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Abstract

In this thesis, we study nonequilibrium statistical mechanics from a geometric perspective. In

particular, we (i) examine the relation between quantum information geometry and linear re-

sponse theory, and (ii) analyze nonequilibrium processes in thermodynamic control and derive

a geometric expression for work.

The first original study in this thesis is to understand quantum information geometry based

on linear response theory. We show that the quantum Fisher information can be determined

by measuring the linear response functions. For that purpose, we generalize the fluctuation-

dissipation theorem, and establish the quantitative relation between linear response functions

and the generalized covariance, which contains the same amount of information on the quan-

tum state. Based on the generalized fluctuation-dissipation theorem, we can determine the

generalized covariance and the quantum Fisher information by measuring linear response func-

tions, such as the dynamical susceptibilities and the complex admittances for all frequencies. We

demonstrate that our result is applicable to experimental determination of the skew information,

and a validation of skew information-based uncertainty relations.

The second original study is on the analysis of work in thermodynamic control. We extend

the thermodynamic metric-based expression for work into two directions. One is to obtain a

systematic expansion of the average work from a phenomenological argument, and the other is to

obtain an expansion of the work distribution for overdamped Langevin systems. First, we derive

a systematic expansion of the work in terms of a small parameter ϵ that characterizes how slowly

we control the system. The leading-order contribution is given by the thermodynamic metric

expression. The next leading-order contributions to the thermodynamic metric contribution can

be detected by comparing the excess work in a forward control and a backward control, and are

predicted to scale as 1/T 2 as a function of the total control time T . Since the expansion is derived

without assuming any specific microscopic dynamics, it is valid as long as the perturbation series

expansion is valid. Finally, we examine the work distribution in overdamped Langevin systems.

We derive the time evolution equation for the moment generating function of the work, and solve

it from the lower-order contributions in ϵ. The O(ϵ) contribution to the generating function

reproduces two known facts: the work distribution is Gaussian, and the average work is given

by the thermodynamic metric. When we take up to O(ϵ2) contributions into account, the work

distribution exhibits nonzero skewness, which means that the fluctuation-dissipation relation is

violated with scaling 1/T 2. Furthermore, from the analytic calculation with numerical supports,

we conjecture that the nth cumulant of the work scales as 1/Tn−1 for n ≥ 1.
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Chapter 1

Introduction

Geometry often deepens our understanding of laws that govern the world, namely, physics:

Riemannian geometry in general relativity, differential geometry with affine connections in gauge

theory, and topology in condensed matter physics, to name a few. A geometric perspective is

also useful in the study of statistical mechanics. The thermodynamic length [1, 2, 3, 4] provides

a natural distance between equilibrium states. It has been pointed out [5, 4] that the metric

induced by the thermodynamic length is the Fisher metric, which plays an important role in

information geometry.

Information geometry [6] treats a differential-geometric structure of statistical manifolds,

whose element represents a probability distribution. Historically, information geometry was

considered in the theory of statistical inference. The Fisher information, which gives the upper

bound on the precision of estimation via the Cramér-Rao inequality [7], is identified as a natural

metric on statistical manifolds. Higher-order structures, such as the α-connections, are also

closely related to the existence of efficient estimators. The (classical) Fisher information is also

characterized as the unique monotone metric, which means that it monotonically decreases under

information processing. Since a probability distribution can be interpreted as a (mixed) state in

physics, we can safely say that for physicists, information geometry concerns an informationally

natural geometric structure on the space of physical states.

If we consider quantum theory, where probability distributions are replaced by density opera-

tors, the noncommutativity of operators admits much richer structures than classical information

geometry. If we define the quantum Fisher information as a monotone metric on the space of

quantum states under information processing, there are infinitely many types of the quantum

Fisher information. Recently, the quantum Fisher information has been applied in wide fields of

physics, such as quantum information theory [8, 9, 10, 11], condensed matter physics [12, 13, 14],

and high energy physics [15]. However, since the noncommutativity is dealt with in a tricky

way, the relation between the general quantum Fisher information and observable quantities has

been elusive.

In this thesis, we address two aspects of the relation between nonequilibrium statistical

mechanics and geometry. First, we establish a quantitative relation between the quantum Fisher

information and linear response functions, such as the dynamical susceptibilities and the complex

admittances, by generalizing the fluctuation-dissipation theorem. Second, we develop a method
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of systematically evaluating the work performed on the system when we control the system

through external parameters, in both phenomenological and microscopic ways.

This thesis is organized as follows. The main results in this thesis are presented in Chapters

5, 6, and 7.

In Chapter 2, we review the theory of response and relaxation near a thermal equilibrium

state. In Sec. 2.1, the linear response function is shown to be quantitatively related to a temporal

correlation function at the thermal equilibrium state, as formulated as the Green-Kubo formula

and the fluctuation-dissipation theorem. A higher-order generalization of the linear response

theory is also discussed in Sec. 2.2.

In Chapter 3, we review some basic materials in thermodynamics. In Sec. 3.1, we review

the stochastic thermodynamics, which models thermodynamic properties of microscopic objects

surrounded by a thermal bath. In Sec. 3.2, we consider a thermodynamic control of the system.

We introduce the thermodynamic metric, which is useful for approximately evaluating the excess

work. We also introduce two derivations of this approximate expression, with an emphasis on

the separation of time scales between the control and the system dynamics.

In Chapter 4, we review the information geometry. We introduce the classical and quantum

Fisher information, and discuss how they are used in estimation theory. There is a one-to-one

correspondence between a type of the quantum Fisher information and an operator monotone

function. We also introduce the generalized covariance, which also has a one-to-one correspon-

dence to an operator monotone function.

In Chapter 5, we present the first main result of this thesis. We derive the generalized

fluctuation-dissipation theorem, which establishes the quantitative relation between the linear

response function and the generalized covariance at a thermal equilibrium state. Based on

the generalized fluctuation-dissipation theorem, we can determine the generalized covariance by

measuring the linear response functions. We also propose an experimental method of determining

the quantum Fisher information by measuring the dynamical susceptibilities or the complex

admittances for all frequencies.

In Chapters 6 and 7, we present the second main result of this thesis. We examine the average

excess work in thermodynamic control in a phenomenological way in Chapter 6. We derive an

expansion of the average excess work in terms of a small parameter ϵ that characterizes how

slowly we control the system. We discuss the physical picture of the next leading-order terms

to the thermodynamic metric term. They can be detected by comparing the excess work in a

forward control and a backward control, and they are predicted to scale as 1/T 2 as a function of

the total control time T . Since the expansion is derived without assuming a specific microscopic

dynamics, it is valid as long as the perturbation series expansion is valid.

In Chapter 7, we examine the work distribution in overdamped Langevin systems. We derive

the time evolution equation for the moment generating function of the work, and solve it from

lower-order contributions in ϵ. The O(ϵ) contribution to the generating function reproduces two

known facts: the work distribution is Gaussian, and the average work is given by the thermo-

dynamic metric. When we take up to O(ϵ2) contributions into account, the work distribution

exhibits nonzero skewness, which means that the fluctuation-dissipation relation is violated with
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scaling 1/T 2. Furthermore, from the analytic calculation with numerical supports, we conjecture

that the nth cumulant of the work scales as 1/Tn−1 for n ≥ 1.

Some complicated algebraic manipulations are relegated to Appendices to avoid digressing

from the main subject.
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Chapter 2

Linear and Nonlinear Response

Theory

In this chapter, we review the theory of response and relaxation at thermal equilibrium.

When we apply a magnetic field to paramagnets, the magnetic moment, or the magnetization

is induced. Similarly, when we apply an electric field to conductors, an electric current is induced.

Such an external force are called a mechanical force in the sense that it can be expressed as

a change of the Hamiltonian or the potential of the system. On the other hand, when the

temperature gradient or the concentration gradient exists, the heat or diffusion flow is induced.

Such a force is called an internal thermal force. Here, we focus on the response to mechanical

external forces.

2.1 Linear Response Theory

In this section, we review the linear response theory [16, 17, 18].

In the case of paramagnets or conductors, if the applied field is small, the induced magne-

tization or current is proportional to the strength of external forces. Below, we consider the

deviation from the equilibrium value of general observables against general external forces in

this linear response regime.

2.1.1 Phenomenological Theory

In the linear response regime, the value of an observable A(t) at time t deviates from its equi-

librium value Aeq proportionally to an external force F (t) as

A(t) −Aeq = LF (t). (2.1)

Here, L is what is called the kinetic coefficient. We generalize this linear relation in the presence

of multiple external forces and to the non-Markov case.

Let us consider a case where there are more than one type of external forces labelled by

ν. Since we are considering the linear response regime, the whole effect can be expressed as a
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superposition of the effect of each external force, given by

Aµ(t) −Aeq
µ =

∑
ν

LµνFν(t), (2.2)

where the label µ denotes the kind of observables that we are interested in.

The relation (2.2) holds true when the changes of external forces are sufficiently slow because

it describes the situation where the deviation at time t is determined only by the instantaneous

values of external forces {Fν(t)}ν . The generalization of this relation to the non-Markov case is

expressed as

Aµ(t) −Aeq
µ =

∑
ν

χ∞
µνFν(t) +

∫ ∞

0
ds
∑
ν

Φµν(s)Fν(t− s). (2.3)

The first term on the right-hand side represents the instantaneous response, while the second

term represents the delayed response to the force at time t− s. In the latter term, the superpo-

sition principle with respect to each time t − s is again employed. The causality imposes that

the integration variable s is bounded from below by 0.

The relation between Eqs. (2.2) and (2.3) is explained as follows. It is natural to assume

that the effect of an external force vanishes in the long-time limit, lims→∞ Φµν(s) = 0, or

Φµν(s) ≃ 0 (s ≳ τ), (2.4)

where τ is of the order of the relaxation time of the system. When the timescale of the change

of external forces Fν(t) is larger than τ , i.e.,

Fν(t− s) ≃ Fν(t) (0 ≤ s ≲ τ), (2.5)

Eq. (2.3) can approximately be simplified as

Aµ(t) −Aeq
µ ≃

∑
ν

χ∞
µνFν(t) +

∫ τ

0
ds
∑
ν

Φµν(s)Fν(t− s)

≃
∑
ν

χ∞
µνFν(t) +

∫ τ

0
ds
∑
ν

Φµν(s)Fν(t) (2.6)

≃
∑
ν

χ∞
µνFν(t) +

(∫ ∞

0
ds
∑
ν

Φµν(s)

)
Fν(t). (2.7)

Therefore, if there is a timescale separation between the system dynamics and the external

forces, the non-Markov linear response (2.3) reduces to the Markov one (2.2) with

Lµν ≃ χ∞
µν +

∫ ∞

0
ds Φµν(s). (2.8)

Next we consider a relaxation process. Suppose that the κth kind of the external force is
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applied until time t = t1, and no force is applied after t1, given as

Fν(t) = ϵδνκθ(t1 − t), (2.9)

where the step function is defined as

θ(t) =

1 (t ≥ 0)

0 (t < 0).
(2.10)

Substituting this form of force to the linear response formula (2.3), we obtain

Aµ(t) −Aeq
µ = ϵχ∞

µκθ(t1 − t) + ϵ

∫ ∞

max[0,t−t1]
ds Φµκ(s) (2.11)

= ϵ
(
χ∞
µκθ(t1 − t) + Ψµκ(max[0, t− t1])

)
, (2.12)

where Ψµκ(t) is the linear relaxation function defined by

Ψµκ(t) :=

∫ ∞

t
ds Φµκ(s). (2.13)

The linear relaxation function Ψµκ(t) quantifies how the value of the observable Aµ approaches

to its equilibrium value after the external force Fκ is suddenly switched off. From the definition

of the linear relaxation function, the linear response function is obtained by differentiating the

linear relaxation function:

Φµν(t) = − d

dt
Ψµν(t). (2.14)

In this sense, both the response function and the relaxation function have the same amount

of information on the system. In the following, we assume that the convergence of the linear

response function is sufficiently rapid and the integral (2.13) converges, and therefore

lim
t→∞

Ψµν(t) = 0. (2.15)

This assumption guarantees that the system approaches an equilibrium state after a sufficiently

long time if no external force is applied.

Finally, let us introduce dynamical susceptibilities, or complex admittances. Suppose that

the external force is harmonically oscillating, expressed by

Fν(t) = Re[Fνeiωt]. (2.16)

Substituting this to Eq. (2.3), we obtain

Aµ(t) −Aeq
µ =

∑
ν

Re[χµν(ω)Fνeiωt], (2.17)

12



where we have defined a dynamical susceptibility (also called a complex admittance) as

χµν(ω) := χ∞
µν +

∫ ∞

0
dt eiωtΦµν(t). (2.18)

It also describes the linear relation between the Fourier components of external forces and

observables as

Aµ,ω =
∑
ν

χµν(ω)Fν,ω, (2.19)

where

Fν(t) =

∫ ∞

−∞

dω

2π
e−iωtFν,ω, (2.20)

Aµ(t) −Aeq
µ =

∫ ∞

−∞

dω

2π
e−iωtAµ,ω. (2.21)

Note that the frequency components are independent of each other because the right-hand side

of the linear response relation (2.3) is a convolution of the linear response function and the

external force.

2.1.2 Response and Relaxation in a Quantum System

In the previous subsection, we have examined the formal structure of the linear response theory

without assuming the underlying microscopic dynamics. In this section, we apply this formalism

to a quantum system whose Hamiltonian Ĥ(λ) depends on some external control parameters

λ = (λν). We control the system through time-dependent external control parameters λ(t). We

assume that the control parameters take a value near some specific value λ̄. Then, in the linear

response regime, the Hamiltonian can be separated into two parts given as

Ĥ(t) = Ĥ + Ĥext(t), (2.22)

where each part is defined by

Ĥ := Ĥ(λ̄), (2.23)

Ĥext(t) := −
∑
ν

Fν(t)X̂ν , (2.24)

and the time-dependent part of the Hamiltonian Ĥext(t) is composed of the amplitude of the

force Fν(t) and the corresponding generalized force operator, or the displacement operator, X̂ν ,

defined by

Fν(t) := λν(t) − λ̄ν , (2.25)

X̂ν := −∂Ĥ(λ)

∂λν

∣∣∣
λ=λ̄

. (2.26)
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Let us calculate the expectation value of an observable Âµ at time t, namely, Aµ(t) =

tr
[
ρ̂(t)Âµ

]
. The density operator ρ̂(t) evolves according to the von Neumann equation:

∂ρ̂(t)

∂t
=

1

iℏ
[Ĥ + Ĥext(t), ρ̂(t)]. (2.27)

To switch from the Schrödinger picture to the interaction picture, we define the density operator

in the interaction picture as

ρ̂int(t) := eiĤ(t−t0)/ℏρ̂(t)e−iĤ(t−t0)/ℏ. (2.28)

Note that they coincides with each other at time t = t0, i.e., ρ̂int(t0) = ρ̂(t0). Then, the time

evolution of ρ̂int(t) is calculated as

∂ρ̂int(t)

∂t
=

1

iℏ
[eiĤ(t−t0)/ℏĤext(t)e

−iĤ(t−t0)/ℏ, ρ̂int(t)], (2.29)

whose solution can formally be written as

ρ̂int(t) = ρ̂int(t0) +

∫ t

t0

dt′
1

iℏ
[eiĤ(t′−t0)/ℏĤext(t

′)e−iĤ(t′−t0)/ℏ, ρ̂int(t
′)], (2.30)

and hence

ρ̂(t) = e−iĤ(t−t0)/ℏρ̂(t0)e
iĤ(t−t0)/ℏ

+

∫ t

t0

dt′e−iĤ(t−t′)/ℏ 1

iℏ
[eiĤ(t′−t0)/ℏĤext(t

′)e−iĤ(t′−t0)/ℏ, ρ̂(t′)]eiĤ(t−t′)/ℏ. (2.31)

If we consider only the first order with respect to the perturbation, or equivalently, if we use an

approximation ρ̂(t′) ≃ e−iĤ(t′−t0)/ℏρ̂(t0)e
iĤ(t′−t0)/ℏ in the integrand of Eq. (2.31), we obtain

ρ̂(t) ≃ e−iĤt/ℏρ̂0e
iĤt/ℏ +

∫ t

t0

dt′e−iĤ(t−t′)/ℏ 1

iℏ
[Ĥext(t

′), e−iĤt′/ℏρ̂0e
iĤt′/ℏ]eiĤ(t−t′)/ℏ, (2.32)

where we have defined ρ̂0 := eiĤt0/ℏρ̂(t0)e
−iĤt0/ℏ.

Now let us take the limit of t0 → −∞, and assume that the state ρ̂0 is a thermal equilibrium

state. This assumption can be justified by the following discussion. The state ρ̂0 is obtained

from the initial state ρ̂(t0) after the time evolution of −t0(> 0) under the Hamiltonian Ĥ. If

we take the limit of t0 → −∞, the state ρ̂0 is expected to be equilibrated, in the sense that the

values of observables of our interest coincide with those in the canonical ensemble, irrespective

of the initial state ρ̂(t0). Such a thermalization in isolated quantum systems has been studied

well recently [19]. If we also assume that the perturbation exists only after time t = 0, then we

have

ρ̂(t) ≃ ρ̂can +

∫ t

−∞
dt′e−iĤ(t−t′)/ℏ 1

iℏ
[Ĥext(t

′), ρ̂can]eiĤ(t−t′)/ℏ, (2.33)

where ρ̂can is the canonical ensemble with the inverse temperature β = 1/kBT defined by ρ̂can :=
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e−βĤ/Z, and the partition function is defined by Z = tr
[
e−βĤ

]
.

Now we can calculate the expectation value of an observable Âµ at time t. If we define

the Heisenberg operator and the equilibrium value of Âµ as Âµ(t) := eiĤt/ℏÂµe−iĤt/ℏ and

Aeq
µ = tr

[
ρ̂canÂµ

]
, respectively, we obtain

Aµ(t) = Aeq
µ +

∫ t

−∞
dt′

1

iℏ
tr
[
[Ĥext(t

′), ρ̂can]Âµ(t− t′)
]

= Aeq
µ −

∑
ν

∫ t

−∞
dt′

1

iℏ
tr
[
[X̂ν , ρ̂can]Âµ(t− t′)

]
Fν(t′). (2.34)

By comparing this expression with Eq. (2.3), we obtain an explicit form of the linear response

function:

χ∞
µν = 0, (2.35)

Φµν(t) = − 1

iℏ
tr
[
[X̂ν , ρ̂can]Âµ(t)

]
(2.36)

=
1

iℏ
tr
[
ρ̂can[X̂ν , Âµ(t)]

]
. (2.37)

Applying the formula (A.1) to Eq. (2.36), we obtain another expression for the linear response

function, given by

Φµν(t) = β⟨⟨ ˙̂
Xν(0), Âµ(t)⟩⟩canonicalρ̂can , (2.38)

where the canonical correlation of two observables is defined by

⟨⟨Â, B̂⟩⟩canonicalρ̂ :=

∫ 1

0
dα tr

[
ρ̂1−αÂρ̂αB̂

]
, (2.39)

and the time derivative of the Heisenberg operator is defined by
˙̂
Xν(t) := dX̂(t)/dt = (1/iℏ)[X̂(t), Ĥ].

The canonical correlation can be interpreted as one of the extensions of the classical correlation

to quantum one. Note that the canonical correlation of two Hermitian operators is symmetric

and real:

⟨⟨B̂, Â⟩⟩canonicalρ̂ = ⟨⟨Â, B̂⟩⟩canonicalρ̂ , (2.40)

(⟨⟨Â, B̂⟩⟩canonicalρ̂ )∗ = ⟨⟨Â, B̂⟩⟩canonicalρ̂ . (2.41)

If we choose the displacement operator X̂µ(t) and the current operator Ĵµ(t) :=
˙̂
Xν(t) =

(1/iℏ)[X̂(t), Ĥ] as observables to be measured, then the corresponding linear response functions

ϕµν(t) and ϕ̃µν(t) reduce to the canonical correlations of two temporally separated operators:

ϕµν(t) = β⟨⟨X̂µ(t), Ĵν(0)⟩⟩canonicalρ̂can , (2.42)

ϕ̃µν(t) = β⟨⟨Ĵµ(t), Ĵν(0)⟩⟩canonicalρ̂can . (2.43)

Equations (2.37), (2.38), and (2.43) are referred to as the Green-Kubo formulae [20, 16, 17].
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These formulae show that the linear response function, which describes nonequilibrium processes,

is quantitatively related to the time correlation function at thermal equilibrium.

Next we examine a relaxation process where the control parameter takes the form of

λ(t) = λ + θ(−t)∆λ. (2.44)

Since the control parameter is fixed to be λ(t) = λ + ∆λ for t < 0, the state at time t = 0

is described by the canonical ensemble with respect to the control parameter λ + ∆λ, i.e.,

ρ̂(0) = ρ̂can(λ + ∆λ). Then the system evolves under the Hamiltonian Ĥ(λ), and therefore the

expectation value of an observable Âµ at time t > 0 is given by

Aµ(t) = tr
[
ρ̂(t)Âµ

]
= tr

[
e−iĤ(λ)t/ℏρ̂can(λ + ∆λ)eiĤ(λ)t/ℏÂµ

]
= tr

[
ρ̂can(λ + ∆λ)Âµ(t)

]
.

(2.45)

The linear relaxation function describes the sensitivity to the external force ∆λ, and hence given

by

Ψµν(t) =
∂Aµ(t)

∂(∆λν)

∣∣∣∣∣
∆λ=0

= tr

[
∂ρ̂can(λ + ∆λ)

∂(∆λν)

∣∣∣∣∣
∆λ=0

Âµ(t)

]
= β⟨⟨∆X̂ν(0); Âµ(t)⟩⟩canonicalρ̂can , (2.46)

where we have used the formula (A.3) to derive the last equality. We can check that the explicit

expressions (2.38) and (2.46) indeed satisfy the differential relation (2.14) between the linear

response and relaxation functions as follows. From the time translational symmetry, we have

⟨⟨∆X̂ν(0); Âµ(t)⟩⟩canonicalρ̂can = ⟨⟨∆X̂ν(s); Âµ(t+ s)⟩⟩canonicalρ̂can (2.47)

for arbitrary s, and hence

0 = ⟨⟨∆ ˙̂
Xν(0); Âµ(t)⟩⟩canonicalρ̂can + ⟨⟨∆X̂ν(0);

˙̂
Aµ(t)⟩⟩canonicalρ̂can . (2.48)

Therefore, we obtain

dΨµν(t)

dt
= ⟨⟨∆X̂ν(0);

˙̂
Aµ(t)⟩⟩canonicalρ̂can = −⟨⟨∆ ˙̂

Xν(0); Âµ(t)⟩⟩canonicalρ̂can

= −⟨⟨ ˙̂
Xν(0); Âµ(t)⟩⟩canonicalρ̂can = −Φµν(t). (2.49)

The linear response function and the relaxation function can be obtained by replacing the

commutator with the Poisson bracket and the canonical correlation with the classical correlation.
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2.1.3 Fluctuation-Dissipation Theorem

In the previous subsection, we saw that there is a quantitative relation between the linear

response and the canonical correlation in thermal equilibrium. Another way of formulating such

a relation is the fluctuation-dissipation theorem in the frequency domain, using the symmetrized

correlation. Recall that the linear response function of the current operator is given by

ϕ̃µν(t) = β⟨⟨Ĵµ(t), Ĵν(0)⟩⟩canonicalρ̂can . (2.50)

Though the linear response function is physically meaningful only for t ≥ 0 due to the causality,

we formally define the linear response function for t < 0 by this equality. The causality is taken

into account in Eq. (2.3) by limiting the range of the integral as s ≥ 0. Next, we define the

symmetrized correlation of two current operators by

C̃sym
µν (t) :=

1

2
tr
[
ρ̂can(Ĵµ(t)Ĵν(0) + Ĵν(0)Ĵµ(t))

]
. (2.51)

The Fourier transforms of the linear response function and the symmetrized correlation are

defined by

ϕ̃µν,ω :=

∫ ∞

−∞
dt eiωtϕ̃µν(t), (2.52)

C̃sym
µν,ω :=

∫ ∞

−∞
dt eiωtC̃sym

µν (t), (2.53)

respectively.

The fluctuation-dissipation theorem claims the relation between these quantities:

C̃sym
µν,ω =

ℏω
2

coth

(
βℏω

2

)
ϕ̃µν,ω. (2.54)

The proof is given at the end of this subsection. It is noteworthy that the coefficient is nothing

but the expectation value of energy of a harmonic oscillator with frequency ω in thermal equi-

librium. In the classical or high-temperature limit of βℏω → 0, the coefficient approaches to β,

which is independent of the frequency.

Though the theorem (2.54) itself is mathematically correct, we need to be careful if we see

it as a relation between two independently measurable quantities, that is, the linear response

function, which describes nonequilibrium processes, and the time correlation, which describes

equilibrium properties. To measure the time correlation, we need to perform a measurement at

t = 0, and then another measurement at t = t. Since the backaction of the first measurement

changes the state in general, the operator ordering in the definition of the correlation becomes

nontrivial, and depends on how we measure observable in the first measurement. For instance, it

is known in quantum optics that the normally ordered correlations and the anti-normally ordered

correlations are measured when we measure the electromagnetic field by a photon counter and

a quantum counter, respectively [21, 22]. Another study shows that a class of measurements

called quasi-classical measurements results in the symmetrized correlation in the thermodynamic
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limit [23].

Finally we prove the fluctuation-dissipation theorem. Let {|Ei⟩} be the set of eigenstates

of the Hamiltonian Ĥ with eigenenergies {Ei}, so that the Hamiltonian is decomposed as Ĥ =∑
iEi |Ei⟩ ⟨Ei|. The canonical ensemble is simultaneously diagonalized as

ρ̂can =
∑
i

pi |Ei⟩ ⟨Ei| , (2.55)

where the probability distribution is given by pi = e−βEi/Z. By replacing tr [·] with
∑

i ⟨Ei| · |Ei⟩
and inserting a compete set of eigenstates

∑
j |Ej⟩ ⟨Ej | in Eq. (2.50), we obtain

ϕ̃µν(t) = β
∑
i,j

pi

∫ 1

0
dα

(
pj
pi

)α

ei(Ei−Ej)t/ℏ ⟨Ei|Ĵµ|Ej⟩ ⟨Ej |Ĵν |Ei⟩

= β
∑
i,j

pi
pj/pi − 1

log(pj/pi)
ei(Ei−Ej)t/ℏ ⟨Ei|Ĵµ|Ej⟩ ⟨Ej |Ĵν |Ei⟩ . (2.56)

Then the Fourier transform ϕ̃µν(t) is given by

ϕ̃µν,ω = β
∑
i,j

pi
pj/pi − 1

log(pj/pi)
2πℏδ((Ei − Ej + ℏω)/ℏ) ⟨Ei|Ĵµ|Ej⟩ ⟨Ej |Ĵν |Ei⟩

=
1 − e−βℏω

ℏω
∑
i,j

pi2πℏδ((Ei − Ej + ℏω)/ℏ) ⟨Ei|Ĵµ|Ej⟩ ⟨Ej |Ĵν |Ei⟩ . (2.57)

To derive the last line, we have used pj/pi = e−β(Ej−Ei) = e−βℏω owing to the existence of the

δ function. The Fourier transform of the symmetrized correlation can be obtained by a similar

calculation, leading to

C̃sym
µν,ω = β

∑
i,j

pi
1 + pj/pi

2
2πℏδ((Ei − Ej + ℏω)/ℏ) ⟨Ei|Ĵµ|Ej⟩ ⟨Ej |Ĵν |Ei⟩

=
1 + e−βℏω

2

∑
i,j

pi2πℏδ((Ei − Ej + ℏω)/ℏ) ⟨Ei|Ĵµ|Ej⟩ ⟨Ej |Ĵν |Ei⟩ . (2.58)

By comparing the factors before the sums in Eqs. (2.57) and (2.58), we obtain the fluctuation-

dissipation theorem (2.54).

2.2 Higher-Order Response Theory

In this section, we review a generalization of the results in the previous section to nonlinear

responses.

2.2.1 Phenomenological Approach

We consider the same situation as in the previous section, where the system is applied external

forces Fν(t) and perturbed from the equilibrium state. A natural generalization of Eq. (2.3) to
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higher-order responses is given by [24, 25]

Aµ(t) −Aeq
µ =∆(1)Aµ(t) + ∆(2)Aµ(t) + · · · + ∆(n)Aµ(t) + · · · (2.59)

=

∫ ∞

0
ds1 Φ(1)

µν1(s1)Fν1(t− s1)

+

∫ ∞

0
ds1

∫ ∞

s1

ds2 Φ(2)
µν1ν2(s1, s2)Fν1(t− s1)Fν2(t− s2)

+ · · ·

+

∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sn−1

dsn Φ(n)
µν1...νn(s1, . . . , sn)Fν1(t− s1) · · ·Fνn(t− sn)

+ · · · . (2.60)

Here, the first term in the last expression represents the linear response examined in the last

section, and the nth term represents the nth order response ∆(n)Aµ(t). The instantaneous

response is eliminated for simplicity. We note that this expansion does not converge in general

and should be interpreted as an asymptotic expansion.

t�s1�s2�sn�� 0

F (t)

F (1)

F (2)

F (n)

Figure 2.1: Protocol to measure the nth order relaxation function Ψ
(n)
µν1...νn(s1, . . . , sn). The

external force is switched off stepwise at t = −sn, . . . ,−s1.

Next, we consider a generalized relaxation process. Suppose that the external force is

switched off stepwise n times at t = −sn, . . . ,−s1 as

F (t) = θ(−t− sn)(F (n) − F (n−1)) + · · · + θ(−t− s2)(F
(2) − F (1)) + θ(−t− s1)F

(1), (2.61)

where 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn. We define the nth order relaxation function as the term of the

order of O(F
(1)
ν1 F

(2)
ν1 · · ·F (n)

νn ) in the expansion of Aµ(0) in this relaxation process:

Ψ(n)
µν1...νn(s1, . . . , sn) :=

∂nAµ(0)

∂F
(1)
ν1 . . . ∂F

(n)
νn

∣∣∣∣∣
F (1)=···=F (n)=0

. (2.62)

To see how the relaxation function is related to the response function, we replace the integral

variables s1, . . . , sn with s′1, . . . , s
′
n in Eq. (2.60), and substitute the relaxation protocol (2.61) to

19



it. Then we differentiate both sides with respect to F
(1)
ν1 , . . . , F

(n)
νn and set F (1) = · · · = F (n) = 0.

Almost all terms vanish by this procedure, and the only nonvanishing term in Eq. (2.60) is the

nth order response term with 0 ≤ s1 ≤ s′1 ≤ s2 ≤ s′2 ≤ . . . ≤ s′n−1 ≤ sn ≤ s′n < ∞. We thereby

obtain

Ψ(n)
µν1...νn(s1, . . . , sn) =

∫ s2

s1

ds′1

∫ s3

s2

ds′2 · · ·
∫ ∞

sn

ds′nΦ(n)
µν1...νn(s′1, . . . , s

′
n). (2.63)

By applying the fundamental theorem of calculus repeatedly, we obtain

∂

∂s1
Ψ(n)

µν1...νn(s1, . . . , sn) = −
∫ s3

s2

ds′2 · · ·
∫ ∞

sn

ds′nΦ(n)
µν1...νn(s1, s

′
2 . . . , s

′
n), (2.64)

∂

∂s1∂s2
Ψ(n)

µν1...νn(s1, . . . , sn) =

∫ s4

s3

ds′3 · · ·
∫ ∞

sn

ds′nΦ(n)
µν1...νn(s1, s2, s

′
3, . . . , sn), (2.65)

and finally we obtain

∂n

∂s1∂s2 · · · ∂sn
Ψ(n)

µν1...νn(s1, . . . , sn) = (−)nΦ(n)
µν1...νn(s1, . . . , sn). (2.66)

Equations (2.63) and (2.66) are the generalization of Eqs. (2.13) and (2.14), respectively. In

this sense, not only linear but also higher-order response functions and relaxation functions are

related through integration and differentiation.

Similarly to the case of the linear response theory, the system is expected to approach to its

equilibrium long time after the external force is removed. Therefore, we assume that the higher-

order response functions converge to zero with sufficient rapidity and integrals in Eqs (2.63),

(2.64), and (2.65) converge, i.e.,

lim
sn→∞

∂k−1

∂s1 · · · ∂sk−1
Ψ(n)

µν1...νn(s1, . . . , sn) = 0 (k = 1, . . . , n). (2.67)

2.2.2 Response and Relaxation in a Quantum System

In this subsection, we explicitly calculate higher-order response and relaxation functions in

a quantum system. We assume that the Hamiltonian has linear dependence on the control

parameters as

Ĥ(λ(t)) = Ĥ −
∑
ν

λν(t)X̂ν , (2.68)

and that the control parameter takes a value around zero. The deviation of the expectation value

of Â from its equilibrium value, and hence the nth order response function can be obtained by

substituting Eq. (2.31) into itself iteratively. However, here we give another simple derivation

of the response function. Suppose that the external force is composed of n pulses given as

λ(t) =
∑
k

ϵ(k)∆(t+ sk), (2.69)
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where 0 ≤ s1 ≤ · · · ≤ sn. Then, we can check that the response function is the term

O(ϵ
(1)
ν1 · · · ϵ(n)νn ) of the deviation of the value of Âµ under this protocol:

Φ(n)
µν1...νn(s1, . . . , sn) =

∂n

∂ϵ
(1)
ν1 · · · ∂ϵ(n)νn

tr
[
ρ̂(0)Âµ

] ∣∣∣∣∣
ϵ(1)=···=ϵ(n)=0

. (2.70)

The density operator is initially prepared to be the canonical ensemble ρ̂can, and the pulse with

magnitude ϵ(n) is applied at time t = −sn. Then it freely evolves under the Hamiltonian Ĥ

for −sn < t < −sn−1, and another pulse with magnitude ϵ(n−1) is applied at time t = −sn−1.

Repeating this process n times, we finally obtain the density operator at t = 0 as

ρ̂(0) =e−iĤs1/ℏeiϵ
(1)·X̂/ℏ · · · e−iĤ(sn−sn−1)/ℏeiϵ

(n)·X̂/ℏρ̂cane−iϵ(n)·X̂/ℏeiĤ(sn−sn−1)/ℏ · · · e−iϵ(1)·X̂/ℏeiĤs1/ℏ

=eiϵ
(1)·X̂(−s1)/ℏ · · · eiϵ(n)·X̂(−sn)/ℏρ̂cane−iϵ(n)·X̂(−sn)/ℏ · · · e−iϵ(1)·X̂(−s1)/ℏ, (2.71)

where ϵ · X̂ :=
∑

ν ϵνX̂ν and the Heisenberg operator is defined as X̂ν(t) := eiĤt/ℏX̂νe−iĤt/ℏ.

Therefore, the expectation value of Âµ at t = 0 is

tr
[
ρ̂(0)Âµ

]
= tr

[
eiϵ

(1)·X̂(−s1)/ℏ · · · eiϵ(n)·X̂(−sn)/ℏρ̂cane−iϵ(n)·X̂(−sn)/ℏ · · · e−iϵ(1)·X̂(−s1)/ℏÂµ

]
= tr

[
ρ̂cane−iϵ(n)·X̂(−sn)/ℏ · · · e−iϵ(1)·X̂(−s1)/ℏÂµeiϵ

(1)·X̂(−s1)/ℏ · · · eiϵ(n)·X̂(−sn)/ℏ
]
.

(2.72)

To handle many exponentials, we exploit the Baker-Campbell-Hausdorff formula:

eX̂ Ŷ e−X̂ = Ŷ + [X̂, Ŷ ] +
1

2
[X̂, [X̂, Ŷ ]] + · · · +

1

n!
[X̂, . . . , [X̂, Ŷ ] . . .] + · · · . (2.73)

For simplicity of notation, let us introduce a superoperator defined by adX̂(Ŷ ) := [X̂, Ŷ ]. The

Baker-Campbell-Hausdorff formula can be rewritten as

eX̂ Ŷ e−X̂ =
∞∑
n=0

[adX̂ ]n

n!
(Ŷ ). (2.74)

Using this formula, Eq. (2.72) can be rewritten as

tr
[
ρ̂(0)Â

]
=

∞∑
m1,...,mn=0

∑
ν1,...,νn

(−iϵ(1)ν1 /ℏ)m1 · · · (−iϵ(n)νn /ℏ)mn

m1! · · ·mn!
tr
[
ρ̂can[adX̂ν1 (−s1)

]m1 ◦ · · · ◦ [adX̂νn (−sn)
]mn(Âµ)

]
.

(2.75)

Therefore, we obtain the nth order response function as

Φ(n)
µν1...νn(s1, . . . , sn) =

(
1

iℏ

)n

tr
[
ρ̂can[adX̂ν1 (−s1)

] ◦ · · · ◦ [adX̂νn (−sn)
](Âµ)

]
, (2.76)
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or more explicitly,

Φ(n)
µν1...νn(s1, . . . , sn)

=

(
1

iℏ

)n

tr
[
ρ̂can

[
X̂λνn

(−sn),
[
X̂λνn−1

(−sn−1), . . . ,
[
X̂λν2

(−s2),
[
X̂λν1

(−s1), Âµ(0)
]
. . .
]]
.

(2.77)

This expression shows that higher-order response functions are given by the expectation value

of nested commutators of operators at different times evaluated at equilibrium. This fact means

that a nonequilibrium process can be predicted from the equilibrium properties as long as the

perturbation expansion is valid in that process. The response function of classical systems can

be obtained by replacing commutators with the Poisson brackets in Eq. (2.77).

Finally, combining Eqs. (2.63) and (2.77), we obtain the explicit form of the nth order

relaxation function:

Ψ(n)
µν1...νn(s1, . . . , sn)

=

(
1

iℏ

)n ∫ s2

s1

ds′1 · · ·
∫ ∞

sn

ds′ntr
[
ρ̂can

[
X̂λνn

(−s′n), . . . ,
[
X̂λν1

(−s′1), Âµ(0)
]
. . .
]]
. (2.78)

These formulae will be used in later chapters.
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Chapter 3

Some Backgrounds on

Thermodynamics

3.1 Stochastic Thermodynamics

3.1.1 Langevin Equation and Fokker-Planck Equation

We start form the underdamped Langevin equation

mẍ(t) = −γẋ(t) − ∂V (x;λ(t))

∂x

∣∣∣
x=x(t)

+

√
2γ

β
η(t). (3.1)

The left-hand side represents the inertial term, and m is the mass of a particle. On the right-

hand side, the first term represents the friction force with the friction coefficient γ. The second

term represents the force experienced by a particle due to an external potential V (x;λ(t)). We

assume that the potential can be changed as a function of time through control parameters λ(t).

We let Λ denote the time dependence of λ(t) and call it the protocol. The third term represents

the white Gaussian noise term satisfying ⟨η(t)η(t′)⟩ = δ(t − t′). The amplitude of the noise is

determined from the fluctuation-dissipation theorem of the second kind, so that the canonical

ensemble with inverse temperature β = 1/kBT is a steady state.

When the time resolution of the measurement is longer than the time scale m/γ, the inertial

term can be neglected, leading to the overdamped Langevin equation

ẋ(t) = −1

γ

∂V (x;λ(t))

∂x

∣∣∣
x=x(t)

+

√
2

βγ
η(t). (3.2)

We focus on the overdamped Langevin equation in the following discussions.

In thermodynamics, the work performed on the system is identified as a change in energy

of the system through macroscopic degrees of freedom. Since the control parameter in this

Langevin system is λ, the work is defined by

W ({x(t)},Λ) =

∫ T

0
dt λ̇µ(t)

∂V (x(t);λ)

∂λµ

∣∣∣
λ=λ(t)

(3.3)
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for each realization of the trajectory {x(t)}.

Remarkably, the distribution of the work satisfy the Jarzynski equality [26, 27, 28]⟨
e−β(W−∆F )

⟩
= 1, (3.4)

where ∆F is the free energy difference ∆F = F (λ(T ))−F (λ(0)) and F (λ) := − 1
β log

∫
dx e−βV (x;λ).

The Jarzynski equality holds for an arbitrary control, even if the system is driven far away from

equilibrium during the control. The Jarzynski equality can be used, for example, to determine

the free energy from nonequilibrium measurements [29]. From the convexity of the function e−x,

we obtain one of the expressions of the second law of thermodynamics

⟨W ⟩ ≥ ∆F. (3.5)

When we are interested only in the average behavior of the system, the density distribution

function ρ(x; t) is sufficient to describe the system. To derive the time evolution of the density

function, we use Itô’s lemma.

Theorem 3.1. (Itô lemma) [30, 31]

For a stochastic process described by ẋ(t) = F (x(t)) + ση(t) and for a twice differentiable

function f(x), the following equality holds:

df(x(t))

dt
=

df(x)

dx

∣∣∣
x=x(t)

ẋ(t) +
1

2
σ2

d2f(x)

dx2

∣∣∣
x=x(t)

=

[
F (x(t))

df(x)

dx

∣∣∣
x=x(t)

+
1

2
σ2

d2f(x)

dx2

∣∣∣
x=x(t)

]
+ σ

df(x)

dx

∣∣∣
x=x(t)

η(t). (3.6)

By taking the average of the both sides of Eq. (3.6) with respect to the density function

ρ(x; t), we obtain

∂

∂t

∫
dx ρ(x; t)f(x) =

∫
dx ρ(x; t)

[
F (x)

df(x)

dx
+

1

2
σ2

d2f(x)

dx2

]
⇔
∫

dx
∂ρ(x; t)

∂t
f(x) =

∫
dx

[
− ∂

∂x
(ρ(x; t)F (x)) +

1

2
σ2
∂2ρ(x; t)

∂x2

]
f(x) (3.7)

for an arbitrary f(x). Note that the last term in the last line of Eq. (3.6) vanishes after averaging,

and that we have integrated by parts to obtain the last equality. Therefore, we have derived the

Fokker-Planck equation

∂ρ(x; t)

∂t
= − ∂

∂x
(ρ(x; t)F (x)) +

1

2
σ2
∂2ρ(x; t)

∂x2
. (3.8)

For the overdamped Langevin equation (3.2), the Fokker-Planck equation reads

∂ρ(x; t)

∂t
=

1

γ

∂

∂x

(
∂V (x;λ(t))

∂x
ρ(x; t) +

1

β

∂ρ(x; t)

∂x

)
. (3.9)

We note that the canonical ensemble ρλcan(x) is the steady distribution of the Fokker-Planck
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equation, which justifies the temperature dependence of the amplitude of the noise.

3.1.2 Feynman-Kac formula

In this section, we introduce the Feynman-Kac formulae, which express the solution to a

parabolic partial differential equation in terms of an expectation value of an observable with

respect to a random process.

Let us consider a stochastic process described by

ẋ(t) = F (x(t)) + ση(t). (3.10)

We define two functions by

ϕ(x; t) :=

⟨∫ t

0
ds f(x(s))

⟩
x

, (3.11)

G(x; t) :=
⟨

e
∫ t
0 ds c(x(s))

⟩
x
, (3.12)

where f(x) and c(x) are arbitrary functions, and the average is taken over a random pro-

cess (3.10) starting from x(0) = x. We will derive the partial differential equations that these

functions satisfy. First, as an initial condition, they satisfy ϕ(x; t = 0) = 0 and G(x; t = 0) = 1.

Next, we consider a time evolution of ϕ(x; t). Let p(ξ) be the probability that the particle moves

from x to x+ ξ during the time interval from t = 0 to t = dt. Then, ϕ(x; t+ dt) is evaluated as

ϕ(x; t+ dt) = f(x)dt+

⟨∫ t+dt

dt
ds f(x(s))

⟩
x

= f(x)dt+

∫
dξ p(ξ)ϕ(x+ ξ, t). (3.13)

If we Taylor-expand ϕ(x+ ξ, t) in terms of ξ up to the second order1, we obtain

ϕ(x; t+ dt) = f(x)dt+

∫
dξ p(ξ)ϕ(x, t) +

∫
dξ p(ξ)ξ

∂ϕ(x, t)

∂x
+

1

2

∫
dξ p(ξ)ξ2

∂2ϕ(x, t)

∂x2

= f(x)dt+ ϕ(x, t) + F (x)
∂ϕ(x, t)

∂x
dt+

1

2
σ2
∂2ϕ(x, t)

∂x2
dt, (3.14)

which leads to the partial differential equation

∂ϕ(x; t)

∂t
= F (x)

∂ϕ(x; t)

∂x
+

1

2
σ
∂2ϕ(x; t)

∂x2
+ f(x). (3.15)

In particular, if we take the limit of t → ∞, ϕ(x; t) is expected to converge to a stationary

distribution ϕ∗(x) = limt→∞ ϕ(x; t) and the time derivative in Eq. (3.14) vanishes. Therefore,

ϕ∗(x) is the solution to the ordinary differential equation

F (x)
dϕ∗(x)

dx
+

1

2
σ2

d2ϕ∗(x)

dx2
= −f(x). (3.16)

1The higher-order terms vanish since
∫
dξ p(ξ)ξn = 0 (n ≥ 3) due to the property of the Gaussian noise.
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Similarly, the time evolution of G(x; t) can be calculated as

G(x; t+ dt) = ec(x)dt
⟨

e
∫ t+dt
dt ds c(x(s))

⟩
x

= (1 + c(x)dt)

∫
dξp(ξ)

(
G(x; t) + ξ

∂G(x; t)

∂x
+

1

2
ξ2
∂2G(x; t)

∂x2

)
= G(x; t) + c(x)G(x; t)dt+ F (x)

∂G(x; t)

∂x
dt+

1

2
σ2
∂2G(x; t)

∂x2
dt, (3.17)

which leads to the partial differential equation

∂G(x; t)

∂t
= F (x)

∂G(x; t)

∂x
+

1

2
σ2
∂2G(x; t)

∂x2
+ c(x)G(x; t). (3.18)

To summarize, we have obtain the following theorems.

Theorem 3.2. (Feynman-Kac formula 1)

The solution to the partial differential equation

∂ϕ(x; t)

∂t
= F (x)

∂ϕ(x; t)

∂x
+

1

2
σ2
∂2ϕ(x; t)

∂x2
+ f(x) (3.19)

with an initial condition ϕ(x; t = 0) = 0 is given by

ϕ(x; t) =

⟨∫ t

0
dsf(x(s))

⟩
x

, (3.20)

where the average is taken over a random process (3.10) starting from x(0) = x. In particular,

ϕ∗(x) =

⟨∫ ∞

0
dsf(x(s))

⟩
x

(3.21)

is the solution to

F (x)
dϕ∗(x)

dx
+

1

2
σ2

d2ϕ∗(x)

dx2
= −f(x). (3.22)

Theorem 3.3. (Feynman-Kac formula 2)

The solution to the partial differential equation

∂G(x; t)

∂t
= F (x)

∂G(x; t)

∂x
+

1

2
σ2
∂2G(x; t)

∂x2
+ c(x)G(x; t) (3.23)

with an initial condition G(x; t = 0) = 1 is given by

G(x; t) =
⟨

e
∫ t
0 ds c(x(s))

⟩
x

(3.24)

where the average is taken over a random process (3.10) starting from x(0) = x.

We will use these formulae later.
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3.2 Thermodynamic Metric

3.2.1 Thermodynamic Metric

In this section, we introduce an effective way to evaluate the work performed on the system

during a thermodynamic control. Here, we assume that the control is realized by varying an

external potential V (x;λ(t)) or a Hamiltonian Ĥ(λ(t)) as a function of time through m external

control parameters λ(t) = (λµ(t))µ=1,...,m. The time dependence of the control parameters

during the control period 0 ≤ t ≤ T is called the protocol, and denoted by Λ = {λ(t)}t∈[0,T ].

We also assume that the initial state is the canonical ensemble with respect to the initial control

parameters λ(0) and with the inverse temperature β = 1/kBT .

From the second law of thermodynamics, the work performed on the system during the

control is equal to or larger than the free-energy difference

⟨W (Λ)⟩ ≥ F (λ(T )) − F (λ(0)) = ∆F, (3.25)

where the free energy is defined by

F (λ) = − 1

β
log tr

[
−βĤ(λ)

]
, (3.26)

F (λ) = − 1

β
log

∫
dx e−βV (x;λ), (3.27)

for quantum Hamiltonian systems and overdamped Langevin systems, respectively. The equality

is achieved if the control is quasistatic, that is, the speed of control is infinitely slow. For a finite-

time control, the inequality (3.25) is strict, and the process is thermodynamically irreversible in

general. Then the degree of the irreversibility is quantified by the difference between the work

and the free-energy difference, which is called the excess work2 ⟨Wex(Λ)⟩ := ⟨W (Λ)⟩ − ∆F .

Therefore, evaluation of the excess work in general control processes is an important task.

Under the condition that the state is not driven far away from equilibrium during the control,

the excess work can be approximately evaluated as [32, 33]

⟨Wex(Λ)⟩ ≃
∫ T

0
dt ζµν(λ(t))λ̇µ(t)λ̇ν(t). (3.28)

Here and henceforth, the Einstein summation convention is adopted, where the repeated indices

are implicitly assumed to be summed. In the approximate expression (3.28), the excess power is

quadratic with respect to the velocity of the control parameters. The coefficient ζµν(λ) is called

the thermodynamic metric, and can be expressed as

ζµν(λ) = β

∫ ∞

0
ds ⟨∆Xµ(0;λ); ∆Xν(s;λ)⟩eqλ . (3.29)

Here, the bracket ⟨∆Xµ(0;λ); ∆Xν(t;λ)⟩eqλ denotes the temporal correlation at the equilibrium

state with the control parameters λ fixed, and ∆Xµ(s;λ) represents the deviation of the general-

2Excess work is also called dissipated work, since the excess work is dissipated into the heat bath attached to
the system if the final system is in equilibrium.
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ized force from its equilibrium value with respect to the parameter λµ at time s. More explicitly,

for an overdamped Langevin system, the generalized force is defined by Xµ(x;λ) = −∂V (x;λ)
∂λµ ,

and ⟨∆Xµ(0;λ); ∆Xν(s;λ)⟩eqλ is interpreted as

⟨∆Xµ(x(0);λ)∆Xν(x(s);λ)⟩eqλ , (3.30)

where the average is taken over the path {x(s)} generated by randomly sampling the initial

condition x(0) according to the canonical distribution ∝ e−βV (x;λ), and then letting the system

evolve in time according to the overdamped Langevin equation. For a quantum system, the

generalized force operator is defined by X̂µ(λ) = −∂Ĥ(λ)
∂λµ , and its Heisenberg representation

is defined by X̂µ(s;λ) = eiĤ(λ)s/ℏX̂µ(λ)e−iĤ(λ)s/ℏ. Also, the correlation is interpreted as the

canonical correlation, and therefore, ⟨∆Xµ(0;λ); ∆Xν(s;λ)⟩eqλ should be interpreted as

⟨⟨X̂µ(0;λ), X̂ν(s;λ)⟩⟩canρ̂can(λ)
. (3.31)

We note that only the symmetric part of the thermodynamic metric ζsµν := 1
2(ζµν + ζνµ)

contributes to the excess work in Eq. (3.28). When the generalized force operators have the

time reversal symmetry, we can show that the thermodynamic metric is symmetric because∫ ∞

0
ds ⟨∆Xµ(0;λ); ∆Xν(s;λ)⟩eqλ =

∫ ∞

0
ds ⟨∆Xµ(0;λ); ∆Xν(−s;λ)⟩eqλ

=

∫ ∞

0
ds ⟨∆Xµ(s;λ); ∆Xν(0;λ)⟩eqλ

=

∫ ∞

0
ds ⟨∆Xν(0;λ); ∆Xµ(s;λ)⟩eqλ , (3.32)

where we have used the time translational symmetry to obtain the second equality. Since the

excess work is positive for any protocol from the second law of thermodynamics, the symmetric

part of the thermodynamic metric is positive definite, which ensures that the thermodynamic

metric can be interpreted as the metric on the control parameter space.

Based on this approximate expression we can discuss an optimal protocol that requires the

smallest excess work among all the protocols that start from λ(0) = λi and end at λ(T ) = λf

for a fixed control time T . This minimization problem is solved in two steps. First, from the

Cauchy-Schwarz inequality, we obtain

T

∫ T

0
dtλ̇µ(t)λ̇ν(t)ζµν(λ(t)) ≥

(∫ T

0
dt

√
λ̇µ(t)λ̇ν(t)ζµν(λ(t))

)2

, (3.33)

where the equality is achieved if and only if the excess power λ̇µ(t)λ̇ν(t)ζµν(λ(t)) is constant

during the entire protocol t ∈ [0, T ]. We note that the right-hand side in Eq. (3.33) is the length

of the path on the control parameter space, which is independent of the parametrization and

is determined only by the shape of the path. Therefore, once the shape of a path is fixed, the

best way to parametrize it, or equivalently, the best time dependence of the control parameter

along shape, is to keep the excess power constant. Then, we minimize the length of the path
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that connects λi and λf . Such a path is determined by the geodesics equation

λ̈µ(t) + λ̇ν(t)λ̇ρ(t)(Γµ
νρ)λ(t) = 0 (3.34)

subject to the boundary conditions λ(0) = λi and λ(T ) = λf , where Γµ
νρ is the Christffel

symbol for the Levi-Civita connection defined by

Γµ
νρ =

1

2
ζµκ

(
∂ζκρ
∂λν

+
∂ζκν
∂λρ

− ∂ζνρ
∂λκ

)
. (3.35)

A remarkable feature of the thermodynamic metric expression for the excess work is that the

excess power (the integrand in Eq. (3.28)) depends only on λ(t) and λ̇(t) at time t, even though

the value of observables at time t depends on the history of the the parameter {λ(t′)}t′∈[0,t] in

general nonequilibrium processes. In this sense, the thermodynamic metric expression (3.28) is

local in time, or local in the control space. Owing to the advantages described above, analyses

on thermodynamic control based on the thermodynamic metric have been made actively [33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

As a historical remark, the expression of the excess work in terms of the thermodynamic

metric (3.28) was first derived by Sekimoto and Sasa [32] for overdamped Langevin systems,

but the explicit form of the thermodynamic metric was rather complicated, given in terms

of the spectral decomposition of the Focker-Planck operator. Later, the simple form of the

thermodynamic metric (3.29) in terms of the temporal correlation function in equilibrium was

found in Ref. [33] from a phenomenological argument. Rotskoff et al. [43] recently derived

the same expression for the thermodynamic metric as Ref. [33] from the overdamped Langevin

equation.

In our setting, the system is controlled by a time-dependent Hamiltonian or potential, where

driving forces are always conservative. The generalization to steady states in the presense of

nonconservative forces is discussed in Ref. [40].

3.2.2 Phenomelogical Derivation

In this section, we review the phenomenological derivation of the thermodynamic metric expres-

sion of the excess work (3.28) following Ref. [33], using the linear response theory.

The work performed on the system is given by

⟨W (Λ)⟩ = −
∫ T

0
dt λ̇µ(t) ⟨Xµ(λ(t))⟩Λ , (3.36)

where ⟨·⟩Λ is the average over the nonequilibrium process under the protocol Λ. By comparing it

with the free-energy difference ∆F = −
∫ T
0 dt λ̇µ(t) ⟨Xµ(λ(t))⟩eqλ(t), the excess work is expressed

as

⟨Wex(Λ)⟩ = −
∫ T

0
dt λ̇µ(t) ⟨∆Xµ(λ(t))⟩Λ . (3.37)
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In the linear response regime, the expectation value of the deviation is given by

⟨∆Xµ(λ(t))⟩Λ ≃
∫ ∞

0
ds ϕµν(s;λ(t))(λν(t− s) − λν(t))

= −
∫ ∞

0
ds

dψµν(s;λ(t))

ds
(λν(t− s) − λν(t)), (3.38)

where ϕµν(s) and ψµν(s) are respectively the linear response and relaxation functions of Xµ

against a perturbation Xν at the equilibirum state with respect to λ(t). We have used Eq. (2.14)

to obtain the last equality. By integrating Eq. (3.38) by parts, we obtain

⟨∆Xµ(λ(t))⟩Λ ≃− [ψµν(s;λ(t))(λν(t− s) − λν(t))]s=∞
s=0

−
∫ ∞

0
ds ψµν(s;λ(t))λ̇ν(t− s) (3.39)

The boundary term at s = 0 vanishes obviously, and the one at s = ∞ also vanishes from the

assumption (2.15) that the system approaches the equilibrium state eventually when the control

parameter is kept fixed. We also assume that the change in the control velocity is sufficiently

slow so that

λ̇ν(t− s) ≃ λ̇ν(t) (3.40)

during the time interval where the linear relaxation function ψµν(s;λ(t)) takes effectively nonzero

values. We finally obtain the expression of the excess work as

⟨Wex(Λ)⟩ ≃
∫ T

0
dt λ̇µ(t)λ̇ν(t)

∫ ∞

0
ds ψµν(s;λ(t)). (3.41)

The integral over s can be performed independently of the protocol Λ, giving the thermodynamic

metric∫ ∞

0
ds ψµν(s;λ(t)) = β

∫ ∞

0
ds ⟨∆Xµ(0;λ(t)); ∆Xν(s;λ(t))⟩eqλ(t) = ζµν(λ(t)). (3.42)

In this phenomenological derivation, two approximations are used: linear-response approx-

imation (3.38), and the constant-velocity approximation (3.40). The first approximation is

expected to be valid when the control is slow and therefore the system is not driven too far away

from equilibrium. However, neither the relation between two approximations nor the quantita-

tive conditions under which these approximations are valid is clear. We will address this issue

in Chap. 6

3.2.3 Microscopic Derivation

In this section, we review the microscopic derivation of the expression of excess work in terms

of the thermodynamic metric for overdamped Langevin systems, following Ref. [43].
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We consider a one-dimensional system described by the overdamped Langevin equation

ẋ(t) = − 1

ϵγ

∂V (x;λ(t))

∂x

∣∣∣
x=x(t)

+

√
2

βϵγ
η(t). (3.43)

Here, the friction coefficient is given by ϵγ, where ϵ is a positive dimensionless parameter that

characterizes the separation of time scales between the system and the control [43]. As ϵ ap-

proaches zero, the time-scale separation becomes clearer, which means that the dynamics of the

system x(t) is much faster that the change of the control parameters λ(t). Though it is difficult

to understand intuitively why ϵ characterizes the separation of time scales in this setting, we will

show in Chap. 6 that this approach is equivalent to the slow control Λϵ under an overdamped

Langevin equation with the friction coefficient fixed. In the following, we expand the excess

work in terms of ϵ.

The work performed on the system is defined at the trajectory level as

W (Λ, {x(t)}) =

∫ T

0
dt

∂V (x(t);λ)

∂λµ

∣∣∣∣∣
λ=λ(t)

, (3.44)

and therefore the the average work is given by

⟨W (Λ)⟩ =

∫ T

0
dt λ̇µ(t)

∫
dx ρ(x; t)

∂V (x;λ)

∂λµ

∣∣∣∣∣
λ=λ(t)

, (3.45)

where ρ(x; t) is the density function at time t. The density function satisfies the Fokker-Planck

equation

∂ρ(x; t)

∂t
=

1

ϵγ

∂

∂x

(
∂V (x;λ(t))

∂x
ρ(x; t) +

1

β

∂ρ(x; t)

∂x

)
. (3.46)

We expand the density function ρ(x; t) in terms of ϵ as

ρ(x; t) = ρ0(x; t)(1 + ϵϕ1(x; t) + ϵ2ϕ2(x; t) + ϵ3ϕ3(x; t) + · · · ), (3.47)

and solve the Fokker-Planck equation (6.26) from lower orders in ϵ. The equations from lower

orders read:

O(ϵ−1) : 0 =
∂

∂x

(
∂V (x;λ(t))

∂x
ρ0(x; t) +

1

β

∂ρ0(x; t)

∂x

)
, (3.48)

O(ϵ0) :
∂ρ0(x; t)

∂t
=

1

γ

∂

∂x

(
∂V (x;λ(t))

∂x
ρ0(x; t)ϕ1(x; t) +

1

β

∂(ρ0(x; t)ϕ1(x; t))

∂x

)
. (3.49)

In the lowest order in ϵ, the system is driven in a quasistatic manner, and the state is expected

to be in equilibrium. Therefore, we expand the density function ρ(x; t) around the canonical

ensemble

ρ0(x; t) = ρλ(t)can (x) =
e−βV (x;λ(t))

Z(λ(t))
, (3.50)
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which is justified from the fact that the canonical ensemble ρ
λ(t)
can (x) satisfies the O(ϵ−1) equa-

tion (3.48). Then, the O(ϵ0) contribution to the work gives the free-energy difference ∆F =

F (λ(T )) − F (λ(0)):

⟨W (Λ)⟩ =

∫ T

0
dt

dF (λ(t))

dt
+O(ϵ) (3.51)

= ∆F +O(ϵ). (3.52)

To calculate the excess work, we proceed to the O(ϵ) contribution to the work. The O(ϵ0)

equation (3.49) can be rewritten as

1

βγ

∂2ϕ1(x; t)

∂x2
− 1

γ

∂V (x;λ(t))

∂x

∂ϕ1(x; t)

∂x
= β∆Xν(x;λ(t))λ̇ν(t), (3.53)

where Xν(x;λ) := −∂V (x;λ)
∂λν is a generalized force with respect to the control parameter λν , and

∆X(x;λ) := X(x;λ) − ⟨X( · ;λ)⟩eqλ . Using the Feynman-Kac formula (3.2), the solution to

Eq. (3.53) can be expressed as the average value of an observable of a stochastic process as

ϕ1(x; t) = −βλ̇ν(t)

∫ ∞

0
dτ ⟨∆Xν(xλ(t)(τ),λ(t))⟩x,λ(t) . (3.54)

Here, the bracket ⟨·⟩x,λ expresses the expectation value with respect to the random process

dxλ(τ)

dτ
= −1

γ

∂V (x;λ)

∂x

∣∣∣
x=xλ(τ)

+

√
2

βγ
η(τ) (3.55)

with the initial conditionxλ(0) = x. Combining Eqs. (3.45), (3.47) and (3.54), we obtain the

O(ϵ) contribution to the work, i.e., the lowest contribution to the excess work, given as

⟨Wex(Λ)⟩ = ϵ

∫ T

0
dt λ̇µ(t)

∫
dx ρλ(t)can (x)ϕ1(x; t)

∂V (x;λ(t))

∂λµ
+O(ϵ2)

= ϵ

∫ T

0
dt λ̇µ(t)λ̇ν(t)β

∫ ∞

0
dτ

∫
dx ρλ(t)can Xµ(x;λ(t)) ⟨∆Xν(xλ(t)(τ);λ(t))⟩x,λ(t) +O(ϵ2),

(3.56)

which gives the thermodynamic metric expression for the excess work. The thermodynamic

metric is identified as

ζµν(λ) = β

∫ ∞

0
dτ

∫
dx ρλcanXµ(x;λ) ⟨∆Xν(xλ(τ);λ(t))⟩x,λ . (3.57)

Here, the initial condition xλ(0) = x is also sampled from the canonical distribution ρ
λ(t)
can , and

therefore the thermodynamic metric is rewritten as

ζµν(λ) = β

∫ ∞

0
dτ ⟨∆Xµ(xλ(0);λ)∆Xν(xλ(τ);λ)⟩eqλ . (3.58)

Therefore, the expression in terms of the thermodynamic metric is given from the lowest-
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order contribution in the expansion of the excess work in terms of ϵ. Compared with the phe-

nomenological derivation, the physical meaning of the approximation is clearer in this derivation

since we have used only one approximation that there is a separation of time scales between

the system and the control, which is characterized by a dimensionless small parameter ϵ. This

approach admits the possibility of systematically expanding the work in terms of ϵ, which we

develop in Chapters 6 and 7.
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Chapter 4

Information Geometry

In this chapter, we review a geometric analysis of information theory, especially of estimation

theory. We consider a problem of estimation of an unknown probability distribution, and ex-

amine the accuracy of estimation. The accuracy of estimation is shown to be closely related to

the metric on the space of candidates of the true distribution. In this way, considering a space

of probability distributions and introducing a geometrical structure on it provides a useful way

to analyze problems in information theory. Such a study is called information geometry [6].

In classical physics, physical states are represented by probability distributions, so that infor-

mation geometry essentially concerns the geometrical structure on the space of states. We can

also consider a quantum generalization of information geometry, where states are represented

by density operators instead of probability distributions. In fact, the notion in information

geometry has recently been increasingly applied to a variety of fields, such as statistical mechan-

ics [33, 44], condensed-matter physics [12, 13, 45, 46], information theory [8, 9, 47, 48, 10, 11],

and high-energy physics [15].

4.1 Classical Information Geometry

4.1.1 Classical Estimation Theory

Let us consider a probability distribution p = {pi}i∈I . Here, the symbol I denotes the sample

space, or the set of all possible outcomes. We assume that the sample space I is finite1 (I =

{1, 2, . . . n} for some n ∈ N). The probability distribution must satisfy the positivity condition

and the normalization condition:

pi ≥ 0, ∀i ∈ I, (4.1)∑
i∈I

pi = 1. (4.2)

Let us consider a family of probability distributions {pθ|θ ∈ Θ} defined on a common sample

space I. Each probability distribution is parameterized by an m-dimensional real vector θ ∈ Θ,

1 This assumption is not essential in the estimation theory, but is essential when we prove the uniqueness of
the Fisher metric in Čencov’s theorem.
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where Θ is an open subset of Rm and is called the parameter space. We assume that pθ,i is

sufficiently smooth as a function of the parameter θ for each i ∈ I. We also assume that all the

probability distributions are strictly positive, i.e.,

pθ,i > 0, ∀i ∈ I,∀ θ ∈ Θ. (4.3)

Such an appropriately parameterized family of probability distributions is called a statistical

model, or a statistical manifold.

Suppose that we estimate an unknown parameter θ from the outcome i. The estimation

process is mathematically formulated by a mapping from the sample space to the parameter

space, which is called an estimator:

θest : I → Θ, (4.4)

that is, if the outcome is i ∈ I, the estimated value is given by θest(i). Among many possible

estimators, we often impose a condition called local unbiasedness, to ensure that the estimator

is not so bad.

Definition 4.1. (local unbiasedness)

An estimator θest is called locally unbiased at θ0 ∈ Θ if it satisfies

⟨θest⟩θ0 = θ0, (4.5)

∂

∂θa
⟨θestb ⟩θ

∣∣∣
θ=θ0

= δab, (4.6)

where ⟨•⟩θ :=
∑

i pθ,i• is the expectation value of •.

The subscripts a, b, . . . denote the components of a vector in the parameter space. The

local-unbiasedness condition requires that the expectation value of the estimator is consistent

with a true parameter if it is placed at a particular point θ0 or its neighbor point θ0 + dθ up to

the first order in dθ.

Next, we introduce the classical Fisher information, and explain its statistical meaning.

Definition 4.2. (classical Fisher information)

Let {pθ|θ ∈ Θ} be a statistical model on the sample space I. Then, the classical Fisher infor-

mation matrix JC
θ is a real m×m matrix whose elements are given as

[JC
θ ]ab :=

∑
i∈I

pθ,i
∂ log pθ,i
∂θa

∂ log pθ,i
∂θb

(4.7)

=
∑
i∈I

1

pθ,i

∂pθ,i
∂θa

∂pθ,i
∂θb

. (4.8)

If the local-unbiasedness condition is imposed on estimators, since their expectation value

coincides with the accurate parameter, the goodness of the estimator is measured by the variance-
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covariance matrix2:

[Varθ(θest)]ab :=
⟨
(θesta −

⟨
θesta

⟩
θ
)(θestb −

⟨
θestb

⟩
θ
)
⟩
θ
. (4.9)

An estimator with a small variance is considered to be good. However, the variance of the locally

unbiased estimator is bounded from below by the classical Fisher information as stated below.

Theorem 4.3. (classical Cramér-Rao inequality) [7]

For any estimator which is locally unbiased at θ, the following inequality is satisfied:

Varθ(θest) ≥ (JC
θ )−1. (4.10)

Proof. Let V and J denote Varθ(θest) and JC
θ , respectively, as shorthand notations. First we

show that for any x,y ∈ Rm, we have

(x · V x)(y · Jy) ≥ (x · y)2. (4.11)

By using the local-unbiasedness condition (4.5), we obtain

x · V x =
∑
a,b

xa
∑
i

pθ,i(θ
est
a (i) −

⟨
θesta

⟩
θ
)(θestb (i) −

⟨
θestb

⟩
θ
)xb

=
∑
i

(
√
pθ,i

∑
a

(θesta (i) − θa)xa

)2

, (4.12)

and we also have

y · Jy =
∑
i

(
√
pθ,i

∑
a

∂ log pθ,i
∂θa

ya

)2

. (4.13)

Then, by applying the Cauchy-Schwarz inequality, we obtain

(x · V x)(y · Jy) ≥

∑
a,b

xayb
∑
i

pθ,i(θ
est
a (i) − θa)

∂ log pθ,i
∂θb

2

=

∑
a,b

xayb
∑
i

(θesta (i) − θa)
∂pθ,i
∂θb

2

=

∑
a,b

xayb

(
∂

∂θb
⟨θesta ⟩θ − θa

∂1

∂θb

)2

=

∑
a,b

xaybδab

2

= (x · y)2, (4.14)

2 For locally unbiased estimators, the variance-covariance matrix is equal to the mean square error⟨
(θesta (·)− θa)(θ

est
b (·)− θb)

⟩
θ
.
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and Eq. (4.11) is proved. Here, we have used the local unbiasedness condition (4.6) in deriving

the second last equality.

If we set y = J−1x in inequality (4.11), we obtain

(x · V x)(x · J−1x) ≥ (x · J−1x)2. (4.15)

Since J is positive, J−1 is also positive, and x · J−1x ≥ 0. Therefore, we have

x · V x ≥ x · J−1x, ∀x ∈ Rm, (4.16)

which shows the desired result (4.10).

In this sense, the classical Fisher information JC
θ gives the distinguishability of probability

distributions around θ.

4.1.2 Monotonicity of the Classical Fisher Metric and Čencov’s Theorem

In this section, we discuss another important property of the classical Fisher information, i.e.,

the monotonicity under information processing.

Information processing can be formulated by a Markov mapping κ. Let p = {pi}i∈I be a

probability distribution on a sample space I, and J be another sample space. Then, we can

construct a different probability distribution q = {qj}j∈J by

qj :=
∑
i∈I

κ(j|i)pi, ∀j ∈ J. (4.17)

To ensure that q is a probability distribution, κ must satisfy

κ(j|i) ≥ 0, ∀i ∈ I,∀ j ∈ J, (4.18)∑
j∈J

κ(j|i) = 1, ∀i ∈ I. (4.19)

The matrix element κ(j|i) can be interpreted as a conditional probability of obtaining the

outcome j ∈ J given that the original outcome is i ∈ I.

The following theorem gives the precise meaning of the monotonicity of the classical Fisher

information under information processing.

Theorem 4.4. (Monotonicity of the classical Fisher information)

Let {qθ} be a statistical model induced from a statistical model {pθ} by a Markov mapping κ.

Then, the classical Fisher information monotonically decreases:

JC
θ ({pθ}) ≥ JC

θ ({qθ}). (4.20)
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Proof. For any x ∈ Rm, we obtain

x · JC
θ ({qθ})x =

∑
a,b

xa
∑
j∈J

1

qθ,j

∂qθ,j
∂θa

∂qθ,j
∂θb

xb

=
∑
j∈J

1

qθ,j

(∑
a

∑
i∈I

xa
∂pθ,i
∂θa

κ(j|i)

)2

=
∑
j∈J

1

qθ,j

(∑
a

∑
i∈I

xa
∂ log pθ,i
∂θa

pθ,iκ(j|i)

)2

=
∑
j∈J

1

qθ,j

(∑
i∈I

(∑
a

xa
∂ log pθ,i
∂θa

√
pθ,iκ(j|i)

)√
pθ,iκ(j|i)

)2

(4.21)

≤
∑
j∈J

1

qθ,j

∑
i∈I

(∑
a

xa
∂ log pθ,i
∂θa

)2

pθ,iκ(j|i)

(∑
i∈I

pθ,iκ(j|i)

)
(4.22)

=
∑

i∈I,j∈J

(∑
a

xa
∂ log pθ,i
∂θa

)2

pθ,iκ(j|i)

=
∑
a,b

∑
i∈I

pθ,i
∂ log pθ,i
∂θa

∂ log pθ,i
∂θb

xaxb = x · JC
θ ({pθ})x. (4.23)

Here, we have used the Cauchy-Schwarz inequality to obtain Eq. (4.22) from Eq. (4.21).

Theorem 4.4 claims that if we perform information processing, the probability distributions

become less distinguishable from each other.

Čencov [49] showed that the classical Fisher information is uniquely determined from the

monotonicity. More precisely, the classical Fisher information is characterized as the unique

monotone metric on the space of probability distributions.

In the following, we consider a family of all probability distributions defined on the sample

space In = {1, . . . n} (n ∈ N). Such a family can be expressed as

Sn−1 = {p ∈ Rn|pi > 0,
∑
i

pi = 1}. (4.24)

We define a monotone metric K by the following conditions.

Definition 4.5. (monotone metric)

Suppose that for every x, y ∈ Rn, for every p ∈ Sn−1, and for every n ∈ N, a real number

Kp(x, y) is defined. Then Kp(x, y) is called a monotone metric if the following conditions hold:

(bilinearity) (x, y) 7→ Kp(x, y) is bilinear.

(positivity) Kp(x, x) ≥ 0, and the equality holds if and only if x = 0.

(continuity) p 7→ Kp(x, y) is continuous on Sn−1 for every x ∈ Rn and for every n ∈ N.

(symmetricity) Kp(x, y) = Kp(y, x).
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(monotonicity) Kκ(p)(κ(x), κ(x)) ≤ Kp(x, x) for every Markov mapping κ : Rn → Rm, for

every p ∈ Sn−1, for every x ∈ Rn, and for every n,m ∈ N.

Here, the bilinearity, positivity, continuity, and symmetricity are imposed so that Kp(x, y)

can be interpreted as a metric.

Theorem 4.6. (Čencov’s theorem [49])

Let Kp(·, ·) be a monotone metric on statistical models whose sample spaces are finite. Then

there are constants A and C > 0 such that

Kp(x, y) = C
∑
i

xiyi
pi

+A

(∑
i

xi

)(∑
i

yi

)
. (4.25)

The classical Fisher information of a statistical model {pθ} can be written as

Kpθ

(
∂pθ
∂θa

,
∂pθ
∂θb

)
, (4.26)

because we have
∑

i ∂pθ,i/∂θa = 0 from the normalization condition and hence the second term

in Eq. (4.25) vanishes.

To be precise, the monotonicity is a too strong condition to characterize the classical Fisher

metric. If we impose a weaker condition called the invariance, which means that the metric does

not change under any reversible Markov mapping, we can show the same result.

4.2 Quantum Information Geometry

4.2.1 Monotonicity of the Quantum Fisher Metric and Petz’ Theorem

In the previous section, we have learned that one can naturally introduce a unique metric on the

space of probability distributions, namely, the classical Fisher metric. In this section, we discuss

the quantum counterpart of the classical Fisher metric. In quantum mechanics, a probability

distribution is replaced by a density operator ρ̂. The question is whether we can introduce

natural metrics on the space of density operators from the viewpoint of the monotonicity under

information processing. In fact, due to the noncommutativity of operators, one can introduce

infinitely many different types of metrics that satisfy the monotonicity, which are called the

quantum Fisher metrics.

To discuss the monotonicity under information processing, we need to know how information

processing is formulated. In fact, state changes that can be implemented deterministically

by a physical process are characterized by completely positive and trace-preserving (CPTP)

mappings [50]. Let Hn be an n-dimensional Hilbert space, L(Hn) be the linear space of all

linear operators on Hn, and S(Hn) be the set of all density operators on Hn. A linear operator

E : L(Hn) → L(Hm) is called completely positive if E ⊗ Ik : L(Hn ⊗ Hk) → L(Hm ⊗ Hk) is

positive for every k ∈ N, where Ik is the identity operator on L(Hk). Also, a linear operator

E : L(Hn) → L(Hm) is called trace-preserving if tr
[
Â
]

= tr
[
E(Â)

]
for every Â ∈ L(Hn). These
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properties guarantee the positivity and the conservation of probability. Note that ρ̂ and E(ρ̂)

can be operators on different Hilbert spaces.

Definition 4.7. (monotone metric)

Suppose that for every Â, B̂ ∈ L(Hn), for every ρ̂ ∈ S(Hn), and for every n ∈ N, a complex

number Kρ̂(Â, B̂) is defined. Then K·(·, ·) is called a monotone metric if the following four

conditions hold:

(sesquilinearity) (Â, B̂) 7→ Kρ̂(Â, B̂) is sesquilinear, i.e., conjugate linear with respect to the

first argument and linear with respect to the second argument.

(positivity) Kρ̂(Â, Â) ≥ 0, and the equality holds if and only if Â = 0.

(continuity) ρ̂ 7→ Kρ̂(Â, Â) is continuous on S(Hn) for every Â ∈ L(Hn) and for every n ∈ N.

(monotonicity) KE(ρ̂)(E(Â), E(Â)) ≤ Kρ̂(Â, Â) for every CPTP mapping E : L(Hn) → L(Hm),

for every ρ̂ ∈ S(Hn), for every Â ∈ L(Hn), and for every n,m ∈ N.

From the Liesz representation theorem [51], the metric can be represented by using super-

operator Kρ̂ as

Kρ̂(Â, B̂) = tr
[
Â†K−1

ρ̂ (B̂)
]
. (4.27)

Petz [52] have shown that there are abundance of monotone metrics on the space of quantum

states and are characterized by operator monotone functions. To state the claims by Petz

precisely, we need to introduce some definitions. For two Hermitian operators Â and B̂, we

denote Â ≤ B̂ if and only if B̂ − Â is positive semidefinite. A function f(x) : (0,∞) → (0,∞)

is called operator monotone if 0 < Â ≤ B̂ ⇒ f(Â) ≤ f(B̂) for every Hermitian operators Â and

B̂. We define superoperators Lρ̂ and Rρ̂ by the following relations:

Lρ̂(Â) = ρ̂Â, (4.28)

Rρ̂(Â) = Âρ̂, (4.29)

which represent the multiplication of ρ̂ from the left and from the right, respectively.

Then, the following theorems hold.

Theorem 4.8. (abundance of monotone metrics) [52]

Let f(x) be an operator monotone function. Then,

Kρ̂ = Rρ̂f(Lρ̂R
−1
ρ̂ ) (4.30)

determines a monotone metric in the sense of Def. 4.7.

Theorem 4.9. (characterization of monotone metric) [52]

Let Kρ̂(·, ·) be a monotone metric. Then there is an operator monotone function f such that

Kρ̂(Â, B̂) = tr
[
Â†K−1

ρ̂ (B̂)
]
, (4.31)
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Table 4.1: List of the quantum Fisher metrics and the corresponding operator monotone func-
tions f(x).

quantum Fisher metric f(x)

symmetric logarithmic derivative (SLD) (x+ 1)/2

Bogoliubov-Kubo-Mori (BKM) (x− 1)/log x

right logarithmic derivative (RLD) x

left logarithmic derivative (LLD) 1

real part of the right logarithmic derivative (real RLD) 2x/(x+ 1)

skew information (
√
x+ 1)2/4

where Kρ̂ := Rρ̂f(Lρ̂R
−1
ρ̂ ).

Theorems 4.8 and 4.9 show that there is a one-to-one correspondence between monotone

metrics and operator monotone functions. In the following, we may write Kf
ρ̂ instead of Kρ̂ if

we need to express an operator monotone function explicitly. We summarize important instances

of the quantum Fisher metrics and the corresponding operator monotone functions in Table. 4.1.

For a quantum-statistical model {ρ̂θ}, the matrix whose element is given by the quantum

Fisher metric, defined by

(JQ
θ )µν := tr

[
∂ρ̂θ
∂θµ

K−1
ρ̂θ

(
∂ρ̂θ
∂θν

)]
, (4.32)

is called the quantum Fisher information matrix, or the quantum Fisher information for short.

We note that the quantum Fisher information matrix is a Hermitian matrix (JQ
θ )∗µν = (JQ

θ )νµ,

and therefore it can take complex values for nondiagonal matrix elements. We may write Jf,Q
θ

instead of JQ
θ if we need to express an operator monotone function explicitly.

For an operator monotone function f(x), we define the dual of f(x) as

f̃(x) := xf(1/x). (4.33)

The quantum Fisher information matrices with respect to f(x) and its dual f̃(x) are related to

each other by

(J f̃ ,Q
θ )µν = (Jf,Q

θ )νµ. (4.34)

If an operator monotone function f(x) is equal to its dual, i.e., f(x) = f̃(x), it is called sym-

metric. Then the corresponding quantum Fisher information becomes symmetric and real:

(Jf,Q
θ )µν = (Jf,Q

θ )νµ ∈ R (4.35)

As an example relevant to physics, we consider a statistical model of canonical ensembles [53].

The Hamiltonian is parametrized as Ĥ(θ), and the canonical ensemble corresponding to Ĥ(θ)

41



is given by

ρ̂θ =
e−βĤ(θ)

Z(θ)
, (4.36)

where Z(θ) = tr
[
e−βĤ(θ)

]
is the partition function. Let us calculate the Bogoliubov-Kubo-Mori

(BKM) Fisher information, which corresponds to the choice of f(x) = (x− 1)/log x =
∫ 1
0 dα xα

as an operator monotone function, of this statistical model. From the identity

∂ρ̂θ
∂θµ

=

∫ 1

0
dαρ̂α

∂ log ρ̂θ
∂θµ

ρ̂1−α, (4.37)

which can be shown from Eq. (A.3), we obtain K−1
ρ̂θ

(∂ρ̂θ∂θν
) = ∂ log ρ̂θ

∂θν
. Therefore, the BKM Fisher

information is calculated as

(JBKM
θ )µν = tr

[
∂ρ̂θ
∂θµ

K−1
ρ̂θ

(
∂ρ̂θ
∂θν

)]
=

∫ 1

0
dα tr

[
ρ̂α
∂ log ρ̂θ
∂θµ

ρ̂1−α∂ log ρ̂θ
∂θν

]
= β2⟨⟨∆X̂µ(θ),∆X̂ν(θ)⟩⟩canρ̂θ

, (4.38)

where X̂µ(θ) = −∂Ĥ(θ)/∂θµ is the generalized force operator corresponding to θµ and ∆X̂µ(θ) =

X̂µ(θ) − tr
[
ρ̂θX̂µ(θ)

]
is the deviation from its equilibrium value. The final expression shows

that the BKM Fisher information of this statistical model is nothing but the static isothermal

susceptibility [18].

Another important example is a one-parameter unitary family model generated by an oper-

ator Â, which is defined by

ρ̂θ = e−iθÂρ̂eiθÂ. (4.39)

This model is quite frequently considered in the context of quantum metrology [9, 10, 11]. Let

us denote by F f [ρ̂, Â], the quantum Fisher information of the unitary model (4.39) with respect

to an operator monotone function, which can be explicitly expressed as

F f [ρ̂, Â] :=
∑
i,j

(pi − pj)
2

pjf(pi/pj)

∣∣ ⟨i|Â|j⟩ ∣∣2, (4.40)

where the density operator is diagonalized as ρ̂ =
∑

i pi |i⟩ ⟨i|. Then, the function F f [ρ̂, Â] is

convex as a function of a quantum state, as shown in the following theorem.

Theorem 4.10. For arbitrary quantum states ρ̂1, ρ̂2, an observable Â and a real number λ ∈
[0, 1], the following inequality holds:

F f [λρ̂1 + (1 − λ)ρ̂2, Â] ≤ λF f [ρ̂1, Â] + (1 − λ)F f [ρ̂2, Â]. (4.41)
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Proof. Let us consider a quantum statistical model defined by

ρ̂θ = λ(e−iθÂρ̂1e
iθÂ) ⊗ |1⟩R ⟨1| + (1 − λ)(e−iθÂρ̂2e

iθÂ) ⊗ |2⟩R ⟨2| . (4.42)

By applying the monotonicity of the quantum Fisher information under a CPTP map defined

by

E(ρ̂) := trR[ρ̂], (4.43)

we obtain the monotonicity (4.41).

4.2.2 Quantum State Estimation

The quantum Fisher information was originally introduced in the field of the quantum state

estimation [54, 55]. Let us consider a quantum-statistical model {ρ̂θ}. Suppose that we estimate

the true state by performing a measurement represented by a positive-operator valued measure

(POVM) {Êi}i∈I satisfying the normalization condition
∑

i Êi = Î. If the true state is ρ̂θ, the

probability of obtaining the outcome i is given by

pθ,i = tr
[
ρ̂θÊi

]
. (4.44)

In this sense, a classical statistical model {pθ} is generated from a pair of a quantum statis-

tical model and one choice of POVM. We define a CPTP map E that generates a probability

distribution by

E(ρ̂) :=
∑
i∈I

tr
[
ρ̂Êi

]
|ϕi⟩ ⟨ϕi| , (4.45)

where {|ϕi⟩}i∈I is an orthogonal normalized set. From the monotonicity of the quantum Fisher

metric, we obtain

JQ
θ ({ρ̂θ}) ≥ JQ

θ ({E(ρ̂θ)}) = JC
θ ({pθ}). (4.46)

By combining this inequality with the classical Cramér-Rao inequality (4.10), we arrive at the

following inequality.

Theorem 4.11. (quantum Cramér-Rao inequality)

For any measurement and any estimator which is locally unbiased at θ, the following inequality

holds:

Varθ(θest) ≥ (JQ
θ )−1. (4.47)

Since the quantum Fisher information is determined only by the quantum-statistical model

{ρ̂θ} and independent of the choice of the measurement, the quantum Cramér-Rao inequality

gives an absolute upper bound of the accuracy of quantum state estimation. Attainability of
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the equality in the quantum Cramér-Rao inequality has been discussed well [56, 57, 58], but it

is known that we cannot attain the equality in general.

4.2.3 Generalized Covariances

For each quantum Fisher information corresponding to an operator monotone function f(x), we

define a generalized covariance [59, 60] of two observables Â, B̂ as

⟨⟨Â, B̂⟩⟩fρ̂ := tr
[
Â†Kf

ρ̂ B̂
]
. (4.48)

If Â, B̂ and ρ̂ are simultaneously diagonalizable as Â =
∑

i ai |ϕi⟩ ⟨ϕi| , B̂ =
∑

i bi |ϕi⟩ ⟨ϕi|, and

ρ̂ =
∑

i pi |ϕi⟩ ⟨ϕi|, it reduces to the normal (classical) covariance
∑

i piaibi. Strictly speaking, we

may call it an inner product rather than a covariance, because we need to subtract the product

of the expectation value of Â and B̂ to obtain the covariance, but here we follow the definition

introduced by Petz [59] and call the quantity defined by Eq. (4.48) the generalized covariance

corresponding to an operator monotone f(x). Comparing the generalized covariance with the

quantum Fisher metric, the only difference is that the kernel is given by Kf
ρ̂ for the generalized

covariance, while (Kf
ρ̂ )−1 for the quantum Fisher metric.

The generalized covariances include important correlations in the linear response theory,

namely, the canonical correlation and the symmetrized correlation. The canonical correla-

tion (2.39), or the Bogoliubov-Kubo-Mori (BKM) inner product, is the generalized covariance

with f(x) = x−1
log x =

∫ 1
0 x

λdλ. Also, when the operator monotone function is given by f(x) = 1+x
2 ,

the generalized covariance reduces to the symmetrized correlation (2.51)

⟨⟨Â, B̂⟩⟩symm
ρ̂ =

1

2
tr
[
ρ̂(Â†B̂ + B̂Â†)

]
. (4.49)

We note that the generalized covariance with an operator monotone function f(x) and that

with its dual f̃(x) = xf(1/x) are related by the relation

⟨⟨Â, B̂⟩⟩f̃ρ̂ = ⟨⟨B̂†, Â†⟩⟩fρ̂ (4.50)

If the operator monotone function is symmetric , i.e., f(x) = f̃(x), the generalized covariance is

also symmetric

⟨⟨Â, B̂⟩⟩fρ̂ = ⟨⟨B̂, Â⟩⟩fρ̂ . (4.51)

Here, we give another formulation of the quantum Cramér-Rao inequality using the gener-

alized covariance. For simplicity, we consider a one-parameter model given by

ρ̂θ = ρ̂0 + θ
∂ρ̂θ
∂θ

∣∣∣∣∣
θ=0

+O(θ2) (4.52)

=: ρ̂0 + θB̂ +O(θ2). (4.53)
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Note that B̂ is traceless (tr
[
B̂
]

= 0) from the normalization of the density operators ρ̂θ. Suppose

that we estimate θ by performing a projective measurement of Â. Then the local unbiasedness

at θ = 0 of this measurement is equivalent to

tr
[
Âρ̂0

]
= 0 ⇔ ⟨⟨Â, Î⟩⟩fρ̂0 = 0, (4.54)

∂

∂θ
tr
[
Âρ̂θ

] ∣∣∣∣∣
θ=0

= 1 ⇔ ⟨⟨Â, L̂⟩⟩fρ̂0 = 1, (4.55)

where L̂ is the logarithmic derivative defined by

L̂ := (Kf
ρ̂0

)−1(B̂). (4.56)

From the Cauchy-Schwarz inequality, we obtain

⟨⟨Â, Â⟩⟩fρ̂0⟨⟨L̂, L̂⟩⟩
f
ρ̂0

≥ |⟨⟨Â, L̂⟩⟩fρ̂0 |
2 = 1 (4.57)

⇔ ⟨⟨Â, Â⟩⟩fρ̂0 ≥ 1

⟨⟨L̂, L̂⟩⟩fρ̂0
=

1

JQ
θ=0

, (4.58)

which is another form of the quantum Cramér-Rao inequality. Note that the leftmost-hand side

is the generalized (co)variance of Â, and the denominator in the rightmost-hand side is nothing

but the quantum Fisher information. The equality is achieved if

Â =
L̂

⟨⟨L̂, L̂⟩⟩fρ̂0
. (4.59)

In this sense, the quantum Fisher information is the inverse of the generalized (co)variance of a

proper locally unbiased estimator.
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Chapter 5

Determining Quantum Fisher

Information from Linear Response

Theory

In Chapter 4, we have reviewed, from the viewpoint of the monotonicity under operations,

that we can introduce infinitely many types of metrics on the space of quantum states, which

are called the quantum Fisher metrics, or the quantum Fisher information, in contrast to the

classical case where the classical Fisher metric is determined uniquely. However, operational

meanings of the general quantum Fisher information are not fully understood yet, nor even how

to determine it experimentally is known, due to the complicated definition.

In this chapter, we propose a protocol of experimentally determining any types of the quan-

tum Fisher information by the use of the similarity between information geometry (statistics)

and linear response theory (statistical mechanics) [61]. The central idea is as follows. The

quantum Fisher information quantifies the sensitivity, or the response of a quantum state to

infinitesimal changes of parameters characterizing it. Therefore, it is quantitatively related to

the covariance, or the correlation of the estimated values of the parameters, via the quantum

Cramér-Rao inequality. When the state is in thermal equilibrium, such a correlation is also re-

lated to the response to external perturbations from the linear response theory. From these two

connections, we can determine the quantum Fisher information by measuring linear response

functions, or more specifically, dynamical susceptibilities or complex admittances.

First, we establish a close connection between linear response theory and information geom-

etry, by formulating the generalized fluctuation-dissipation theorem in terms of the generalized

covariances. Based on the generalized fluctuation-dissipation theorem, we derive a formula that

expresses the quantum Fisher information in terms of observable quantities, namely, dynamical

susceptibilities or complex admittances. As an application, a possible experimental validation

of skew information-based uncertainty relations is discussed. This chapter is based on Ref. [61].
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5.1 Generalized Fluctuation-Dissipation Theorem

In this section, we derive the generalized fluctuation-dissipation theorem, which quantitatively

connects the generalized covariance and the linear response function. In Chap. 2, we have seen

that the response function is quantitatively related to the canonical correlation via the Green-

Kubo formulae, and to the symmetrized correlation by the fluctuation-dissipation theorem. Since

the generalized covariances are generalizations of correlations of two noncommuting observables

including the canonical correlation and the symmetrized correlation, it is expected that the

generalized covariances also have the same amount of information about the linear response

function. Indeed, such an expectation holds as will be shown below.

Let ϕµν(t) and ϕ̃µν(t) be the linear response functions of X̂µ and Ĵµ, respectively, to the

external perturbation Ĥext(t) = −
∑

ν Fν(t)X̂ν(t), as we defined in Chap. 2. The Fourier trans-

forms of these linear response functions are defined by

ϕµν,ω :=

∫ ∞

−∞
dt eiωtϕµν(t), (5.1)

ϕ̃µν,ω :=

∫ ∞

−∞
dt eiωtϕ̃µν(t). (5.2)

We also define the Fourier transforms of the generalized covariance corresponding to an operator

monotone function f(x) evaluated at the canonical ensemble ρ̂can = e−βĤ/Z by

Cf
µν,ω :=

∫ ∞

−∞
dt eiωt⟨⟨∆X̂µ(t),∆X̂ν(0)⟩⟩fρ̂can , (5.3)

C̃f
µν,ω :=

∫ ∞

−∞
dt eiωt⟨⟨Ĵµ(t), Ĵν(0)⟩⟩fρ̂can , (5.4)

where ∆X̂µ(t) := X̂µ(t) − Xeq
µ is the deviation from the equilibrium value. Then, we can

generalize the fluctuation-dissipation theorem as follows.

Theorem 5.1. (Generalized Fluctuation-Dissipation Theorem)

The Fourier transform of the linear response functions and the generalized covariances are quan-

titatively related through the following equalities:

Cf
µν,ω = −iℏ f(e−βℏω)

1 − e−βℏω ϕµν,ω. (5.5)

C̃f
µν,ω = ℏω

f(e−βℏω)

1 − e−βℏω ϕ̃µν,ω. (5.6)

The proof is provided at the end of this section. This theorem claims that in the frequency

domain, not only the symmetrized correlation but any type of the generalized covariance is

proportional to the linear response. The choice of an operator monotone function determines

the frequency dependence of the coefficient.

Some remarks on the generalized fluctuation-dissipation theorem are in order. First, in the

classical limit or the high-temperature limit of βℏω → 0, the coefficients in Eqs. (5.5) and (5.6)

become independent of f(x), since the noncommutativity of operators then becomes negligible
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Table 5.1: List of the coefficients appearing in the generalized fluctuation-dissipation theo-
rem (5.6) for various quantum Fisher information.
quantum Fisher information f(x) f(e−α)/(1 − e−α)

symmetric logarithmic derivative
(SLD)

(x+ 1)/2 (1/2) · coth(α/2) = n̄+ 1/2

Bogoliubov-Kubo-Mori (BKM) (x− 1)/log x 1/α = (log(n̄+ 1) − log n̄)−1

right logarithmic derivative
(RLD)

x 1/(eα − 1) = n̄

left logarithmic derivative (LLD) 1 1/(1 − e−α) = n̄+ 1

real part of right logarithmic
derivative (real RLD)

2x/(x+ 1) 1/sinhα = 2n̄(n̄+ 1)/(2n̄+ 1)

skew information (
√
x+ 1)2/4 (1/4) · coth(α/4) = (2n̄+ 1 +

√
n̄(n̄+ 1))/4

and all types of the generalized covariance reduce to the classical covariance in this limit. Second,

this theorem is a generalization of the conventional fluctution-dissipation theorem in the sense

that the conventional one (2.54) is reproduced by choosing f(x) = (1 + x)/2 in Eq. (5.6),

which corresponds to the symmetrized correlation and the SLD Fisher information. Finally, the

dimensionless factor f(e−βℏω)/(1 − e−βℏω) in Eqs. (5.5) and (5.6) can be written in terms of

the expectation value of the number operator of the harmonic oscillator in thermal equilibrium,

n̄ := 1/(eα − 1) with α := βℏω. Indeed, it is equal to a generalized mean [62] of n̄ and n̄+1, which

is defined as (n̄ + 1)f( n̄
n̄+1). For instance, f(x) = (x+ 1)/2,

√
x, 2x/(x+ 1) and (x− 1)/log x

correspond to the arithmetic, geometric, harmonic and logarithmic means, respectively. The

factor f(e−βℏω)/(1 − e−βℏω) for several operator monotone functions corresponding to important

types quantum Fisher information are summarized in Table. 5.1.

Finally, we prove the generalized fluctuation-dissipation theorem. Since we assume that

the state is the canonical ensemble, the Hamiltonian Ĥ and the density operator ρ̂can can be

simultaneously diagonalized as

Ĥ =
∑
i

Ei |Ei⟩ ⟨Ei| , (5.7)

ρ̂can =
∑
i

pi |Ei⟩ ⟨Ei| , (5.8)

where pi = e−β(Ei−F ), and F = − 1
β log tr

[
e−βĤ

]
is the free energy. The most important

step in deriving Eqs. (5.5) and (5.6) is to write down explicitly the complicated action of the

superoperator Kf
ρ̂can

= Rρ̂canf(Lρ̂canR
−1
ρ̂can

), which appears in the definition of the generalized

covariance, by considering the matrix components in the energy eigenbasis {|Ei⟩}. If f(x) = xk,

we obtain for an arbitrary operator Â,

⟨Ej |Kf(x)=xk

ρ̂can
(Âν)|Ei⟩ = ⟨Ej |ρ̂kcanÂν ρ̂

1−k
can |Ei⟩

= pi

(
pj
pi

)k

⟨Ej |Âν |Ei⟩ . (5.9)

From the linearity of Kf
ρ̂can

with respect to an operator monotone function f , we obtain, for a
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polynomial f(x) =
∑n

k=1 ckx
k,

⟨Ej |Kf
ρ̂can

(Âν)|Ei⟩ =
n∑

k=1

ckpi

(
pj
pi

)n

⟨Ej |Âν |Ei⟩

= pif

(
pj
pi

)
⟨Ej |Âν |Ei⟩ . (5.10)

Let m and M be the minimum and maximum of all pi/pj ’s, respectively. Since any operator

monotone function f(x) is convex [63] and hence continuous, it can be uniformly approximated

by polynomials on the closed interval [m,M ] from the Stone-Weierstrass approximation theo-

rem [51], and so can be the superoperator Kf
ρ̂can

. Therefore, the relation (5.10) holds for an

arbitrary operator monotone function f(x).

Then, the generalized covariance of two displacement operators can be calculated as

⟨⟨∆X̂µ(t),∆X̂ν(0)⟩⟩fρ̂can =
∑
i,j

⟨Ei|∆X̂µ(t)|Ej⟩ ⟨Ej |∆X̂ν(0)|Ei⟩

=
∑
i,j

pif

(
pj
pi

)
ei(Ei−Ej)t/ℏ ⟨Ei|∆X̂µ|Ej⟩ ⟨Ej |∆X̂ν |Ei⟩ . (5.11)

Therefore, its Fourier transform is given by

Cf
µν,ω =

∑
i,j

pif

(
pj
pi

)
2πℏδ(Ei − Ej − ℏω) ⟨Ei|∆X̂µ|Ej⟩ ⟨Ej |∆X̂ν |Ei⟩

= f(e−βℏω)
∑
i,j

pi2πℏδ(Ei − Ej − ℏω) ⟨Ei|∆X̂µ|Ej⟩ ⟨Ej |∆X̂ν |Ei⟩ . (5.12)

Here, we have used the fact that Ej −Ei = ℏω and hence pj/pi = e−βℏω due to the existence of

the δ function. By switching from the time domain to the frequency domain, the f -dependent

factor becomes independent of the labels i and j, and can be factored out of the sum. A similar

calculation leads to the expression of the Fourier transform of the response function ϕµν,ω from

the Green-Kubo formula (2.37) as

ϕµν,ω = −1 − e−βℏω

iℏ
∑
i,j

pi2πℏδ(Ei − Ej − ℏω) ⟨Ei|∆X̂µ|Ej⟩ ⟨Ej |∆X̂ν |Ei⟩ . (5.13)

Comparing Eqs. (5.12) and (5.13), we obtain Eq. (5.5).

By a similar calculation to derive Eq. (5.12), we obtain the Fourier transform of the product

of two current operators as

C̃f
µν,ω = f(e−βℏω)

∑
i,j

pi2πℏδ(Ei − Ej − ℏω) ⟨Ei|Ĵµ|Ej⟩ ⟨Ej |Ĵν |Ei⟩ . (5.14)

Comparing Eqs. (5.14) and (2.57), we obtain Eq. (5.6), which completes the proof.
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5.2 Determining Generalized Covariances

Using the generalized fluctuation-dissipation theorem derived in the previous section, we can

reconstruct the generalized covariance from the dynamical susceptibilities and the complex ad-

mittance,

χµν(ω) =

∫ ∞

0
dt eiωtϕµν(t), (5.15)

χ̃µν(ω) =

∫ ∞

0
dt eiωtϕ̃µν(t), (5.16)

which are measurable quantities. By inverse Fourier transforming Eq. (5.5), we obtain

⟨⟨∆X̂µ(t),∆X̂ν(0)⟩⟩fρ̂ =

∫ ∞

−∞

dω

2π
e−iωtCf

µν,ω

=
ℏ
i

∫ ∞

−∞

dω

2π
e−iωt f(e−βℏω)

1 − e−βℏω ϕµν,ω, (5.17)

and hence

⟨⟨∆X̂µ,∆X̂ν⟩⟩fρ̂ =
ℏ
i

∫ ∞

−∞

dω

2π

f(e−βℏω)

1 − e−βℏω ϕµν,ω (5.18)

by setting t = 0. Noting that ϕµν,ω can be expressed in terms of dynamical susceptibilities as

ϕµν,ω = χµν(ω) − χνµ(ω)∗, we obtain the formula that expresses the generalized covariance in

terms of the dynamical susceptibility:

⟨⟨∆X̂µ,∆X̂ν⟩⟩fρ̂ =
ℏ
i

∫ ∞

−∞

dω

2π

f(e−βℏω)

1 − e−βℏω [χµν(ω) − χνµ(ω)∗]. (5.19)

If the operator monotone function is symmetric, i.e., f(x) = f̃(x), where f̃(x) = xf(1/x), we

can simplify the formula as

⟨⟨∆X̂µ,∆X̂ν⟩⟩fρ̂ =
2ℏ
π

∫ ∞

0
dω

f(e−βℏω)

1 − e−βℏω Im[χs
µν(ω)], (5.20)

where χs
µν(ω) := (χµν(ω) + χνµ(ω))/2 is the symmetric part of the dynamical susceptibility

matrix. The formulae (5.19) and (5.20) provide a method of experimentally determining an

arbitrary type of the generalized covariance. We measure the dynamical susceptibilities, which

describe the response to harmonically oscillating external perturbations, for all frequencies 0 <

ω < ∞, and then integrate out these dynamical susceptibilities with proper weights depending

on an operator monotone function f(x).

We can also derive a similar formula for current operators as

⟨⟨Ĵµ, Ĵν⟩⟩fρ̂ =

∫ ∞

−∞

dω

2π

ℏωf(e−βℏω)

1 − e−βℏω ϕ̃µν,ω. (5.21)
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A simplified one for a symmetric operator monotone function f(x) is given by

⟨⟨Ĵµ, Ĵν⟩⟩fρ̂ =
2

π

∫ ∞

0
dω

ℏωf(e−βℏω)

1 − e−βℏω Re[χ̃s
µν(ω)]. (5.22)

5.3 Determining the Quantum Fisher Information

The quantum Fisher information can also be determined via the equations derived in the previous

section ((5.19), (5.20), (5.21), and (5.22)) because it is nothing but the generalized covariance

of the logarithmic derivative (4.56).

Here, we explicitly calculate the external perturbation that we need to apply to determine

the quantum Fisher information of a specific model. Let us consider a one-parameter unitary

model generated by a given operator B̂, defined as

ρ̂θ := e−iθB̂ ρ̂eiθB̂. (5.23)

The parameter θ is the degree of translation or rotation to be estimated. Suppose, for example,

that we want to infer the quantum Fisher information of this model by measuring the complex

admittance of current operators χ̃(ω) through Eq. (5.21). Since we are considering a one-

parameter model, the indices µ, ν are omitted in the following. In this case, the perturbation Â

must be chosen so that the corresponding current operator Ĵ may coincide with the logarithmic

derivative L̂ := (Kf
ρ̂ )−1(i[ρ̂, B̂]). The matrix element of the perturbation X̂ can be obtained by

solving the equation Ĵ = L̂, and the solution is

⟨Ei|Â|Ej⟩ =
1 − e−β(Ei−Ej)

(Ei − Ej)f(e−β(Ei−Ej))
⟨Ei|B̂|Ej⟩ . (5.24)

It is worth noting that the ratio of the matrix elements is equal to the coefficient appearing in

Eq. (5.6). However, the correspondence between Â and B̂ is rather complicated. In particular, Â

depends on f(x), so that we need to perform other nonequilibrium measurements to determine

other types of the quantum Fisher information.

If we are able to measure the dynamical susceptibility of displacement operators χ(ω), we can

take the perturbation Â to be the very generator B̂. Indeed, the quantum Fisher information of

the unitary model (5.23) corresponding to an operator monotone function f(x) can be expressed

in terms of the generalized covariance corresponding to (x− 1)2/f(x):

JQ
θ=0 =

∑
i,j

pi
(1 − pj/pi)

2

f(pj/pi)

∣∣ ⟨Ei|B̂|Ej⟩
∣∣2

= ⟨⟨∆B̂,∆B̂⟩⟩(x−1)2/f(x)
ρ̂ . (5.25)

Therefore, we obtain the following formula for a symmetric operator monotone function f(x):

JQ
θ=0 =

2ℏ
π

∫ ∞

0
dω

1 − e−βℏω

f(e−βℏω)
Im[χ(ω)], (5.26)
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where χ(ω) is the dynamical susceptibility of B̂ against a perturbation B̂. We note that

Eq. (5.26) reduces to the previous study for the SLD Fisher information [14] if we set f(x) =

(x+ 1)/2.

In Sec. 4.2, we have seen that the BKM Fisher information can be determined from the static

susceptibility. In contrast, we find that any type of the Fisher information can be determined if

we can measure the dynamical susceptibility.

5.4 Application: How to Determine the Skew Information

In this section, we apply our results to the case of determining the skew information, which

can be interpreted as one of the quantum Fisher information. Then, we discuss a possible

experimental validation of the skew information-based uncertainty relation.

Historically, the skew information was introduced by Wigner and Yanase [64] to quantify

the information content contained in the quantum state in the presence of a conserved quantity,

and is defined by

I1/2(ρ̂, Â) := −1

2
tr

[(
[ρ̂1/2, Â]

)2]
, (5.27)

where Â is an arbitrary Hermitian operator. Dyson proposed a one-parameter extension of the

skew information

Iα(ρ̂, Â) := −1

2
tr
[
[ρ̂α, Â][ρ̂1−α, Â]

]
, (5.28)

for 0 < α < 1, which is called the Wigner-Yanase-Dyson (WYD) skew information. It has been

pointed out [65, 66] that the WYD skew information can be interpreted as a special case of the

quantum Fisher information of the one-parameter unitary model. Indeed, they are related by

the following equality:

Iα(ρ̂, Â) =
α(1 − α)

2
Jfα,Q
θ=0 , (5.29)

where the operator monotone function of the quantum Fisher information is chosen to be

fα(x) = α(1 − α)
(x− 1)2

(xα − 1)(x1−α − 1)
. (5.30)

Further generalization of the skew information has been made by Hansen [66] based on this

observation, which is called the metric adjusted skew information, defined by

If (ρ̂, Â) :=
f(0)

2
JQ
θ=0, (5.31)

where f(x) is an arbitrary operator monotone function satisfying f(0) ̸= 0. This is the most

general form of the skew information so far. Since the metric adjusted skew information possesses

some desired properties such as the convexity as a function of the state [66], it can be interpreted
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as a quantum part of the fluctuation of the observable Â at the quantum state ρ̂, and applied

to the resource theory of asymmetry and coherence in quantum information theory [48], and

it can also be applied to uncertainty relations [67, 68, 69, 70, 71]. Here, we focus on the

Kennard-Robertson type uncertainty relation [72] between the fluctuations of two noncommuting

observables, not on Heisenberg’s original uncertainty relation between error and disturbance [73,

74, 75, 76, 77]

The skew information cannot be measured by usual quantum measurements because it in-

cludes the term such as tr
[
ρ̂αÂρ̂1−αÂ

]
. The methods developed in this chapter gives a way

to determine the skew information and hence all the quantities used in various forms of skew

information-based uncertainty relations [67, 68, 69, 70, 71]. Indeed, the metric-adjusted skew

information can be determined by the formula

If (ρ̂, Â) =
f(0)ℏ
π

∫ ∞

0
dω

1 − e−βℏω

f(e−βℏω)
Im[χ̃(ω)], (5.32)

where χ̃(ω) is the dynamical susceptibility of Â when the external perturbation Ĥext(t) =

−F (t)Â is applied.

As an example, we apply our result to a harmonic oscillator system in thermal equilibrium,

and demonstrate that the uncertainty relation shown in Ref. [69] can be validated experimentally.

We define a quantum fluctuation of the observable Â at the state ρ̂ by

Uα(ρ̂, Â) :=

√
⟨(∆Â)2⟩2ρ̂ −

(
⟨(∆Â)2⟩ρ̂ − Iα(ρ̂, Â)

)2
. (5.33)

Yanagi [69] has shown that the uncertainty relation

Uα(ρ̂, Â)Uα(ρ̂, B̂) ≥ α(1 − α)

∣∣∣∣∣tr [ρ̂[Â, B̂]
] ∣∣∣∣∣

2

(5.34)

holds for any α ∈ [0, 1]. We consider a harmonic oscillator in thermal equilibrium:

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2. (5.35)

We apply an external perturbation corresponding to the position and the momentum operators

Âµ :=

x̂ (µ = 1);

p̂ (µ = 2).
(5.36)

Then, the diagonal components of the dynamical susceptibility are given by

mωχ11(ω
′) =

1

mω
χ22(ω

′)

=
1

2

(
P 1

ω′ + ω
− P 1

ω′ − ω
− iπδ(ω′ + ω) + iπδ(ω′ − ω)

)
, (5.37)

where P denotes the principal value. Therefore, from Eqs. (5.30) and (5.32), the WYD skew

53



information is calculated as

Iα(ρ̂, x̂) =
ℏ

2mω
· (1 − e−αβℏω)(1 − e−(1−α)βℏω)

1 − e−βℏω , (5.38)

Iα(ρ̂, p̂) =
ℏmω

2
· (1 − e−αβℏω)(1 − e−(1−α)βℏω)

1 − e−βℏω , (5.39)

and the uncertainty relation (5.34) reduces to

(1 − e−2αβℏω)(1 − e−2(1−α)βℏω)

(1 − e−βℏω)2
≥ 4α(1 − α), (5.40)

which can be checked to be true. It is worth noting that the equality in Eq. (5.40) is achieved

when α = 1/2, even though the state is a mixed state and includes non-minimum uncertainty

states.

5.5 Discussion

We discuss the applicability and the efficiency of our proposed method. Our method is applicable

in two situations: the Hamiltonian is experimentally given and we want to know the quantum

Fisher information of the thermal equilibrium state under that Hamiltonian; the density operator

is experimentally given and we want to know the quantum Fisher information of that state. For

the latter case, an effective Hamiltonian Ĥ = − 1
β log ρ̂ tells us what kind of Hamiltonian we

need to engineer. Such a situation seems to be realistic when the system size is relatively small

(e.g., a few qubits).

The estimation via the integral (5.19) is efficient for the following reason. The integrand in

Eq. (5.19) consists of the δ functions that contribute only if the frequency matches the energy

difference of two eigenstates, and hence the integral can be rewritten in terms of a discrete

sum. When the system is small, the number of measurement required to estimate the sum

is also small. As the size of the system becomes large, the number of the terms in the sum

becomes exponentially large. For such a large system, however, the integrand in Eq. (5.19) can

be approximated by a continuous function. Therefore, the error of estimation can be controlled

by the space of sampling frequencies, and does not depend on the system size.

There are two advantages about our method of determining the quantum Fisher information.

First, we can determine the quantum Fisher information without estimating the density operator

ρ̂ by quantum tomography. Of course, if we can estimate ρ̂, we can calculate the quantum Fisher

information from the definition itself. However, the estimation of ρ̂ requires exponentially many

costs of state preparations and measurements, and hence is impractical for a large system. Also,

analytical or numerical diagonalization of the Hamiltonian is also a challenge for quantum many-

body systems in general. Our method enables us to experimentally determine the information

of the complex system for which the theoretical treatment is difficult. Second, in our protocol,

the dependence on an operator monotone function appears not in the measurement procedures

but in the integration. In other words, once we measure the dynamical susceptibilities for all

frequencies, we can determine any type of the generalized covariance or the quantum Fisher
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information through simple post-processing.

Finally, we discuss possible applications of the results in this chapter. Since the quantum

Fisher information quantifies how accurately we can estimate an unknown quantum state, as

we have described in Sec. 4.2.2, our method enables us to test whether the equilibrium state, in

particular the ground state, of a given Hamiltonian can be a resource for quantum metrology.

We can also test whether a state possesses a multipartite entanglement [10, 11] through the

quantum Fisher information determined by our method. The advantage of our method compared

to Ref. [14] is that it can be applied for any type of the quantum Fisher information. The

metric adjusted skew information [66] is the quantum Fisher information of the one-parameter

unitary model (5.23), and therefore can be determined experimentally through our method

without quantum tomography. Therefore, various forms of skew information-based uncertainty

relations [67, 68, 69, 70, 71], which is tighter than the conventional uncertainty relation [72], can

be experimentally validated by our method.
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Chapter 6

Expansion of Average Excess Work

in Thermodynamic Control

In this chapter, we derive an expansion of the average excess work performed on the system

during a thermodynamic control by generalizing the phenomenological derivation of the ther-

modynamic metric expression [33]. Then, we show that the expansion can be interpreted in

terms of a single parameter ϵ that characterizes how slowly we control the system, and therefore

the expansion is asymptotically correct in the slow-control limit. This chapter is based on the

paper 2 in Publication List, which is in preparation.

6.1 Expansion of Average Excess Work

In the phenomenological derivation of the thermodynamic metric expression reviewed in Sec.

3.2.2, two approximations have been used; the linear response and the constant velocity of

the control parameters λ̇ν(t − s) ≃ λ̇ν(t). To treat these approximations systematically, we

replace the linear response with the perturbative expansion (2.60), and the constant velocity

approximation with the Taylor expansion

λ̇ν(t− s) =

∞∑
k=0

(−s)k

k!

dk+1λν(t)

dtk+1
. (6.1)

To evaluate the average excess work

⟨Wex(Λ)⟩ = −
∫ T

0
dt λ̇µ(t) ⟨∆Xµ(λ(t))⟩Λ , (6.2)

we need to evaluate the expectation value of the deviation of the generalized force from its

equilibrium value. From the general theory of the perturbative expansion, it can be expressed
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as

⟨∆Xµ(λ(t))⟩Λ

=
∞∑
n=1

∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sn−1

dsn[λν1(t− s1) − λν1(t)] · · · [λνn(t− sn) − λνn(t)]

× ϕ(n)µν1...νn(s1, . . . , sn;λ(t)), (6.3)

where ϕ
(n)
µν1...νn(s1, . . . , sn;λ) denotes the nth order response function of the generalized force

Xµ(λ) in the equilibrium state with respect to the control parameter λ.

To change the range of integration in Eq. (6.3), we extend the domain of the response

function ϕ
(n)
µν1...νn(s1, . . . , sn;λ) whose arguments s1, . . . , sn are not necessarily ordered in time.

For given values of s1, . . . , sn ≥ 0, let σ be a permutation of n elements {1, . . . , n} that satisfies

sσ(1) ≤ sσ(n) ≤ · · · ≤ sσ(n). The response function is defined using the permutation σ, given by

ϕ(n)µν1...νn(s1, . . . , sn;λ) := ϕ(n)µνσ(1)...νσ(n)
(sσ(1), . . . , sσ(n);λ). (6.4)

Now we can change the range of integration in Eq. (6.3) as∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sn−1

dsn[λν1(t− s1) − λν1(t)] · · · [λνn(t− sn) − λνn(t)]ϕ(n)µν1...νn(s1, . . . , sn;λ(t))

=
1

n!

∫ ∞

0
ds1 · · ·

∫ ∞

0
dsn[λν1(t− s1) − λν1(t)] · · · [λνn(t− sn) − λνn(t)]ϕ(n)µν1...νn(s1, . . . , sn;λ),

(6.5)

which follows from the symmetry of the integrand. Combining Eqs. (6.3), (6.5), and the relation

between the response function and the relaxation function (2.66), we can rewrite the nth order

contribution to the excess power at time t in Eq. (6.2) can be rewritten as

P (n)
ex (t)

:= − λ̇µ(t)

∫ ∞

0
ds1

∫ ∞

s1

ds2 · · ·
∫ ∞

sn−1

dsn[λν1(t− s1) − λν1(t)] · · · [λνn(t− sn) − λνn(t)]

× ϕ(n)µν1...νn(s1, . . . , sn;λ(t))

=
(−)n+1

n!
λ̇µ(t)

∫ ∞

0
ds1 · · ·

∫ ∞

0
dsn[λν1(t− s1) − λν1(t)] · · · [λνn(t− sn) − λνn(t)]

× ∂n

∂s1 · · · ∂sn
ψ(n)
µν1...νn(s1, . . . , sn;λ(t)). (6.6)

We integrate Eq. (6.6) by parts with respect to s1, . . . , sn, and obtain

P (n)
ex (t) =

(−)n+1

n!
λ̇µ(t)

∫ ∞

0
ds1 · · ·

∫ ∞

0
dsn λ̇

ν1(t− s1) · · · λ̇νn(t− sn)ψ(n)
µν1...νn(s1, . . . , sn;λ(t)).

(6.7)

The boundary terms vanish if the effect of the perturbation vanishes after a sufficiently long

time, as assumed in Eq. (2.67). We further assume that the protocol Λ = {λ(t)} is a sufficiently
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smooth function and hence can be Taylor-expanded as

λ̇νi(t− si) =
∞∑

ki=0

(−si)ki
ki!

dki+1λνi(t)

dtki+1
(i = 1, . . . , n). (6.8)

By substituting the Taylor expansion of the protocol into the nth order contribution to the

excess power, we obtain

P (n)
ex (t)

=
(−)n+k1+···+kn+1

n!k1! · · · kn!

∞∑
k1,...,kn=0

dλµ(t)

dt

dk1+1λν1(t)

dtk1+1
. . .

dkn+1λνn(t)

dtkn+1

×
∫ ∞

0
ds1 · · ·

∫ ∞

0
dsn s

k1
1 · · · sknn ψ(n)

µν1...νn(s1, . . . , sn;λ(t)), (6.9)

where the protocol-dependent parts are factored out of the integral. Note that the phenomeno-

logical derivation of the thermodynamic metric expression of the excess work takes into account

only the first term (n = 1, k1 = 0) and neglects all the other terms. If we perform the protocol-

independent integration and define the thermodynamic coefficient as

ζ(n;k1...kn)µν1...νn (λ) :=
(−)n+k1+···+kn

n!k1! . . . kn!

∫ ∞

0
ds1 · · ·

∫ ∞

0
dsn s

k1
1 · · · sknn ψ(n)

µν1...νn(s1, . . . , sn;λ), (6.10)

we finally obtain the expansion of the excess work as

Wex(Λ) =

∫ T

0
dt

∞∑
n=1

∞∑
k1,...,kn=0

dλµ(t)

dt

dk1+1λν1(t)

dtk1+1
. . .

dkn+1λνn(t)

dtkn+1
ζ(n;k1...kn)µν1...νn (λ(t)), (6.11)

which is the main result in this chapter. Since the expression (6.11) contains arbitrary higher-

order derivatives of λ(t), the excess power at time t indeed depends on the history of the

control parameters. However, we stress that each term consists of finite-rank derivatives of λ(t)

and the thermodynamic coefficient at λ(t), which is calculated from the information about the

equilibrium state ρ̂eq(λ(t)). In this sense, Eq. (6.11) provides an approximate expression which

is local in the control parameter space when truncated to a finite number of terms.

Since the thermodynamic metric ζ
(1;0)
µν (λ) behaves like a (0, 2) tensor, it is called a metric.

However, ζ
(n;k1...kn)
µν1...νn (λ) does not necessarily behave like tensors, and therefore we call it just a

thermodynamic coefficient.

6.2 Physical Meaning of Expansion

To investigate the physical meaning of the expansion of the excess work (6.11), let us introduce

a dimensionless parameter ϵ > 0, which characterizes how slowly we control the system. For a

protocol Λ = {λ(t)}t∈[0,T ], we define an ϵ-modified similar protocol

Λϵ := {λ(ϵt)}t∈[0,T/ϵ], (6.12)
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which is ϵ times faster than the original protocol Λ. We note that the limit ϵ → 0 corresponds

to the quasistatic limit.

� ��

t	 t	T	 T/ε	

�(t) �(�t)

0	0	

Figure 6.1: The original protocol Λ (left) and the ϵ-modified protocol Λϵ (right).

Then, the excess work for the protocol Λϵ is calculated as

Wex(Λϵ) =

∫ T

0
dt

∞∑
n=1

∞∑
k1,...,kn=0

ϵn+k1+···+kn dλµ(t)

dt

dk1+1λν1(t)

dtk1+1
. . .

dkn+1λνn(t)

dtkn+1
ζ(n;k1...kn)µν1...νn (λ(t))

(6.13)

=
∞∑

N=1

ϵN

 ∑
n≥1,k1,...,kn≥0
n+k1+···+kn=N

∫ T

0
dt

dλµ(t)

dt

dk1+1λν1(t)

dtk1+1
. . .

dkn+1λνn(t)

dtkn+1
ζ(n;k1...kn)µν1...νn (λ(t))

 .

(6.14)

Therefore, the expansion of excess work (6.14) is essentially the expansion in terms of “slowness”

of the control, which is represented by ϵ. The most leading O(ϵ) term coincides with the

thermodynamic metric expression (3.28);

Wex(Λϵ) = ϵ

∫ T

0
dt λ̇µ(t)λ̇ν(t)ζ(1;0)µν (λ(t)) +O(ϵ2). (6.15)

We will discuss the next leading order terms in the next section.

In the microscopic derivation of the thermodynamic expression of the excess work reviewed in

Sec. 3.2.3, a parameter ϵ is introduced in the friction coefficient ϵγ. We show that our expansion

in terms of the slowness ϵ, which has a clear physical interpretation, is equivalent to the approach

taken in the microscopic derivation [43], by proving that the average work is identical in both

ways of introducing a parameter ϵ, namely, by modifying the protocol as Λϵ and by modifying

the friction coefficient as ϵγ for an overdamped Langevin system. In our approach, the dynamics

is fixed as

ẋ(t) = −1

γ

∂V (x, λ(t))

∂x

∣∣∣
x=x(t)

+

√
2

βγ
η(t), (6.16)
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while the protocol is modified as

Λϵ = {λϵ(τ)}τ∈[0,T/ϵ] = {λ(ϵτ)}τ∈[0,T/ϵ]. (6.17)

In the approach adopted in Ref. [43], the protocol is fixed to Λ, while the dynamics is modified

as

ẋ(t) = − 1

ϵγ

∂V (x, λ(t))

∂x

∣∣∣
x=x(t)

+

√
2

βϵγ
η(t). (6.18)

In the first approach, the density function ρ(x; τ) satisfies the Fokker-Planck equation

∂ρ(x; τ)

∂τ
=

1

γ

∂

∂x

[
∂V (x;λϵ(τ))

∂x
ρ(x; τ) +

1

β

∂ρ(x; τ)

∂x

]
. (6.19)

By changing the integrating variable from τ to t = ϵτ , the average work is expressed as

⟨W ⟩ =

∫ T/ϵ

0
dτ

∫
dx λ̇ϵ(τ)

∂V (x;λ)

∂λ

∣∣∣
λ=λϵ(τ)

ρ(x; τ)

=

∫ T/ϵ

0
dτ

∫
dx ϵλ̇(ϵτ)

∂V (x;λ)

∂λ

∣∣∣
λ=λ(ϵτ)

ρ(x; τ)

=

∫ T

0
dt

∫
dxλ̇(t)

∂V (x;λ)

∂λ

∣∣∣
λ=λ(t)

ρ(x; t/ϵ). (6.20)

On the other hand, in the second approach, the density function ρϵ(x, t) satisfies the ϵ-modified

Fokker-Planck equation

∂ρϵ(x; t)

∂t
=

1

ϵγ

∂

∂x

[
∂V (x;λ(t))

∂x
ρϵ(x; t) +

1

β

∂ρϵ(x; t)

∂x

]
. (6.21)

Then the average work is given by

⟨W ⟩ =

∫ T

0
dt

∫
dxλ̇(t)

∂V (x;λ)

∂λ

∣∣∣
λ=λ(t)

ρϵ(x; t). (6.22)

Comparing Eqs. (6.20) and (6.22), they are identical if

ρ(x, t/ϵ) = ρϵ(x, t). (6.23)

Indeed, Eq. (6.23) holds because ρ(x, t/ϵ) and ρϵ(x, t) have the same initial condition (i.e.,

equilibrium distribution) and the same time evolution as

∂ρ(x; t/ϵ)

∂t
=

1

ϵ

∂ρ(x; t/ϵ)

∂(t/ϵ)
=

1

ϵγ

∂

∂x

[
∂V (x;λϵ(t/ϵ))

∂x
ρ(x; t/ϵ) +

1

β

∂ρ(x; t/ϵ)

∂x

]
=

1

ϵγ

∂

∂x

[
∂V (x;λ(t))

∂x
ρ(x; t/ϵ) +

1

β

∂ρ(x; t/ϵ)

∂x

]
, (6.24)

∂ρϵ(x; t)

∂t
=

1

ϵγ

∂

∂x

[
∂V (x;λ(t))

∂x
ρϵ(x; t) +

1

β

∂ρϵ(x; t)

∂x

]
. (6.25)
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More explicitly, we can calculate the O(ϵ2) contributions to the excess work following the

microscopic derivation [43]. For simplicity, we assume that both the system and the control

parameter are one-dimensional, but the generalization to higher-dimensional cases is straight-

forward. The Fokker-Planck equation for this system is given by

∂ρϵ(x; t)

∂t
=

1

ϵγ

∂

∂x

(
∂V (x;λ(t))

∂x
ρϵ(x; t) +

1

β

∂ρϵ(x; t)

∂x

)
. (6.26)

We expand ρϵ(x, t) in terms of ϵ as

ρϵ(x; t) = ρ0(x; t)(1 + ϵϕ1(x; t) + ϵ2ϕ2(x; t) + · · · ), (6.27)

where ρ0(x; t) is the Gibbs ensemble for λ(t), which is the solution to Eq. (6.26) with ϵ = 0. We

substitute Eq. (6.27) into the Fokker-Planck equation (6.26), and obtain the equalities at each

order of ϵ as

O(ϵ−1) : 0 =
∂

∂x

(
∂V (x;λ(t))

∂x
ρ0(x; t) +

1

β

∂ρ0(x; t)

∂x

)
, (6.28)

O(ϵ0) :
∂ρ0(x; t)

∂t
=

1

γ

∂

∂x

(
∂V (x;λ(t))

∂x
ρ0(x; t)ϕ1(x; t) +

1

β

∂(ρ0(x; t)ϕ1(x; t))

∂x

)
, (6.29)

O(ϵ1) :
∂(ρ0(x; t)ϕ1(x; t))

∂t
=

1

γ

∂

∂x

(
∂V (x;λ(t))

∂x
ρ0(x; t)ϕ2(x; t) +

1

β

∂(ρ0(x; t)ϕ2(x; t))

∂x

)
,

(6.30)

O(ϵ2) :
∂(ρ0(x; t)ϕ2(x; t))

∂t
=

1

γ

∂

∂x

(
∂V (x;λ(t))

∂x
ρ0(x; t)ϕ3(x; t) +

1

β

∂(ρ0(x; t)ϕ3(x; t))

∂x

)
,

(6.31)

...

The O(ϵ−1) equation is satisfied since we expand ρϵ(x; t) around the Gibbs distribution with

respect to λ(t). The O(ϵ0) equation can be rewritten as

1

βγ

∂2ϕ1(x; t)

∂x2
− 1

γ

∂V (x;λ(t))

∂x

∂ϕ1(x; t)

∂x
= β∆X(x;λ(t))λ̇(t), (6.32)

where X(x, λ) := −∂V (x;λ)/∂λ is a generalized force conjugate to the control parameter λ, and

∆X(x;λ) := X(x;λ) − ⟨X(·;λ)⟩eqλ . The solution to Eq. (6.32) can be obtained by applying the

Feynman-Kac formula (3.2) as

ϕ1(x; t) = −βλ̇(t)

∫ ∞

0
ds ⟨∆X(xλ(t)(s);λ(t))⟩x,λ(t) . (6.33)

Here, the bracket ⟨·⟩x,λ expresses the expectation value with respect to the random process

dxλ(s)

ds
= −1

γ

∂V (x;λ)

∂x

∣∣∣
x=xλ(s)

+

√
2

βγ
η(s) (6.34)
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with the initial condition xλ(0) = x. Next, the O(ϵ1) equation can be rewritten as

1

βγ

∂2ϕ2(x; t)

∂x2
− 1

γ

∂V (x;λ(t))

∂x

∂ϕ2(x; t)

∂x
= β∆X(x;λ(t))λ̇(t)ϕ1(x; t) +

∂ϕ1(x; t)

∂t
, (6.35)

whose solution can be obtained again from the Feynman-Kac formula (3.2) as

ϕ2(x; t) = −
∫ ∞

0
ds

⟨
βλ̇(t)∆X(xλ(t)(s);λ(t))ϕ1(x

λ(t)(s); t) +
∂ϕ1(x; t)

∂t

∣∣∣
x=xλ(t)(s

⟩
x,λ(t)

. (6.36)

By substituting the explicit form of ϕ1(x; t) into Eq. (6.36), we obtain the O(ϵ2) contribution

for work as∫ T

0
dt

∫
dx (−X(x, λ(t)))λ̇(t)ρ0(x; t)ϕ2(x; t)

= −
∫ T

0
dt

{
λ̇(t)λ̈(t)β

∫ ∞

0
ds s

⟨
∆X(xλ(t)(0), λ(t))∆X(xλ(t)(s), λ(t))

⟩
λ(t)

+ λ̇(t)3β2
∫ ∞

0
ds

∫ ∞

0
ds′
⟨
X(xλ(t)(0), λ(t))∆X(xλ(t)(s), λ(t))∆X(xλ(t)(s+ s′), λ(t))

⟩
λ(t)

+ λ̇(t)3β2
∫ ∞

0
ds

∫ ∞

0
ds′
⟨
X(xλ(t)(0), λ(t))

∂

∂λ

⟨
∆X(xλ(s′), λ)

⟩
xλ(t)(s),λ

∣∣∣
λ=λ(t)

⟩
λ(t)

}
.

(6.37)

This is consistent with our expansion for the O(ϵ2) contributions, because there are λ̇(t)3 terms

and a λ̇(t)λ̈(t) term. We note that the coefficient of the λ̇(t)λ̈(t) term is the same as ours. By

comparing O(ϵ2) terms in Eq. (6.14) with the right-hand side of Eq. (6.37), we also find another

expression for the ζ
(2;00)
µν1ν2 (λ) as

ζ(2;00)µν1ν2 (λ)

= − β2
∫ ∞

0
dτ

∫ ∞

0
dτ ′

{⟨
Xµ(xλ(t)(0), λ(t))∆Xν1(xλ(t)(τ), λ(t))∆Xν2(xλ(t)(τ + τ ′), λ(t))

⟩
λ(t)

+

⟨
Xµ(xλ(t)(0), λ(t))

∂

∂λν1

⟨
∆Xν2(xλ(τ ′), λ)

⟩
xλ(t)(τ),λ

∣∣∣
λ=λ(t)

⟩
λ(t)

}
(6.38)

for an overdamped Langevin system. Furthermore, the higher-order (O(ϵn−1)) equation reads

1

β

∂2ϕn(x; t)

∂x2
− ∂V (x;λ(t))

∂x

∂ϕn(x; t)

∂x
= β∆X(x;λ(t))λ̇(t)ϕn−1(x; t) +

∂ϕn−1(x; t)

∂t
. (6.39)

Therefore, higher-order corrections can be iteratively obtained by applying the Feynman-Kac

formula as

ϕn(x; t) = −
∫ ∞

0
ds

⟨
βλ̇(t)∆X(xλ(t)(s);λ(t))ϕn−1(x

λ(t)(s); t) +
∂ϕn−1(x; t)

∂t

∣∣∣
x=xλ(t)(s)

⟩
x,λ(t)

.

(6.40)
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6.3 Next leading order terms

From Eq. (6.14), the excess work is, up to O(ϵ2), given by

Wex(Λϵ) =ϵ

∫ T

0
dt λ̇µ(t)λ̇ν1(t)ζ(1;0)µν1 (λ(t))

+ ϵ2
(∫ T

0
dt λ̇µ(t)λ̈ν1(t)ζ(1;1)µν1 (λ(t)) +

∫ T

0
dt λ̇µ(t)λ̇ν1(t)λ̇ν2(t)ζ(2;00)µν1ν2 (λ(t))

)
+O(ϵ3).

(6.41)

The O(ϵ) term is the thermodynamic metric term. The first term in the O(ϵ2) contributions is

attributed to the non-constant velocity of control parameters, while the second term corresponds

to the nonlinear (second order) response to the external perturbation.

6.3.1 Physical Picture

To obtain a physical picture, let us consider a position x of an object in a fluid. When the

velocity ẋ is small, the fluid around the object forms the laminar flow, resulting in the friction

force linear to the velocity as

mẍ = −k1ẋ− V ′(x). (6.42)

When the velocity is large, the fluid around the object forms the turbulent flow, and the friction

force is proportional to the square of the velocity:

mẍ = −k2ẋ2 − V ′(x). (6.43)

In our ϵ-expansion of the excess work, the generalized force acting on the system that contributes

to the excess work is given by

−(force) = ϵζ(1;0)λ̇+ ϵ2ζ(2;00)λ̇2 + ϵ2ζ(1;1)λ̈+O(ϵ3), (6.44)

when the number of the control parameter is one. In analogy to the above case, by identifying

x ≡ λ, the first, second, and third term can be interpreted as the laminar friction force, the

turbulent friction force, and the inertial force, respectively.

6.3.2 Inertial Term

From the definition of the thermodynamic coefficients (6.10), the thermodynamic coefficients

ζ
(1;0)
µν (λ) and ζ

(1;1)
µν (λ) for a Hamilton system are expressed as

ζ(1;0)µν (λ) = β

∫ ∞

0
ds
⟨

∆X̂µ(λ),∆X̂ν(λ)(s)
⟩can
λ

, (6.45)

ζ(1;1)µν (λ) = β

∫ ∞

0
ds s

⟨
∆X̂µ(λ),∆X̂ν(λ)(s)

⟩can
λ

, (6.46)
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where ⟨·, ·⟩canλ is the canonical correlation at the equilibrium state corresponding to the control

parameter λ. If the correlation function decays exponentially with the relaxation timescale τrel

as ⟨
∆X̂µ(λ),∆X̂ν(λ)(s)

⟩can
λ

= A exp [−s/τrel], (6.47)

the thermodynamic coefficients can be calculated as

ζ(1;0)µν (λ) = βAτrel, (6.48)

ζ(1;1)µν (λ) = βAτ2rel = τrelζ
(1;0)
µν (λ). (6.49)

Therefore, the inertial term is negligible compared with the thermodynamic metric term if the

relative change of the control parameter velocity is sufficiently small compared to the relaxation

time scale of the system:

∥λ̈(t)∥
∥λ̇(t)∥

≪ ∥ζ(1;0)µν (λ(t))∥
∥ζ(1;1)µν (λ(t))∥

=
1

τrel
. (6.50)

We note that this condition is different from the overdamped approximation, which assumes that

the relaxation time scale of momentum is much faster than the time resolution of the observer.

Since the leftmost-hand side in Eq. (6.50) scales proportionally to ϵ in the ϵ-modified protocol

Λϵ, this condition is always satisfied in the ϵ→ 0 limit.

6.3.3 Turbulent Friction Term

The turbulent friction term originates from the second-order response to the external perturba-

tions. It is negligible if the speed of the control is sufficiently small compared with the ratio of

the laminar/turbulent friction coefficient:

∥λ̇(t)∥ ≪ ∥ζ(1;0)µν (λ(t))∥
∥ζ(2;00)µν1ν2 (λ(t))∥

. (6.51)

Since the left-hand side scales proportionally to ϵ in the ϵ-modified protocol Λϵ, while the right-

hand side is independent of the protocol, this condition is always satisfied in the ϵ→ 0 limit, as

in the case of the inertial term.

6.3.4 Detecting O(ϵ2) Terms by a Reverse Protocol

We have derived the next-leading-order correction terms to the thermodynamic metric term.

They are by definition small compared with the thermodynamic metric term for small ϵ. Then

how can we detect such a small correction terms? To answer this question, we consider a reverse

protocol. For a given protocol Λ = {λ(t)}t∈[0,T ], we define a reverse protocol Λ† by

Λ† := {λ(T − t)}t∈[0,T ]. (6.52)
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The O(ϵ) term, which is given by the thermodynamic metric, does not change the sign in

�

t	T	 t	T	

�†�(t) �(T � t)

0	0	

Figure 6.2: Schematic graphs of the forward (left) and backward (right) protocols.

this time-reversed protocol. However, the next leading order terms change the sign in the

reverse protocol. More generally, O(ϵ2k) terms change the sign, whereas O(ϵ2k+1) terms do not.

Therefore, the O(ϵ2) terms become dominant in the difference in the excess work between the

forward and reverse protocols as

Wex(Λϵ) −Wex(Λ†
ϵ)

2
=ϵ2

(∫ T

0
dt λ̇µ(t)λ̇ν1(t)λ̇ν2(t)ζ(2;00)µν1ν2 (λ(t)) +

∫ T

0
dt λ̇µ(t)λ̈ν1(t)ζ(1;1)µν1 (λ(t))

)
+O(ϵ4), (6.53)

where O(ϵ3) terms vanish and hence the next-leading term is O(ϵ4). Since the difference is O(ϵ2),

it is expected to scale as 1/T 2 as a function of the the total control time. In this sense, these

next leading-order O(ϵ2) terms characterize the time-reversal symmetry breaking of the excess

work in thermodynamic controls.
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Chapter 7

Expansion of the Work Distribution

in Thermodynamic Control

In the previous chapter, we have calculated the average of excess work and obtained the series

expansion in terms of the parameter ϵ that characterizes the slowness of the control. However,

the work does not have a definite value even if we control the system through the same protocol,

which is not negligible especially in small systems. In this chapter, we calculate the work

distribution and derive the expansion in terms of the parameter ϵ. This chapter is based on the

paper 3 in Publication List, which is in preparation.

7.1 Setting

To calculate the distribution of the work explicitly, we need to specify the dynamics of the

system. Here, we consider a one-dimensional system described by the overdamped Langevin

equation

ẋ(t) = −1

γ

∂V (x;λ(t))

∂x

∣∣∣
x=x(t)

+

√
2

βγ
η(t). (7.1)

We control the system by changing the external potential V (x;λ) as a function of time through

control parameters λ = λ(t). We assume that the potential traps a particle in the sense that

lim|x|→∞ V (x;λ) = ∞ for all λ, and that the initial distribution is the canonical distribution

p
λ(0)
can (x). As in the previous chapter, for a given protocol Λ = {λ(t)}t∈[0,T ], we consider an

ϵ-modified protocol Λϵ = {λϵ(t)}t∈[0,T/ϵ] = {λ(ϵt)}t∈[0,T/ϵ]. The work under the protocol Λϵ is

defined for each trajectory {x(t)} as

W ({x(t)},Λϵ) =

∫ T/ϵ

0
dt λ̇µϵ (t)

∂V (x(t);λ)

∂λµ

∣∣∣
λ=λϵ(t)

. (7.2)

Let P ({x(t)};Λϵ) be a probability density function that the trajectory {x(t)} is realized under

the protocol Λϵ. Note that the randomness arises from the initial canonical distribution p
λ(0)
can (x)
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and the Gaussian white noise η(t). We are interested in the work distribution

P (W ;Λϵ) =

∫
Dx P ({x(t)};Λϵ)δ(W −W ({x(t)},Λϵ)), (7.3)

or the cumulant-generating function of work

CW (k;Λϵ) := log

∫
dW ekWP (W ;Λϵ) (7.4)

under the protocol Λϵ. The cumulant-generating function is important in statistical physics

because it contains the same information as the rate function through the Gärtner-Ellis theorem

in the large-deviation theory [78]. To calculate the cumulant-generating function, we consider

the time evolution of the following quantity:

G(x, k; t,Λϵ) =
⟨
δ(x− x(t))ekWt

⟩
. (7.5)

Here, the average ⟨·⟩ is taken over the initial canonical distribution and the Gaussian white noise,

and Wt denotes the work performed on the system by time t. We also denote G(x, k; t,Λϵ) as

G(x, k; t) when the protocol dependence is clear from the context. Once G(x, k; t) is obtained,

we can calculate the cumulant generating function by

CW (k;Λϵ) = log

∫
dx G(x, k;T/ϵ). (7.6)

Previously, the time evolution of the joint probability distribution of x and W , which is defined

by

P (x,W ;Λϵ) =

∫
Dx P ({x(t)};Λϵ)δ(x− x(t))δ(W −W ({x(t)},Λϵ)), (7.7)

has been considered to prove that the distribution of the work is Gaussian when the control

is slow [79]. As we will show later, to obtain systematically the information about the work

distribution and to evaluate the deviation from the Gaussian distribution, it is convenient to

consider the generating function G(x, k; t,Λϵ) rather than the joint distribution function.

To derive the time evolution of G(x, k; t,Λϵ), we apply stochastic calculus [80]. We rewrite

the overdamped Langevin equation in the form of a stochastic differential equation as

dxt = −1

γ

∂V (x;λϵ(t))

∂x

∣∣∣∣∣
x=xt

dt+

√
2

βγ
dwt, (7.8)

where wt is the Wiener process, which is formally related to the white Gaussian noise as η(t) =
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dwt/dt. Then, the increment of δ(x− xt)e
kWt is calculated as

d(δ(x− xt)e
kWt)

= −δ′(x− xt)e
kWtdxt +

1

2
δ′′(x− xt)e

kWtdx2t + kδ(x− xt)e
kWtdWt +O(dx3t , dW

2
t )

= − ∂

∂x
[δ(x− xt)e

kWt(−1

γ

∂V (x;λϵ(t))

∂x
dt+

√
2

βγ
dwt)]

+
1

βγ

∂2

∂x2
[δ(x− xt)e

kWtdt] + kδ(x− xt)e
kWt λ̇µϵ (t)

∂V (x;λ)

∂λµ

∣∣∣
λ=λϵ(t)

dt+ o(dt). (7.9)

By taking the average over the Wiener process, we obtain the time evolution equation for

G(x, k; t) as

∂G(x, k; t)

∂t
=

1

γ

∂

∂x

(
G(x, k; t)

∂V (x;λϵ(t))

∂x

)
+

1

βγ

∂2G(x, k; t)

∂x2
+ kλ̇µϵ (t)

∂V (x;λ)

∂λµ

∣∣∣
λ=λϵ(t)

G(x, k; t)

⇔∂G(x, k; t)

∂t
=

1

γ

∂

∂x

(
G(x, k; t)

∂V (x;λϵ(t))

∂x
+

1

β

∂G(x, k; t)

∂x

)
− kλ̇µϵ (t)Xµ(x;λϵ(t))G(x, k; t),

(7.10)

where we have defined the generalized force with respect to the control parameter λµ as

Xµ(x;λ) := −∂V (x;λ)

∂λµ
. (7.11)

To express the ϵ-dependence of each term more explicitly, we replace t with t/ϵ in Eq. (7.10),

and obtain

∂G(x, k; t/ϵ,Λϵ)

∂t
=

1

ϵ

∂G(x, k; t/ϵ,Λϵ)

∂(t/ϵ)

=
1

ϵγ

∂

∂x

(
G(x, k; t/ϵ,Λϵ)

∂V (x;λ(t))

∂x
+

1

β

∂G(x, k; t/ϵ,Λϵ)

∂x

)
− kλ̇µ(t)Xµ(x;λ(t))G(x, k; t/ϵ,Λϵ).

(7.12)

On the other hand, in the approach adopted in Ref. [43], the protocol Λ is fixed, while the

friction coefficient γ is modified as ϵγ. Let Gϵ(x, k; t,Λ) be the joint function of the position

distribution and the moment generating function of the work at time t under the protocol Λ and

the overdamped Langevin dynamics whose friction coefficient is ϵγ. Then the time evolution of

Gϵ(x, k; t,Λ) is obtained by replacing λϵ(t) with λ(t) and γ with ϵγ in Eq. (7.10), given by

∂Gϵ(x, k; t,Λ)

∂t

=
1

ϵγ

∂

∂x

(
Gϵ(x, k; t,Λ)

∂V (x;λ(t))

∂x
+

1

β

∂Gϵ(x, k; t,Λ)

∂x

)
− kλ̇µ(t)Xµ(x;λ(t))Gϵ(x, k; t,Λ).

(7.13)
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By comparing Eqs. (7.12) and (7.13) and noting that they have the same initial condition as

Gϵ(x, k; t = 0,Λ) = G(x, k; t = 0,Λϵ) = pλ(0)eq (x), (7.14)

we obtain

G(x, k; t/ϵ,Λϵ) = Gϵ(x, k; t,Λ). (7.15)

Equation (7.15) shows that two ways of introducing a parameter ϵ are equivalent in the sense

that they result not only in the same average work (as shown in the previous chapter) but also

in the same work distribution.

In the following, we expand Gϵ(x, k; t,Λ)(= G(x, k; t/ϵ,Λϵ)) in terms of ϵ, and determine

lower-order terms iteratively from the time evolution equation (7.13). For simplicity, we denote

Gϵ(x, k; t,Λ) by Gϵ(x, k; t), and expand it as

Gϵ(x, k; t) = G0(x, k; t){1 + ϵG1(x, k; t) + ϵ2G2(x, k; t) + · · · }. (7.16)

Then, the time evolution equation (7.13) should be satisfied at each order of ϵ.

7.2 O(ϵ0) Contribution to the Generating Function of Work

First, we derive the leading-order term for the generating function. From the O(ϵ−1) equation

in Eq. (7.13), we obtain

∂

∂x

(
G0(x, k; t)

∂V (x;λ(t))

∂x
+

1

β

∂G0(x, k; t)

∂x

)
= 0. (7.17)

Since Eq. (7.17) is the differential equation with respect to x only, we can determine only the

x-dependence of G0(x, k; t) as

G0(x, k; t) = f0(k; t)pλ(t)can (x). (7.18)

To determine f0(k; t), i.e., the k-dependence of G0(x, k; t), we consider the O(ϵ0) equation in

Eq. (7.13), given by

∂G0(x, k; t)

∂t
=
∂

∂x

(
G0(x, k; t)G1(x, k; t)

∂V (x;λ(t))

∂x
+

1

β

∂(G0(x, k; t)G1(x, k; t))

∂x

)
− kλ̇µ(t)Xµ(x;λ(t))G0(x, k; t). (7.19)
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Since we assume that the potential is trapping, G(x, k; t) is expected to vanish in the limit of

|x| → ∞. Therefore, by integrating Eq. (7.19), we obtain∫ ∞

−∞
dx

(
∂G0(x, k; t)

∂t
− kλ̇µ(t)

∂V (x;λ)

∂λµ

∣∣∣
λ=λ(t)

G0(x, k; t)

)
(7.20)

=

[
G0(x, k; t)G1(x, k; t)

∂V (x;λ(t))

∂x
+

1

β

∂(G0(x, k; t)G1(x, k; t))

∂x

]x=∞

x=−∞
= 0. (7.21)

In the following, we refer to an equation that originates from the boundary condition as the

consistency condition. From this O(ϵ0) consistency condition, we obtain

0 =

∫ ∞

−∞
dx

(
∂f0(k; t)

∂t
pλ(t)eq (x) + f0(k; t)

∂p
λ(t)
eq (x)

∂t
+ kλ̇µ(t)Xµ(x;λ(t))f0(k; t)pλ(t)eq (x)

)

=
∂f0(k; t)

∂t
+ f0(k; t)kλ̇µ(t)

∫ ∞

−∞
dx Xµ(x;λ(t))pλ(t)eq (x). (7.22)

Therefore, we obtain

∂

∂t
log f0(k; t) = −kλ̇µ(t)

∫ ∞

−∞
dx Xµ(x;λ(t))pλ(t)eq (x)

= k

∫ ∞

−∞
dx λ̇µ(t)

∂V (x;λ)

∂λµ

∣∣∣
λ=λ(t)

e−β(V (x;λ(t))−F (λ(t)))

= k

∫ ∞

−∞
dx eF (λ(t))

(
− 1

β

)
∂

∂t
e−βV (x;λ(t))

= −k
β

eF (λ(t)) ∂

∂t

∫ ∞

−∞
dx e−βV (x;λ(t))

= k
dF (λ(t))

dt
, (7.23)

which implies that

f0(k; t) = f̃0(k) exp [kF (λ(t))], (7.24)

where f̃0(k) is a constant independent of t. From the initial condition (7.14), we obtain f0(k; t =

0) = 1 and f̃0(k) = exp [−kF (λ(0))], and therefore

G0(x, k; t) = ek(F (λ(t))−F (λ(0)))pλ(t)eq (x) = ek∆F pλ(t)eq (x), (7.25)

where we have defined the free-energy difference as ∆F := F (λ(t))−F (λ(0)). From Eq. (7.25),

we see that the assumption that the initial distribution is given by the canonical distribution

is needed for the expansion to be consistent. Therefore, we obtain the cumulant-generating

function up to the O(ϵ0) order as CW (k;Λϵ) = k∆F +O(ϵ), and

⟨W ⟩ =
d log ⟨ekW ⟩

dt

∣∣∣
k=0

= ∆F +O(ϵ), (7.26)

⟨(∆W )2⟩ =
d2 log ⟨ekW ⟩

dt2

∣∣∣
k=0

= 0 +O(ϵ). (7.27)
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They reproduce the well-known fact that the work performed on the system is deterministically

equal to the free-energy difference in the quasistatic process.

7.3 O(ϵ) Contribution to the Generating Function of Work

Using the explicit form of G0(x, k; t) derived in the previous section, let us rewrite the time

evolution equation (7.13). We define G̃(x, k; t) by the relation

G(x, k; t) = G0(x, k; t)G̃(x, k; t) = ek∆F pλ(t)eq (x)G̃(x, k; t). (7.28)

If we substitute it in Eq. (7.13), we obtain the time evolution equation for G̃(x, k; t) as

∂G̃(x, k; t)

∂t
e−βV (x;λ(t)) =

1

βϵγ

∂

∂x

(
∂G̃(x, k; t)

∂x
e−βV (x;λ(t))

)
− (β + k)λ̇µ(t)∆Xµ(x;λ(t))G̃(x, k; t)e−βV (x;λ(t)), (7.29)

where ∆Xµ(x;λ(t)) := Xµ(x;λ) − ⟨Xµ(·,λ)⟩λeq = Xµ(xµ;λ) −
∫∞
−∞ dx pλcan(x)Xµ(x;λ) is the

deviation of the generalized force from the equilibrium value. Since G̃(x, k; t) = 1+ϵG1(x, k; t)+

ϵ2G2(x, k; t) + · · · , we obtain the O(ϵ0) equation in Eq. (7.29), given as

0 =
1

β

∂

∂x

(
∂G1(x, k; t)

∂x
e−βV (x;λ(t))

)
− γ(β + k)λ̇µ(t)∆Xµ(x;λ(t))e−βV (x;λ(t)). (7.30)

By integrating both sides with respect to x, we obtain

∂G1(x, k; t)

∂x
e−βV (x;λ(t)) = βγ(β + k)λ̇µ(t)

∫ x

−∞
dx′∆Xµ(x′;λ(t))e−βV (x′;λ(t)) + f1(k; t)

⇔∂G1(x, k; t)

∂x
= βγ(β + k)λ̇µ(t)

∫ x

−∞
dx′∆Xµ(x′;λ(t))e−β(V (x′;λ(t))−V (x;λ(t))) + f1(k; t)eβV (x;λ(t)),

(7.31)

where f1(k; t) is a constant independent of x. By integrating both sides with respect to x again,

we obtain

G1(x, k; t) = βγ(β + k)λ̇µ(t)

∫ x

−∞
dx′
∫ x′

−∞
dx′′∆Xµ(x′′;λ(t))e−β(V (x′′;λ(t))−V (x′;λ(t)))

+ f1(k; t)

∫ x

−∞
dx′eβV (x′;λ(t)) + g1(k; t), (7.32)

where g1(k; t) is a constant. Since the second term on the right-hand side diverges due to the

trapping condition lim|x|→∞ V (x;λ) = ∞, f1(k; t) should be zero, giving

G1(x, k; t) = βγ(β + k)λ̇µ(t)

∫ x

−∞
dx′
∫ x′

−∞
dx′′∆Xµ(x′′;λ(t))e−β(V (x′′;λ(t))−V (x′;λ(t))) + g1(k; t).

(7.33)
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To determine the k-dependence of g1(k; t), we consider theO(ϵ) consistency condition in Eq. (7.29)∫ ∞

−∞
dx e−βV (x;λ(t))∂G1(x, k; t)

∂t
+ (β + k)λ̇µ(t)

∫ ∞

−∞
dx e−βV (x;λ(t))G1(x, k; t)∆Xµ(x;λ(t)) = 0.

(7.34)

If we substitute Eq. (7.33) in Eq. (7.34), we obtain

∂g1(k; t)

∂t

= − βγ(β + k)λ̈µ(t)

∫
d3x ∆Xµ(x′′;λ(t))

e−β(V (x;λ(t))−V (x′;λ(t))+V (x′′;λ(t)))

Z[λ(t)]

− βγ(β + k)λ̇µ(t)λ̇ν(t)

∫
d3x

e−βV (x;λ(t))

Z[λ(t)]

∂

∂λµ

(
∆Xν(x′′;λ)e−β(V (x′′;λ)−V (x′;λ))

) ∣∣∣∣∣
λ=λ(t)

− βγ(β + k)2λ̇µ(t)λ̇ν(t)

∫
d3x ∆Xµ(x;λ(t))∆Xν(x′′;λ(t))

e−β(V (x;λ(t))−V (x′;λ(t))+V (x′′;λ(t)))

Z[λ(t)]
,

(7.35)

where we have introduced a simplified notation∫
d3x · :=

∫ ∞

−∞
dx

∫ x

−∞
dx′
∫ x′

−∞
dx′′ · . (7.36)

By substituting t = 0 and x = −∞ in Eq. (7.33), we obtain g1(k; t = 0) = 0. Therefore, by

integrating both sides of Eq. (7.35), we obtain

g1(k; t)

= − βγ(β + k)

∫ t

0
dt′λ̈µ(t′)

∫
d3x ∆Xµ(x′′;λ(t′))

e−β(V (x;λ(t′))−V (x′;λ(t′))+V (x′′;λ(t′)))

Z[λ(t′)]

− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x

e−βV (x;λ(t′))

Z[λ(t′)]

∂

∂λµ

(
∆Xν(x′′;λ)e−β(V (x′′;λ)−V (x′;λ))

) ∣∣∣∣∣
λ=λ(t′)

− βγ(β + k)2
∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x ∆Xµ(x;λ(t′))∆Xν(x′′;λ(t′))

× e−β(V (x;λ(t′))−V (x′;λ(t′))+V (x′′;λ(t′)))

Z[λ(t′)]
. (7.37)
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Furthermore, if we assume that the initial velocity of the control parameter is zero, i.e., λ̇(0) = 0,

we can integrate the first term by parts, and obtain

g1(k; t)

= − βγ(β + k)λ̇µ(t)

∫
d3x ∆Xµ(x′′;λ(t))

e−β(V (x;λ(t))−V (x′;λ(t))+V (x′′;λ(t)))

Z[λ(t)]

− βγk(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x ∆Xµ(x;λ(t′))∆Xν(x′′;λ(t′))

× e−β(V (x;λ(t′))−V (x′;λ(t′))+V (x′′;λ(t′)))

Z[λ(t′)]
, (7.38)

and hence

G1(x, k; t)

=βγ(β + k)λ̇µ(t)

∫ x

−∞
dx′
∫ x′

−∞
dx′′∆Xµ(x′′;λ(t))e−β(V (x′′;λ(t))−V (x′;λ(t)))

− βγ(β + k)λ̇µ(t)

∫
d3x ∆Xµ(x′′;λ(t))

e−β(V (x;λ(t))−V (x′;λ(t))+V (x′′;λ(t)))

Z[λ(t)]

− βγk(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x ∆Xµ(x;λ(t′))∆Xν(x′′;λ(t′))

× e−β(V (x;λ(t′))−V (x′;λ(t′))+V (x′′;λ(t′)))

Z[λ(t′)]
. (7.39)

We note that the assumption that λ̇(0) = 0 is indeed needed for the expansion to be consistent,

since we have assumed that the initial condition is given by the canonical distribution and

therefore G1(x, k; t = 0) = 0. From Eqs. (7.6), (7.16) and (7.39), we obtain the cumulant-

generating function up to the O(ϵ0) order as

CW (k;Λϵ) = k∆F + ϵ
k(β + k)

β

∫ T

0
dt λ̇µ(t)λ̇ν(t)ζ(1;0)µν (λ(t)) +O(ϵ2), (7.40)

where we have defined the thermodynamic metric ζ
(1;0)
µν (λ) as

ζ(1;0)µν (λ) = −β2γ
∫

d3x ∆Xµ(x;λ)∆Xν(x′′;λ)
e−β(V (x;λ)−V (x′;λ)+V (x′′;λ))

Z[λ]
. (7.41)

Here, the iterated integral
∫

d3x is defined as
∫∞
−∞ dx

∫ x
−∞ dx′

∫ x′

−∞ dx′′. We remark that the

second integral
∫ x
−∞ dx′ does not converge in general, due to the exponentially large factor

eβV (x′;λ). To avoid the divergence, we exchange the order of integrals as∫ ∞

−∞
dx

∫ x

−∞
dx′
∫ x′

−∞
dx′′ →

∫ ∞

−∞
dx′
∫ ∞

x′
dx

∫ x′

−∞
dx′′. (7.42)
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Then, the thermodynamic metric ζ
(1;0)
µν (λ) is redefined as

ζ(1;0)µν (λ)

= − β2γ

∫ ∞

−∞
dx′

eβV (x′;λ)

Z[λ]

(∫ ∞

x′
dx e−βV (x;λ)∆Xµ(x;λ)

)(∫ x′

−∞
dx′′e−βV (x′′;λ)∆Xµ(x′′;λ)

)

=β2γ

∫ ∞

−∞
dx′

eβV (x′;λ)

Z(λ)

(∫ ∞

x′
dx e−βV (x;λ)∆Xµ(x;λ)

)(∫ ∞

x′
dx′′e−βV (x′′;λ)∆Xν(x′′;λ)

)
.

(7.43)

We cannot mathematically justify this exchange of the order of integrals since the multiple

integral does not converge absolutely and hence the Fubini-Tonelli theorem [51] is not applicable

to it. However, we can verify that the redefined thermodynamic metric (7.43) coincides with

the original definition of the thermodynamic metric in terms of the temporal correlations for

the harmonic potential case. When the external potential is given by

V (x;λ) =
λ1

2
(x− λ2)2, (7.44)

the thermodynamic metric is calculated from Eq. (7.43) as

ζ(1;0)µν (λ) =

(
γ

4β(λ1)2
0

0 γ

)
, (7.45)

which agrees with the previous study [33].

We note that the cumulant-generating function is the second-order polynomial in k up to

O(ϵ). This fact indicates that the work distribution is Gaussian, which is consistent with the

previous study [79]. Furthermore, the fluctuation-dissipation relation holds up to O(ϵ), that is,

⟨W − ∆F ⟩ =
β

2
⟨(∆W )2⟩ +O(ϵ2). (7.46)

The Jarzynski equality is also satisfied up to O(ϵ) because⟨
e−β(W−∆F )

⟩
= 1 ⇔ CW (k = −β;Λϵ) = 0. (7.47)

In fact, the fluctuation-dissipation relation is closely related to the Gaussian distribution of the

work and the Jarzynski equality. Let cn be the nth order cumulant of the work. The cumulants

are related to the cumulant-generating function CW (k) = log
∫

dW P (W )ekW through

CW (k) =
∞∑
n=1

cn
kn

n!
. (7.48)

If we rewrite the Jarzynski equality in terms of the cumulants, we obtain

⟨W ⟩ − ∆F − β

2
⟨(∆W )2⟩ =

∞∑
n=3

cn
(−β)n

n!
. (7.49)
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Since the work distribution is Gaussian, the higher-order cumulant cn vanishes for n ≥ 3, which

corresponds to the fact that the cumulant generating function is the second-order polynomial in

k. Therefore, the right-hand side in Eq. (7.49) vanishes and the fluctuation-dissipation relation

holds. In other words, the violation of the fluctuation-dissipation relation can be detected by the

deviation of the work distribution from Gaussian, or the existence of higher-order cumulants, as

we will investigate in the next section.

To summarize, the calculation of the cumulant generating function up to O(ϵ) reproduces

the two fundamental facts, namely, the average excess work is expressed in terms of the ther-

modynamic metric [33, 43] and the work distribution is Gaussian [79].

7.4 O(ϵ2) Contribution to the Generating Function of Work

In the previous section, we have seen that two well-known results are reproduced by calculating

the cumulant-generating function up to O(ϵ). To understand how the distribution deviates

from Gaussian and how the fluctuation-dissipation relation is violated, we calculate the next

leading-order O(ϵ2) contribution to the cumulant-generating function.

We can calculate the O(ϵ2) contribution to the cumulant-generating function in the same
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way as the calculation of the O(ϵ) contribution, and obtain

CW (k;Λϵ) = log ⟨ekW ⟩

=k∆F

+ ϵ · k(β + k)

β

∫ T

0
dt λ̇µ(t)λ̇ν(t)ζ(1;0)µν (λ(t))

+ ϵ2

[
− (βγ)2k(β + k)

∫ T

0
dt λ̇µ(t)λ̈ν(t)

(∫
d5x ∆Xµ(x)∆Xν(x′′′′)

e−β(V (x)−V (x′)+V (x′′)−V (x′′′)+V (x′′′′))

Z

)

− (βγ)2k(β + k)

∫ T

0
dt λ̇µ(t)λ̇ν(t)λ̇ρ(t)

×

(∫
d5x ∆Xµ(x)

∂

∂λν

(
∆Xρ(x′′′′)e−β(V (x′′′′)−V (x′′′))

) e−β(V (x)−V (x′)+V (x′′))

Z

)

+ (βγ)2k(β + k)

∫ T

0
dt λ̇µ(t)λ̈ν(t)

(∫
d3x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x ∆Xν(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)

+ (βγ)2k(β + k)

∫ T

0
dt λ̇µ(t)λ̇ν(t)λ̇ρ(t)

(∫
d3x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x

∂

∂λν

(
∆Xρ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

))

+ (βγ)2k2(β + k)

∫ T

0
dt λ̇µ(t)λ̇ν(t)λ̇ρ(t)

(∫
d3x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x ∆Xν(x)∆Xρ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)

− (βγ)2k(β + k)2
∫ T

0
dt λ̇µ(t)λ̇ν(t)λ̇ρ(t)

×

(∫
d5x ∆Xµ(x)∆Xν(x′′)∆Xρ(x′′′′)

e−β(V (x)−V (x′)+V (x′′)−V (x′′′)+V (x′′′′))

Z

)

+ (βγ)2k(β + k)2
∫ T

0
dt λ̇µ(t)λ̇ν(t)λ̇ρ(t)

(∫
d3x ∆Xµ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x ∆Xν(x)∆Xρ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)]
+O(ϵ3). (7.50)

The detail of the calculation is described in Appendix B. Here, the multiple integrals are inter-
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preted as ∫
d3x · :=

∫ ∞

−∞
dx′
∫ ∞

x′
dx

∫ x′

−∞
dx′′ · (7.51)∫

d5x · :=

∫ ∞

−∞
dx′
∫ x′

−∞
dx′′′

∫ ∞

x′
dx

∫ x′

x′′′
dx′′

∫ x′′′

−∞
dx′′′′ ·, (7.52)

and the abbreviated control parameters in the generalized force ∆Xµ(x), the external force

V (x), and the partition function Z should be identified with λ(t). This result is consistent with

the O(ϵ2) contribution to the average excess work derived in the previous chapter, since both of

them are composed of two types of integrals
∫ T
0 dt λ̇µ(t)λ̇ν(t)λ̇ρ(t) · and

∫ T
0 dt λ̇µ(t)λ̈ν(t) ·.

We note that Eq. (7.50) is invariant under the coordinate transformation. Since λ̇µ and

∆Xµ are contravariant and covariant, respectively, the contracted quantity is a scalar, which is

invariant. The terms which are not apparently scalar are

∫ T

0
dt λ̇µ(t)

(∫
d3x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×
∫

d3x
e−β(V (x)−V (x′)+V (x′′))

Z

(
λ̈ν(t)∆Xν(x′′) + λ̇ν(t)λ̇ρ(t)

∂∆Xν(x′′)

∂λρ

)
−
∫ T

0
dtλ̇µ(t)

∫
d5x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′)−V (x′′′)+V (x′′′′))

Z

×
(
λ̈ν(t)∆Xν(x′′) + λ̇ν(t)λ̇ρ(t)

∂∆Xν(x′′)

∂λρ

)
. (7.53)

Therefore, we need to show that the factor

λ̈ν(t)∆Xν(x′′) + λ̇ν(t)λ̇ρ(t)
∂∆Xν(x′′)

∂λρ
(7.54)

is invariant. Indeed, it can be rewritten as

λ̈ν(t)∆Xν(x′′) + λ̇ν(t)λ̇ρ(t)
∂∆Xν(x′′)

∂λρ
=

d

dt

(
λ̇ν(t)∆Xν(x′′)

)
, (7.55)

which is the time derivative of a scalar. Therefore, though each term that composess the

cumulant generating function is not necessarily a scalar, the cumulant generating function as a

whole is a scalar. Furthermore, the expression of the cumulant generating function is local in

time in the sense that each term is written in terms of the time integral and the integrand is a

function of λ(t), λ̇(t), and λ̈(t). In this sense, we have derived the geometric expression of the

work distribution on the control parameter space.

We also note that the cumulant-generating function (7.50) up to the O(ϵ2) order is the third

polynomial in k and satisfies the Jarzynski equality. From Eq. (7.48), the former fact indicates

that the work distribution deviates from the Gaussian distribution in such a way that the third

cumulant c3 becomes nonzero, while higher-order cumulants cn(n ≥ 4) are zero up to the O(ϵ2)
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order:

c3 = O(ϵ2), (7.56)

cn = o(ϵ2) (n ≥ 4). (7.57)

Strictly speaking, any cumulant-generating function cannot be a polynomial of degree greater

than two [81, 31], and therefore all the higher-order cumulants should have nonzero values if the

third cumulant has a nonzero value.

Based on these facts, we can discuss how the fluctuation-dissipation relation is violated in

finite-time control. From the Jarzynski equality (7.49) and Eqs. (7.56) and (7.57), the violation

of the fluctuation-dissipation relation can be quantifies as

⟨W ⟩ − ∆F − β

2
⟨(∆W )2⟩ =

∞∑
n=3

cn
(−β)n

n!
= −β

2

6
c3 + o(ϵ2). (7.58)

Equation (7.58) implies that the violation of the fluctuation-dissipation relation scales as ϵ2, or

1/T 2 as a function of the total control time.

7.5 Numerical Experiment

To demonstrate the results obtained in this chapter, we perform a numerical experiment. We

consider a cusped trapping potential given by

V (x;λ) = x2 + λ|x|. (7.59)

We control the sharpness at the origin through the absolute function λ|x| from λ(0) = 0 to

λ(T ) = 2 smoothly, given as

λ(t) =


(

t
T/2

)3
(0 ≤ t ≤ T/2),

2 −
(
T−t
T/2

)3
(T/2 ≤ t ≤ T ).

(7.60)

We simulate the overdamped Langevin equation with the time-dependent external potental

ẋ(t) = −1

γ

∂V (x;λ(t))

∂x

∣∣∣
x=x(t)

+

√
2

βγ
η(t), (7.61)

with physical constants γ = β = 1, the discretized time-step length ∆t = 10−4, and the initial

condition pλ=0
can . We repeat the simulation 5 × 106 times and calculate the empirical cumulants

of the excess work Wex = W − ∆F for each total control time T = 0.25, 0.5, . . . , 64, 128. The

free energies can be analytically calculated as

F (λ = 0) = −1

2
log π ≃ −0.5723649429, (7.62)

F (λ = 2) = − log
(
e
√
π · erfc(1)

)
≃ 0.2772405670, (7.63)
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where the complementary error function is defined as

erfc(x) :=
2√
π

∫ ∞

x
dt e−t2 . (7.64)

The T -dependences of the first, second, and third cumulants are shown in Fig. 7.1. The first,

and second cumulants scale as 1/T for large T , corresponding to the fact that the cumulant-

generating function is a second-order polynomial in k up to O(ϵ). The third cumulant scales

as 1/T 2 for large T , corresponding to the fact that the the cumulant-generating function is the

third polynomial in k up to O(ϵ2).

Figure 7.1: The first (cross), second (square), and third (triangle) cumulants of the excess work
plotted against the entire control time T . The blue and black dashed lines are the guides to the
eye corresponding to the scaling 1/T and 1/T 2, respectively.

We also calculate the degree of violation of the fluctuation-dissipation relation, quantified by

− 6

β2

(
⟨W ⟩ − ∆F − β

2
⟨(∆W )2⟩

)
, (7.65)

which is shown in Fig. 7.2. It scales as 1/T 2 for large T and coincides with the third cumulant

within the margin of statistical error, which verifies Eq. (7.58).

We further calculate the fourth and fifth cumulants as shown in Fig. 7.3. The fourth cumulant

scales as 1/T 3 for large T , while the fifth cumulant scales as 1/T 4. Therefore, the coefficient of

k4 in the cumulant-generating function is of the order of ϵ3, while that of k5 is of the order of

ϵ4. Equivalently, the O(ϵ3) contribution to the cumulant-generating function is a fourth-order

polynomial in k, and the O(ϵ4) contribution is at least a fifth-order polynomial in k.

So far, we have analytically shown that the O(ϵn) contribution to the cumulant-generating

function CW (k;Λϵ) is an (n + 1)th-order polynomial in k for n = 0, 1, 2. Also, the numerical

simulation suggests that the O(ϵ3) contribution to the cumulant-generating function is a fourth-
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Figure 7.2: The violation of fluctuation-dissipation relation (Eq. (7.65), cross) and the third
cumulant of the excess work (triangle) plotted against the entire control time T . The blue
dashed lines is the guide to the eye corresponding to the scaling T−2.

order polynomial in k, and the O(ϵ4) contribution is at least a fifth-order polynomial in k. From

the analytical calculation and the numerical simulation done in this chapter, it is expected that

the deviation of the work from the Gaussian distribution arises in such a way that the higher-

order cumulants vanish more rapidly as the control approaches the quasistatic limit. More

precisely, we conjecture that the O(ϵn) contribution to the cumulant-generating function of the

work is an (n+ 1)th-order polynomial in k, and that the nth cumulant cn of the work scales as

1/Tn−1 for n ≥ 1.
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Figure 7.3: The fourth (square) and fifth (triangle) cumulants of the excess work plotted against
the entire control time T . The blue and black dotted lines are the guides to the eye corresponding
to the scaling T−3 and T−4, respectively.
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Chapter 8

Conclusion

In this thesis, we have studied nonequilibrium statistical mechanics from a geometric perspective.

In particular, we have (i) examined the relation between quantum information geometry and

linear response theory and (ii) analyzed nonequilibrium processes in thermodynamic control and

derived a geometric expression for work.

In Chapter 2, we have reviewed the theory of response and relaxation near the thermal

equilibrium state. We have seen that the linear response function and the linear relaxation

function are quantitatively related via integration and differentiation. Such a relation also holds

for higher-order response functions and relaxation functions. We have also given an explicit form

of response functions in quantum Hamiltonian system, which are expressed as expectation values

of some observables at thermal equilibrium. In particular, the linear response function, which

describes nonequilibrium phenomena, are quantitatively related to the temporal correlation

at thermal equilibrium, which is formulated as the Green-Kubo formula and the fluctuation-

dissipation theorem.

In Chapter 3, we have briefly reviewed thermodynamics, especially the stochastic thermo-

dynamics that provides a framework for discussing thermodynamic properties of microscopic

system surrounded by a thermal bath. We have also introduced the thermodynamic metric, on

which our latter main results are based. The excess work in a thermodynamic control can be

approximated as a squared length of the contour in the control parameter space measured with

the thermodynamic metric. There are two derivations for this expression: the phenomenological

one assuming the linear response, and the microscopic one in overdamped Langevin systems

assuming the separation in timescale between the system and the control.

In Chapter 4, we have reviewed the information geometry. In information geometry, we con-

sider a differential-geometrical structure on the space of probability distributions. The Fisher

information plays an important role as a metric on that space. In classical information geom-

etry, the classical Fisher metric is shown to be a unique metric that monotonically decreases

under information processing. In contrast, in quantum information geometry, where probability

distributions are replaced by density operators, there are infinitely many types of monotone

metrics due to the noncommutativity of operators, which are called the quantum Fisher metrics

or the quantum Fisher information. There is a one-to-one correspondence between the quantum

Fisher metric and an operator monotone function. We have also introduced the generalized
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covariance of two noncommuting observables, which is also defined for each operator monotone

function. The quantum Fisher metric and the generalized covariance contain the same amount

of information on the geometric structure around the state.

In Chapter 5, we have presented the former main results (i) of this thesis. We have generalized

the fluctuation-dissipation theorem, which establishes the quantitative relation between the

linear response function and the generalized covariance in the thermal equilibrium state. Based

on the generalized fluctuation-dissipation theorem, we can infer the generalized covariance by

measuring the linear response functions. We have also proposed the experimental method of

determining the quantum Fisher information by measuring the dynamical susceptibilities or

the complex admittances for all frequencies. Our method allows us to determine an arbitrary

type of the quantum Fisher information, once the linear response functions are measured. One

of the advantages of our method is that we can determine the quantum Fisher information

without quantum state tomography, and therefore can avoid an exponentially large number of

measurements even for large systems.

The relation derived in this chapter is valid only for the thermal equilibrium state. It

is an outstanding issue to extend our result to other states, such as nonequilibrium steady

states. Measuring a temporal correlation in quantum systems is a nontrivial problem due to the

backaction of the measurement. Our result bypasses this problem by showing that the temporal

correlation can be indirectly determined by measuring the linear response function, which needs

only one measurement and does not suffer from the measurement backaction. However, to

understand the noncommutative nature of quantum theory, the direct relation between the

generalized covariance and the correlation measurement is also an outstanding issue.

In Chapters 6 and 7, we have presented the latter main result (ii) of this thesis. We have

examined the average excess work in thermodynamic control in a phenomenological way in

Chapter 6. We have derived an expansion of the excess work in terms of a small parameter ϵ

that characterizes how slowly we control the system. We have discussed the physical picture of

the next leading-order contributions to the thermodynamic metric term. They can be detected

by comparing the excess work in a forward control and a backward control, and are predicted to

scale as 1/T 2 as a function of the entire control time T . Since the expansion is derived without

assuming the microscopic dynamics, it is valid as long as the perturbation series expansion is

valid. We have obtained the more accurate expression for the excess work than that in terms of

the thermodynamic metric. A natural question arising here is, how the optimal protocol that

minimizes the excess work is modified from the geodesics determined from the thermodynamic

metric in finite-time control.

In Chapter 7, we have examined the work distribution in overdamped Langevin systems. We

have derived the time evolution equation for the moment generating function of the work, and

solved it from lower-order contributions in ϵ. The O(ϵ) contribution to the generating function

reproduces two known facts: the work distribution is Gaussian, and the average work is given

by the thermodynamic metric. When we take up to O(ϵ2) contributions into account, the

work distribution has nonzero skewness, which means that the fluctuation-dissipation relation is

violated with scaling 1/T 2. Furthermore, from the analytic calculation with numerical supports,
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we have conjectured that the nth cumulant of the work scales as 1/Tn−1 for n ≥ 1. Relating

global structures such as an f -divergence [82] to thermodynamic quantities is left as a future

problem.

We have obtained scalings of many quantities in transient nonequilibrium processes such as

cumulants and the difference in excess work between forward and back protocol. Such scalings

can be experimentally verified by measuring the work for different total protocol time, in var-

ious systems. Possible candidates are biomolcules such as DNA, RNA and proteins [29, 83], a

brownian particle in an optical trap [84, 85, 86], a defect center in diamond [87, 83], and an

electric circuit [88, 89, 90].
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Appendix A

Miscellaneous

A.1 Useful Formulas

[ρ̂can, Â] = β

∫ 1

0
dα ρ̂1−α

can [Â, Ĥ]ρ̂αcan, (A.1)

e−β(Â+B̂) = eβÂ
(

1 −
∫ β

0
dα e−αÂB̂e−α(Â+B̂)

)
, (A.2)

∂ρ̂can(λ)

∂λν
= β

∫ 1

0
dαρ̂can(λ)1−α∆X̂ν ρ̂can(λ)α. (A.3)

Equation (A.1) can be checked by comparing matrix components in the energy eigenbasis [16].

We can show Eq. (A.2) by multplying e−βÂ from the left to both sides and then differentiating

them with respect to β [18]. Equation (A.3) immediately follows from Eq. (A.2).
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Appendix B

Calculation of the O(ϵ2)

Contributions to the Generating

Function of Work

In this chapter, we calculate theO(ϵ2) contribution to the cumulant generating function CW (k;Λϵ).

From the O(ϵ) equation for Eq. (7.29), we obtain

∂

∂x

(
∂G2(x, k; t)

∂x
e−βV (x;λ(t))

)
=βγ

(
∂G1(x, k; t)

∂t
e−βV (x;λ(t)) + (β + k)λ̇µ(t)∆Xµ(x;λ(t))G1(x, k; t)e−βV (x;λ(t))

)
. (B.1)

We perform the integration twice and obtain

G2(x, k; t) =βγ

∫ x

−∞
dx′
∫ x′

∞
dx′′

∂G1(x
′′, k; t)

∂t
e−β(V (x′′;λ(t))−V (x′;λ(t)))

+ βγ(β + k)λ̇µ(t)

∫ x

−∞
dx′
∫ x′

∞
dx′′∆Xµ(x′′;λ(t))G1(x

′′, k; t)e−β(V (x′′;λ(t))−V (x′;λ(t)))

+ g2(k; t), (B.2)

where g2(k; t) is a constant independent of x. To determine the k-dependence of G2(x, k; t), we

consider the O(ϵ2) consistency condition∫ ∞

−∞
dx

(
∂G2(x, k; t)

∂t
e−βV (x;λ(t)) + (β + k)λ̇µ(t)∆Xµ(x;λ(t))G2(x, k; t)e−βV (x;λ(t))

)
= 0.

(B.3)

86



If we substitute Eq. (B.2) for Eq. (B.3), we obtain

0 =βγ

∫
d3x

∂2G1(x
′′)

∂t2
e−β(V (x)−V (x′)+V (x′′))

+ βγλ̇µ(t)

∫
d3x

∂G1(x
′′)

∂t
e−βV (x) ∂

∂λµ

(
e−β(V (x′′)−V (x′))

)
+ βγ(β + k)λ̈µ(t)

∫
d3x G1(x

′′)∆Xµ(x′′)e−β(V (x)−V (x′)+V (x′′))

+ βγ(β + k)λ̇µ(t)

∫
d3x

∂G1(x
′′)

∂t
∆Xµ(x′′)e−β(V (x)−V (x′)+V (x′′))

+ βγ(β + k)λ̇µ(t)λ̇ν(t)

∫
d3x G1(x

′′)e−βV (x) ∂

∂λµ

(
∆Xν(x′′)e−β(V (x′′)−V (x′))

)
+ Z

∂g2(k; t)

∂t

+ βγ(β + k)λ̇µ(t)

∫
d3x

∂G1(x
′′)

∂t
∆Xµ(x)e−β(V (x)−V (x′)+V (x′′))

+ βγ(β + k)2λ̇µ(t)λ̇ν(t)

∫
d3x G1(x

′′)∆Xµ(x)∆Xν(x′′)e−β(V (x)−V (x′)+V (x′′)), (B.4)

where the variables k and λ are abbreviated for simplicity. Noting that g2(k; t = 0) = 0, we can

perform the integration with respect to t in Eq. (B.4) and obtain

g2(k; t) = − βγ

∫ t

0
dt′
∫

d3x
∂2G1(x

′′)

∂t′2
e−β(V (x)−V (x′)+V (x′′))

Z

− βγ

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′)

∂t′
e−βV (x)

Z

∂

∂λµ

(
e−β(V (x′′)−V (x′))

)
− βγ(β + k)

∫ t

0
dt′λ̈µ(t′)

∫
d3x G1(x

′′)∆Xµ(x′′)
e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′)

∂t′
∆Xµ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x G1(x

′′)
e−βV (x)

Z

∂

∂λµ

(
∆Xν(x′′)e−β(V (x′′)−V (x′))

)
− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′)

∂t′
∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)2
∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x G1(x

′′)∆Xµ(x)∆Xν(x′′)
e−β(V (x)−V (x′)+V (x′′))

Z
.

(B.5)
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Therefore, from Eqs. (B.2) and (B.5), we obtain

G2(x, k; t)

=βγ

∫ x

−∞
dx′
∫ x′

∞
dx′′

∂G1(x
′′, k; t)

∂t
e−β(V (x′′;λ(t))−V (x′;λ(t)))

+ βγ(β + k)λ̇µ(t)

∫ x

−∞
dx′
∫ x′

∞
dx′′∆Xµ(x′′;λ(t))G1(x

′′, k; t)e−β(V (x′′;λ(t))−V (x′;λ(t)))

− βγ

∫ t

0
dt′
∫

d3x
∂2G1(x

′′, k; t′)

∂t′2
e−β(V (x)−V (x′)+V (x′′))

Z

− βγ

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′, k; t′)

∂t′
e−βV (x)

Z

∂

∂λµ

(
e−β(V (x′′)−V (x′))

)
− βγ(β + k)

∫ t

0
dt′λ̈µ(t′)

∫
d3x G1(x

′′, k; t′)∆Xµ(x′′)
e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′, k; t′)

∂t′
∆Xµ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x G1(x

′′, k; t′)
e−βV (x)

Z

∂

∂λµ

(
∆Xν(x′′)e−β(V (x′′)−V (x′))

)
− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′, k; t′)

∂t′
∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)2
∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x G1(x

′′, k; t′)∆Xµ(x)∆Xν(x′′)
e−β(V (x)−V (x′)+V (x′′))

Z
.

(B.6)
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Then, we can calculate the O(ϵ2) contribution to the moment generating function as∫
dx pλ(t)eq (x)G2(x, k; t)

=βγ

∫
d3x

∂G1(x
′′, k; t)

∂t

e−β(V (x)−V (x′)+V (x′′))

Z

+ βγ(β + k)λ̇µ(t)

∫
d3x ∆Xµ(x′′;λ(t))G1(x

′′, k; t)
e−β(V (x)−V (x′)+V (x′′))

Z

− βγ

∫ t

0
dt′
∫

d3x
∂2G1(x

′′, k; t′)

∂t′2
e−β(V (x)−V (x′)+V (x′′))

Z

− βγ

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′, k; t′)

∂t′
e−βV (x)

Z

∂

∂λµ

(
e−β(V (x′′)−V (x′))

)
− βγ(β + k)

∫ t

0
dt′λ̈µ(t′)

∫
d3x G1(x

′′, k; t′)∆Xµ(x′′)
e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′, k; t′)

∂t′
∆Xµ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x G1(x

′′, k; t′)
e−βV (x)

Z

∂

∂λµ

(
∆Xν(x′′)e−β(V (x′′)−V (x′))

)
− βγ(β + k)

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′, k; t′)

∂t′
∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

− βγ(β + k)2
∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x G1(x

′′, k; t′)∆Xµ(x)∆Xν(x′′)
e−β(V (x)−V (x′)+V (x′′))

Z
.

(B.7)

If we integrate the third and fifth terms by parts, we obtain∫
dx pλ(t)eq (x)G2(x, k; t)

= − βγk

∫ t

0
dt′λ̇µ(t′)

∫
d3x

∂G1(x
′′, k; t′)

∂t′
∆Xµ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

− βγk(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)

∫
d3x G1(x

′′, k; t′)∆Xµ(x)∆Xν(x′′)
e−β(V (x)−V (x′)+V (x′′))

Z
.

(B.8)
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If we substitute the explicit form of G1(x, k; t) in Eq. (7.39) and its derivative

∂G1(x
′′, k; t′)

∂t′

=βγ(β + k)λ̈µ(t′)

∫ x′′

−∞
dx′′′

∫ x′′′

−∞
dx′′′′∆Xµ(x′′′′;λ(t′))e−β(V (x′′′′;λ(t′))−V (x′′′;λ(t′)))

+ βγ(β + k)λ̇µ(t)λ̇ν(t)

∫ x′′

−∞
dx′′′

∫ x′′′

−∞
dx′′′′

∂

∂λµ

(
∆Xν(x′′′′;λ(t′))e−β(V (x′′′′;λ(t′))−V (x′′′;λ(t′)))

)
− βγ(β + k)λ̈µ(t′)

(∫
d3x ∆Xµ(x′′;λ(t′))

e−β(V (x;λ(t))−V (x′;λ(t′))+V (x′′;λ(t′)))

Z[λ(t′)]

)

− βγ(β + k)λ̇µ(t′)λ̇ν(t′)

(∫
d3x

∂

∂λµ

(
∆Xµ(x′′;λ(t′))

e−β(V (x;λ(t′))−V (x′;λ(t′))+V (x′′;λ(t′)))

Z[λ(t′)]

))

− βγk(β + k)λ̇µ(t′)λ̇ν(t′)

(∫
d3x ∆Xµ(x;λ(t′))∆Xν(x′′;λ(t′))

e−β(V (x;λ(t′))−V (x′;λ(t′))+V (x′′;λ(t′)))

Z[λ(t′)]

)
(B.9)
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for Eq. (B.8), we obtain∫
dx pλ(t)eq (x)G2(x, k; t)

= − (βγ)2k(β + k)

∫ t

0
dt′λ̇µ(t′)λ̈ν(t′)

(∫
d5x ∆Xµ(x)∆Xν(x′′′′)

e−β(V (x)−V (x′)+V (x′′)−V (x′′′)+V (x′′′′))

Z

)

− (βγ)2k(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)λ̇ρ(t′)

×

(∫
d5x ∆Xµ(x)

∂

∂λν

(
∆Xρ(x′′′′)e−β(V (x′′′′)−V (x′′′))

) e−β(V (x)−V (x′)+V (x′′))

Z

)

+ (βγ)2k(β + k)

∫ t

0
dt′λ̇µ(t′)λ̈ν(t′)

(∫
d3x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x ∆Xν(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)

+ (βγ)2k(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)λ̇ρ(t′)

(∫
d3x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x

∂

∂λν

(
∆Xρ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

))

+ (βγ)2k2(β + k)

∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)λ̇ρ(t′)

(∫
d3x ∆Xµ(x)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x ∆Xν(x)∆Xρ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)

− (βγ)2k(β + k)2
∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)λ̇ρ(t′)

×

(∫
d5x ∆Xµ(x)∆Xν(x′′)∆Xρ(x′′′′)

e−β(V (x)−V (x′)+V (x′′)−V (x′′′)+V (x′′′′))

Z

)

+ (βγ)2k(β + k)2
∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)λ̇ρ(t′)

(∫
d3x ∆Xµ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)

×

(∫
d3x ∆Xν(x)∆Xρ(x′′)

e−β(V (x)−V (x′)+V (x′′))

Z

)

+

(
k(β + k)

β

)2 ∫ t

0
dt′λ̇µ(t′)λ̇ν(t′)ζ(1;0)µν (λ(t′))

∫ t′

0
dt′′λ̇ρ(t′′)λ̇σ(t′′)ζ(1;0)ρσ (λ(t′′)), (B.10)

where the multiple integrals are interpreted as∫
d3x · :=

∫ ∞

−∞
dx′
∫ ∞

x′
dx

∫ x′

−∞
dx′′ · (B.11)∫

d5x · :=

∫ ∞

−∞
dx′
∫ x′

−∞
dx′′′

∫ ∞

x′
dx

∫ x′

x′′′
dx′′

∫ x′′′

−∞
dx′′′′ · . (B.12)
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When the moment generating function is give by

⟨ekW ⟩ = ek∆F (1 + ϵa1 + ϵ2a2 +O(ϵ3)), (B.13)

then the cumulant generating function can be calculated as

log ⟨ekW ⟩ = k∆F + ϵa1 + ϵ2(a2 −
1

2
a1

2) +O(ϵ3). (B.14)

From Eqs. (B.10) and (B.14), we finally obtain the cumulant generating function up to O(ϵ2) as

shown in Eq. (7.50).
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[46] Ugo Marzolino and Tomaž Prosen. Quantum metrology with non-equilibrium steady states

of quantum spin chains. Phys. Rev. A, 90:062130, 2014.

[47] V Giovannetti, S Lloyd, and L Maccone. Advances in quantum metrology. Nat. Photonics,

5(4):222–229, 2011.

[48] Iman Marvian, Robert W. Spekkens, and Paolo Zanardi. Quantum speed limits, coherence,

and asymmetry. Phys. Rev. A, 93(5):1–12, 2016.
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