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A geometric perspective often provides us with a deep and intuitive understanding of

physics, such as Riemannian geometry in general relativeity, differential geometry with affine

connections in gauge theory, and topology in condensed matter physics. It is also useful

in the study of statistical mechanics. For example, the thermodynamic length is known

to be a natural distance between thermal equilibrium states, quantifying an energetic cost

to transform one equilibrium state to another. The metric induced by the thermodynamic

length is the classical Fisher metric, which plays an important role in information geometry.

Information geometry concerns a differential-geometric structure of statistical manifolds,

whose element represents a probability distributions. Originally, information geometry was

considered in the theory of statistical inference. The classical Fisher information, which

gives the upper bound on the precision of estimation through the Cramér-Rao inequality,

is identified as a natural metric on statistical manifolds. The classical Fisher information

is also characterized as the unique monotone metric, which means that it monotonically

decreases under information processing. Since a probability distribution on a phase space

can be interpreted as a (mixed) state in physics, we can say that for physicists, information

geometry treats an informationally natural geometric structure on the space of physical states.

If we consider quantum theory, probability distributions are replaced by density operators.

Then, the noncommutativity of operators allows much more abundant structures than the

classical information geometry. The quantum Fisher information is again characterized as

the monotone metric on the space of density operators, but there are infinitely many types of
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the quantum Fisher information. In fact, there is a one-to-one correspondence between the

quantum Fisher information and an operator monotone function. The physical meaning of

the quantum Fisher information has not fully clarified yet. Furthermore, even how to measure

it has been elusive.

Another situation where geometry has a close relation to statistical mechanics is thermo-

dynamic control, in which the system is controlled through time-dependent external control

parameters. One of the difficulties in analyzing nonequilibrium processes in thermodynamic

control is that observable quantities at some time depend not only on the value of the control

parameters at that time but also on the entire history of the control. However, when the

control is sufficiently slow, the average work performed on the system during the control can

be approximated by the squared length of the contour on the space of control parameters,

which are measured with the thermodynamic metric. This approximate expression for work

opens a way to analyze nonequilibrium processes from a geometrical perspective. There are

two problems concerning the evaluation of work in terms of the thermodynamic metric. First,

the condition on which this approximate expression is valid is not clear. We need to construct

a systematic expansion of the work to clarify the condition. Second, it can evaluate only the

average work and cannot evaluate the fluctuations.

In this thesis, we study nonequilibrium statistical mechanics from a geometric perspective.

In particular, we (i) examine the relation between quantum information geometry and linear

response theory, and (ii) analyze nonequilibrium processes in thermodynamic control and

derive a geometric expression for work.

The first original study in this thesis is to understand quantum information geometry

based on linear response theory. More concretely, we demonstrate that the quantum Fisher

information can be determined by measuring the linear response functions. The central idea

is as follows. The quantum Fisher information is quantitatively related to the fluctuations

or correlations through the quantum Cramér-Rao inequality. When the system is in thermal

equilibrium, such correlations are also quantitatively related to linear response functions to

external perturbations. Therefore, we can determine the quantum Fisher information through

linear response functions based on these two relations.

For that purpose, we first generalize the fluctuation-dissipation theorem, and establish the

quantitative relation between linear response functions and the generalized covariance. Based

on the generalized fluctuation-dissipation theorem, we can determine the generalized covari-

ance by measuring linear response functions such as the dynamical susceptibilities and the

complex admittances for all frequencies. Since the generalized covariance contains the same

amount of information on the quantum state as the quantum Fisher information, we can also

experimentally determine the quantum Fisher information in the same way. We demonstrate

that our result is applicable to an experimental determination of the skew information, and
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a validation of skew information-based uncertainty relations.

There are two advantages in our methods to determine the quantum Fisher information.

First, once we measure the linear response functions, we can determine any type of the

quantum Fisher information. Second, our method does not need quantum state tomography,

and therefore can avoid an exponentially large number of measurements even for large systems.

The second original study is on the analysis of work in thermodynamic control. We extend

the thermodynamic metric-based expression of work into two directions. One is to obtain a

systematic expansion of work from a phenomenological argument, and the other is to obtain

a work distribution for overdamped Langevin systems.

First, we derive a systematic expansion of the work assuming the perturbation series ex-

pansion and the Taylor expansion of the control parameter. Then we show that the obtained

expansion is actually in terms of a small parameter ϵ that characterizes how slowly we con-

trol the system, and the leading-order contribution is given by the thermodynamic metric

expression. We also discuss the physical picture of the next leading-order contributions to the

thermodynamic metric contribution. They can be detected by comparing the excess work in

a forward control and a backward control, and are predicted to scale as 1/T 2 as a function

of the total control time T . Since the expansion is derived without assuming the microscopic

dynamics, it is valid as long as the perturbation series expansion is valid.

Then, we examine the work distribution in overdamped Langevin systems. We derive the

time evolution equation for the moment generating function of the work, and solve it from the

lower-order contributions in ϵ. The O(ϵ) contribution to the generating function reproduces

two known facts: the work distribution is Gaussian, and the average work is given by the

thermodynamic metric. When we take up to O(ϵ2) contributions into account, the work

distribution exhibits nonzero skewness, which means that the fluctuation-dissipation relation

is violated with scaling 1/T 2. Furthermore, from the analytic calculation with numerical

supports, we conjecture that the n-th cumulant of the work scales as 1/Tn−1 for n ≥ 1.
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