oo

Mathematical aspects of spin-momentum locking:
generalization to magnonic systems and
application of orbifold to

topological material science

Jodooboobooboobooboooobooooog

o290 120000000000

ooooooondddn
Ooooo

0o o
Okuma, Nobuyuki






Abstract

The spin-momentum locking, in which electron spin depends on its momentum,
has attracted much interest in recent condensed matter physics. In momentum
space, this phenomenon is expressed as an interesting spin vector field. In par-
ticular, singular spin textures in momentum space have been extensively investi-
gated in electron systems without spin rotational symmetry. In two dimensions,
a spin vortex with the winding number +1 has been found in momentum space
of the Rashba electron gas system and topological insulator surface state. In the
presence of this spin structure, electric current induces spin polarization. This
magnetoelectric effect is the so-called Rashba-Edelstein effect, and its efficient
spin-charge conversion nature is useful in spintronics. In three dimensions, a spin
monopole with the winding number 41 has been discussed in the context of the
topological semimetals. In realistic materials, a spin texture in momentum space
is closely related to the band topology. In this sense, the spin-momentum locking
plays an important role not only in spintronics but also in topological material
science.

Although the spin vortices and monopoles in momentum space have been
extensively investigated, previous studies have focused on structures with the
winding number +1. It is important to investigate various types of singular spin
textures since they are expected to lead to new transport phenomena. Also in
principle, the notion of the spin-momentum locking can be generalized to other
quasiparticles that carry spin angular momentum. These two directions are main
topics of this thesis.

In this thesis, we first introduce the basics of the spin-momentum locking and
review two papers [1, 2] in Introduction. Then we move on to the following two
topics. (1) Generalization of spin-momentum locking to magnonic systems. (2)
Classification of the electron spin texture in three-dimensional momentum space
under the space group symmetries by using the notion of the orbifold. The topic
(1) is based on the paper [3].

In the topic (1), we present a theory of the magnon spin-momentum locking
in the semiclassical regime. We define the magnon spin and give the conditions
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for it to be independent of momentum. Avoiding such no-go conditions, we
construct several examples of the magnon spin-momentum locking. We find that
the magnon spin depends on its momentum even when the Hamiltonian has the z-
axis spin rotational symmetry, which can be explained in the context of a singular
band point or a symmetry breaking. We find a high-winding number spin vortex
(winding number: —2) in momentum space, which has not been found in electron
systems. We also find that topology of momentum space imposes constraints on
the spin configurations by using the Poincaré-Hopf index theorem. This fact is
the starting point of the topic (2).

In the topic (2), we investigate electron spin textures in momentum space in
the presence of three-dimensional space group symmetries. Since space group
symmetries affect both momentum and spin, both the symmetries and topology
of momentum space impose constraints on the spin texture. To describe this sit-
uation, we introduce the notion of the orbifold, which is a simple generalization
of the manifold. We define the momentum space orbifold for space group sym-
metries, and map the spin texture on momentum space to the (pseudo-)vector
field on the momentum space orbifold. We explicitly derive the constraints on
spin textures for 24 symmorphic space groups by investigating the topology of
24 momentum space orbifolds. The derived constraints are useful to find Weyl
points and new spin monopoles in momentum space.
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Chapter 1

Introduction

In this chapter, we introduce the notion of the spin-momentum locking, which
attracts a lot of interests in recent condensed matter physics such as spintronics
and topological physics. Since we generalize this notion in this thesis, we here give
a flexible definition of the spin-momentum locking. To emphasize the importance
of the spin-momentum locking, we describe details of the conventional spin-
momentum locking in which there is a spin-vortex with the winding number +1.
In particular, we discuss the various spin transport phenomena that occur in
topological insulator surface states. At the end of the chapter, we explain the
motivations and outline of this thesis. In the following, we set h = kg = 1.

1.1 Spin texture in momentum space

The spin-orbit interaction has played important roles in recent condensed matter
physics. It combines the electron spin and its motion, and affects electron’s
transport phenomena. For instance, the spin-orbit interaction behaves as a kind
of a spin-dependent magnetic field, and it leads to the celebrated intrinsic spin
Hall effect [4]. After this discovery, theorists found that band inversions in the
presence of the spin-orbit interaction play key roles in the emergence of the
topological phases such as topological insulators [5, 6, 7]. Other recent topological
concepts such as Weyl semimetals [8, 9, 10, 11] are also realized in materials with
strong spin-orbit coupling.

In recent spintronics, the spin-momentum locking [5, 6, 12] induced by the
spin-orbit coupling has been extensively investigated. In this phenomenon, the
electron spin direction depends on the electron momentum. In momentum space,
this can be expressed as the spin texture with singular structures such as vortices
in two dimensions and monopoles in three dimensions. The presence of such
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singular spin structures is a source of magnetoelectric effects discussed later.

In the following, we first define the spin-momentum locking. Then we show
some typical examples of the materials in which the spin-momentum locking
occurs.

1.1.1 Definition: spin-momentum locking

We first introduce the electron spin expectation value. Suppose that the electron
system is well described by the one-particle band theory. The electron spin
expectation value for (the periodic part of) the Bloch wave function |k,a) is
defined as

Sk:,a = <kaa'|‘§|k7a>a (11)

where k is the crystal momentum, a is the band index, and S=6 /2® 1 with &;
being the Pauli matrices in spin space and 1 being the identity matrix in orbit
space. We here assume that there is no spin degeneracy for |k,a) due to the
spin-orbit or magnetic interactions. Although the termnology “spin-momentum
locking” is conventionally used for the electron spin locked at a right angle to the
momentum, we here give an extended definition of the spin-momentum locking
as follows.
Spin-momenutm locking

If Sk, is not a constant function of k, the band a is spin-momentum locked.
When we regard Sy, as a vector field on momentum space, the conventional
spin-momentum locking is described as a spin vortex with winding number
+1 in this vector field.

1.1.2 Two-dimensional examples of spin-momentum lock-
ing

The earliest example of the spin-momentum locking is realized in a two-dimensional
electron gas system with the Rashba-type spin-orbit interaction [12]. To under-
stand the physics of the spin-momentum locking, it is convenient to consider the
general two-band model with spin degrees of freedom:

H, = EV1+ By, -6, (1.2)

where Hy, is the Bloch Hamiltonian, 1 and &; are the identity and Pauli matrices
in spin space, E,(co) is the spin-independent dispersion, and By characterizes the
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Figure 1.1: Schematic picture of spin-momentum locking in two-dimensional
systems. There is a spin vortex with winding number +1 for each band.

spin-orbit and magnetic interactions. k is defined as two- and three-dimensional
momentum in two- and three-dimensional systems, respectively. Let |k, £) be
two eigenstates with two eigenenergies

& = EY + | By (1.3)

of the Hamiltonian (1.2). For convenience, we define the projection operator for
the eigenstates:

l+dg-o

Pt = |k, %) (k, £ = . ,

(1.4)

where dy, = By, /| Bg| is the d-vector. Using this projection operator, the electron
spin expectation value can be easily calculated as

- d
&¢:ﬁW&A:i§. (1.5)

Thus, the d-vector determines the spin texture in momentum space.

We now consider a two-dimensional electron gas system with the Rashba-
type spin-orbit interaction. The simplest model of this system is given by the
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two-band Hamiltonian (1.2) with

2 2

kT ome
B, = OéR<k5 X 2),
di, = (k x %), (1.6)

where m* is the effective mass, ar denotes the Rashba-type interaction, and
k = k/|k|. The spin vector field Sk + = £di/2 has a singular point at the origin
of the momentum space. Around this singularity, there is one spin vortex with
the winding number! +1 for each band.

Another example is a topological insulator surface state [5, 6]. In a three-
dimensional topological insulator, the bulk is an insulator, while its surface is
a metal described by a massless Dirac Hamiltonian. Since the typical examples
such as BisSes are induced by the strong spin-orbit interactions, the surface states
are also discussed in terms of the spin-momentum locking. Let us consider the
effective 4 x 4 Hamiltonian of the bulk of the typical topological insulator [13]:

i=1,2,3

where 7; are the Pauli matrices in orbit space related to the parity, and Ay =
M — A|k|? is the mass term. The surface state Hamiltonian can be easily obtained
by solving the eigenenrgy problem of the Hamiltonian (1.7) in real space. We
set the boundary in the z direction. By replacing k, with —i0, and solving the
one-dimensional Schrodingier equation in the z direction, we obtain the surface
state Hamiltonian localized on the boundary [13]:

Hv oo — (ke x 2) - 6. (1.8)

Actually, this Hamiltonian is one of the simplest examples of the two-band Hamil-
tonian (1.2), whose parameters are

EY =0,
B, = U(k X 2?),
dy, = (k x 2). (1.9)

Note that the d-vector of the surface state is the same as that of the two-
dimensional electron gas with the Rashba-type spin-orbit interaction [Fig. 1.1].

!The definition of the winding number is given in Chap. 4. Do not confuse with the similar
notion chirality.
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rality. (b) Schematic picture of spin monopoles in three-dimensional momentum
space.
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Since E,(co) = 0 in the low-energy region, the number of the Fermi surfaces of
the surface state is one, while that of the Rashba electron gas is two. Another
remarkable feature is that there is only one Dirac cone in the momentum space.
This situation was thought to be impossible in condensed matter physics since
the Nielsen-Ninomiya [14, 15] theorem states that the number of Dirac cones
cannot be even in lattice systems. At first sight, the topological insulator surface
state breaks this theorem. However, the surface state is not independent of the
bulk and is not a self-standing two-dimensional lattice system.

In transport phenomena related to the spin-momentum locking, we often
encounter the suppression of the signals due to the opposite contributions from
two Fermi surfaces. In this sense, the topological insulator surface state is useful
to get the giant signals.

1.1.3 Three-dimensional examples of spin-momentum lock-
ing
In three dimensions, a point-like singular structure in momentum space is called

as the spin monopole. This spin structure is realized in the Weyl semimetals.

In three dimensions, there are two types of semimetals with linear-dispersions.
One is called as the Dirac semimetal. The effective Hamiltonian is given by a
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4 x 4 Dirac Hamiltonian

My =v > kA, (1.10)

i=12,3

where 4, are 4 x 4 gamma matrices satisfying {4,,%,} = 20,,1. In realistic
materials, gamma matrices contain spin Pauli matrices that describe the spin
degeneracy. Since the Hamiltonian commutes with 4,, the Hamiltonian can be
block-diagonalized with respect to the eigenvalues 79 = 4+1. Two blocks are
described by 2 x 2 Weyl Hamiltonians with the same dispersion and opposite
chiralities. The spin texture in momentum space is ill-defined for the Dirac
semimetals due to the spin degeneracy.

The other one is the Weyl semimetal. The Weyl semimetal can be induced by
splitting the spin degeneracy in the Dirac semimetals [9]. This means that the
Weyl semimetal has a pair of the linear dispersions around two different momenta,
which are called the Weyl points. We describe the typical Weyl semimetal TaAs
[11] in Fig. 1.2 (a). By redefining the momentum k — k — k., the typical
effective Hamiltonians are given by the 2 x 2 Weyl Hamiltonians

M ==+v Y kioi. (1.11)

1=1,2,3

These Hamiltonians correspond to the Hamiltonian (1.2) with parameters

EY =0,
Bk = Uk),
dy, = +k. (1.12)

There are two singular points of the spin texture in three-dimensional momentum
space, which correspond to the Weyl points. These Weyl points are character-
ized by the winding numbers? 1. The Weyl points are connected via lines of
magnetic force each other [Fig. 1.2 (b)].

1.2 Spin-momentum locking: basic transport

We here describe the transport phenomena in a spin-momentum-locked material.
As we saw, the topological insulator surface state is the typical and simplest ex-
ample of the two-dimensional spin-momentum-locked materials. In this section,

2The three dimensional winding number is also called as the wrapping number. In this the-
sis, we use “the winding number” for general dimensions. The definition for general dimensions
is given in Chap. 4.
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we describe basic transport properties of the spin-momentum locking using the
effective two-band Hamiltonian of the topological insulator surface state. We
explain that the spin-momentum locking is a useful property both in spintronics
and topological physics.

1.2.1 Rashba-Edelstein effect

We first discuss the basic electrical transport of the topological insulator sur-
face state. In the presence of the spin-momentum-locked Fermi surface with
the winding number +1, the Rashba-Edelstein effect [16], which is a kind of
magnetoelectric effects, is induced by a DC electric field.

Let us remember the 2 x 2 effective Hamiltonian of a topological insulator
surface state [see Eq. (1.8)]. The z-component electric current operator for this
Hamiltonian is given by

~ _easz
Je = “ar,

= —ved,, (1.13)

where e is the elementary charge. Interestingly, the electric current operator is
proportional to the spin operator and does not depend on the momentum for
the lowest-order effective Hamiltonian. In the presence of the x-direction electric
field E,, we obtain

o = Unhneg = —20€(Gy/2)neq = —20e8S, o E,, (1.14)

where ()., denotes the non-equilibrium expectation value in linear response
theory, and 095, is the y-component spin polarization. Since the topological
insulator surface state is a metal, the spin polarization is induce by the electric
field. This effect is called as the Rashba-Edelstein effect, which is originally
discussed for a two-dimensional electron gas system with the Rashba-type spin-
orbit interaction. In the original case, there are two spin-momentum-locked Fermi
surfaces with different chiralities. Thus, most of the contributions are cancelled
out each other, and the efficiency of the Rashba-Edelstein effect depends on the
energy splitting of two bands. In this sense, the topological insulator is more
efficient than the Rashba systems.

The Rashba-Edelstein effect is thought to be a souce of the efficient switch-
ing of the magnetization. Let us consider a coupling between the magnetization
and the topological insulator surface state. For simplicity, we here consider the
uniform magnetization whose direction is perpendicular to the topological insu-
lator surface. In the presence of an electric field, the spin polarization induced
by the Rashba-Edelstein effect behaves as a perpendicular magnetic field to the
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Figure 1.3: Figures from Ref. [19]. (a) Schematics of the bilayer heterostructure
(Bi,Sb;_z)2Tes/(Cr,Bi,Sby_,_,)2Tes. (b) Micrograph of the Hall bar device with
schematic illustrations of the Hall measurement set-up. (c) Current dependence
of the anomalous Hall effect for fixed in-plane magnetic fields.

magnetization. This means that a torque for the magnetization can be induced
by the electric field, and the magnetization can be switched electrically. This
torque is called the Rashba spin-orbit torque. A lot of experiments of detect-
ing this torque have been performed [17, 18, 19]. In particular, a topological
insulator /magnetically-doped topological insulator bilayer system is useful to
show the existence of the spin-orbit torque. The details of an experiment for
(Bi;Sbi_;)2Tes/(Cr,Bi,Sby_,_,)2Tes [19] are shown in Fig. 1.3. In this experi-
ment, the spin-orbit torque in the topological insulator surface state acts on the
in-plane magnetization, and the out-of-plane component of the magnetization is
induced. The presence of the out-of-plane component leads to the anomalous
Hall effect. Fig. 1.3 (c) shows that the electric current changes the direction of
the magnetization, which results in the large anomalous Hall signal.

1.2.2 Qunatum anomalous Hall effect

In simple two-band electron systems, a spin texture in momentum space contains
the information of topological properties of the systems. As an example, we
here describe the Quantum anomalous Hall effect in two-band systems. We
first consider this phenomenon for the general two-band models whose internal
degrees of freedom are not limited to the spin. Then we move on to the recent
realization of it in a magnetically-doped topological insulator.

Let us consider the insulator described by the Hamiltonian (1.2)%. By defi-
nition, there is a gap between two bands, and the chemical potential is in this
gap. In the absence of impurities, the anomalous Hall conductivity at zero tem-

365 are the Pauli matrices describing general internal degrees of freedom.
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Figure 1.4: Figures from Ref. [20]. (A) Schematic picture of the quantum anoma-
lous Hall measurement. (B) Schematic picture of the expected Hall conductivity.
(C) An optical image of a Hall bar device made from Crg15(Big1Sbgg)1.85Tes
film. (D) Magnetic field dependence of Hall resistivity.

perature is given by [21]

Ouy = —5-Q, (1.15)

where

1
A gy

is the Pontryagin index. Here BZ denotes the Brilloin zone. Actually, this
integral should be an integer that counts how many times the d-vector wraps
around the sphere while we sweep the Brillouin zone. If this integer is nonzero,
the system exhibits the Quantum anomalous Hall effect, and there are massless
modes on the edge of the sample.

The nonzero-Q-state can be realized in a magnetically-doped topological in-
sulator. Since the Pauli matrices of the effective Hamiltonian for the surface
state are defined in spin space, the gap can be induced by magnetic impurities.
The effective two-band model of the doped topological insulator surface state is
given by

Hi, = v(k x 2) - & + Mé,. (1.17)
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The behavior of the d-vector is as follows:

di, — (0,0,1) for £ — 0,
dy, — k for k — oo. (1.18)

This spin texture is the so-called meron structure whose Pontryagin index*
is @ = sgn(M)/2. This half-integer value is owing to the fact that the sur-
face state is not a two-dimensional lattice system independent of the bulk.
For each surface, there is one Dirac surface state, and it is characterized by
Q = sgn(M)/2. Experimentally, we cannot extract the contribution from one
surface. Thus, we obtain the quantized value £1. The details of the experiment
[20] for Crg15(Big.1Sbo.g)1.85Tes are shown in Fig. 1.4.

1.3 Topological insulator/ferromagnet bilayer

The spin-charge conversion is one of the main themes in spintronics. In con-
ventional spin-charge conversion experiments, normal metals with the strong
spin-orbit coupling such as platinum have been used because the spin Hall effect,
in which the spin current is induced by an electric field, occurs in such materi-
als. In the spin Hall effect, however, the spin polarization at the boundary is a
secondary effect associated with the induced spin current. In this sense, more
direct phenomenon is needed for the efficient spin-charge conversion.

In light of the situation, the spin-momentum-locked materials attract a lot of
interests for its efficient spin-charge conversion property. As we saw, the electric
current is directly converted to the spin polarization via the Rashba-Edelstein
effect. In particular, the efficiency in the topological insulator surface state is
expected to be better than other spin-momentum-locked materials because there
is only one Fermi surface, which does not cause the suppression discussed above.

In the following, we review the spin-charge conversion in a topological insula-
tor/ferromagnet heterostructure. We first explain several experiments performed
in this heterostructures. Then we review microscopic theories that are expected
to describe such experiments. In these theories, interactions between ferromag-
netic magnons and spin-momentum-locked electrons play an important role in
spin-charge conversion phenomena.



1.3. TOPOLOGICAL INSULATOR/FERROMAGNET BILAYER 11

(a) (b) (c)

z
: Jd
) T=10K X Yy 1
B 10 A O e Cross-section
microwave = - N - T.4AT
11‘ Z 08 / Tl ALO \
Nig Feyg y = - |
) E 06 /A £ Yie 1
¥ .l 1

YIG

topological
Insulator

Figure 1.5: Figures of spin-charge conversion experiments in topological insula-
tor/ferromagnet heterostructures. (a) Schematic picture of spin-pumping exper-
iment from Ref. [22]. (b) Chemical potential dependence of charge-spin conver-
sion efficiency from Ref. [23]. (c) Schematic picture of spin Seebeck measurement
form Ref. [24].

1.3.1 Experiments

One of the typical experiments of the spin-charge conversion is the spin-pumping
measurement. In this measurement, a ferromagnet is attached to a conductor.
In the presence of microwave, the ferromagnetic resonance is induced in the
ferromagnet, and spin current is injected into the attached conductor. This
spin current is converted to charge current at the interface via the spin Hall
effect or the spin-momentum locking, and a finite voltage is measured. Both of
ferromagnetic metals and insulators are used as a spin current generator. The
typical experimental setup [22] using a ferromagnetic metal Nig;Feig (permalloy)
is shown in Fig. 1.5 (a). The magnetization is enforced in in-plane direction by
applying the external magnetic field. The electric field induced by spin pumping
is expected to be [22]

4
B, =——68,, (1.19)

etkp

where 7 is the relaxation time of surface electrons, kg is the Fermi energy of
the surface state, and 5, is the spin (density) accumulation induced by the
spin pumping. Since the direction of the injected spin is proportional to the
magnetization of the ferromagnet, the sign of induced electric field is changed
under the sign change of the applied magnetic field. Using this property, we can
extract the spin-momentum-locking contribution from the other contributions.

4Strictly speaking, it is not the Pontryagin index because the integration is not over the
two-dimensional torus. This is the reason why this value is not quantized.
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The above example is a spin-to-charge conversion experiment. A chage-to-
spin conversion experiment has also been investigated in Ref. [23]. In this ex-
periment, electric current induces the spin polarization in surface state, and it is
injected into the attached ferromagnetic metal®. Fig. 1.5 (b) shows the chemical
potential dependence of the charge-to-spin conversion efficiency. The chemical
potential can be changed by changing the concentration of Sb in topological insu-
lator (Bi;_,Sb,)Tes. At the chemical potentials apart from the Dirac point, the
charge-to-spin conversion efficiency is almost constant. Later we will compare
this experimental data and a microscopic theory.

Another interesting experiment of spin-charge conversion is the spin Seebeck
measurement that will be discussed in the next chapter. Spin current in ferro-
magnets is not only induced by the spin pumping but also by a thermal gradient.
In the spin Seebeck measurement, spin current generated by a thermal gradient
is converted to the voltage via the spin Hall effect or spin-momentum locking.
In Ref. [24], a ferromagnetic insulator is used as the spin current generator. The
efficiency of the spin Seebeck measurement in this heterostructure is much higher
than that of the heterostructure using the spin Hall materials [24]. In the case
of the ferromagnet, the spin current generation is understood in terms of ferro-
magnetic magnon excitations. The magnon spin current induced by the thermal
gradient is injected into the attached topological insulator, and it is converted
to the electric current. However, this phenomenological picture is not sufficient
to explain some experimental data shown later. We will discuss this problem by
comparing with a microscopic theory.

1.3.2 Microscopic theory of electrical transport

We here review Ref. [1]. This paper presents a microscopic theory of the charge-
to-spin conversion in a topological insulator/ferromagnetic insulator heterostruc-
ture. In particular, the magnitude of the magnon spin current induced by electric
field is evaluated. We first explain the microscopic theory in the Kubo formalism.
Then we discuss the relation between this theory and the experiment [23].

In the following, we consider a model of the heterostructure in which a three-
dimensional magnon gas is coupled with a two-dimensional massless Dirac elec-
tron system at the interface [Fig. 1.6]. A minimal Hamiltonian for the topological

5Strictly speaking, there is a copper layer between the topological insulator and ferromagnet.
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(a) (b)
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S
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Figure 1.6: Schematic pictures of the topological insulator/ferromagnet het-
erostructures from Ref. [1]. (a) Setup. Spin is parallel to the interface. (b)
Schematic picture of the model of the heterostructure. In z direction, we impose
the Neumann boundary condition (1.23) for magnon wave functions.

surface state is given by

d*k -
1= [ e,

H.(k) = —vk, G, + vk,6, — pl
= &lk.a)(k,al. (1.20)
a==+

where (1,97) are the two-component spinors of the surface-state electrons, k =
(ky, ky) is the electron momentum, v is the Fermi velocity, p > 0 is the chemical
potential, and &; are the Pauli matrices in spin space. The thermal Green’s
function of electrons is given by
. 1
Gk (iwn) = ~ = = ;
iwp — He(k) — Bimp (iwy, k)

~ Z |k, a)(k, | gk q(iw,), (1.21)

where w,, = (2n + 1)nT', T is the temperature, ﬁlimp is the impurity self-energy,
and gg o (iwy,) = [iw, — € + sgn(w,)i/27]7'. We assume that the surface state is
disordered by nonmagnetic impurities.

We consider the case where spins in the ferromagnet are parallel to the y
direction, which is perpendicular to the electric field E = (E,,0,0). The low-
energy spin excitations of the ferromagnet are described by the magnon operators
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(a,a'), which are introduced by the spin-wave approximation: S¥ = Sy — a'a,
S%4+18% ~ /2Sya, and S* —iS® ~ /2Syat, where S? and S, are the spin density
operators and the magnitude of the spin density in the ferromagnet, respectively.
In the following, we regard the ferromagnet as a three-dimensional magnon gas
with a quadratic dispersion. Using magnon operators, we obtain a low-energy
effective Hamiltonian for a three-dimensional isotropic ferromagnet:

Z/ 27T 2 qq”l analq(bL? <122)

where g = (¢,, ¢,) is the two-dimensional momentum, ¢, = n7/La (n =0,1,...,
L — 1) is the z direction momentum, and wq,, = D(|q|* + ¢2) is the magnon
dispersion with the stiffness D. We assume that the system has L sites with
the lattice constant a in the z-direction We also assume that the magnon wave
function in the z-direction is given by ¢,,(z) = \/2/L cos ¢,z, which obeys the
Neumann boundary condition [25]:

0204, (2)|2=0 = 0204, (2)|:=La = 0. (1.23)

Note that this boundary condition is approximately valid in the case where the
interaction between electrons and magnons at the interface is small. Using the
above wave function, we obtain

)
an’

Z%n (2)a]
quqn St (1.24)

where ¢ = x,z. Assuming that the dissipation of the magnon gas is negligible,
the thermal Green’s function of magnons is given by

, 1
Dy g, (iwm) = o — o (1.25)
m q,qn

)

where w,, = 2amT.

To include the interaction between the topological insulator and the ferro-
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magnet, we consider the s-d Hamiltonian:

Jsd(l2

Hoa= =45 [ dadyt!(2,9)50(2.9) - S(.p,2 = 0),

Sa d2kd2k’
_ Z / G A Sk 4z = 0)

Jsaa kodzk’
= e \/72/ ¢kgz¢k'5k' k,qn> (1.26)

where Jyg; is the s-d exchange coupling. In the second line, we have ignored the
y direction coupling, which only shifts the fermi surface position in momentum
space, and introduce the Fourier transform. In the third line, we have used Eq.
(1.24). Through this interaction, magnon spin and electron spin can be converted
each other. Since the Fermi surface is spin-momentum locked, electron spin flip
requires a large momentum shift on the Fermi surface. Thus, magnon spin is
related with the electric field through the interactions between magnons and
spin-momentum-locked electrons.

In the following, we consider the linear response theory of the above model
in the presence of an electric field. We evaluate the expectation value of the
magnon spin current induced by the electric field. The spin current operator at
the interface is given by [26]

Sy 1 IsY
Sy tot Hs N tot Hs
I [ vV d] - [ d
sda d2k’d2k‘/

A \/>Z / ¢k0kwkf5k, kg (1.27)

where Sf, = [d*xSY, s, = [ d*xs¥ is the electron spin operator, and V' is the
two-dimensional volume of the interface. The expectation value of j2* in the
presence of the electric field E = (E,,0,0) is given by the Kubo formula

5 — [hm KY(w +i0) - Ky(@)]

w—0 w

E,, (1.28)

where K¥(w) is obtained from

yr
KY(iw,) = / dre™n™ (T35 (1) ].) (1.29)
0

by the analytic continuation iw, — w+i0. Here j* = e [ d*k/(21)2L 0k, Ho (k).
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k,v

Wn

k,_k7Q7wm kl*k%q;wm
Js 2 s 2 ~
b= (5.0, — 56,0 ~ 25,6, + 5.0.), @= ~v5,

Figure 1.7: Diagrammatic expressions of the lowest-order contributions to
KY(iwy,).

In the case of the conventional spin-orbit torque, lowest-order contributions
to Eq. (1.28) are O(Jsq):

(G27) o ek (Vo) (87)eq + O(J2), (1.30)

where (S7),, is the equilibrium expectation value of the FM spin, and () denotes
the non-equilibrium expectation value in the linear response regime without the
effects of the magnet. In our case, on the other hand, O(Jy,) contributions do not
exist since (S7)., = (S%)¢, = 0. The lowest-order (J2;) contributions to K¥(iw,)
are expressed diagrammatically in Fig. 1.7. The solid and wavy lines denote the
electron and magnon Green’s functions, G and D, respectively. After lengthy but
straightforward calculations with some approximations, we obtain the following
expression for induced magnon spin current:

<.Sy> . JSQdCLBSo(kBT)T ekp
T T D st

where we insert h and kg for convenience. Note that the ratio of the spin current
to the electric current does not depend on the chemical potential:

(1.31)

e<j§y> — Jgda550(kBT) (1 32)
(jz) 2rhv?D '

where we have used (j,) = (e*ur/4wh)E,.

Finally, we discuss the relation between this theory and the experiment [23].
In this experiment, there is a copper layer between the topological insulator
and the ferromagnet. In addition, the ferromagnet is not an insulator but a
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metal. However, the basic mechanism might not be so far from the ferromagnetic
insulator case since magnon descriptions can be applied to ferromagnetic metals
at least to some extent. Equation (1.32) shows that the charge-to-spin conversion
efficiency does not depend on the chemical potential of the surface state. This
behavior has also been experimentally observed at the chemical potentials apart
from the Dirac point [Fig. 1.5(b)]. In the experiment, the constant regime does
not hold at the chemical potentials near the Dirac point. Equation (1.32) is not
valid for such a region because we assume that the chemical potential is much
larger than the impurity effect. We expect that an experiment in a topological
insulator/ferromagnetic insulator heterostructure would be performed.

1.3.3 Microscopic theory of thermal transport

We here review Ref. [2]. This paper presents a theory for the spin Seebeck ef-
fect observed in a topological insulator/ferromagnetic insulator bilayer system.
In particular, it evaluates the chemical potential dependence of the voltage on
the topological insulator surface induced by a thermal gradient. The model in
equilibrium is the same as the above theory. In this paper, however, the position-
dependent distribution functions are introduced to describe the non-equilibrium
state in the presence of a thermal gradient. We first explain a microscopic trans-
port theory. Then we compare the numerical results with the experimental data.

To include both the position and momentum dependences, we treat this sys-
tem in the semiclassical picture. We now consider the magnon Boltzmann equa-
tion in the presence of a thermal gradient:

0
% +0,.0.ng = —— ; (1.33)

where ng is the position- and momentum-dependent magnon distribution func-
tion, v,, = 0, wq is the magnon velocity, and the right-hand-side term is the
scattering term. In the following, we adopt the relaxation-time approximation
in which the scattering term is given by®

Ong|  _ _nq—nq (T(2)) (134
8t scatt Tm, 7 '

6Generally speaking, the determination of the magnon scattering term is not an easy task.
There are a lot of different processes such as impurity and magnon-phonon scatterings. The
approximation here assumes that the magnon distribution function relaxes into the local equi-
librium with the local phonon temperature, which means that the total magnon number is not
conserved.
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where ny) = (exp(wg/T(2)) — 1)~ ! is the Bose distribution function with local

temperature 7'(z), and 7, is a magnon relaxation time. For linear response to a
temperature gradient, the Boltzmann equation becomes

onlV on
Vg, [(‘32(571,1) + @Ta—; = —T—n:], (135)

where dng = ng — néo) is the magnon distribution response. In the following, we

solve Eq. (1.35) assuming specular reflection of magnons at the surface of the
ferromagnetic insulator z = 07. The solution for ¢, > 0 is given by

S (2) = Tl 07708
Ong, —q.(2) = Tm|qu|8zTﬁgg) [1 — 2exp (— |vq|Z\|Tm>] : (1.36)
Note that
Ngyq.(2=0) =ng 4.(2=0). (1.37)

Here we ignore the effect from the topological insulator. The validity of this
approximation is discussed in Ref. [2].

Next, we consider the transport in the topological insulator surface state
coupled with the magnon gas. We consider the linearized Boltzmann equation:

Of,” _
oG ot

%_e
ot

A fx

Eem . I
v ot

(1.38)

)
imp em

where E™ is the induced electric field, vg = (v, v,) = v(cos g, sinby), fi is the

momentum-dependent electron distribution function, and f,go) = (exp(&/T) +
1)~! is the Fermi distribution function at temperature 7. The terms on the
right-hand side are the electron-impurity and electron-magnon-scattering colli-
sion terms, respectively. The electron-magnon-scattering term can be calculated
by using the quantum Fokker-Planck equation [27], and is given to second order
in the electron-magnon interaction by

"z < 0and z > 0 regions correspond to the ferromagnetic insulator and topological insulator,
respectively.
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afk: . 2 3/d2quz
ot |, 25 | s

[ [(k + QH|6_|"7>|2 6(wg + &k — §k+q“) [(1 - fk)fk+qu(1 +ng) — fr(l - fk+q”)nq]

+ (k= @6 k) *8(wq = &+ E-a) (1= fi) fo-aya = fu(l = fug)) (1 +7)] |.
(1.39)

where we have used n, at z = 0, and the |(k’|60%|k)|? factors account for the
influence of spin-momentum locking in the Dirac cone on the electronic transition
probabilities associated with magnon emission and absorption.

We are now in a position to derive an expression for the electric field induced
by the electron-magnon interaction in the steady state. For simplicity, we use
a relaxation-time approximation for the electron-impurity collision term in the
steady-state electron Boltzmann equation:

) I
8£k Te ot em’

—eE“™ . v, (1.40)

where 0fr = fr — f,io), and 7, is the relaxation time. Since the spin-Seebeck
voltage is measured under open circuit conditions, it can be evaluated by finding
the electric field strength at which the electric current vanishes:

/%fukm =0. (1.41)

Using Egs. (1.40) and (1.41), we find that

o A2k O fx A2k af(o)
Ei = [/WUIE em:|/ [—6/vaa—gk . (142)

In deriving Eq. (1.42), we have appealed to isotropy in asserting that [ d*kv,v, =
0. Note that E{™ is independent of the electron-disorder scattering time 7.

In the following, we discuss the results of numerical calculation for realistic
parameters [Fig. 1.8]. The chemical potential and electron density dependences
of induced electric field are shown in Fig. 1.8 (b, ¢). Interestingly, the electric
field is not a monotonic function of electron density. Naively, the electric field
is expected to be enhanced due to the large density of states in which a lot of
electrons can participate in the electron-magnon scattering. To understand this
anomalous behavior, we plot the angle-dependent scattering amplitude in Fig.
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Figure 1.8: Figures from Ref. [2]. (a) Schematic illustration of the band structure
of a BiyTes film. The shaded regions labeled VB and CB are the bulk valence
and conduction bands, respectively. The surface-state Dirac point is much closer
to the valence band than to the conduction band. The thermally electric field at
T = 300 K is plotted in (b) vs chemical potential and in (c) vs electron density.
In the green region (p < T'), the results are not accurate since we neglect the
interband effect. (d) The electron-magnon scattering amplitude in arbitrary units
for k = (kp,0) as a function of kK’ for chemical potential ;1 =100 and 200 meV
relative to the Dirac point. The electron-magnon interaction vertex tends to be
strongest for transitions between electronic states with opposite momentum.
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1.8(d). At a high chemical potential (1 = 200meV), electron-magnon scattering
is forbidden in large portion of the momentum space, while it is not at a low
chemical potential (z = 100meV). This is the reason why the induced electric
field is suppressed at high electron density.

In experiment [24], the enhancement of spin Seebeck signal was observed
near the Dirac point. The above theory explains the electric field enhancement
at relatively small electron densities, although the simplified model does not
achieve quantitative agreement.

1.3.4 Discussion

In this section, we have reviewed two papers about microscopic theories of the
topological insulator/ferromagnetic insulator heterostructures. Although the
methods used in these two studies are different, there are several common points.
The most important point is that two phenomena cannot be understood in the
simple Rashba-Edelstein picture. Phenomenologically, the Rashba-Edelstein ef-
fect is induced by the Fermi surface shift per unit time in momentum space. In
the presence of the spin-momentum locking, the momentum shift k — k + ok
causes the spin change Sy — Skisx. On the other hand, the above two phenom-
ena are induced by the electron-magnon interaction. The dominant process is the
scattering between opposite side of the Fermi surface: k o< (—1,0) — (1,0). This
scattering changes the sign of spin, and it causes the spin accumulation. This
picture is completely different from the Rashba-Edelstein effect, which causes
by the slight momentum shift. The above two theories indicate that results of
experiments in spin-momentum-locked materials cannot always be interpreted in
the Rashba-Edelstein regime.

1.4 Motivation of this thesis

A lot of studies about spin texture in momentum space have been done for the
electron systems with the strong spin-orbit coupling. As we saw, the typical ex-
amples are the two-dimensional Rashba electron gas and a topological insulator
phase induced by the strong spin-orbit coupling. In these materials, the spin vor-
tex with winding number +1 appears in the momentum space, and the transport
properties such as the Rashba-Edelstein effect have been extensively investigated.
However, most of studies focus on the +1 spin vortex, and other spin structures
have not been well investigated. In addition, the notion of the spin texture in
momentum space is expected to be generalized to other quasiparticle systems.
In this thesis, we treat the following two themes:
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e Generalization of the spin-momentum locking to magnonic systems.

e (lassification of the electron spin texture in three-dimensional momentum
space under the space group symmetries by using the notion of orbifold.

First one is based on our paper [3].

In the first theme, we consider the magnon, which is a typical quasiparticle
carrying the spin angular momentum. As we will see, magnons are useful quasi-
particles especially in spintronics, and this generalization is important not only
for theoretical interests but also for applications. We define the magnon spin
and give some conditions for it to be independent of momentum. By avoiding
such no-go conditions, we construct examples of magnon spin-momentum lock-
ing. Some of them are induced by a completely different mechanism from the
electron case with large spin-orbit interaction. Also, we find that the magnon
spin configuration is strongly restricted by the topology of the Brillouin zone,
which is mathematically equivalent to the two-dimensional torus. This is the
starting point of the second theme.

In the second theme, we classify the spin texture in momentum space un-
der the space group symmetries. Since both spin and momentum are affected
by the space group symmetries, the possible spin configuration is expected to
be restricted by such symmetries. To include the space group symmetries, we
introduce the momentum space orbifold. By considering the topology of the
momentum space orbifolds for electron systems, we give the constraints for spin
texture in momentum space for several space groups. Our purpose is to give a
guiding principle to find Weyl points and high-winding-number spin monopoles
in terms of the momentum space orbifold.

1.5 Structure of this thesis

In Chap. 2, we first briefly introduce the recent magnon physics. Then we con-
struct the bosonic Bogoliubov-de-Gennes Hamiltonian for general spin Hamil-
tonian in the spin-wave approximation, and explain the eigenvalue problem by
using the paraunitary matrices. Using the paraunitary matrices, we define the
magnon spin, and give no-go conditions for magnon spin-momentum locking. We
also introduce the notion of spin-momentum locking induced by the spontaneous
symmetry breaking.

In Chap. 3, we construct examples of the magnon spin-momentum locking.
We construct a one-dimensional example in a collinear antiferromagnet with
the Dzyaloshinskii-Moriya interaction and two-dimensional examples in kagome
lattice antiferromagnets whose ground states are 120° structures. In kagome
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lattice examples, we find that there is a spin vortex characterized by the winding
number —2, which has not been observed in electron systems. We also find
that these are the first examples of the spin-momentum locking induced by the
spontaneous symmetry breaking.

In Chap. 4, we introduce the Poincaré-Hopf index theorem, which relates
the vector field on a manifold with the Euler characteristic of the manifold. By
using this theorem, we derive the sum rule for winding numbers on the Brillouin
zone and apply it to an example of the magnon spin-momentum locking. We
also introduce the motivation of the following chapters.

In Chap. 5 and 6, we briefly review basics of the space group and orbifold.
We define the basic terminologies for the later sections.

In Chap. 7, we introduce the momentum space orbifold. We first explain
the behavior of crystal momentum and electron spin expectation value under
the space group and time-reversal symmetry operations. Then we define the
momentum space orbifolds for space groups and discuss the behaviors of spin as
a pseudovector on the orbifold.

In Chap. 8, we consider 24 symmorphic space groups that consist of proper
rotations. We construct the momentum space orbifold for each space group under
the time-reversal symmetry. By combining the generalized Poincaré-Hopf index
theorem, we derive the constraints for the spin texture in momentum space.






Chapter 2

Magnon spin-momentum locking:
formalism

In this chapter, we generalize the concept of the spin-momentum locking to
magnonic systems. We first give a brief introduction of the magnon physics.
In particular, we focus on the spintronic and topological natures of magnons.
Then we introduce the spin-wave approximation that describes the semiclassical
behavior of magnons. After introducing the magnon Hamiltonian, we give the
definition of magnon spin and conditions for it to be independent of momentum.

2.1 Magnon physics

The physics of magnons attracts a lot of interests in spintronics [28, 29, 30, 31]
and topological physics [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Magnons
are the quanta of spin wave excitations around the ordered magnetic ground
state. Historically, magnons in a simple collinear Heisenberg ferromagnet and
antiferromagnet have been well investigated [45, 46, 47]. There is a quadratic
band without spin degeneracy in a simple ferromagnet, while there are two linear
bands with spin degeneracy (S = +1') [Fig. 2.1]. This difference is reinterpreted
in recent works about generalization of Nambu-Goldstone’s theorem to the non-
relativistic systems [48, 49]. In this sense, the physics of magnons has both
well-established and developing aspects.

In addition to the well investigated magnons in simple collinear ferromagnets
and antiferromagnets, we can also define magnons for non-collinear orders such as
120° structures in frustrated magnets and even for the incommensurate magnets
such as the skyrmion lattice [50].

!The definition of spin of one-magnon states is given in Sec. 2.3.

25
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Figure 2.1: Schematic picture of magnon excitations in collinear ferromagnet and
antiferromagnet. Typical dispersion relations are described in the right panel.

2.1.1 Magnons in spintronics

As a quasiparticle, a magnon has two outstanding features. First one is its low-
dissipation nature. In magnets, the Gilbert damping is one of the main damping
mechanisms of spin excitations. In the presence of this damping, magnon Green’s
function is given by [51]

1

2.1
W= &+ iow’ (2.1)

where w is the frequency, & , is a magnon dispersion, and « is the Gilbert damp-
ing coefficient. The damping term indicates that low energy magnons have small
dissipation. If we consider magnetic insulators, the Gilbert damping coefficient
« is quite small because there are no electron-magnon interactions. For instance,
a ~ 107* for an insulating ferromagnet yttrium iron garnet (YIG). Thanks to
this small Gilbert damping, the mean free path of magnons in YIG is about 10
pum even at room temperature [52].

Second one is that magnons carry spin angular momentum?. As an example,
we here consider a simple Heisenberg ferromagnet. As we will describe in the

2There are exceptions such as magnons in triangular lattice Heisenberg antiferromagnet.
Although they are also spin excitations, contributions for total spin angular momentum from
three sub-lattices cancel each other.
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(a) Conventional SSE setup (b) Longitudinal SSE setup  (c)
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Figure 2.2: Schematic pictures of spin Seebeck effect from Ref. [29]. (a) The
setup in early days. Longitudinal spin seebeck measurement is described in (b),
(¢), and (d).

next section, the magnons are described by bosonic excitations. In ferromagnets,
the bosonic operators (a,a') describing magnons are proportional to the spin
ladder operators (ST, S7). This means that creation of a magnon at some site
corresponds to the reduction of the spin angular momentum by 1 at that site.
Thus, the physical meaning of magnon current can be interpreted as the spin
current.

These two features are useful in spintronics. In conventional spintronics, spin
is carried only by electrons. As we discussed, the magnons in ferromagnets can
also carry spin angular momentum. In particular, the dissipation of magnons
in ferromagnetic insulators is far less than that of the electrons in conventional
spintronic materials. Since magnons cannot be driven by an electric field, a
thermal gradient is used in order to drive the magnons. This method is a simple
analogue of the Seebeck effect in electron systems and called the spin Seebeck
effect®. Experimentally, the magnon spin current induced by a thermal gradient
is transformed into the voltage in metals attached to the ferromagnets by using
the spin Hall effect. There are two types of experimental setups for measuring the
spin Seebeck effect Fig. 2.2. In early days [53], the direction of flow of generated
spin current is parallel to the spin Hall metal (Pt), and it was clearly inefficient.
On the other hand, recent spin Seebeck measurements are performed in the so-
called longitudinal setup in which spin current is perpendicularly injected into the
spin Hall metal [29]. In the case of the antiferromagnetic magnon, the situation
is completely changed [30]. Although antiferromagnetic magnons also have spin

3The spin Seebeck effect can also occur in ferromagnetic metals. In that case, carriers of
spin current are electrons.
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Figure 2.3: Figures from Ref. [34]. (a) The crystal structure of LusVoO7. (b) Di-
rections of Dzyaloshinskii-Moriya interactions. (c¢) Schematic picture of magnon
Hall effect.

angular momentum, net magnon spin current is not induced due to the spin
degeneracy of magnon bands. To observe the spin Seebeck effect in conventional
antiferromagnets, we should apply the magnetic field to split the magnon spin
degeneracy. Antiferromagntic spin Seebeck effect in the absence of the magnetic
field is still an open question.

2.1.2 Topological aspects of magnonic systems

The magnonic systems have no internal degrees of freedom other than spin,
while electron systems have atomic orbitals. However, this does not mean that
magnon bands are not interesting. The existence of both chemical and magnetic
sublattices allows magnonic systems to exhibit nontrivial band structures. In the
field of magnonics [54], magnonic crystals, which are an artificial lattice consists
of small magnets, allow physicists to design the magnon bands. In light of the
situation, there appear a lot of analogue of topological band theories, which have
been originally studied in electron systems.

One of the interesting issues is the magnon Hall effect [32, 33, 34, 35], which
is an analogue of (anomalous) Hall effect. In simple ferromagnets and antifer-
romagnets discussed above, there is no interesting topological feature. If we
consider some exotic factors such as noncollinear structures and Dzyaloshinskii-
Moriya interactions, there can exist non-zero Berry curvature. The finite Berry
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curvature affects the thermal transport of magnons as in the case of electron sys-
tems, and transverse magnon current is observed experimentally [34] [Fig. 2.3].
This phenomenon is called the magnon Hall effect. Similarly, there is a magnonic
analogue of spin Hall effect called magnon spin Nernst effect [43, 44].

The topological band theory should be modified to apply to the magnonic
systems. Non-interacting magnon Hamiltonians are described by bosonic Bogoli-
ubov de-Gennes Hamiltonians, as we will see later. In general, the eigenenergy
problem of the magnon systems is not equivalent to the diagonalization of bosonic
Bogoliubov de-Gennes Hamiltonian matrix due to the boson commutation rela-
tions (see later sections). Shindou et al. formulated the calculations of Berry
curvatures for general magnonic (bosonic) systems [36].

Although there are some differences from the electron systems, basic notions
of topological insulators and semimetals have been generalized to magnonic sys-
tems. In topological magnon insulators [36, 37, 38, 39], there can exist topo-
logically protected magnon edge modes. As well as the topological insulators,
there are a lot of studies about the topological semimetals with linear disper-
sions called as Dirac (Weyl) semimetals and with nodal-line structure called as
nodal-line semimetals. Magnonic analogues of such topological semimetals have
also been investigated [40, 41, 42].

2.2 Spin-wave approximation

In general, it is difficult to obtain the energy spectrum of the given spin Hamilto-
nian because the system is essentially interacting. In ordered magnets with large
spin, however, the simple spin-wave approximation can well describe the physics.
In this section, we treat the general two-body spin Hamiltonians with commensu-
rate ordered ground state(s) in the spin-wave approximation. We first introduce
the Holstein-Primakoff bosons and construct the bosonic Bogoliubov-de-Gennes
Hamiltonian. Then we explain the bosonic Bogoliubov transformation, which is
essentially different from the diagonalization in the fermionic version.

2.2.1 Holstein-Primakoff boson

We consider a spin Hamiltonian defined on a lattice with an ordered classical
ground state and treat the magnet in the semiclassical picture. In the limit of
large spin, quantum spin fluctuations around the classical ground state can be
treated as small perturbations. For convenience, we define the local rotating
frame { M, MY, M} in which M is in the direction of the classical spin at
site p. Here M are unit vectors. The spin operator S, can be expressed in terms
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Figure 2.4: (a) Schematic picture of the local rotating frame at site p. (b)
Schematic picture of magnetic unit cell. R and ¢ denote the magnetic lattice
vector and magnetic sublattice index, respectively.

of {M;}},

S, =Y SiMy, (2:2)

a

where Sg are a-component spin operators in the rotating frame [Fig. 2.4 (a)].
To treat the small quantum spin fluctuations, we introduce the Holstein-
Primakoff transformation [47],

5’; =S5y — a;;ap,
S;— = (230 - a;
S, = a;(QSO - a;r,ap)l/?, (2.3)

ay)'*ay,

where S’;t = gfj + igg, So is the size of the spin, and (a,, a;) are the Holstein-
Primakoff boson operators, which satisfy [a,,al] = d,4. The expressions (2.3)
exactly satisfy the SU(2) commutator algebra [S’;, Sg] = i5p,qeabc§;. For suffi-
ciently large Sy, it is convenient to introduce the spin-wave approximation,

Sy~ Sy — a;ap,
Gt
SE ~ \/28gall. (2.4)
Using this approximation, we can solve the spin-Hamiltonian since it is written
as a quadratic form of bosonic operators. We can rewrite the spin operator as
.I.

a, + al ap — @
S, M (8o = ajay) + My\/250=——F + My\/25 =~ (25)
(4
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2.2.2 Bosonic Bogoliubov-de Gennes Hamiltonian

A general two-body spin interaction Hamiltonian is given by

Z Z > TR, RS Sk (2.6)

RR’ 1,7=1 a,b

where Sg; = (Sk;; Sk Sk,) is the spin operator at each site, R, R’ denote the
magnetic lattice vectors, 7, j denote the magnetic-sublattice indices, and N is the
number of sites in a magnetic unit cell. Suppose that the classical ground state
of the Hamiltonian (2.6) is magnetically ordered, and |Sg;| is sufficiently large
enough to be treated in the semiclassical picture. To rewrite the spin Hamiltonian
(2.6) in terms of spin excitations (magnons) around a classical ground state,
we introduce the Holstein-Primakoff boson operators (a,a’) and the spin-wave
approximation,

T T
AR+ a i ar; — AR,
SR,z’ ~ MZZ(SO _ Cl;{,iaR,i) —+ Mz-x\/ 25’0—1%7 2 R, -+ Miy\/ 250 r 2Z s )
(2.7)

where Sy is the size of the spin that can depend on the site, and { M¢} is the set
of the basis vectors of the rotating frame in which M} is in the direction of the
classical spin at the magnetic sublattice ¢ [Fig. 2.4 (b)]. Substituting Eq. (2.7)
into Eq. (2.6), we obtain

H= % S (af.a i) - Hy- (;ﬁ_’“k) (2.8)

k

where k is the crystal momentum, aL = (a;rc,p e ,aLN), and Hy, is a 2N x 2N
bosonic Bogoliubov-de Gennes (BdG) Hamiltonian. Note that we ignore magnon-
magnon interactions in the spin-wave approximation.

2.2.3 Bosonic Bogoliubov transformation

In comparison with the fermionic BAG Hamiltonian, the bosonic BAG Hamilto-
nian cannot be solved by the diagonalization using unitary matrices. We first
review the fermionic Bogoliubov transformation of the fermionic Hamiltonian

1 ~
= g A (1), (29)
] i
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where f,l = (f,Ll, e ,f,lN) are the fermionic field operators, and 7:[£ is a 2N x

2N fermionic BdG Hamiltonian. Using a 2N x 2N unitary matrix Uk, we can
diagonalize the Hamiltonian (2.9):

Hy = %Z(fli’ Fk) - UnUg H U (J{Tkk)
) i
_1 i B 0 Y g (1
= 5;(fkafk> Uk’ 0 —E_k) kl (-fjk)
IS (B 0 (o
! ;(gk’gk) ( : —E_k> (gT_k) (2.10)

where Ek = diag(Ek1, - Fra, -, Ek,n) and

Ik,a — [Uk_l]a,ifk,i + [Uk_l}a,i—&-Nfikm (211>

It is important to note that (g, g") satisfy the fermionic anticommutation rela-
tions:

{90 953 = [Ug NailUklio{ freis 1L} + (U Noien [Okljen s {f i Foni}
= Uy ailUklis + [Ug Naien [Uklisng = bag,
{G.c g8} = {90 95} = 0. (2.12)

Thus, {Ek.} corresponds to the set of eigenvalues of the Hamiltonian (2.9).

Unfortunately, the above argument cannot be applied to the bosonic BAG
Hamiltonian. Replacing {, } with [,] and f, g with a,b in the first equation of
(2.12), we obtain

i by o) = [Ug awsilUnls plais af, ;] + (U Do n [Ukljenplaly 5 ai ]
= Uy NailUklip = [Ug Nais v [Uklivn g 7 Gap- (2.13)

The equation (2.13) means that the new operators (b,b") do not satisfy the

bosonic commutation relation, and the eigenvalues of the bosonic BAG Hamilto-

nian matrix do not correspond to the eigenvalues of the Hamiltonian (2.8).
Instead of a unitary matrix, we use a paraunitary matrix Q, which satisfies

Q'E3Q = QL,Q" = 5, (2.14)
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where [23];; = 0;j0; with o; = +1 for j = 1,--- ,N and o; = —1 for j =
N +1,--- ,2N. Using a paraunitary matrix (Jg, the bosonic Bogoliubov trans-
formation is defined as

AT,]_A[ 3 Ek AO

Qk ka ( 0 E—k) )

H =Y Epabl, bia; (2.15)

k,a

where Qk, QL are 2N x2N paraunitary matrices and Ey, = diag(Ex1, s Eka, -

, ). (b,b") are the magnon field operators, which satisfy

~

bk,a = [Q;l]a,iak,z’ + [Q;l]a,i+Nan_k7i

bLa = [QEI]ZaaLJ + [QEI]LN,aa—k,iv (2.16)
or equivalently,
ki = [Qkliobra + [Qk]i,a—i—NbT,k’a
a};,z' = [Qk]Tozzb;rca + [Qk]L+N7ib_k7a' (2.17)
It is important to note that (b, b') satisfy the bosonic commutation relations:
[Breas U 5] = [Q il Qi ] slawis ) + [Qi i vQi w10l ey 0]
= Q5 il @i 15 — [Qk s [QK v
= Q1 E3(Qp ) s = [QLS5Qk]L s = [Eslass = s,
[bhas bre,] = [Df s b 5] = 0. (2.18)

In the third line, we have used the paraunitarity relation (2.14).
In the presence of off-diagonal terms such as aa and a'af, QL #* Q,:l, and the
bosonic Bogoliubov transformation is not a diagonalization

P'AP = D, (2.19)

where A is a matrix, P is a regular matrix, and D is a diagonal matrix.

2.3 Definition of magnon spin

In the following, we define the magnon spin using the expressions in the previous
sections. The magnon spin is defined as the difference in total spin angular
momentum between a one-magnon state and the ground state,

Sk:,a = <k,Oé’StOt‘k,O[> — <O‘Stot’0>7 (220)
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where |0) is the Fock vacuum of (b,b") 4, |k, a) = b;oé|0>, and

St =) Y _ Sri (2.21)
R i

is the total spin operator.
To derive the explicit form of the magnon spin, we rewrite the total spin
operator in terms of (b, b):

Stot = Z Z SR,i

~ Z Z M: (S aRZaRl) (first-order terms of a,a’)

= Z Z —M?) kaiak,i + (zeroth- and first-order terms of a,a’)

- Z [Z {HQk]z of? +1[Q- kiatn|’ }] b;rc’abk,a + (off-diagonal terms)

+ (zeroth— and first-order terms of b, b'). (2.22)

In the second and fourth lines, we have used Eqgs. (2.7) and (2.17), respectively.
Substituting Eq. (2.22) into Eq. (2.20), we obtain®

Sk 2 (M) {I[Qlial® + 1@ klisn} (2.23)

The physical interpretation of the formula (2.23) is as follows. The Holstein-

Primakoff creation operator ak’i is physically equivalent to the spin lowering

operator with respect to the classical spin direction M7 [see Eq. (2.4)]. In the

presence of one Holstein-Primakoff boson at a sublattice 7, the change of the total

spin is —M7. Since a one-magnon state |k, «) is described as the superposition
of Holstein-Primakoff one-boson states, the magnon spin can be interpreted as

Z[—(classical spin unit vector at i) x (magnon weight function at 7)]. (2.24)
(See Fig. 2.5). Note that the total weight does not have to be 1 due to the
paraunitarity of Q°.

4]0) does not have to be the classical ground state, which corresponds to the Fock vacuum
of (a,al). In this sense, |0) includes the quantum correction to the classical ground state.

°In the case of the simple Heisenberg ferromagnet with M7 = 2 (no sublattice), Sk
becomes —Z, which is a constant function of k.

6In simple cases such as the Heisenberg ferromagnet, Q becomes a unitary matrix. In that
case, the total weight should be 1.
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Figure 2.5: Schematic pictures of (a) magnon weight function in a unit cell and
(b) magnon spin.

2.4 No-go conditions

In non-interacting electron systems, spin-momentum locking is forbidden for
Hamiltonians with rotational symmetries. In SO(3) rotational symmetric sys-
tems, we cannot define the spin-momentum locking due to the electron spin de-
generacy. In U(1) symmetric systems, all Bloch states in the Brillouin zone have
the common quantized axis, and electron spin does not depend on momentum.

Usually, spin-momentum locking is discussed for the Hamiltonians without
spin-rotational symmetries. Such discussions can also be applied to the magnon
spin-momentum locking. However, there is an additional factor for magnonic
systems. In the case of magnonic systems, the notion of spontaneous symmetry
breaking, where symmetries of ground states are lower than those of the Hamil-
tonians, changes the story. If the magnon states break rotational symmetries
completely, the magnon spin can depend on the momentum.

In this section, we prove that the magnon spin-momentum locking does not
occur in collinear magnets (except for a trivial spin-momentum locking dis-
cussed in 2.4.3). In the next section and Chap. 3, we discuss and investigate
the magnon spin-momentum locking in noncollinear and noncoplanar antiferro-
magnets, where rotational symmetries are completely broken in the ground and
one-magnon states.

2.4.1 SO(3) —» U(1) symmetry breaking case

We here prove that there is no magnon spin-momentum locking in the presence
of a symmetry breaking SO(3) — U(1). To prove it, we first prove that all

one-magnon states are eigenstates of S7,, where S, is the unbroken generator
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7, or equivalently,

Stzot|0> (8 |0>a (225)

By using Eq. (2.25) and [H, SZ,] = 0, we obtain the following bosonic represen-
tation of SZ, up to the second order of (b, b')8:

O

Sty = (Const) + Y S} bk bia (2.26)

k,«

where Sf , is the same one as Eq. (2.23). Thus, a one-magnon state |k, a) are
cigenstates of the unbroken generator S ;:

Sz |k.a) = |(Const.) + Z St sbks sbwr.5 | bh.alO)
k'8
o by, ,|0). (2.27)

It is important to note that all one-magnon states have the common quantized
axis (z axis). Using the notation |k, M) that is an eigenstate of SZ, with an

eigenvalue M instead of |k, ), we obtain

(k, M|S5 |k, M) = M,

(e, ISk, M) = £1/ik, MI[SE™, S3llk, M) =0, (228)
where we have used [S2,, S? .| = i€weSC,;. Equation (2.28) shows that

Sk = (k, M|S5 |k, M) — (0[55,]0) = (0,0, M) — My, (2.29)

where M, is the quantized magnetization of the ground state, takes quantized
values. Because quantized spin components cannot be changed under a small

momentum change k — k + dk, the magnon spin S, is a constant function of
k.

"The statement “the fact that |0) is an eigenstate of SZ means that excited states are also
eigenstates of it” does not always hold. Since the Hamiltonian itself has SO(3) symmetry,
general eigenstates of the Hamiltonian can take general quantized axes. We should check that
the statement holds for one-magnon states.

8In order to satisfy Eq. (2.25), SZ, cannot contain b, 676" terms. Since SZ,, is a Hermitian

operator, b,bb terms cannot also be included. For one-magnon states |k,a) and |k, ), the
following relation holds:

0= <k’a‘[H7 Sﬁzot]|k76> = (Ek,ot - Ek,5)<k7alstzt|k7/8>'

(o}

For the systems without degeneracy (Eg.. 7# Fkp), this equation means that the matrix
element (k,«|SZ |k, 5) should be diagonal. Even in the presence of the degeneracy, we can
always choose the basis to diagonalize (k,a|SE |k, 5) by a proper unitary transformation.
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2.4.2 U(1l) - U(1) case

Next, we consider the Hamiltonians with the U(1)-rotational symmetry around
the z axis such as XY models. When there is no symmetry breaking, S7., is
given by Eq. (2.26). Thus, |k, «) is an eigenstate of SZ,, and we cannot expect
the magnon spin-momentum locking.

2.4.3 Triwial spin-momentum locking

As we have shown, all one-magnon states have the common quantized axis for
collinear magnets with U(1) symmetric ground states. In the above discussions,
we implicitly assume that magnon spin is a smooth function of momentum.
However, when we cannot avoid a singularity such as a band crossing point
in a one-dimensional system in the adiabatic deformation k — k', Sp , can
be changed across the singular region. Suppose that two magnon bands with

ko — 1 in a one-dimensional system have a crossing point at k = ko. If
the upper- (lower-)band magnon spin is +1 (—1) at k = ko — dk, the upper-
(lower-)band magnon spin is —1 (+1) at k = ko + k. In the following, we regard
such a case as trivial spin-momentum locking because the magnon spin depends
on momentum if we focus only on the upper- (lower-)band. We construct an
example of trivial spin-momentum locking in Chap. 3.

2.5 Spin-momentum locking induced by sym-
metry breaking

In the previous section, we show that spin-momentum locking does not occur
for SO(3) — U(1) and U(1) — U(1) cases except for trivial spin-momentum
locking. In such systems, there is one unbroken rotational axis, and magnon spin
is a good quantum number of the magnon bands. Such systems correspond to
collinear magnets such as ferromagnets, ferrimagnets, and usual antiferromag-
nets.

To realize the spin-momentum locking for spin rotational symmetric Hamilto-
nians, we should consider the ground state without any spin rotational symmetry,
i.e., the noncollinear and noncoplanar structures. This can be understood by con-
sidering the spontaneous symmetry breaking: SO(3)— {e} or U(1)— {e}, where
e is the identity element. Since there is no unbroken generator, we can expect
the magnon spin.

Note that noncollinearity and noncoplanarity are just necessary conditions.
Consider the antiferromagnetic Heisenberg model defined on a triangular lattice.
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Table 2.1: Relation between symmetries and the possibility of magnon spin-
momentum locking.

Hamiltonian Ground state Spin-momentum locking
No symmetry Noncollinear or Noncoplanar Possible

SO(3) symmetry  Collinear (U(1) symmetry) Only trivial case
U(1) symmetry Collinear (U(1) symmetry) Only trivial case
SO(3) symmetry Noncollinear or Noncoplanar Possible

U(1) symmetry  Noncollinear or Noncoplanar Possible

One of the classical ground states is the 120° structure. For this case, the system
can be described by a bosonic Hamiltonian without sublattice degrees of freedom.
In our formalism, this corresponds to the fact that spins on different magnetic
sublattices contribute to Sk, with the equal weight. Thus, we obtain

Ska & — Y M =0, (2.30)
where we have used ) . M7 = 0 for the 120° structure.

2.6 Discussion and Summary

In this chapter, we have discussed the properties of the magnon spin-momentum
locking for general magnets in the context of the spin-wave theory. We have
ignored the effect of magnon-magnon interactions by considering Sy > 1 limit.
It would be an interesting future work to include such interactions for Sy ~ 1
systems such as nonperturbative damping discussed in Ref. [55].

Another remaining issue is giving the sufficient conditions for the magnon
spin-momentum locking. Unfortunately, what we did in this chapter is just giv-
ing no-go conditions. As we have shown, the magnon spin-momentum locking
does not occur in the Heisenberg antiferromagnet on the triangular lattice, which
is one of the most typical examples of noncollinear magnets. Since giving the suffi-
cient conditions is useful for exploring candidates of the magnon spin-momentum
locking, it would be another interesting future work.

In summary, we formulated the magnon spin-momentum locking. We defined
the magnon spin for general spin Hamiltonians with ordered classical ground
states in the semiclassical level. By considering the bosonic representation of the
total spin operator, we gave no-go conditions for magnon spin to be indepen-
dent of momentum. By avoiding such conditions, we discussed the possibility for
magnon spin-momentum locking for given symmetries. We found that there are
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several types of magnon spin-momentum locking [Table. 2.1]. It is important to
note that the magnon spin-momentum locking can occur even for the Hamilto-
nians with spin rotational symmetries. The spontaneous symmetry breaking is
a new factor of the spin-momentum locking.






Chapter 3

Magnon spin-momentum locking:
examples

In this chapter, we explicitly construct examples of the magnon spin-momentum
locking. We first explain the technical details of the magnon eigenenergy problem
and the definition of the winding number around the vortex. Then we construct
the one- and two-dimensional examples of trivial and nontrivial spin-momentum
lockings, respectively. We also discuss a candidate material and possibilities of
experimental detections.

3.1 Method and definition

In the previous chapter, we have introduced the bosonic Bogoliubov-de Gennes
(BdG) Hamiltonian and Bogouliubov transformation. We here give an explicit
procedure to obtain the Hamiltonian, magnon eigenvalues, and a paraunitary
matrix Q for general two-body spin Hamiltonian.

3.1.1 Magnon Hamiltonian

In the following, we derive the explicit form of the bosonic BdG Hamiltonian
based on the methods in Ref. [56]. Again, the bosonic BAG Hamiltonian for the
general two-body spin Hamiltonian is given by

Z Z Zjab (R, R') SR,iS?{’J‘v (3.1)

RR"L] 1 ab

41
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where notations are the same as those in Chap. 2. For convenience, we rewrite
Eq. (3.1) in terms of the local rotating frame

M~a - R(Ql, ¢Z)(A1,, (32)

(2

where a = , 7, 2 are the usual Cartesian unit vectors, and R(6;, ¢;) is the rotation
matrix defined at a magnetic sublattice i. The explicit form of R(6,¢) is given
by

R<97 ¢) = R2R17

cos¢ —sing 0
Ry =|sin¢g cos¢ 0],

0 0 1
cosf cos? ¢ +sin® ¢ cos¢sing(cosd — 1) siné cos ¢
Ry = | cosgsing(cos® — 1) cosfsin® ¢+ cos®> ¢ sinfsing | . (3.3)
—sin 6 cos ¢ —sin fsin ¢ cos

Substituting Eq. (3.2) into Eq. (3.1), we obtain the spin Hamiltonian in terms
of the rotating-frame spin operators:

N
1 - o
H = 2 Z Z ijlj (R, R,>Séz,z’ R’ j» (3.4)
R,Rij=1 I,m
where

Ty (R R) =3 Jif (R RO[M - al[ M - B, (3:5)

a,b

Using the periodicity of the magnetic lattice, we Fourier transform the spin
operators:

~ 1 - .
Sé%,i = \/ﬁ zk: Sllc,z exp[zk : (R + Ti)]a (36)

where r; is the relative position of the sublattice 7 at a magnetic unit cell, and L
is the size of the system. Using this notation and J"(R, R’) = J"(R' — R),
we obtain

N
H= 33 S 8T k), (37)

k ij=1 I,m
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where
Zl]m(k;) — Z ng(R’ — R)exp[—ik- (R — R+71; —1;)]. (3.8)
R-R

Now we introduce the Holstein-Primakoff transformation in the spin-wave
aprroximation

o So 1

Ski = 7[ Lz +a_g;] + O (S_§> ;

~ So 1

SIZJ = ?[al,i —a_p;] + O (S_§> )

~ 1

Ski = VL3Sy0n0 exp|—ik - T, — Z aL, Ak ki (3.9)
VI3 ™

where the Holstein-Primakoff bosons satisfy [akma};,’ j] = 0;;0kk. Substituting
Egs. (3.9) into Eq. (3.7), we obtain

H = Ho+ Hy + H», (3.10)
where
1 3 22
Hy = 5LSp(S + 1) Zj” (k=0),
Z?]
L3S, .
Hy = S 9 Z[EJ@L:O,@' + Fi,jakZO,i]7
i,j
1
H2 = ESO Z ;[Aid (k)a};,iakyj + Bi,j (k>a;rc’iaik7j,
i
+ B} j(—k)a_iar; + Al (—k)a_kaly, ] (3.11)
and

Fyj = Ji5 (k= 0) +iJ (k = 0),
1 ; €T zz
Ay (k) = S[T5 (k) + T (k) — (T (k) = T (k)] = > T (k = 0)dy,
k

Bij(k) = %[Zﬁx(’c) — 75 (k) +i(T5) (k) + T3 (k)] (3.12)

Note that H; vanishes for the appropriate choice of the classical ground state
since the presence of H; leads to an instability of the ground state in equilibrium.
Hj describes the constant energy shift, while Hy corresponds to the bosonic BAG
Hamiltonian discussed in Chap. 2.
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3.1.2 Magnon eigenenergy problem

In Chap. 2, we have introduced the bosonic BAG Hamiltonian. As we have
shown, we cannot use the diagonalization to obtain eigenvalues of the system
with off-diagonal terms such as aa or a'a’. Instead of the usual diagonalization
method, we perform the bosonic Bogoliubov transformation with paraunitary
matrices Q, Q1.

In the following, we describe a procedure to obtain such paraunitary matrices.
The general form of the bosonic BAG Hamiltonian is given by

> Ak Bk
= x - 1
T (B*k A*k> ’ (3.13)

where A is a N x N Hermitian matrix and B a N x N matrix.

In addition, we should impose another condition for the Hamiltonian (3.13).
Since it describes the excited states, the eigenenergies should be positive!. This
condition is equivalent to the positive definiteness of the Hamiltonian (3.13).

Proof. Suppose that we obtain the paraunitary matrices Q, QT satisfying

At A E, O
Qi HeQr = ( 0’“ E_k> ’ (3.14)

where Ej, = diag(Ek 1, - s Eka,- -, Exn). According to the Sylvester’s law of
inertia, the numbers of positive and negative elements of the diagonal matrix

D= SHS, (3.15)

where S is a regular matrix and H a Hermitian matrix, does not depend on
the choice of S. Suppose that the right-hand side of Eq. (3.14) is a diagonal
matrix whose elements are positive, or equivalently, the magnon eigenenergies
are positive. Using the the Sylvester’s law of interia, all elements of the diagonal
matrix

Dy = U0 — U= Fia D, (3.16)

where U is a unitary matrix, are positive. Because Eq. (3.16) is the definition of
the diagonalization, the positiveness of the magnon energies is equivalent to the
positive definiteness of Hy. n

1Strictly speaking, the eigenenergies of the Nambu-Goldstone modes are zero in the ther-
modynamic limit. We here consider the systems without zero modes or k # 0 case
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In the following, we assume that H,, is positive definite and describe the
method used in Ref. [36, 57]. The orthogonality condition in which the magnon
operators (b, b') satisfy the commutation relation, is given by

QL S5Qk = QrYs5Q), = X3, (3.17)
where [23]” = §;;0; with 0; = +1 for j = 1,--- N and 0; = —1 for j =

N +1,---,2N. All we have to do is determine Q, Q' satisfying Eqs. (3.14) and
(3.17). We here explain the method using the Cholesky decomposition.

For positive definite Hermitian matrix ’}:[k, we can perform the Cholesky
decomposition

Hy = K1 Ky, (3.18)

where K, is an upper triangle matrix. Using Ky and K ,Tc, we define a unitary
matrix

1
U = KiQx ( k [3 ) (3.19)

7:[/]‘, = f(kigk;g, (320)

=1 (3.21)
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Actually, this unitary matrix diagonalizes the Hermitian matrix (3.20):

A1 A1
I E.2 0\ atptow ote A (B2 0
U= | 7% | QLEIK S KK Qe | )
0 E; 0 B}
2 0\ mtom oa oo e e (BT
="k 1 QLKliKkalezzl.(QL) 1QLK,1Kka k 1
0 E? 0 E?
ET2 0\ s a oa e e (BT
=k 1 QL/HkaleE?)(QL) 1QL7{ka k 1
0 EZ 0 E?
A1 A~ A~ A1
(E* 0 (Ek 0)(1 ())(E,c 0> 20
- A1l ~ - A1
0 E)\N0 Ex/\0 —1/X0 E 0 B2
E, 0
— X 3.22
(0 —Ek) (3:22)

Thus, we can obtain the magnon eigenvalues by diagonalizing the Hermitian
matrix (3.20). After determining Fj and E_j by the diagonalization, we can
determine the paraunitary matrices as

Qr = K, 'Uy, (Ek > : (3.23)
0

\DPJ\L )
Nl

We summarize the procedure to obtain the magnon eigenenergies and parauni-
tary matrix )y from a general two-body spin Hamiltonian in Fig. 3.1
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Figure 3.1: Procedure to obtain the magnon eigenenergies and paraunitary ma-

trix Qk




48 CHAPTER 3. MAGNON SPIN-MOMENTUM LOCKING: EXAMPLES
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Figure 3.2: Schematic pictures of (a) the definition of the sign of winding numbers
and (b) examples for some winding numbers.

3.1.3 Winding number in two dimensions

In the two-dimensional examples constructed in the following chapters, there are
various spin vortices. Although it is not a mathematically rigorous definition, we
would like to give the intuitive meaning of the winding number around a vortex-
like structure? [Fig. 3.2 (a)]. Let v(x) be a vector field with an isolated zero x.
The winding number is the total number of counterclockwise turns experienced
by v(x) after completing the counterclockwise motion along the closed curve =
around @xy. The positive winding number means the counterclockwise turns of
v(x) and conversely, negative winding number means the clockwise turns. The
winding number can be calculated by the formula

Q=1/(2m) j[ds(n X Osn) s, (3.24)

v

where n = v /|v||, and v is the in-plane projection of v. Some examples of spin
vortices with various winding numbers are drawn in Fig. 3.2 (b). It is important
to note that the notion of winding number in two dimensions is different from
the chirality. Let us look at the first and second examples with winding number
+1 in Fig. 3.2 (b). The first one is a left-handed vortex, while the second one
is a right handed vortex. In this sense, the chirality and winding number are
different notions.

2Strictly speaking, the definition here is for the degree of map in mathematics. Although it
is not the winding number in mathematics, it is sometimes mentioned as the winding number
in theoretical physics.
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K K K K

Figure 3.3: Schematic picture of one-dimensional antiferromagnet described by
the Hamiltonian (3.25).

3.2 Trivial magnon spin-momentum locking

We here construct a model of the trivial magnon spin-momentum locking, which
occurs in magnets with U(1) symmetric ground states, discussed in Chap. 2.

3.2.1 Model

We consider an antiferromagnetic Hamiltonian, which has been studied in the
context of the spin wave field effect transistor [31]

H'P =Y "[JS;-S;+Dz-(Si x S))| + K Y S}, (3.25)

(6,9) i
where J > 0 is the nearest-neighbor exchange coupling, D is the strength of the
Dzyaloshinskii-Moriya (DM) interaction, and K < 0 is the easy-axis anisotropy.

Although the DM interaction and the anisotropy breaks the SO(3) symmetry,
they preserve the U(1) symmetry around the z axis.

3.2.2 Magnon dispersion

For sufficiently small D, the classical ground state is the Néel state with two
sublattices, A with up spin and B with down spin [Fig. 3.3]. Thus, both of the
symmetries of the spin Hamiltonian and classical ground states are described by
U(1). Using the Holstein-Primakoff transformation around the Néel state,

Slﬂ%:,A -V 250@2[,)/17 Sha= 50— CLEAGR,A,
Skp =V 250“%,)37 Skp = GE,BCLR,B — So, (3.26)
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we can rewrite Eq. (3.25) in terms of magnons as

X(k) 0 0 Y.(k

b 1 0 X(k) Yilk) 0

EERE PR ) Xy o B 82D
Y 0 0 Xk

where k is the one-dimensional momentum, ‘Il,t: = (a,TﬁA, a,vaB, a_pa,a-kp) X(k)=
25(J — K), and Yo (k) = —25(J cosk £+ Dsink).

For usual magnets with complicated terms, we use the numerical Bogoliubov
transformation. However, the forms of analytical expressions in this system are
relatively simple. We here give the explicit forms of K , K -1 7—2', and U. The
upper triangle matrix K}, in the Cholesky decomposition is given by

X 0 0 '
. Ao x v 0
E=vyx1lo o yxz=v2 0 ’ (3.28)

0 O 0 NI CEE

and its inverse is

10 0 —Y. /X2 Y2
o [0 -y /XP=VE 0 (3.29)
X100 X/J/X2-V2 0 ’ '
00 0 X/\/X2—Y?

where we omit (k) for simplicity. Using Eq. (3.28), we obtain the dual Hamilto-
nian

X2 -Y? 0 0 ~Y_ /X2 Y2
- L 0 X2-Y? -Y, /X2 -Y2 0
X 0 ~Yi /X2 Y2 —(X2-Y3) 0
~Y_ /X2 Y2 0 0 —(X?2-Y?)
(3.30)

This Hamiltonian can be diagonalized by a unitary matrix

0 (\/X2-Y2+X) (v/X2-Y2-X) 0

Y_ Y_
A (VX2-YE+X) (V/X2-Y}-X)
U e —T O O _—Y+ 5
1 0 0 1
0 1 1 0
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Figure 3.4: (a) Magnon band dispersions for J = 1, D = 0.1, and K = —0.05.
(b) The contributions from the A and B sublattices to the z-component spin in
the upper and lower bands are plotted for the momentum k. The total S* is
quantized, and its sign is changed across the band crossing points.

and the magnon eigenvalues are given by

Eyx =\ X2(k) — Y2(k). (3.32)

Note that Eq. (3.32) for K = D = 0 reproduces the magnon dispersion of the
one-dimensional Heisenberg antiferromagnet [47]

E}M =278 sink|, (3.33)

which describes degenerated linear dispersions with two massless Nambu-Goldstone
modes.

We plot magnon dispersions in Fig. 3.4 (a). The band structure has two
splitted bands with two crossing points at £k = 0, 7. Since no spontaneous sym-
metry breaking occurs in this model, the massless Nambu-Goldstone modes do
not appear.
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3.2.3 Magnon weight and quantized magnon spin

Next, we discuss the magnon spin-momentum locking. The information of the
magnon weight function is included in the paraunitary matrix

A1
E?,
VX(/X2-Y2+X) VX(/X2-Y2-X)
0 - Y_(X27Y3)1/4 y_(Xzfy_z)1/4 0

VX (\/X2-Y?+X) VX (\/X2-Y?-X)
| Y+(X27Y_E)1/4 0 0 y+(X2,y_E)1/4

LXQH 0 0 LXQM
(X2-Y2) / e e (X2-Y2) 7
0 eI v 0
(3.34)

where we have used Y, (k) = Y_(—k). Using Eq. (3.34), we plot the magnon
weight function and z-component magnon spin in Fig. 3.4 (b).

As shown in Chap. 2, the absence of the U(1) symmetry breaking ensures
that |k, ) is an eigenstate of S7;. Thus, the z-component magnon spin Sf , is
quantized, while the contribution from each sublattice does not have to be. The
fact that each contribution can be over 1 comes from the quantum nature of the
antiferromagnetic magnon3. In the upper and lower bands, the sign of Sk 18
changed across the band crossing points. Clearly, this momentum-dependence of
the magnon spin is an example of the ¢rivial spin-momentum locking.

3.3 Magnon spin texture in momentum space

To explore noncollinear spin structures in momentum space such as a spin vor-
tex in the topological insulator surface state, we should consider classical ground
states with noncollinear spin structures in real space. As we have shown, how-
ever, the Heisenberg antiferromagnet on the triangular lattice, which is one of
the simplest examples of the non-collinear antiferromagnet, is not an example of
the magnon spin-momentum locking. In the following, we construct examples of
the nontrivial magnon spin-momentum locking realized in the kagome lattice an-
tiferromagnet. We will discuss the relationship between the model and a related
material.

3In usual context, this is known as the quantum correction to the classical antiferromagnetic
ground state. See Ref. [46].
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(b)

Figure 3.5: (a) Kagome lattice antiferromagnet with the Dzyaloshinskii-Moriya
interaction denoted by £DZ2. The magnetic unit cell, shown by the green region,
is the same as the unit cell. (b) 120° structure on kagome lattice.

As an example of a noncollinear structure, we consider the 120° structure
in kagome lattice antiferromagnets. The kagome lattice and magnetic order
have the common periodicity with three sublattices. We analyze the following
Hamiltonian:

HP =37 |32 JUSiS) + Dy (Si % 8))| (3.35)

(ig) L a

where J are the nearest-neighbor exchange couplings, and D;; = £DZ is the
DM vector defined in Fig. 3.5 (a).

We consider the two interesting limits: (a) J* = JY = J*=J >0, D > 0 and
(b) J®*=JY=J >0, J* =D = 0, both of which have classical ground states
with the 120° structure? and preserve the U(1) symmetry around the z axis.
We here choose the ground state shown in Fig. 3.5 (b). We set the sublattice
positions

(3.36)

7"1:(0,0),7"2: (1,0),7"3: (%,?),

4Strictly speaking, there is another ground state, v/3 x v/3 structure, for the case (b). In
the presence of small but finite DM interaction, which exists in realistic materials, we do not
have to consider this degeneracy.
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Figure 3.6: Magnon band dispersions and magnon spin in kagome lattice anti-
ferromagnets described by Eq. (3.35) with J* = JY = J* =1,D =0.1.

and the local rotating frame

. 1 V3 . V3 1
Ml = (0707_1)7Miq = (57_77(]) 7M1 = <_77_§70> )

. 13 . (V31
M2 = (0707_1)7M2y = <§7770> 7M2 = (77_57()) )
0)

M‘; = (0707 _1),M?Z;/ = (_17070) 7M‘§ = (07 17 (337)

3.3.1 [Isotropic Heisenberg antiferromagnet with the DM
interaction

The case (a) corresponds to the isotropic Heisenberg antiferromagnet with the
staggered out-of-plane DM interaction. By mapping Eq. (3.35) to the magnon
Hamiltonian and performing the numerical Bogoliubov transformation, we plot
the magnon band dispersions and magnon spin for case (a) in Fig. 3.6. The band
structure for the case (a) has the finite-energy flat band, which is reminiscence
of the zero energy flat band in the classical spin liquid phase of the isotropic
Heisenberg model. There is one massless Nambu-Goldstone mode associated
with the symmetry breaking U(1)— {e}, and we can observe noncollinear spin
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Figure 3.7: Magnon band dispersions and magnon spin in kagome lattice anti-
ferromagnets described by Eq. (3.35) with J* = JY =1,J* = D = 0.

structure in momentum space, as shown in Fig. 3.6.

The norm of magnon spin is no longer quantized due to the absence of any
spin rotational symmetries. The most striking feature is that spin textures in
the highest and flat bands have spin vortices with the winding number @) = —2
defined in a closed curve around a I' point, while the original spin-momentum
locking in electron systems is characterized by () = +1. Although the vector
plot can depend on the choice of the ground state, all plots for U(1)-degenerated
ground states can be identified up to overall rotation in spin space, which pre-
serves the winding number of the vortexlike spin structures.

3.3.2 Antiferromagnetic XY model

The case (b) corresponds to the antiferromagnetic XY model. The band structure
for the case (b) also has the finite-energy flat band and one massless Nambu-
Goldstone mode for the same reasons. In addition, there are two Dirac points
with a finite energy in the K and K’ points, as shown in Fig. 3.7. For each Dirac
cone, a spin vortex characterized by ) = +1 is realized, which is a magnonic
analogue of the topological insulator surface state. Note that the magnon spin-
momentum locking does not require the DM interaction. In magnonic systems,
interesting physics can occur even in the absence of the DM interaction. For
instance, Owerre showed that the topological thermal Hall effect occurs in such
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Figure 3.8: Spin wave dispersion along the high symmetry directions in the two-
dimensional Brillouin zone from Ref. [60]. Solid lines in (a) and (b) denote
the dispersions calculated for the DM and crystal field models, respectively. (c)
Momentum-dependence of the spin wave intensity. Solid line corresponds to the
DM model calculation.

a situation [58].

3.4 Experimental detection

We here discuss possibilities of experimental detections of the magnon spin-
momentum locking.

3.4.1 Candidate material

The effective spin Hamiltonian of a kagome antiferromagnet KFe;(OH)g(SOy)s is
thought to be described by a model similar to Eq. (3.35) for the case (a) [59, 60].
The ground state of this material is the 120° structure with small canting in
out-of-plane direction. In this material, the S = 5/2 Fe3" ions form a kagome
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lattice antiferromagnet. This relatively large spin would enable us to treat this
spin system in the semiclassical spin-wave approximation.

A spin wave dispersion obtained by inelastic neutron scattering [60] is shown
in Fig. 3.8. In Ref. [60], two models are used to fit the dispersion, i.e., the DM
and crystal field models, and the authors concluded that the former model would
be more appropriate®. In the following, we assume the DM model.

The dispersion seems to be very similar as Fig. 3.6. However, the DM model
in Ref. [60] has additional terms to Eq. (3.35) to describe the small difference
from our simple model. First, it has second-nearest neighbor exchange coupling
terms to describe the distortion of the “flat band”. Second, it has in-plane DM
interactions to describe the small canting of the ground state. In this case, the
Hamiltonian itself breaks the U(1) spin-rotational symmetry in the z direction,
and the massless Nambu-Goldstone mode is slightly lifted.

In this material, the magnon spin has the finite 2 component. However, this
component is much smaller than in-plane components. This is because of the
small canting angle of the ground state (~ 1°). Thus, the magnitude of the in-
plane components of magnon spin is not so changed from our simple model. In
addition, the vortex-like spin texture in momentum space would be expected to
be topologically stable. Thus, the similar spin texture would be realized in this
material even in the presence of additional terms. Note that the simple picture
of spin-momentum locking induced by spontaneous symmetry breaking does not
hold in this material.

3.4.2 Spin Seebeck effect for spin vortex with () = —2

Since magnon spin cannot be driven by the electric field, we should investigate
other transports such as light and thermal responses. As shown in Sec. 2.1,
magnon spin can be detected by the spin Seebeck measurement. In usual collinear
antiferromagnet without an external magnetic field, however, the spin Seebeck
effect does not occur due to the degeneracy between the up and down bands.
In the case of the magnon spin-momentum locking with () = —2, on the other
hand, we can expect the finite spin Seebeck effect due to the absence of such
degeneracies. In the following, we discuss it.

To capture the essence of the spin vortex, we approximate the magnon spin
as

Sy, = (sin 20k, cos 26, 0), (3.38)

SFor instance, the energy splitting around 7 meV [Fig.3.8 (b)] in crystal field model is too
large to fit the experimental data.
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where 0, is the polar angle of the momentum k. Suppose that a thermal gradient
is applied in the z direction. The linearized Boltzmann equation for steady-state
magnons in the bulk is given by

on” Ong
,T—k — _—F .
Uk OeT 5 T | (3.39)

where the notations are the same as in Chap. 1. We here ignore the inter-
band effect such as the Berry curvature contributions because we focus on the
non-topological longitudinal transport. In this approximation, the y-component
magnon spin current flowing in x direction is given by

, d*k
= /—(2@25}5@1@15”1@- (3.40)

Using the approximation vy, o cosf and the above equations, we obtain finite
spin current:

GV /d@k cos 20y, cos® Oy, # 0. (3.41)

From this symmetry argument, we can expect the finite spin Seebeck voltage in
an experiment. By replacing 20 with nf in Eq. (3.41), we can discuss general
winding numbers. Interestingly, spin current can be large only for |Q| = 0,2
cases since periodicity of vy, dng oc cos? 0y, is w. In other words, we can indirectly
check the presence of the spin vortex with the winding number ) = —2 in the
framework of the spin Seebeck effect. Since the considered model does not have
the four-fold rotation, the transport phenomenon in the y direction is different
from that in the z direction®. This property enables us to distinguish our case
from the conventional spin Seebeck effect with @) = 0.

In realistic magnets, there are other thermal effects in addition to the spin
Seebeck effect. In particular, the electron contributions cannot be ignored in
magnetic metals. Thus, magnetic insulators such as KFe3(OH)g(SO,)2 discussed
above would be good candidates. In the case of KFe3(OH)g(SO4)2, the magnon
bands with () = —2 are in the high-energy region. In order to obtain a large
signal, an experiment should be performed at high temperature.

Tf we apply a thermal gradient in the y direction, we obtain a finite spin Seebeck signal
corresponding to j{f Y. Magnon spin carried by the net magnon current is parallel to the current
direction.
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3.4.3 Neutron scattering

In the case of electron systems, the angle-resolved photoemission spectroscopy
(ARPES) [12] enables us to detect the momentum-dependent electron spin. So
far, there is no counterpart for the magnonic systems. One possibility is the in-
elastic neutron scattering measurement, which is a typical probe for determining
the magnon dispersion. In this framework, the total magnetic cross-section is
closely related to the imaginary part of the generalized susceptibility defined by
(61, 62]

SXA4(Q, B)] =4mii3 f3(Q) fo (Q)(1 — exp [~ E/(kpT)))
Z exp(1Q - Ry) exp(iQ - (rar — 74))

/_OO ;Tth exp(—iEt/h)(Hoa (0) (), (342)

where d, d’ denote the sublattice, «, § denote the component of the spin angular
momentum, (Q, E) are the scattering momentum and energy, f is the magnetic
form factor, R; is the primitive lattice vector, 74 is the relative coordinate in
a sublattice, and pu is the magnetic moment defined on one atom. Usually, the
inelastic measurement is performed in order to determine the magnon dispersion
by investigating the poles of Eq. (3.42). To determine the magnon spin, we
should also analyze the magnitude of the cross-section. If we can distinguish the
contributions from sublattices, it is in principle possible to obtain the spin texture
in momentum space in this framework. One difficulty is that the cross-section
is given by the summation over the spin indices for usual unpolarized neutrons.
Thus, the polarized neutron scattering would be appropriate for the magnon
spin-momentum locking measurement. Establishing the magnonic analogue of
the ARPES is an important future work.

3.5 Summary

We presented a theory of the magnon spin-momentum locking. We gave condi-
tions for magnon spin to be independent of momentum and constructed examples
of spin-momentum locking by avoiding such conditions. We find the first exam-
ple of spin-momentum locking induced by spontaneous symmetry breaking. We
also discuss the possibilities for detecting the magnon spin-momentum locking
experimentally. A kagome lattice antiferromagnet KFe3(OH)g(SOy)2 is described
by a similar model as the model we used in the main part, and we can expect
that almost the same magnon spin texture is realized in this material. The spin
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vortex with () = —2 realized in our model, which has not been observed in re-
alistic electron models, is expected to be observed by using the spin Seebeck
measurement. We found that |Q] = 0,2 are important for the finite spin current
generation The neutron scattering is one possibility for the direct observation of
the magnon spin-momentum locking. We expect that magnonic analogue of the
angle-resolved photoemission spectroscopy would be established in the framework
of the inelastic neutron scattering.



Chapter 4

Spin texture and topology

In this chapter, we discuss spin textures in momentum space in terms of topology.
We introduce some related notions and techniques in mathematics, which are also
useful in the later chapters. Using the Poincaré-Hopf index theorem, we derive
the sum rule for the winding numbers in momentum space. The simple relation
between spin textures and topology motivates the mathematical classification of
spin textures in the presence of additional factors. In the following chapters,
we focus on the space group symmetry operation as s new factor, which acts on
real space position, momentum, and spin carried by quasiparticles. In the last
section, we set the problems that we address in the later chapters.

4.1 The Poincaré-Hopf index theorem

In mathematics, there are a lot of surprising theorems that relate local quantities
of a space with global (or topological) properties of it. The most famous and
fundamental one is the Gauss-Bonnet theorem [63, 64], which relates the curva-
ture of a manifold with the Euler characteristic, a typical topological invariant of
the manifold. Another interesting and important example is the Atiyah-Singer
index theorem [64], which attracts much interest of theoretical physicists since
it is closely related to the gauge theory and recent topological material science
[65].

In this section, we explain the Poincaré-Hopf index theorem [63], which relates
the winding number of a vector field of a manifold with the Euler characteristic of
it. We here give both the mathematical definition and rough explanation (most
of readers would prefer it!) for each concept.

61
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Figure 4.1: Schematics of the map f : S9! — S9! for d = 2, 3.

4.1.1 Winding number for any dimensions

We here generalize the winding number for any dimensions. For a vector field
v on a d-dimensional space, the winding number around a singular point of the
vector field is given by the degree of the map f: S9! — S9! from the sphere
around the singular point to the sphere given by v/|v| [Fig. 4.1].

In terms of differential forms, the degree of mapping is given in the simple
expression [66]. Let w be the volume form of the target sphere. By definition, w
is a closed (d — 1)-form whose integral is 1:

dw =0,

/Sd_lw _1 (A1)

Using this w, we obtain the simple expression of the winding number

o ffw
Q =degf = Jya I _ frw, (4.2)
fsd_l w Sd—l
where f* is the pull-back of w by f.
For convenience, we give the explicit form of the winding number around a
singular point for two and three dimensions, which are particularly important
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in condensed matter physics. In two dimensions, an isolated singular point of a
vector field is called a vortex, as discussed in the previous chapters. The winding
number of the vortex is given by

1
Qvortex - % o dS(n X asn)z7 (43)

where n = v/|v|. In three dimensions, an isolated singular point of a vector field
is called a monopole. The winding number of the monopole is given by

Qmonopole = /52 dxzeijn : (a’tn X ajn)a (44)

where ¢;; is the completely antisymmetric tensor.

4.1.2 The Euler characteristic of topological space

Roughly speaking, topology is a field of mathematics that deals with the invariant
properties of space under a continuous deformation. One of the most important
concepts in this field is the topological invariant, which is a global quantity
calculated from the information of the whole space. We here explain the oldest
topological invariant, the Euler characteristic. We first give the mathematically
rigorous definition and then how we can calculate it intuitively.

In terms of the homology group, the Euler characteristic is defined as follows.
Let X be a topological space and H;(X) (i = 0,1,2,---) homology groups. Then
the Euler characteristic of X is given by

X(X) =) (=1)b;, (4.5)

1=0

where b; is the Betti number, which is a rank of H;(X) as an Abelian group.
Since the Betti number is a topological invariant, the Euler characteristic is also
a topological invariant.

Because the above definition is too mathematical, we here give a more intu-
itive description. We first review the celebrated Euler’s polyhedron formula, in
which the Euler characteristic appears. Let P be a convex polyhedron. Then
the Euler’s polyhedron formula is given by

2=V -—E+F, (4.6)

where V', E, and I are the numbers of the vertex, edge, and face of P, respectively
[Fig. 4.2(a)]. Actually, the left-hand side of this equation is equal to the Euler
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characteristic of P. Convex polyhedrons are homeomorphic with the two-sphere,
and the Euler characteristic of P is equal to that of the two-sphere since the
Euler characteristic is invariant under the homeomorphic transformation.

The above discussion about the Euler’s polyhedron formula tells us that the
Euler characteristic of a topological space X might be computed by consider-
ing some polyhedron P that is homeomorphic with X. To compute the Euler
characteristic in this context, we introduce the cell decomposition of space. We
here give a rough description and some examples rather than the mathematical
definition.

e Cell decomposition N

The cell decomposition of n-dimensional space is the procedure to decompose
the space into the union of i-dimensional cells e; (i = 0, 1,--- ,n) satisfying
below.

e For i =1,--- ,n, the boundary of e;, Oe;, is composed of a union of e;
(7 <1i).
e ¢; \ Oe; do not have intersections each other.

In the case of two-dimensional space, e, 1, and ey correspond to the vertex,
edge, and face, respectively.

J

For example, the cell decompositions of the two-dimensional torus T? and two-
sphere S? are given in Fig. 4.2(b). For later convenience, we also draw the nets
of these spaces. The lines with same arrows are identified.

Once we get the cell decomposition of the space, we can easily compute the
Euler characteristic as follows:

X(X) =) (1), (4.7)

where v; is the number of i-dimensional cells contained in the cell decomposition
of the space. For example, the Euler characteristics of the two-dimensional torus

T? and two-sphere S? are calculated by using the cell decompositions in Fig.
4.2(b) as follows:

X(T?)=1-2+1=0,
x(S*)=3-2+1=2. (4.8)
It is known that the Euler characteristic of the space does not depend on the

choice of its cell decomposition. Instead of the proof, we here note that convex
polyhedrons discussed above correspond to the different cell decompositions of
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Figure 4.2: (a) Examples of the Euler’s polyhedron formula. (b) The cell decom-
positions of the two-dimensional torus and two-sphere.

the two-sphere. Thus, the celebrated Euler’s polyhedron formula is an example
of this invariant property.

4.1.3 Statement and proof

Using the notions defined above, we here describe the Poincaré-Hopf index the-
orem with a rough proof.

-~ The Poincaré-Hopf index theorem ~

Let M be a compact differentiable manifold and v a vector field on M.
Suppose that i are the isolated zero points of v, and there are no non-isolated
zeros. If M has boundaries, we also assume that v be pointing in the outward
normal direction along the boundary.

Then the Poincaré-Hopf index theorem states that

(0 =Y (4.9

where y (M) is the Euler characteristic of M, and @Q); are the winding numbers
around 1.

J

Proof. If we assume that the sum of the winding numbers around zeros does not
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Figure 4.3: Specific vector field on the cell decomposition of the manifold M.
Zeros with winding numbers @ = (—1)""! are located on the centers of n-
dimensional cells.

depend on a choice of a vector field on M, we can easily and intuitively prove
the Poincaré-Hopf index theorem. For convenience, we again introduce a cell
decomposition C'y; of the manifold M. We here consider a vector field on the
cell decomposition, instead of the manifold itself. Using the above assumption,
we consider the specific vector field that has isolated zeros on the centers of all
cells. We can always assign Q = (—1)""! for the zero on the center of each
n-dimensional cell, as shown in Fig.4.3. In such a vector field, we obtain

X(Chr) = (# of vertices) — (# of edges) + (# of faces)- -
_ Z Qi (4.10)

because the number of n-dimensional cells are equal to that of the centers of
them. u

The statements in some textbooks require the orientability of the manifold,
though this theorem can also be applied to compact unoriented manifolds [67].
Also, there are several generalizations of the Poincaré-Hopf index theorem. For
instance, we will use the Poincaré-Hopf index theorem for the space with singular
points in Chap. 8.

4.2 Application to the magnon spin-momentum
locking

In Chap. 3, we plot magnon spin textures in momentum space. Since z-
component spin is zero, the spin texture is interpreted as a vector field on a
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Figure 4.4: Magnon spin texture in momentum space as a vector field on two-
dimensional torus.

two-dimensional space. In condensed matter, the momentum space, or more
precisely the Brillouin zone, is mathematically equivalent to the torus. Thus, we
can interpret the plots as vector fileds on the two-dimensional torus T?, and the
Poincaré-Hopf index theorem can be applied to the plots.

As an example, we consider the highest band of the case (a) [Fig. 4.4]. T, K,
and K’ are the zeros of the spin texture with Q = —2,+1, +1, respectively. The
Poincaré-Hopf index theorem holds in this plot:

0=x(BZ) =x(T) = Y Q=-2+1+1, (4.11)

i=T,K,K'

where BZ? denotes the Brillouin zone for two dimensions. We here use x(T?) = 0.
Interestingly, the sum of the winding numbers of spin textures over the Brillouin
zone should be equal to zero.

The above sum rule can be also applied to spin textures defined on the three-
dimensional Brillouin zone since x(T?) = 0. In the case of three dimensions, we
do not have to assume that z-component of spin is zero. In the following, we
summarize the sum rule.

I Sum rule for the spin texture in momentum space ~

two dimensions

Suppose that z-component spin is zero. If the spin texture does not have
non-isolated zeros such as a nodal line, then the sum of the winding numbers
of spin vortices over the Brillouin zone is equal to zero.

three dimensions

If the spin texture does not have non-isolated zeros such as a nodal line
and a spin-degenerated plane, then the sum of the winding numbers of spin
monopole structures over the Brillouin zone is equal to zero.

J
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Figure 4.5: Symmetries of magnon spin texture in momentum space.

4.3 Spin texture under space group symmetries

As discussed above, a spin configuration in momentum space is restricted by the
topology of the torus (Brillouin zone). This idea is the starting point of the later
chapters.

In solid state physics, momentum space is equivalent to the torus, as men-
tioned above. This fact comes from the discrete translational symmetry of the
crystal. Since the total spin operator commutes with the discrete translation op-
erator!, the k-dependent spin is a single-valued function over the torus. In other
words, the translation invariance restricts the spin configuration in momentum
space. Proceeding further, a natural question arises. HOW ABOUT OTHER
SYMMETRIES?

Look at Fig. 4.5. This plot is beautiful, isn’t it? The reason why this picture
is beautiful is that it has a lot of symmetries. In addition to the translation
invariance, there are three-fold rotational symmetries around the I', K, K’ points.
By considering that spin is a pseudovector?, this picture also has the reflection
symmetries with the mirror lines along I'-K and I'-K’ lines. Since these space
group symmetry operations act both on spin and coordinate, spin textures in
momentum space should be restricted by such symmetries. Thus, we can expect
stronger conditions for spin textures than the sum rule discussed above.

'In the case of ordered state, we define the discrete translation compatible with the period-
icity of the order.

2For the reflection operation, the behavior of spin is different from that of the coordinate.
See the later chapters for details.
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4.4 Motivation of the later chapters

In this section, we explain the motivation of the later chapters. Motivated from
the Poincaré-Hopf index theorem for the Brillouin zone and symmetry considera-
tions for spin textures, we classify singular spin structures under the space group
symmetries. For convenience, we will introduce the notion of the orbifold, which
is a simple generalization of the manifold. We will first review the space group
and basics of orbifold. Then we define the momentum space orbifold under the
space group symmetries. Using the notion of the momentum space orbifold, we
derive constraints on spin textures in momentum space under some space group
symmetries. The derived constraints for a given material enable us to find in-
teresting spin textures such as the Weyl points and higher-winding-number spin
monopoles.

As mentioned above, we do not have to assume that the z component of spin is
zero for three-dimensional systems. In the following chapters, we mainly discuss
the three-dimensional systems. In addition, we also switch the subject from
magnon spin-momentum locking to the usual electron spin-momentum locking.
This is because the value of magnon spin often takes zero for the whole Brillouin
zone. Note that we can still apply the discussions in the later chapters for the
magnonic systems by considering the difference from electron systems carefully.






Chapter 5

Relevant knowledge of space
group

The space groups are discrete groups that describe the symmetric properties of
crystals. Symmetry operations in space groups preserve the structure of crys-
tals. Thanks to the translational invariance of crystals, there are additional
restrictions that are absent in the case of one molecule. In the presence of the
translational invariance, the number of point groups is reduced to 32. Roughly
speaking, these crystallographic point groups describe macroscopic properties of
materials'. When we are interested in the band structure, the lattice structure
is also an important factor. The combination of point group symmetries and
lattice structures plays an important role in the later chapters.

In this section, we first explain the notions in the space group theory based
on Ref. [68, 69]. Then we briefly review the relationship between space groups
and topological condensed matter physics.

5.1 Translation group and Bravais lattice

By definition, there are three discrete translation symmetries in a three-dimensional
crystal. Any translation symmetry operations are generated by three primitive
vectors 1, %, t3:

tn = n1t1 + n2t2 + n3t3, (51)

where n; are integers. Although the real materials are finite and have boundaries,
we often ignore effects of them. To get rid of the boundary effects mathematically,

LAlthough this statement is often remarked in traditional textbooks about space groups,
some macroscopic properties such as the anomalous Hall conductance depend on the details of
band structures, which cannot be determined without the information of lattice.

71
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we here impose the periodic boundary conditions in three directions with the
period N. Under the periodic boundary conditions, the set {t,,} forms a group.
This is called the translation group, which is the most fundamental building
block of the space group. Under the translation operations defined in Eq. (5.1),
the properties of crystals such as the crystal structure should be invariant.

In addition to the translation group, we here introduce the notion of the Bra-
vais lattice. The Bravais lattice is constructed by applying the translation t,, to
one point. The generated points form a lattice structure, which reflects the trans-
lation invariance. The types of the Bravais lattices depend on the symmetries
that are in the given materials (see Sec. 5.4).

5.2 Symmetry operations in space group

In addition to the translation symmetry, there are several types of symmetries
that preserve crystal structures. These symmetries are generally interpreted as
the combination of a discrete rotation in the orthogonal group in three dimensions
O(3) and a discrete translation, which does not have to be a primitive translation.
For convenience, we introduce the following notation:

r' = ar + b= {a|b}r, (5.2)

where « is a O(3) rotation matrix and b is a translation vector. In this notation,
a premitive translation is expressed as

{eftn}, (5-3)

where € is the identity matrix. Again, b is not always an element of {t,}. Note
that such nonprimitive translations can be achieved only for o # e.

In the following, we introduce all symmetry operations allowed in crystals
[Fig. 5.2]. We first consider the cases with b € {t,,}. The operations with det v =
1 are called as rotations, which belong to the rotation group in three dimensions
SO(3). For the cases with deta = —1, there are three types of operations:
reflection, inversion, and rotoreflection. The former and latter operations are also
called as proper and improper rotations, respectively. After explaining operations
with primitive translations, we consider the cases with b ¢ {¢,}.

5.2.1 Rotation

We here consider (proper) rotational symmetries for crystals in addition to the
translation symmetry. However, the types of rotational symmetries are limited
because they should be compatible with the translation symmetry. The number
of such symmetries is only four, i.e., n = 2, 3,4, 6-fold rotational symmetries.
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Figure 5.1: Left panel: schematic picture of n = 2, 3,4, 6-fold rotations. The red
and blue arrows denote ), T; and Ty — T3, respectively. Right panel: Bravais
lattices on the blue plane in the left panel.

Proof. Let T; be a Bravais lattice vector. By applying the n-fold rotation C,
iteratively, we obtain n Bravais lattice vectors T; (1 = 1,2,--- ;n) with the same
length. Then, the sum

i T, (5.4)

is also a Bravais lattice vector, which should be parallel to the rotation axis
[Fig.5.1]. The differences

T,-T,, (T, =T,) (5.5)

are also Bravais lattice vectors, which should be perpendicular to the rotation
axis. Let T be the smallest Bravais lattice vector that is perpendicular to the
rotation axis. By applying the n-fold rotations, we obtain two Bravais vectors
C,T and C'T. The sum of them

C, T + C;'T = 2cos <2—7T) T (5.6)

n

should be also a Bravais vector. Because this vector is proportional to T', which
is the smallest Bravais lattice vector perpendicular to the rotation axis, we obtain
the following condition for n:

2T

2 cos (7> — (integer). (5.7)

The integers satisfying this equation are n =2,3,4, and 6. O]
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Figure 5.2: Schematic pictures of symmetry operations in space groups. Planes
and solid lines denote the reflection planes and rotation axes, respectively. Under
the symmetry operations, red points are moved to blue points.

5.2.2 Reflection, inversion, and rotoreflection

In three dimensions, symmetry operations with sign flips of one and three com-
ponents, whose determinants are —1, are called reflection and inversion, respec-
tively. These are not elements of SO(3), which are also called as improper
rotations. We can also construct other improper rotations by combining proper
and improper rotations. These operations are called as the rotoreflection. The
number of types of the rotoreflections is the same as that of the proper rotation,
ie., n = 2,3,4,6-fold rotoreflections. Note that the n = 2 case is nothing but
the inversion. If we discuss the point groups of rotoreflections, we focus only on
the n = 4, 6-fold rotoreflections because the n = 3 case is equivalent to another
point group, as shown later.

5.2.3 Glide and screw

The above operations can be written as the pure O(3) rotations. In addition
to such operations, we can also construct symmetry operations by combining
pure O(3) rotations discussed above and nonprimitive lattice translations, which
do not belong to {t,}. The combinations of proper rotations and nonprimitive
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lattice translations are called as the glide operations. The combinations of the
reflection and nonprimitive lattice translations are called as the screw operations.

5.3 Crystallographic point group

By gathering the pure O(3) rotations discussed above, we can construct the
crystallographic point groups. The number of types of the crystallographic point
groups is limited to 32 because the number of the rotations is limited as shown
above. We here list all of them explicitly.

Cy

The groups generated by n = 1,2, 3,4, 6-fold rotations and the identity opera-
tion.

Cr

The groups generated by the inversion and the identity operation.

Cnv

The groups generated by n = 2, 3, 4, 6-fold rotations, reflections, and the identity
operation. There are n reflection (mirror) planes parallel to the rotation axis
with 7/n period.

Chn

The groups generated by n = 1, 2, 3, 4, 6-fold rotations, a reflection, and the iden-
tity operation. There is a reflection (mirror) plane perpendicular to the rotation
axis.

Sn
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The groups generated by n = 4, 6-fold rotoreflections and the identity operation.
Because the groups generated by n = 2, 3-fold rotoreflections are equivalent to
Cr and Cjp,, we only use this notation for n = 4, 6.

D,

The groups generated by n = 2, 3,4, 6-fold rotations and 2-fold rotations perpen-
dicular to the n-fold rotation axis. There are n 2-fold rotations with 7/n period.
Dnd

The groups generated by combining the group D,, (n = 2,3) and n reflection
planes between two 2-fold rotation axes.

Dy,

The groups generated by combining the group D,, (n = 2,3,4,6) and the reflec-
tion plane perpendicular to the n-fold rotation axis.

0,0y

The group O is generated by rotations that preserve the octahedron symmetry
[Fig.5.3]. The group O, can be obtained by adding the inversion operation to
the group O.

T, T,

The group T is generated by rotations that preserve the tetrahedron symmetry
[Fig.5.3]. The group T}, can be obtained by adding the inversion operation to the

group 1'.

5.4 Types of the Bravais lattices

As mentioned above, the periodic property of the system can be determined by
giving the translation group {t,}, or equivalently, the Bravais lattice. The Bra-
vais lattices are characterized by the lattice systems and the centering types. By
considering the number and orders of the rotation axes, the lattice systems are
classified into 7 types: cubic (Oy,), tetragonal (Dyy,), orthorhombic (Dsgy,), hexag-
onal (Dgp), rhombohedral (Ds4), monoclinic (Cyp), and triclinic (Cf). There
are b centering types: primitive (P), base-centered (C, or sometimes A, B),
body-centered (I), face-centered (F), and rhombohedral (R). By considering the
compatibility between rotational symmetries and centering types, we obtain 14
types of the Bravais lattices [Fig. 5.4].

The crystal structures of materials can be obtained by adding a unit structure
to each Bravais lattice point. If we just put an atom on each Bravais lattice
point, then the crystal structure has the same symmetry as the Bravais lattice.
Generally speaking, the symmetries of crystal structures for complicated unit
structures are lower than those of the Bravais lattices.
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Figure 5.4: 14 types of the Bravais lattices. P, C, F, I, R denote primitive,
base-centered, face-centered, body-centered, and rhombohedral, respectively.
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5.5 Definition of space groups

We are now in a position to define the space group. In the above sections, we have
introduced the symmetry operations that preserve the crystal structures. The set
of such operations forms a group G, which is the so-called space group. There are
17 and 230 types of space groups in two and three dimensions, respectively. In
the following, we mainly discuss three-dimensional crystals. For a given crystal
structure, we can assign one of them. Since crystals should have the translation
invariance by definition, the translation group 7' should be a subgroup of each
space group. Actually, T' should be also an invariant subgroup of each space
group. Thus, G/T has a group structure.

The 230 space groups are classified into two categorys: symmorphic (73 types)
and nonsymmorphic (157 types) space groups. In symmorphic space groups, the
translation parts b of all elements can be set to be primitive lattice vectors
by choosing an appropriate origin. In addition, the quotient group G/T can
be chosen as the crystallographic point group, or equivalently, the symmorphic
space group can be expressed as the semidirect product of the point group and
the translation group. In other words, we can determine one symmorphic space
group by giving the type of the Bravais lattice and crystallographic point group?.
In nonsymmorphic space groups, the translation parts b of all elements cannot
be set to be primitive lattice vectors simultaneously by choosing an appropriate
origin. By definition, a nonsymmorphic space group contains at least one of
nonsymmorphic operations (glides and screws).

5.6 Reciprocal lattice and Brillouin zone

In solid-state physics, we often consider a function U(r) with the same periodicity
as the Bravais lattice:

Ur) = U(r — t,). (5.8)

It is convenient to express U(r) in terms of the reciprocal lattice vectors K,,:

U(r)=> Uk, exp(iKy, - T) (5.9)

Km

2In some cases, we should also consider the relative angle between the Bravais lattice and
crystallographic point group.
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where

K,, =mK;+myKs+ msKjy (mz c Z),
ity X t3 ts X t; t1 Xty

Ki=2r—— Ky =2n————— K3 =271—"————. 5.10
! th-(t2><t3)’ 2 ﬂ-tl'(tgxtg)’ 3 Trtl'(tgxtg) ( )

These expressions can be derived by the periodicity condition for U(r):
exp(iKm - t,) = 1. (5.11)

The set {K,,} forms a lattice structure and is called as the reciprocal lattice.
It is interesting to note that the centering types of the reciprocal lattices can be
different from the Bravais lattice. The centering types of the reciprocal lattices for
the face-centered and body-centered Bravais lattices are body-centered and face-
centered, respectively, while those for the primitive and base-centered lattices
are not changed.

A unit cell of the reciprocal space is also an important notion. Although
there are a lot of choices, we usually choose it as the Brillouin zone because this
respects the symmetry of the Bravais lattices. The Brillouin zone is defined as
the region surrounded by the perpendicular bisector planes between the origin
and reciprocal lattice points next to the origin.

The types of the Brillouin zones are determined by specifying not the space
groups but the Bravais lattices. 14 types of the Brillouin zones are drawn in Figs.
5.5,5.6,5.7.

5.7 Momentum space in solid-state physics

Under the continuous translation symmetry, momentum is a good quantum num-
ber and plays a central role in physics. Although this symmetry is broken in
crystals, they still have the discrete translation symmetry. By considering this
discrete symmetry, we can define the similar notion as the momentum: the crys-
tal momentum. In this section, we define the crystal momentum in terms of the
representation theory.

Because discrete translations generated by t; commute each other, translation
group 1" can be written as the direct product

T = Tl X TQ X Tg, (512)

where T; is the group whose elements are {¢|n;t;}. Under the periodic boundary
condition imposed above, T; are the cyclic groups of order N. The irreducible
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Figure 5.5: Brillouin zones for cubic and tetragonal lattices.
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Figure 5.6: Brillouin zones for orthorhombic lattices.
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Figure 5.7: Brillouin zones for hexagonal, rhombohedral, monoclinic, and triclinic
lattices.
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representations of the cyclic group are given by one-dimensional representations
with the characters

o(felta}) = ep(TE) (5.13)

where p; are integers. Using the properties of the direct product, we obtain the
representations of T, which are also one-dimensional representations, with the
characters

Xi({eltn}) = exp(ik - tr), (5.14)

where

_ 1K+ po Ky + p3 K3

§ N

(5.15)
Thus, the representations are labeled by the three-dimensional vectors k, which
are so-called the crystal momentum. According to Egs. (5.11) and (5.14), the
characters do not change under the translation k — k 4+ K,,, and the represen-
tation with k is the same as that with k + K,,. To avoid this duplication, we
usually limit k in the Brillouin zone.

5.8 Space group and topological physics

Recently, the space group symmetry is one of the key ingredients in topological
physics. Although the conventional topological physics is not directly related to
the spin texture problem in this thesis, it would give some insight into the role
of space group symmetries in recent physics. In addition, it may be interesting
for readers to compare the problem of a spin vector field on momentum space
(this thesis) with that of the Bloch wave function on it. We first briefly review
the recent developments in topological physics. Then we introduce topological
physics under the space group symmetries.

5.8.1 Topological condensed matter physics

The earliest example of topological quantum phenomena in condensed mat-
ter physics is the integer quantum Hall effect [72], which is realized in two-
dimensional electron systems under a strong magnetic field. In this phenomenon,
the Hall conductivity is quantized, and electrons flow only in the edges of the
sample. Mathematically, the Hall conductivity for this phenomenon is formulated
as the Chern number defined for a U(1) gauge structure of the wave function on
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Figure 5.8: Altland-Zirnbauer classification (table from Ref. [77]).

two-dimensional torus representing magnetic Brillouin zone. This is the cele-
brated TKNN formula [70, 71]. The Chern number detects the non-triviality
of the U(1) bundle on the two-dimensional torus [64]. It is well known that
the non-triviality of this bundle is characterized by Z. Interestingly, this integer
(Chern number) corresponds to the number of edge states of the sample. This
fact is the so-called bulk-edge correspondence [73].

Haldane generalized the quantum Hall effect to the electron systems without
a net magnetic field [74]. Thanks to the absence of the magnetic field, there
is a translation invariance, and we can discuss the physics in terms of momen-
tum space. In this generalization, the Hall conductivity is formulated as the
Chern number defined for a U(1) gauge structure of the Bloch wave function
on two-dimensional Brillouin zone, which is mathematically nothing but a two-
dimensional torus. The important point here is that the gauge structure of Bloch
wave functions on the Brillouin zone determines the transport of the system,
while this thesis focuses on the properties of the tangent vector bundle defined
on momentum space. In any case, considering the topological concepts defined
on momentum space is the starting point of the recent developed topological
condensed matter physics.

By changing the dimensionality and adding symmetries, we can construct the
celebrated topological insulators and superconductors [5, 6]. Mathematically,
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the topological classification is performed by classifying vector bundles on n-
dimensional torus that satisfy the symmetry constraints. Kitaev gave the explicit
way of classifying the topological phases by using the K-theory [75]. According to
the K-theory classification for time-reversal, particle-hole, and chiral symmetries,
topological phases of non-interacting (or mean-field) electron systems correspond
to the Altland Zirnbauer (AZ) classes (Fig. 5.8) [75, 76, 77]. The integer quantum
Hall effect corresponds to the class A in two dimensions. Note that the types of
topological invariants are not only Z but also Z,. The Kane-Mele [78] model and
three-dimensional Z, topological insulator [79] are the good examples labeled by
nontrivial Z, indices [Fig. 5.8].

5.8.2 Topological phases protected by space group sym-
metries

Natural generalizations of topological insulators and superconductors to space
group symmetries are called topological crystalline insulators and superconduc-
tors [80, 81, 82]. Topological crystalline materials are protected by new topolog-
ical invariants related to the space group symmetries. For a non-zero crystalline
topological invariant, there can exist the edge (surface) modes on boundaries that
possess the corresponding crystalline symmetries even for trivial materials in the
AZ classification. The typical example is the mirror Chern number [83] defined
on the mirror-invariant planes in the Brillouin zone. The classification theory
can be constructed by using the K-theory for several space group symmetries
[84, 85, 86]. Classifying topological phases and calculating topological invariant
for all space groups are still open questions.

Another interesting direction of this field is the classification theory based
on the notion of atomic insulators [87, 88]. Atomic insulators are the materials
that can be adiabatically connected to the isolated atoms. In this framework,
the non-triviality is defined by the difference from the atomic insulators. We
first investigate all possible combinations of representations at symmetric parts
of Brillouin zone, which should satisfy the compatibility relations [68], for given
space group symmetries and define the set {BS}. Then we investigate those of
representations for atomic insulators and define the set {Al}. The classification
for the space group is given by the quotient space

{BS}
Xps = ——, 5.16
b= a0 (5.16)
which is always a finite Abelian group. Although the mathematics is simpler than
the conventional classification theories, the relation between this framework and
the conventional topological classification theories is unclear. For instance, the
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classification for the Zs topological insulator is given by 7Z, in this framework.
Complete understanding of the topological classification under the space group
is an important remaining issue.

The topological properties of matters are affected by the space group symme-
tries. Under the space group symmetries, such properties can be often determined
by the information of symmetric parts of the Brillouin zone. In this thesis, those
parts correspond to the singular parts of orbifolds. The topological classification
theory based on the orbifold would be an interesting future work.



Chapter 6

Basics of orbifold

In this chapter, we first introduce the notion of the orbifold [89, 90], which is a
simple generalization of the notion of the manifold. Then we consider the orb-
ifolds for the space group symmetries and introduce related notions. Although
these orbifolds are not defined for momentum space, they are useful for under-
standing the momentum space orbifolds in the later chapters. The following
discussions are based on Ref. [89].

6.1 Definition and examples

In this section, we first give the definition of the orbifold and then list some
famous examples in this field.

6.1.1 Rough definition

We here give a rough definition of the orbifold. The orbifold is a simple gen-
eralization of the manifold. Remember the definition of the manifold. Roughly
speaking, the d-dimensional manifold is a space that locally looks like the Eu-
clidean space E¢ [63, 64]. This statement is the starting point for defining the
orbifold.

The orbifold is locally isometric with a quotient space E¢/T", where I' is an
isometric finite group of the Euclidean space!. T' can depend on a point on the
orbifold. If I' is just {e} for the whole region, the orbifold is reduced to the
manifold. In that sense, the notion of manifold is included in the definition of
the orbifold. The most important difference from the manifold is that there can
be singularities in the case of the orbifold. The points whose neighborhoods are

'We can also cosinder the orbifold for general metric spaces other than the Euclidean space

87
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E¢ DG

E*/T

Figure 6.1: Schematic pictures of the manifold and orbifold. The orbifold can
have singularities, while the manifold cannot.

characterized by I' # {e} are singular points. If such points are not isolated, we
call them singular lines, planes, and so on. The order of singularity is defined as
IT'|. The schematic pictures of a manifold and an orbifold are shown in Fig. 6.1

When the quotient space X/G, where X is a set and G a group acting on X,
is a metric space, then X/G is also called the orbit space. The orbifold locally
looks like E?/I", which is an orbit space. The orbifold is named after the orbit
space and manifold.

6.1.2 Formal definition

For readers who want to know the formal definition of the orbifold, we here give
it. A d-dimensional metric space O is an orbifold with the model X if O is a
union of open sets U; (i € I) satisfying the following conditions:

e There are U, (¢ € I): an open set expressed as the neighborhood of a point
on X, a continuous map p; : U; = U;, and a finite group G; that consists
of isometric transformations of X acting on U;, and p; leads to an isometry

U, /Gi — U,.
o If pi(z;) = pj(w;) for z; on U; and x; on Uj, there are an open set Vi on U,
an open set V; on Uj;, and an isometry ¢;; : V; — V; satisfying
pj © ¢ij(z) = pi(z)
for all z € V..
If we set X = E¢, O is a Euclidean orbifold discussed in the rough definition.
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E!/7Z, St Z,

identify Cl fixed /—\ I:>

{ point

Figure 6.2: Several examples of orbifolds.

6.1.3 Examples
We here give some simple examples of the orbifold [Fig. 6.2].

E!/Z,

One of the simplest examples of the orbifolds is E'/Z,. This is just obtained by
identifying x and —x on a number line. Since this operation does not change
x =0, x = 0 is the fixed point. In the context of orbifolds, it is also called as
a singular point with order |I'| = 2. The neighborhoods for x # 0 are isometric
with the neighborhood of a point on E!, while the neighborhood for z = 0 is
isometric to the neighborhood of the origin at E!/Z,.

S/ 7,

The orbifold S'/Z, is a good example for condensed matter physicists. Let us
consider the one-dimensional Brillouin zone under the inversion symmetry. This
orbifold corresponds to the irreducible part of the Brillouin zone. In this case,
x = 0,7 are the fixed points under the inversion, and they correspond to the
singular points of the orbifold. The neighborhoods for z # 0,7 are isometric
with the neighborhood of a point on E!, while the neighborhoods for z = 0,7
are isometric with the neighborhood of the origin at E!/Z,.
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E?/C,

Another typical example is E?/C,,, where C,, is the point group that consists of
n-fold rotations defined in Chap. 5. This orbifold takes the conical structure
whose singular point has the order n. The n = 3 case is drawn in Fig. 6.2.

Ez/TQd

[£2 /Thy is equivalent to the torus T?, where Th, is the two-dimensional translation
group. Since there are no singular points, it is also a manifold. This is an
important example in condensed matter physics. The two-dimensional Brillouin
zone is obtained by identifying k and k + K,, of the momentum space. Since

{K,,} is a translation group in momentum space, the Brillouin zone can be
regarded as E?/Thy.

6.2 Related notions of orbifold

For convenience in later sections, we here introduce some important notions.

6.2.1 Euler characteristic versus orbifold Euler character-
istic

The Euler characteristic is a topological invariant of a topological space. In the

case of orbifold, there is a similar quantity: the orbifold Euler characteristic.

Both of them are important in the later chapters. We here define the orbifold

Euler characteristic and compute it for some examples.

The orbifold Euler characteristic can be computed by considering the cell
decomposition introduced in Chap. 4. In the cell decomposition, the singular
points, lines, planes,- - - should be taken as the 0-, 1-, 2-, --- dimensional cells.
Once we obtain the cell decomposition of the orbifold, we can calculate the
orbifold Euler characteristic in almost the same procedure as the calculation of
the Euler characteristic. The only difference is that we should assign the weight
for each singular part. Suppose that the i-th cell is described by E% /I";, where
d; is the dimension of the i-th cell, and I'; is the isometric finite group that
characterizes the i-th cell. The explicit form of the orbifold Euler characteristic
is given by

HO) = 1 (61
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Figure 6.3: Schematic pictures of (a) covering map, (b) branched covering, and
(c) a branched covering E? — E?/Cj.

where || is the order of I';. The sum is taken over all cells in the cell decompo-
sition of the orbifold. If T'; are {e} for all cells, then x°*(O) = x(O).

As an example of the calculation, we here compute the Euler characteristic
and orbifold Euler characteristic of S'/Z, shown in Fig. 6.2. The picture of
St/ Z, itself is a cell decomposition of S'/Z,. There are two 0-dimensional cells
and one 1-dimensional cell. Thus, the Euler characteristic is

X(SYZy) = (+1) x 2 —1=1. (6.2)

Next, we consider the weight for each cell. The 0-cells are described by E!/Z,,
while the 1-cell is described by E'. Thus, the orbifold Euler characteristic is

(S Zs) = (+1)@ <24 (1)
1

= x2-1=0. (6.3)

Note that these quantities are only defined for compact orbifolds.

6.2.2 Covering map versus branched covering

Another important notion in the field of the orbifold is the branched covering.
Before defining it, we first review the covering map [Fig. 6.3 (a)].
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Let X and Y be metric spaces. A continuous map 7 : X — Y is a covering
map if there is a neighborhood U for any point of Y satisfying the following
conditions:

e The inverse mapping 7! of U is expressed as

7T_1<U) = U(NJZ,

where U; are open sets of X that have no intersections.
o 7|g ¢ U; — U; is an isometry.

If 7=!(y) for any y € Y is composed of d points in X, 7 is called as a covering
map with the degree d.

In the field of the orbifold, it is convenient to define the branched covering
[Fig. 6.3 (b) and (c)]. Let us consider the projection map « : E* — E?/C,.
Except for the fixed (singular) points of the n-fold rotation, this map is a covering
map with the degree n. In this case, 7 is not a covering map but a branched
covering with the degree n. In general, a continuous map 7 : X — Y is a
branched covering if 7’ : X’ — Y’ is a covering map, where Y/ = Y\S, X’ =
7 1(Y’), and S # Y is a closed set of Y. In the context of the orbifold, S is the
set of all singular parts.

6.3 Orbifold and space group

The space groups can be reinterpreted in terms of the orbifold [91]. Let T be a
discrete subgroup of the group of isometry defined in the d-dimensional Euclidean
space. If the orbifold E¢/T? is compact, then I' is called as a space group.
The number of such compact orbifolds is 17 in two dimensions and 230 in three
dimensions, which correspond to the numbers of space groups explained in Chap.
5.

Let us see some examples. E? /Ty, is equivalent to the two-dimensional torus,
and it is compact. Thus, the two-dimensional translation group 754 is a space
group. E?/C5 has a conical structure, and it is not compact (Fig. 6.2). Thus,
('3 is not a space group by itself. Since C} is a crystallographic point group, we
can construct a space group by combining C3 and Thg.

We here describe two theorems about the relation between the space groups
and orbifolds.

2We here omit proving that E?/T" has an orbifold structure.



6.3. ORBIFOLD AND SPACE GROUP 93

Theorem 1

Let I' be a space group. Then a continuous map 7 : T" — E™/T" is a branched
covering with finite degree.

We omit the proof here. By using this theorem, we can prove the following
theorem.
Theorem 2

Let " be a space group. Then the orbifold Euler characteristic of orbifold
E"/T" is given by

X (E™/T) = 0.

Proof. According to the theorem 1, T" — E"/IT" is a branched covering with
finite degree. Suppose that the degree is d. We first take a cell decomposition of
E"/T. By acting I to the cell decomposition, we obtain a cell decomposition of
the Euclidean space E™. Simultaneously, we also obtain the cell decomposition
of the torus as the unit cell corresponding to the translation group in I'. For non-
singular parts, one m-dimensional cell in E"/T" corresponds to d m-dimensional
cells in T". For a m-dimensional singular part described by E™/T";, one m-
dimensional cell in E™/T" corresponds to d/|T";| m-dimensional cells in T". By
considering the definition of the orbifold Euler characteristic, we obtain

X(T") = dx”"*(E"/T).
Since the Euler characteristic of n-dimensional torus is 0, we obtain
X"*(E"/T) = 0.
O

Before ending this chapter, we give some examples of two-dimensional space
group (or wallpaper group) orbifolds (Fig. 6.4).

T

This orbifold corresponds to the two-dimensional translation group T5;. This
orbifold is also expressed as E?/Thy, which is equivalent to the two-dimensional
torus as discussed above.

5333
This orbifold corresponds to the space group that consists of 3-fold rotations and
the two-dimensional translation. A map 7 : T" — S333 is a branched covering
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S333 K

N/

3 3

Figure 6.4: Schematic pictures of two-dimensional space group orbifolds.

with degree 3. There are three singular points with |I';| = 3.

K

This orbifold corresponds to the space group that consists of the glide operation
and the two-dimensional translation. This orbifold is equivalent to the Klein
bottle, which is a typical example of unoriented manifolds. Since there are no
singular points, a map 7 : T' — K is a covering map with degree 2.



Chapter 7

Momentum space as orbifold

In Chap. 6, the space group orbifolds have been introduced in terms of symmetry
operations that act on real space. For our purpose, it is more convenient to
discuss the space group symmetries in terms of momentum space. We here regard
the irreducible part of the momentum space under the space group symmetries
as an orbifold. In this context, the problem of spin textures in momentum space
can be regarded as the (pseudo-)vector field on the “momentum space orbifold”.
In addition to the space group symmetries, we also consider the time-reversal
symmetry, which is a typical symmetry in condensed matter physics. In this
chapter, we explain the basics of the momentum space orbifold.

7.1 Symmetric operations in momentum space

In this chapter, we explain how the space group and time-reversal symmetries
act on the crystal momentum and electron spin, which is a pseudovector.

7.1.1 Spin as a pseudovector

Let us consider physical quantities in three dimensions. A pseudovector is a
quantity that transforms like a vector under the proper rotations (€ SO(3)),
while the sign of it is changed under the improper rotations (¢ SO(3),€ O(3)).
For instance, the determinant of the #-rotation around z-axis is

cosf —sinf 0
det | sinf cosf 0] =1, (7.1)
0 0 1

and the f-rotation is a proper rotation. Under the #-rotation, a pseudovector is
rotated by the same matrix for the coordinate. On the other hand, the determi-

95
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pseudo vector vector
rotation reflection rotation reflection
(I!y! Z) - (7‘7331/3 Z) ("I:vyv Z) — (_xvyv Z)
inversion rotoreflection inversion rotoreflection

(z,y,2) = (—x, —y, —2) (z,y,2) = (—x,—y,—2)

Figure 7.1: Schematic pictures of symmorphic operations for pseudovector and
vector.

nant of the inversion is
det{ O -1 0 | =-1, (7.2)

and the inversion is an improper rotation. Under the inversion, a pseudovec-
tor is not changed in the original coordinate. In general, the rotation matrix
for a pseudovector can be obtained by multiplying the rotation matrix for the
coordinate and

0 -1 0 |. (7.3)
0 0 -1

Typical examples of pseudovectors in physics are the magnetic field and an-
gular momenta. Spin angular momentum, a typical angular momentum in con-
densed matter physics, behaves as a pseudovector. In Fig. 7.1, we draw schematic
pictures of behaviors of a pseudovector under the symmorphic operations. The
spin operator in quantum mechanics is transformed as follows:

U S, = o, 87, (7.4)

where U, is a unitary matrix that represent the « rotation of the quantum system,

and «’ is a rotation matrix for a pseudovector. o’ = « for proper rotations, while

o/ = —a for improper rotations.
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7.1.2 Space group operations for momentum and spin

We here explain how the crystal momentum and spin behave under the space
group symmetries. For the crystals, we often consider a function ¢, which
is an irreducible representation of the translation group labeled by the crystal
momentum k, such as the Bloch wave function. Under the translation {¢|t,},
¢ behaves as

{eltn}dr = exp(ik - tn) Pk (7.5)

In other words, this equation is the condition for ¢, to be an irreducible repre-
sentation of the translation group.

Let us consider the function {«a|b}¢g. This function is an irreducible repre-
sentation of the translation group labeled by ak. This can be easily checked:

{eltn}H{alb}or = {a|b}{e|a™ tn} oy
= exp(ik - a”'t,){a|b} oy,
= exp(iki(a™")ij(tn) ;) {alb}¢x
= exp(iki(@)ji(tn);){|b} dr
= exp(iak - t,){a|b}og, (7.6)

where we have used a™! = of. Thus, the crystal momentum behaves as a vector
under a rotation «. The translation part of {«|b} does not affect the momentum.

Next, we investigate the electron spin. In the following, we assume that
electron systems can be described by one-particle picture, and electron states
are well expressed as the Bloch wave functions |k, a). As defined in Chap. 1, the
electron spin is given by

Sk,a = <kaa|‘§|k7a>a (77)

where § = o/2® 1 with o being the Pauli matrices in spin space and 1 the
identity matrix in orbit space. Under the space group symmetry {«|b}, the spin
behaves as
(k, alU S Utappy b, a) = (K, alU; Uy ' 5'UsUalk, a)
= (k,a|lU;'SU, |k, a)
= a;j<k> a|,§'l|k§7 a)

= a;S5; (7.8)

7(1/’

where U, denotes the representation matrix of the symmetry operation x. In
the second line, we have used the fact that the translation does not change the
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spin. In the third line, we have used Eq.(7.4). We implicitly assume that there
is no spin degeneracy for a band a, and Sy, is well defined. In summary, the
momentum and spin behave under the space group symmetry {«|b} as
k — ak,
Sk,a — Sak,a = O_//Sk,a. (79)

This means that non-primitive lattice translation does not affect momentum and
spin directly.

7.1.3 Time-reversal symmetric operations for momentum
space
In the absence of magnetic field and magnetic orders, electron systems possess the

tlme—reversal symmetry. Under the time-reversal symmetry, momentum operator
P orbital angular momentum operator L, and spin operator S behave as (68, 92]

T'PT = —P,
T'LT=-1L,
T7'ST = -8, (7.10)

where T is the time-reversal operator expressed as an antiunitary operator (T =
—T71). The crystal momentum changes its sign under the time-reversal opera-
tion. This can be easily checked by using {e|t,,} = exp(iP - t,,):

{€ltn}Tox = exp(iP - )Ty
— Texp(iP - t)
= Texp(zk ’ tn)(bk
= exp(—ik - t,)T ¢x, (7.11)
where we have used Eq. (7.10) and i7" = —T' [68]. Thus, T'¢y is an irreducible

representation of the translation group labeled by —k. The electron spin also
changes its sign under the time-reversal symmetry:

(k,a|T~'S'T|k,a) = —(k,a|S|k, a), (7.12)

where we have used Eq. (7.10).
In summary, the momentum and electron spin behave under the time-reversal
symmetry 7" as
k — —k,
Skﬂ — S,kﬂ = —Skﬂ. (713)
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It is important to note that electron spin behaves in the same way as momentum
under the time-reversal symmetry.

7.1.4 Special part in the Brillouin zone

In the Brillouin zone, specific crystal momenta are invariant under the space
group operation {a|b}. Since the crystal momentum is defined modulo reciprocal
vectors, the specific momentum k; satisfies

ks = ak, (mod K). (7.14)

For the conventional definition of the Brillouin zone, ks # aks lives on the
boundary of the Brillouin zone. If a specific momentum is an isolated point,
then it is called as a special point. For some space groups, there are points that
are invariant under the common symmetries. A line (plane) that consists of such
points is called as a special line (plane). Special parts of the Brillouin zone have
conventional names such as I' point. If a crystal momentum is only invariant
under the primitive translation {e|t,}, it is called a general point.

For the crystal momentum k, that is invariant under the operation {a|b},
{a|b}¢g, is an irreducible representation of the translation group labeled by k;.
By gathering all operations that do not change k;, we can construct a group. This
is called the k-group G(k). In the case of symmorphic space groups, irreducible
representations of the k-group can be written as [68]

D¥({a|b}) = exp(ik - b)'(a), (7.15)

where IT" is an irreducible representation of the point group Gy(k) that consists
of the rotation parts of G(k).

In addition to the special parts for space group symmetries, we can also
consider the time-reversal symmetric points that satisfy

k, = —k; (mod K). (7.16)

These points are equivalent to the inversion symmetric points. In a d-dimensional
Brillouin zone, there are 2¢ time-reversal points.

7.1.5 Irreducible part of the Brillouin zone

In the presence of the space group symmetry, important information is all in-
cluded in a small part of the Brillouin zone. For each space group, we can define
the point group that consists of rotation operations in the space group. The Bril-
louin zone divided by this point group is called the representation domain. If we
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(a) . (b)

time reversal
‘ symmetry

Figure 7.2: (a) Representation domain and irreducible part under the time-
reversal symmetry for space group 143. (b) Basic domain for hexagonal lattice.

consider the time-reversal symmetry in addition to the space group symmetry,
the irreducible part of the Brillouin zone is a half of the representation domain
for inversion-broken systems. Since the crystal momentum behaves as k — —k
under the inversion, the irreducible part of the Brillouin zone is the same as the
representation domain for inversion-symmetric systems.

The basic domain is a similar notion. For each space group, there is one cor-
responding Brillouin zone. Each Brillouin zone corresponds to a Bravais lattice.
The Brillouin zone divided by the point group of the Bravais lattice is called the
basic domain. Since the symmetry of the Bravais lattice is higher than that of
the space group, the basic domain is smaller than the representation domain. In
Fig. 7.2, we draw the above three regions for space group No. 143 as an example.

7.2 Momentum space orbifold

Now we can cope with the problem of spin textures in momentum space under
the space group symmetry in terms of the orbifold. As we discussed, momentum
and electron spin are affected only by the point group part of the space group.
Thus, all information of the spin texture in momentum space is included in the
representation domain. If we assume the time-reversal symmetry, it is included in
the irreducible part discussed above. Actually, these domains can be interpreted
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as the orbifold! (hereafter, it is called as momentum space orbifold). In the
following, we discuss the momentum space orbifold.

In the reciprocal space, there is the reciprocal lattice translation symmetry
k — k + K. By combining this translation and the point group symmetry,
we can construct a new group G,... Note that G,.. is not always equivalent to
the original space group G. For nonsymmorphic space groups, G/T cannot be
written as a point group. Also, the body-(face-)centered lattice corresponds to
the face-(body-)centered reciprocal lattice. Thus, G,e. can be different from G
even for symmorphic space groups. However, G,... should have the same structure
as some symmorphic space group with opposite centering type. Because this is
a one-to-one correspondence, the number of types of G,.. is 73.

The reciprocal space E? divided by G,.. is the orbifold E3/G,.., which clearly
describes the representation domain in the Brillouin zone. Since this orbifold

is the same as some symmorphic space group orbifold, the following conditions
should hold.

e E3/G,.. is a compact orbifold.

e 7 : BZ — E3/G,.., where BZ is the Brillouin zone (T?), is a branched
covering with degree |P,¢.|, where P,.. is the point group part of G, ...

o \"N(E?/Ghee) = 0.

Since the specific momentum in the Brillouin zone is characterized by a point
group, the following condition should also hold.

e The special points, lines, and planes in the Brillouin zone correspond to
the singular points, lines, and planes of the orbifold, respectively.

e A neighborhood of such singular point k; is isometric with a neighborhood
of the origin of E3/P(k,), where P(k,) is the point group part of the k-
group at k.

Some readers might think that the only important information of an orbifold is
included in the point group, and we just have to consider 32 orbifolds that corre-
spond to 32 point groups. In general, however, this statement is incorrect. The
symmorphic space groups are determined by the semidirect product (not direct
product!) of the translation groups, whose number of types is 14 corresponding
to the Bravais lattice, and point groups. This semidirect nature allows various

Tn Ref. [93], the orbifold T3 /C,,, is discussed in the same context, though they do not use
the properties related to the topology of orbifold itself.
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types of orbifolds for the same point groups, and the number of E3/G,.. (73) is
larger than that of point groups (32).

In addition to the space group symmetry, we here consider the time-reversal
symmetry. In the reciprocal space, it is convenient to define

Grec - Grec + TG'reca (717)

where 7' is the time-reversal operation. In the presence of the inversion symme-
try, the irreducible part of the Brillouin zone is the same as the representation
domain. In the absence of it, on the other hand, the irreducible part is a half of
the representation domain as mentioned above. In this case, we can construct a
new orbifold E? /(... satisfying the following conditions.

e E?/G,.. is a compact orbifold.

o 7: BZ — E?/Ge., where BZ is the Brillouin zone (T3), is a branched
covering with degree |Pyec|, where Pro. = Pree + T Prec.

o 7:E3 /Grec — E3 / G ee is a branched covering with degree 2.
° Xorb(ES/Grec> = (.

e In addition to the special points, lines, and planes, the points, lines, and
planes invariant under the time-reversal operation or the combination of
the time-reversal and point group operations are also the singular points,
lines, and planes of the orbifold, respectively.

e A neighborhood of such singular point k; is isometric with a neighborhood
of the origin of E3/P'(k,), where P’'(k,) is a subgroup of G ..

In the following, we consider behaviors of electron spin on the orbifold.

7.2.1 Spin texture for symmorphic space group: proper
rotation

We first consider the symmorphic space groups whose elements are only proper
rotations. Under proper rotations, spin behaves as a vector, and the pseudovector
nature does not appear. In this case, point group operations act on momentum
and electron spin in the same way. Thus, the classification of spin textures in
momentum space is reduced to the classification of a vector field on the orbifold
E3/G e

Next, we consider the time-reversal symmetry. Under the time-reversal op-
eration, momentum and electron spin behave in the same way [see Eq.(7.13)].
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Since inversion, which is an improper rotation, is absent in this case, the classi-
fication of spin texture in momentum space is also reduced to the classification
of a vector field on the orbifold E3/G,...

Here we omit the discussion about behaviors of spin vector flow around the
singular parts of the orbifold. In the next chapter, we will consider it.

7.2.2 Spin texture for symmorphic space group: improper
rotation

In the case of symmorphic space groups that contain improper rotations, the sit-
uation is completely different. Since the sign of spin is flipped with respect to the
sign of momentum under improper rotations, the identification is performed up
to the sign of spin. In such cases, the classification of spin texture in momentum

space cannot be reduced to the classification of a “single-valued” vector field on
the E3/G e

7.2.3 Spin texture for nonsymmorphic space group

The translation parts of the space group operations do not affect momentum and
electron spin. If we ignore the non-primitive lattice translation, nonsymmorphic
space groups are reduced to some symmorphic space groups. Thus, the classifi-
cation of spin texture in momentum space of a nonsymmorphic space group is
basically the same as that of corresponding symmorphic space group. However,
the representation theory of a nonsymmorphic space group is not the same as
that of the corresponding symmorphic space group. This difference sometimes
affects the dimensionality of the representation. In such cases, there would be
some difference that comes from band degeneracy due to the nonsymmorphic
symietries.

If we consider the Bloch wave functions, nonsymmorphic operations change
the phase of them. This change is an important factor in the context of the
topological crystalline insulators, topological Dirac (Weyl) semimetals, and so
on.

7.2.4 Example: magnon spin texture in kagome lattice
antiferromagnet
Although the main topic is about the three-dimensional electron systems, we

here consider the magnon spin-momentum locking again. Let us consider the
example in the kagome lattice antiferromagnet. Since the magnonic sysmtem
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Figure 7.3: Magnon spin texture on orbfiold S333. The spin texture on momen-
tum space is mapped onto a vector field (red lines) on the orbifold.

is not invariant under the time-reversal symmetry, S_g, # —Sk,. The ground
states have the three-fold rotational symmetry?, and magnon dispersions reflect
this symmetry. Magnon spin behaves as a vector under this proper rotation.
In terms of the orbifold, the magnon spin texture in momentum space can be
reduced to a vector field on the orbifold S333 (Fig. 7.3). As shown in Fig. 7.3, a
magnon spin texture can be mapped to a well-defined vector field on the orbifold
due to the properness of the symmetric operations. In such a case, all we have
to do is classify vector fields on the orbifold that corresponds to the symmetric
operations.

2We here ignore the reflection symmetry since it is absent if we choose another ground state.
Also, there are other symmetric operations in the case of the magnets. If such symmetries are
included, the number of space groups increases to 1651. We here ignore such symmetries for
simplicity.



Chapter 8

Spin texture on momentum
space orbifold

In this chapter, we consider spin textures on momentum space orbifolds for the
specific 24 symmorphic space groups. In the cases of these space groups, a spin
texture in momentum space can be mapped to a vector field on the momentum
space orbifold. We first impose the conditions for electron systems. Then we dis-
cuss the behaviors of electron spin around and on the specific parts of momentum
space. We also generalize the Poincaré-Hopf index theorem to spaces with sin-
gular points. Combining these topics, we present a theory of spin textures on
orbifolds. By applying this theory to 24 space groups, we derive the constraints
on orbifolds. These constraints would be useful to find the Weyl points and new
spin monopoles with higher winding numbers.

8.1 Conditions for electron systems

In this thesis, we focus on three-dimensional electron systems under the specific
symmetries. Since the magnetic materials have antiunitary symmetries other
than the time-reversal symmetry, they are more complicated than non-magnetic
materials. For simplicity, we consider only the non-magnetic materials and im-
pose the time-reversal symmetry. In the presence of the time-reversal and inver-
sion symmetries, there is always a spin degeneracy for each k. Using

T 'H T = Hy,
H, = H_4, (8.1)

105
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where Hy is the Bloch Hamiltonian, we can easily check it:

T_lHk[T| - k7a>] = H—k:| - k7a> = E—k,a| - k’a’>
SHR[T| = k,a)] = E_go[T| = k,a)],
Hk| — k,a) = H_k| — k,a) = E—k,a| — k,a).

Note that | — k, a) is orthogonal to T'| — k, a) in the case of free fermion systems
with spin-1/2 [68]. Thus, there should be a degeneracy at each momentum k.

To define spin textures, there should not be the spin degeneracy for the
whole region of the Brillouin zone. Thus, we consider the inversion-broken elec-
tron systems. Even when the systems break the inversion symmetry, there are
spin degeneracies in the absence of the spin-orbit interaction, which are not
protected by the symmetries. Thus, we assume the large spin-orbit interaction,
which leads the experimentally observable spin splitting. Since the non-primitive
lattice translation does not affect momentum and spin, we here consider the sym-
morphic space groups. In addition, we focus on the space groups whose elements
are proper rotations for avoiding difficulty of sign flip under improper rotations
discussed in Chap. 7.

In summary, we impose the following conditions.

e Three-dimensional non-magnetic (time-reversal symmetric) electron sys-
tems.

e Space groups are symmorphic.
e Elements of space groups are proper rotations.

e The inversion symmetry is broken. (This condition is included in the above
condition.)

e The spin-orbit interaction is large.

The number of symmorphic space groups whose elements are proper rotations is
24. In the following sections, we investigate the topology of 24 momentum space
orbifolds and classify spin textures on them.

Before ending this section, we discuss the types of symmorphic space groups.
In terms of behaviors of electron spin, which is a pseudovector, the 73 symmorphic
space groups are classified into three categories:

e Elements are proper rotations. (24 types)
1,3, 5, 16, 21, 22, 23, 75, 79, 89, 97,143,146, 149, 150, 155, 168, 177, 195,
196, 197, 207, 209, 211.
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e At least one element is an improper rotation that is not the inversion. (25
types)
6, 8, 25, 35, 38, 42, 44, 81, 82, 99, 107, 111, 115, 119, 121, 156, 157, 160,
174, 183, 187, 189, 215, 216, 217.

e One element is the inversion. (24 types)
2,10, 12, 47, 65, 69, 71, 83, 87, 123, 139, 147, 148, 162, 164, 166, 175, 191,
200, 202, 204, 221, 225, 229.

Here, each index, which is known as the international table number, represents
one of the 230 space groups. Actually, 24 inversion-symmetric space groups can
be constructed from 24 symmorphic space groups whose elements are proper
rotations by adding the inversion operation. If we focus only on the momentum
(not on spin), the inversion and time-reversal symmetries are equivalent each
other. Thus, the topologies of 24 orbifolds for symmorphic space groups whose
elements are proper rotations under the time-reversal symmetry are the same
as those of corresponding symmorphic space groups with the inversion in the
absence of the time-reversal symmetry.

8.2 Spin vector fields around singular parts

Since we now focus on the symmorphic space groups, singular parts in momentum
space are invariant under the point group and time-reversal operations. Under
the proper rotations and time-reversal operation, there are four types of singular
parts in momentum space. We here discuss the behaviors of spin vector field
around these singularities [Fig. 8.1].

Invariant line under point group C,

A singular part under the n-fold rotation correspond to the n-fold rotation axis.
On this axis, spin should also be invariant under the rotation. Thus, spin on the
rotation axis should be parallel to the rotation axis.

Invariant point under point groups D,,, T, O

Singular parts under point group D,,T, O are point-like. Under these symme-
tries, there are several rotation axes pointing different directions. On each axis,
spin should be parallel to the rotation axis. However, it is impossible to satisfy
such conditions for several axes simultaneously if there is no spin degeneracy.
Thus, the singular point under point group D,,, T', O should be spin degenerated.
Around this point, there is a monopole-like spin texture in momentum space.
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Figure 8.1: Spin vector field around singular parts of momentum space.

Time reversal invariant point

Singular parts under the time-reversal operation are called the time-reversal in-
variant points. Under the time-reversal operation, spin changes its sign on these
points. However, positions of these points are invariant under the time-reversal
operation by definition. Thus, there should be the spin degeneracy. Around the
time-reversal invariant point, there is a monopole-like spin texture in momentum
space. Spins on opposite sides should have opposite sign each other.

Invariant plane under time-reversal+m-rotation

By combining the time-reversal and w-rotation, we can construct a new opera-
tion. Let us consider the point group Cs,. This group contains the m-rotation.
We can find the invariant plane under the combination of the w-rotation and
time-reversal operation. This plane is connected to the rotation axis via the
time-reversal point. On this plane, there are two possibilities of behaviors of
spin textures. One possibility is that the spin texture is a tangent vector field on
this plane. Another possibility is that spin is degenerated on whole region of this
plane. However, such a spin degeneracy on planes makes the following argument
more complicated. In the following, we only consider the first possibility.
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8.3 Generalized Poincaré-Hopf index theorem

In Chap. 4, we described the Poincaré-Hopf index theorem, which relates the
Euler characteristic and the sum of winding numbers. However, the original ver-
sion of this theorem can only be applied to compact manifolds. To apply the
theorem for singular spaces such as orbifolds, we should generalize this theorem.
In our problem, the existence of isolated singular points means that spin is sin-
gular on these points. On the other hand, a spin vector field is nonsingular on
the singular lines of orbifolds. Thus, we just generalize the Poincaré-Hopf index
theorem for the space with isolated singular points. The following discussion is
based on Ref. [94]

In terms of the Euler characteristic, an isolated singular point of the space
corresponds to +1. This is because we always take singular points as 0-cells
when we perform the cell decomposition. From this consideration, we can natu-
rally generalize the Poincaré-Hopf index theorem. Let us focus on a vector field
around a singular point of the space. We can consider singular vector fields with
any winding number around the singular point of the space. To separate the
singularity of the vector field and that of space itself, we introduce the radial
vector field v,,q [Fig. 8.2].

s Radial vector field ~

Let v be a vector field on a space with a singular point X and small spheres
Se, S, Sere > € > € > 0 around the singular point. A radial vector field
V,qq for v is defined by replacing the vector field around the singular points
with a vector field that obeys the following conditions:

® v,,4 on X\S, is the same as v.
e For any €”, v,,4 is transverse (outwards-pointing) to Ser.

e v,,4 between S, and So should be taken to connected both to the above
regions.

y

Since any change of the vector field inside the small sphere S, around the singular
point does not affect the vector field on X\S,, we can consider the radial vector
field instead of the original vector field. In the following, we generalize the
Poincaré-Hopf index theorem for radial vector field.

We here define the Schwarz index around the singular point ¢ of the space:

Indsen (i) = 1+ ) Q) (8.4)
J
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Figure 8.2: Schematic picture of a radial vector field on space with singular
points.

where Q; are the winding numbers of singular structures of vector field between
Sc and Sy, and 1 denotes the winding number comes from the singular point of
space. Using this index, we obtain the generalized Poincaré-Hopf index theorem.

. Poincaré-Hopf index theorem for space with singular points ~

Let X be a space with singular points {p;} and v be a vector field with
singular points {gx} with winding number @),. Then the Poincaré-Hopf
index theorem is generalized as

Z Indsa (p;) + Z Qq
—Z 1+ZQ’” +ZQ% (8.5)

8.4 Method

Now we can classify the spin texture in momentum space. In this section, we
focus on the space group No. 168 (Schoenflies notation': C§) as one of the
simplest examples. We give the procedure to investigate the singular structures
in the spin texture on the momentum space orbifold. We also explain how we
can interpret spin textures on the orbifold in terms of the Brillouin zone.

'In this notation, we can identify the point group of the space group. The upper subscript
distinguishes different space groups with the same point group.
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Figure 8.3: Irreducible Brillouin zone and singular parts of momentum space
orbifold of space group No. 168. Red points denote the singular points with
monopole spin structure. Red and blue solid lines denote the rotational axis
and lines with the same symmetry as the plane, respectively. Red planes are
invariant planes under the combination of the time-reversal operation and 7-
rotation. Dotted objects are identified with other part of the irreducible Brillouin
zone.

8.4.1 Irreducible Brillouin zone and momentum space orb-
ifold

In general, three-dimensional spaces cannot be drawn in two-dimensional objects
such as this thesis. Instead, we can get the insight into the shape of an orbifold
by drawing the singular parts of the orbifold, whose dimensions are lower than
that of the orbifold itself. In the following, we draw the singular parts of the
momentum space orbifold. Note that even the singular parts for some space
groups cannot be drawn on the paper because of their unorientability.

Let us consider the Brillouin zone of the space group No. 168. The point
group is Cg, and the representation domain (see the definition in Chap. 5) is 1/6
of the Brillouin zone. We also consider the time-reversal symmetry in addition
to the point group, and the irreducible Brillouin zone is 1/12 of the Brillouin
zone [Fig. 8.3]. There are 6 singular points, 3 singular lines, and 2 singular
planes. In this case, all singular points are connected to other singularities. The
symmetry of d-dimensional singular parts are lower than that of the connected
(d — 1)-dimensional singular parts.

The boundary region of the irreducible Brillouin zone is identified with other
region of the Brillouin zone, which is related with the symmetry operations.
Consider the identification of the blue dotted and solid lines in Fig. 8.3. Under
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Figure 8.4: (a) Schematic pictures of identification of planes. Blue planes and
green planes are related via 6-fold and 2-fold rotations, respectively. (b) List of
d-cells. The name and order of each group is shown.

this identification, the invariant plane becomes a closed object (the right panel
of Fig. 8.3). This is homeomorphic with the two-sphere S?. (Imagine the surface
shape of a triangle pie). There are three singular points on this plane, and they
are connected to the singular lines.

8.4.2 Euler and orbifold Euler characteristics

As we explained in Chap. 6, there are two types of numbers that characterize
orbifolds. One is the Euler characteristic, which is a topological invariant of the
orbifold. This index appears in generalized Poincaré-Hopf index theorem for the
singular space. The other one is the orbifold Euler characteristic. As we saw in
Chap. 7, this index is always zero for the momentum space orbifolds defined for
any space groups. Both indices can be calculated by using the cell decomposition
of the orbifold.

Actually, the cell decomposition is given by the picture of the irreducible
Brillouin zone shown in the left panel of Fig. 8.3. It is important to note that
identifications of planes should be also considered, as shown in Fig. 8.4 (a). The
blue planes are identified by the 6-fold rotation, while the green planes by the
2-fold rotation.

In general, it is not easy to obtain the correct cell decomposition, especially
for more complicated Brillouin zone. In such complicated cases, the calculation of
the orbifold Euler characteristic, which should be zero for the momentum space
orbifold, is one of the best ways to check the validity of the cell decomposition.
Let us calculate the orbifold Euler characteristic for momentum space orbifold
of No. 168. The list of d-cells is shown in Fig. 8.4(b). In this case, six 0-cells
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are time-reversal points. On such a point, the symmetry group is given by
A=A+TA, (8.6)

where A is the point group, and T is the time-reversal operation. Hereinafter, we
use red points for describing the singular points of orbifold. There are seven 1-
cells. Three of them are the singular lines of the orbifold, which are characterized
by rotational groups. Hereinafter, we use red lines for describing the singular lines
of orbifolds. Rest of them are parts of the singular planes as explained later. We
here use blue lines for describing the lines that belong to the singular planes.
There are four 2-cells. Two of them are invariant under the group

{e,TR,}, (8.7)

where R, denotes w-rotation. Hereinafter, we use red planes for describing the
singular planes of orbifold. Rest of them are planes that consist of general points.
There is one 3-cell that consists of general points. By using the definition of the
orbifold Euler characteristic, we obtain

1 1 1 1 1 1
orb | — . _ _ - _
X (O)_(12+12+6+6+4+4)
L + = + ! + L x 4
2 3 6 2
1 1
—+-+1+1
+ ( sttt >
-1
=0. (8.8)
This result implies that the cell decomposition of the momentum space orbifold
shown in Fig. 8.4 is correct.
Once we get the cell decomposition of the orbifold, we can easily compute the

Euler characteristic of the momentum space orbifold. By replacing the fractions
in Eq. (8.8) with 1, we obtain

XO)=6-T+4—1=2. (8.9)

Interestingly, the Euler characteristic is finite. This means that the vector field
cannot be boring in the context of the Poincaré-Hopf index theorem.

8.4.3 Poincaré-Hopf index theorem for parts

We now obtain the Euler characteristic of the momentum space orbifold. Naively
speaking, we might be able to investigate spin textures by using the generalized
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Poincaré-Hopf index theorem for the orbifold itself. However, this observation
ignores the constraints for spin textures on the singular parts of the orbifold.
On the singular line, electron spin should be parallel to the singular line. Also,
electron spin should lie on the singular plane. Thus, the spin texture is the
tangent vector field on the orbifold. In addition, the singular lines and planes
are compact. Thanks to these properties, we can apply the Poincaré-Hopf index
theorem for each singular line of plane.

Let us consider a part that consists of one singular line and two singular
points connected to the line. The Euler characteristic of this part is

YP=2-1=1, (8.10)

which has already been investigated in Eq. (6.2). This part can be interpreted as
the singular space with two singular points. We here assign the winding number
+1 for these two points as we did in the explanation of the generalized Poincaré-
Hopf index theorem. By applying the generalized Poincaré-Hopf index theorem
for this part, we obtain

> Qi=-1, (8.11)

where @); is the winding number for a spin monopole ¢ on the line. Thus, there
should be at least one spin monopole with the total winding number —1 on the
line. There are three such 1-dimensional lines.

Next, we consider a part that consists of a singular plane and three singular
points. The Euler characteristic of this part is

P =2. (8.12)

This can be easily checked by the cell decomposition or using the fact that this
part is homeomorphic with the two-sphere. By performing the similar procedure,
we obtain

> Qi=-1, (8.13)

where @); is the winding number for a spin monopole 7 on the plane. Thus, there
should be at least one with total winding number —1 on anywhere of this plane.
There are two such planes.

In summary, we find at least 5 spin monopoles with winding number —1 on
the singular parts of the orbifold [Fig. 8.5 (a)].
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Figure 8.5: Schematic picture of the Poincaré-Hopf index theorem for (a) singular
parts and (b) orbifold itself. Red and blue cross marks represent spin monopoles
with winding number +1 and —1, respectively.

8.4.4 Poincaré-Hopf index theorem for whole region

Now we discuss the Poincaré-Hopf index theorem for the orbifold itself. We have
obtained the Euler characteristic of the momentum space orbifold by using the
cell decomposition [Eq. (8.9)]. We have also found that there are six singular
points of orbifolds, which have spin monopoles with winding number +1, and
five spin monopoles with winding number —1 on singular lines and planes. By
using these facts and applying the Poincaré-Hopf index theorem for the orbifold
itself, we find

X(0) = (+1) x 6+ (=1) x 5+ Y Qs
> Qi=+1, (8.14)

where @); is the winding number for a spin monopole ¢ on a general point of the

orbifold. Thus, there should be at least one spin monopole with winding number

+1 in the general region?.

2In the band theory, the general region is defined as the region without any symmetry.
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Figure 8.6: (a) Example of spin monopole with a negative high winding number.
(b) Example of spin texture around the special points and the corresponding
orbifold picture.

The schematic picture of the spin vector fields on the orbifold is shown in
Fig. 8.5(b). Once a space group is given, we can characterize the spin texture in
momentum space by drawing the picture such as Fig. 8.5(b).

Although the generalized Poincaré-Hopf index theorem can determine the
total winding number, it cannot determine the position of spin monopoles. As
we saw, the spin monopoles that are close to the singular point of the space
(orbifold in this case) can be regarded as one spin monopole around the singular
point of the space. If they are not close to it, they are distinguished from the
spin monopole around the singular point. This argument means that physical
interpretations of the picture [Fig. 8.5(b)] are not unique.

8.4.5 Interpretation in Brillouin zone

So far, we have classified spin textures on the momentum space orbifold for the
given space group. However, what we really want to know is the spin texture in
the Brillouin zone. In the following, we discuss how the picture [Fig. 8.5(b)] is
interpreted in this context.

The continuous map 7 : BZ — E?/C} is a branched covering with degree 12.
This means that a general point in the orbifold, whose neighborhood is isometric
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with a neighborhood of E?, corresponds to 12 points in the Brillouin zone. On
the other hand, a singular part with order n, which is a divisor of 12, correspond
to 12/n parts® in the Brillouin zone. The number of spin monopoles obeys the
same rule. This means that the order of the place in which spin monopoles live
is an important factor to understand the spin texture in the Brillouin zone. Note
that the winding number of a spin vortex is not changed under proper rotations
and time-reversal operations, while it is changed under improper rotations. If
the spin monopole is far from singular points of the orbifold, there are 12/n spin
monopoles with the same winding number in the Brillouin zone. In the case
of [Fig. 8.5(b)], we can predict the existence of the Weyl dispersions because
spin monopoles with winding numbers £1 are known to correspond to the Weyl
points?.

If the spin monopole is close to a singular point and absorbed into it, the
story should be changed since the order of the singular point is different from
that of the spin monopole.

Let us consider the situation in Fig. 8.6 (a). A spin monopole with winding
number —1 on a singular plane is absorbed into the spin monopole around a
singular point H. The total winding number around H point on the orbifold is

Qup=+1+(-1)=0, (8.15)

where @)’ denotes the winding number defined on the orbifold. However, the
winding number in the momentum space is different from Eq. (8.15). Let us move
on to the momentum space description. The orders of the singular plane and
point are 2 and 6, respectively. Thus, there are 12/6 = 2 points that correspond
to H point and 12/2 = 6 points that correspond to the spin monopole. 6/2 = 3
spin monopoles with winding number —1 are absorbed into each H point. The
total winding number of the spin monopoles around the H point is given by

6
Qu=+1+(-1) x 5= —2. (8.16)
In this situation, a spin monopole with a negative high winding number appears
around H point. In general, we should be careful if we add spin monopoles to a
spin monopole with different order of singularity in the orbifold.

3In band theory, this number corresponds to the number of stars of a k-vector.

4Strictly speaking, the existence of spin monopoles just indicates the existence of Weyl
points. In the case of the simple Weyl semimetals that are well described by a two-band model
(see Chap. 1) with the Pauli matrices in spin space, spin monopoles with winding numbers +1
corresponds to the Weyl points [66]. However, the sublattice and orbital degrees of freedom
would be able to cause singular spin textures without band touching points. In general, whether
the correspondence holds or not depends on the details of the band structure.



118 CHAPTER 8. SPIN TEXTURE ON MOMENTUM SPACE ORBIFOLD

Although the picture [Fig. 8.5(b)] cannot distinguish whether spin monopoles
are absorbed into the singular point of the orbifold, we believe that this picture
is useful for topological material science. For example, it is expected to derive
constraints such as the following statement: “In this space group, there should
be the higher winding number spin monopole around a special point or a Weyl
point at a general point.” Actually, this situation is realized in some space groups,
as shown later. Even though this situation is not realized, the spin texture
classification on orbifolds is still useful. Suppose that we want to find a candidate
of the Weyl semimetal, and there is a result about the first principles band
calculation. In general, it is difficult to find spin monopoles in the whole Brillouin
zone. However, we can determine the place of Weyl points by using the orbifold
picture. If we want to know whether the spin monopoles exist in the region
apart from the singular points, all we have to do is investigate the spin textures
around the singular points. Let us consider the situation in Fig. 8.6 (b). If the
spin textures around special points are given by the left panel, the corresponding
orbifold picture is given by the right panel. This picture means that there is one
spin vortex with the winding number —1 on the special plane.

8.4.6 Summary of the method

For a given space group, we first draw the picture of the singular parts of the
orbifold by identifying the parts of irreducible Brillouin zone related via the sym-
metry operation. Since the picture of the irreducible Brillouin zone corresponds
to a cell decomposition of the momentum space orbifold, we derive the Euler
characteristic of the orbifold. In this procedure, we can check the validity of the
cell decomposition by checking the orbifold Euler characteristic being zero for
that cell decomposition.

Next, we assign the winding number +1 for each singular points of the orb-
ifold, and apply the generalized Poincaré-Hopf index theorem for singular lines
and planes. Through this procedure, we obtain the information about the spin
monopoles on the singular lines and planes. After determining spin monopoles
on such singular parts, we apply the generalized Poincaré-Hopf index theorem
for the momentum space orbifold itself.

Once we obtain the picture such as Fig. 8.5(b), we can interpret the picture
in the context of the Brillouin zone. By considering the order of singular parts
carefully, we can reproduce the spin texture in the Brillouin zone. Although
there are still a lot of possibilities for spin texture, it might be useful to find
interesting spin texture in momentum space.
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8.5 Spin texture on 24 momentum space orb-
ifolds

In this section, we draw the singular parts of the momentum space orbifolds
for the 24 space groups [Fig. 8.7-8.30]. As we discussed, the singular parts
correspond to the specific parts in the Brillouin zone. In the band theory, such
parts have conventional names such as I' point®>. We here use the notations
in Refs. [95, 96, 97]. We list the order of singularity for each singular part.
The numbers on right- and left-hand sides denote the order of singularity with
and without the time-reversal symmetry, respectively. We also write down the
Poincare-Hopf index theorem with information of the places of spin monopoles.
This information is also drawn in the orbifold picture on the right panel. The
red and blue cross marks denote the +1 and —1 spin monopoles, respectively.

5Sometimes parts without any symmetries have also names.
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8.6 Rough condition and nontrivial space groups

As we discussed, the topology of the momentum space orbifold imposes strong
constraints on spin textures in momentum space. Generally, we should consider
such constraints carefully to decide whether the space group should always be
interesting or not. However, we can state that the space groups No. 197 and
211 should always be “nontrivial” (at least in our purpose) with rough argument
shown below. If there are no high-winding-number structures around the special
points and no spin monopoles except for the special points, we here call it trivial.

Let us consider the Poincaré-Hopf index theorem for three-dimensional Bril-
louin zone (three-dimensional torus) of the space group No.197. In the case of
No. 197, the numbers of elements of stars® for ', H, P, and N are 24/24 = 1,
24/24 =1, 24/12 = 2, and 24/4 = 6, respectively. For each point, the winding
numbers of the elements of the star take the same value because proper rotations
do not change the winding number of spin monopoles.

Suppose that there is no spin monopole except for the special points I', H, P,
and N. According to the Poincaré-Hopf index theorem, the following relation
holds:

Qr+ Qr +2Qp +6Qn =0, (8.17)

where @; (i =, H, P, and N) are the winding numbers around special points.
There is no (Qr, Qu, Qp, Qn) satisfying that |Q;] = 1 for all i = ', H, P, and
N. Thus, there should be high-winding-number spin monopoles around the
special points or spin monopoles except for the special points. For instance,
(Qr,Qu,Qp,Qn) = (—5,1,—1,1) satisfies the orbifold constraints in Fig. 8.29.
Of course, this set also satisfies the weaker condition (8.17). The similar argu-
ment can be applied to the space group No. 211. Bi;psGeOyy and Hg,Pt are
examples of materials labeled by No. 197 and No. 211, respectively.

Conditions such as Eq. (8.17) are weaker than those discussed in the previous
sections. In the simple two-dimensional case, however, such conditions are the
same as the conditions obtained by considering the topology of orbifolds. Let
us again consider the magnon spin-momentum locking in the kagome lattice
antiferromagnet. The momentum space orbifold is the orbifold S333 with three
order-3 singular points I', K, and K’, which is homeomorphic with the two-sphere.
Thus, the generalized Poincaré-Hopf index theorem for this orbifold is given by

2=+1x3+(—1). (8.18)

6Tn the band theory, a star is defined as the set of points related each other by the symmetry
operations.
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Thus, there should be spin vortex with @ = 14 3 x (—1) = —2 spin vortex
around one singular point or a spin vortex with Q = —1 at a general point”.
This conclusion can also be obtained by the Poincaré-Hopf index theorem for
the Brillouin zone itself.

In the case of three-dimensional space groups, however, the singular structures
are much more complicated as shown in the previous chapters. The singular
points are closely related each other via the singular lines and planes. In such
a situation, the Poincaré-Hopf index theorem for the Brillouin zone itself lacks
the information of the connectivity between the singular points, and we should
consider the topology of the orbifold to obtain the complete conditions for spin
textures in momentum space.

8.7 Summary and future works

We classify the spin texture in momentum space under the three-dimensional
space group and time-reversal symmetries. We define the momentum space orb-
ifold and consider spin vector fields on it. When we focus on specific 24 space
groups under the time-reversal symmetry, we find that the problem of spin tex-
tures in momentum space can be mapped to that of vector fields on the momen-
tum space orbifold. By applying the generalized Poincaré-Hopf index theorem,
which relates the topology of the singular space with a vector field on it, we
express the spin textures in momentum space as the orbifold pictures. We also
find that there should be high-winding number spin monopoles or the Weyl point
at a point with low symmetry in the case of space groups No. 197 and 211. In
the following, we list interesting future works related to the momentum space
orbifold.

Spin texture in momentum space

e Exploring high-winding number spin monopoles in the above framework.
e Exploring Weyl semimetals in the above framework.
e The spin texture problem under improper rotations.

e The spin texture problem under nonsymmorphic operations.

"In terms of orbifolds, we can easily understand the stability of the magnon spin texture in
real materials. We should generate Weyl points with the winding number —1 to get rid of the
—2 spin vortex.
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I' X

Figure 8.31: Loops on the orbifold T?/Cs.

Orbifold and topological classification

e Considering the Berry curvature on the momentum space orbifold.

e Understanding the topological classification in terms of the orbifold.

Before ending this thesis, we give an idea to deal with the topological clas-
sification in terms of the orbifold. In the field of the topological classification,
topological invariants are defined by the momentum integral of the momentum-
dependent quantity. Thus, it is difficult to judge whether a given material is
topological or not at first sight. However, topological invariants can be calcu-
lated by the information at the specific points for some cases [98, 99, 100]. Ref.
[98] has shown that the Z, invariant for a topological insulator with the inversion
symmetry is given by the product of the parity eigenvalues of occupied bands at
the time-reversal (or equivalently, inversion) symmetric points. Since the math-
ematics of the Chern number is simpler than that of the Z, invariant, we here
try to reinterpret a formula for the Chern number under the two-fold rotational
syminetry.

According to Ref. [100], the Chern number of a two-dimensional system
with rotational symmetry can be determined modulo some integer by using the
information of rotation eigenvalues at rotational symmetric points. For the two-
fold rotational symmetry, the formula is given by

)%= JI ¢@GX)GE)GM), (8.19)

i€occupied

where C' is the Chern number, I', XY, and M are the rotational symmetric
points, 7 denote the occupied bands, and (; are the two-fold rotation eigenvalues
at symmetric points. This formula enables us to judge whether the Chern number
is even or odd.
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The momentum space orbifold for the two-fold rotational symmetry is given
by T?/Cy [Fig.8.31]. On the orbifold, the identification of wave functions is
introduced as

Ik, ) ~ Colk, o). (8.20)
Since the non-Abelian Berry connection
[Axlas = —i(k,a|Vi|k, 5) (8.21)

behaves as a usual vector under the space group symmetry, the Berry connection
is a single-valued function on the orbifold. Let us consider the Berry phase
around the loop L on the orbifold, which is given by the determinant of the
Wilson loop [100]

det P exp [2 f A, dk] : (8.22)
L

where P means the path ordering. If we take the infinitesimally small loops
around the symmetric points k;,, = ', X, Y, and M, the Berry phase is given by

det P exp {ij{fik-dk]: I R ilColkiniy = ] Gk (823)
L

i€occupied i€occupied

The product of the Berry phases around k;,, = I', X, Y, and M corresponds to
the flux going through the orbifold, which is a half of total flux going through
the Brillouin zone. The phase for the flux is given by

exp [z@] = (—1)°. (8.24)

2
Using Eqgs. (8.23) and (8.24), we obtain the formula (8.19)

The above rough discussion implies that the topological classification problem
can be understood in terms of the singular structure of the momentum space
orbifold. As discussed in the last part of Chap. 5, the topological classification
problem under the space group symmetries has not been solved completely. We
expect that the notion of the momentum space orbifold would solve it and give
an intuitive description of topological physics under the space group symmetries.






Summary

In this thesis, we have investigated momentum-dependent spin of magnons and
electrons, both of which are important (quasi-)particles in recent spintronics and
topological physics. We have generalized the notion of spin-momentum locking
to the magnonic systems by defining magnon spin for one-magnon states in or-
dered magnets. We have found that the magnon spin-momentum locking occurs
even when the Hamiltonian has spin-rotational symmetries. The key idea is that
ground and one-magnon states completely break the spin rotational symmetry
in the magnon spin-momentum locking. We have considered kagome lattice an-
tiferromagnets with 120° structure, where U(1) symmetry breaking occurs, and
plotted the magnon spin texture in momentum space. We have found a spin tex-
ture with the winding number —2, which has not been found in realistic electron
models. The plot of the magnon spin texture obtained in this calculation has
motivated another interesting direction of the study of spin-momentum locking:
the relationship between the spin texture and topology of momentum space. In
the presence of time-reversal and space group symmetries, the information of
the band theory is included in the small part of the Brillouin zone. We have
introduced the notion of the orbifold in order to describe this part in terms of
the topology and named it as the momentum space orbifold. By applying the
Poincaré-Hopf index theorem for the momentum space orbifold, we have given
constraints on the momentum space spin textures of the three-dimensional elec-
tron systems under time-reversal and specific space group symmetries. These
constraints would be useful to find Weyl points and new spin monopoles with
higher winding numbers in momentum space.
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