in the previous subsection, and hence
we compute the vertex correction here. The relevant diagrams are shown in Fig. B.4.

We first consider (a) in Fig. B.4. We consider only the top Yukawa coupling among the
Yukawa couplings, and hence only & and ¢  propagate the loop. It is given as

3 . 2 .
| W d'q q !
(@)giy, = (_Z$) f 2n) (_qz I i(5) —P + b
2 . 2 .
ve \' (. v dq iq i
8 ) ) v e 0200
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Thus the divergent part cancels between h and ¢z. Note that we can safely ignore the external
momentum as well as the mass term as long as we focus on the divergent part. Next we
consider (b) in Fig. B.4. We first compute the kinetic part, and then include the couplings to
obtain the result. The kinetic part is given as

d4q Zg 2 i qy qv
.= w o _
(b)km. f (27_()4 Vu (_qz + 16) 7/1/ —qZ + 16 TI qz l . (B241)
After the dimensional regularization with d = 4 — €, we obtain the divergent part as
31
(®)xin,div. = T8e (B.2.42)

The gauge boson that propagates the loop can be the gluon, photon or Z,"! and hence we
obtain after including the couplings as

LY 1 1 ,
(b)giy. = (—17%) A e [1283 +8 2] 0ij, (B.2.43)

where i and j are the color indices of the top quark. Finally we consider (c) in Fig. B.4.
Actually the divergent part vanishes since the loop integrand is proportional to

v 97
(17* - 7 )qy =0. (B.2.44)
Thus we conclude that
()41, = 0. (B.2.45)

Collecting them together, we obtain the vertex correction at the one-loop level as

12¢% + ¢’

Oy, = 241%€

(B.2.46)

where we have defined y;,hptpt, = Me/ZZy,ythft, and Z,, = 1+ 6,,. Then the beta func-
tion is obtained from the requirement that the bare coupling v, does not depend on the
renormalization scale:

d

0= ooy [MP202,1 727,12y . (B2.47)
Thus we finally obtain
_ Y 2 2 2_2 2_2 ”

in the limit € — 0, where we have used the results in App. B.2.1

"1 The contribution from W* is suppressed by the bottom Yukawa coupling.
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B.2.4 Gauge couplings

The derivation of the beta functions for the gauge couplings are explained in detail in
literature. Hence we just write down the results here:

7 19, 4,
Ps = ~Tem8 Ps="ggm& Py =ggm8

(B.2.49)

B.2.5 Gauge/scheme (in)dependence

In this subsection, we study the gauge/scheme (in)dependence of the beta functions. Suppose
that we have two set of the couplings {g} and {¢} defined in different gauges and/or schemes.”
In a perturbative theory, they should be related as

3i=gi+ aijkgjgk +0(g), (B.2.50)
where the latin indices run over the couplings. It is inverted as
gi =8 —a/gg + 0. (B.2.51)
We assume that the beta function for {g} is given as
dgi ik ikl 4
Pi= 1= b gigk + b/  gigkg + O(8Y), (B.2.52)

where M is the renormalization scale. Then the beta function for {¢’} is given as

< dg ‘ "
Pi=dinm ™ (6F + 20:"g;) b

= bijkg]’gk + bl{jklgjgkgl +2 (lll‘jkb]'lm - bijkll]'lm) gkglgm + O(g4) (8253)

Thus, the 1-loop part is the same for {g} and {¢’} [77]. It depends on a;/* and b/* whether
or not the 2-loop part is dependent on the gauge and/or scheme choices. For instance, the
2-loop part is also independent if there is only one coupling [78], as

070" — b*am = 0, (B.2.54)

is trivially satisfied in such a case. In general, however, we may need to examine detailed

structures of a;/* and b;/* for each theory concerning two or higher loop parts.
It may be worth noting that the beta functions are gauge-invariant to all orders once we
use the MS or MS renormalization scheme [79]. In these schemes, we subtract only divergent

parts after the dimensional regularization. Hence the relations between bare couplings gEB)

and renormalized couplings gl(R) are given by

m@g®,8)  nEho

(B) _ acie ,(R)
¢ =M : 1+ - =

|, (B.2.55)

2 In the SM of our interest, the couplings 2, A;, g2, §% and g’ correspond to these sets.
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where & is a gauge parameter, M is some renormalization scale, ¢; is some numerical constant
and d = 4 — € as usual for the MS scheme. For the MS scheme, € should be replaced by
€ = (1/e — ye + log(4n))~! with yr being the Euler constant. Note that the €’-th order term in
the bracket is unity just because we have used the MS or MS scheme.” We take the derivative
with respect to £ with €, M and gEB) being fixed, and obtain

dg®
=B L )+ S ) ®25

We may regard it to be valid for general d, and thus we conclude from the first term that

d g(.R)
dé’ =0. (B.2.57)

In other words, the renormalized couplings are gauge invariant in the MS or MS scheme. It
trivially follows that the beta functions in these schemes are also gauge invariant, since the
derivative with respect to M commutes with that with respect to £ as M is independent of &.
We can easily extend the above discussion for anomalous dimensions of any gauge invariant
operators, since bare operators do not depend on & as long as they are gauge invariant.
Hence an anomalous dimension of a gauge invariant operator (such as the Higgs mass term)
is also independent of £ to all orders in the MS or MS scheme. On the other hand, the
anomalous dimension of the radial direction of the Higgs h does depend on the gauge choice
since it is not gauge invariant, so is the effective potential. For some particular choices of the
gauge fixing term, we can show that a change of the effective potential due to the change
of the gauge parameter is compensated by a corresponding rescaling of the external Higgs
tield, which is called the Nielsen identity [80]. For more details, see e.g. Refs. [80-84] and
references therein.

b3 In other schemes, the €’-th order term generally has contributions of the form (g(R))”cf’”, and hence the
following discussion does not apply.
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Appendix C

Review on inflation

In this appendix we review inflation. We first describe the slow-roll inflation models, and
then compute the power spectra of the scalar and the tensor modes. We also discuss the
dynamics of a light/heavy spectator scalar field during inflation.

C.1 Inflation

Here we describe the main idea of inflation. We pay particular attention to the so-called
slow-roll inflation models.

C.1.1 Main idea

Our universe is known to be homogeneous and isotropic at least in the large scale, and hence
we approximate the metric as the the FLRW one:

ds? = —dt* + a®(t)dx'dx’, (C1.1)

where a is the scale factor, with spatial curvature being neglected. The idea of inflation is
closely connected to the causal structure of this metric. In order to understand the causal
structure, it is most instructive to work with the comoving time 1 defined as

an=—. (C1.2)

" dt dloga
n_f ;_f e (C.1.3)

Hence the comoving distance over which massless particles can travel within one e-folding
is ~ 1/aH. It is called the comoving Hubble radius, and offers a rough estimation of the
comoving size of causally connected regions (or the Hubble patches).” In order to determine

Its integrated form is given by

"1 As we will see below, the integration is dominated by the late time if the universe is dominated by
matter/radiation.
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the time evolution of the comoving Hubble radius, we must specify the matter contents of
the universe. We assume that it is given by a perfect isotropic fluid, where the energy stress
tensor is given by

T", = diag (—p(t), p(t), p(t), p(t)), (C.14)

with p and p being the energy density the pressure, respectively, that depend only on time.
We further assume that it satisfies the following equation of state:

p =wp, (C.1.5)

where w is some numerical constant. For instance, it is given by w = 1/3 in the radiation-
dominated era (RD), while w = 0 in the matter-dominated era (MD). The time evolution of
the system is governed by the Friedmann equations (the Einstein equation with the FLRW
metric) and the conservation law (V,T#, = 0):

p
H?> = —, C.1.6
3L, (C.1.6)
0=p+3H(p+p). (C.1.7)

where H = d/a is the Hubble parameter and Mp is the reduced Planck mass. We obtain
p o< a1+ from the last equation, and hence the comoving Hubble radius scales as

L (1+3w)/2

< . (C.1.8)
Thus it increases with time and the integration in Eq. (C.1.3) is dominated by the late time
as long as w > —1/3. Here comes an essential point. In the standard big-bang cosmology,
the universe is dominated by the radiation (w = 1/3) or the matter (w = 0),’> and hence the
comoving Hubble radius is always increasing with time. In other words, the Hubble patch
we see today consists of many causally disconnected patches in the past. Then a question
is why the universe we see today is so homogeneous and isotropic. For instance, the CMB
stops interacting with each other well before today, and hence it is weird that the CMB we see
today is isotropic to high precision. It is the so-called horizon problem, one of the problems
of the standard big-bang cosmology.

The solution to this problem is also simple once we understand the causal structure. If
there exists an epoch in which the universe is dominated by a matter with w < -1/3, the
comoving Hubble radius decreases with time. In other words, the region we can see shrinks
with time in that epoch. Then causally disconnected regions in a later epoch can be connected
in the earlier stage, and hence it is natural that they look quite similar. This epoch is called the
inflation. It is enough to have w < —1/3 for inflation (if we define the inflation as above). In
the following, however, we concentrate on the case with w ~ —1 since it is at least supported
by the CMB observation.

»2 The recent dark energy dominated era is irrelevant in our discussion below.
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C.1.2 Slow-roll inflation

In this subsection we review the slow-roll inflation. As a simplest case, we consider the
Einstein-Hilbert action with a real scalar field:

S= f d4x\/—_g[%R - %(aqz))Z - V(cp)], (C.1.9)

where ¢ is the real scalar field, or the inflaton, V(¢) is the inflaton potential, and R is
the Ricci scalar. We consider only the homogeneous and isotropic part in this subsection.
Perturbations around this background are the subject of the next section. We take the metric
as the FLRW one. The equations of motion are given by

1 (1 .
2 2

- —0+ V), (C.1.10)

3V, \2

12
=2 (C.1.11)
- 2MP1

0=c¢d+3Hp+V, (C.1.12)

where the prime denotes the derivative with respect to ¢. They are equivalent to identify
1,
p= Eqbz +V, (C.1.13)
1,
p=5¢"-V (C.1.14)

in the language of the previous subsection. It is clear from these expressions that we have

w ~ -1 as long as V > |¢*. In other words, inflation occurs when the potential energy is

much larger than the kinetic energy, or the inflaton slowly rolls down its potential. It is the
so-called slow-roll inflation paradigm. It is characterized by the following conditions:

2

M,

exl, |17|<<1, where (-:ET(

Y, g

A1
v v (C.1.15)

They are called the slow-roll conditions with € and ) being called slow-roll parameters. We
can also consider conditions on higher derivatives of the potential, but it is usually enough to
require the above two conditions to have sufficient number of e-folds. In this case the Hubble
friction term dominates the scalar equation of motion, and hence we can approximate it as

. \744

*= "3
We can show that it is indeed an attractor solution. Then the number of e-folds N of inflation
is related to the inflaton field value by

(C.1.16)

te (Pe d
N(qb)zf Hdt ~ — 4 ,—(P, (C.1.17)
t ¢ MPIV MP]
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where the subscript indicates the end of inflation, which is usually taken as the field
value at which € = 1. Here we have assumed that ¢» does not change its sign during inflation,
and hence we can use ¢ as a clock. It must be at least larger than 50-60 depending on
the reheating temperature of the universe. We will use this relation extensively when we
constrain the inflation models by the CMB observation in the next section.

C.2 Perturbations

The most important feature of inflation is that it can produce perturbations that seed the
large scale structure of the present universe. It also supplies the initial conditions for the
CMB anisotropy, and hence is useful to distinguish different inflation models from the
observations. Thus, in this section, we compute the curvature and tensor power spectra
generated during inflation, and compare it with the observation. We work with the following
action for simplicity:

5= f dix =g l%R - %(8(;5)2 - V(cp)], (C2.1)

and mainly follow the procedure in Ref. [85]. The results of this section are used to determine
the parameters of the inflaton potential in Chaps. 4 and 5.

C.2.1 Curvature perturbation

First we compute the quadratic action for the curvature perturbation. Since the scalar part
of the perturbation decouples from the vector and tensor ones up to the quadratic order,
we concentrate only on the scalar part of the perturbations in this subsection. Note that the
terminologies “scalar,” “vector” and “tensor” in this section are defined with respect to the
spatial rotation, not the Lorentz transformation.

We work with the following ADM decomposition of the metric [86]:

ds? = =N?df? + y; (dx' + pdt) (d) + plt), (C.2.2)

where N is the lapse function (do not confuse with the number of e-folds), ' is the shift
vector and /;; is the three-dimensional space metric. In terms of them, the action is given by

M? } o }
S= % f d*x Vi [Mf,lNR(?’) ~2NV + WPI (E4E7 - E2) + %@) - ﬁ’&,-qb)Z - Nhlfa@a]-q;], (C.2.3)

where

Eyj = 5 (hy— VOB - VIB:) = NKy, (C.2.4)

N =

with K;; being the extrinsic curvature, and R® and Vl@ are the Ricci scalar and the covariant
derivative with respect to h;;, respectively. The latin indices , j, ... run the spatial coordinates,
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and are contracted by h;;. It is clear that N and ; do not have any time derivatives, and
hence their equations of motion are constraint equations. It is the main virtue of the ADM
decomposition. Here it may be instructive to count the number of scalar degrees of freedom
(d.o.f). We have initially 5 d.o.f: one from the inflaton, and four from the metric (g, the
divergence parts of go; and g;;, and the trace part of g;;). We can eliminate two of them by using
the general coordinate transformation (t — #'(f,x) and the divergence part of x — x'(¢, x)).
We can further eliminate two of them by the constraint equations. As a result, we have
one gauge-invariant dynamical scalar d.o.f for a single field inflation model. It is the power
spectrum of this d.o.f that we calculate from now.

Now we compute the quadratic action of the scalar d.o.f. We work in the unitary gauge”

Pt x) = P(t), hij = a*(£)e* s, (C.2.5)

In other words, we eliminate the inflaton fluctuation and the divergence part of /;;. In this
gauge the action is given by

1 M? y 1.
S5=3 f dx a3 [Mf,lNR“) —2NV(p(t)) + Wl’l (E4EV - E2) + qu)zl, (C.2.6)

and hence the constraint equations are given by

M? y 1.
Pl i
0=MyR® -2V — 2 (E4E7 - E?) - N (C.2.7)
1 . .
—_ v (i _ s
0=v( (E/ - 9E)). (C2.8)

So far no perturbative expansion is made. Now we expand the metric as
N=1+a, Bi=a%d, (C.2.9)

and solve the constraint equations to the first order in C. Note that the first order solution
in C is enough to obtain the quadratic (or actually even cubic) action, since the second order
contribution couples to the zero-th order part of the constraint equations (i.e. the Friedmann
equations). Up to the first order, the relevant geometric quantities are given by

RO — —%aiajﬁ; (C.2.10)
Ej=a’ [(H (1+20)+ C) i — 8i8j¢] : (C.2.11)

Then the zero-th order solution is just the Friedmann equation:

1.
3MpH? = Eqbz +V. (C2.12)

»3 This gauge choice is possible as long as ¢(t) # 0, which is the case during the slow-roll inflation.
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At the first order in C, the solutions are given by

LT 9P
o= P Y = + x, where 0d;d;x = ZM%,IHZ

= L. (C.2.13)

By substituting them into the action and expand it up to the second order in C, we finally
obtain the quadratic action as

Sy = f il [c2 — = (3i0) ] (C.2.14)

The prefactor ¢ just indicates that the unitary gauge is ill-defined in the limit ¢) — 0. Note
that so far no slow-roll approximation is used. Now we rely on the slow-roll approximation.
To the leading order in the slow-roll approximation, the prefactor ¢?/H? can be regarded just
as a constant. Then, by using the results below in App. C.3, the power spectrum of C at the
horizon crossing is given by

HH: 1 H?

P(k) = 15 = =g,
®) 4r g2 81> M2,

(C.2.15)

ll 7

where the subscript “+” indicates that the quantities are evaluated at the horizon crossing
k = aH. The amplitude of C is frozen after the horizon crossing, as we can see from the
quadratic action (take the limit k < aH). Thus the above expression for the power spectrum
is valid even well after the horizon crossing. The power spectrum slightly depends on k
through different values of H. and e.. It is parametrized by the spectral index n; as

d
n,—1= ogk log P (k) = —6€ + 21). (C.2.16)

In principle there can be contributions from higher derivatives of the potential, but they are

usually small and hence we ignore them here. The power spectrum and the spectral index

are the primary observables of the inflation. The CMB anisotropy observation by the Planck
satellite [87] fixes these quantities as

log (10"°P¢ (ko)) = 3.064 + 0.023, (C.2.17)

ns = 0.968 + 0.006, (C.2.18)

where the quantities are evaluated at ky = 0.05Mpc ™, corresponding to 50-60 e-folds before
the end of the inflation. Note that 1, supports a slightly scale-dependent spectrum.

C.2.2 Tensor perturbation

Next we consider the quadratic action for the tensor mode, i.e. the transverse traceless part
of the spatial metric /;;. Since it decouples from the scalar perturbation at the quadratic level,
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we need to consider only the background part for the scalar sector. Thus we expand the
metric as

ds® = —dt* + a* (¢");;dx'dx/, (C.2.19)

where y;; = 80/17 = 0, and find the quadratic action for y;;. Up to total derivatives, the relevant
geometric quantities are given by

1
R(S) = —E&,yij&lyij, (C220)
3 1
E;EV —E* = —6H* + 1V (C.2.21)
to the second order in y;;, and hence the quadratic action is
) _ Mg 1
S;)) _ TPl fd4x 2 [Vz‘j)?ij _ a—zal)/ijal%j]- (C.2.22)
We find the power spectrum for the tensor mode from this action as
2 H?
P,(k) = =—, C.2.23
)/( ) 7_(2 M%)l ( )

where we have summed over the two polarization modes. Thus the tensor-to-scalar ratio r
is given by
p,
r=— = 16e.. (C.2.24)
Pe
Since the normalization of the curvature perturbation is fixed by the CMB observation, it is
related to the inflation scale as

1/4

V4 ~ 1.4 % 106 GeV (é) , (C.2.25)
13 r 12

or H. ~7.6 x 10" GeV (0—1) , (C.2.26)

as long as the inflaton is the dominant source of the curvature perturbation. It implies that
high-scale inflation models generically predict a sizable tensor-to-scalar ratio. So far only an
upper bound on r is obtained [88]:

r < 0.07, (C.2.27)

where it is again evaluated at k = ko. Future experiments aim to detect  of O(107%) [89].

C.2.3 Comparison with observation

The normalization and the spectral index of the curvature power spectrum are used to
determine inflation model parameters once we fix an inflation model. They are further
constrained by the upper bound on the scalar-to-tensor ratio. We see how it works with
some specific inflation models in this subsection. The results are used in Chaps. 4 and 5.
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Chaotic inflation model

First we consider the chaotic inflation model, where the scalar potential is given by

V= %qb”, (C.2.28)

with n being some numerical constant. In this case the slow-roll parameters are given by

2 M2 M?
€= %?gl, n=n(n- 1)?51. (C.2.29)

The number of e-foldings is given by

1[4 qbzlwyﬂ

20 M, M| T 200

~

(C.2.30)

where ¢? > ¢?2 holds for sufficiently large N. Then the spectral index and the tensor-to-scalar
ratio are given in terms of N as

n+2
s—1=——F=, C.2.31
n N ( )
4n
= —. C.2.32
r=% (€232)
The model parameter A is fixed by the CMB normalization as
~12x107 " (2nN)™"? (C.2.33)
M N

To be more specific, we take n = 2 (where A = mﬁ) is the inflaton mass), and N = 60. In this
case the inflaton mass is fixed from the CMB normalization as

my ~ 1.4 x 10" GeV, (C.2.34)

while n; and r are given by
ns = 0.967, (C.2.35)
r = 0.13. (C.2.36)

Thus the spectral index is consistent with the CMB observation, while the tensor-to-scalar
ratio is somewhat larger than the upper bound. If we consider a non-minimal coupling
between the inflaton and Ricci scalar, we can avoid it for n = 4 [44]. In that case the mass
scale at around the minimum is m, =~ 10" GeV. For this reason we take m, = 10'2-10" GeV
when we consider the preheating dynamics after high-scale inflation in Chap. 4.
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Hill-top inflation model
Next we consider the hill-top inflation model, where the potential is given by
o\
V=A% |1 —~ (—) ] , (C.2.37)
U

where 7 is again some constant. In this model, the scalar spectral index and tensor-to-scalar
ratio are given in terms of N as

2n-1

S X (C.2.38)
2 1wz
16n 1 v,
"Z N —-2) | 2Nn(n - 2) an} (C.2.39)

Thus r is negligibly small in small-field models for v, < Mp; as long as n > 2. It originates
form a larger hierarchy between |17| and €, which is typically present for low-scale inflation
models. The CMB normalization implies

|2n((n - 2)N)"—1]"272 A

1272 (v M =3

22x%x107° ~

(C.2.40)

It relates A and vy and hence there remains essentially one parameter, which we take v in
Chap. 5. For a reasonable value of 7, the spectral index is slightly outside the observationally
tavored range. This discrepancy is resolved if there exists the following Planck suppressed
operator [56,57]:

2
oV = kP (C.2.41)

2 M3

Pl
with k < O(1/nN). While it is too small to change the inflaton dynamics significantly, it can
shift the slow-roll parameter 1 for a certain range of k. If n > 6, it is possible to shift the
spectral index within 68% confidence level for N = 50-60. See Fig. C.1 and Ref. [90]. Since

the suitable value of k is small, it is safely ignored during the preheating epoch.

C.3 Spectator field dynamics

In this section we consider the dynamics of a light scalar field, which we call a spectator field,
during inflation. We do not consider fermions or vector fields since they are Weyl-invariant
in the massless limit, and hence are not much amplified during inflation in general. The
Higgs is an example of such a spectator field if it is light enough during inflation. We have
used the results of this section in Chap. 3.
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Figure C.1: The ns-r plane for n = 4,6,8 with varying k from 107* to 1072. The solid (dashed) lines
correspond to N = 50 (60). The circle, triangle, and square represent points at k = 1074,1073,1072
respectively. The yellow shaded region stands for one and two sigma regions of n; [91].

C.3.1 Power spectrum

First we compute the power spectrum of a spectator field for super-horizon modes. We
consider the following action:

S, = fd“x\/—_g[—% @x)* - % (mf( + EXR) )(2] , (C.3.1)

where x is a real scalar field, or the spectator field, m, is the mass of xy and &, is the non-
minimal coupling. At present we do not assume x as light during inflation to make the
discussion generic. We assume that the background is the de-Sitter spacetime, where the
energy density is sourced by the inflaton.

The equation of motion of y is given by

0>
Y +3HX = —x+ (m? + EXR) x =0, (C.3.2)

where the dot denotes the derivative with respect to the time. In the FLRW metric, the Ricci
scalar is given by

p
E] . (C.3.3)
Thus, after redefining

X =ax, (C.34)
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and using the conformal time 1 = f dt/a, the equation of motion is rewritten as
d? P + nita? a’l
d_TIZ - +myas + (65)( - 1) 7 xX=0. (C35)

We now define the mode function of j as
- &k [, . ki | At —ikz
(%) = W [aEvk(n)e + aEvk(n)e ], (C.3.6)

where ﬁ,{'/ﬁi? is the creation/annihilation operator and vi(7) is the mode function of §. The
mode function obeys the wave equation

2 ’”

d a
i + 1+ mia® + (68, — 1) 7] v =0, (C.3.7)

and the Wronskian condition
v, — o0y =1, (C.3.8)
while the creation/annihilation operator satisfies the commutation relation
5 ot ) At st
[aE k»] = (k k ) [a ] [aE, ak7] =0. (C.3.9)

If we define a vacuum as a state that is annihilated by 4y, the two-point function of yx is
calculated as

3 Pt
<X(f, T])X(JZ’/T]» = %f(jﬂl; o2 e () (C.3.10)

In particular, if we define the power spectrum P, (k) as

(@)= f dlogkP, (k), (C3.11)

it is given in terms of the mode function as™
3
k |2

P, (k) =
Now we compute the mode function in the de-Sitter background. In the pure de-Sitter
background, the scale factor is given in terms of the conformal time as

a= _Hin’ —c0<n<0, (C.3.13)

"* Here we ignore subtraction of quantum fluctuations just for simplicity.

98



where H is now constant. Note that 7 — —oco (0) corresponds to the infinite past (future).
Thus the wave equation for the mode function is

2 m2
[dde + k- (2 —-12&, - #2‘) %] v = 0. (C.3.14)

After redefining the mode function as 9 = v/ \/—kn, we finally obtain the Bessel equation:

d Ok d@k -
2 2 2 —
ﬁ ZE + [Z -V ]Uk =0, (C315)
where
_ /2 my _
V= Z - 126)( - ﬁ and z= —kn (C316)

We analyze the cases with 12 > 0 and v? < 0 separately in the following.

Light field case

First we consider the case that x is a light field, or v* > 0. In the present case, we take the
boundary condition of the mode function as

1
v & ——e " for —kn — oo, (C.3.17)
V2k 1

up to some constant phase factor. It corresponds to the Bunch-Davies vacuum. Note that
different choices of the boundary condition correspond to different choices of the vacuum.
Then the solution is given as

o) = U HY (), (C3.18)

where Hg) is the Hankel function of the first kind. By substituting it to Eq. (C.3.12) and
using the asymptotic form of the Hankel function, we obtain the power spectrum for the
super-horizon modes as

Py (k)

Bk VT
ka<H — 472 (ﬁ) (F(S/Z)) ’ (C.3.19)

thus it is slightly scale-dependent.
There are two interesting limits in this formula. First let us consider the case where y is
massless and minimally coupled to the gravity. In this case v = 3/2, and hence we obtain

HZ
kja<H = 47-(2 :

Py (k) (C.3.20)
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Thus the power spectrum becomes scale independent. We have used this formula to obtain
the power spectra of the curvature and the tensor perturbations in the previous section.
Next let us consider the case where x is massless but £, = 1/6. Actually in this case yx is
Weyl-invariant, and hence it decouples from the metric sector as we can see from the wave
equation of the mode function. In this case v = 1/2, and hence the mode function is always
given as

L e~k (C.3.21)

Thus there is no amplification even for the super-horizon mode. More generally, if &, and
m? satisfy

2

m)(
126+ 75 =2, (C.3.22)

there is no amplification for the super-horizon mode in the pure de-Sitter spacetime.

Heavy field case

Next we consider the case that x is a heavy field, or v* < 0. Even in this case, the solution is
given in terms of the Hankel function of the first kind as
VT
0 = Tne—m/ZH;;)(—kn), (C.3.23)
where the ordering of the Hankel function is now imaginary, and we define a = [v|. The
Hankel function of the first kind with the imaginary ordering has an asymptotic form of

1 + coth(na) (E )i"‘ _ il(ia) (E )‘ia ’

HY
w20 = a2 2

(C.3.24)
Tt

and the fluctuation on the super-horizon scale is

T e O e P
461He 'Hioz( kﬂ)|

11

— —Ta . —kT]
=5 ll — e ™ (1 + coth(na)) sin (Za log(T) + y)l , (C.3.25)

2
[o|” =

where the constant y is defined as

[(Zia) ] . (C.3.26)

y=atg ll"(l T i)

We may disregard the second term since it is oscillating and exponentially suppressed,
resulting in

11

o (C.3.27)

2
[ok|” =
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Note that so far we have used only the approximation k/aH < 1.

The above expression contains contributions from the quantum fluctuation, and hence
we need to renormalize it. Here we may rely on the adiabatic subtraction method that is
commonly used in the context of the quantum field theory in curved spacetime. The equation
of motion of x is formally solved as

1 t
Uk = exp |—i Widt|, C.3.28
k W, p[ f k ] ( )
where W satisfies
2 _ M2 1/2 & -1/2

Wi =i+ W (W), (C.3.29)

with QF being defined as
Q2 =w? +(12 2\ 2 6 2\ 2 B e C.3.30
k—a)k+ EX—Z + éx—z , a)k—a—2+mx. ( )

We may recursively solve Eq. (C.3.29) by expanding with respect to the number of the time
derivatives, and such an expansion is called the adiabatic expansion. Up to the second order
in the adiabatic expansion with the limit k/aH < 1, it is given by

Wk = Meff;y + a)(Z)/ (C331)

where

2 2 2 9 H’
Meey = /My + 126, H?, 0¥ = — . (C.3.32)
8 Mt

Here we have assumed &, ~ O(m?/H?), and hence treated £, H? as the leading order in
the adiabatic expansion. In the adiabatic subtraction, we subtract the n-th order adiabatic
solution from the bare solution to obtain a physical quantity, where  is taken as the minimal
number with which all the divergences in the bare solution are subtracted. The integration
diverges quadratically in the case of the power spectrum, and hence we subtract the second
order adiabatic solution from it. Thus we may define the physical power spectrum as

3

Pk = —— [za o~ —

—, (C.3.33)
(0) (2)
Wk + Wk

471203

where W,E”) is the n-th order term of W in the adiabatic expansion. For the super-horizon
mode, it is given by

Py (k)

24302 (k \( H \
243 (k. ’ C.3.34
kja<H — 51272 (aH) (meff;)() ( )
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to the leading order in H/m.,, expansion.”® It is highly suppressed, and also highly blue-
tilted. Hence we can indeed say that x is stabilized at the origin of its potential when it
is massive enough. See, e.g. Refs. [93,94] for more details on the adiabatic subtraction. In
principle we should perform the adiabatic subtraction in the case of a light scalar field as
well, but the counter term decays rapidly after the horizon exit and we practically ignore it.

C.3.2 Langevin and Fokker-Planck equations

In this subsection we derive the Langevin and Fokker-Planck equations that describe dy-
namics of a homogeneous mode of a light spectator field x during inflation. For more details,
see e.g. Refs. [21,22].

B Derivation of Langevin equation

Suppose that a real canonical scalar field x has a potential V = V(x) with |V”| < H? during
inflation. Then the equation of motion is given by

Ix
X+3HY — [1_2 + V' =0. (C335)

We now divide y into the small scale modes and the coarse-grained large scale mode:

> (2 d’k ~ —ikR A o ik-2
x( ) =x(t)+ fme(k —aeH) [”J?XE(t)e Lt aEXE(t)ek , (C.3.36)

where 0 is the Heaviside theta function with the numerical factor € satisfying € < 1. We take
the time dependence of € such that eH is constant even if H is (slightly) time-dependent.
Thus f is the coarse-grained mode averaged over the constant physical size (¢H)™, or the
time-decreasing comoving size (a¢H)™, that are slightly larger than the event horizon.

For the short-wavelength modes, we may linearize the equation of motion since they are
small. Thus the equation of motion is approximated by

kZ
XI?+3HXI?+H_2XI?: 0, (C.3.37)

where we have also ignored the potential term since it is negligible compared to the gradient
term due to H? > |V”|. The solution is already discussed in App. C.3.1, and is given by

Xi= = (17 - —)e‘ik”, (C.3.38)

as long as we use the Bunch-Davies vacuum as the initial condition. Note that x; in this
subsection is different from v; in App. C.3.1 by a factor of a.

"> This expression is different from Ref. [92], which might be originated from differences in subtraction
schemes. Anyway, the conclusion that the fluctuation is suppressed when it is massive does not change, and
hence we do not pursue the origin of the difference further here.
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We now schematically denote the division as y = t+ 0 x;s, where the subscript “s” stands
for the small scale. Then the equation of motion is given by
2
i (X +60-xs)+ 3H (;( +0-xs)+ V' (x+0-xs) = (C.3.39)
By using the linearized equation of motion of x,, we obtain
- % (aeH?0) - x. — 20eH6 - o + 3H (¥ — aeH?S - x2) + V'(¥) = 0. (C.3.40)

where we have used O(k — aeH) = —aeH?5(k — aeH), and 6 is an abbreviation of 6(k — ae).
We ignore the first term due to the slow-roll approximation. The second and third terms
can also be safely ignored in the slow-roll approximation, since only the over-horizon mode
with k = aeH contribute to the above equation due to the delta function. Note that the above
equation should always be multiplied by slowly-rolling variables, and hence we can safely
ignore the time derivative of the delta function as well. Thus we obtain

P=— V(X + £(t, ), (C.3.41)
where f is defined as
#k  —iaeH* [, _po i3
f(t,%) = f(2n)3/2 N [“;?e K + g ]6(k—aeH) (C.3.42)

where we have used Eq. (C.3.38) with || < 1/k. Note that now the operators for each K
appear only in a specific form, and hence are commuting with each other. We may regard
the system as classical in this sense. The correlation function of f(t, ¥) is computed as

3
(ft,Dft, X)) = 4%260 —t)jo(z), z=aeH|X-x"|, (C.3.43)

where jy(z) = (sinz)/z is the first spherical Bessel function of the first kind. In particular,
when ¥ = ¥/, or within the same Hubble patch, we may drop ¥ from Eq. (C.3.41), and write
it as

X = (X) + f(t), (C.3.44)
where the correlation function is now given by
H3
(fOfE)) = 500 = 1). (C.3.45)

Eq. (C.3.44) is called the Langevin equation, and f is called the noise term. The physical
interpretation is as follows. The comoving horizon is decreasing with time during inflation.
Hence a mode that was inside the horizon in an early epoch exits the horizon at some later
time, contributing to the coarse-grained mode y. Such a contribution originates from the
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quantum fluctuation, and hence acts as a random noise to y. Its size is controlled by H since
the size of the quantum fluctuation in the (quasi) de-Sitter space is determined by H.

B Derivation of Fokker-Planck equation
We derived the Langevin equation just above:

_ V)
-~ 3H

+ f(D), (C.3.46)

where the noise term f(t) satisfies

H3
(fOFE)) = 50 =1), (C.3.47)

and x(t) should be understood as the coarse-grained mode denoted as { above. Now we
rewrite it as the time evolution equation of a differential probability density function P(¥, t)
defined as

P(x, 1) = 6 (x(t) = X)), (C.3.48)

where (...) denotes the average over possible noise configurations. It satisfies
Fon = [ drEoP o, (C3.49)
and hence P(x, t)dx is indeed understood as the probability where the spectator field sits

within the field value of [x, x + dx]. By using the Langevin equation, its time derivative is
given as

ot | 3H

IP(X,t)  d |V'(X)
ot IF

P(x, t)] - 0% fBo(x() - 7)) (C.3.50)

We may evaluate the last term as follows. First of all, the formal solution of the Langevin
equation is given by

X)) — xo = fo dt’ f(t') exp [— j; dar’ 3H‘(/;((é‘f§"_)))(0) , (C.3.51)

where xy = x(t = 0) is the initial value of y. Hence the correlation between x and f may be
evaluated as

3

FExn) = 2 (C3.52)

8’
where the factor 1/2 comes from that the integration is taken over only one side. Now we
evaluate the relevant correlation as
H? JP

835 (C.3.53)

(O (x(t) = 0)) = (ft)x(t)) <%(t)6 (x(t) — X)> = -
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where we decomposed the correlation function since the noise term is Gaussian. Thus we
finally obtain the so-called Fokker-Planck equation as

oP(%,t) _ 9 V’(X)P H? (9P(Xrt)]_ (C.3.54)

ot 8)( (Th)+ 8n2  Jdy

It may be useful to change the time variable from ¢ to the e-folds N. Then the Fokker-Planck
equation is given as

P(x,N) +

IP(,N) _ J [V’(x) (C.3.55)

H2 8P(X,N)
ON  dx| 3H2

where we have dropped the tildes for notational ease. We use it extensively in Chap. 3.

m Equilibrium state and relaxation time scale

Now we study the properties of the Fokker-Planck equation we derived just above. We
decompose the probability density function following Ref. [22] as

o0

P=¢" Z 1, P,e Mt (C.3.56)

n=0

where we have defined v = 47?V/3H*. Then the equation for P, is similar to the Schrodinger
equation:

;
1 (__ N v,) (__ + v’) p, = -~ 2np (C.3.57)

where we have used (9/dx)" = —d/dx, and ignored the time-dependence of H. From this
expression we can see that A, > 0. It means that the system always approaches to an
equilibrium state in the pure de-Sitter space, which is obtained by setting A, = 0, or

e (C.3.58)

2

Peqg = Nexp l_Sn Vl ,
where N is a normalization constant, assuming that P.q is normalizable. If V < 0 at the
large field value region such as the Higgs potential, the scalar field lies in that region in
most Hubble patches in the equilibrium state, resulting in difficulty to realize the present
universe. Thus the time scale to achieve such a configuration is the most relevant quantity for
the discussion of the EW vacuum stability during inflation. In Chap. 3, we have addressed
this question by numerically solving the Fokker-Planck equation.

In the case where the potential is monomial, it is easy to estimate the parameter depen-
dence of the relaxation time scale. Suppose that the potential is given by V = A,x*/p. Then

v is given as

_ 4r? /\po _ 4rm?
~ 3p H*  3p

. (C.3.59)
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where we have define the dimensionless field t = x(A,/H*)"” (it should not be confused with
the coarse-grained mode we have used above). In terms of y the Schrodinger-like equation
is given as

1( 0 dov 9 do\ ” = oA, (HA
! (‘a_x ' E)(‘% + E) P, =4n*A,p, A, = (/\_,,) | (C.3.60)

The equation now has no explicit dependence on A,, and hence we obtain the parameter
dependence of A, as

2/
A ocH3(ﬁ) p (C.3.61)
n H4 . oJe

Thus the number of e-folds the system takes to achieve equilibrium is estimated as

2/p
H 1 (54) : (C.3.62)

NreaXN_N_
TN H2\A,

For instance, for the quadratic (A, = m?) or quartic (A, = A,) potentials, it is given by

H? -172

Nietax ~ — o |A,[ 7. (C.3.63)

X

If it is larger than the time scale of the change of the Hubble parameter (~ ¢! with € being

the slow-roll parameter), the system may deviate from the equilibrium state even in the
later epoch [95]. It may be of some use to estimate the relaxation time scale of the Higgs,
but nevertheless we need a numerical study to estimate it more precisely for a complicated
potential such as the SM Higgs effective potential.
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Appendix D

Review on preheating

In this appendix we review the inflaton dynamics after inflation. Especially, we discuss
in detail particle production process caused by the inflaton oscillation after inflation. Here
we mainly concentrate on the case where the inflaton potential at around its bottom is well
approximated by the quadratic one. For low-scale inflation models such as the hill-top model
we consider in Chap. 5, anharmonic terms are also important. Still, the discussion with the
quadratic potential is useful to understand qualitative features of such a system. We ignore
the Higgs self coupling throughout this appendix. It is discussed in detail in Chaps. 4 and 5.

D.1 Inflaton dynamics after inflation

Here we review the background dynamics of the inflaton after inflation. We concentrate on
the case where the inflaton potential at around its bottom is given by

V(p) ~ %m@z, (D.1.1)

where ¢ is again the inflaton, and m, is the inflaton mass at around the bottom.

Once the inflation ends, the mass scale m, satisfies mgy > H, where H is the Hubble
parameter of the universe. In this case we can treat the Hubble expansion adiabatically, by
assuming the time-dependence of the inflaton as

(1) = D(t) cos (myt), (D.1.2)

where @(t) is the inflaton oscillation amplitude, satisfying ® ~ O (H®). By substituting it to
the scalar field equation of motion, we obtain

(ci> + qua) sin (myt) - %}) (& + 3H®) cos (myt) = 0. (D.1.3)

The second term is suppressed by H/m,; compared to the first term, and hence the inflaton
amplitude scales as

D(t) oc a3/, (D.1.4)
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It indeed satisfies ® ~ O (H®), implying our adiabatic approximation is self-consistent. Thus,
the background dynamics of the inflaton is well described by

O(t) ~ ;D;/nzi cos (m(pt) , (D.1.5)

where @y is the initial inflaton oscillation amplitude, and we take 2 = 1 at that time. It is
also useful to derive the later time behavior of ¢ in terms of the physical time t. The Hubble
parameter decreases as

H? o« @ oc a3, (D.1.6)

and hence a « t>* and H = 2/3t. Then from the Friedmann equation we obtain

mécpz ~ él (D.1.7)
6M2, 9 o
or
2 V6Mp
o) =3 —_— (mgt). (D.1.8)

As long as the decay/annihilation rate of the inflaton is small enough, the inflaton oscillates
at around the potential minimum following Eq. (D.1.8) for a sizable time scale. We call this
epoch as an inflaton oscillation epoch. As we will see in the following, the inflaton oscillation
causes a resonant particle production if it has sizable couplings with itself/other particles.
Once there exists the resonant particle production, we call that epoch as a “preheating”
epoch. Eq. (D.1.8) is used to estimate the end of the preheating analytically in Chap. 4.

D.2 Formalism

In the previous section we saw that the inflaton condensation typically oscillates after in-
flation. It induces an oscillating effective mass term for the Higgs once there are couplings
between the inflaton/gravity sector and the Higgs sector. For instance, the Higgs-inflaton
quartic coupling induces

mﬁ(t) = /\h(PCDZ cos? (m¢t) , (D.2.1)
while the trilinear coupling induces
m;(t) = oyp® cos (mqbt) . (D.2.2)

The Higgs-curvature coupling also induces an oscillating effective mass term as

2 (t) = 5hm§,]% [3 cos? (mgt) 1], (D.2.3)
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since the Ricci scalar is expressed by the inflaton condensation through the Friedmann
equation. In general, if the background is time-dependent, or even oscillating, then it causes
a particle production. We review the formalism that deals with such a particle production in
this section. In this section we just assume that the Higgs mass term 1, is time-dependent,
without specifying an explicit form. In the subsequent sections we discuss effects of the
couplings Ay, & and oy, more explicitly.

Let us start with an equation of motion of the Higgs:

.1 )
h—;£h+&M+mmm=o, (D.2.4)

where m is the time-dependent effective mass, and we have neglected the self-interaction
of the Higgs here since it is small at the beginning of the particle production. We perform a
mode expansion of the Higgs as

3 2o
h(x) = fﬁ [ﬁ,;h,z(t)elk"‘ + H.C.] , (D.2.5)

where K is a comoving momentum and a(t) is the scale factor. Then the equation of motion
in the Fourier space is given by

0 = Iip(t) + [wh, (1) + A®)] h(h), (D.2.6)

where A = -9H?/4 —3H/2 and a)]%;h(t) = k?/a* + m(t). We impose the Wronskian condition of
the Higgs
el ~ e =1, (D2.7)

that fixes the overall normalization of /. It is invariant under the time evolution since the
equation of motion is linear in /. Then the creation/annihilation operator satisfies

[@ﬁﬂ:é@—k) i, ]_[;a] 0, (D.2.8)

due to the commutation relation of the Higgs. Here note that there is a redundancy in
Eq. (D.2.6): we can always rewrite it by another set of (i, ;) that satisfies

S

It leaves Eq. (D.2.6), the Wronskian and the commutation relation invariant as long as the
coefficients satisfy

ol = |8 = 1. (D.2.10)

It is the well-known Bogoliubov transformation. With this redundancy, we can always take
the initial condition as

1 wix(0)

R — h t—0)—> —i
2w, (0) ( ) 2

he(t— 0) — (D.2.11)
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We assume that there is no excitation at the initial time, and hence the initial vacuum state
is annihilated by the corresponding operator 4;. Here we have omitted contributions from
the cosmic expansion since it is suppressed by O(H?/ a)i;h). In other words, we work with the
leading order in the WKB approximation.

We now define a comoving number density of the Higgs in the momentum space as

() = 5—= |hk(t)| + @i, () |hk(t)|] (D.2.12)

wol

at the leading order in H?/ wi}h expansion. It becomes the comoving energy density with the
vacuum fluctuation being subtracted once we multiply the frequency wy;,. It also satisfies
i, = 0when mi does not depend on time. Finally the initial condition of hE implies 14.;,(0) = 0
These facts support the above definition of the comoving number density. There are two
situations where the comoving number density grows rapidly with time: the breakdown of
adiabaticity and the tachyonic mass term.

First let us discuss the breakdown of the adiabaticity. Here we assume that a)k >0, as
is the case for the Higgs-inflaton quartic coupling (see Eq. (D.2.1)). In this case the time
derivative of the comoving number density 7y, is

wkh

T’lkh ~ O( ]wkhnkh, (D.2.13)

kh

where we again keep only the leading order terms in the WKB expansion. Thus, the number
density increases drastically with time only if

Wi

2
Wiy

> 1. (D.2.14)

We call this situation as a breakdown of the adiabaticity. Indeed, the WKB solution h(t) =

et [ o) / 2w (t), which is valid for the adiabatic region |a@y,/w?, | < 1, leaves the number

density invariant up to corrections of O(wx;/ a)k;h). If Apy is large enough, the adiabaticity
condition is indeed violated at around when the inflaton crosses the origin of its potential,
resulting in resonant Higgs particle production as we see in the next section.

In the above discussion we assume that w?, is positive definite. If we have the Higgs-
inflaton trilinear coupling and/or the Higgs- curvature non-minimal couphng, the effective
mass squared can be negative (see Egs. (D.2.2) and (D.2.3)), so is a)kh In this regime the
wave function grows exponentially with time, resulting in efficient particle production after
the inflaton passes the tachyonic regime.”’ In the following sections we first discuss the
resonant particle production due to the breakdown of the adiabaticity (corresponding to the
Higgs-inflaton quartic coupling A;), and then move on to that due to the tachyonic effective
mass (corresponding to the Higgs-curvature non-minimal coupling &, and the Higgs-inflaton
trilinear coupling oy).

"1 The comoving number density is ill-defined when the inflaton passes the regime where w?, <0.
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D.3 Broad resonance

First we discuss the particle production due to the breakdown of the adiabaticity. In partic-
ular, we assume that there is the Higgs-inflaton quartic coupling

Ano

Lint = - 2

O°h?, (D.3.1)
in this section. In this case the time-dependent effective Higgs mass term is given by
m; = Ay (t). (D.3.2)

It is clear that the mass term is large enough at the end-points of the inflaton oscillation,
and thus the adiabaticity is likely to be broken only at around when the inflaton crosses the
origin of its potential. At around the origin of its potential, the inflaton is approximated as
¢ = Pmy(t —t.), where ¢, is the time when the inflaton crosses the origin. Hence we obtain

D Aoy @ ~ k) Mg A D.33
ol | (k2/a2 + Appm2 @2(t — t2) 9

where g is a resonance parameter, and the inequality is saturated when t — t. ~ k/ a)\,i(/;mq)ql.

Here we ignore effects of the cosmic expansion on the adiabaticity since mg > H at least after
several oscillations of the inflaton. If g < 1, the Higgs particles are produced only within
narrow bands k/a ~ my(1 £ q), and hence the adiabaticity is not broken down. Since the
Higgs is boson, bosonic enhancement of the previously produced Higgs particles could still
cause a narrow resonance [96-98], but the cosmic expansion soon kills it in a usual case.”?
Thus we concentrate on the opposite case: g 2 1. In this case, the adiabaticity is broken at
around when the inflaton crosses the origin of its potential for the modes with

k
—sp), ph) = meg'’*, (D.3.4)

and hence these modes are produced efficiently. The production of these modes are enhanced
by the previously produced particles for bosonic particles, and the number density of these
modes grows exponentially with time. It is called a broad resonance, since the width of the
resonance band is broad compared to the narrow resonance. Due to the phase space factor,
the typical energy scale of the produced particles are estimated as k/a ~ p.. Note that g > 1
implies that p. 2 mg, and hence the typical energy scale (~ p.) is comparable or larger than
the inflaton mass scale.

In order to study the broad resonance quantitatively, it is useful to first ignore the cosmic
expansion, and rewrite the equation of motion for the wave functions as

2

d
= + Ax +2qcos (2z) | hy = 0, (D.3.5)

"2 The modes within the resonant band are efficiently red-shifted away if g%m < H.
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Figure D.1: The stability/instability chart of the Mathieu equation. It is the same as Fig. 4.5.

where we define the parameters as

_ _ K2 _ /\hqbq)z
¢ ¢

It is the Mathieu equation, and is treated by the Floquet theory (see App. D.6). We again show
the stability/instability chart of the Mathieu equation in Fig. D.1 for readers’” convenience,
which is the same as Fig. 4.5. There exists an exponentially growing mode in the white
region, which means that a resonant particle production occurs in that parameter region.
For the broad resonance case we should concentrate only on the region with Ay > 29. As we
can see from the figures, the instability bands get broader and broader as we increase g, and
this is the reason why the case with g > 1 is called the broad resonance. The coefficient of
the exponent of the growing factor g can also be calculated analytically (see Ref. [99] and
App. D.6), and it is roughly given by g ~ O(0.1).

Once we switch on the Hubble expansion, the resonance parameters A, and g decrease
with time. They pass several instability bands within the course of the Hubble expansion.
This process is called a stochastic resonance in Ref. [99], and is discussed to some extent in
App. D.7. Anyway, the resonance persists with the exponent of order g ~ 0(0.1) until the
parameters enter the stability region at around the origin in Fig. D.1. Thus, the condition

p. Ssmy, or 51, (D.3.7)

indicates the end of the preheating epoch. The number density of the Higgs increases as
Ny, oc e2Ha™st yntil the above condition is satisfied.
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D.4 Tachyonic resonance

Here we consider the case where the resonant particle production is caused by a tachyonic
mass term. First we consider the Higgs-curvature non-minimal coupling:

En

Line = —ERhZ, (D.4.1)

where R is the Ricci scalar. It is given in terms of the inflaton condensation as

. 1 .
- 2] _ 242 _ 32
R_6[H+2H]_AT%1[3m¢cp -¢?], (D.4.2)
where H is the Hubble parameter, and we have used the Friedmann equation in the second
equality. Thus the time-dependent effective Higgs mass term is

2

ml(t) = éhmé%% [1+3cos (2m,t)], (D.4.3)

where we have ignored terms suppressed by H/m,. It is clear from this expression that
the Higgs effective mass term can be negative during one oscillation of the inflaton. The
particle production due to this tachyonic mass is called the tachyonic resonance. In order
to study it quantitatively, it is again useful to first ignore the Hubble expansion, and rewrite
the equation of motion of the wave function as

dZ

= + Ay +2qcos (2z) | hy = 0, (D.4.4)

where we define the parameters as

K 2 3&, @2
= A = — + — L — D.4.5
z = mgt, Ag m5)+ 3 1= ME, ( )

It is again the Mathieu equation. In the present case we should see the region with Ay > 24/3
in the stability/instability chart D.1.”> As we can see, the instability band is broader for
the tachyonic resonance compared to the broad resonance. In other words, the tachyonic
resonance is more efficient than the broad resonance. Indeed, an analytical computation
shows that the growth rate of the number density X; for g > 1 is given by [37] (see also
App. D.6)

X

Va

in the case of the tachyonic resonance, where x =~ 0.85. Note that X is larger for lager g, as
opposed to the case of the broad resonance. It is qualitatively understood as follows. The

Xy = Ak + 2x \/ﬁ, (D46)

»3 Here we assume &, > 0 for the EW vacuum stability during inflation.
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time interval At, during which a Higgs mode with (physical) momentum p is tachyonic is
estimated as

2

MmyAt, ~1— eyl for p* < mg. (DA4.7)
¢

Within one inflaton oscillation, these modes are enhanced as

exp (m VgAt ) ~exp|vg— A , (D.4.8)
¢ P \/ﬁ

and hence it is proportional to 4/. The typical momentum p'9 enhanced by the tachyonic

resonance is estimated from Ap«ac) = +/q/x, or
w0 = Ly gt (D4.9)

Note that the g dependence of the typical momentum scale is the same as that in the case of
the broad resonance.
Next we consider the Higgs-inflaton trilinear coupling;:

O’;@

Line = —Tthz. (D.4.10)

In this case the time-dependent Higgs effective mass term is given by
my = aned(t), (D.4.11)

and hence it is trivial to see that it becomes tachyonic within one oscillation of the inflaton
condensation. Once we neglect the Hubble expansion, the equation of motion of the wave
function is again written in the form of the Mathieu equation as

2

d
= + Ax +2qcos (2z) | hy = 0, (D.4.12)

where the parameters are now given by

mqbt
—), A
2 k

| =
=
N

2Gh¢q)

2
¢

z

q (D.4.13)

3

2 4
p m
Thus now we should see the region with A; > 0 in Fig. D.1, and hence the resonance is even

stronger compared to the case with the Higgs-curvature non-minimal coupling. The growth
rate of the number density is again given by Eq. (D.4.6).

115



Figure D.2: The stability/instability chart of the Whittaker-Hill equation. It is the same as Fig. 4.9.

D.5 Resonance with all couplings

Now we consider the case with the Higgs-inflaton quartic/trilinear coupling as well as the
Higgs-curvature non-minimal coupling:

1
Line = =5 [Mgd® + &R + 010 | 12. (D.5.1)

In this case the time-dependent Higgs effective mass term is given by

35;17112 g 12
2 o1 .2 @
m2 = | Ao + ¢ — 2 1 5. (D.5.2)
( M2, ) M2,

It is again instructive to first consider the equation of motion of the wave function with the
Hubble expansion being ignored. It is now given by

2
l% + Ay + 2p cos (2z) + 2q cos (42)1 hy =0, (D.5.3)
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with the parameters defined as

452 Enm3) @2 Mt
Ak:—2+2[Ah¢+—2(P — Z:—¢,
m o MP1 m "
204, ® 3€hm$, D2
p= , q=Anp + —. (D.5.4)

Note that we have now two different frequencies. This equation is called the Whittaker-Hill
equation. Its stability/instability chart can be again obtained following the Floquet theory.
We again show it for combinations of (p, g, Ax) in Fig. D.2 for readers’ convenience, which is
the same as Fig. 4.9. An interesting feature is that Ay, p and g are now independent variables
even for fixed k, since we have now three parameters A, &, and oyy. In particular, the
resonance due to A, and ¢ is strongly suppressed at around the line with

35;11115)
My,

Ao + =0. (D.5.5)

It corresponds to the line g = 0 in Fig. D.1 if we ignore o0y¢. This case is considered carefully
in Sec. 4.4. Even in that case the trilinear coupling causes the resonant particle production.
Indeed, once we switch on the Hubble expansion, it dominates over the other terms in the
later epoch, since it decreases slower than the other terms (it is proportional to ¢, not ¢?). As
the end of the resonance, p and g offer a good criteria:

p| <00, |q| s 0. (D.5.6)

Indeed, the modes enter the stability region at around the origin once this criteria is satisfied,
as we can see from Fig. D.2.

D.6 Floquet theory

Here we summarize some basic facts of the Floquet theory without any proof. For more
details, see e.g. Refs. [38,100] and references therein.

D.6.1 Floquet exponent

Suppose we have the following differential equation:

2

% +A+ qu(z)] h(z) =0, (D.6.1)

where f(z) = f(z + m) is a periodic function. As long as the back-reaction and the Hubble
expansion are negligible, the equation of motion of the Higgs is indeed this form. The
Floquet theorem states that it has a solution of the form

h(z) = ae**g(z) + be™**g(—z), (D.6.2)
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where 11 is a complex number called the Floquet exponent, g(z) = g(z + n) is a periodic
function, and a,b are some numerical constants fixed by initial conditions. The Floquet
exponent u determines the stability/instability behavior of this system: the solution grows
exponentially with time as long as Re[u] # 0.

Now we give a formula for u. We concentrate on the Whittaker-Hill equation

2

% + A +2pcos (2z) + 29 cos (4z) | h(z) = 0, (D.6.3)

in the following for simplicity. Note that the Mathieu equation is just a special case (g7 = 0)
of the Whittaker-Hill equation, and hence is included in our discussion below. We consider
the solution

h(z) = e g(z). (D.6.4)

Since g(z) is periodic, it is expanded as

g(z) = Z a,e*m, (D.6.5)

n

By inserting it to the Whittaker-Hill equation, we obtain the linear equations for the coeffi-
cients as

M(u)-@ =0, (D.6.6)
where
t
E?E ( a_, d_1 dg a1 ap ), (D67)

and

-1 1 ﬁn—l 5771—1 0 0

M(u) = 0 & pn 1 Pu G O ) (D.6.8)
0

0 qn+l ﬁn+1 1 ﬁn+1 ‘7n+1

with p, and g, being defined as

p i q
— . G,= . D.6.9)
A — (iu —2ny = (iu - 2n)° (

Pn
Thus the Floquet exponent u is obtained as a solution of the equation

det [WI(u)| = 0. (D.6.10)
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Actually we can show that

(det []\7[(0)] - 1) (1 — cos (7‘( \/Z))

det|[M(u)| =1+ , (D.6.11)
[ ] cos (iTu) — cos (n \/Z)
from the analyticity of the both sides [100], and hence u is given by
u = L arccos [1 + det [M(O)] (cos (n \/Z) — 1)] . (D.6.12)

Tt

The matrix M is infinite-dimensional, but we need to retain only several tens components at
around My to compute the determinant numerically, since the off-diagonal parts get smaller
as the (absolute value of the) indices get larger. Thus this formula is useful to evaluate u
numerically for given A, p and g.

D.6.2 Boundary of stability/instability regions

Now we discuss how to determine the boundaries of the stability/instability regions of the
Whittaker-Hill equation. It is known that

Re[u] =0, Im[u]€Z, (D.6.13)

on the boundaries [38]. Thus we can expand the solution by the harmonic functions as

h(z) = i Coy COS (2nz), (D.6.14)
n=0

hz(Z) = i Sop41 SIN ((27’1 + 1)2) , (D615)
n=0

hs3(z) = i Cons1cos ((2n + 1)z), (D.6.16)
n=0

hy(z) = Z"’: Son SiN (2nz) , (D.6.17)
n=1

where we have classified the solutions according to the properties under z — —z and z —
z + 1. By substituting them into the Whittaker-Hill equation, we obtain linear equations
for the coefficients as in the previous subsection. Thus, by requiring the determinant of the
associated matrices to vanish, we obtain the values of (A, p,q) where the solution takes one
of the above forms. It is nothing but a point on the boundaries of the stability/instability
regions. We have drawn Figs. 4.5 and 4.9 (and of course Figs. D.1 and D.2) following this
method.
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Figure D.3: The time evolution of the number density with and without the cosmic expansion. The

parameters are taken as ®jn; = \2Mpy, Gini = 10° and k = k./2 with k. = mq)qilr{ 14. The backreaction to ¢
is ignored.

D.7 Effects of cosmic expansion

In this section we briefly discuss effects of cosmic expansion on the resonant particle produc-
tions. We concentrate on the cases with only A, or &, in this section, but a similar argument
holds for more general cases.

m Broad resonance

First we consider the case with only Aj,. In this case, the resonance parameters are given
by (see Eq. (D.3.6))

K2 /\h(pq)z Ah([)q)z
A= — = . D.7.1
KT 271155 A 4mé ( )

Once we include the cosmic expansion, the inflaton oscillation amplitude ® decreases with
time, so do Ay and 4. Thus each mode scans the stability/instability chart of the Mathieu
equation in the course of the cosmic expansion. An interesting feature is that the number
density can even decrease for some time, and hence the resonance may be suppressed
compared to the case without the cosmic expansion. In order to see this point, we plot the
time evolution of the number density ., with/without cosmic expansion in Fig. D.3. We have

taken the parameters as @y, = \/EMpl, the resonance parameter gin = Ah(p(I).z /4m§) = 105,

and k = k./2 where k, = m¢qilr{ 14. The number density without the cosmic expansion (the red

line) always increases with time, while it with the cosmic expansion (the blue line) indeed
decreases for some time, resulting in less efficient growth. Nevertheless, the number density
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Figure D.4: The effective Floquet exponent p as a function of g and k. The initial inflaton amplitude

is Dy = V2Mp; and V0.2Mpy in the left and right panels, respectively. The average is taken from the
beginning of the inflaton oscillation till £, with which q(te)/gini = 1072

grows with time on average. In order to estimate the growth rate with the cosmic expansion,
we may define an effective Floquet exponent ¢ as

log (1 (te)/niu(ti))

[J'eff(kl til te) = 2 (te _ tl)

(D.7.2)

In Fig. D.4 we plot . for different values of gi,; and k. The initial inflaton amplitude is taken
as @yi = V2Mp and V0.2Mp, in the left and right panels, respectively. The time ¢, is taken as
the beginning of the inflaton oscillation, and t, is a solution of the equation g(t,) = 1072gin;.
As we can see from Fig. D.4, u is a complicated function of 4. In particular, it does not
always increase with g. Still, the order of magnitude does not depend much on the value of
g, and hence we may roughly estimate it as g ~ O(0.1) almost independently of ®;,; and
g. This result is used in Sec. 4.2. Another interesting feature of Fig. D.4 is that, almost all
modes with k < k. experience the growth since they scan the stability/instability chart. Thus
the resonance band itself is broader than the case without the cosmic expansion.

m Tachyonic resonance

Next we consider the case with only &;. In this case, the resonance parameters are given
by (see Eq. (D.4.5))

k? 25] _ 3& @2

Ak:_+_l 5]—__,
mé 3 4 M

(D.7.3)

and hence again they decrease with time one we turn on the cosmic expansion. In Fig. D.5,
we show the numerical results of the time evolution of the number density with the cosmic
expansion. The number density is defined only around the end points of the inflaton
oscillation ¢» = 0, and hence we evaluated it only at the points ¢ = 0. As we can see from the
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Figure D.5: The time evolution of the number density with &, for several values of gini. The

parameters are taken as ®jn; = \/§Mp1 and k = k./2. The number density is evaluated only at the
points qb = (. The backreaction to ¢ is ignored.

tigure, the number density grows rather in a power-law like way with time until g < 1 once
we include the cosmic expansion. It may be understood as follows. As we saw in App. D .4,
the growth rate X; is proportional to '/ for the modes with k < k.. Thus, the number density
grows as

t t 2.4&,
i &< exp lf mydt Xk] ~ exp le \/25hf %l ~ (i) , (D.7.4)

tini

where we have used Eq. (D.1.8). In Sec. 4.3, we introduced the effective number of oscillation
et to include the effect of the time integration in the above expression. Anyway, the
resonance parameter g is rather small in the case of our interest since otherwise the EW
vacuum is soon destabilized after inflation, and hence only first a few inflaton oscillation is
important. Thus, 7. is of order unity in the case of our interest.
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Appendix E

Classical lattice simulation

In this appendix we review the basics of the classical lattice simulation. We first show that
the classical approximation is valid in the large occupation number limit, and then discuss
what initial condition is suitable for the simulation. We explain some details on the practical
implementation of the classical lattice simulation in the end.

E.1 Wigner function
Here we review the Winger function, which is a necessary ingredient of the next section.

We mainly follow Refs. [35,101], and consider the quantum mechanics for simplicity in this
section. We retain 7 explicitly in this section to see the meaning of a classical limit.

E.1.1 Definition and characteristics

Let us first define a Weyl transformation A of an operator A:

A(x,p) = fdye‘ipy/h <x + %'A ‘x - %>, (E.1.1)

where x and p are the position and the momentum, respectively. It is rewritten in terms of
the integration over the momentum eigenstates as

A(x,p) = fdu it <p + E|A ‘p - E>, (E.1.2)
2 2
where we have used
1 ixp iyp
(x|p) = ex (—), fd ex (—) = 2mtho(p). (E.1.3)
p Gy P 7 Yy exp % p
Then we obtain
~ A 1 ~ -
Tr[AB] = P f dxdp A(x, p)B(x, p). (E.1.4)

124



In particular, by identifying the operator B as the density matrix p =[i))(1| with [} being a
given state, we obtain

a 1
(A) = Tr [ pA] = ps f dxdp pA. (E.1.5)
We thus define the Wigner function W(x, p) as

0(x, 1
Wi p) = pgﬂf) il f dy e Py (x + y/2) ¥ (x = y/2), (E.1.6)

where the wave function (x) is defined as y(x) = (x|¢). The expectation value of an
operator A is now given by the convolution of the Weyl transformed function A and the
Wigner function:

(A) = fdxdpA(x,p)W(x,p). (E.1.7)

In this sense, the Wigner function is analogous to the classical phase-space probability
distribution function.

Before studying the Wigner function in detail, here we also define an inverse Weyl-
transformation for later convenience. Let us define the following operator:

_ (" dudv ix=%u i(p—p)v
Alx,p) = f o exp( p + - . (E.1.8)
It is equivalent to the following expressions:
- ixufh u Ul _ ipy/h
A(x,p)—fdue ‘p—§><p+§‘—fdyepy 'x+ ><x——‘ (E.1.9)
We now show this statement. By using the Campbell-Baker-Hausdorff (CBH) identity
eAtB = ApBe[AB]12) (E.1.10)
we obtain
i(x=%)u Z(p - ﬁ) A i (ux + Up) iuv —iug/h —ivp/h
exp( 7 + 7 = exp 7 + T e e . (E.1.11)
Then we show that
A(x, P) — fdudvdu do’du ei(ux+vp)/h+iuv/2he—iuv’/he—u’v/h |u//> <uu| U’) <U,| u/) (l/l,|
2nh
=2 fdu’e‘Zi(P‘”')x/h 2p —u'y | = fduei”"/h p- %> <p + %‘ : (E.1.12)
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In the same way, we can show the second equality in Eq. (E.1.9). Now it is trivial that

A dxd
A, p) = f - ;A(x DA, ), (E.1.13)

and hence A(x, p) is the inverse Weyl-transformation operator. It is used in Sec. E.1.3. Now
we summarize some characteristics of the Wigner function.
m Reality

The Wigner function is real. We can show this as follows:

Wy =3z [ dye g e g2t - )

=5 | dye ™y - y/2p(x + y/2) = W, p), (E.1.14)

where we have changed y — —y at the second line.
B Projection onto x-axis (p-axis)

Once we project the Wigner function onto x-axis (p-axis), it is the probability distribution
function for x (p). Indeed, we find that

2 (E.1.15)

f dpW(x, p) = f dy 5(y)P(x + ¥/ (x — y/2) = [p(x)

and in a similar way for the projection onto the p-axis.
®m Normalization

The normalization of the Wigner function is given by
fdxdp W(x,p) = fdx |1/1(x)|2 =1. (E.1.16)

m Upper bound

The Wigner function cannot be arbitrary large. Indeed, we obtain from the Cauchy-Schwarz
inequality that

1
W) = | [ v

1/2 1/2
1
—h( f dy le(y)l) ( f dy |1P2(y)|2) =—, (E.1.17)

oYX+ Y/2) Y(x —y/2)
eymI T =" 7 E.1.18
Ya(y) NG ( )

where we have defined

Pi(y) =
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B Necessity of the Weyl transformation

As we saw above, in order to obtain the expectation value using the Wigner function, the
operator must be Weyl-transformed. It sometimes leads O(fi) differences from the classical
quantity due to the non-commutativity of (%, p). We shall see this in an example shown in
the next subsection.

m Non-positivity

The Wigner function is not semi-positive definite in general. In order to see it, let us consider
two different states ¢, and 1, that are orthogonal to each other. Then, by denoting the Wigner
functions corresponding to Y, as W,,;, respectively, we obtain

fdxdea(x, pYWi(x, p) o< Tr[paps] = 0. (E.1.19)

It means that the Wigner function generally takes negative values for some regions in the
phase-space, otherwise the right-hand side must be larger than zero.”!

The last three properties are the main differences between the Wigner function and the
classical phase-space distribution function. Although the former two can be disregarded
in the quasi-classical limit (i — 0), we should carefully examine the last property for state
by state. If we are lucky enough so that the Wigner function is semi-positive definite for a
given state, then we can regard it as the classical phase-space distribution function in the
quasi-classical limit. Fortunately, it is the case for the Wigner function corresponding to the
initial state for the preheating epoch as we see in the next section.

E.1.2 Example: harmonic oscillator

In this subsection, we consider the harmonic oscillator in the Wigner-Weyl formalism as an
example. The Hamiltonian is given by

A2
WP
n=r

om T2

2
M g2, (E.1.20)

The lowest and second lowest energy states are respectively given by

Po(x) = \/El \/L_Ze"‘z/z“z, (E.1.21)

1 2x X2 /202
Pi(x) = 4—\/%\/;56 e (E.1.22)

"I At this point, there is a logical possibility that the Wigner functions corresponding to orthogonal states do
not have overlaps. However, as we see in the next subsection, it is not the case.
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where g is defined as a = Vii/mw. The corresponding Wigner functions are given by

1 x2 az 2

Wo(x,p) = — exp [_“_2 - h—’z’] (E.1.23)
1 2x2 2a2 2 xz az 2

Wl(x,p) = % (—1 + a—z + th )exp [_{,‘l_z - h—;;] . (E124:)

Note that Wi(x, p) can be negative, while Wy(x, p) is positive definite.

Now we calculate (H) and (H?) for the lowest energy state in the Wigner-Weyl formu-
lation. We shall learn the importance of the Weyl transformation from this example. It is
trivial to calculate (H):

Poome? ) 1
(H) = fdxdpwo(x,p)(zm + > X ) = zhw. (E.1.25)
If one views Wy(x, p) as the probability distribution function, one may naively expect that
the dispersion (H?) — (H)* = AE # 0 because the distribution of (, p) is not restricted to the
circle with a constant energy. However, since 1), is the energy eigenstate, the dispersion must
vanish. The key to solve this apparent contradiction is the Weyl transformation. In fact, the
Weyl-transformed Hamiltonian squared is

hw

2
H%(x,p) = H*(x,p) — (7) , (E.1.26)

that is different from the classical Hamiltonian squared by O(f%). Then, the expectation value
of the Hamiltonian squared is given by

2.2 2.2
o ): ar (E.1.27)

<H2>:fdxdpwo(x,p)(Hz(x,p)— 1 1

and hence the dispersion is zero as expected. Therefore, the Wigner function is different
from the classical probability distribution function even if it is positive-definite in the sense
that the operators must be Weyl-transformed to obtain the correct expectation value, which
may make differences of order O(fi). Of course we can disregard this difference in the
quasi-classical limit.

E.1.3 Time evolution

In this subsection, we derive the time evolution equation for the Wigner function. We shall
show that, when operators satisfy the following commutation relation

inC = [A,B|, (E.1.28)
the Weyl-transformed operators satisfy
inC(x,p) = {Ax,p), Bx,p)}, .

.. | d 4 d d \| -~ -
= 2isin lz (QxA . o 07 )l A(x,p)B(x,p), (E.1.29)
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where d/dxo and d/dpo act only on the arguments of a Weyl-transformed operator O(x, p),
and the subscript MB is the abbreviation for a “Moyal bracket.” Note that

{A,B}MB = i [{A,B}PB +0(7), (E.1.30)
where {Oq, O,}pg is the Poisson bracket. Now we show the above statement. We use
Eq. (E.1.13):

[A, B] _ f duadvadx;dpa dubdvbdxsdpb
(27th) (27th)
% A(xa, p)B(xo, Py [ez’(xu—a%)ua/mi(pa—ﬁ)va/h, ez'(xb—a%)ub/mi(pb—ﬁ)vb/h] . (E.1.31)

From the CBH identity, we obtain
[e—iuafc/h—ivuﬁ/h’ e—iubf/h—ivbﬁ/h] — 2isin lg (Vally — Ubua)l o~ iltaup) 2/ i=i(va+vp)p/1 (E.1.32)

By doing integration by parts, we get

R du,dvedx,dp, |( . [H{ 0@ 0 Jd o ~ ~
A B =2i (0];[1) f (27—(771) ] (Sln E (axu a_pb - a_Xb apu )] A(xa/ Pa)B(xb/ pb))
X exp [% (XU + Pa¥a + XpUp + pyOp — (g + Up)X — (0, + vb);ﬁ)] . (E.1.33)

After changing the variables as
U1 S Uy +Up, V] =V, + Uy, Uy = Uy — Uy, Uy = Uy — Ty, (E.1.34)

and integrating over these variables, we obtain

dxdp 2 9 9 I\|ls. s
A.B]= f 2rih ( ”m[ (axA s Oxp apA)]A(X'WB(’C’P))A(%P)- (E1.35)
We have thus proven Eq. (E.1.29). The density matrix satisfies
ap
Zh_ 1A.p], (E.1.36)

and hence, the time evolution of the Winger function is given by

IW(x,p) o hfd d d 0
ot B 2 8xH8pw 8xw8pH

i )] H(x, p)W(x, p)

=ifi |{A, w}PB +0()|. (E.1.37)

Thus the time evolution equation of the Wigner function results in the classical Liouville
equation in the quasi-classical limit (7 — 0). In other words, we correctly describe the time
evolution of the Winger function in the quasi-classical limit if we follow the classical equation
of motion of the variables x and p with the initial distribution function given by the initial
Wigner function, as long as the Wigner function is semi-positive definite at the initial time.
It is the key background of the quasi-classical treatment of the preheating dynamics.
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E.2 Initial condition for classical lattice simulation

Now we study the initial condition for the classical lattice simulation of the preheating
dynamics. We follow the discussion in Ref. [35], and take /i = 1 in this section.

E.2.1 Wave function of a vacuum

We consider the quadratic action of a real scalar field in the FLRW background. We consider
the following action for a real scalar

S = f d*x \/—_gl—% 89,0, — %m2¢2], (E.2.1)
where the metric is taken as
ds? = dt* — a®(H)dx'dx’. (E.2.2)

We define the rescaled field ¢ and the conformal time 1) as

P =a¢, (E2.3)
dt =adn. (E2.4)

The Hamiltonian is given by

1 . . a X )
H = E fd3k [RETCI? + wi@?@% + ; (QDI?TCE + T(Eyl?)] , (E25)
where
_ oL, A

= 5—(% =P P (E.2.6)
wp =K+, (E.2.7)

and the primes denote derivations with respect to the conformal time. Here the Fourier
transformation is defined as

_ 1 3 k¥
O(x) = 2" fd k @pe™. (E.2.8)

Due to the reality of ¢, the Fourier components satisty ¢_; = Pz The equation of motion for
the Fourier component is

., a//
P+ (wi —~ 7)% =0. (E.2.9)
We first treat the time evolution in the Heisenberg picture. We expand ¢ and 7 as
9z = fmalk, o) + fi(na' (=K, no), (E2.10)
e = =i [k, no) - gia* (=K, o) (E211)
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where the initial conditions are taken as fi(10) = 1/ V2w and gi(10) = Vwi/2. From the
relation between ¢ and 7, the mode function g is related to fi as

A, a
8k = l(fk s fk)- (E.2.12)
From the commutation relation
i, n;,(n)] =i5 (k- k), (E.2.13)
we obtain the following Wronskian condition:
sfi +&ifi = i(fifi - ffi) =1 (E214)
We are interested in the following state defined at a time n = 1 as
a (k,10) [0, 10} = 0. (E.2.15)
In the Heisenberg picture, the operators satisfy
{pem) + iy me(m} 0, mody, =0, (E.2.16)
where yy is defined as
_ & _ 1 : :
W= = (1-2iF,), F,=Im [fkgk]. (E.2.17)
k 2 |fk|

On the other hand, in order to connect with the Wigner function, we should move from the
Heisenberg picture to the Schrodinger picture. In the Schrédinger picture, the time evolution
of the state is determined by

Sa(k,m0) S0, n)s =0, (E.2.18)

or equivalently

{(Pz(ﬂo) +iyp 1(U)7T,:(Wo)} 0,m), =0, (E.2.19)
where S is the S-matrix. Note that
570(10)S = O(), or SO(S™ = O(re), (E.2.20)

for operators in the Heisenberg picture. Then, since 7ty = —id/d¢ _; in the coordinate repre-
sentation, the wave function is given by

W (@) =Nexp |- f d3kyk(n)¢;(no)qo_,;(no)l

r 2
Nexp|- [ 2l () i)
2| fi(m)|

. (E.2.21)
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Thus we obtain the Wigner function as

W(p, m) = 7 fdgbdtp* exp [—i fd3k (n?gb;% + n;’%)l N\ ((p — %) Y ((p + %)
2
'(Pi?|2 2 Frpy
=Nexp|- | &k exp |- | #k|f)[ |m; - (E.2.22)
f i) f R

up to the overall constant. In particular, the Wigner function is positive definite for the
vacuum state, and hence we can safely view it as the classical phase-space distribution
function in the quasi-classical limit.

E.2.2 Semiclassical behavior

We call the limit

1 Wy
fie > e k> 4 /?, (E.2.23)

as the quasi-classical limit. In this limit Eq. (E.2.14) reduces to
sefi + gife=i(fify - £ fi) = 0. (E.2.24)

It means that the non-commutative behavior of ¢ and 7 is suppressed by the factor 1/|g fil.
The factor i always comes with the commutation relation, and hence it is equivalent to the
limit 7 — 0. As we saw in App. D, the occupation number indeed grows exponentially with
time during the preheating epoch, and hence the quasi-classical limitis a good approximation
in this epoch. In this limit the Wigner function reduces to"

2
, F.0-
W(p, 1) = Nexp |- f A’k i . 5[7@?— "(P"z], (E.2.25)
)] )|
where we have used
2
;1_{2 \/_a exp [—x—l o(x). (E.2.26)

Here note that f; can be taken to be real in the quasi-classical limit. This is because

fife=(ff) (E2.27)

that means that the complex phase of f; does not depend on the conformal time. Then, by
rotation the phase time-independently, we can take f; as real. In the same way, gx can be
taken to be pure imaginary. In this case, Fy is given by

Fr = fif, — % 1. (E.2.28)

b2 Note that a factor | fx| is included in the constant factor N.
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By remembering that

we obtain

o Frpy _ 1
: |fk(TZ)|2 fe(m)

(fipr.— floz). (E.2.30)

Therefore we finally obtain

2
- f L
()]

which is equivalent to the expression given in Ref. [36]. Strictly speaking, the quasi-classical
limit is not valid at the very beginning of the preheating epoch, and hence it is not verified
that Eq. (E.2.31) is the appropriate initial condition. Thus, in our numerical computation,
we have instead used the initial condition where ¢; follows a Gaussian distribution with its
variance determined by Eq. (E.2.22), independently of ¢;. Fortunately, different choices of
the initial condition do not change the late time behavior of the system, and hence we may
simply disregard this subtlety.

W(p, ) = Nexp

o (fipl = fiwg), (E231)

E.3 Practical implementation

In this section we explain how we implemented the classical lattice simulation numerically
in some details. In the classical lattice simulation, we divide the space into a lattice, and put
scalar fields at each point of the lattice. Then we solve a discretized version of the classical
equations of motion in the configuration space on the lattice numerically. In the following, we
tirst explain the spatial discretization method. Of course we should also discretize the time
direction, and hence we explain it as well. Finally we discuss how to set the initial condition,
in particular in the two dimensional case. For more details on the practical implementation,
we refer the readers to Refs. [102,103].

E.3.1 Spatial discretization

In this subsection, we briefly explain the spatial discretization procedure in our classical
lattice simulation. We discretize the Laplacian following DEFROST [103]. Suppose that we
would like to compute the Laplacian of a scalar field ¢ at the point 77 = (1,, ny,n;). Then the
Laplacian at that point is given by

1
I; i = NG Z Cii i (E.3.1)

-

m
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il | 0 |1 | V3| \E >0
c; @=3+1)| -64/15 | 7/15 | 1/10 | 1/30 | 0
i d=2+1)| -10/3 |23 | 1/6| 0 | 0O

Table E.1: The coefficients for the discretized version of the Laplacian.

where c;; is given in Tab. E.1. Here Ax is the size of the lattice spacing, which is given by
Ax = L/Ng, with L and N, being the size of the simulation box and the number of grids,
respectively. The corresponding spatial gradient square operator is given by

(90) = 2A1x2 Y (6= 0a) - (E3.2)

-

Note that the discretized version of the energy density should be fixed to be consistent with
the discretization method of the equations of motion.

E.3.2 Time discretization

In order to numerically solve the equations of motion, we also discretize the time direction,
and hence we briefly explain the procedure here.

In the case with &;, = 0, we have used the Leap-frog method. Suppose that we would like
to evaluate the time derivatives at the time t, = nAt, where 7 is the number of step in the
time direction, and At is the size of each step, respectively. In the Leap-frog method, they
are evaluated as [103]*

Gr, = —q)t"“z;:bt”‘l, (E.3.3)
r n+1 + n-1 - 2 n
By = 2 qztz il (E.3.4)

The Leap-frog method has good properties: symplectic and time-symmetric, and hence we
have relied on it as long as it is numerically stable.

In the case with &, # 0, the Leap-frog method is not stable since the equations of motion
depend on time derivatives of the scalar fields in a complicated manner. We still have
symplectic methods in this case, but they are inevitably implicit and hence time-consuming.
Thus we just used the Adams-Bashforth (liner multistep) method. Suppose we have an
differential equation y = f(t, y). Then, in the Adams-Bashforth method, the time evolution
is evaluated as

3 1
Yt = Yt T At [Ef(tnﬂl ytn+1) - Ef(tnl ytn)] . (E-3-5)

"3 Strictly speaking, it is slightly different from the usual Leap-frog method, since we have the Hubble
friction terms that depend on the time derivatives of the scalar fields. Still, we know that it works well at least
empirically as long as &, = 0.
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Note that we can make the scalar field equations of motion in this form by defining v, = ¢ for
the inflaton and similarly for the Higgs. It is in general faster than the Runge-Kutta method
since we need to evaluate f only once at each step, although it is more memory-consuming
since we need to retain f at t,,; and t, to evaluate quantities at ¢,.,.

E.3.3 Initial condition and 3d-2d conversion

Here we explain the practical implementation of the initial condition. In particular, we
discuss how we implemented the initial condition for the fluctuations in the case with two-
dimensional space.

If we start a classical lattice simulation only with a homogenous inflaton condensation,
fluctuations are never enhanced, since the classical solution must be homogenous in the later
time aslong as the initial condition is homogenous. Thus, we must introduce fluctuations that
mimic the quantum fluctuations as an initial condition to simulate the preheating dynamics.
In the case withd = 3+1, we introduced fluctuations in the momentum space whose variances
are determined by Eq. (E.2.31), and then Fourier-transformed to obtain the fluctuations in
the configuration space.

In the case with d = 2 + 1, we assume that the modes are homogenous in the z-direction
to reduce the computational cost, and solve the d = 3 + 1-dimensional classical equations of
motion under that assumption. In this case, we should properly take the normalization of
the initial fluctuations to compensate the differences of the phase-space density, since what
we would like to study is the dynamics with d = 3 + 1 [102]. We take the normalization
such that the variance for the fluctuations in the configuration space is the same asd = 3 + 1
initially. In the case with d = 3 + 1, it is given by

(reo) = O ) e

where y is a scalar field, Ak = 27t/L is the momentum resolution, and k, is the norm of the
-
momentum k,. Note that we have used the spherical symmetry here, and n parametrizes

)|

kn

, (E.3.6)

the radial direction of k. In the case with d = 2 + 1, it is instead given by

k 4
(6607) = g () E oo

and hence we should take the normalization of )((Zd such that

)|

kn

) (E.3.7)

2 2k,
L
We have used this relation to run the classical lattice simulation in Chap. 5.

(2d)

kn

3 (E.3.8)

E.3.4 Mass renormalization

As we discussed in the previous subsection, we introduce Gaussian fluctuations initially to
imitate the quantum fluctuations. They induce effective mass terms to the scalar fields that
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are sensitive to the UV cut-off of the lattice. Thus, we need to subtract such mass terms to
obtain physical results [104,105]. It is analogous to the usual renormalization procedure of
the quantum field theory.

To be more specific, let us consider the Lagrangian (4.6.14) used to study the effects of the
gauge bosons with only A, being present. In this case, the inflaton, the Higgs and y initially
obtains effective mass terms as

m2,5(0) = 12, + Ay (H2(0)) + 52, (0), (E3.9)
12, (0) = Ag (92(0)) + 34 (I2(0)) + &2, (X2(0)) + 612, (0) (E.3.10)
m (0) = g2 (H(0)) +3g2, (}*(0)) + 6m2, (0), (E3.11)

where 6myg,; is the counter term for the scalar field i and we have used the mean field
approximation. Among these contributions, only mé and the contribution from the initial

inflaton condensation is physical, and hence we take the counter terms as

o, (0) = —Aug (H(0)), (E.3.12)
61, (0) = =i (($%(0)) — ©2,) = 32, (12(0)) — g2, (x*(0)), (E3.13)
om, (0) = —g2, (H(0)) - 382, (x*(0)). (E.3.14)

The time evolution of the counter terms is given as

mil_i(O)

(5711%{;1-(1‘) = az—(t)’

(E.3.15)
where i is ¢, h or x, since the UV cut-off scales as A/a(t) as we fix the comoving volume in
our lattice simulation. We can define mass counter terms in a similar way for other systems.

This renormalization procedure is not important if there are only the inflaton and the
Higgs, since the sizes of the couplings are relatively small in such a case. However, it is
crucial if we introduce an additional field that couples to other fields with sizable couplings,
as it is the case of the scalar field y in Sec. 4.6. See e.g. Ref. [105] for more details on the
importance of this mass renormalization procedure.
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