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Abstract

Quantum state discrimination is one of the most fundamental tasks in quantum

information since it describes the read-out process of classical information from

quantum states in quantum communications. In quantum state discrimination, a

given test state is guaranteed to be identical to one of a set of candidate quantum

states. The task is to determine the identity of the test state by performing an

appropriate quantum measurement based on the classical descriptions of the

candidate states. Quantum state discrimination also has several connections to

the principles of quantum mechanics such as the no-cloning theorem and the

no-signaling principle.

One of fundamental properties of quantum mechanics is that the exact clas-

sical description of unknown quantum states cannot be retrieved from a single

copy of the physical state. Quantum state discrimination in the case that the

candidate states are given as two unknown physical states (reference states) but

their classical descriptions are not given, has been investigated. The two ref-

erence states are labeled one and two, respectively. The task is to determine

which of the two reference states is equivalent to the test state, whereas the

descriptions of the states are not of interest. We call such a task as equivalence

determination of quantum states.

Discrimination of quantum operations has been also investigated and it has

been shown that there is an intrinsic difference between discrimination of quan-

tum state and discrimination of quantum operations. We analyze a unitary

operation version of the equivalence determination task by using the concept of

higher-order quantum computation to investigate properties of discrimination of

other quantum objects. We consider three black-boxes (test box and reference

boxes) implementing unknown unitary operations given as physical systems. The

test box is guaranteed to implement one of the two unitary operations given by

the reference boxes. Equivalence determination of unitary operations is a task

to determine the reference box implementing the same unitary operation as the

one by the test box. We assume that the unitary operations of the reference

boxes are randomly sampled from the Haar measure of SU(2).

We first consider the case that each of three black-boxes can be used only

once both in parallel and ordered uses of the black-boxes. We show that the

optimal success probability for equivalence determination is 7/8 by obtaining an-

alytical solutions of the corresponding semidefinite programmings (SDPs) both

in the parallel and ordered strategies. The optimal success probability can be

achieved even without using one of the reference boxes. We also showed that

entanglement of an initial state across the systems on which the reference boxes



act and the test box acts is necessary to achieve the optimal success probability.

We then consider the case that the multiple uses of the reference boxes are al-

lowed. We consider the parallel strategies up to four uses of each of the reference

boxes and obtain the optimal success probabilities by numerically solving the

semidefinite programmings. We numerically show that the ordered strategies

give improvement over the parallel strategies and the optimal success probabil-

ity varies depending on the order of the black-boxes when one reference box is

used once and the other reference box is used twice. This result indicates that

an appropriate order of the black-boxes under the ordered strategies is necessary

to obtain improvement over the parallel strategies.
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Chapter 1

Introduction

Recently it has been revealed that the predictions of quantum mechanics affect

various information processing tasks. There are several information processing

tasks that can be performed more efficiently in the framework of quantum me-

chanics than in that of classical mechanics. For example, Shor’s algorithm [1]

enables to find prime factors of an integer in polynomial time, which can not be

possible by any known algorithms for classical computers. Another example is

Simon’s problem [2], which was proved to be solvable strictly more efficient in the

framework of quantum mechanics. The laws of quantum mechanics also impose

restrictions on information processing tasks. One example is the no-cloning the-

orem [3] that prevents making an identical copy of an unknown quantum state.

Interdisciplinary research efforts between quantum mechanics and information

science comprise what is presently known as quantum information.

Information processing tasks typically combine various primitive information

processing tasks. An information processing task can be described by a function,

the output of which is a result of the information processing task. Discrimination

is a task to determine a label of a given input when the input is chosen from a set

of labeled candidates. Discrimination is used in decoding process of information

processing tasks and classification of given inputs. Therefore discrimination is

regarded as a fundamental information processing task.

In quantum information, quantum state discrimination has been investigated

as a typical example of discrimination [4] . In quantum state discrimination,

one quantum test state is chosen from a set of candidate quantum states by an

apparatus. The task for a discriminator is to determine which quantum state

has been chosen by performing an appropriate quantum measurement on the

state generated by the apparatus. The quantum measurement is a shingle shot

measurement that gives an the measurement outcome is a label to identify a

chosen state, not the expectation value of a certain observable. A schematics

1



2 Chapter 1 Introduction

view of discrimination of quantum states is presented in Fig. 1.1.
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Figure 1.1: A schematic representation of quantum state discrimination

Quantum state discrimination is related to the fundamental properties of

quantum mechanics. When a test state is chosen from two non-orthogonal can-

didate quantum states, it is impossible to perfectly determine which candidate

state is identical to the test state whereas two different sequences of classical bits

can always be discriminated perfectly. Perfect discrimination of non-orthogonal

quantum states contradicts no-cloning theorem and no-signaling principle [5,6].

The optimality of quantum state discrimination is shown to be determined by

the no-signaling principle [7].

The task of quantum state discrimination appears in various quantum infor-

mation processing tasks. One example is quantum communication over a noisy

transmission. In quantum communication a sender encodes a classical message

on orthogonal quantum states and transmits the state to the receiver. Since the

state transmitted suffers from noises over the communication, the receiver needs

to discriminate non-orthogonal states to decode the message. Another example

is Grover’s algorithm. In Grover’s algorithm, an initial state is transformed to

one of candidate states that are different from each other depending on the so-

lution of the problem. To obtain the result, it is necessary to discriminate which

state is generated.

The target of quantum system to be discriminated are not limited to quantum

states. Quantum operations are also regarded as a carrier of information as well

as quantum states. Discrimination of quantum operations can be useful. In

the example of Grover’s algorithm, a solutions of the problem is considered to

be encoded on an operation, not a state and discriminating the operations is

necessary to obtain the result of the problem. In discrimination of quantum
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operations, a black-box called a test box that implements a quantum operation

chosen from a set of quantum operations is given. The task is to determine

which operation is performed by the test box. Since quantum measurements

can performed only on quantum states, discrimination of quantum operations

is reduced to discrimination of quantum state where the test state is obtained

by applying the operation by the test box on an initial state and the candidate

states are the states obtained by applying the candidate operations on the same

initial states. However, there is an intrinsic difference between discrimination of

quantum states and discrimination of quantum operations. It was shown that

perfect discrimination is possible for discrimination of a finite number of unitary

operations with the finite uses of the operation whereas perfect discrimination

is not possible for non-orthogonal quantum states with the finite copies of the

state [8, 9].

The goal of information theory is to construct theories that hold in every

information processing device, not ones satisfied in specific information process-

ing devices. Therefore a description of quantum information processing that

does not depend on specific quantum systems is needed. The quantum cir-

cuit model [10] is a way to describe quantum information processing without

depending on the specific quantum systems. Any quantum operations can be

represented by a quantum circuit in the quantum circuit models. Equivalence to

other models such as measurement based quantum computation [11], adiabatic

quantum computation [12] and topological quantum computation [13] is shown.

Formulations of quantum information processing including quantum oper-

ations as inputs and outputs have been recently developed and such quantum

information processing called higher-order quantum computation. One of the

operations of higher-order quantum computation is quantum supermaps [14,15]

that describe transformations between quantum operations. Higher-order quan-

tum computation is hierarchical since the operations of higher-order quantum

computation includes quantum supermaps as well as transformations of quan-

tum supermaps and even higher-order transformations.

Discrimination of quantum operations is also considered to be implemented

by higher-order quantum computation since the goal of the task is to implement

a function from a quantum operation to the label identifying one of the quantum

operations in the set. Discrimination of quantum operations can be described

by quantum combs [16–18], which are general schemes to formulate higher-order

quantum computation in the quantum circuit model. Quantum combs have been

shown to have various applications for discrimination and estimation of quantum

operations [19], cloning of transformations [20, 21] and quantum learning [22].

In quantum state discrimination, classical descriptions of candidate states
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are given. Depending on the classical descriptions, an optimal quantum mea-

surement is chosen so as to maximize a certain figure of merit such as the success

probability for obtaining the correct answer. The optimal measurement depends

on the candidate states and it is necessary to derive the another optimal measure-

ment every-time the candidate states are changed. For the case of discrimination

of quantum operations, derivations and adaptations of the pair of the optimal

initial state and the measurement are required as well every time the candidate

operations are changed since both of the optimal initial state for the operations

and a measurement depend on the candidate operations for discrimination of

quantum operations.

Classical descriptions of quantum states are considered as stronger resources

for quantum state discrimination than the physical states when we assume the

existence of a quantum computer that can implement any quantum operations

allowed by the principles of quantum mechanics. From the classical description

of a quantum state, the arbitrary number of the physical state can be prepared

by using a quantum computer. In contrast, if a physical state is given but its

classical description is unknown, it is impossible to exactly identify the classical

description of the state by finite copies of the physical state. The no-cloning the-

orem prevents making identical copies of unknown states either. This difference

appears in quantum mechanics, not in classical mechanics.

For quantum state discrimination, it is possible to consider the case that

the candidate states for discrimination are given as physical states, but their

classical descriptions are not given [23]. For the case with two candidate states,

two unknown states (reference states) as candidates and a state (test state) that

is guaranteed to be one of the two reference state are given as physical states.

The task is to determine which of the two reference states is equivalent to the test

state by performing an appropriate quantum measurement on the two reference

states and the test state, whereas the classical description of the test state is not

of interest. We call this task as equivalence determination of quantum states.

The optimal measurement on the three states does not depend on the candidate

states. Therefore the adaptation for the optimal measurement is not required

when the candidate states are changed. This task was first introduced in [23]

for a special setting and the optimal protocols in various general settings have

been investigated [24–32].

We analyze a unitary operation version of the equivalence determination task

to investigate properties of discrimination of other quantum objects as the next

step. We consider that three black-boxes (a test box and two reference boxes)

implementing unknown unitary operations are given as physical systems. The

test box is guaranteed to implement one of the two unitary operations. As is
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the case with equivalence determination of quantum states, the two reference

boxes implement the two unitary operations, respectively, instead of being given

classical descriptions of the two unitary operations. Thus the equivalence deter-

mination task for unitary operations is to determine which of the two reference

boxes implements the same unitary operation of the test box, whereas the classi-

cal description of the unitary operations are not of interest similarly to the case

of states. For equivalence determination of unitary operations, the operations

implemented by the test box and the two reference boxes are performed on an

appropriate initial state to obtain an output state and the measurement out-

come is obtained by performing an appropriate quantum measurement on the

output state. Equivalence determination of unitary operations can be regarded

as higher-order quantum computation taking three unitary operations as inputs

and a binary number representing the reference box identical to the test box

as an output. We analyze the optimal success probability of the protocols re-

alizing higher-order quantum computation of equivalence determination for the

case that the unitary operations are uniform-randomly sampled for a qubit sys-

tem, namely the special unitary group SU(2). A schematics view of equivalence

determination of unitary operations are given in Fig. 1.2.

1 2

classical descriptions
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✓
⇤0 ⇤0
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◆
U1 =

✓
⇤ ⇤
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◆
NO CLASSICAL DESCRIPTIONS

orU1 U2

Figure 1.2: A schematics view of equivalence determination of unitary operations

One of the significant differences between equivalence determination of quan-

tum states and unitary operations is that there is an extra degree of freedom

to optimize for the case of unitary operations, an initial state for the unitary

operations. Another difference is that there are two types of strategies, parallel

strategies and ordered strategies for equivalence determination of unitary opera-

tions. In parallel strategies, any operations between the uses of the black-boxes
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is not allowed. But in general, arbitrary operations between the uses of black-

boxes can be inserted, which we call the ordered strategies. There are several

tasks [33–36], in which the ordered strategies outperform the parallel strategies,

but conditions for improvements under the ordered strategies not yet known.

Further, equivalence determination of unitary operations is a problem described

by higher-order quantum computation of which inputs are more than two differ-

ent operations. To the best of our knowledge, such a task considered before is

only the problem of implementing quantum switch [37]. In quantum mechanics,

when the order of operations is changed, the resulting operations may be differ-

ent since quantum operations do not commute each other in general. Therefore

the order of the use of the black-boxes is expected to affect the performance of

equivalence determination of unitary operations. As an application, equivalence

determination of unitary operations can be useful for checking whether two dif-

ferent quantum circuit representations implement the same quantum dynamics

or not.

In Chap. 4, we first analyze equivalence determination unitary operations

with a single use of each of the two reference boxes under both the parallel

strategies and the ordered strategies, and show that the ordered use of the

black-boxes does not give improvement in any order for this case. We also show

that one of the two reference boxes is not necessary for achieving the optimal

success probability since the optimal success probability can be also achieved

by a simplified task called comparison of two unitary operations [38], which is a

task to decide whether two black-boxes implement the same unitary operations

or not. We analyze another case that the classical description of the unitary

operation of one of the reference box is given and derive the optimal success

probability for the cases where the other reference box is not given or allowed

to use only once.

In Chap. 5, we analyze equivalence determination of unitary operations when

the multiple uses of the reference boxes are allowed. We obtain the optimal suc-

cess probability by formulating the optimization problem as semidefinite pro-

grammings and solving the semidefinite programmings numerically. We first

consider the parallel strategies up to four uses of each of the reference boxes

and see the behavior of the optimal success probability when the number of

the use of the reference boxes increases. We numerically show that the ordered

strategies give improvement over the parallel strategies and the optimal success

probability varies depending on the deferent orders of the black-boxes when one

reference box is be used once and the other reference box is be used twice.

This thesis is organized as follows. In Chap. 2 we review the basic mathe-

matical tools used in the following chapters. In Chap. 3, we introduce quantum



7

state discrimination, discrimination of quantum channels and related topics. In

Chap. 4, we formulate and solve equivalence determination of unitary operations

when each of the the reference boxes can be used only once. In Chap. 5 we in-

vestigate equivalence determination of unitary operations with the multiple uses

of the reference boxes. We close this thesis with a conclusion in Chap. 6.
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Notations

• Hi, Kj : Hilbert spaces labeled with i and j.

• L(H): The set of linear operators on H.

• L(H,K): The set of linear operators from H to K.

• S(H) : The set of positive semidefinite linear operation of unit trace on H

• TrH : The partial trace over H

• U †: The conjugate transpose of U

• {Πi}: The positive operator-valued measure

• {Π̃i}: The quantum tester

• δij: The Kronecker delta, equal to 1 if i = j and 0 otherwise

• dµ(·) : The Haar measure, the uniform distribution of the space of unitary

operations

• |I⟩⟩ : Unnormalized maximally entangled vector defined as |I⟩⟩ =
∑

i |i⟩|i⟩

• M : A quantum channel

• M : Choi operator of a quantum channel M

• Uj : The irreducible subspace of the total angular momentum j.

• V [N ]
j : The multiplicity subspace of the irreducible subspace Uj with N

spin-1/2 particles

• ⌊N⌋ : The value is equal to 0 when N is even and 1/2 otherwise.

• ∥ρ∥1: The trace norm of ρ

• ∥M∥⋄: The diamond norm of M

• IH : The identity operator on H

• Ij : The identity operator on Uj

• IH : The identity channel from L(H) to L(H)



Chapter 2

Preliminaries

In this chapter, we introduce terminologies and notations used in this thesis. In

Sec. 2.1, we briefly summarize quantum states, quantum operations and quan-

tum measurements. In Sec. 2.1.2, we introduce quantum channels that describe

transformations between quantum states. In Sec. 2.1.3, two norms for quan-

tum states and quantum channels are defined. We briefly explain the quantum

circuit model in Sec. 2.2 and the Choi-Jamio"lkowski isomorphism which is the

duality of quantum channels and quantum states in Sec. 2.3. In Sec. 2.4, we

give a detailed explanation of quantum combs, which is a main technique used

in this thesis.

2.1 States and Operations

2.1.1 States

A quantum system is associated with a Hilbert space denoted as H = Cd. A

linear operator A on H is positive semidefinite if ⟨ψ|A|ψ⟩ ≥ 0 for an arbitrary

normalized vector in H and that is denoted as A ≥ 0. A quantum state of the

systemH is represented by a positive semidefinite operator ρ ≥ 0 onH satisfying

Trρ = 1. The operator representing a state is called density operator. When

a quantum state ρ is a projective operator, i.e., ρ2 = ρ, there is a normalized

vector |ψ⟩ ∈ H satisfying ρ = |ψ⟩⟨ψ| and the state is called a pure state. For

the representation of a pure state, we use both a density operator |ψ⟩⟨ψ| and a

ket vector |ψ⟩. When a quantum state is not a pure state, the state is called

a mixed state. In quantum information, the computational basis is often used

for a standard basis and represented as {|i⟩}i=1,2,··· ,d, where ⟨i|j⟩ = δij for the

Kronecker delta δij. We deal with only finite dimensional Hilbert spaces and

always assume that operators on the Hilbert spaces are normal in this thesis.

9
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We also note that A ≥ B ⇔ A−B ≥ 0 for arbitrary two linear operators A and

B.

For independent two Hilbert spaces H1 and H2, the composite Hilbert space

of these Hilbert spaces is represented as the tensor product of the two spaces

H1⊗H2. A pure state |ψ⟩ in the composite space is called a product state if there

are two states |φ⟩ and |η⟩ in H1 and H2, respectively, such that |ψ⟩ = |ψ⟩ ⊗ |η⟩.
A pure state is called entangled if the state is not a product state. Similarly, a

mixed state ρ ∈ S(H1 ⊗H2) is called a product state if the state is written as a

tensor product of two mixed states in S(H1) and S(H1), respectively. A mixed

state ρ is called a separable state if ρ is represented as ρ =
∑

i piσi ⊗ ηi with a

probability distribution {pi} and sets of mixed states {σi} and {ηi} in S(H1)

and S(H2), respectively. A mixed state is called entangled if the state is not

separable.

We consider a bipartite Hilbert space H ⊗ H and define a unnormalized

maximally entangled vector |I⟩⟩ as

|I⟩⟩ :=
dimH∑

i=1

|i⟩|i⟩, (2.1)

in the computational basis {|i⟩}dimH
i=1 . For any pure state |ψ⟩ ∈ H ⊗ H, there

exists a positive operator X satisfying Tr[X] = 1 such that |ψ⟩ = IH ⊗
√
X|I⟩⟩.

Note that
√
X is define as a positive operator satisfying

√
X
√
X = X. Consid-

ering the singular value decomposition of X, one can always find the Schmidt

decoposition of |ψ⟩ represented as

|ψ⟩ =
dimH∑

i=1

√
λi|ei⟩|fi⟩, (2.2)

where λi is a non-negative real number called the Schmidt coefficient and {|ei⟩}
and {|fi⟩} form orthonormal bases called the Schmidt bases. The number of

non-zero Schmidt coefficients is called the Schmidt rank. When the dimensions

of the two subsystems H1 and H2 are different, the Schmidt rank is at most

min{dimH1, dimH2}.
We call the Hilbert space H, where dimH = 2 as a qubit system and a state

in the system as a qubit state.

2.1.2 Operations

Completely-positive Trace-preserving Maps

Any quantum state can be represented by a density operator that is a positive

semidefinite operator with unit trace. The most general deterministic transfor-
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mations allowed for quantum states described by density operators are called

quantum channels and they are given by the linear maps called completely-

positive and trace-preserving (CPTP) maps.

For a linear map M from L(H) to L(K), the trace-preserving property is

written as

Tr[M(A)] = Tr[A] (2.3)

for any operator A ∈ L(H). Thus TrM(ρ) = 1 is guaranteed for Trρ = 1 if M
is a quantum channel. The completely-positive condition is represented as

(M⊗ IHA)(ρ) ≥ 0, (2.4)

for any positive semidefinite operator ρ on H ⊗ HA and any ancillary system

HA, where IHA is the identity channel from L(HA) to L(HA), which is defined

as IHA(σ) = σ for any σ ∈ L(HA). We use quantum channels to represent deter-

ministic quantum operations that satisfy the properties of completely-positive

and trace-preserving.

Remark. One may consider that the set of positive maps, which transforms

any positive semidefinite operator to a positive semidefinite operator, is a class

of most general maps describing transformations between quantum states. But

it is not the case. This is because positive maps can be applied on a part of a

entangled state of a composite system. In such a case, positivity of a map does

not guarantee the output state to be positive. Examples of positive, but non

completely-positive maps are transposition and the Choi maps [39].

There are several ways to represent a quantum channel. One useful repre-

sentation is the Kraus representation. For any quantum channel M from L(H)

to L(K), there is a set of linear operators {Fi} with Fi ∈ L(H,K) satisfying∑
i F

†
i Fi = IH and the action of the map is represented as

M(ρ) =
∑

i

FiρF
†
i . (2.5)

The right hand side of Equation (2.5) is called the Kraus representation. The

sufficient number of the Kraus operators is at most dimH× dimK.

A unitary operation is a special case of quantum channels. A unitary op-

eration has only single Kraus operator, which is a unitary operator U ∈ L(H)

satisfying U †U = UU † = IH, where IH is the identity operator onH. Unitary op-

erators transform pure states |ψ⟩ and |φ⟩ to pure states and the inner product of

the two pure states is preserved under the unitary operator ⟨ψ|φ⟩ = ⟨ψ|U †U |φ⟩.
One class of quantum channels used in Chap. 4 is a random unitary channel.

A random unitary channel is associated with a probability distribution {pi}Ni=1
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and a set of unitary operators {Ui}Ni=1 with Ui ∈ L(H,K). A random unitary

channel MU is represented as

MU(ρ) =
N∑

i=1

piUiρU
†
i . (2.6)

Quantum Measurements

A quantum measurement can be understood as a probabilistic process mapping

a state to classical bits based on the Born rule. Such a quantum measurement

is mathematically described by a set of operators {Πi} satisfying

Πi ≥ 0,
∑

i

Πi = I, (2.7)

where I is the identity operator of the system. The set {Πi} is called a positive

operator-valued measure (POVM) and this type of measurements is called POVM

measurements.

When a POVM measurement given by {Πi} is performed on a quantum state

ρ, the probability for obtaining an outcome i is given by the Born rule as

pi = Tr[ρΠi]. (2.8)

The value pi is non-negative since the trace of the product of two positive oper-

ators is non-negative, namely, for positive operators A and B, we have

Tr[AB] = Tr[A
∑

j

bj|φi⟩⟨φj|] =
∑

j

bj⟨φj|A|φj⟩ ≥ 0, (2.9)

where B =
∑

j bj|φj⟩⟨φj| is the eigenvalue decomposition of B. The sum of the

pi is give by

∑

i

pi =
∑

i

Tr[ρΠi] = Tr[ρ
∑

i

Πi] = Tr[ρ] = 1. (2.10)

Therefore the set {pi} is a probability distribution.

Quantum Instruments

A quantum instrument is a probabilistic process mapping a quantum state to

another state labeled by an outcome. It represent a probabilistic state trans-

formation performed by the result of a quantum measurements. A quantum

instrument is mathematically described by a set of trace non-increasing and
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completely-positive maps {Ei}, the sum of which E =
∑

i E is a quantum chan-

nel. The set {Ei} is called a quantum instrument. The subscript i corresponds to

the measurement outcome and the post measurement state is given by Ei(ρ) for
an input state ρ of the measurement. The probability for obtaining the outcome

i is give by Tr[E1(ρ)].

2.1.3 Norms

In this section, we review two norms for our analysis used in the following

chapters. One is for linear operators and the other is for quantum channels.

Trace Norms

The trace norm ∥ · ∥1 of an linear operator A ∈ L(H) is defined as

∥A∥1 := Tr
√
A†A. (2.11)

The trace norm of A is equivalent to the sum of all singular values of A. For

ρ, σ in S(H), the trace distance is defined as

d1(ρ, σ) =
1

2
∥ρ− σ∥1. (2.12)

The trace distance satisfies conditions for distance measures. The trace distance

of two quantum states is use to represent the success probability for minimum-

error discrimination of the two quantum states, which is presented in Chap. 3.

Diamond Norms

For a quantum channel M from L(H) to L(K), the diamond norm is define as

∥M∥⋄ = sup
ρ∈S(H⊗H)

∥(M⊗ IH)(ρ)∥1. (2.13)

The distance of two quantum channels M1 and M2 induced by the diamond

norm is

d⋄(M1,M2) =
1

2
∥M1 −M2∥⋄. (2.14)

We will see this distance is related to the optimal success probability in minimum-

error discrimination of the two quantum channels as we will see in Chap. 3.
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ρ1 M2

M3

{Πi}M5

ρ2
M1 M4

Figure 2.1: A schematic view of a quantum circuit. In this circuit, an input

state is ρ1 ⊗ ρ2. On the state, five quantum channels {Mi}5i=1 are applied,

followed by a POVM measurement {Πi}. At this stage the outcome of the

POVM measurement is not yet specified.

2.2 Quantum Circuit Model

There are several models for quantum computation, for example the quantum

circuit model [10], measurement based quantum computation [11], adiabatic

quantum computation [12] and topological quantum computation [13]. In this

section, we present a brief explanation for the quantum circuit model used for the

analysis in this thesis. We follow the notation presented in [17]. The quantum

circuit model consists of quantum states, quantum operations and horizontal

lines (sometimes called quantum wires) connecting states and operations (see

Fig. 2.1). Input states are placed on the far left side of the circuit and a sequence

of operations are applied from left to right along the horizontal lines. When a

state enters a box representing a quantum channel, the channel is applied on the

state. When horizontal lines enter a box representing a POVMmeasurement, the

POVM measurement is performed on the state and the measurement outcome

is obtained.

Any quantum channel can be represented by adding an auxiliary system,

prepared in a fixed state, applying a unitary operations on the composite sys-

tem and tracing out the auxiliary system. This representation is called the

Stinespring representation. In the Stinespring representation, an input state

ρ ∈ S(H) and a fixed state ρ0 ∈ S(HA) are prepared. A unitary operator U

from H⊗HA to K⊗KA is applied. Finally the auxiliary system HA is discarded

by partially tracing out. For any quantum channel M from L(H) to L(K), there

always exists a unitary operator U from H ⊗HA to K ⊗ KA and a fixed state
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ρ0 ∈ S(HA) such that

M(ρ) = TrKA [UM(ρ⊗ ρ0)U
†
M]. (2.15)

Note that the fixed state ρ0 can be chosen to be independent on M. The circuit

for the Stinspring representation of M is given in Fig. 2.2.

ρ
H

U

H
Trace out

ρ0
HA KA

M(ρ)

(2.16)

Figure 2.2: The Stinespring representation for a quantum channel M. The state

ρ0 in the ancillary system is fixed.

2.3 Choi-Jamio!lkowski Isomorphism

To analyze quantum channels the channel-state duality is useful. We consider a

linear map M from L(H) to L(K). The Choi operator M of the linear map M
is defined as

M := (M⊗ I)(|I⟩⟩⟨⟨I|) ∈ L(K ⊗H), (2.17)

where |I⟩⟩ is an unnormalized maximally entangled vector defined by Equation

(2.1). Here we use the same characterH for representing the two systems. When

we apply a CPTP map on the part of a bipartite system, we always assume that

the CPTP map is applied on the first system of the tensor product H⊗H and

the second one is the ancillary system. Thus the linear map M is acting on the

left system of H⊗H.

The Choi operator M has complete information about the map M. With

the Choi operator, the action of the original map can be described as

M(ρ) = TrH[M(IK ⊗ ρT )], (2.18)

for an input state ρ ∈ S(H) .

The following proposition gives a relation between a channel and the corre-

sponding Choi operator [40].

Proposition 1. For a linear map M from L(H) to L(K), we have

• M is completely positive if and only if the corresponding Choi operator M

is positive semidefinite.
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• M is trace preserving if and only if the corresponding Choi operator M

satisfies TrHM = IK.

An important point is the map M → M is a bijection.

2.4 Quantum Combs

In this section, we introduce quantum combs, which are the Choi operators

representing a transformation between quantum operations, formulated in [16–

18]. We first define the link product of the two Choi operators and describe

the concatenation of two quantum channels in terms of the corresponding Choi

operators. Then we introduce quantum 2-combs transforming a single quantum

operation to another quantum operation. After that, deterministic quantum

combs are introduced. Finally probabilistic quantum combs and quantum testers

are defined.

2.4.1 Deterministic Quantum Combs

The Link Product

For two CPTP maps M1 from L(H1) to L(H2) and M2 from L(H2) to L(H3),

we denote the corresponding Choi operators asM1 andM2, respectively. We first

derive the Choi operator of the composition of the two channelsM3 := M2◦M1

from L(H1) to L(H3) (see Fig. 2.3). When an input state ρin ∈ S(H1) is

transformed by the channel M3, the output state ρout ∈ S(H3) is represented

as

ρout = TrH2 [M2(IH3 ⊗ (TrH1 [M1(IH2 ⊗ ρTH1 )])TH2 ]) (2.19)

= TrH1 [TrH2 [(M2 ⊗ IH1)(IH3 ⊗M
TH2
1 )](IH3 ⊗ ρT )], (2.20)

where we used Equation (2.18) to represent the channel in terms of the Choi

operator Mi. Using Equation (2.18) with the Choi operator of M3, ρout is also

represented as

ρout = TrH1 [M3(IH3 ⊗ ρT )]. (2.21)

Since the Choi isomorphism M → M is a bijection, the Choi operator of M3 is

represented as

M3 = TrH2 [(M2 ⊗ IH1)(IH3 ⊗M
TH2
1 )]. (2.22)

To generalize the way to represent the Choi operator corresponding to the

quantum channels, we define the link product ∗ of two operators.
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M1 M2 M3=

M3=M2 ⇤M1

Choi isomorphism

Figure 2.3: The concatenation of two quantum channels M1 and M2. The Choi

operator M3 of a composite map M3 = M2 ◦M1 is given by the link product

M2 ∗M3.

Definition 1. Let C be an operator in L(
⊗

i∈I Hi) and D be an operator in

L(
⊗

j∈J Hj) with finite sets of indices I and J. The link product ∗ of the two

operators C and D is defined as

C ∗D := TrHI
⋂

J
[(IHJ\I ⊗ C)(IHI\JD

THI
⋂

J )], (2.23)

where I\J = {i ∈ I|i ̸∈ J} and HK =
⊗

k∈K Hk.

The Choi operator of a composition of two general CPTP maps is derived

by the following theorem.

Theorem 1. Let M be a quantum channel from L(
⊗

i∈IM Hi) to L(
⊗

j∈OM
Hj)

and N be a quantum channel from L(
⊗

i∈IN Hi) to L(
⊗

j∈ON
Hj), where the sets

of finite indices IM and OM (IN and ON ) specify the input and output Hilbert

spaces of the channel M(N ) with OM
⋂

IN . Let M and N be the Choi operators

of M and N , respectively. Then the Choi operator of the composition of M and

N is given by M ∗N .

Proof. Calculate the action of the composite channel

((M)⊗ IHON \IM)(IHIM\ON
⊗N )

ofM andN in two ways as we showed forM3 = M2◦M1, M1 andM2, and use

the bijective property between the Choi operator and a quantum channel.

Quantum 2-Combs

To introduce quantum combs, we consider a composite channel of two quantum

channels linked subsystems of each channel. For a quantum channel M1 from

L(K0) to L(H1⊗HA12) and a quantum channelM2 from L(K1⊗HA12) to L(H2),

the Choi operator M ∈ L(H2 ⊗K1 ⊗H1 ⊗K0) of the composite channel of M1

and M2 from L(K0 ⊗K1) to L(H1 ⊗H2) shown in Fig. 2.4 is represented by
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M = M2 ∗M1 = TrHA12
[(M2 ⊗ IH1K0)(IH2K1 ⊗M

THA12
1 ). (2.24)

K0

M1

H1 K1

M2

H2

HA12

Figure 2.4: Two quantum channels M1 and M2 are connected by an ancillary

system HA12 .

We consider conditions for the Choi operator M of a composite channel to

satisfy. First, M is positive semidefinite since M is the Choi operator of a

quantum channel. Taking the partial trace on H2, we obtain

TrH2M = TrHA12
[(TrH2 [M2]⊗ IH1K0)(IK1 ⊗M

THA12
1 ) (2.25)

= TrHA12
[(IK1 ⊗ IH1K0)(IK1 ⊗M

THA12
1 ) (2.26)

= IK1 ⊗ TrHA12
[M

THA12
1 ] (2.27)

= IK1 ⊗M (1), (2.28)

where we define M (1) := TrHA12
[M

THA12
1 ] = TrHA12

[M1]. Taking the partial trace

on H1 for M (1), we obtain

TrH1M
(1) = TrH1HA12

[M1] = IK0 . (2.29)

Therefore M satisfies

M ≥ 0,TrH2 = IK1 ⊗M (1),TrH1M
(1) = IK0 . (2.30)

Conversely, for an operator M ∈ L(H2⊗K1⊗H1⊗K0) satisfying Conditions

(2.30) for a certain positive semidefinite operator M (1), it is shown in [18] that

there exist quantum channels M1 from L(K0) to L(H1 ⊗ HA12) and M2 from

L(K1 ⊗ HA12) to L(H2) such that the Choi operator of the composite channel

of M1 and M2 is M .

This type of the Choi operatorM is called a quantum comb, more specifically,

a quantum 2-comb. The quantum 2-comb represents a transformation between

quantum channels. Consider a quantum channel N from L(H1) to L(K1). Con-

necting the output of M1 to the input of N and the output of N to the input

of M2, we obtain a quantum channel R from L(K0) to L(H2) as a sequence of
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K0

M1

H1
N

K1

M2

H2

HA12

=
K0

R
H2

Figure 2.5: A quantum channel N from L(H1) to L(K1) is inserted into the

open slot between H1 and K1 of M = M2 ∗ M1 shown in Figure 2.4. The

resulting channel is R from L(K0) to L(H2). This can be considered that N is

transformed to R by applying M1 and M2 before and after N .

the three quantum channels M1,N and M2 as shown in Fig. 2.5. In terms of

the corresponding Choi operators M given by Equation (2.24) and N , the Choi

operator R of the resulting channel R is represented as

R = M ∗N (2.31)

= TrH1K1 [M(IH2K0 ⊗NT )]. (2.32)

That is, the quantum 2-comb M can be describes the transformation from N to

R.

Deterministic Quantum Combs

The quantum 2-comb can be generalized by considering the composition of ar-

bitrary number of quantum channels. Let Mi be a quantum channel from

L(Ki ⊗ HAi−1i) to L(Hi ⊗ HAii+1) for i = 1, 2, · · · , N , where we set HA01 =

HANN+1 = C. Denoting the Choi operator of Mi as Mi, the Choi operator of

the composite channel of these N quantum channels is given by

M = M1 ∗M2 ∗ · · · ∗MN . (2.33)

The resulting M satisfies

M ≥ 0, TrHiM
(N) = IKi ⊗M (i−1), (2.34)

for i = 1, 2, · · · , N where M = M (N) and M (0) = 1.

Conversely, for an operator M satisfying Equation (2.34), it is shown in [18]

that there exists a set of quantum channels {Mi} from L(Ki−1 ⊗ HAi−1i) to

L(Hi ⊗ HAii+1) for i = 1, 2, · · · , N , where HA01 = HANN+1 = C such that the

Choi operator of the composite channel of Mi’s is given by M . This M is called

quantum N -comb [18].
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2.4.2 Probabilistic Quantum Combs

Probabilistic transformations of quantum channels can be also formulated in a

similar way of quantum combs. A probabilistic quantum comb F is the Choi

operator of a composition of a set of completely-positive, trace non-increasing

maps {Ci}. The condition for the operator F to be a probabilistic quantum

comb is the existence of a deterministic quantum comb S such that 0 ≤ F ≤ S.

In addition, a generalized instrument is defined as a set of probabilistic quan-

tum combs such that the sum of the probabilistic quantum combs is a determin-

istic quantum comb. Generalized instruments can be represented as a sequence

of quantum channels and a POVM measurement on the ancillary system.

Quantum Testers

A generalized instrument is called a quantum tester when dim(K0) = dim(HN) =

1. The quantum tester can be regarded as a generalized POVM measurement,

which is a probabilistic transformation from a quantum quantum comb to a real

number. Since a quantum tester is one of the main techniques used in this thesis,

we give the rigorous definition.

Definition 2. Quantum N-tester is a set of operators {Π̃i} when each Π̃i ∈
L(
⊗N−1

i=1 Hi ⊗
⊗N−1

j=1 Kj) satisfies

Π̃i ≥ 0 (2.35)
∑

i

Π̃i = IKN ⊗X(N−1) (2.36)

TrHjX
(j) = IKj−1 ⊗X(j−1), for j = 2, · · · , N − 1 (2.37)

TrX(1) = 1. (2.38)

When the quantum N -tester {Π̃i} is combined with a quantum (N − 1)-comb R,

the probability obtaining the outcome i is given by

pi = Tr[MiR
T ]. (2.39)

For distinguishing a quantum tester and a POVM, we represent an element

of a quantum tester as Π̃i. Quantum 2-testers describe both of the initial state

on the part of which a quantum channel is applied and a quantum measurement

after the application of the quantum channel.　　



Chapter 3

Discrimination of States and
Operations

In this chapter, we review several discrimination tasks studied in quantum in-

formation. In Sec. 3.1, we give a formulation of quantum state discrimination,

which is one of the fundamentally important tasks in quantum information as

a way to decode classical information encoded in quantum states. In Sec. 3.2,

we formulate discrimination of quantum channels. In particular, a detailed ex-

planation about discrimination of unitary operations is given in order to show

an intrinsic difference between discrimination of states and unitary operations

in Sec. 3.2.2. In Sec. 3.3, we review a universal state discriminator, in which

the description of candidate states are not given by classical information, but

given as an unknown quantum states. In Sec. 3.4, we introduce tasks called

comparison of quantum states and comparison of unitary operations, which are

special cases of the tasks analyzed in the following chapters.

3.1 Quantum State Discrimination

3.1.1 Setting for Quantum State Discrimination

We consider a set of states {ρi}Ni=1 in S(H) and the corresponding probability

distribution {qi}Ni=1 of which descriptions are given, that is, the matrix repre-

sentation of ρi and the probability distribution {qi} are provided. An apparatus

generates a state ρi with the probability qi. A discrimination task is to deter-

mine which quantum state is generated by the apparatus by a measurement on

the generated state. Note that the goal of the task is not to identify the matrix

representation of the state.

The task is analyzed by using a POVM measurement given by {Πi}Li=1, L

21
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ρj {Πi}

Figure 3.1: A schematic figure to represent the discrimination tasks. An appa-

ratus generates a state ρi chosen from {ρi} and a POVM {Πi} is applied by the

discriminator.

is the number of the outcomes. When a state ρi is generated, the conditional

probability p(k|i) to obtain measurement outcome k is given by

p(k|i) = Tr[ρiΠk]. (3.1)

A quantum circuit for the representation of the task is shown in Fig. 3.1.

The POVM can be optimized according to the set of states {ρi} and the

probability distribution {qi} to maximize a certain figure of merit. For quantum

state discrimination, mainly two different figures of merit have been analyzed.

We review the two methods, minimum-error discrimination and unambiguous

discrimination, but more focus on the minimum-error discrimination, which is

used in this thesis.

3.1.2 Minimum-error Discrimination

In minimum-error state discrimination, the discriminator tries to minimize the

error probability over all states in the set (or equivalently, maximize the success

probability for obtaining correct guesses). The correct guess is achieved by

obtaining the measurement outcome j when the generated state is ρj. We can

assume L = N since N is sufficient for discriminating all different states by

different outcomes. The average success probability psucc is given by

psucc =
N∑

i=1

p(i, i) =
N∑

i=1

p(i|i)qi =
N∑

i=1

qiTr[Πiρi]. (3.2)

Maximizing such a success probability is a kind of convex optimization prob-

lem called a semidefinite programming (SDP). The optimization problem can

be rewritten in a standard form as presented in Appx. A.

Using the formulation of the minimum-error state discrimination problem

as an SDP, we can numerically calculate the optimal success probability and

the optimal POVM. However the dimension of the system is 2M for a M -qubit

systems and numerical analysis is difficult for large quantum systems.

The optimal POVM is not necessarily unique and it is difficult to analyti-

cally obtain the optimal POVM and the optimal success probability in general.
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However for specific cases, the optimal POVM and the optimal success probabil-

ity can be derived [4, 41–43]. We explain out of such cases, the minimum-error

discrimination of just two states and give the closed formulas.

Minimum-error Discrimination of Two Quantum States

For discriminating two states ρ1 and ρ2 in S(H), the optimization problem is

described as

maximize psucc = Tr[q1ρ1Π1 + q2ρ2Π2] (3.3)

subject to Π1,Π2 ≥ 0

Π1 + Π2 = IH, (3.4)

where IH is the identity operator on H. By introducing an operator Π, we define

Π as

Π1 =
1

2
(IH + Π), Π2 =

1

2
(IH − Π). (3.5)

To satisfy the positivity condition for Π1 and Π2, the operator Π should satisfy

−IH ≤ Π ≤ IH. Substituting Π1 and Π2 given in Equation (3.5) into Equation

(3.3), we have

psucc =
1

2
Tr[q1ρ1(IH + Π) + q2ρ2(IH − Π)] (3.6)

=
1

2
Tr[(q1ρ1 + q2ρ2) + (q1ρ1 − q2ρ2)Π] (3.7)

=
1

2
+

1

2
Tr[(q1ρ1 − q2ρ2)Π], (3.8)

where we used Tr[ρ1] = Tr[ρ2] = 1 and q1 + q2 = 1.

The spectral decomposition of the operator q1ρ1 − q2ρ2 is represented by

q1ρ1 − q2ρ2 =
d+∑

i=1

λ+i |ψ+
i ⟩⟨ψ+

i |+
d−∑

i=1

λ−i |ψ−
i ⟩⟨ψ−

i |, (3.9)

where λ+i (λ
−
i ) is the non-negative (non-positive) eigenvalue, |φ±

i ⟩ is the eigenvec-
tor and d+ + d− = d. Then the operator Π maximizing the success probability

is given by

Π =
d+∑

i=1

|ψ+
i ⟩⟨ψ+

i |−
d−∑

i=1

|ψ−
i ⟩⟨ψ−

i |. (3.10)

Thus the optimal success probability is given by

poptsucc =
1

2
+

1

2
(
d+∑

i=1

λ+i −
d−∑

i=1

λ−i ) (3.11)

=
1

2
+

1

2
∥q1ρ1 − q2ρ2∥1, (3.12)
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where ∥ · ∥1 is the trace norm introduced in Sec 2.1.3 and the optimal POVM is

given by

Π1 =
d+∑

i=1

|ψ+
i ⟩⟨ψ+

i |, Π2 =
d−∑

i=1

|ψ−
i ⟩⟨ψ−

i |, (3.13)

which are the projections onto the positive and the negative part of q1ρ1 − q2ρ2.

3.1.3 Unambiguous Discrimination

In minimum-error discrimination, the measurement outcome i does not neces-

sary imply the generated state is certainly ρi if the states in {ρ1} are not mutually

orthogonal. In unambiguous state discrimination, we can set that the measure-

ment result i indicates the prepared state is ρi with confidence by introducing

more than N outcomes. This condition is represented as

Tr[Πiρj] = 0 for i ̸= j and i, j = 1, 2, · · · , N. (3.14)

The additional POVM element ΠN+1 indicates the inconclusive result. Note

that unambiguous state discrimination is not always possible. For pure states,

it is only possible for a linearly independent set of states [44] and for mixed

states, the support of each state in the set {ρi} has not to be overlapped [45].

Unambiguous state discrimination is also formulated as a semidefinite pro-

gramming. The optimization problem is represented as

maximize psucc =
N∑

i=1

qiTr[Πiρi] (3.15)

subject to Πi ≥ 0 (3.16)
N+1∑

i=1

Πi = IH (3.17)

Tr[Πiρj] = 0 for i ̸= j, and i, j = 1, 2, · · · , N. (3.18)

Derivation of the optimal POVM and the optimal success probability for un-

ambiguous state discrimination is also not easy in general. Recently a geometric

approach for unambiguous discrimination for pure states is analyzed [46]. As

applications of unambiguous discrimination, quantum state comparison [47] and

state filtering [48] are introduced.

3.2 Discrimination For Quantum Channels

In this section, we review a task to discriminate a set of quantum channels.

First, the difference between discrimination of quantum states and quantum
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channels is discussed. Detailed discussion on the case where quantum channels

are restricted to unitary operations.

3.2.1 Formulation

We consider a set of quantum channels {Mi}Ni=1 from L(H) to L(K). The clas-

sical description of the channels, for instance matrix representations of Kraus

operators, Choi operators or unitary operators for Stinespring representation

of each channel, is given. Instead of apparatus generating a state as in quan-

tum state discrimination, a black-box that implements one of the channels with

probability qi is given. The task in this case is to determine which channel is

implemented by the black-box.

To determine the channel, we can choose an initial state to apply the channel

in question implemented by the black-box. Then we obtain an output state of

the channel, on which a POVM measurement is performed. In general, one can

prepare an initial state entangled with an ancillary system HA.

We denote an initial state as ρ ∈ S(H ⊗HA) and a POVM {Πj}Lj=1 with L

outcomes satisfying Πi ≥ 0 and
∑L

j=1 Πj = IKHA . The conditional probability

of obtaining the measurement outcome j when the implemented channel is Mi

is given by

p(j|i) = qiTr[Πj(Mj ⊗ IHA)(ρ))]. (3.19)

For minimum-error discrimination of quantum channels, it is enough to take

L = N and the optimization problem is given by

maximize psucc =
N∑

i=1

qiTr[Πi(Mi ⊗ IHA)(ρ))] (3.20)

subject to ρ ∈ S(H⊗HA) (3.21)

Πj ≥ 0,
N∑

j

Πj = IKHA (3.22)

For unambiguous discrimination of quantum channels, take L = N + 1 and the

optimization problem is give by

maximize psucc =
N∑

i=1

qiTr[Πi(Mi ⊗ IHA)(ρ))] (3.23)

subject to ρ ∈ S(H⊗HA) (3.24)

Πj ≥ 0,
N∑

j

Πj = IKHA (3.25)
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|ψ⟩

H
Mi

K

{Πi}H

Figure 3.2: A quantum channel Mj is chosen from the set {Mi}. To determine

which channel is chosen, a part of a pure state |ψ⟩ on H ⊗ H is sent to the

channel followed by the POVM measurement described by {Πi}.

Tr[Πi(Mj ⊗ IHA)(ρ))] = 0 for i ̸= j and i, j = 1, 2, · · · , N. (3.26)

Without loss of generality, the initial state can be chosen to be a pure state

in both minimum-error and unambiguous discrimination. This is because if a

mixed initial state can achieve the optimal success probability, any eigenstates

of the mixed state also achieve the same success probability. In addition, the

dimension of the ancillary system is at most the dimension of the input system

of the channels since the Schmidt rank of a pure state in H ⊗ HA is at most

min{dimH, dimHA}. Therefore we can assume HA = H. An quantum circuit

representation of quantum channel discrimination is presented in Fig. 3.2.

We define an initial state |ψ⟩ = IH ⊗
√
X|I⟩⟩. Applying the channel Mi on

H, the state is transformed to

Mi ⊗ IH(|ψ⟩⟨ψ|) = (IK ⊗
√
X)Mi(IK ⊗

√
X), (3.27)

where Mi is the Choi operator of Mi. We redefine each positive operators Π̃i as

Π̃i = (IK ⊗
√
X)Π(IK ⊗

√
X). Then the success probability is represented as

psucc =
N∑

i=1

qiTr[Π̃iMi], (3.28)

where Π̃i ≥ 0 and
∑N

i=1 Π̃i = IK ⊗X.

This set of the positive operators {Π̃i} is a quantum 2-tester introduced in

Sec. 2.4. The correspondence between states ρi and Choi operators Mi, and

a POVM measurement {Πi} and quantum 2-tester {Π̃i} is understood by a

comparing Equation (3.2) and Equation (3.28).

A derivation of the optimal success probabilities in both minimum-error dis-

crimination for quantum channels and unambiguous discrimination are repre-

sented in terms of semidefinite programmings as follows. For minimum-error
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discrimination, we have

maximize psucc =
N∑

i=1

qiTr[Π̃iMi] (3.29)

subject to Π̃ ≥ 0,
N∑

i=1

Π̃i = IK ⊗X (3.30)

X ≥ 0, TrX = 1 (3.31)

and for unambiguous discrimination, we have

maximize psucc =
N∑

i

qiTr[Π̃iMi] (3.32)

subject to Tr[Π̃iMj] = 0 for i ̸= j and i, j = 1, 2, · · · , N (3.33)

Π ≥ 0,
N+1∑

i=1

Π̃i = IK ⊗X (3.34)

X ≥ 0, TrX = 1. (3.35)

It is not easy to find the optimal initial state and the optimal POVM in

general. However, for minimum-error discrimination with N = 2, the op-

timal POVM measurement is given by a measurement called the Helstrom

measurement. The Helstrom measurement is obtained by Π1/2 = {q1(M1 ⊗
IH)(|ψ⟩⟨ψ|) − q2(M2 ⊗ IH)(|ψ⟩⟨ψ|)}+/−, where {A}+/− is the projection onto

the positive/negative part of A and |ψ⟩ is the initial state of Mi ⊗ IH. The

optimal success probability is written as

psucc =
1

2
+

1

2
sup

|ψ⟩∈H⊗H
∥q1(M1 ⊗ IH)(|ψ⟩⟨ψ|)− q2(M2 ⊗ IH)(|ψ⟩⟨ψ|)∥1

=
1

2
+

1

2
∥q1M1 − q2M2∥⋄, (3.36)

where ∥ · ∥⋄ is the diamond norm introduced in Sec. 2.1.3. To derive the op-

timal success probability of minimum-error discrimination of the two quantum

channels, one still needs to derive the optimal initial state.

One distinctive difference between quantum state discrimination and dis-

crimination of quantum channels is the room for choosing an initial state. En-

tanglement of the initial state has been analyzed in terms of the performance

of properties enhancing the success probability for discrimination of quantum

channel [49,50]. Even for the discrimination of entanglement-breaking channels,

which map any entangled state to a separable state, entangled initial states
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achieve the better success probability, although the output states of channels

are not entangled [51]. There are two known classes that do not require entan-

gled initial states for the optimal minimum-error discrimination, unitary opera-

tions [52] and classical channels.

Another significant difference is whether ordered strategies would help to

improve the success probability when the multiple use of the black box is allowed.

For states cases, the ordered strategies since any operation can be absorbed into

the last POVM measurement. On the other hand, there are several instances in

which the ordered strategies lead an the improvement of success probability in

discrimination of quantum channels [33, 35]. It is important to know when the

ordered strategies improve the success probability in order to construct efficient

protocols for quantum information processing.

In general, perfect discrimination of quantum channels is impossible similarly

to discrimination of quantum states. Necessary and sufficient conditions for a

set of quantum channels to be perfectly discriminated with a finite use of the

black-boxes has been derived [53]. The authors of [53] have also constructed a

protocol for perfect discrimination of two quantum channels and showed that en-

tanglement of the initial state is not necessary for perfect discrimination between

two isometry channels.

3.2.2 Discrimination of Unitary Operations

An important class of quantum channel is unitary operations. The optimal

initial state is derived in [54] for minimum-error discrimination of two unitary

operations. Consider a black-box implementing one of unitary operations U1

and U2 with probability q1 and q2, respectively, and denote an initial state as

|ψ⟩ = IH⊗
√
X|I⟩⟩, using a positive semidefinite operator X of unit trace. Then

the two candidate states |ψ1⟩ = U1 ⊗ I|ψ⟩ and |ψ2⟩ = U2 ⊗ I|ψ⟩ are obtained

after applying the unitary operation implemented by the black-box. The success

probability is given by

psucc =
1

2
+

1

2
∥q1|ψ1⟩⟨ψ1|− q2|ψ2⟩⟨ψ2|∥1 (3.37)

=
1

2

(
1 +

√
1− 4q1q2|⟨ψ|U †

1U2|ψ⟩|2
)
, (3.38)

where we used the eigenvalues of q1|φ⟩⟨φ|− q2|η⟩⟨η| given by

(q1 − q2 ±
√
1− 4q1q2|⟨φ|η⟩|2)/2. (3.39)

We are going to minimize the overlap |⟨ψ|U †
1U2|ψ⟩|.
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We denote the spectral decomposition of X as X =
∑d

i=1 ri|λi⟩⟨λi|. The

overlap is is rewritten in terms of the eigenstates {|λi⟩} as

|⟨ψ|U †
1U2|ψ⟩| =

d∑

i=1

ri|⟨λi|U †
1U2|λi⟩|. (3.40)

This is a probabilistic mixture of non-negative values since ri ≥ 0 and
∑

i r1 = 1.

Minimization of |⟨ψ|U †
1U2|ψ⟩| can be achieved by choosing rimin = 1 and rj = 0

for j ̸= imin, where imin = arg min{|⟨λi|U †
1U2|λi⟩|}. That means the optimal

initial state can be chosen to be unentangled with other systems.

We denote the spectral decomposition U †
1U2 =

∑d
j=1 e

iθj |ζi⟩⟨ζi| and an initial

state |φ⟩ =
∑d

i=1 αi|ζi⟩ with
∑d

i=1 |αi|2 = 1. The success probability is then

represented by

|⟨ψ|U †
1U2|ψ⟩| =

∣∣∣∣∣

d∑

i=1

|αi|2eiθi
∣∣∣∣∣ . (3.41)

The right hand side of Equation (3.41) can be interpreted as a distance from

the origin and a point in a polytope made from the eigenvalues {eiθi} on the

unit circle in the complex plane (see Fig. 3.3). Assuming −π ≤ θi < π and

θ1 ≤ θ2 ≤ · · · ≤ θd, we obtain

min
|ψ⟩∈H

|⟨ψ|U †
1U2|ψ⟩| =

{
0 (θd − θ1 ≥ π)

cos θd−θ12 (otherwise).
(3.42)

Therefore the optimal success probability for minimum-error discrimination

is derived as

poptsucc =

⎧
⎨

⎩
1 (θd − θ1 ≥ π)

1
2(1 +

√
1− 4q1q2 cos2

θd−θ1
2 ) (otherwise).

(3.43)
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ei✓1

ei✓2

ei✓3

ei✓4

Figure 3.3: Four eigenvalues {eiθi}4i=1 on the unit circle in the complex

plane. The shaded area is the polytope that consists of the four eigenvalues.∑d
i=1 ri|⟨λi|U

†
1U2|λi⟩| is the distance from the origin and a point in the poly-

tope. The minimum value of that is the norm of the bold arrow in the figure.

From this result, we can see that perfect discrimination of unitary operations

is possible by the finite uses of the black-box [8,54]. We consider the case where

the black-box can be use M times and the black-box is used in a parallel way.

In this case, the task is to discriminate U⊗M
1 and U⊗M

2 . The largest difference

of the angle of the eigenvalues of (U †
1U2)⊗M is M(θd− θ1). From Equation 3.2.2,

perfect discrimination is possible if the largest difference of the angle of the

eigenvalues is greater than π. Therefore perfect discrimination is possible with

Mmin = ⌈π/(θd − θ1)⌉ times use of the black-box, where ⌈a⌉ is the minimum

integer greater than a.

For discrimination of a set ofN unitary operations, we can extend the method

for discrimination of to unitary operations by introducing tests, each of which

exclude one of the unitary operations out of N unitary operations, and using

the tests for N − 1 times. For instance, to exclude the possibility of U1, perform

measurements to discriminate U1 and Ui for i = 2, 3, · · · , N . If every measure-

ment result indicates that the actual unitary operation applied is U1, one can

conclude that the unitary operation is U1, or exclude U1 otherwise. Therefore

perfect discrimination of N unitary operations is possible with the finite use of

the black-box is achieved.

This result is is in contrast with discrimination of quantum states. There

is an intrinsic difference between discrimination of states and discrimination of

unitary operations.

Perfect discrimination of unitary operations with finite use of the black-box
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can be also achieved by applying appropriate operations and the unitary oper-

ations implemented by the black-box, interchangeably on the same system [9].

This results implies that entanglement is not necessary for perfect discrimina-

tion of unitary operations. Note that the minimum number of the use of the

black-box necessary to achieve perfect discrimination is same in both parallel

and sequential uses of the black-box.

3.3 Equivalence Determination of Quantum States

In discrimination of states, unitary operations or quantum channels presented

in the previous sections, the complete descriptions of the candidate states or

channels are given. The cases introduced in the previous sections, the POVM

for the optimal success probability depends on the classical descriptions. There-

fore it is necessary to derive the optimal POVM every time the candidate are

changed. On the other hand, it is possible to consider universal schemes that

do not depend on the candidate states to discriminate.

To this end, candidate quantum state can be given as quantum states in-

stead of classical descriptions of the states. Two quantum states |ψ1⟩ and |ψ2⟩
(reference states) are given as well as a state |ψi⟩ (test state) that is generated to

be one of the two states |ψ1⟩ and |ψ2⟩ with the probability qj for j = 1, 2. In this

case, discrimination of a test state generated by the apparatus is determining

that it is identical to the given physical state |ψ1⟩ and |ψ2⟩ (see Fig. 3.4). We

call the task as equivalence determination of quantum states.

Since the complete classical description of an unknown quantum state |ψ⟩
cannot be obtained from a finite copies of |ψ⟩, classical descriptions of candidate
states are stronger resources for discrimination than candidate states.

Consider that N1 copies of |ψ1⟩ and N2 copies of |ψ2⟩ are given. For the

simplicity, we assume q1 = q2 = 1/2 and denote |ψ⟩⟨ψ| as ψ. For minimum-

error discrimination, the success probability is given by

psucc =
1

2
Tr
[
(ψ⊗N1

1 ⊗ ψ⊗N2
2 ⊗ ψ1)Π1 + (ψ⊗N1

1 ⊗ ψ⊗N2
2 ⊗ ψ2)Π2

]
, (3.44)

where {Π1,Π2} is a POVM. This success probability depends on the specific

states ψ1 and ψ2. The POVM cannot depend on specific choices of ψ1 and ψ2

since no prior information about ψ1 and ψ2 is given. Therefore as a figure of

merit, the averaged success probability over the uniform distribution of all pure

states is employed.
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|ψ1⟩

{Πi}|ψ2⟩

|ψi⟩

.

Figure 3.4: The simplest case of equivalence determination of quantum states.

The test state |ψj⟩ is guaranteed to be one of two reference states |ψ1⟩ and |ψ2⟩
and the task is to determine which state is identical to the test state |ψj⟩. The
POVM cannot depend |ψ1⟩ and |ψ2⟩.

The averaged success probability is written as

p̄succ =
1

2

∫
dµ(ψ1)

∫
dµ(ψ2)Tr[(ψ

⊗N1
1 ⊗ ψ⊗N2

2 ⊗ ψ1)Π1 + (ψ⊗N1
1 ⊗ ψ⊗N2

2 ⊗ ψ2)Π2]

=
1

2
Tr[σ1Π1 + σ2Π2], (3.45)

where dµ(φ) is the uniform distribution over all pure states and

σi =

∫
dµ(ψ1)

∫
dµ(ψ2)ψ

⊗N1
1 ⊗ ψ⊗N2

2 ⊗ ψi, (3.46)

for i = 1, 2. The averaged state σi can be calculated for the uniform distribution.

Thus equivalence determination of states is reduced to discriminate the mixed

states σ1 and σ2 of which classical descriptions are given by Equation (3.46).

The optimal POVM is guaranteed to be given by the Helstrom measurement,

although it is not easy to calculate the success probability for the Helstrom

measurement in general.

For unambiguous discrimination, the corresponding optimization problem is

represented as

maximize psucc =
1

2
Tr[σ1Π1 + σ2Π2] (3.47)

subject to Tr[Π1σ2] = Tr[Π2σ1] = 0 (3.48)

Π1,Π2 ≥ 0,Π1 + Π2 + Π0 = I. (3.49)

Unambiguous equivalence determination of states is first introduced in [23]

for a restricted class of pure states as the name of the programmable quantum-

state discriminator. In [24], the case for N1 = N2 = 1 is considered and the

optimal success probability is derived. Several extensions are analyzed in [23,25–

28]. General solutions of the optimal success probability are derived in [29–31]
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for minimum-error equivalence determination and in [32] for unambiguous one

with N1 = N2. As an application of this task, detection of change points is

considered in [30].

3.4 Comparison of Quantum States and Oper-

ations

3.4.1 Comparison of Quantum States

In this section, we introduce comparison of quantum states. Comparison of

quantum states is a task to determine whether given two quantum states are

same or not. This task is a special case of equivalence determination of quantum

states by taking N1 = 1 and N2 = 0.

For minimum-error comparison, the success probability can be written by

psucc =
1
2 [η1Π1+η2Π2], where η1 =

∫
dµ(ψ1)ψ

⊗2
1 and η2 =

∫
dµ(ψ1)

∫
dµ(ψ2)ψ1⊗

ψ2. The mixed state η1 and η2 can be calculated without specifying ψ1 and ψ2 if

ψ1 and ψ2 are completely unknown, that is, they are both uniformly distributed.

Thus the optimal POVM of comparison of two quantum states is the Helstrom

measurement.

For unambiguous comparison, the corresponding optimization problem is

represented as

maximize psucc =
1

2
Tr[η1Π1 + η2Π2] (3.50)

subject to Tr[Π1η2] = Tr[Π2η1] = 0 (3.51)

Π1,Π2 ≥ 0,Π1 + Π2 + Π0 = I. (3.52)

Unambiguous comparison of two quantum states is first introduced in [47]

and the authors showed that probability of conclusive result corresponding to

ψ1 = ψ2 is zero. In [55], the optimal solution is derived for the arbitrary prior

probabilities of states and comparison of mixed states is discussed. The optimal

measurement using multiple copies of each state is derived in [56]. In [57],

the task to determine whether all of n mixed states are the same or not with an

unambiguous quantum measurement is considered. Unambiguous comparison of

quantum states can be used verification tasks such as quantum signature [58,59]

and quantum fingerprinting [60,61].
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|ψ⟩

U

{Πi}V .

Figure 3.5: Comparison of two unitary operations to determine whether two

unitary operations U and V are the identical or not. The initial state |ψ⟩ and
POVM {Πi} cannot depend on the classical descriptions of U and V since there

are no prior information about the two unitary operations.

3.4.2 Comparison of Unitary Operations

Consider that two black-boxes implementing unitary operations are give. The

two unitary operations are guaranteed to be identical with probability 1/2 and

different with the probability 1/2. The task to determine whether the two uni-

tary operations are same or not is called comparison of unitary operations. In

contrast to minimum-error comparison of quantum states, the optimal proto-

col for minimum-error comparison of unitary operations requires to choose an

appropriate initial state, and its optimization is not straightforward.

We denoted the two unitary operations as U and V acting on H. We assume

that the system H is a d-dimensional system. We denote an initial state as

|ψ⟩ ∈ H⊗4 and a POVM as {Πi} (see Fig. 3.5). Assigning the measurement

outcome 1 for U = V and 2 for U ̸= V .Then the success probability is given by

psucc =
1

2
Tr[(U⊗2 ⊗ I⊗2

H )|ψ⟩⟨ψ|(U †⊗2 ⊗ IH⊗2)Π1

+ (U ⊗ V ⊗ I⊗2
H )|ψ⟩⟨ψ|(U † ⊗ V † ⊗ I⊗2

H )Π2]. (3.53)

There are no prior information about unitary operations U and V . Therefore

the POVM and the initial state cannot depend on U and V . As a figure of merit,

the averaged success probability over the Haar measure dµ(U) is employed. The

averaged success probability is written as

p̄succ =
1

2
Tr[ρ1Π1 + ρ2Π2], (3.54)

where ρ1 =
∫
dµ(U)(U⊗2⊗I⊗2

H )|ψ⟩⟨ψ|(U †⊗2⊗IH⊗2) and ρ2 =
∫
dµ(U)dµ(V )(U⊗

V ⊗ I⊗2
H )|ψ⟩⟨ψ|(U † ⊗ V † ⊗ I⊗2

H ).

For minimum-error comparison of unitary operations, the averaged success

probability p̄succ with conditions Π1,Π2 ≥ 0 and Π1 + Π2 = I should be maxi-

mized. For unambiguous comparison, an inconclusive result Π3 is added and the

conditions are Πi ≥ 0 for i = 1, 2, 3, Tr[Π1ρ2] = Tr[Π2ρ1] = 0 and
∑3

i=1 Πi = I.
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Comparison of unitary operations is first introduced in [38] and the authors

showed that the optimal success probability is 7/8 for minimum-error compar-

ison and 3/7 for unambiguous comparison for qubit systems (d = 2). In [38],

optimization was made with an 2-dimensional ancillary system, which is too

restricted for proving the general optimal success probability. The authors ex-

tended to the case with two copies of each unitary operation are given [62]

and proposed an implementation of comparison of unitary operations using the

Franson interferometry [63]. Unambiguous comparison of unitary operations is

extended for general d-dimensional systems and the optimal success probability

is derived to be (d+1)/2d with the enough size of ancillary systems in [64]. An

extension for comparison of POVM measurements is discussed in [65].



Chapter 4

Equivalence Determination:
Single Use of the Reference
Boxes

In this chapter, we investigate equivalence determination of unitary operations.

We consider that three black-boxes (a test box and two reference boxes) im-

plementing unknown unitary operations are given. The test box is guaranteed

to implement one of the two unitary operations implemented by the reference

boxes. The two reference boxes are given, but the classical descriptions of their

implementing unitary operations are not. The equivalence determination of uni-

tary operations is to determine which of the two reference boxes implements the

same unitary operation of the test box. A classification of discrimination task

is summarized in Table 4.1.

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵targets

candidates given
Classical descriptions Physical states/systems

Quantum states Sec. 3.1.2 - 3.1.3 Sec. 3.3

Unitary operations Sec. 3.2.2 Chap. 4, 5

Table 4.1: A classification of the discrimination tasks introduced in this thesis.

The shaded part is the contribution of the thesis.

One significant difference between equivalence determination of states and

unitary operations is an extra freedom for choosing an initial state for the case

of unitary operations. The initial state can be entangled with ancillary systems.

In addition, the initial state can be an entangled state on between the systems

where the test box and the reference boxes are applied. This property does not

36
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appear in discrimination of unitary operations with the classical descriptions of

candidate unitary operations.

Another difference is the strategies of how to use the black-boxes in the quan-

tum circuit. In general, the black-boxes can be used in arbitrary order and any

quantum operations can be applied between the uses of the black-boxes. We

consider two types of strategies. One is parallel strategies, in which the black-

boxes is used in a parallel way without introducing the order and no quantum

operation is applied between the use of the black-boxes. The other is ordered

strategies, in which arbitrary quantum operations can be inserted between the

use of the black-boxes. To pursue efficient quantum information processing,

clarifying when the ordered strategies outperform the parallel strategies is im-

portant [33–36].

In equivalence determination of unitary operations, two kinds of black-boxes

are given. In the ordered strategies, each black-box can be used in different

orders. The relation between the order of the black-boxes and the performance

is interesting.

The organization of this chapter is as follows. In Sec. 4.1, we define and

analyze equivalence determination of unitary operations with a single use of two

reference boxes. We analytically show the optimal success probability for the

parallel strategies in Sec. 4.1.1 and the ordered strategies in 4.1.2. In Sec. 4.2,

we consider the case that two candidate unitary operations, where the classical

description of one of the reference box is given.

4.1 Single Use of Reference Boxes

In this section, we consider the simplest case that each of a test box and reference

boxes can be used only once. We denote the unitary operation implemented by

the reference box j as Uj for j = 1, 2 and assume that the test box implements

one of two unitary operations U1 and U2 with probability 1/2. The equivalence

determination task is to determine which reference box implements the unitary

operation implemented by the test box.

We denote input and output Hilbert spaces of the the reference box i by Hi

and Ki, respectively for i = 1, 2 and input and output spaces of the test box by

H3 and K3. For simplicity, we define H :=
⊗3

j=1 Hj and K :=
⊗3

j=1 Kj.

4.1.1 Parallel Strategies

First we consider the parallel strategies for equivalence determination of unitary

operations. We can represent a tensor products of three unitary operators as a
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|ψ⟩

H1
U1

K1

{Πi}

H2
U2

K2

H3
Ui

K3

H

Figure 4.1: A quantum circuit representation for the equivalence determination

of unitary operations of the test box Ui under the parallel strategy with a single

use of two reference boxes U1 and U2.

single unitary operator Wi ∈ L(H,K). When the test box implements a unitary

operations U1, W1 := U1 ⊗ U2 ⊗ U1 and W2 := U1 ⊗ U2 ⊗ U2 for the other case.

Then equivalence determination task is to determine which unitary operation,

W1 or W2, is implemented by the three boxes.

We denote an initial state as |ψ⟩ ∈ H ⊗ H. Without loss of generality, an

initial state can be assumed to be pure states. This is because if the optimal

initial state is a mixed state, any eigenstate of the optimal mixed state can also

achieve the optimal success probability. We represent the initial state |ψ⟩ as

|ψ⟩ = IH ⊗
√
X|I⟩⟩,

using the |I⟩⟩ =
∑dimH

i=1 |i⟩|i⟩ defined in terms of the computational basis {|i⟩}dimH
i=1

of H and X is a positive semidefinite operator on H with TrX = 1.

Application of the unitary operation Wi on the initial state |ψ⟩ generates

a candidate stat |ψi⟩ = Wi ⊗ I|ψ⟩ for i = 1, 2. A quantum measurement on

|ψ1⟩ ∈ K ⊗H is chosen to detect which state is obtained, namely, i = 1, 2. We

introduce a positive operator-valued measure (POVM) {Π1,Π2}. The subscript
of each elements denotes the measurement outcome (see Fig. 4.1).

The success probability of discrimination is a sum of the probability that the

measurement result i coincides with the unitary operation implemented by the

test box Ui. Thus the success probability psucc is represented as

psucc =
1

2
Tr[ψ1Π1 + ψ2Π2],

where we denote a pure state |ψi⟩⟨ψi| as ψi.

The success probability psucc depends on the specific choice of the candi-

date unitary operators U1 and U2 whereas we assumed that there is no prior
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information about the candidate unitary operations. Thus we average the suc-

cess probability over the uniform distribution of unitary operations, the Haar

measure. Then the averaged success probability p̄succ is given by

p̄succ =
1

2

∫
dµ(U1)

∫
dµ(U2)Tr[ψ1Π1 + ψ2Π2] (4.1)

=
1

2
Tr[

∫
dµ(U1)

∫
dµ(U2)ψ1Π1 +

∫
dµ(U1)

∫
dµ(U2)ψ2Π2] (4.2)

=
1

2
Tr[M̃1Π1 + M̃2Π2], (4.3)

where dµ(U) is the Haar measure satisfying dµ(U) = dµ(V U) for any unitary

operations U and V and M̃i is defined as

M̃i =

∫
dµ(U1)

∫
dµ(U2)ψi (4.4)

=

∫
dµ(U1)

∫
dµ(U2)(U1 ⊗ U2 ⊗ Ui ⊗

√
X)|I⟩⟩⟨⟨I|(U †

1 ⊗ U †
2 ⊗ U †

i ⊗
√
X).

(4.5)

From Equation (4.3), the optimization problem is regarded as the discrimina-

tion of mixed states {M̃1, M̃2} using the measurement described by the POVM

{Π1,Π2} are required. To maximize the success probability, optimization of

both of X and the POVM {Π1,Π2}. The mixed state M̃1 still depends on X.

To make the analysis easier, the dependence of X on Mi is to be removed. Then

let us define the operators M1 and M2 as

Mi :=

∫
dµ(U1)

∫
dµ(U2)(U1⊗U2⊗Ui⊗ IH)|I⟩⟩⟨⟨I|(U †

1 ⊗U †
2 ⊗U †

i ⊗ IH), (4.6)

where IH is the identity operator on H. Define a new positive semidefinite

operator Π̃i as Π̃i = (I ⊗
√
X)Πi(I ⊗

√
X), we obtain

p̄succ =
1

2
Tr[(I ⊗

√
X)M1(I ⊗

√
X)Π1 + (I ⊗

√
X)M2(I ⊗

√
X)Π2] (4.7)

=
1

2
Tr[M1(I ⊗

√
X)Π1(I ⊗

√
X) +M2(I ⊗

√
X)Π2](I ⊗

√
X) (4.8)

=
1

2
Tr[M1Π̃1 +M2Π̃2]. (4.9)

Note that {Π̃1, Π̃2} satisfies Π̃1 + Π̃2 = I ⊗X. Therefore {Π̃1, Π̃2} is a quantum

2-tester.

Although the classical description of unitary operations U1 and U2 are not

given, the operator Mi can be calculated. Thus the equivalence determination
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task is reduced to discriminating Choi operators M1 and M2 using a quantum

2-tester {Π̃1, Π̃2}.
Before giving the optimization problem, we define the equivalence determi-

nation task.

Definition 3. We denote the unitary operation implemented by the reference

box j as Uj for j = 1, 2 and assume that the test box implements one of two

unitary operations U1 and U2 with probability 1/2. The (N1, N2)-equivalence

determination task is to determine which reference box implements the unitary

operation implemented by the test box by using the reference box i Nj times and

the test box only once.

Then we obtain the optimization problem in the form of a semidefinite pro-

gramming (SDP) as follows.

Proposition 2. The averaged optimal success probability of (1, 1)-equivalence

determination under the parallel strategies is given by the following semidefinite

programming.

max: psucc =
1

2
Tr
[
M1Π̃1 +M2Π̃2

]

subject to: Π̃i ≥ 0, i = 1, 2

Π̃1 + Π̃2 = IK ⊗X

X ≥ 0

TrX = 1, (4.10)

where the definition of Mi is given by Equation (4.6)

Due to the symmetry introduced by averaging over the Haar measure, the

following lemma can be proven.

Lemma 1. The optimal initial state |ψ⟩ = IK ⊗
√
X|I⟩⟩ for maximizing the

success probability of (1, 1)-equivalence determination can be chosen to satisfy

[A⊗3, X] = 0, (4.11)

with arbitrary unitary operator A ∈ SU(2).

The proof of this Lemma is given in Sec. 4.1.3.

When we consider that the reference box 1 and the reference box 2 are

exchanged, the subscript of {Π1,Π2} are exchanged, namely, the labels of the

measurement results are exchanged. From the symmetry of changing the labels

of measurement outcomes, the following lemma is obtained.
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Lemma 2. Let SH12 be a swap operator of system H1 and H2. Then the optimal

initial state |ψ⟩ = I ⊗
√
X|I⟩⟩ for maximizing the success probability (1, 1)-

equivalence determination can be chosen to satisfy

[SH12 ⊗ IH3 , X] = 0. (4.12)

The proof of this lemma is given in Sec. 4.1.4.

To derive the optimal success probability, we formulate the optimization

problem of discrimination of two random unitary channels. In parallel use of

unitary operations, the equivalence determination task can be regarded as dis-

crimination of two random unitary channels M1 and M2 defined as

Mi(ρ) :=

∫
dµ(U1)

∫
dµ(U2)(U1 ⊗ U2 ⊗ Ui)ρ(U

†
1 ⊗ U †

2 ⊗ U †
i ), (4.13)

for i = 1, 2. As explained in Sec. 3.2, the optimal success probability poptsucc of

discriminating two channels is represented in terms of the diamond norm ∥ · ∥⋄
as

poptsucc =
1

2
+

1

4
∥U1 − U2∥⋄ (4.14)

=
1

2
+

1

4
max

X≥0,TrX=1
||(IK ⊗

√
X)(M1 −M2)(IK ⊗

√
X)||1. (4.15)

Equivalence determination of unitary operations under the parallel strategies

can be formulated as discrimination of two (known) random unitary channels

since our figure of merit is given by the averaged success probability.

Now we are ready to derive the optimal success probability in the form of

Equation (4.15) using Lemma 1 and Lemma 2. We obtain the following theorem.

Theorem 2. The optimal averaged success probability of (1, 1)-equivalence de-

termination under the parallel strategies is 7/8 when unitary operations are cho-

sen from the Haar measure.

The proof of the Theorem 2 is given in Sec. 4.1.5.

Separable Input States

We consider an initial state for equivalence determination that is not entangled

across the systems on which the reference boxes act and the test box acts (see

Fig. 4.2). We show that with such an initial state the averaged optimal success

probability is strictly less than 7/8. Therefore entanglement between the input

systems of the reference boxes and the test box is essential for achieving the

optimal value.
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We denote an product initial state |ψ⟩ ⊗ |φ⟩, where |ψ⟩ ∈ (H1 ⊗H2)⊗2 and

|φ⟩ ∈ H⊗2
3 . Without loss of generality, we can represent the initial state as

|ψ⟩ ⊗ |φ⟩ =
√

X1 ⊗
√
X2 ⊗ IH|I⟩⟩, (4.16)

where X1 and X2 are positive semidefinite operators on H1⊗H2 and H3, respec-

tively, satisfy TrX1 = 1 and TrX2 = 1 and |I⟩⟩ is the unnormalized maximally

entangled vector in (H1⊗H2⊗H2). Therefore the assumption that X = X1⊗X2

should be added in the discussion presented in the previous section.

From Lemma 1, the condition [X,A⊗3⊗B⊗3] = [X1⊗X2, A⊗3⊗B⊗3] = 0 for

arbitrary unitary operators A,B ∈ SU(2) should be satisfied. We can assume

X1 = qI0 ⊕ (1− q)
I1
3

(4.17)

X2 =
IH3

2
, (4.18)

where Ij is the identity operator on the Uj the subspace on which the total

angular momentum is j in spin-1/2 systems (see Appx. B) and IH3 is the identity

operator on H3. Therefore we have

X =
I 1

2

2
⊗ (q|0̂⟩⟨0̂|+ (1− q)

3
|1̂⟩⟨1̂|)⊕

I 3
2

4
⊗ 2

3
(1− q). (4.19)

|ψ⟩

H1
U1

K1

{Πi}

H2
U2

K2

H1 ⊗H2

|φ⟩

H3
Ui

K3

H3

.

Figure 4.2: The quantum circuit for equivalence determination of unitary oper-

ations under the parallel strategy with single uses of two reference boxes when

the initial state is unentangled.

Thus the optimal average success probability can be calculated by

poptsucc =
1

2
+

1

4
max

X≥0,TrX=1
∥(IK ⊗

√
X)(M1 −M2)(IK ⊗

√
X)∥1, (4.20)
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where M1 and M2 are defined in Equation (4.80) and (4.84),respectively. Then,

we can obtain

∥(IK ⊗
√
X)(M1 −M2)(IK ⊗

√
X)∥1 (4.21)

=
1

4

(
1

3
sin 2t+

2 cos2 t

3
√
3

+
2 cos t

√
2− cos 2t

3
√
3

)
(4.22)

The above equation can be derived by summing the absolute value of all of

eigenvalues of ∥(IK⊗
√
X)(M1−M2)(IK⊗

√
X)∥1. The optimal averaged success

probability is numerically derived as poptsucc ≃ 0.746399 < 0.875 = 7/8. Without

entanglement between the input systems of the test box and the reference boxes

are crucial for achieving the optimal averaged success probability.

4.1.2 Ordered Strategies

In general, the ordered use of three boxes and arbitrary quantum operations

can be applied between the use of the black-boxes. In this section, we show

that the ordered use of the test box and the reference boxes can be considered

and arbitrary quantum operations can be inserted between the use of the black-

boxes. In this section, we show that the ordered use of the black-boxes does not

give improvement. That means the optimal success probability of discriminate

is still 7/8.

In the ordered strategies, three different orders can be considered. We assign

the Hilbert spaces denoted by Hi and Ki as the input and output system of the

i-th black boxes, respectively. First we consider the case that the reference box

1 is used first and the reference box 2 second followed by the use of the test box

(see Fig. 4.3).

H1
U1

K1 H2
U2

K2 H3
Ui

K3

(4.23)

Figure 4.3: A quantum circuit representation of the case of three unitary oper-

ations inserted in the quantum 4-tester.

To analyze the ordered strategies, quantum combs, more specifically, quan-

tum testers are useful. Quantum 4-tester {Π̃1, Π̃2} is considered to be a general-

ized POVM. When reference box 1 and 2 implement U1 and U2, respectively, and

the test box implement one of U1 and U2, the success probability of obtaining
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the correct answer is given by

maximize psucc =
1

2
Tr
[
|W1⟩⟩⟨⟨W1|Π̃[1] + |W2⟩⟩⟨⟨W2|Π̃[2]

]

subject to Π̃i ≥ 0, i = 1, 2

Π̃1 + Π̃2 = IK3 ⊗ Y

TrH3Y = IK2 ⊗ Y (1)

TrH2Y = IK1 ⊗ Y (0)

TrY (0) = 1, (4.24)

where |Wi⟩⟩ is defined as

|Wi⟩⟩KH := |U1⟩⟩ ⊗ |U2⟩⟩ ⊗ |Ui⟩⟩ (4.25)

and

|U⟩⟩ := U ⊗ I|I⟩. (4.26)

This success probability depends on the choice of U1 and U2. By taking the

average over the Haar measure, we obtain the following SPD.

maximize psucc =
1

2
Tr
[
Π̃1M1 + Π̃2M2

]
(4.27)

subject to Π̃i ≥ 0, i = 1, 2 (4.28)

Π̃1 + Π̃2 = IK3 ⊗ Y (4.29)

TrH3Y = IK2 ⊗ Y (1) (4.30)

TrH2Y
(1) = IK1 ⊗ Y (0) (4.31)

TrY (0) = 1, (4.32)

where Y , Y (1) and Y (0) are positive semidefinite operators and M1 and M2 are

given by Equation 4.6.

For the above SDP, the following lemma can be proven.

Lemma 3. The quantum 4-tester {Πi} and positive semidefinite operators Y ,

Y (1) and Y (0) can be chosen to satisfy

[Π̃i, (A
⊗3)K ⊗ (B⊗3)H] = 0 (4.33)

[Y, (A⊗2)K1K2 ⊗ (B⊗3)H] = 0 (4.34)

[Y (1), (A⊗1)K1 ⊗ (B⊗2)H1H2 ] = 0 (4.35)

[Y (0), BH1 ] = 0, (4.36)

for i = 1, 2 and arbitrary A,B ∈ SU(2).
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The proof of the lemma is given in Sec. 4.1.6.

From Lemma 3, we can assume Y (0) = IH1/2, and Y (1) = IK1 ⊗ Y ′(1). The

new conditions for the quantum tester {Π1,Π2} is

Π̃i ≥ 0, i = 1, 2

Π̃1 + Π̃2 = IK3 ⊗ Y

TrH3Y = IK1K2 ⊗ Y (1)

TrH2Y
(1) =

IH1

2
,

where we rewrite Y ′(1) as Y (1). This new conditions correspond to a quan-

tum 3-tester described in Fig. 4.4 and the first two boxes can be used in a

parallel ways. This parallelizability of the black-boxes property always holds

for (N1, N2)-equivalence determination. There are only two cases of non-trivial

orders of black boxes, the test box being used first or last.

H1
U1

K1

H2
U2

K2 H2
Ui

K2 (4.37)

Figure 4.4: A quantum circuit representation of the case of three unitary oper-

ations inserted in the quantum 3-tester.

Lemma 4. For the task of (1, 1)-equivalence determination under the ordered

strategies, the optimization problem is represented as semidefinite programming

given by

maximize psucc =
1

2
Tr
[
M1Π̃1 +M2Π̃2

]

subject to Π̃i ≥ 0, i = 1, 2

Π̃1 + Π̃2 = IK3 ⊗ Y

TrH3Y = IK1K2 ⊗ Y (1)

TrH2Y
(1) =

IH1

2
,

where M1 and M2 are the Choi operators corresponding the order of boxes. With-

out loss of generality, the first two boxes can be used parallel way.
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Since we formulate the optimization problem as SDP, the dual problem of

the SDP can be derived. The solution of the dual problem gives the upper

bound of the original problem and in most cases the optimal values coincide.

The lower bound of the solution of the original problem is 7/8 since the ordered

strategies include the parallel strategies. In the following, we present the dual

problem and give a solution of the dual problem that achieves the value 7/8,

which shows that ordered strategies do not give improvements.

Lemma 5. The dual problem of the primal SDP given in Equations (4.27) -

(4.32) is represented as

minimize a

subject to
M1

2
− Ω ≤ 0, (4.38)

M2

2
− Ω ≤ 0, (4.39)

TrK3Ω − IH3 ⊗ Ω[1] ≤ 0, (4.40)

TrK2Ω − IH2 ⊗ Ω[0] ≤ 0, (4.41)

TrK1Ω − aIH1 ≤ 0 (4.42)

The proof of this lemma is given in Sec. 4.1.7

Now we are ready to conclude the following theorem.

Theorem 3. For the task of (1, 1)-equivalence determination under the ordered

strategies, the optimal averaged success probability is 7/8 when unitary opera-

tions are chosen from the Haar measure.

The proof of this theorem is given in Sec. 4.1.8.

4.1.3 The Proof of Lemma 1

proof Suppose that a quantum 2-tester Π̃i gives the success probability p, satis-

fying Πi ≥ 0 for i = 1, 2 and Π̃1 + Π̃2 = IK ⊗XH with TrX = 1. Let us define

an averaged quantity of Π̃i as

Π̃′
i :=

∫
dµ(A)

∫
dµ(B)((A⊗3)K ⊗ (B⊗3)H)Πi((A

†⊗3)K ⊗ (B†⊗3)H). (4.43)
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One can easily see that

Π̃′
1 + Π̃′

2 =

∫
dµ(A)

∫
dµ(B)((A⊗3)K ⊗ (B⊗3)H)(Π1 + Π2)((A

†⊗3)K ⊗ (B†⊗3)H)

(4.44)

=

∫
dµ(A)

∫
dµ(B)((A⊗3)K ⊗ (B⊗3)H)(IK ⊗XH)((A

†⊗3)K ⊗ (B†⊗3)H)

(4.45)

= IK ⊗
∫

dµ(B)(B⊗3)HXH(B
†⊗3)H (4.46)

= IK ⊗X ′
H, (4.47)

where X ′
H is defined as

X ′
H =

∫
dµ(B)(B⊗3)HXH(B

†⊗3)H. (4.48)

Thus Π̃′
1 + Π̃′

2 = IK ⊗X ′
H with TrX ′

BD = 1 and Π̃′
1, Π̃

′
2, X

′
H ≥ 0. We show that

Π̃′
1 and Π̃′

2 also give the success probability p. Due to the definition of X ′
H, since

for arbitrary unitary operator TH, [X ′
H, (T

⊗3)H] = 0is satisfied. This is because

we have

T⊗3X ′T †⊗3 =

∫
dµ(B)(TB)⊗3

H XH(TB)†⊗3
H (4.49)

=

∫
dµ(TB)(TB)⊗3

H XH(TB)†⊗3
H (4.50)

=

∫
dµ(B′)(B′)⊗3

H XH(B
′)†⊗3
H (4.51)

= X ′, (4.52)

where we used the property of the Haar measure dµ(AB) = dµ(B) for arbitrary

unitary operators A and B in SU(2).

Finally we show that {Π̃′
i} gives the same success probability as {Π̃i}. The

success probability p′succ can be transformed as

p′succ =
1

2
Tr
[
M1Π̃

′
1 +M2Π̃

′
2

]
(4.53)

=
1

2
Tr

∫
dµ(A)

∫
dµ(B)

[
(A⊗3 ⊗B⊗3)Π̃1(A

†⊗3 ⊗ B†⊗3)M1

+ (A⊗3 ⊗ B⊗3)Π̃2(A
†⊗3 ⊗B†⊗3)M2

]

=
1

2
Tr

∫
dµ(A)

∫
dµ(B)

[
(A†⊗3 ⊗B†⊗3)M1(A

⊗3 ⊗B⊗3)Π̃1

+ (A†⊗3 ⊗ B†⊗3)M2(A
⊗3 ⊗ B⊗3)Π̃2

]

=
1

2
Tr
[
M1Π̃1 +M2Π̃2

]
= psucc, (4.54)
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In the last equality, the following properties,

∫
dA

∫
dB(A†⊗3 ⊗B†⊗3)Mi(A

⊗3 ⊗B⊗3)

=

∫
dµ(A)

∫
dµ(B)

∫
dµ(U)

∫
dµ(V ) (4.55)

× ((A†U1B
∗)⊗ (A†U2B

∗)⊗ (A†UiB
∗))|I⟩⟩⟨⟨I|⊗3((A†U1B

∗)⊗ (A†U2B
∗)⊗ (A†UiB

∗))†

=

∫
dµ(A)

∫
dµ(B)

∫
dµ(U ′)

∫
dµ(V ′)(U ′

1 ⊗ U ′
2 ⊗ U ′

i)|I⟩⟩⟨⟨I|⊗3(U ′
1 ⊗ U ′

2 ⊗ U ′
i)

†

=

∫
dµ(A)

∫
dµ(B)Mi (4.56)

= Mi, (4.57)

for i = 1, 2 where we defined U ′
i := A†UiB∗. Therefore without loss of generality

the positive semidefinite operator X can be chosen satisfying [T⊗3, X] = 0 for

arbitrary unitary operator T .

4.1.4 The Proof of Lemma 2

Proof. Suppose that a set of positive semidefinite operators {Π1,Π2} gives the

success probability p. By using a product of the swap operators SK12 ⊗ SH12 ,

where SK12 acts on K1 ⊗ K2 as SK12(|ψ⟩ ⊗ |φ⟩) = (|φ⟩ ⊗ |ψ⟩) for any |ψ⟩ ∈ K1

and |φ⟩ ∈ K2, and SH12 acts similarly on H1 ⊗H2, we define another quantum

2-tester as

Π̃′
i :=

1

2
{Π̃i + (SK12 ⊗ SH12 ⊗ I)Π̃ī(SK12 ⊗ SH12 ⊗ I)}, (4.58)

where 1̄ = 2 and 2̄ = 1. By definition, the equality Π̃′
i = (SK12 ⊗ SH12 ⊗

I)Π̃′
ī(SK12 ⊗ SH12 ⊗ I) holds. Then we have

Π̃′
1 + Π̃′

2 =
1

2
{Π̃1 + Π̃2 + (SK12 ⊗ SH12 ⊗ I)(Π̃1 + Π̃2)(SK12 ⊗ SH12 ⊗ I)} (4.59)

=
1

2
{IK ⊗XH + (SK12 ⊗ SH12 ⊗ I)(IK ⊗XH)(SK12 ⊗ SH12 ⊗ I)}

(4.60)

= IK ⊗ 1

2
(XH + (SH12 ⊗ I)XH(SH12 ⊗ I) (4.61)

= IK ⊗X ′
H, (4.62)

where X ′
H = 1/2(XH+(SH12 ⊗I)XH(SH12 ⊗I)) satisfying TrX ′

H = 1. The quan-

tum 2-tester {Π̃′
i} also give the success probability p since By easy calculation,
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we have

1

2
Tr
[
M1Π̃

′
1 +M2Π̃

′
2

]
(4.63)

=
1

4
Tr
[
M1{Π̃1 + (SK12 ⊗ SH12 ⊗ I)Π̃2(SK12 ⊗ SH12 ⊗ I)} (4.64)

+M2{Π̃2 + (SK12 ⊗ SH12 ⊗ I)Π̃1(SK12 ⊗ SH12 ⊗ I)}
]

=
1

4
Tr
[
M1Π̃1 + (SK12 ⊗ SH12 ⊗ I)M1(SK12 ⊗ SH12 ⊗ I)Π̃2 (4.65)

+M2Π̃2 + (SK12 ⊗ SH12 ⊗ I)M2(SK12 ⊗ SH12 ⊗ I)Π̃1

]

=
1

2
Tr
[
M1Π̃1 +M2Π̃2

]
, (4.66)

the last equality is derived by using

(SK12 ⊗ SH12 ⊗ I)Mi(SK12 ⊗ SH12 ⊗ I) = Mī, (4.67)

for i = 1, 2.

4.1.5 The Proof of Theorem 2

proof Outline: first, the explicit calculations of M1 and M2 are given. Then the

suitable form of X are derived by using Lemma 1 and Lemma 2. Finally the

optimal success probability is obtained.

From Equation (4.1.3), we have

[Mi, (AK)
⊗3 ⊗ (BH)

⊗3] = 0, (4.68)

for any unitary operators A,B in SU(2)and i = 1, 2. The Hilbert space of three

qubit system is decomposed as

K ∼= (C2)⊗3 =

3
2⊕

J= 1
2

UJ ⊗ V [3]
J , (4.69)

where V [3]
J corresponds to the multiplicity subspace of the irreducible subspace

UJ . For any unitary operator A on C2, A⊗3 can be decomposed as

A⊗3 =

3
2⊕

J= 1
2

AJ ⊗ IV [3]
J
, (4.70)

where IV [3]
J

denotes the identity operator on the multiplicity subspace V [3]
J .
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Then K ⊗H is decomposed as

K ⊗H =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

UJ ⊗ UL ⊗ VmJ ⊗ VmL . (4.71)

Here we changed the order of the spaces for convenience. The irreducible repre-

sentation of tensor products of unitary operators is given as

A⊗3
K ⊗ B⊗3

H =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

AJ ⊗ BL ⊗ IV [3]
J V [3]

L
, (4.72)

where AJ and BL are the irreducible representations acting on UJ and UL, re-

spectively and IV [3]
J V [3]

L
is the identity operator on V [3]

J ⊗ V [3]
L .

From Schur’s lemma and Equation (4.68), Mi is represented as

Mi =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

IJ
dJ

⊗ IL ⊗M (i)
JL, (4.73)

where IJ and IL are the identity operators on UJ and UL, respectively, and M (i)
JL

is an operator on V [3]
J ⊗ V [3]

L .

The next step is to derive M (i)
JL for i = 1, 2. Define η[N ] as

η[N ] =

∫
dµ(U)(U⊗N ⊗ IH)|I⟩⟩⟨⟨I|⊗N(U †⊗N ⊗ IH). (4.74)

M1 and M2 are represented as

M1 = η[2]K1K3H1H3
⊗ η[1]K2H2

, (4.75)

M2 = η[2]K1H1
⊗ η[2]K2K3H2H3

. (4.76)

By inserting Equation (4.74), we obtain

η[2] = I0 ⊗ I0 ⊕
1

3
I1 ⊗ I1 (4.77)

η[1] =
I 1

2

2
⊗ I 1

2
. (4.78)

Since the dimension of all of the multiplicity subspaces is 1 for N = 1, 2. M1 is

decomposed as

M1 = (I0 ⊗ I0 ⊕
1

3
I1 ⊗ I1)⊗

1

2
I 1

2
⊗ I 1

2
(4.79)

= (
1

2
I 1

2
⊗ I 1

2
⊗ |00⟩⟨00| 1

2
1
2
+

1

6
I 1

2
⊗ I 1

2
⊗ |11⟩⟨11| 1

2
1
2
)

⊕ 1

6
I 3

2
⊗ I 1

2
⊗ |1⟩⟨1| 1

2
⊕ 1

6
I 1

2
⊗ I 3

2
⊗ |1⟩⟨1| 1

2
⊕ 1

6
I 3

2
⊗ I 3

2
, (4.80)
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where the basis {|0⟩, |1⟩} of the multiplicity subspace V [3]
1
2

is defined as

∑1/2
m=−1/2 |

1
2
1
2(0)K1K3

1
2 ;

1
2m⟩⟨12

1
2(0)K1K3

1
2 ;

1
2m| =: IK1

2
⊗ |0⟩⟨0| 1

2
(4.81)

∑1/2
m=−1/2 |

1
2
1
2(1)K1K3

1
2 ;

1
2m⟩⟨12

1
2(1)K1K3

1
2 ;

1
2m| =: IK1

2
⊗ |1⟩⟨1| 1

2
. (4.82)

As explained Appx. B, one way to define the basis of the multiplicity subspace

is the order of coupling of spin-1/2 systems. The basis {|0⟩, |1⟩} corresponds to

the order in which qubits in K1 and K3 are first coupled, followed by a qubit in

K2.

Similarly, M2 is also derived as

M2 =

(
I0 ⊗ I0 ⊕

1

3
I1 ⊗ I1

)
⊗ 1

2
I 1

2
⊗ I 1

2
(4.83)

=

(
1

2
I 1

2
⊗ I 1

2
⊗ |0̃0̃⟩⟨0̃0̃| 1

2
1
2
+

1

6
I 1

2
⊗ I 1

2
⊗ |1̃1̃⟩⟨1̃1̃| 1

2
1
2

)

⊕ 1

6
I 3

2
⊗ I 1

2
⊗ |1̃⟩⟨1̃| 1

2
⊕ 1

6
I 1

2
⊗ I 3

2
⊗ |1̃⟩⟨1̃| 1

2
⊕ 1

6
I 3

2
⊗ I 3

2
, (4.84)

where the basis {|0̃⟩, |1̃⟩} is defined as of the multiplicity subspace V [3]
1
2

∑ 1
2

m=− 1
2

|12
1
2(0)K2K3

1
2 ;

1
2m⟩⟨12

1
2(0)K2K3

1
2 ;

1
2m| =: IK1

2
⊗ |0̃⟩⟨0̃| 1

2
(4.85)

∑ 1
2

m=− 1
2

|12
1
2(1)K2K3

1
2 ;

1
2m⟩⟨12

1
2(1)K2K3

1
2 ;

1
2m| =: IK1

2
⊗ |1̃⟩⟨1̃| 1

2
(4.86)

Thus we obtain

M1 −M2 =
I 1

2

2
⊗ I 1

2
⊗ (|00⟩⟨00|+ 1

3
|11⟩⟨11|− |0̃0̃⟩⟨0̃0̃|− 1

3
|1̃1̃⟩⟨1̃1̃|)

⊕
I 3

2

4
⊗ I 1

2
⊗ 2

3
(|1⟩⟨1|− |1̃⟩⟨1̃|)

⊕
I 1

2

2
⊗ I 3

2
⊗ 1

3
(|1⟩⟨1|− |1̃⟩⟨1̃|) (4.87)

Next we derive the suitable form of X for applying Lemma 1 and Lemma 2.

From Lemma 1, X can be chosen as

X = p
I 1

2

2
⊗X( 12 ) ⊕ (1− p)

I 3
2

4
, (4.88)

where X( 12 ) is a two by two positive semidefinite operator on the multiplicity

subspace V [3]
1
2

with unit trace and 0 ≤ p ≤ 1. In order to utilize Lemma 2, the
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basis {|0̂⟩, |1̂⟩} is defined as

∑ 1
2

m=− 1
2

|12
1
2(0)K1K2

1
2 ;

1
2m⟩⟨12

1
2(0)K1K2

1
2 ;

1
2m| =: IK1

2
⊗ |0̂⟩⟨0̂| 1

2
(4.89)

∑ 1
2

m=− 1
2

|12
1
2(1)K1K2

1
2 ;

1
2m⟩⟨12

1
2(1)K1K2

1
2 ;

1
2m| =: IK1

2
⊗ |1̂⟩⟨1̂| 1

2
(4.90)

For m = −1/2, 1/2 we have

(SK12 ⊗ I)|1
2

1

2
(0)K1K2

1

2
;
1

2
m⟩ = −|1

2

1

2
(0)K1K2

1

2
;
1

2
m⟩ (4.91)

(SK12 ⊗ I)|1
2

1

2
(1)K1K2

1

2
;
1

2
m⟩ = |1

2

1

2
(1)K1K2

1

2
;
1

2
m⟩. (4.92)

The condition of Lemma 2, i.e., [SH12 , X] = 0 implies that X( 12 ) is diagonalized

with a positive parameter q in the basis {|0̂⟩, |1̂⟩}, namely,

X
( 12 )
q = q|0̂⟩⟨0̂|+ (1− q)|1̂⟩⟨1̂|, (4.93)

where 0 ≤ q ≤ 1.

Calculating Wigner’s 6j-coefficients [66], we obtain the relations of these

three bases as

|0̂⟩ = 1

2
|0⟩+

√
3

2
|1⟩ (4.94)

|1̂⟩ =
√
3

2
|0⟩ − 1

2
|1⟩ (4.95)

|0̃⟩ = −1

2
|0⟩+

√
3

2
|1⟩ (4.96)

|1̃⟩ =
√
3

2
|0⟩+ 1

2
|1⟩. (4.97)

By substituting this X in Equation (4.88), the diamond norm ∥U1 −U2∥♦ in

Equation (4.14) is calculated as

∥U1 − U2∥♦ = max
0≤p,q≤1

∥1
2
I 1

2
⊗ I 1

2

⊗ p(Im1/2
⊗
√

X
( 12 )
q )(|00⟩⟨00|+ 1

3
|11⟩⟨11|− |0̃0̃⟩⟨0̃0̃|− 1

3
|1̃1̃⟩⟨1̃1̃|)(Im1/2

⊗
√
X

( 12 )
q )

⊕ 1

4
I 3

2
⊗ I 1

2
⊗ p

2

3

√
X

( 12 )
q (|1⟩⟨1|− |1̃⟩⟨1̃|)

√
X

( 12 )
q ⊕ 1

2
I 1

2
⊗ I 3

2
⊗ (1− p)

1

3
(|1⟩⟨1|− |1̃⟩⟨1̃|)∥1

= max
0≤p,α≤1

p
{∥∥∥(ImA

1/2
⊗
√
X

( 12 )
q )(|00⟩⟨00|+ 1

3
|11⟩⟨11|− |0̃0̃⟩⟨0̃0̃|− 1

3
|1̃1̃⟩⟨1̃1̃|)(ImA

1/2
⊗
√

X
( 12 )
q )
∥∥∥
1

+
2

3

∥∥∥
√

X
( 12 )
q (|1⟩⟨1|− |1̃⟩⟨1̃|)

√
X

( 12 )
q

∥∥∥
1

}
+ (1− p)

1

3

∥∥∥|1⟩⟨1|− |1̃⟩⟨1̃|
∥∥∥
1
.

(4.98)
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To maximize the diamond norm, p = 0 or p = 1 should be satisfied.

For the case of p = 1, we obtain
∥∥∥(ImA

1/2
⊗
√

X
( 12 )
q )(|00⟩⟨00|+1

3
|11⟩⟨11|−|0̃0̃⟩⟨0̃0̃|−1

3
|1̃1̃⟩⟨1̃1̃|)(ImA

1/2
⊗
√

X
( 12 )
q )
∥∥∥
1
=

2√
3
cos t,

(4.99)

2

3

∥∥∥
√

X
( 12 )
q (|1⟩⟨1|− |1̃⟩⟨1̃|)

√
X

( 12 )
q

∥∥∥
1
=

2

3

∥∥∥−
√
3

2
sin t cos t(|0⟩⟨1|+ |1⟩⟨0|)

∥∥∥
1

=
2√
3
sin t cos t, (4.100)

where t is defined as q =: sin t. This calculation is derived as follows done by

the followings. From the fact that the operator ρ defined as

ρ := |00⟩⟨00|+ 1

3
|11⟩⟨11|− |0̃0̃⟩⟨0̃0̃|− 1

3
|1̃1̃⟩⟨1̃1̃|,

is at most rank 2 since

ρ(|01⟩ − |10⟩) = 0, (4.101)

ρ(|00⟩+ 2
√
3|01⟩+ 3|11⟩) = 0. (4.102)

The rank of ρx := (ImA
1/2

⊗
√
X

( 12 )
q )ρ(ImA

1/2
⊗
√

X
( 12 )
q ) is also at most two. Then

ρx is represented as

ρx =
sin t

4

⎛

⎜⎜⎜⎝

0
√
3 sin t 0 − sin t√

3 sin t 2 cos t − sin t 2 cos t√
3

0 − sin t 0 sin t√
3

− sin t 2 cos t√
3

sin t√
3

−2 cos t

⎞

⎟⎟⎟⎠

in the basis of {|00̂⟩, |01̂⟩, |10̂⟩, |11̂⟩}. Eigenvectors |f±⟩ of ρx with non-zero

eigenvalues are represented as

|f±⟩ =
1

2
√
6
√

4− 2
√
3 cos t− sin2 t

(4.103)

(
3(
√
3± cos t) sin t, 6 cos t±

√
3(4− sin2 t),−(3±

√
3 cos t) sin t, 2

√
3 cos t∓ 3 sin2 t

)T
,

with eigenvalues ± cos t/
√
3. The optimal success probability of this case is

psucc =
1

2
+

1

4
max

0≤t≤π/2

2√
3
sin t(1 + cos t) = 7/8,

where the maximization is achieved with t = π/3.

For the case of p = 0, the success probability is

poptsucc =
1

2
+

1

12

∥∥∥|1⟩⟨1|− |1̃⟩⟨1̃|
∥∥∥
1
=

1

2
+

√
3

12
<

7

8
. (4.104)

Thus the optimal averaged success probability is given by poptsucc = 7/8.
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4.1.6 The Proof of Lemma 3

proof Suppose that a quantum 4-tester Π̃i gives the success probability psucc,

satisfying Equations (4.28) - (4.32). Let us define an averaged quantity of Π̃i as

Π̃′
i :=

∫
dµ(U)

∫
dµ(V )((U⊗3)K ⊗ (V ⊗3)H)Π̃i((U

†⊗3)K ⊗ (V †⊗3)H). (4.105)

Similarly to the proof of Lemma 1, it can be shown that the success probability

p′succ achieved the averaged 4-tester {Π̃′
i} is same as psucc. For arbitrary unitary

operators A,B ∈ SU(2), we have

((A⊗3)K ⊗ (B⊗)K)Π̃′
i((A

⊗3)K ⊗ (B⊗)K)
† (4.106)

=

∫
dµ(U ′)

∫
dµ(V ′)((U ′⊗3)K ⊗ (V ′⊗3)H)Πi((U

′†⊗3)K ⊗ (V ′†⊗3)H) (4.107)

= Π̃i, (4.108)

where we define U ′ = AU and V ′ = BV . We obtain

[Π̃′
i, (A

⊗3)K ⊗ (B⊗3)H] = 0, (4.109)

for i = 1, 2 and arbitrary unitary operators A,B ∈ SU(2).

The sum of Π̃′
1 and Π̃′

2 is given by

Π̃′
1 + Π̃′

2 (4.110)

=

∫
dµ(U)

∫
dµ(V )((U⊗3)K ⊗ (V ⊗3)H)(Π̃1 + Π̃2)((U

†⊗3)K ⊗ (V †⊗3)H)

(4.111)

=

∫
dµ(U)

∫
dµ(V )((U⊗3)K ⊗ (V ⊗3)H)(IK3 ⊗ Y )((U †⊗3)K ⊗ (V †⊗3)H)

(4.112)

=

∫
dµ(U)

∫
dµ(V )((U⊗2)K1K2 ⊗ (V ⊗3)H)Y ((U †⊗3)K1K2 ⊗ (V †⊗3)H)

(4.113)

=: Y ′. (4.114)

By definition, we obtain

[Y ′, (A⊗2)K1K2 ⊗ (B⊗3)H] = 0, (4.115)
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for arbitrary unitary operators A,B ∈ SU(2). Next, we have

TrH3Y
′ (4.116)

= TrH3

∫
dµ(U)

∫
dµ(V )((U⊗2)K1K2 ⊗ (V ⊗3)H)Y ((U †⊗3)K1K2 ⊗ (V †⊗3)H)

(4.117)

=

∫
dµ(U)

∫
dµ(V )((U⊗2)K1K2 ⊗ (V ⊗3)H)(IK2 ⊗ Y (1))((U †⊗3)K1K2 ⊗ (V †⊗3)H)

(4.118)

=

∫
dµ(U)

∫
dµ(V )(UK1 ⊗ (V ⊗2)H1H2)Y

(1)(U †
K1

⊗ (V †⊗2)H1H2) (4.119)

=: Y ′(1). (4.120)

By definition, we obtain

[Y ′(1), AK1 ⊗ (B⊗2)H1H2 ] = 0, (4.121)

for arbitrary unitary operators A,B ∈ SU(2). Finally we have

TrH2Y
′(1) (4.122)

= TrH2

∫
dµ(U)

∫
dµ(V )(UK1 ⊗ (V ⊗2)H1H2)Y

(1)(U †
K1

⊗ (V †⊗2)H1H2)

(4.123)

=

∫
dµ(U)

∫
dµ(V )(UK1 ⊗ (V ⊗2)H1H2)(IK1 ⊗ Y (0))(U †

K1
⊗ (V †⊗2)H1H2)

(4.124)

=

∫
dµ(V )VH1)Y

(0)V †
H1

(4.125)

=: Y ′(0). (4.126)

By definition, we obtain

[Y ′(0), BH1 ] = 0, (4.127)

for arbitrary unitary operators B ∈ SU(2). Therefore the quantum 4-tester {Πi}
and positive semidefinite operators Y , Y (1) and Y (0) can be chosen to satisfy

[Π′
i, (A

⊗3)K ⊗ (B⊗3)H] = 0 (4.128)

[Y ′, (A⊗2)K1K2 ⊗ (B⊗3)H] = 0 (4.129)

[Y ′(1), (A⊗1)K1 ⊗ (B⊗2)H1H2 ] = 0 (4.130)

[Y ′(0), BH1 ] = 0. (4.131)
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4.1.7 The Proof of Lemma 5

We derive the dual problem using Lagrange multipliers. Lagrangian L is defined

as

L =
1

2
Tr [Π1M1 + Π2M2]− Tr [Ω(Π1 + Π2 − IK ⊗ Y )]

− Tr
[
Ω[1](TrHY − IK3 ⊗ Y (1))

]
− Tr

[
Ω[0](TrHY

(1) − I1 ⊗ Y (0))
]

− a(TrY (0) − 1) (4.132)

where Ω,Ω[1],Ω[0] and a are Lagrange multipliers. If the conditions in Equa-

tions (4.27) - (4.32) are satisfied, additional terms in Lagrangian are 0 for any

Lagrange multipliers Ω,Ω[1],Ω[0] and a. By rewriting Lagrangian, we have

L = Tr

[
Π1(

M1

2
− Ω)

]
+ Tr

[
Π2(

M2

2
− Ω)

]
+ Tr

[
Y (TrK3Ω − IH3 ⊗ Ω[1])

]

Tr
[
Y (1)(TrK2Ω − IH2 ⊗ Ω[0])

]
+ Tr

[
Y (0)(TrK1Ω − aIH1 ⊗ Ω0)

]
+ a.

Note that the trace of the product of two positive semidefinite operators is non-

negative. Therefor, we obtain

L ≤ a, (4.133)

if the following inequalities

M [1]

2
− Ω ≤ 0, (4.134)

M [2]

2
− Ω ≤ 0, (4.135)

TrK3Ω − IH3 ⊗ Ω[1] ≤ 0, (4.136)

TrK2Ω − IH2 ⊗ Ω[0] ≤ 0, (4.137)

TrK1Ω − aIH1 ⊗ Ω0 ≤ 0 (4.138)

are satisfied. If the above Conditions (4.134) - (4.138) are satisfied, Inequality

(4.133) is always satisfied for arbitrary positive semidefinite operators Π1,Π2, Y, Y (1)

and Y (0). Therefore minimizing a satisfying Conditions (4.134) - (4.134) gives

the upper bound of the solution of the primal problem.

4.1.8 The Proof of Theorem 3

The outline of the proof is the following. First we show that the positive semidef-

inite operator Ω can be chosen so that the non-trivial elements are only on the

multiplicity subspaces. Then we rewrite the dual problem in terms of the op-

erators in the multiplicity subspaces. Finally we give the solution for the dual

problem in the multiplicity subspaces.
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First we assume that a positive semidefinite operator Ω and a are satisfying

Equations (4.38) - (4.42). Then a new positive semidefinite operator Ω′ defined

as

Ω′ =

∫
dµ(U)

∫
dµ(V )((U⊗3)K ⊗ V ⊗3

H )Ω((U †⊗3)K ⊗ (V †⊗3)H). (4.139)

Ω′ gives the same solution a as Ω. By definition Ω′ satisfies

[Ω′, A⊗3 ⊗ B⊗3] = 0 (4.140)

for arbitrary unitary operators A and B in SU(2). Therefore to minimize a,

without loss of generality, Ω can be chosen satisfying Equation (4.140).

Taking the partial trace K3⊗H3 and K3⊗H3⊗K2⊗H2 of Equation (4.140)

commutation relations

[Ω′[1], A⊗2 ⊗B⊗2] = 0 (4.141)

[Ω′[0], A⊗B] = 0 (4.142)

are obtained for Ω′[1] and Ω′[0] defined as

Ω′[1] =

∫
dµ(U)

∫
dµ(V )((U⊗2)K1K2 ⊗ V ⊗2

H1H2
)Ω((U †⊗2)K1K2 ⊗ (V †⊗2)H1H2),

(4.143)

and

Ω′[0] =

∫
dµ(U)

∫
dµ(V )(UK1 ⊗ VH1)Ω(U †

K ⊗ V †
H1
), (4.144)

respectively.

We can assume that Ω,Ω[1] and Ω[0] are represented as

Ω =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

IJ
dJ

⊗ IL ⊗ Ω(JL) (4.145)

Ω[1] =
1⊕

J=0

1⊕

L=0

IJ
dJ

⊗ IL ⊗ Ω[1]
JL (4.146)

Ω[0] = Ω[0]
1
2

1
2

I 1
2

d 1
2

⊗ I 1
2
, (4.147)

where IJ is the identity operator on the irreducible subspace UJ and Ω(JL) is an

operator on V [3]
J ⊗ V [3]

L for J, L = 1/2, 2/3 and Ω[1]
JL and Ω[0]

1
2

1
2

are some positive

numbers for J, L = 0, 1.
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We rewrite Equations (4.38) - (4.39) in terms of the operator on the multi-

plicity subspaces. The operator Mi is also represented as

Mi =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

IJ
dJ

⊗ IL ⊗M (JL)
i , (4.148)

for i = 1, 2. Thus Equations (4.38) and (4.39) are rewritten as

ΩJL − M [i]
JL

2
≥ 0, (4.149)

for J, L = 1/2, 3/2 and i = 1, 2.

Next we rewrite Equation (4.40). The multiplicity in V [3]
1
2

is generated by the

following two ways. The first one corresponds to the coupling of total spin 0

and 1/2, that is, U0 ⊗ U 1
2
= U 1

2
. The other one is the coupling of total spin 1

and 1/2, that is U1 ⊗ U 1
2
= U 1

2
⊕ U 3

2
. One can easily calculate that

TrK3Ω =

3
2⊕

L= 1
2

[ I0
d0

⊗ IL ⊗ (P [3]
1
2 ,0

⊗ IV [3]
L
)Ω 1

2L
(P [3]

1
2 ,0

⊗ IV [3]
L
) (4.150)

⊕ I1
d1

⊗ IL ⊗ ((P [3]
1
2 ,1

⊗ IV [3]
L
)Ω 1

2L
(P [3]

1
2 ,1

⊗ IV [3]
L
) + Ω 3

2L
)
]
, (4.151)

where we define isometries P [N ]

j,j± 1
2

from the subspace of V [N ]
j that is generated

from the multiplicity subspace V [N−1]

j± 1
2

to the multiplicity subspace V [N−1]

j± 1
2

.

Using the Clepsch-Gordon decomposition, we have

IH3⊗Ω[1] =
I0
d0

⊗ [I 1
2
⊗(Ω[1]

00⊕Ω[1]
01)⊕I 3

2
⊗Ω[1]

01]⊕
I1
d1

⊗ [I 1
2
⊗(Ω[1]

10⊕Ω[1]
11)⊕I 3

2
⊗Ω[1]

11 ].

Condition (4.40) is rewritten as

Ω[1]
00 ⊕ Ω[1]

01 − Ω0→1/2
1
2

1
2

≥ 0, (4.152)

Ω[1]
01 − Ω0→1/2

1
2

3
2

≥ 0, (4.153)

Ω[1]
00 ⊕ Ω[1]

01 − Ω1→1/2
1
2

1
2

− Ω 3
2

1
2
≥ 0, (4.154)

Ω[1]
11 − Ω1→1/2

1
2

3
2

− Ω 3
2

3
2
≥ 0, (4.155)

where we define Ωj→1/2
1
2

1
2

= (P [3]
1
2 ,j

⊗ IV [3]
L
)Ω 1

2L
(P [3]

1
2 ,j

⊗ IV [3]
L
). Similarly, we obtain

TrK2Ω
[1] =

I 1
2

d 1
2

⊗ [(Ω00 + Ω10)I0 ⊕ (Ω01 + Ω11)I1] (4.156)

IH2 ⊗ Ω[0] =
I 1

2

d 1
2

⊗ (Ω[0]
1
2

1
2

I0 + Ω[0]
1
2

1
2

I1) (4.157)
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and

TrK1Ω
[0] = Ω[0]

1
2

1
2

I [0]. (4.158)

Equations (4.41) and (4.41) are rewritten as

Ω[0]
1
2

1
2

− Ω[1]
00 − Ω[1]

10 ≥ 0, (4.159)

Ω[0]
1
2

1
2

− Ω[1]
01 − Ω[1]

11 ≥ 0, (4.160)

a− Ω[0]
1
2

1
2

≥ 0. (4.161)

Obviously we can assume Ω[0]
1
2

1
2

= a without loss of generality. We finally obtain

a dual problem on the multiplicity subspace as follows.

minimize: a (4.162)

subject to: ΩKL − M [i]
KL

2
≥ 0 for K,L = 1/2, 3/2 and i = 1, 2, (4.163)

Ω[1]
00 ⊕ Ω[1]

01 − Ω0→1/2
1
2

1
2

≥ 0, (4.164)

Ω[1]
01 − Ω0→1/2

1
2

3
2

≥ 0, (4.165)

Ω[1]
00 ⊕ Ω[1]

01 − Ω1→1/2
1
2

1
2

− Ω 3
2

1
2
≥ 0, (4.166)

Ω[1]
11 − Ω1→1/2

1
2

3
2

− Ω 3
2

3
2
≥ 0. (4.167)

a− Ω[1]
00 − Ω[1]

10 ≥ 0 (4.168)

a− Ω[1]
01 − Ω[1]

11 ≥ 0. (4.169)

As we have shown in Lemma 4, two different kind of orders can be considered.

The first case is the order in which the reference box 1 and the reference box 2

are first used in the parallel way and the test box is used later. Note that we

use the bases {|0⟩, |1⟩} defined in Equation (4.81) and (4.82) to represent the

following matrices in the multiplicity subspaces.

In this case, M1 is derived as

M1 =
1

2
IK1

2
⊗ IH1

2
⊗ (|00⟩⟨00| 1

2
1
2
+

1

3
|11⟩⟨11| 1

2
1
2
) (4.170)

⊕ 1

4
IK3

2
⊗ IH1

2
⊗ 2

3
|1⟩⟨1| 1

2
⊕ 1

2
IK1

2
⊗ IH3

2
⊗ 1

3
|1⟩⟨1| 1

2
⊕ 1

6
IK3

2
⊗ IH3

2
,
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which is same as Equation (4.80). In matrix representations, we have

M [1]
1
2

1
2

=

⎛

⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
3

⎞

⎟⎟⎟⎠
,M [1]

1
2

3
2

=

(
0 0

0 1
3

)
, (4.171)

M [1]
3
2

1
2

=

(
0 0

0 2
3

)
,M [1]

3
2

3
2

=
2

3
. (4.172)

M2 is derived as

M2 = (
1

2
IK1

2
⊗ IH1

2
⊗ |0̃0̃⟩⟨0̃0̃| 1

2
1
2
+

1

6
IK1

2
⊗ IH1

2
⊗ |1̃1̃⟩⟨1̃1̃| 1

2
1
2
) (4.173)

⊕ 1

6
IK3

2
⊗ IH1

2
⊗ |1̃⟩⟨1̃| 1

2
⊕ 1

6
IK1

2
⊗ IH3

2
⊗ |1̃⟩⟨1̃| 1

2
⊕ 1

6
IK3

2
⊗ IH3

2
.

The matrix representations are

M [2]
1
2

1
2

=
1

4

⎛

⎜⎜⎜⎝

1 0 0 1

0 1 1 − 2√
3

0 1 1 − 2√
3

1 − 2√
3

− 2√
3

7
3

⎞

⎟⎟⎟⎠
,M [2]

1
2

3
2

=
1

4

(
1 1√

3
1√
3

1
3

)
, (4.174)

M [2]
3
2

1
2

=
1

2

(
1 1√

3
1√
3

1
3

)
,M [2]

3
2

3
2

=
2

3
. (4.175)

Therefore a solution of the dual problem represented by Equations (4.162)

and (4.169) is given by

a =
7

8
(4.176)

Ω 1
2

1
2
=

1

2

⎛

⎜⎜⎜⎝

1 0 0 0

0 1
4

1
4 − 1

2
√
3

0 1
4

1
4 − 1

2
√
3

0 − 1
2
√
3

− 1
2
√
3

2
3 ,

⎞

⎟⎟⎟⎠
,Ω 1

2
3
2
=

(
1
8

1
8
√
3

1
8
√
3

1
3

)
, (4.177)

Ω 3
2

1
2
=

1

4

(
1 1√

3
1√
3

5
3

)
,Ω 3

2
3
2
=

1

3
(4.178)

Ω[1]
00 =

1

2
,Ω[1]

01 =
1

8
,Ω[1]

10 =
3

8
,Ω[1]

11 =
3

4
, (4.179)

It is easy to check these solutions satisfy Conditions (4.163) to (4.169).

The second case is the order in which the reference box 1 and the test box

are used first and the reference box 2 is next. In this case, M2 is same in the
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first case. M1 can be derived by exchanging the spaces H1 and H3 and changing

U1 and U2. U1 and U2 can be exchanged freely since U1 and U2 are just labels in

the integration over the Haar measure. In the multiplicity subspace of the basis

{|0⟩, |1⟩}, exchanging the spaces H1 and H3 corresponds to applying σz defined

as

σz =

(
1 0

0 −1

)
. (4.180)

Then we obtain the matrix representations

M [1]
1
2

1
2

=
1

4

⎛

⎜⎜⎜⎝

1 0 0 1

0 1 1 2√
3

0 1 1 2√
3

1 2√
3

2√
3

7
3

⎞

⎟⎟⎟⎠
,M [1]

1
2

3
2

=
1

4

(
1 − 1√

3

− 1√
3

1
3

)
, (4.181)

M [1]
3
2

1
2

=
1

2

(
1 − 1√

3

− 1√
3

1
3

)
,M [1]

3
2

3
2

=
2

3
(4.182)

A solution of the dual problem given in Equation (??) in this case is given

by

a =
7

8
(4.183)

Ω 1
2

1
2
=

1

2

⎛

⎜⎜⎜⎝

1
4 0 0 1

4

0 1
2

1
2 0

0 1
2

1
2 0

1
4 0 0 11

12

⎞

⎟⎟⎟⎠
,Ω 1

2
3
2
=

1

4

(
1 0

0 1
3

)
, (4.184)

Ω 3
2

1
2
=

1

2

(
1 0

0 1
3

)
,Ω 3

2
3
2
=

1

3
(4.185)

Ω[1]
00 =

1

8
, Ω[1]

01 =
1

4
, Ω[1]

10 =
3

4
, Ω[1]

11 =
5

8
. (4.186)

It is easy to check that these solutions also satisfy Conditions (4.163) to (4.169).

Thus the optimal averaged success probability of obtaining correct answer is 7/8

under the ordered strategies.

4.2 One of Unitary Operations is Known

In this section, we assume that classical descriptions of one of the reference boxes,

U1, is given so that any quantum operations depending on the description of the

known reference box U1 are allowed to discriminate which unitary operation is

performed by the test box, whereas the classical description of another reference
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box is not give. This situation help to understand how the success probability

changes when classical descriptions of the candidate unitary operations are given.

4.2.1 No Reference Box

First we consider the case in which only the test box is given and there is no

reference box but a description of a unitary operator U1 is given and we need

to find out that the test implements U1 or not. In this case, there is no clue

to specify what kind operation U2 is. Here, instead of being given the reference

box 1, we have complete information about the unitary operation U1. That

means, we can apply the the reference box 1 arbitrary times since any quantum

operations depending on U1 is allowed. Contrary to the difference of the given

resource, we show that the optimal success probability is still 7/8.

We denote the input and output spaces of the test box as H and K. An

initial state |ψ⟩ ∈ H ⊗ H is represented as |ψ⟩ = I ⊗
√
X|I⟩⟩, with a positive

semidefinite operator X on H and maximally entangled vector |I⟩⟩ in H ⊗ H.

The POVM is denoted as {Π1,Π2}.
Consider a new initial state |φ⟩ = U †

1⊗I|ψ⟩, two candidate states for discrim-

ination are U2U
†
1 ⊗ I|φ⟩ and |φ⟩, where U2 is the unitary operator implemented

by the reference box 2. Then the average success probability psucc over U1

psucc =
1

2

∫
dµ(U1)Tr[(U2U

†
1 ⊗ I)|φ⟩⟨φ|(U1U

†
2 ⊗ I) + |φ⟩⟨φ|] (4.187)

=
1

2
Tr[EΠ1 + |φ⟩⟨φ|Π2], (4.188)

where

E =

∫
dµ(U1)(U1 ⊗ I)|φ⟩⟨φ|(U †

1 ⊗ I) =
I

2
⊗X. (4.189)

Thus the averaged success probability over U1 does not depend on U2 when

we consider the initial state |φ⟩. Without loss of generality it is possible to

assume that U2 = I in the following discussion. In this case, the test box

can be considered to implement one of unitary operations U1 and I, and U1

is probabilistically chosen from the Haar measure. To maximize the averaged

success probability, we define a 2 tester Π̃i = (I ⊗
√
X)Πi(I ⊗

√
X) and obtain

psucc =
1

2
Tr[EΠ1 + |φ⟩⟨φ|Π2] (4.190)

=
1

2
Tr

[(
I

2
⊗ I

)
Π̃1 + |I⟩⟩⟨⟨I|Π̃2

]
, (4.191)

where Π̃1 + Π̃2 = I ⊗X.
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We assume that {Π̃1, Π̃2} realize the averaged success probability psucc. Then

a positive semidefinite operator Π′
i defined as

Π̃′
i =

∫
dµ(A)(A⊗ A∗)Π̃i(A⊗ A∗)† (4.192)

also achieves the same averaged success probability psucc. Since

p′succ =
1

2
Tr[(

I

2
⊗ I)Π̃′

1 + |I⟩⟩⟨⟨I|Π̃′
2]

=
1

2

∫
dµ(A)Tr[(

I

2
⊗ I)(A⊗ A∗)Π̃1(A⊗ A∗)† + |I⟩⟩⟨⟨I|(A⊗ A∗)Π̃2(A⊗ A∗)†]

=
1

2

∫
dµ(A)Tr[(A⊗ A∗)†(

I

2
⊗ I)(A⊗ A∗)Π̃1 + (A⊗ A∗)†|I⟩⟩⟨⟨I|(A⊗ A∗)Π̃2]

=
1

2

∫
dµ(A)Tr[(

I

2
⊗ I)Π̃1 + |I⟩⟩⟨⟨I|Π̃2]

=
1

2
Tr[(

I

2
⊗ I)Π̃1 + |I⟩⟩⟨⟨I|Π̃2]

= psucc, (4.193)

where we used the property (A⊗A∗)|I⟩⟩ = |I⟩⟩ for an arbitrary unitary operator

A ∈ SU(2). By definition, Π′
i satisfies [Π

′
i, A⊗ A∗] = 0 for an arbitrary unitary

operator A ∈ SU(2). To maximize the averaged success probability, we assume

this commutation relation.

Then from the relation Π̃1 + Π̃2 = I ⊗X we can assume that

[X,A] = 0, (4.194)

can be assumed for arbitrary unitary operator A. This implies that without loss

of generality X = I/2.

From [Π̃i, A⊗ A∗] = 0 for any unitary A ∈ SU(2) for i = 1, 2, we have

Π̃i = αi
|I⟩⟩⟨⟨I|

2
+ βiQ, (4.195)

where Q is the projector onto the subspace orthogonal to |I⟩⟩⟨⟨I| defined as

Q := I − |I⟩⟩⟨⟨I|/2. From the condition Π̃1 + Π̃2 = I ⊗ I/2 we obtain

α1 + α2 = β1 + β2 =
1

2
. (4.196)
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Now the averaged success probability psucc is represented as

psucc =
1

2
Tr

[
(
I

2
⊗ I)Π̃1 + |I⟩⟩⟨⟨I|Π̃2

]

=
1

2

[
1

2
(α1 + 3β1) + 2α2

]
(4.197)

=
1

4
(α1 + 3β1 + 4α2) (4.198)

≤ 7

8
, (4.199)

where the inequality saturates when α2 = β1 = 1/2 and α1 = β2 = 0.

Providing a the complete classical description of U1 implies ability to use

the black-box for any number of times. But the result shown in this subsection

indicates that the multiple uses of reference box 1 alone without use of the

reference box 2 does not help to improve the averaged success probability when

only are use of the test box is allowed. As we show in the next section, the

classical descriptions of U1 give advantages when the reference box 2, can be

used even if the classical description of the reference box 2 is not provided.

4.2.2 Single Use of The Reference Box

In this section, we consider the case that a single use of the reference box 2

implementing U2 is allowed in addition to the classical descriptions of U1 under

the parallel strategies.

Similarly to the analysis made in the previous sections, the task is to dis-

criminate unitary operations V ⊗V and V ⊗ I, where V = U2U
†
1 and U1 and U2

are randomly chosen from the Haar measure. The averaged success probability

psucc for this case is represented in terms of the 2-tester {Π̃i} as

psucc =
1

2
Tr[E1Π̃1 + E2Π̃2], (4.200)

where E1 and E2 are defined as

E1 =

∫
dµ(U2)(U2 ⊗ U2 ⊗ IH1H1)|I⟩⟩⟨⟨I|(U2 ⊗ U2 ⊗ IH1H1)

† (4.201)

= I0 ⊗ I0 ⊕
I1
3
⊗ I1, (4.202)

and

E2 =

∫
dµ(U2)(U2 ⊗ IH2 ⊗ IH1H1)|I⟩⟩⟨⟨I|(U2 ⊗ IH2 ⊗ IH1H1)

† (4.203)

=
IK1

2
⊗ IH1 ⊗ |I⟩⟩⟨⟨I|K2H2 , (4.204)
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and Π̃1, Π̃2 ≥ 0 and Π̃1 + Π̃2 = IK ⊗XH.

From the condition [Ei, A
⊗2
K ⊗ A∗⊗2

H ] = 0 for arbitrary unitary operator A ∈
SU(2), without loss of generality one can assume that

[Π̃i, A
⊗2
K ⊗ A∗⊗2

H ] = 0. (4.205)

This condition and the relation Π̃1 + Π̃2 = IK ⊗XH lead

[XH, A
⊗2] = 0, (4.206)

for arbitrary unitary operator A ∈ SU(2). Without loss of generality, we have

X = sin2[t]I0 ⊕ cos2[t]
I1
3
, (4.207)

with 0 ≤ t ≤ π.

The task is to discriminate two random unitary channels where E1 and E2

are the Choi operators of the random unitary channels. The optimal average

success probability is calculated as

poptsucc =
1

2
+

1

4
max

X≥0,TrX=1
∥(IK ⊗

√
X)(E1 − E2)(IK ⊗

√
X)∥1, (4.208)

which was already derived in Sec. 3.2. The maximization in the second term of

the right hand side of Equation (4.208) can be calculated as

∥(IK ⊗
√
X)(E1 − E2)(IK ⊗

√
X)∥1 (4.209)

=
5 cos2 t

36
+

3

144

√
87− 4 cos 2t− 10 cos 4t (4.210)

+
1

36

√
357− 352 cos 2t+ 20 cos 4t. (4.211)

The above equation can be calculated by summing the absolute value of the all

eigenvalues of (IK ⊗
√
X)(E1 − E2)(IK ⊗

√
X). The optimal averaged success

probability is numerically derived as poptsucc ≃ 0.902127 > 0.875 = 7/8.



Chapter 5

Equivalence Determination:
Multiple Uses of the Reference
Boxes

In the previous chapter, we analyzed equivalence determination of unitary oper-

ations when each of the reference boxes and the test box can be used only once

and showed that the ordered strategies do not improve the optimal success prob-

ability comparing with the parallel strategies. One question is whether this no

improvement property holds for the case of multiple uses of the reference boxes.

Another interesting question is how the averaged optimal success probability be-

haves when the number of the uses of the reference boxes increases. To answer

these questions, we deal with equivalence determination with the multiple uses

of the two reference boxes in this chapter.

In Sec. 5.1, we analyze the case that all black-boxes are used in parallel

ways with up to four uses of each of the reference boxes and derive the aver-

aged success probability by numerically solving the corresponding semidefinite

programmings. In Sec. 5.2, we consider ordered strategies for the case that

reference box 1 can be used twice and reference box 2 can be used only once

and investigate all orders of the black-boxes and all configurations of quantum

testers.

66
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|ψ⟩

H1
U1

K1

{Πi}

...

HN
U1

KN

HN+1
U2

KN+1

...

H2N
U2

K2N

H2N+1
Ui

K2N+1

H

Figure 5.1: A quantum circuit representation for (N,N)-equivalence determina-

tion under the parallel strategies.

5.1 (N,N)-Equivalence Determination under Par-

allel Strategies

5.1.1 Formulation with Semidefinite Programmings

We first formulate the optimization problems for (N,N)-equivalence determi-

nation in terms of semidefinite programmings (SDP). We consider two uni-

tary operators U1 and U2 in SU(2) and assign Hilbert spaces Hi and Ki as

U⊗N
1 ∈ L(

⊗N
i=1 Hi,

⊗N
i=1 Ki) and U⊗N

2 ∈ L(
⊗2N

j=N+1 Hj,
⊗2N

j=N+1 Kj). The

test-box implements a unitary operation Ui that is guaranteed to be one of

two unitary operations U1 and U2. Let Ui be in L(H2N+1,K2N+1). We define

H =
⊗2N+1

i=1 Hi and K =
⊗2N+1

i=1 Ki and (see Fig. 5.1).

We define an initial state |ψ⟩ = IH ⊗
√
X|I⟩⟩ Let {Π1,Π2} be a POVM. We

adopt the averaged success probability over the Haar measure as the figure of

merit similarly to the analysis in the previous chapter. The success probability

is given by

psucc =
1

2

∫
dµ(U1)dµ(U2)Tr[|ψ1⟩⟨ψ1|Π1 + |ψ2⟩⟨ψ2|Π2] (5.1)



68Chapter 5 Equivalence Determination: Multiple Uses of the Reference Boxes

=
1

2
Tr[M1Π̃1 +M2Π̃2], (5.2)

where we defined |ψi⟩ = U⊗N
1 ⊗ U⊗N

2 ⊗ Ui ⊗ IH|ψ⟩ and

Mi =

∫
dµ(U1)

∫
dµ(U2)(U

⊗N
1 ⊗U⊗N

2 ⊗Ui⊗IH)|I⟩⟩⟨⟨I|(U †⊗N
1 ⊗U †⊗N

2 ⊗U †
i ⊗IH)

(5.3)

for i = 1, 2 and a quantum two tester Π̃i = (IK ⊗
√
X)Πi(IK ⊗

√
X).

The corresponding optimization problem is given as follows.

Proposition 3. The averaged optimal success probability for (N,N)-equivalence

determination under the parallel strategies obtaining the correct answer with N

use of reference boxes under parallel strategies is given by the following semidef-

inite programming.

maximize psucc =
1

2
Tr
[
M1Π̃1 +M2Π̃2

]
(5.4)

maximize Π̃i ≥ 0, i = 1, 2 (5.5)

Π̃1 + Π̃2 = IK ⊗X (5.6)

X ≥ 0 (5.7)

TrX = 1, (5.8)

where Mi is defined in Equation (5.3).

We rewrite the SDP in Prop. 3 in terms of operators on the multiplicity

subspaces. Following the similar logic to the one presented in Sec. 4.1.3, it is

possible to choose X and {Π̃i} satisfying [X,A⊗2N+1] = 0 and [Π̃i, (A⊗2N+1)H⊗
(B⊗2N+1)K] = 0 for any A,B ∈ SU(2) for i = 1, 2. Thus without loss of

generality, we can assume

X =
N/2⊕

L=⌊N⌋

IL
dL

⊗XL (5.9)

Π̃i =
N/2⊕

J=⌊N⌋

N/2⊕

L=⌊N⌋

IJ ⊗ IL
dL

⊗ Π̃[i]
JL (5.10)

Mi =
N/2⊕

J=⌊N⌋

N/2⊕

L=⌊N⌋

IJ
dJ

⊗ IL ⊗M [i]
JL, (5.11)

where ⌊N⌋ is 0 when N is odd and 1 otherwise.
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Then the SDP on multiplicity subspaces is represented as

maximize psucc =
1

2
Tr

N/2∑

J=⌊N⌋

N/2∑

L=⌊N⌋

[
M [1]

JLΠ[1]
JL +M [2]

JLΠ[2]
JL

]
(5.12)

subject to Π[i]
JL ≥ 0, i = 1, 2 and J, L = ⌊N⌋ · · ·N/2 (5.13)

Π[1]
JL + Π[2]

JL = IV [N ]
J

⊗XL, J, L = ⌊N⌋ · · ·N/2 (5.14)

XL ≥ 0, L = ⌊N⌋ · · ·N/2 (5.15)

N/2∑

L=⌊N⌋

TrXL = 1, (5.16)

where M [i]
JL is derived in Sec. 5.1.3.

5.1.2 Numerical Results

We solve the SDP presented in the previous subsectionby numerical calculations

for N = 2, 3, 4. The numerical results are shown in Fig. 5.2.

If the classical descriptions of two unitary operations are given, this situation

corresponds to N → ∞, since unitary operation can be applied on many times

when the classical description are given. Therefore averaging the optimal success

probability of discrimination of two unitary operations given by Equation (3.2.2)

where the classical descriptions of the candidate unitary operations is given pro-

vides the upper bound of the averaged success probability of (N,N)-equivalence

determination. The upper bound is 1/2+4/3π ≃ 0.9244 and the optimal success

probability for equivalence determination with N = 4 is psucc ≈ 0.9183. The

success probabilities are already close for N = 4.

For numerical calculation, we did not directly solve the SPD given by the

Conditions (5.4) - (5.8) but the Conditions (5.12) - (5.16) utilizing the group

theoretical properties. The concrete calculation of M [i]
JL for N = 2 is given in

the next section and for N = 3, 4 is given Appx. C.

5.1.3 Calculations of Choi operators in Prop. 3 for N = 2

In this section, we give the explicit calculations for the Choi operators defined in

Equation (5.3) for N = 2. First we denote HR1 =
⊗N

i=1 Hi, HR2 =
⊗2N

j=N+1 Hj

and HT = H2N+1. We use the same labels for the corresponding output spaces

K’s. We assume that spin-1/2 systems HRi are first coupled for i = 1, 2. Then

for M1, HR1 and HT are coupled followed by the coupling with HR2 . For M2,

HR2 and HT are coupled followed by the coupling with HR1 . Then we represent
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0.95
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psucc

N

Figure 5.2: The averaged optimal success probability for (N,N)-equivalence

determination under the parallel strategies forN = 1, 2, 3, 4. The red dashed line

indicates the optimal averaged success probability when classical descriptions

of two unitary operations are given, namely, for the case of discrimination of

unitary operations. Since the value represented by red dashed line corresponds

to the asymptotic limit for N → ∞ in equivalence determination, the value with

N = 4 reaches close to this asymptotic limit.

the relation between the two basis in the multiplicity subspaces due to the order

of the coupling. The calculations for N = 3, 4 are given in Appx. C.

N = 2 case

The Choi operator Mi is represented as

M1 = η[3]HR1KR1HTKT
⊗ η[2]HR2KR2

(5.17)

M2 = η[2]HR1KR1
⊗ η[2]HR2KR2HTKT

, (5.18)

where the definition of η[N ] is given in Equation (4.74). Then we have

η[3]HR1KR1HTKT
=

I 1
2
2 ⊗ I 1

2
⊗ {
[
(|α[2]

0 ⟩⟩+ |α[2]
1 ⟩⟩)⊗ |α[1]

1 ⟩⟩
]
} (5.19)

⊕
I 1
2
2 ⊗ I 1

2
⊗
[
|α[2]

1 ⟩⟩ ⊗ |α1
1⟩⟩
]

(5.20)

and

η[2]HR2KR2
= I0 ⊗ I0 ⊗ [|α[2]

0 ⟩⟩]⊕ I1
3
⊗ I1 ⊗ [|α[2]

1 ⟩⟩], (5.21)
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where we define |αN
J ⟩⟩ is the unnormalized maximally entangled vector on V [N ]⊗2

J

and [|ψ⟩] = |ψ⟩⟨ψ|.
We denote

Mi =

5
2⊕

J= 1
2

5
2⊕

L= 1
2

IJ
dJ

⊗ IL ⊗M [i]
JL, (5.22)

where M [i]
JL is an operator on the multiplicity subspace. Then we have

M [1]
1
2

1
2

=
[
|00⟩ 1

2
1
2
+ |22⟩ 1

2
1
2

]
+

1

3

[
|11⟩ 1

2
1
2
+ |33⟩ 1

2
1
2

]
+

1

6

[
|44⟩ 1

2
1
2

]
, (5.23)

M [1]
1
2

3
2

=
1

3

[
|00⟩ 1

2
3
2
+ |32⟩ 1

2
3
2

]
+

1

6

[
|43⟩ 1

2
3
2

]
, (5.24)

M [1]
1
2

5
2

=
1

6

[
|40⟩ 1

2
5
2

]
, (5.25)

M [1]
3
2

1
2

=
2

3

[
|00⟩ 3

2
1
2
+ |23⟩ 3

2
1
2

]
+

1

3

[
|34⟩ 3

2
1
2

]
, (5.26)

M [1]
3
2

3
2

=
[
|00⟩ 3

2
3
2
|22⟩ 3

2
3
2

]
+
[
|11⟩ 3

2
3
2

]
+

1

3

[
|33⟩ 3

2
3
2

]
, (5.27)

M [1]
3
2

5
2

=
1

3

[
|30⟩ 3

2
5
2

]
, (5.28)

M [1]
5
2

1
2

=
1

2

[
|04⟩ 5

2
5
2

]
, (5.29)

M [1]
5
2

3
2

=
1

2

[
|03⟩ 5

2
5
2

]
, (5.30)

M [1]
5
2

5
2

=
1

2

[
|00⟩ 5

2
5
2

]
, (5.31)

where we defined the basis states for the multiplicity subspaces V [5]
1
2

as

∑1/2
m=−1/2 |0

1
2(

1
2)K1KT 0;

1
2m⟩⟨01

2(
1
2)K1KT 0;

1
2m| =: I 1

2
⊗ |0⟩⟨0| 1

2
, (5.32)

∑1/2
m=−1/2 |0

1
2(

1
2)K1KT 1;

1
2m⟩⟨01

2(
1
2)K1KT 1;

1
2m| =: I 1

2
⊗ |1⟩⟨1| 1

2
, (5.33)

∑1/2
m=−1/2 |1

1
2(

1
2)K1KT 0;

1
2m⟩⟨11

2(
1
2)K1KT 0;

1
2m| =: I 1

2
⊗ |2⟩⟨2| 1

2
, (5.34)

∑1/2
m=−1/2 |1

1
2(

1
2)K1KT 1;

1
2m⟩⟨11

2(
1
2)K1KT 1;

1
2m| =: I 1

2
⊗ |3⟩⟨3| 1

2
, (5.35)

∑1/2
m=−1/2 |1

1
2(

3
2)K1KT 1;

1
2m⟩⟨11

2(
3
2)K1KT 1;

1
2m| =: I 1

2
⊗ |4⟩⟨4| 1

2
, (5.36)

and for V [5]
3
2

as

∑3/2
m=−3/2 |0

1
2(

1
2)K1KT 1;

3
2m⟩⟨01

2(
1
2)K1KT 1;

3
2m| =: I 3

2
⊗ |0⟩⟨0| 3

2
, (5.37)

∑3/2
m=−3/2 |1

3
2(

1
2)K1KT 0;

3
2m⟩⟨11

2(
3
2)K1KT 0;

3
2m| =: I 3

2
⊗ |0⟩⟨0| 3

2
, (5.38)

∑3/2
m=−3/2 |1

1
2(

1
2)K1KT 1;

3
2m⟩⟨11

2(
1
2)K1KT 1;

3
2m| =: I 3

2
⊗ |0⟩⟨0| 3

2
, (5.39)

∑3/2
m=−3/2 |1

1
2(

3
2)K1KT 1;

3
2m⟩⟨11

2(
3
2)K1KT 1;

3
2m| =: I 3

2
⊗ |0⟩⟨0| 3

2
(5.40)
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and for V [5]
5
2

as

∑5/2
m=−5/2 |1

1
2(

3
2)K1KT 1;

5
2m⟩⟨11

2(
3
2)K1KT 1;

5
2m| =: I 5

2
⊗ |0⟩⟨0| 3

2
, (5.41)

where |j1 12(j1 ±
1
2)K1KT j2; Jm⟩ represents a state with the total angular momen-

tum J and the angular momentum along the z-axis m obtained by coupling a

spin j1 on K1 and a spin 1/2 on KT followed by coupling spin j2 in K2.

For M2 we have

M [2]
1
2

1
2

=
[
|0̂0̂⟩ 1

2
1
2
|2̂2̂⟩ 1

2
1
2

]
+

1

3

[
|1̂1̂⟩ 1

2
1
2
|3̂3̂⟩ 1

2
1
2

]
+

1

6

[
|4̂4̂⟩ 1

2
1
2

]
, (5.42)

M [2]
1
2

3
2

=
1

3

[
|0̂0̂⟩ 1

2
3
2
+ |3̂2̂⟩ 1

2
3
2

]
+

1

6

[
|4̂3̂⟩ 1

2
3
2

]
, (5.43)

M [2]
1
2

5
2

=
1

6

[
|4̂0̂⟩ 1

2
5
2

]
, (5.44)

M [2]
3
2

1
2

=
2

3

[
|0̂0̂⟩ 3

2
1
2
+ |2̂3̂⟩ 3

2
1
2

]
+

1

3

[
|3̂4̂⟩ 3

2
1
2

]
, (5.45)

M [2]
3
2

3
2

=
[
|0̂0̂⟩ 3

2
3
2
|2̂2̂⟩ 3

2
3
2

]
+
[
|1̂1̂⟩ 3

2
3
2

]
+

1

3

[
|3̂3̂⟩ 3

2
3
2

]
, (5.46)

M [2]
3
2

5
2

=
1

3

[
|3̂0̂⟩ 3

2
5
2

]
, (5.47)

M [2]
5
2

1
2

=
1

2

[
|0̂4̂⟩ 5

2
5
2

]
, (5.48)

M [2]
5
2

3
2

=
1

2

[
|0̂3̂⟩ 5

2
5
2

]
, (5.49)

M [2]
5
2

5
2

=
1

2

[
|0̂0̂⟩ 5

2
5
2

]
, (5.50)

where we defined the basis states for the multiplicity subspaces V [5]
1
2

as

∑1/2
m=−1/2 |0

1
20(

1
2)K1KT ;

1
2m⟩⟨01

20(
1
2)K1KT ;

1
2m| =: I 1

2
⊗ |0̂⟩⟨0̂| 1

2
, (5.51)

∑1/2
m=−1/2 |1

1
21(

1
2)K1KT ;

1
2m⟩⟨11

21(
1
2)K1KT ;

1
2m| =: I 1

2
⊗ |1̂⟩⟨1̂| 1

2
, (5.52)

∑1/2
m=−1/2 |0

1
21(

1
2)K1KT ;

1
2m⟩⟨01

21(
1
2)K1KT ;

1
2m| =: I 1

2
⊗ |2̂⟩⟨2̂| 1

2
, (5.53)

∑1/2
m=−1/2 |1

1
21(

1
2)K1KT ;

1
2m⟩⟨11

21(
1
2)K1KT ;

1
2m| =: I 1

2
⊗ |3̂⟩⟨3̂| 1

2
, (5.54)

∑1/2
m=−1/2 |1

1
21(

3
2)K1KT ;

1
2m⟩⟨11

21(
3
2)K1KT ;

1
2m| =: I 1

2
⊗ |4̂⟩⟨4̂| 1

2
, (5.55)

and for V [5]
3
2

as

∑3/2
m=−3/2 |1

1
20(

1
2)K1KT ;

3
2m⟩⟨11

20(
1
2)K1KT ;

3
2m| =: I 3

2
⊗ |0̂⟩⟨0̂| 3

2
, (5.56)

∑3/2
m=−3/2 |0

1
21(

3
2)K1KT ;

3
2m⟩⟨01

21(
3
2)K1KT ;

3
2m| =: I 3

2
⊗ |1̂⟩⟨1̂| 3

2
, (5.57)

∑3/2
m=−3/2 |1

1
21(

1
2)K1KT ;

3
2m⟩⟨11

21(
1
2)K1KT ;

3
2m| =: I 3

2
⊗ |2̂⟩⟨2̂| 3

2
, (5.58)

∑3/2
m=−3/2 |1

1
21(

3
2)K1KT ;

3
2m⟩⟨11

21(
3
2)K1KT ;

3
2m| =: I 3

2
⊗ |3̂⟩⟨3̂| 3

2
, (5.59)
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and for J = 5/2,

∑5/2
m=−5/2 |1

1
21(

3
2)K1KT ;

5
2m⟩⟨11

21(
3
2)K1KT ;

5
2m| =: I 3

2
⊗ |0̂⟩⟨0̂| 5

2
, (5.60)

where |j1 12j2(j2 ±
1
2)KTK2 ; Jm⟩ represents a state with the total angular momen-

tum J and the angular momentum along the z-axis m obtained by coupling a

spin j2 on K2 and a spin 1/2 on KT followed by coupling spin j1 in K1.

Using Lemma 6, the relation between the two bases can be calculated. We

define a two-by-two unitary matrix U(j1, j3, j) as

U(j1, j3, j)11 =
(−1)2(j1+j3+j)

√
(2j3 + 1)(2j1 + 1)

√
(j +

1

2
)2 − (j3 − j1)2, (5.61)

U(j1, j3, j)12 = − (−1)2(j1+j3+j)

√
(2j3 + 1)(2j1 + 1)

√
(j3 + j1 + 1)2 − (j +

1

2
)2, (5.62)

U(j1, j3, j)21 =
(−1)1+2(j1+j3+j)

√
(2j3 + 1)(2j1 + 1)

√
(j3 + j1 + 1)2 − (j +

1

2
)2, (5.63)

U(j1, j3, j)22 =
(−1)1+2(j1+j3+j)

√
(2j3 + 1)(2j1 + 1)

√
(j +

1

2
)2 − (j3 − j1)2. (5.64)

Then we obtain

|0̂⟩ 1
2
= U(0, 0, 1/2)22|0⟩ 1

2
, (5.65)

|1̂⟩ 1
2
= U(1, 0, 1/2)21|2⟩ 1

2
, (5.66)

|2̂⟩ 1
2
= U(0, 1, 1/2)12|1⟩ 1

2
, (5.67)

|3̂⟩ 1
2
= U(1, 1, 1/2)11|3⟩ 1

2
+ U(1, 1, 1/2)12|4⟩ 1

2
, (5.68)

|4̂⟩ 1
2
= U(1, 1, 1/2)21|3⟩ 1

2
+ U(1, 1, 1/2)22|4⟩ 1

2
, (5.69)

|0̂⟩ 3
2
= U(1, 0, 3/2)22|1⟩ 3

2
, (5.70)

|1̂⟩ 3
2
= U(0, 1, 3/2)22|2⟩ 3

2
, (5.71)

|2̂⟩ 3
2
= U(1, 1, 3/2)11|3⟩ 3

2
+ U(1, 1, 3/2)12|3⟩ 3

2
, (5.72)

|3̂⟩ 3
2
= U(1, 1, 3/2)21|3⟩ 3

2
+ U(1, 1, 3/2)22|3⟩ 3

2
, (5.73)

|0̂⟩ 5
2
= U(1, 1, 5/2)22|0⟩ 5

2
. (5.74)

5.2 (1, 2)-Equivalence Determination

In this section, we deal with equivalence determination with multiple uses of

the reference boxes both under the parallel and the ordered strategies. For the
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H1
U1

K1 H2
U1

K2 H3
Ui

K3 H4
U2

K4

Figure 5.3: A configuration of the quantum 5-tester in case 1.

case of single uses of each of the reference boxes, the ordered strategies do not

help as we have shown in the previous chapter. The question is whether this

property holds for the case of the multiple uses of the reference boxes. The

answer turn out to be no. In the next two sections, we show that the ordered

use of the black-boxes gives improvements. Another interesting question is if

the order of the test box and the reference boxes affects the averaged optimal

success probability, and if so, which order gives the best one. We give a solution

for (2, 1)-equivalence determination under the ordered strategies by numerically

solving the corresponding SDPs.

5.2.1 Formulation with Semidefinite Programmings

In this section, we investigate (2, 1)-equivalence determination both under the

ordered strategies and the parallel strategies. There are four different configura-

tions of quantum testers. We first give the semidefinite programmings for every

configuration of the quantum testers. Then give the numerical results for all of

orders of the black-boxes in each configurations.

Case 1

First we consider the Choi operators corresponding to the case that quantum

operations forming the quantum tester are applied after every use of the black-

boxes. A configuration of this type of the quantum testers in this case is shown

in Fig. 5.4.

We denote the quantum tester as {Π̃1, Π̃2}. The corresponding semidefinite

programming is given by

max psucc =
1

2
Tr [M1Π1 +M2Π2]

subject to Πi ≥ 0, i = 1, 2

Π1 + Π2 = IK4 ⊗X(3)

TrH4X
(3) = IK3 ⊗X(2)

TrH3X
(2) = IK2 ⊗X(1)
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TrH2X
(1) = IK1 ⊗X(0)

TrX(0) = 1. (5.75)

From the symmetry of Mi, for any unitary operations A,B ∈ SU(2), the follow-

ing conditions

[Π̃i, A
⊗4 ⊗ B⊗4] = 0 (5.76)

[X(3), A⊗3 ⊗ B⊗4] = 0 (5.77)

[X(2), A⊗2 ⊗ B⊗3] = 0 (5.78)

[X(1), A⊗1 ⊗ B⊗2] = 0 (5.79)

[X(0), B] = 0 (5.80)

hold for i = 1, 2. The Equation (5.79) implies

X(1) = IK1 ⊗X ′(1), (5.81)

for an operator X ′(1) on H1 ⊗ H2. This relation corresponds to the condition

that the first two uses of the black-boxes can be applied in the parallel ways,

namely,

subject to Π̃i ≥ 0, i = 1, 2

Π̃1 + Π̃2 = IK4 ⊗X(3) (5.82)

TrH4X
(3) = IK3 ⊗X(2) (5.83)

TrH3X
(2) = IK2K1 ⊗X(1) (5.84)

TrX(1) = 1. (5.85)

The configuration of the quantum tester for this case is shown in Fig. 5.4.

H1
U1

K1

H2
U1

K2 H3
Ui

K3 H4
U2

K4

Figure 5.4: Quantum circuit representation of the quantum 4-tester when quan-

tum operations is applied after every use of the black-box.
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H1
U1

K1 H3
Ui

K3

H2
U1

K2 H4
U2

K4

Figure 5.5: A configuration of the quantum 3-tester in case 2.

Case 2

The next configuration of a quantum tester is that the first uses of the black-

boxes and the other two black-boxes are applied in parallel ways. An example

of this type of the configuration is represented in Fig. 5.5.

The corresponding SDP is give by

maximize psucc =
1

2
Tr
[
M1Π̃1 +M2Π̃2

]

subject to Π̃i ≥ 0, i = 1, 2

Π̃1 + Π̃2 = IK3K4 ⊗X(2) (5.86)

TrH3H2X
(2) = IK2K1 ⊗X(1) (5.87)

TrX(1) = 1, (5.88)

with the quantum tester {Π̃1, Π̃2}.

Case 3

The third configuration is that the first three uses of the black-boxes are in the

parallel way followed by the use of a black-box. An example of this type of the

configuration is shown in Fig. 5.6.

The corresponding SDP is give by

maximize psucc =
1

2
Tr
[
M1Π̃1 +M2Π̃2

]

subject to Π̃i ≥ 0, i = 1, 2

Π̃i ≥ 0, i = 1, 2

Π̃1 + Π̃2 = IK4 ⊗X(2) (5.89)

TrH4X
(2) = IK1K2K2 ⊗X(1) (5.90)

TrX(1) = 1, (5.91)

with the quantum tester {Π̃1, Π̃2}.
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H1
U1

K1

H2
U1

K2

H3
Ui

K3 H4
U2

K4

Figure 5.6: Quantum circuit representation of the quantum 3-tester in case 3.

H1
U1

K1

H2
U1

K2

H3
Ui

K3

H4
U2

K4

Figure 5.7: The configuration of the quantum 2-tester in case 4.

Case 4

The last configuration is the parallel strategy. The circuit representation of the

quantum 2-tester in this case is given in Fig. 5.7.

The constraint of the quantum tester {Π̃1, Π̃2} is give by

maximize psucc =
1

2
Tr
[
M1Π̃1 +M2Π̃2

]
,

subject to Π̃i ≥ 0, i = 1, 2,

Π̃i ≥ 0, i = 1, 2,

Π̃1 + Π̃2 = IK ⊗X, (5.92)

TrX = 1. (5.93)
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5.2.2 Numerical Results

In numerical calculations, we investigate all of the four types of the configura-

tions of the quantum testers and all of the orders of the uses of black-boxes. The

result is summarized in Table. 5.2. In the column of the configurations in Table

5.2, only the order and configurations of the uses of the black-boxes inserted in

the quantum testers are shown. For instance, the following configuration of case

2 is represented in the table as

H1
U1

K1 H3
Ui

K3

H2
U1

K2 H4
U2

K4 →
U1 Ui

U1 U2

.

The configurations and the orders are divided into two classes depending on

the optimal success probability. It is interesting that the ordered uses of the

black-boxes do not necessarily give improvement comparing with the parallel

uses of the black-boxes. The order of the uses of the black-boxes should be

appropriately chosen to improve the optimal success probability comparing to

the parallel strategies.

Based on classical information, the success probability becomes higher when

the test box is used after the uses of the reference boxes since the test box can

be used after obtaining information necessary to a measurement for equivalence

determination. However, we find the counter example to that intuition. The

examples are the following two orders of case 2, given as

Ui

U1 U1 U2

→ poptsucc ≃ 0.910516 (5.94)

U1

U1 U2 Ui

→ poptsucc ≃ 0.902127. (5.95)

The order given in Equation (5.94) in which the test box is used first achieves

higher success probability than the one by the order given in Equation (5.95).

Similarly to the former section, we did not directly solve the SPDs given in

this section, but the ones on each multiplicity subspaces obtained by utilizing

the group theoretical properties. The derivations of the SDPs on the multiplicity

subspaces are given in the next section.
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Note that the success probability for (2, 1)-equivalence determination under

the parallel strategies is same as the one for the case that the classical descrip-

tions of U1 is given and the reference box 2 is used once. A summary on the

optimal success probabilities obtained is shown in Table 5.1.

By comparing the results obtained in Sec. 4.1.1 and Sec. 4.2.1, the opti-

mal success probability for (N1, 0)-equivalence determination under the parallel

strategies can be achieved with N1 = 1. That means, the additional N1 − 1

uses of the reference box is not actually necessary for achieving the optimal

success probability. Similarly, the results obtained in Sec. 4.1.1 and Sec. 4.2.1

indicate that (N1, 1)-equivalence determination under the parallel strategies can

be achieved with N1 = 2. The two results are examples of the cases that the op-

timal success probability using the classical description of the unitary operation

can be achieved by a finite uses of the black-box implementing the unitary oper-

ation, whereas the classical description of a unitary operator cannot be exactly

determined by finite uses of the black-box.

Section Sec. 4.1.1 Sec. 4.2.1 Sec. 4.2.2 Sec. 5.2.2

N 1 1 1 1

N1 known (N1 → ∞) 1 known (N1 → ∞) 2

N2 0 0 1 1

poptsucc 7/8 = 0.875 ≈ 0.902127

Table 5.1: A comparison of the optimal success probabilities of (N1, N2)-

equivalence determination. Note that N and Ni are the numbers of use of

the test box and the reference box i, respectively.
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poptsucc Configurations of the black-boxes

0.910516

Ui

U1 U1 U2

U1

U2 Ui U1

U1

U2 U1 Ui

Ui

U1 U2 U1

Ui U2

U1 U1

U2 Ui

U1 U1

0.902127

U1

U1 Ui U2

U1

U1 U2 Ui

Ui

U2 U1 U1

U1 Ui

U1 U2

Ui U1

U2 U1

Ui

U1

U1 U2

U2

U1

U1 Ui

Ui

U1

U2 U1

Ui

U2

U1

U1

Table 5.2: Numerical results of the optimal success probabilities for (2, 1)-

equivalence determination. All of configurations of the quantum testers and all

of (non-trivial) orders of the black-boxes are investigated. The configurations

and the orders are divided into two classes depending on the optimal success

probability.
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5.2.3 Calculations for Semidefinite Programmings in the

Multiplicity Subspaces

In this section, we rewrite the SDPs represented in Sec 5.2.1 in terms of operators

on the multiplicity subspaces.

The multiplicity subspace V [N ]
j consists of the direct sum of the multiplicity

subspaces of V [N−1]
j−1/2 and VN−1

j+1/2. We define isometries P [N ]

j,j± 1
2

from the subspace of

V [N ]
j that is generated from the multiplicity subspace V [N−1]

j± 1
2

to the multiplicity

subspace V [N−1]

j± 1
2

.

Case 1

We rewrite conditions (5.82) - (5.85). To this end, without loss of generality, we

can represent

Π̃i =
2⊕

J,L=0

IJ ⊗ IL
dL

⊗ Π̃[i]
JL (5.96)

X(3) =

3
2⊕

J= 1
2

2⊕

L=0

IJ ⊗ IL
dL

⊗X(3)
JL (5.97)

X(2) =
1⊕

J=0

3
2⊕

L= 1
2

IJ ⊗ IL
dL

⊗X(2)
JL (5.98)

X(1) =
1⊕

L=0

IL
dL

⊗X(1)
JL , (5.99)

for i = 1, 2.

First we rewrite Equation (5.82). We have

Π̃1 + Π̃2 =
2⊕

J,L=0

IJ ⊗ IL
dL

⊗ (Π̃[1]
JL + Π̃[2]

JL) (5.100)

IK4 ⊗X(3) =
2⊕

L=0

I0 ⊗
IL
dL

⊗X(3)
1
2L

(5.101)

=
2⊕

L=0

I1 ⊗
IL
dL

⊗ (X(3)
1
2L

⊕X(3)
3
2L
) (5.102)

=
2⊕

L=0

I2 ⊗
IL
dL

⊗X(3)
3
2L
. (5.103)
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Thus Equation (5.82) is equivalent to conditions given as

(P [4]

0, 12
⊗ IV [4]

L
)(Π̃[1]

0L + Π̃[2]
0L)(P

[4]

0, 12
⊗ IV [4]

L
) = X(3)

1
2L

(5.104)

(P [4]

1,l+ 1
2

⊗ IV [4]
L
)(Π̃[1]

1L + Π̃[2]
1L)(P

[4]

1,l′+ 1
2

⊗ IV [4]
L
) = δll′X

(3)

l+ 1
2L

(5.105)

(P [4]

2, 32
⊗ IV [4]

L
)(Π̃[1]

2L + Π̃[2]
2L)(P

[4]

2, 32
⊗ IV [4]

L
) = X(3)

3
2L
, (5.106)

for L = 0, 1, 2 and l, l′ = 0, 1, where IV [4]
L

is the identity operator on V [4]
L .

Then we rewrite Equation (5.83). We have

TrH3X
(3) =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

IJ ⊗ IL
dL

⊗
[
(IV [3]

J
⊗ P [4]

L− 1
2 ,

1
2

)XJL− 1
2
(IV [3]

J
⊗ P [4]

L− 1
2 ,

1
2

) + (IV [3]
J

⊗ P [4]

L+ 1
2 ,

1
2

)XJL+ 1
2
(IV [3]

J
⊗ P [4]

L+ 1
2 ,

1
2

)
]
,

(5.107)

and

IK3 ⊗X(2) =

3
2⊕

L= 1
2

I 1
2
⊗ IL

dL
⊗ (X(2)

0L ⊕X(2)
1L )

3
2⊕

L= 1
2

I 3
2
⊗ IL

dL
⊗X(2)

1L . (5.108)

Therefore Equation (5.83) is equivalent to conditions given as

δJJ ′X(2)

JL′+ 1
2

= (P [3]
1
2 ,J

⊗ P [4]

0,L′+ 1
2

)X(3)
1
2L

′(P
[3]
1
2 ,J

′ ⊗ P [4]

0,L′+ 1
2

)

+ (P [3]
1
2 ,J

⊗ P [4]

1,L′+ 1
2

)X(3)
1
2L

′+1
(P [3]

1
2 ,J

′ ⊗ P [4]

1,L′+ 1
2

) (5.109)

X(2)

1L′+ 1
2

= (P [3]
3
2 ,1

⊗ P [4]

0,L′+ 1
2

)X(3)
3
2L

′(P
[3]
3
2 ,1

⊗ P [4]

0,L′+ 1
2

)

+ (P [3]
3
2 ,1

⊗ P [4]

1,L′+ 1
2

)X(3)
3
21
(P [3]

3
2 ,1

⊗ P [4]

1,L′+ 1
2

), (5.110)

for L′ = 0, 1.

For Equation (5.83), we have

TrH3X
(2) =

1⊕

J=0

IJ ⊗
[
I0 ⊗ P [3]

0, 12
XJ 1

2
P [3]

0, 12
(5.111)

⊕ I0
d0

⊗ (P [3]

1, 12
XJ 1

2
P [3]

1, 12
+ P [3]

1, 32
XJ 1

2
P [3]

1, 32
)
]
, (5.112)

IK1K2 ⊗X(1) =
1⊕

J=0

IJ ⊗
[
I0 ⊗X(1)

0 ⊕ I1
d1

⊗X(1)
1

]
. (5.113)
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Therefore Equation (5.82) is equivalent to conditions given as

P [3]

0, 12
XJ 1

2
P [3]

0, 12
= X(1)

0 (5.114)

P [3]

1, 12
XJ 1

2
P [3]

1, 12
+ P [3]

1, 32
XJ 1

2
P [3]

1, 32
= X(1)

1 , (5.115)

for J = 0, 1.

For Equation (5.83), we have

X(1)
0 +X(1)

1 = 1. (5.116)

Case 2

We rewrite Equations (5.86) - (5.88). To this end, without loss of generality, we

can represent

Π̃i =
2⊕

J,L=0

IJ ⊗ IL
dL

⊗ Π̃[i]
JL, (5.117)

X(2) =
1⊕

J=1

2⊕

L=0

IJ ⊗ IL
dL

⊗X(3)
JL , (5.118)

X(1) =
1⊕

L=0

IL
dL

⊗X(1)
JL , (5.119)

for i = 1, 2.

The LHS of Equations (5.86) is represented as

Π̃1 + Π̃2 =
2⊕

J,L=0

IJ ⊗ IL
dL

⊗ (Π̃[1]
JL + Π̃[2]

JL), (5.120)

and the RHS is give by

IK34 ⊗X(2) =
2⊕

j=0

I0 ⊗
IL
dL

⊗ (X(2)
0L ⊕X(2)

1L ) (5.121)

2⊕

j=0

I1 ⊗
IL
dL

⊗ (X(2)
0L ⊕X(2)

1L ⊕X(2)
1L ) (5.122)

2⊕

j=0

I2 ⊗
IL
dL

⊗ (X(2)
1L ). (5.123)
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Therefore Equations (5.86) is equivalent to the equations given as

(P [3]
1
2 ,l
P [4]

j 1
2

⊗ IV [4]
L
)(Π̃[1]

jL + Π̃[2]
jL)(P

[4]

j 1
2

P [3]
1
2 ,l

′ ⊗ IV [4]
L
) = δll′XjL (5.124)

(P [3]
3
2 ,1
P [4]

1,m+ 1
2

⊗ IV [4]
L
)(Π̃[1]

1L + Π̃[2]
1L)(P

[4]

1,m′+ 1
2

P [3]
1
2 ,1

⊗ IV [4]
L
) = δmm′XjL (5.125)

P [3]
3
2 ,1
P [4]

2, 32
(Π̃[1]

jL + Π̃[2]
jL)P

[4]

2, 32
P [3]

3
2 ,1

= X [2]
1L. (5.126)

The LHS of Equation (5.87) is given as

TrH3H4X
(2) = (5.127)

1⊕

J=0

IJ ⊗ I0 ⊗
[

1∑

l=0

(IV [2]
J

⊗ P [3]
1
2 ,0
P [4]

l, 12
)X [2]

Jl (IV [2]
J

⊗ P [4]

l, 12
P [3]

1
2 ,0
)

]
(5.128)

1⊕

J=0

IJ ⊗ I1
d1

⊗
[
(IV [2]

J
⊗ P [3]

1
2 ,1
P [4]

1, 12
)X [2]

Jl (IV [2]
J

⊗ P [4]

1, 12
P [3]

1
2 ,1
) (5.129)

+
2∑

l=1

(IV [2]
J

⊗ P [3]
1
2 ,1
P [4]

l, 12
)X [2]

Jl (IV [2]
J

⊗ P [4]

l, 12
P [3]

1
2 ,1
)
]
, (5.130)

and the RHS of Equation (5.87) is given by

IK1K2 ⊗X(1) =
1⊕

J=0

IJ ⊗
[
I0 ⊗X(1)

0 ⊕ I1
d1

⊗X(1)
1

]
. (5.131)

Therefore Equation (5.87) is equivalent to conditions given as

X [1]
0 =

1∑

l=0

(IV [2]
J

⊗ P [3]
1
2 ,0
P [4]

l, 12
)X [2]

Jl (IV [2]
J

⊗ P [4]

l, 12
P [3]

1
2 ,0
) (5.132)

X [1]
1 = (IV [2]

J
⊗ P [3]

1
2 ,1
P [4]

1, 12
)X [2]

Jl (IV [2]
J

⊗ P [4]

1, 12
P [3]

1
2 ,1
) (5.133)

+
2∑

l=1

(IV [2]
J

⊗ P [3]
1
2 ,1
P [4]

l, 12
)X [2]

Jl (IV [2]
J

⊗ P [4]

l, 12
P [3]

1
2 ,1
). (5.134)

Equation (5.87) is rewritten as

X [1]
0 +X [1]

1 = 1. (5.135)
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Case 3

We rewrite Equations (5.89) - (5.91). To this end, without loss of generality, we

can represent

Π̃i =
2⊕

J,L=0

IJ ⊗ IL
dL

⊗ Π̃[i]
JL (5.136)

X(2) =

3
2⊕

J= 1
2

2⊕

L=0

IJ ⊗ IL
dL

⊗X(2)
JL (5.137)

X(1) =

3
2⊕

L= 1
2

IL
dL

⊗X(1)
JL , (5.138)

for i = 1, 2. The Equation (5.89) is same as Equations (5.82) in the case 1. For

Equation (5.90), the LHS is calculated as

TrK3X
(3) =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

IJ ⊗ IL
dL

⊗
[
(IV [3]

J
⊗ P [4]

L− 1
2 ,

1
2

)XJL− 1
2
(IV [3]

J
⊗ P [4]

L− 1
2 ,

1
2

) + (IV [3]
J

⊗ P [4]

L+ 1
2 ,

1
2

)XJL+ 1
2
(IV [3]

J
⊗ P [4]

L+ 1
2 ,

1
2

)
]

(5.139)

and the RHS is represented as

IK1K2K3 ⊗X(1) =

3
2⊕

J= 1
2

3
2⊕

L= 1
2

IJ ⊗ IL
dL

⊗X(1)
L . (5.140)

Therefore Equation (5.90) is equivalent to the conditions represented as

IV [3]
J

⊗X(1)
L =

[
(IV [3]

J
⊗ P [4]

L− 1
2 ,

1
2

)XJL− 1
2
(IV [3]

J
⊗ P [4]

L− 1
2 ,

1
2

)

+ (IV [3]
J

⊗ P [4]

L+ 1
2 ,

1
2

)XJL+ 1
2
(IV [3]

J
⊗ P [4]

L+ 1
2 ,

1
2

)
]
, (5.141)

for J, L = 1
2 ,

3
2 .
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Case 4

We rewrite Equations (5.92) - (5.93). To this end, without loss of generality, we

can represent

Π̃i =
2⊕

J,L=0

IJ ⊗ IL
dL

⊗ Π̃[i]
JL (5.142)

X =
2⊕

L=0

IL
dL

⊗XL. (5.143)

Equation (5.93) is equivalent to conditions given in

Π̃[1]
JL + Π[2]

JL = I
V

[N ]
J

⊗XL (5.144)

2∑

L=0

TrXL = 1, (5.145)

for J, L = 0, 1, 2.

5.2.4 Calculations of the Choi Operators

First we consider the Choi operator corresponding to the order of (U1, U1, Ui, U2),

namely,

H1
U1

K1 H2
U1

K2 H3
Ui

K3 H4
U2

K4

. (5.146)

For Mi, we obtain

M1 = η[3]H1H2H3K1K2K3
⊗ η[1]H4K4

, (5.147)

M2 = η[2]H1H2K1K2
⊗ η[2]H3H4K3K4

. (5.148)

For M1, we can calculate as

η[3]H1H2H3K1K2K3
=

I 1
2
2 ⊗ I 1

2
⊗
[
(|α[2]

0 ⟩⟩+ |α[2]
1 ⟩⟩)⊗ |α[1]

1
2

⟩⟩
]
⊕

I 3
2
4 ⊗ I 3

2
⊗
[
|α[2]

1 ⟩⟩ ⊗ |α[1]
1
2

⟩⟩
]
,

(5.149)

η[1]H4K4
=

I 1
2
2 ⊗ I 1

2
⊗
[
|α[1]

1
2

⟩⟩
]
. (5.150)
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Therefore we have

M [1]
00 =

1

4
[|00⟩00 + |11⟩00] , (5.151)

M [1]
01 =

1

4
[|00⟩01 + |11⟩01] , (5.152)

M [1]
02 = 0, (5.153)

M [1]
10 =

3

4
[|00⟩10 + |11⟩10] , (5.154)

M [2]
11 =

3

4
[|00⟩11 + |11⟩11] +

3

8
[|22⟩11] , (5.155)

M [2]
12 =

3

8
[|20⟩12] , (5.156)

M [2]
20 = 0, (5.157)

M [2]
21 =

5

8
[|02⟩21] , (5.158)

M [2]
22 =

5

8
[|00⟩22] , (5.159)

where we defined the basis states on the multiplicity subspaces V [4]
0 as

|01
2(

1
2)

1
2 ; 0⟩⟨0

1
2(

1
2)

1
2 ; 0| =: I0 ⊗ |0̂⟩⟨0̂|0, (5.160)

|11
2(

1
2)

1
2 ; 0⟩⟨1

1
2(

1
2)

1
2 ; 0| =: I0 ⊗ |1̂⟩⟨1̂|0, (5.161)

(5.162)

for the multiplicity subspaces V [4]
1 as

∑1
m=−1 |01

2(
1
2)

1
2 ; 1⟩⟨0

1
2(

1
2)

1
2 ; 1| =: I1 ⊗ |0̂⟩⟨0̂|0, (5.163)

∑1
m=−1 |11

2(
1
2)

1
2 ; 1⟩⟨1

1
2(

1
2)

1
2 ; 1| =: I1 ⊗ |2̂⟩⟨2̂|0, (5.164)

∑1
m=−1 |11

2(
3
2)

1
2 ; 1⟩⟨1

1
2(

3
2)

1
2 ; 1| =: I1 ⊗ |3̂⟩⟨3̂|0, (5.165)

for the multiplicity subspaces V [4]
2 as

∑1
m=−1 |11

2(
3
2)

1
2 ; 2⟩⟨1

1
2(

3
2)

1
2 ; 2| =: I1 ⊗ |0̂⟩⟨0̂|0, (5.166)

For M2, we have

η[2]H1H2K1K2
= I0 ⊗ I0 ⊗

[
|α[2]

0 ⟩⟩
]
⊕ I1

3 ⊗ I1 ⊗
[
|α[2]

1 ⟩⟩
]
, (5.167)

η[2]H3H4K3K4
= I0 ⊗ I0 ⊗

[
|α 1

2
[1]⟩⟩ ⊗ |α 1

2
[1]⟩⟩
]
⊕ I1

3 ⊗ I1 ⊗
[
|α 1

2
[1]⟩⟩ ⊗ |α 1

2
[1]⟩⟩
]

(5.168)
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and therefore, we obtain

M [2]
00 =

[
|0̂0̂⟩00

]
+

1

9

[
|1̂1̂⟩00

]
, (5.169)

M [2]
01 =

1

9

[
|1̂2̂⟩01

]
, (5.170)

M [2]
02 =

1

9

[
|1̂0̂⟩02

]
, (5.171)

M [2]
10 =

1

3

[
|2̂1̂⟩10

]
, (5.172)

M [2]
11 =

[
|1̂1̂⟩11

]
+
[
|0̂0̂⟩11

]
+

1

3

[
|2̂2̂⟩11

]
, (5.173)

M [2]
12 =

1

3

[
|2̂0̂⟩10

]
, (5.174)

M [2]
02 =

5

9

[
|0̂1̂⟩02

]
, (5.175)

M [2]
12 =

5

9

[
|0̂2̂⟩12

]
, (5.176)

M [2]
22 =

5

9

[
|0̂0̂⟩22

]
, (5.177)

where we defined the basis states on the multiplicity subspaces V [4]
0 as

|01
2
1
2(0); 0⟩⟨0

1
2
1
2(0); 0| =: I0 ⊗ |0̂⟩⟨0̂|0, (5.178)

|11
2
1
2(1); 0⟩⟨1

1
2
1
2(1); 0| =: I0 ⊗ |1̂⟩⟨1̂|0, (5.179)

and for the multiplicity subspaces V [4]
1 as

∑1
m=−1 |01

2
1
2(1); 1⟩⟨0

1
2
1
2(1); 1| =: I1 ⊗ |0̂⟩⟨0̂|0, (5.180)

∑1
m=−1 |11

2
1
2(0); 1⟩⟨1

1
2
1
2(0); 1| =: I1 ⊗ |0̂⟩⟨1̂|1, (5.181)

∑1
m=−1 |11

2
1
2(1); 1⟩⟨1

1
2
1
2(1); 1| =: I1 ⊗ |0̂⟩⟨2̂|2, (5.182)

(5.183)

and for the multiplicity subspaces V [4]
1 as

∑2
m=−2 |11

2
1
2(1); 2⟩⟨1

1
2
1
2(1); 2| =: I0 ⊗ |0̂⟩⟨0̂|0. (5.184)

Using Lemma 6, one can calculate the relation between the two basis states. We
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obtain

|0̂⟩0 = U(0, 1/2, 0)12|0⟩0, (5.185)

|1̂⟩0 = U(0, 1/2, 0)21|1⟩0, (5.186)

|0̂⟩1 = U(0, 1/2, 1)22|0⟩1, (5.187)

|1̂⟩1 = U(1, 1/2, 1)11|1⟩1 + U(1, 1/2, 1)12|2⟩1, (5.188)

|2̂⟩1 = U(1, 1/2, 1)21|1⟩1 + U(1, 1/2, 1)22|2⟩1, (5.189)

|0̂⟩2 = U(1, 1/2, 2)22|0⟩2. (5.190)

Swap operations on Hi ⊗Hj and Ki ⊗Kj are applied to change the order of

the use of the black-boxes. In the multiplicity subspaces, these swap operations

correspond to unitary operations within each multiplicity subspaces. Such a

unitary operations U [J ]
ij on the multiplicity subspace V [4]

J when the i-th and j-th

systems are exchanged.

We define a two-by-two matrix V (j1, j3, j13) as

V (j1, j3, j13)11 =
(−1)2(j1+j3+j13)

√
(2j13 + 2)(2j1 + 1)

√
(j3 +

1

2
)2 − (j13 − j1 +

1

2
)2, (5.191)

V (j1, j3, j13)12 =
(−1)2(j1+j3+j13)

√
(2j13 + 2)(2j1 + 1)

√
(j13 + j1 + 3/2)2 − (j3 +

1

2
)2, (5.192)

V (j1, j3, j13)21 =
(−1)2(j1+j3+j13)

√
(2j13 + 2)(2j1 + 1)

√
(j13 + j1 +

3

2
)2 − (j3 +

1

2
)2, (5.193)

V (j1, j3, j13)22 = − (−1)2(j1+j3+j13)

√
(2j13 + 2)(2j1 + 1)

√
(j3 +

1

2
)2 − (j13 − j1 +

1

2
)2. (5.194)

From Lemma 6, we can derive

U [0]
12 =

(
−1 0

0 1

)
, U [1]

12 =

⎛

⎝
−1 0 0

0 1 0

0 0 1

⎞

⎠ , U [2]
12 = 1, (5.195)

U [0]
23 = V (1/2, 1/2, 0)T , U [1]

23 =

⎛

⎝
0

V (1/2, 1/2, 0)T 0

0 0 V (1, 1/2, 1/2)22

⎞

⎠ ,

U [2]
23 = V (1/2, 1/2, 1)12, (5.196)

U [0]
34 =

(
V (0, 1/2,−1/2)22 0

0 V (1, 1/2,−1/2)

)
,



90Chapter 5 Equivalence Determination: Multiple Uses of the Reference Boxes

U [1]
34 =

⎛

⎝
V (0, 1/2, 1/2) 0 0

0

0 V (1, 1/2, 1/2)T

⎞

⎠ , U [2]
34 = V (1, 1/2, 3/2)12.

(5.197)



Chapter 6

Conclusion

In this thesis, we introduced equivalence determination of unitary operations,

which is a discrimination task of candidate unitary operations whose classical

descriptions are not available. Three black-boxes (one test box and two reference

boxes) each implementing a unitary operation are given as a physical system.

The unitary operation implemented by the test box is guaranteed to be one of

the unitary operations implemented by the two reference boxes but the classi-

cal description of the unitary operations are unknown. If i-th reference box is

allowed to be used Ni times and the test box once, then is is called (N1, N2)-

equivalence determination of unitary operations. We considered two types of

strategies called parallel strategies and ordered strategies and investigated when

one outperforms the other. In the parallel strategies, the black-boxes are used

simultaneously during the computation and no quantum operation is applied

between the uses of the black-boxes. In contrast, the ordered strategies permit

arbitrary quantum operations to be inserted between the uses of the black-boxes.

To perform equivalence determination of unitary operations, we used quantum

testers that generalize quantum measurements to higher-order quantum com-

putation. A tester takes quantum operations as inputs of computation. We

formulated optimization problems to maximize the success probability for ob-

taining the correct guess in terms of semidefinite programmings.

In Chap. 4, we showed that the optimal success probability of (1, 1)-equivalence

determination of unitary operations is 7/8 in any configuration of the three black-

boxes. We found that the optimal success probability for (1, 1)-equivalence de-

termination can be achieved by a simplified task called comparison of unitary

operations. We proved that to achieve the optimal success probability requires

an entangled state as input state, where entanglement exists between the sys-

tems on which the reference boxes act and the test box acts. We investigated the

case that the classical description of one of the reference boxes is given, whereas
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the classical description of another reference box is not given. We derived the

optimal success probability analytically for the case of no use of the reference

box and numerically obtained for the case of a single use of the reference box.

In Chap. 5, we numerically analyzed equivalence determination of unitary

operations with multiple uses of the black-boxes. We first numerically calculated

the optimal success probability for (N,N)-equivalence determination under the

parallel strategies for the cases of N = 2, 3, 4, by formulating the optimiza-

tion problem in terms of the semidefinite programmings. We then investigated

(2, 1)-equivalence determination of unitary operations both under the parallel

strategies and ordered strategies. We numerically analyzed the optimal success

probabilities for all configurations of the quantum testers and all orders of the

black boxes. We found that the configurations and the orders can be divided into

two classes according to the optimal success probability, and that the ordered

strategies outperform the parallel strategies.

We summarize implications and observations of note.

• Parallelizable case: We showed that the task of (1, 1)-equivalence deter-

mination of unitary operations can be parallelized, thus that the ordered

strategies do not give improvements over the parallel. This contrasts with

the general expectation that the adaptive operations allowed under the

ordered strategies provide advantages over the parallel strategies in opti-

mization. Ordered strategies are at least as strong as parallel strategies

in success probability and strictly stronger in some cases [33–36], but less

efficient in execution time. General conditions for improvements under the

ordered strategies, however, are not known. The difficulty of the analysis

originates from the complexity of deriving the optimum under the ordered

strategies. The result obtained in this thesis is an example of the cases

that the ordered and parallel strategies exhibit equivalent performance.

• Order-dependent case: The task of (2, 1)-equivalence determination of

unitary operations is the first example in which the optimal performance

of the task varies depending on the order of the operation in higher-order

quantum computation with more than two different quantum operations

as inputs. To the best of our knowledge, such a task considered before is

only the quantum switch [37], where the order dependence is trivial as its

exact implementation is impossible with the single use of each operation

in the quantum circuit model.

The general method to find the order to obtain the higher success proba-

bility is still an open problem. As shown in Table 5.2, the ordered strate-

gies outperform the parallel strategies in (2, 1)-equivalence determination



93

of unitary operations whereas the task of (1, 1)-equivalence determina-

tion of unitary operations can be parallelized by keeping the same success

probability. Further investigation of these tasks may provide a clue to

understand the condition for parallelizability of the black-boxes.

• Finite use as powerful as full classical description: We found the

examples in which the performance obtained with the classical description

of a unitary operation can be achieved with the finite uses of the black-

boxes implementing the unitary operations as shown in Table 5.1. The

classical description of a unitary operation enables to implement arbitrary

number of the use of the black-box implementing the unitary operation.

The results presented in Table 5.1 imply that the additional use of the

black-box offers no improvement to the optimal success probability. The

difference of the classical description of a unitary operation and the power

of implementing the operation is also mentioned in the context of quantum

learning of unitary operations [22]. To the best our knowledge, however,

such a phenomenon indicating no difference between the two resources has

not been found before.

We hope that our results contribute to the development of the complete

theory of resources in higher-order quantum computation and, especially, to

revealing fundamental consequences of time-ordering in quantum mechanics.
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Appendix A

Semidefinite Programmings

A semidefinite programming (SDP) is a special case of convex optimizations [67].

It is a useful technique in both analytic and numerical calculations. Several opti-

mization problems are represented in terms of SDPs. For example, optimization

problems for deriving the fidelity of two quantum states [68], the optimal success

probability for discriminating quantum channels [69] and the zero-error capacity

of quantum channels [70] are formulated in terms of SDPs.

There are several formalizations for representing an SDP. Here we follow

the formalization in Watrous lecture note [68], which is adopted in a suitable

form for problems appearing in quantum information theory. First we give the

definition of an SDP and introduce both primal problems and dual problems.

The weak duality is introduced, which indicates the optimal value of a primal

problem is bounded by the one by the corresponding dual problem. Then Sla-

tor’s condition, under which the two optimal values of the primal and the dual

problems coincides, is introduced. Finally we briefly summarize the numerical

calculation method for SPDs.

For determining semidefinite programming, several terms should be fixed.

A map Φ from L(H) to L(K) is Hermitian preserving if it maps Hermitian

operators on H to Hermitian operators on K.

Definition 4. A semidefinite programming is a set of triplet (Φ, A,B), where

• Φ is an Hermitian preserving channel from L(H) to L(K) and

• A and B are Hermitian operators on H and K, respectively.

From the triplet, two optimization problems called the primal and dual prob-
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lems are defined. The primal problem is represented as

maximize Tr[AX] (A.1)

subject to Φ(X) = B (A.2)

X ≥ 0, (A.3)

and the dual problem is represented as

minimize Tr[BY ] (A.4)

subject to Φ∗(Y ) ≥ A (A.5)

Y is on a Hermitian operator, (A.6)

where Φ∗(·) is a dual map defined as Tr[Φ(A)B] = Tr[AΦ∗(B)] for any operator

A and B.

The primal problem is said to be feasible if there exists at least one positive

operator X satisfying Φ(X) = B and infeasible otherwise. The set of feasible

solutions is called a feasible set and denoted as

A = {X|Φ(X) = B,X ≥ 0}. (A.7)

Feasibility can be also defined for the dual problem with similar terminology.

The feasible set for the dual problem is denoted as

B = {X|Φ∗(Y ) = A, Y is Hermitian}. (A.8)

We denote the optimal values for the primal and dual problems as α and β

given by α = supX∈A Tr[AX] and β = infY ∈B Tr[BY ], respectively. The weak

duality is stated as follows:

Proposition 4. For any semidefinite programming (Φ, A,B), the inequality α ≤
β holds.

Proof. We only consider the case that both of feasible sets for the primal

and dual problems are not empty. Therefore any feasible solutions X ∈ A and

Y ∈ B, we have

Tr[AX] ≤ Tr[Φ∗(Y )X] = Tr[Y Φ(X)] = Tr[Y B]. (A.9)

Since the optimum value α is the supremum over all feasible solutions X ∈ A
and the optimum value β is the infimum over all feasible solutions Y ∈ B, the
inequality α ≤ β holds.

The weak duality indicates that the optimal value of one problem is just the

bound for the one of the other problem. The equality condition α = β is called
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strong duality, which does not hold necessarily for all semidefinite programmings.

Several conditions are known for the strong duality. Here we give one of the

conditions called Slator’s condition without the proof.

Proposition 5 (Slator’s condition). If A ̸= ∅ and there exists a feasible operator

Y ∈ B for the dual problem satisfying Φ∗(Y ) > A, then α = β. If B ̸= ∅ and

there exists a feasible operator X ∈ A for the primal problem satisfying X > 0,

then α = β.

Slator’s condition is useful especially for discrimination of states and opera-

tions considered in this thesis. In semidefinite programming for the discrimina-

tion, it is usually easy to find the feasible solution satisfying Slator’s condition.

We give several comments on semidefinite programming. First comment is

about the strong duality. The strong duality is considered to hold in most cases

unless one tries to fail it [68]. Thus the strategy to find the optimum value is

divided into two cases. One strategy is to show a condition indicating the strong

duality and solve one of the primal and dual problems. The other is find the

feasible solutions in both primal and dual problems that give α = β.

The second comment is about the conditions in the primal problem. The

standard form given by conditions (A.1) and (A.2) contains only an equality

condition. In general, multiple conditions including both equalities and inequal-

ities can appear in the primal problem. Rewriting the problem as the standard

form to obtain the dual problem is often not straightforward. In that case,

Lagrange dual function [67] is used to derive the dual problem from a primal

problem with complicated conditions. This technique is used in this thesis.

The final comment is about numerical calculations for the primal and dual

problems. Numerical calculations are efficient with the size of the operator X.

The numerical values of α and β checked if the two value are close. The optimum

solution is also close to the two values due to the weak duality.

There are several solvers and interpreters for SDPs many programming lan-

guages such as Matlab and Python. In Chap. 5, we deal with numerical calcu-

lations of several SDPs. We use PICOS [71] as a interpreter and MOSEK [72]

as a solver in Python.



Appendix B

Irreducible Representation of
Unitary Operators

We summarize the irreducible representation of SU(2) and the multiplicity sub-

spaces. We only discuss SU(2) since we only analyze qubit systems in this thesis.

In this appendix, we use the correspondence between the computational basis

state of qubits and standard angular momentum states of a spin-1/2 particles

given |0(1)⟩ ↔ |12 ,
1
2(−

1
2)⟩. First we give the definition of the irreducible sub-

space of U⊗N in SU(2), then give some remarks about the basis in the multiplicity

subspace and the order of coupling of multiple spins.

We consider a N -qubits system. The Hilbert space of the system is denoted

as (H2)⊗N with dimH = 2, which can be decomposed as

(H2)⊗N =
N/2⊕

j=⌊N⌋

Uj ⊗ V [N ]
j , (B.1)

where V [N ]
j corresponds to the multiplicity subspace of the irreducible subspace

Uj and ⌊N⌋ is 0 when N is even and ⌊N⌋ is 1/2 when N is odd. The dimension

of Uj is 2j + 1, independent of N and the basis is denoted as {|j,m⟩} with

m = −j, · · · , j. Note that for spin-1/2 systems j is the total angular momentum

and m is the angular momentum along the z axis.

For the tensor product of arbitrary unitary operator U ∈ SU(2), the irre-

ducible representation of U⊗N is given by

U⊗N =
N/2⊕

j=⌊N⌋

Uj ⊗ IV [N ]
j

, (B.2)

where Uj is the irreducible representation on Uj and IV [N ]
j

is the identity operator
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on V [N ]
j . The dimension of the multiplicity subspaces is given by

dimV [N ]
j =

N !(2j + 1)

(N/2− j)!(N/2 + 1 + j)!
. (B.3)

Haar measure

We define the Haar measure dµ(U) for U ∈ SU(2). The Haar measure is the

invariant measure, which means dµ(U) = dµ(V U) for an arbitrary unitary op-

erator V ∈ SU(2). In this thesis, we use integration over the Haar measure. We

show a brief explanation for the calculation of the integral using Schur’s lemma.

We consider the most simple case and introduce an operator X on a qubit

system H. The operator averaged over the Haar measure X̃ is defined as

X̃ =

∫

U

dµ(U)UXU †. (B.4)

For another unitary operator V , we have

V X̃V † =

∫

U

dµ(U)V UXU †V † (B.5)

=

∫

U ′
dµ(V †U ′)U ′XU ′† (B.6)

=

∫

U ′
dµ(U ′)U ′XU ′† (B.7)

= X̃, (B.8)

where we defined U ′ = V U and used dµ(U) = dµ(WU) for an arbitrary unitary

operator V ∈ SU(2) operation. Thus we obtain

[X̃, V ] = 0, (B.9)

for an arbitrary unitary operator V . This commutation relation and Schur’s

lemma implies that X̃ is proportional to the identity operator. The trace of an

operator is preserved under the application of unitary operations and integration

over the Haar measure. We now obtain

X̃ = Tr[X]
I

2
, (B.10)

where I is the identity operator on H.

An extension for integration with an N tensor product of unitary operations

is not difficult whereas particular attentions are paid for the multiplicity sub-

space for N ≥ 3. Let Y be an operator on an N -qubits system and Ỹ be defined

as

Ỹ =

∫

U

U⊗NY U⊗N . (B.11)
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Similarly to the case of N = 1 case, [Ỹ , V ⊗N ] = 0 is obtained for an arbitrary

unitary operator V . From this commutation relation and Schur’s lemma, we

obtain

Ỹ =
N/2∑

j=⌊N⌋

Tr[PUjY ]
Ij
dj

⊗ PVjY PVj , (B.12)

where PUj and PVj are the projection onto the irreducible subspace Uj and the

multiplicity subspace Vj. Therefore nontrivial elements of Ỹ are only on the

multiplicity subspaces.

Multiplicity subspace

To explain the dimension and basis in the multiplicity subspaces, let us consider

the coupling of three spin-1/2 particles. First, by coupling two of the three

spin-1/2 particles, we have U1/2⊗U1/2 = U0⊕U1. Then coupling with the other

spin-1/2 particles, we obtain

U⊗3
1/2 = (U0 ⊕ U1)⊗ U1/2 = U1/2 ⊕ U1/2 ⊕ U3/2 = U1/2 ⊗ V1/2 ⊕ U3/2, (B.13)

where V1/2 is the multiplicity subspace corresponding to the irreducible subspace

with j = 1/2 and N = 3. Therefore the dimension of the multiplicity subspace

with the total angular momentum j is the number of the paths to obtain the

total angular momentum j in coupling of N spin-1/2 particles. To define a basis

in the multiplicity subspace, one can assign each path to the number 0, 1, · · · .
For example of N = 3 and j = 1/2, the path (1/2 → 0 → 1/2) is assigned to 0

and the path (1/2 → 1 → 1/2) is 1 as illustrated in Fig. B.1.

For coupling three spin-1/2 particles it is necessary to choose which two

spins-1/2 particles are among three spin-1/2 particles. A different basis is ob-

tained when the order of coupling of multiple spin-1/2 particles is changed.

For N = 3, there are three different orders of coupling, which are used in the

proofs in Chap. 4. When three angular momenta j1, j2 and j3 are coupled to

give an angular momentum j, three ways of coupling would be represented as

|j1j2(j12)j3; jM⟩, |j1j2j3(j23); jM⟩ and |j1j3(j13)j2; jM⟩. These three vectors are
transformed to each other by unitary operations represented by using Wigner’s

6j coefficients [66]. For our case, set j2 = 1/2 and we obtain the following

lemma.

Lemma 6. Suppose that three angular momenta j1, 1/2 and j3 are coupled to

give an angular momentum j and the three ways of coupling are represented as

|j11/2(j12)j3; jM⟩, |j11/2j3(j23); jM⟩ and |j1j3(j13)1/2; jm⟩. These three vectors
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N = 1 2 3

0

1/2

3/2

1

=j

Figure B.1: The paths to couple three 1/2-spins. For N = 3 and j = 1/2 there

are two paths, which corresponds to the multiplicity subspace.

are related as

|j1 12j3(j3 −
1
2); jm⟩ = (−1)2(j1+j3+j)√

(2j3+1)(2j1+1)

{√
(j + 1

2)
2 − (j3 − j1)2|j1 12(j1 −

1
2)j3; jm⟩

−
√

(j3 + j1 + 1)2 − (j + 1
2)

2|j1 12(j1 +
1
2)j3; jm⟩

}

|j1 12j3(j3 +
1
2); jm⟩ = (−1)1+2(j1+j3+j)√

(2j3+1)(2j1+1)

{√
(j3 + j1 + 1)2 − (j + 1

2)
2|j1 12(j1 −

1
2)j3; jm⟩

+
√

(j + 1
2)

2 − (j3 − j1)2|j1 12(j1 +
1
2)j3; jm⟩

}
(B.14)

|j1j3(j13)12 ; j13 +
1
2 m⟩

= (−1)2(j1+j3+j13)√
(2j13+2)(2j1+1)

{√
(j3 +

1
2)

2 − (j13 − j1 +
1
2)

2|j1 12(j1 −
1
2)j3; j13 +

1
2m⟩

+
√

(j13 + j1 + 3/2)2 − (j3 +
1
2)

2|j1 12(j1 +
1
2)j3; j13 +

1
2m⟩

}
(B.15)

|j1j3(j13 + 1)12 ; j13 +
1
2 m⟩

= (−1)2(j1+j3+j13)√
(2j13+2)(2j1+1)

{√
(j13 + j1 +

3
2)

2 − (j3 +
1
2)

2|j1 12(j1 −
1
2)j3; j13 +

1
2m⟩

−
√

(j3 +
1
2)

2 − (j13 − j1 +
1
2)

2|j1 12(j1 +
1
2)j3; j13 +

1
2M⟩

}
. (B.16)



Appendix C

Calculations of Choi operators in
Prop. 3 for N = 3, 4

In this section, we give the explicit calculations for the Choi operators defined

in Equation (5.3) for N = 3, 4. We use the same notations for the Hilbelt spaces

in Sec. 5.1.3.

N = 3

The Choi operator Mi is represented as

M1 = η[4]HR1KR1HTKT
⊗ η[3]HR2KR2

, (C.1)

M2 = η[3]HR1KR1
⊗ η[4]HR2KR2HTKT

, (C.2)

where the definition of η[N ] is given in Equation (4.74). We have

η[4]HR1KR1HTKT
= I0 ⊗ I0 ⊗

[
|α[3]

1
2

⟩⟩ ⊗ |α[1]
1
2

⟩⟩
]
, (C.3)

⊕ I1
3 ⊗ I1 ⊗

[
(|α[3]

1
2

⟩⟩+ |α[3]
1
2

⟩⟩)⊗ |α[1]
1
2

⟩⟩
]
, (C.4)

⊕ I2
5 ⊗ I2 ⊗

[
|α[3]

3
2

⟩⟩ ⊗ |α[1]
1
2

⟩⟩
]
, (C.5)

and

η[3]HR2KR2
=

I1/2
2 ⊗ I1/2 ⊗

[
|α[3]

1
2

⟩⟩
]
⊕ I3/2

4 ⊗ I3/2 ⊗
[
|α[3]

3
2

⟩⟩
]

(C.6)
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Then we obtain

M [1]
1
2

1
2

=
[
|00⟩ 1

2
1
2

]
+

1

3

[
|11⟩ 1

2
1
2
+ |33⟩ 1

2
1
2

]
+

1

6

[
|22⟩ 1

2
1
2
+ |44⟩ 1

2
1
2

]
+

1

10

[
|55⟩ 1

2
1
2

]
,

(C.7)

M [1]
1
2

3
2

=
1

2

[
|10⟩ 1

2
3
2
+ |33⟩ 1

2
3
2

]
+

1

6

[
|22⟩ 1

2
3
2
+ |45⟩ 1

2
3
2

]
+

1

10

[
|56⟩ 1

2
3
2

]
, (C.8)

M [1]
1
2

5
2

=
1

6

[
|20⟩ 1

2
5
2
+ |42⟩ 1

2
5
2

]
+

1

10

[
|53⟩ 1

2
5
2

]
, (C.9)

M [1]
1
2

7
2

=
1

10
[|50⟩] , (C.10)

M [1]
3
2

1
2

=
2

3

[
|01⟩ 3

2
1
2
+ |33⟩ 3

2
1
2

]
+

1

3

[
|22⟩ 3

2
1
2
+ |54⟩ 3

2
1
2

]
+

1

10

[
|65⟩ 3

2
1
2

]
, (C.11)

M [1]
3
2

3
2

=
[
|11⟩ 3

2
3
2

]
+

2

3

[
|00⟩ 3

2
3
2
+ |33⟩ 3

2
3
2

]
+

1

3

[
|22⟩ 3

2
3
2
+ |55⟩ 3

2
3
2

]
,

+
2

5

[
|44⟩ 3

2
3
2

]
+

1

5

[
|66⟩ 3

2
3
2

]
, (C.12)

M [1]
3
2

5
2

=
1

3

[
|20⟩ 3

2
5
2
+ |52⟩ 3

2
5
2

]
+

2

5

[
|41⟩ 3

2
5
2

]
+

1

5

[
|63⟩ 3

2
5
2

]
, (C.13)

M [1]
3
2

7
2

=
1

5

[
|60⟩ 3

2
7
2

]
, (C.14)

M [1]
5
2

1
2

=
1

2

[
|02⟩ 5

2
1
2
+ |42⟩

]
+

3

10

[
|35⟩ 5

2
1
2

]
, (C.15)

M [1]
5
2

3
2

=
1

2

[
|02⟩ 5

2
3
2
+ |25⟩ 5

2
3
2

]
+

3

5

[
|14⟩ 5

2
3
2

]
+

3

10
[|36⟩] , (C.16)

M [1]
5
2

5
2

=
1

2

[
|00⟩ 5

2
5
2
+ |22⟩ 5

2
5
2

]
+

3

5

[
|11⟩ 5

2
5
2

]
+

3

10

[
|33⟩ 5

2
5
2

]
, (C.17)

M [1]
5
2

7
2

=
3

10

[
|30⟩ 5

2
7
2

]
, (C.18)

M [1]
7
2

1
2

=
2

5

[
|05⟩ 7

2
1
2

]
, (C.19)

M [1]
7
2

3
2

=
2

5

[
|06⟩ 7

2
3
2

]
, (C.20)

M [1]
7
2

5
2

=
2

5

[
|03⟩ 7

2
5
2

]
, (C.21)

M [1]
7
2

7
2

=
2

5

[
|00⟩ 7

2
7
2

]
, (C.22)

where we defined the basis states for the multiplicity subspaces V [7]
1
2

as

∑1/2
m=−1/2 |

1
2
1
2(0)K1KT

1
2 ;

1
2⟩⟨

1
2
1
2(0)K1KT

1
2 ;

1
2 | =: I 1

2
⊗ |0⟩⟨0| 1

2
, (C.23)

∑1/2
m=−1/2 |

1
2
1
2(1)K1KT

1
2 ;

1
2⟩⟨

1
2
1
2(1)K1KT

1
2 ;

1
2 | =: I 1

2
⊗ |1⟩⟨1| 1

2
, (C.24)

∑1/2
m=−1/2 |

1
2
1
2(1)K1KT

3
2 ;

1
2⟩⟨

1
2
1
2(1)K1KT

3
2 ;

1
2 | =: I 1

2
⊗ |2⟩⟨2| 1

2
, (C.25)
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∑1/2
m=−1/2 |

3
2
1
2(1)K1KT

1
2 ;

1
2⟩⟨

3
2
1
2(1)K1KT

1
2 ;

1
2 | =: I 1

2
⊗ |3⟩⟨3| 1

2
, (C.26)

∑1/2
m=−1/2 |

3
2
1
2(1)K1KT

3
2 ;

1
2⟩⟨

3
2
1
2(1)K1KT

3
2 ;

1
2 | =: I 1

2
⊗ |4⟩⟨4| 1

2
, (C.27)

∑1/2
m=−1/2 |

3
2
1
2(2)K1KT

3
2 ;

1
2⟩⟨

3
2
1
2(2)K1KT

3
2 ;

1
2 | =: I 1

2
⊗ |5⟩⟨5| 1

2
, (C.28)

and for V [7]
3
2

as

∑3/2
m=−3/2 |

1
2
1
2(1)K1KT

1
2 ;

3
2⟩⟨

1
2
1
2(1)K1KT

1
2 ;

3
2 | =: I 3

2
⊗ |0⟩⟨0| 3

2
, (C.29)

∑3/2
m=−3/2 |

1
2
1
2(0)K1KT

3
2 ;

3
2⟩⟨

1
2
1
2(0)K1KT

3
2 ;

3
2 | =: I 3

2
⊗ |1⟩⟨1| 3

2
, (C.30)

∑3/2
m=−3/2 |

1
2
1
2(1)K1KT

3
2 ;

3
2⟩⟨

1
2
1
2(1)K1KT

3
2 ;

3
2 | =: I 3

2
⊗ |2⟩⟨2| 3

2
, (C.31)

∑3/2
m=−3/2 |

3
2
1
2(1)K1KT

1
2 ;

3
2⟩⟨

3
2
1
2(1)K1KT

1
2 ;

3
2 | =: I 3

2
⊗ |3⟩⟨3| 3

2
, (C.32)

∑3/2
m=−3/2 |

3
2
1
2(2)K1KT

1
2 ;

3
2⟩⟨

3
2
1
2(2)K1KT

1
2 ;

3
2 | =: I 3

2
⊗ |4⟩⟨4| 3

2
, (C.33)

∑3/2
m=−3/2 |

3
2
1
2(1)K1KT

3
2 ;

3
2⟩⟨

3
2
1
2(1)K1KT

3
2 ;

3
2 | =: I 3

2
⊗ |5⟩⟨5| 3

2
, (C.34)

∑3/2
m=−3/2 |

3
2
1
2(2)K1KT

3
2 ;

3
2⟩⟨

3
2
1
2(2)K1KT

3
2 ;

3
2 | =: I 3

2
⊗ |6⟩⟨6| 3

2
, (C.35)

and for V [7]
5
2

as

∑5/2
m=−5/2 |

1
2
1
2(1)K1KT

3
2 ;

5
2⟩⟨

1
2
1
2(1)K1KT

3
2 ;

5
2 | =: I 5

2
⊗ |0⟩⟨0| 5

2
, (C.36)

∑5/2
m=−5/2 |

3
2
1
2(2)K1KT

1
2 ;

5
2⟩⟨

3
2
1
2(2)K1KT

1
2 ;

5
2 | =: I 5

2
⊗ |1⟩⟨1| 5

2
, (C.37)

∑5/2
m=−5/2 |

3
2
1
2(1)K1KT

3
2 ;

5
2⟩⟨

3
2
1
2(1)K1KT

3
2 ;

5
2 | =: I 5

2
⊗ |2⟩⟨2| 5

2
, (C.38)

∑5/2
m=−5/2 |

3
2
1
2(2)K1KT

3
2 ;

5
2⟩⟨

3
2
1
2(2)K1KT

3
2 ;

5
2 | =: I 5

2
⊗ |3⟩⟨3| 5

2
, (C.39)

and for V [7]
7
2

as

∑7/2
m=−7/2 |

3
2
1
2(2)K1KT

3
2 ;

7
2⟩⟨

3
2
1
2(2)K1KT

3
2 ;

7
2 | =: I 7

2
⊗ |0⟩⟨0| 7

2
. (C.40)

For M2, we have

M [1]
1
2

1
2

=
[
|0̂0̂⟩ 1

2
1
2

]
+

1

3

[
|1̂1̂⟩ 1

2
1
2
+ |3̂3̂⟩ 1

2
1
2

]
+

1

6

[
|2̂2̂⟩ 1

2
1
2
+ |4̂4̂⟩ 1

2
1
2

]
+

1

10

[
|5̂5̂⟩ 1

2
1
2

]
,

(C.41)

M [1]
1
2

3
2

=
1

2

[
|1̂0̂⟩ 1

2
3
2
+ |3̂3̂⟩ 1

2
3
2

]
+

1

6

[
|2̂2̂⟩ 1

2
3
2
+ |4̂5̂⟩ 1

2
3
2

]
+

1

10

[
|5̂6̂⟩ 1

2
3
2

]
, (C.42)

M [1]
1
2

5
2

=
1

6

[
|2̂0̂⟩ 1

2
5
2
+ |4̂2̂⟩ 1

2
5
2

]
+

1

10

[
|5̂3̂⟩ 1

2
5
2

]
, (C.43)

M [1]
1
2

7
2

=
1

10

[
|5̂0̂⟩

]
, (C.44)

M [1]
3
2

1
2

=
2

3

[
|0̂1̂⟩ 3

2
1
2
+ |3̂3̂⟩ 3

2
1
2

]
+

1

3

[
|2̂2̂⟩ 3

2
1
2
+ |5̂4̂⟩ 3

2
1
2

]
+

1

10

[
|6̂5̂⟩ 3

2
1
2

]
, (C.45)
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M [1]
3
2

3
2

=
[
|1̂1̂⟩ 3

2
3
2

]
+

2

3

[
|0̂0̂⟩ 3

2
3
2
+ |3̂3̂⟩ 3

2
3
2

]
+

1

3

[
|2̂2̂⟩ 3

2
3
2
+ |5̂5̂⟩ 3

2
3
2

]

+
2

5

[
|4̂4̂⟩ 3

2
3
2

]
+

1

5

[
|6̂6̂⟩ 3

2
3
2

]
, (C.46)

M [1]
3
2

5
2

=
1

3

[
|2̂0̂⟩ 3

2
5
2
+ |5̂2̂⟩ 3

2
5
2

]
+

2

5

[
|4̂1̂⟩ 3

2
5
2

]
+

1

5

[
|6̂3̂⟩ 3

2
5
2

]
, (C.47)

M [1]
3
2

7
2

=
1

5

[
|6̂0̂⟩ 3

2
7
2

]
, (C.48)

M [1]
5
2

1
2

=
1

2

[
|0̂2̂⟩ 5

2
1
2
+ |4̂2̂⟩

]
+

3

10

[
|3̂5̂⟩ 5

2
1
2

]
, (C.49)

M [1]
5
2

3
2

=
1

2

[
|0̂2̂⟩ 5

2
3
2
+ |2̂5̂⟩ 5

2
3
2

]
+

3

5

[
|1̂4̂⟩ 5

2
3
2

]
+

3

10

[
|3̂6̂⟩

]
, (C.50)

M [1]
5
2

5
2

=
1

2

[
|0̂0̂⟩ 5

2
5
2
+ |2̂2̂⟩ 5

2
5
2

]
+

3

5

[
|1̂1̂⟩ 5

2
5
2

]
+

3

10

[
|3̂3̂⟩ 5

2
5
2

]
, (C.51)

M [1]
5
2

7
2

=
3

10

[
|3̂0̂⟩ 5

2
7
2

]
, (C.52)

M [1]
7
2

1
2

=
2

5

[
|0̂5̂⟩ 7

2
1
2

]
, (C.53)

M [1]
7
2

3
2

=
2

5

[
|0̂6̂⟩ 7

2
3
2

]
, (C.54)

M [1]
7
2

5
2

=
2

5

[
|0̂3̂⟩ 7

2
5
2

]
, (C.55)

M [1]
7
2

7
2

=
2

5

[
|0̂0̂⟩ 7

2
7
2

]
, (C.56)

where we defined the basis states for the multiplicity subspaces V [7]
1
2

as

∑1/2
m=−1/2 |

1
2
1
2
1
2(0)KTK2 ;

1
2⟩⟨

1
2
1
2
1
2(0)KTK2 ;

1
2 | =: I 1

2
⊗ |0̂⟩⟨0̂| 1

2
, (C.57)

∑1/2
m=−1/2 |

1
2
1
2
1
2(1)KTK2 ;

1
2⟩⟨

1
2
1
2
1
2(1)KTK2 ;

1
2 | =: I 1

2
⊗ |1̂⟩⟨1̂| 1

2
, (C.58)

∑1/2
m=−1/2 |

3
2
1
2
1
2(1)KTK2 ;

1
2⟩⟨

3
2
1
2
1
2(1)KTK2 ;

1
2 | =: I 1

2
⊗ |2̂⟩⟨2̂| 1

2
, (C.59)

∑1/2
m=−1/2 |

1
2
1
2
3
2(1)KTK2 ;

1
2⟩⟨

1
2
1
2
3
2(1)KTK2 ;

1
2 | =: I 1

2
⊗ |3̂⟩⟨3̂| 1

2
, (C.60)

∑1/2
m=−1/2 |

3
2
1
2
3
2(1)KTK2 ;

1
2⟩⟨

3
2
1
2
3
2(1)KTK2 ;

1
2 | =: I 1

2
⊗ |4̂⟩⟨4̂| 1

2
, (C.61)

∑1/2
m=−1/2 |

3
2
1
2
3
2(2)KTK2 ;

1
2⟩⟨

3
2
1
2
3
2(2)KTK2 ;

1
2 | =: I 1

2
⊗ |4̂⟩⟨4̂| 1

2
, (C.62)

(C.63)

and for V [7]
3
2

as

∑3/2
m=−3/2 |

1
2
1
2
1
2(1)KTK2 ;

3
2⟩⟨

1
2
1
2
1
2(1)KTK2 ;

3
2 | =: I 3

2
⊗ |0̂⟩⟨0̂| 3

2
, (C.64)

∑3/2
m=−3/2 |

3
2
1
2
1
2(0)KTK2 ;

3
2⟩⟨

3
2
1
2
1
2(0)KTK2 ;

3
2 | =: I 3

2
⊗ |1̂⟩⟨1̂| 3

2
, (C.65)

∑3/2
m=−3/2 |

3
2
1
2
1
2(1)KTK2 ;

3
2⟩⟨

3
2
1
2
1
2(1)KTK2 ;

3
2 | =: I 3

2
⊗ |2̂⟩⟨2̂| 3

2
, (C.66)
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∑3/2
m=−3/2 |

1
2
1
2
3
2(1)KTK2 ;

3
2⟩⟨

1
2
1
2
3
2(1)KTK2 ;

3
2 | =: I 3

2
⊗ |3̂⟩⟨3̂| 3

2
, (C.67)

∑3/2
m=−3/2 |

1
2
1
2
3
2(2)KTK2 ;

3
2⟩⟨

1
2
1
2
3
2(2)KTK2 ;

3
2 | =: I 3

2
⊗ |4̂⟩⟨4̂| 3

2
, (C.68)

∑3/2
m=−3/2 |

3
2
1
2
3
2(1)KTK2 ;

3
2⟩⟨

3
2
1
2
3
2(1)KTK2 ;

3
2 | =: I 3

2
⊗ |5̂⟩⟨5̂| 3

2
, (C.69)

∑3/2
m=−3/2 |

3
2
1
2
3
2(2)KTK2 ;

3
2⟩⟨

3
2
1
2
3
2(2)KTK2 ;

3
2 | =: I 3

2
⊗ |6̂⟩⟨6̂| 3

2
, (C.70)

and for V [7]
5
2

as

∑5/2
m=−5/2 |

3
2
1
2
1
2(1)KTK2 ;

5
2⟩⟨

3
2
1
2
1
2(1)KTK2 ;

5
2 | =: I 5

2
⊗ |0̂⟩⟨0̂| 5

2
, (C.71)

∑5/2
m=−5/2 |

1
2
1
2
3
2(2)KTK2 ;

5
2⟩⟨

1
2
1
2
3
2(2)KTK2 ;

5
2 | =: I 5

2
⊗ |1̂⟩⟨1̂| 5

2
, (C.72)

∑5/2
m=−5/2 |

3
2
1
2
3
2(1)KTK2 ;

5
2⟩⟨

3
2
1
2
3
2(1)KTK2 ;

5
2 | =: I 5

2
⊗ |2̂⟩⟨2̂| 5

2
, (C.73)

∑5/2
m=−5/2 |

3
2
1
2
3
2(2)KTK2 ;

5
2⟩⟨

3
2
1
2
3
2(2)KTK2 ;

5
2 | =: I 5

2
⊗ |3̂⟩⟨3̂| 5

2
, (C.74)

and for V [7]
7
2

as

∑7/2
m=−7/2 |

3
2
1
2
3
2(2)KTK2 ;

7
2⟩⟨

3
2
1
2
3
2(2)KTK2 ;

7
2 | =: I 5

2
⊗ |0̂⟩⟨0̂| 7

2
. (C.75)

Using Lemma 6, one can calculate the relation between the two bases. We

obtain

|0̂⟩ 1
2
= U(1/2, 1/2, 1/2)11|0⟩ 1

2
+ U(1/2, 1/2, 1/2)12|0⟩ 1

2
, (C.76)

|1̂⟩ 1
2
= U(1/2, 1/2, 1/2)21|0⟩ 1

2
+ U(1/2, 1/2, 1/2)32|0⟩ 1

2
, (C.77)

|2̂⟩ 1
2
= U(3/2, 1/2, 1/2)21|3⟩ 1

2
, (C.78)

|3̂⟩ 1
2
= U(1/2, 3/2, 1/2)12|2⟩ 1

2
, (C.79)

|4̂⟩ 1
2
= U(3/2, 3/2, 1/2)11|4⟩ 1

2
+ U(3/2, 3/2, 1/2)12|5⟩ 1

2
, (C.80)

|5̂⟩ 1
2
= U(3/2, 3/2, 1/2)21|4⟩ 1

2
+ U(3/2, 3/2, 1/2)22|5⟩ 1

2
, (C.81)

|0̂⟩ 3
2
= U(1/2, 1/2, 3/2)22|0⟩ 3

2
, (C.82)

|1̂⟩ 3
2
= U(3/2, 1/2, 3/2)11|3⟩ 3

2
+ U(3/2, 1/2, 3/2)12|4⟩ 3

2
, (C.83)

|2̂⟩ 3
2
= U(3/2, 1/2, 3/2)21|3⟩ 3

2
+ U(3/2, 1/2, 3/2)22|4⟩ 3

2
, (C.84)

|3̂⟩ 3
2
= U(1/2, 3/2, 3/2)11|1⟩ 3

2
+ U(1/2, 3/2, 3/2)12|2⟩ 3

2
, (C.85)

|4̂⟩ 3
2
= U(1/2, 3/2, 3/2)21|1⟩ 3

2
+ U(1/2, 3/2, 3/2)22|2⟩ 3

2
, (C.86)

|5̂⟩ 3
2
= U(3/2, 3/2, 3/2)11|5⟩ 3

2
+ U(3/2, 3/2, 3/2)12|6⟩ 3

2
, (C.87)

|6̂⟩ 3
2
= U(3/2, 3/2, 3/2)21|5⟩ 3

2
+ U(3/2, 3/2, 3/2)22|6⟩ 3

2
, (C.88)

|0̂⟩ 5
2
= U(3/2, 1/2, 5/2)22|1⟩ 5

2
, (C.89)
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|1̂⟩ 5
2
= U(1/2, 3/2, 5/2)22|0⟩ 5

2
, (C.90)

|2̂⟩ 5
2
= U(3/2, 3/2, 5/2)11|2⟩ 5

2
+ U(3/2, 3/2, 5/2)12|3⟩ 5

2
, (C.91)

|3̂⟩ 5
2
= U(3/2, 3/2, 5/2)21|2⟩ 5

2
+ U(3/2, 3/2, 5/2)22|3⟩ 5

2
, (C.92)

|0̂⟩ 7
2
= U(3/2, 3/2, 7/2)22|0⟩ 7

2
. (C.93)

N = 4 case

The Choi operator Mi is represented as

M1 = η[5]HR1KR1HTKT
⊗ η[4]HR2KR2

, (C.94)

M2 = η[4]HR1KR1
⊗ η[5]HR2KR2HTKT

, (C.95)

where the definition of η[N ] is given in Equation (4.74). We have

η[5]HR1KR1HTKT
=

I 1
2
2 ⊗ I 1

2
⊗
[
(|α[4]

0 ⟩⟩+ |α[4]
1 ⟩⟩)⊗ |α[1]

1
2

⟩⟩
]
, (C.96)

⊕
I 3
2
4 ⊗ I 3

2
⊗
[
(|α[4]

1 ⟩⟩+ |α[4]
2 ⟩⟩)⊗ |α[1]

1
2

⟩⟩
]
, (C.97)

⊕
I 5
2
6 ⊗ I 5

2
⊗
[
|α[4]

2 ⟩⟩ ⊗ |α[1]
1
2

⟩⟩
]

(C.98)

and

η[4]HR1KR1HTKT
⊕ I0 ⊗ I0 ⊗

[
|α[4]

0 ⟩⟩
]
⊕ I1

3 ⊗ I1 ⊗
[
|α[4]

1 ⟩⟩
]
, (C.99)

⊕ I2
5 ⊗ I2 ⊗

[
|α[4]

2 ⟩⟩
]
. (C.100)

Then we have

M [1]
1
2

1
2

=
[
|00⟩ 1

2
1
2
+ |22⟩ 1

2
1
2

]
+

1

3

[
|11⟩ 1

2
1
2
+ |33⟩ 1

2
1
2

]
+

1

6

[
|44⟩ 1

2
1
2
+ |66⟩ 1

2
1
2

]
,

(C.101)

+
1

10

[
|55⟩ 1

2
1
2
+ |77⟩ 1

2
1
2

]
+

1

15

[
|88⟩ 1

2
1
2

]
, (C.102)

M [1]
1
2

3
2

=
1

3

[
|10⟩ 1

2
3
2
+ |34⟩ 1

2
3
2

]
+

1

6

[
|45⟩ 1

2
3
2
+ |68⟩ 1

2
3
2

]
,

+
1

10

[
|57⟩ 1

2
3
2
+ |7, 10⟩ 1

2
3
2

]
+

1

15

[
|8, 11⟩ 1

2
3
2

]
, (C.103)

M [1]
1
2

5
2

=
1

6

[
|42⟩ 1

2
5
2
+ |65⟩ 1

2
5
2

]
+

1

10

[
|54⟩ 1

2
5
2
+ |77⟩ 1

2
5
2

]
+

1

15

[
|88⟩ 1

2
5
2

]
, (C.104)

M [1]
1
2

7
2

=
1

10

[
|50⟩ 1

2
7
2
+ |72⟩ 1

2
7
2

]
+

1

15

[
|83⟩ 1

2
7
2

]
, (C.105)

M [1]
1
2

9
2

=
1

15

[
|80⟩ 1

2
9
2

]
, (C.106)
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M [1]
3
2

1
2

=
2

3

[
|01⟩ 3

2
1
2
+ |43⟩ 3

2
1
2

]
+

1

3

[
|54⟩ 3

2
1
2
+ |86⟩ 3

2
1
2

]
,

+
1

5

[
|75⟩ 3

2
1
2
+ |10, 7⟩ 3

2
1
2

]
+

2

15

[
|11, 8⟩ 3

2
1
2

]
, (C.107)

M [1]
3
2

3
2

=
[
|11⟩ 3

2
3
2
+ |33⟩ 3

2
3
2

]
+

2

3

[
|00⟩ 3

2
3
2
+ |44⟩ 3

2
3
2

]
+

1

3

[
|55⟩ 3

2
3
2
+ |88⟩ 3

2
3
2

]

+
2

9

[
|99⟩ 3

2
3
2

]
+

2

5

[
|22⟩ 3

2
3
2
+ |66⟩ 3

2
3
2

]
+

1

5

[
|77⟩ 3

2
3
2
+ |10, 10⟩ 3

2
3
2

]
,

+
2

15

[
|11, 11⟩ 3

2
3
2

]
, (C.108)

M [1]
3
2

5
2

=
1

3

[
|52⟩ 3

2
5
2
+ |85⟩ 3

2
5
2

]
+

2

9

[
|96⟩ 3

2
5
2

]
+

2

5

[
|20⟩ 3

2
5
2
+ |63⟩ 3

2
5
2

]

+
1

5

[
|74⟩ 3

2
5
2
+ |10, 7⟩ 3

2
5
2

]
+

2

15

[
|11, 8⟩ 3

2
5
2

]
, (C.109)

M [1]
3
2

7
2

=
2

9

[
|9, 1⟩ 3

2
7
2

]
+

1

5

[
|70⟩ 3

2
7
2
+ |10, 2⟩ 3

2
7
2

]
+

2

15

[
|11, 3⟩ 3

2
7
2

]
, (C.110)

M [1]
3
2

9
2

=
2

15

[
|11, 0⟩ 3

2
9
2

]
, (C.111)

M [1]
5
2

1
2

=
1

2

[
|24⟩ 5

2
1
2
+ |56⟩ 5

2
1
2

]
+

3

10

[
|45⟩ 5

2
1
2
+ |77⟩ 5

2
1
2

]
+

1

5

[
|88⟩ 5

2
1
2

]
, (C.112)

M [1]
5
2

3
2

=
1

2

[
|25⟩ 5

2
3
2
+ |58⟩ 5

2
3
2

]
+

1

3

[
|69⟩ 5

2
3
2

]
+

3

5

[
|02⟩ 5

2
3
2
+ |36⟩ 5

2
3
2

]

+
3

10

[
|47⟩ 5

2
3
2
+ |7, 10⟩ 5

2
3
2

]
+

1

5

[
|8, 11⟩ 5

2
3
2

]
, (C.113)

M [1]
5
2

5
2

=
[
|11⟩ 5

2
5
2

]
+

1

2

[
|22⟩ 5

2
5
2
+ |55⟩ 5

2
5
2

]
+

3

5

[
|00⟩ 5

2
5
2
+ |33⟩ 5

2
5
2

]

+
1

3

[
|66⟩ 5

2
5
2

]
+

3

10

[
|44⟩ 5

2
5
2
+ |77⟩ 5

2
5
2

]
+

1

5

[
|88⟩ 5

2
5
2

]
, (C.114)

M [1]
5
2

7
2

=
1

3

[
|01⟩ 5

2
7
2

]
+

3

10

[
|40⟩ 5

2
7
2
+ |72⟩ 5

2
7
2

]
+

1

5

[
|83⟩ 5

2
7
2

]
, (C.115)

M [1]
5
2

9
2

=
1

5

[
|80⟩ 5

2
9
2

]
, (C.116)

M [1]
7
2

1
2

=
2

5

[
|05⟩ 7

2
1
2
+ |27⟩ 7

2
1
2

]
+

4

15

[
|38⟩ 7

2
1
2

]
, (C.117)

M [1]
7
2

3
2

=
2

9

[
|19⟩ 7

2
3
2

]
+

2

5

[
|07⟩ 7

2
3
2
+ |2, 10⟩ 7

2
3
2

]
+

4

15

[
|3, 11⟩ 7

2
3
2

]
, (C.118)

M [1]
7
2

5
2

=
4

9

[
|10⟩ 7

2
5
2

]
+

2

5

[
|04⟩ 7

2
5
2
+ |27⟩ 7

2
5
2

]
+

4

15

[
|38⟩ 7

2
5
2

]
, (C.119)

M [1]
7
2

7
2

=
2

5

[
|00⟩ 7

2
7
2
+ |22⟩ 7

2
7
2

]
+

4

9

[
|11⟩ 7

2
7
2

]
+

4

15

[
|33⟩ 7

2
7
2

]
, (C.120)

M [1]
7
2

9
2

=
4

15

[
|30⟩ 7

2
9
2

]
, (C.121)

M [1]
9
2

1
2

=
1

3

[
|08⟩ 9

2
1
2

]
, (C.122)
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M [1]
9
2

3
2

=
1

3

[
|0, 11⟩ 9

2
3
2

]
, (C.123)

M [1]
9
2

5
2

=
1

3

[
|08⟩ 9

2
5
2

]
, (C.124)

M [1]
9
2

7
2

=
1

3

[
|03⟩ 9

2
7
2

]
, (C.125)

M [1]
9
2

9
2

=
1

3

[
|00⟩ 9

2
9
2

]
, (C.126)

where we defined the basis states for the multiplicity subspaces V [9]
1
2

as

∑1/2
m=−1/2 |0

1
2(

1
2)KR1KT 0;

1
2⟩⟨0

1
2(

1
2)KR1KT 0;

1
2 | =: I 1

2
⊗ |0⟩⟨0| 1

2
, (C.127)

∑1/2
m=−1/2 |0

1
2(

1
2)KR1KT 1;

1
2⟩⟨0

1
2(

1
2)KR1KT 1;

1
2 | =: I 1

2
⊗ |1⟩⟨1| 1

2
, (C.128)

∑1/2
m=−1/2 |1

1
2(

1
2)KR1KT 0;

1
2⟩⟨1

1
2(

1
2)KR1KT 0;

1
2 | =: I 1

2
⊗ |2⟩⟨2| 1

2
, (C.129)

∑1/2
m=−1/2 |1

1
2(

1
2)KR1KT 1;

1
2⟩⟨1

1
2(

1
2)KR1KT 1;

1
2 | =: I 1

2
⊗ |3⟩⟨3| 1

2
, (C.130)

∑1/2
m=−1/2 |1

1
2(

3
2)KR1KT 1;

1
2⟩⟨1

1
2(

3
2)KR1KT 1;

1
2 | =: I 1

2
⊗ |4⟩⟨4| 1

2
, (C.131)

∑1/2
m=−1/2 |1

1
2(

3
2)KR1KT 2;

1
2⟩⟨1

1
2(

3
2)KR1KT 2;

1
2 | =: I 1

2
⊗ |5⟩⟨5| 1

2
, (C.132)

∑1/2
m=−1/2 |2

1
2(

1
2)KR1KT 1;

1
2⟩⟨2

1
2(

1
2)KR1KT 1;

1
2 | =: I 1

2
⊗ |6⟩⟨6| 1

2
, (C.133)

∑1/2
m=−1/2 |2

1
2(

3
2)KR1KT 2;

1
2⟩⟨2

1
2(

3
2)KR1KT 2;

1
2 | =: I 1

2
⊗ |7⟩⟨7| 1

2
, (C.134)

∑1/2
m=−1/2 |2

1
2(

5
2)KR1KT 2;

1
2⟩⟨2

1
2(

5
2)KR1KT 2;

1
2 | =: I 1

2
⊗ |8⟩⟨8| 1

2
, (C.135)

and for V [9]
3
2

as

∑3/2
m=−3/2 |0

1
2(

1
2)KR1KT 1;

1
2⟩⟨0

1
2(

1
2)KR1KT 1;

1
2 | =: I 3

2
⊗ |0⟩⟨0| 3

2
, (C.136)

∑3/2
m=−3/2 |1

1
2(

3
2)KR1KT 0;

1
2⟩⟨1

1
2(

3
2)KR1KT 0;

1
2 | =: I 3

2
⊗ |1⟩⟨1| 3

2
, (C.137)

∑3/2
m=−3/2 |0

1
2(

1
2)KR1KT 2;

1
2⟩⟨0

1
2(

1
2)KR1KT 2;

1
2 | =: I 3

2
⊗ |2⟩⟨2| 3

2
, (C.138)

∑3/2
m=−3/2 |2

1
2(

3
2)KR1KT 0;

1
2⟩⟨2

1
2(

3
2)KR1KT 0;

1
2 | =: I 3

2
⊗ |3⟩⟨3| 3

2
, (C.139)

∑3/2
m=−3/2 |1

1
2(

1
2)KR1KT 1;

1
2⟩⟨1

1
2(

1
2)KR1KT 1;

1
2 | =: I 3

2
⊗ |4⟩⟨4| 3

2
, (C.140)

∑3/2
m=−3/2 |1

1
2(

3
2)KR1KT 1;

1
2⟩⟨1

1
2(

3
2)KR1KT 1;

1
2 | =: I 3

2
⊗ |5⟩⟨5| 3

2
, (C.141)

∑3/2
m=−3/2 |1

1
2(

1
2)KR1KT 2;

1
2⟩⟨1

1
2(

1
2)KR1KT 2;

1
2 | =: I 3

2
⊗ |6⟩⟨6| 3

2
, (C.142)

∑3/2
m=−3/2 |1

1
2(

3
2)KR1KT 2;

1
2⟩⟨1

1
2(

3
2)KR1KT 2;

1
2 | =: I 3

2
⊗ |7⟩⟨7| 3

2
, (C.143)

∑3/2
m=−3/2 |2

1
2(

3
2)KR1KT 1;

1
2⟩⟨2

1
2(

3
2)KR1KT 1;

1
2 | =: I 3

2
⊗ |8⟩⟨8| 3

2
, (C.144)

∑3/2
m=−3/2 |2

1
2(

3
2)KR1KT 1;

1
2⟩⟨2

1
2(

3
2)KR1KT 1;

1
2 | =: I 3

2
⊗ |9⟩⟨9| 3

2
, (C.145)

∑3/2
m=−3/2 |2

1
2(

3
2)KR1KT 2;

1
2⟩⟨2

1
2(

3
2)KR1KT 2;

1
2 | =: I 3

2
⊗ |10⟩⟨10| 3

2
, (C.146)



110 Appendix C Calculations of Choi operators in Prop. 3 for N = 3, 4

∑3/2
m=−3/2 |2

1
2(

5
2)KR1KT 2;

1
2⟩⟨2

1
2(

5
2)KR1KT 2;

1
2 | =: I 3

2
⊗ |11⟩⟨11| 3

2
, (C.147)

and for V [9]
5
2

as

∑5/2
m=−5/2 |0

1
2(

1
2)KR1KT 2;

5
2⟩⟨0

1
2(

1
2)KR1KT 2;

5
2 | =: I 5

2
⊗ |0⟩⟨0| 5

2
, (C.148)

∑5/2
m=−5/2 |2

1
2(

5
2)KR1KT 0;

5
2⟩⟨2

1
2(

5
2)KR1KT 0;

5
2 | =: I 5

2
⊗ |1⟩⟨1| 5

2
, (C.149)

∑5/2
m=−5/2 |1

1
2(

3
2)KR1KT 1;

5
2⟩⟨1

1
2(

3
2)KR1KT 1;

5
2 | =: I 5

2
⊗ |2⟩⟨2| 5

2
, (C.150)

∑5/2
m=−5/2 |1

1
2(

1
2)KR1KT 2;

5
2⟩⟨1

1
2(

1
2)KR1KT 2;

5
2 | =: I 5

2
⊗ |3⟩⟨3| 5

2
, (C.151)

∑5/2
m=−5/2 |1

1
2(

3
2)KR1KT 2;

5
2⟩⟨1

1
2(

3
2)KR1KT 2;

5
2 | =: I 5

2
⊗ |4⟩⟨4| 5

2
, (C.152)

∑5/2
m=−5/2 |2

1
2(

3
2)KR1KT 1;

5
2⟩⟨2

1
2(

3
2)KR1KT 1;

5
2 | =: I 5

2
⊗ |5⟩⟨5| 5

2
, (C.153)

∑5/2
m=−5/2 |2

1
2(

5
2)KR1KT 1;

5
2⟩⟨2

1
2(

5
2)KR1KT 1;

5
2 | =: I 5

2
⊗ |6⟩⟨6| 5

2
, (C.154)

∑5/2
m=−5/2 |2

1
2(

3
2)KR1KT 2;

5
2⟩⟨2

1
2(

3
2)KR1KT 2;

5
2 | =: I 5

2
⊗ |7⟩⟨7| 5

2
, (C.155)

∑5/2
m=−5/2 |2

1
2(

5
2)KR1KT 2;

5
2⟩⟨2

1
2(

5
2)KR1KT 2;

5
2 | =: I 5

2
⊗ |8⟩⟨8| 5

2
, (C.156)

and for V [9]
7
2

as

∑7/2
m=−7/2 |1

1
2(

3
2)KR1KT 2;

7
2⟩⟨1

1
2(

3
2)KR1KT 2;

7
2 | =: I 7

2
⊗ |0⟩⟨0| 7

2
, (C.157)

∑7/2
m=−7/2 |2

1
2(

5
2)KR1KT 1;

7
2⟩⟨2

1
2(

5
2)KR1KT 1;

7
2 | =: I 7

2
⊗ |1⟩⟨1| 7

2
, (C.158)

∑7/2
m=−7/2 |2

1
2(

3
2)KR1KT 2;

7
2⟩⟨2

1
2(

3
2)KR1KT 2;

7
2 | =: I 7

2
⊗ |2⟩⟨2| 7

2
, (C.159)

∑7/2
m=−7/2 |2

1
2(

5
2)KR1KT 2;

7
2⟩⟨2

1
2(

5
2)KR1KT 2;

7
2 | =: I 7

2
⊗ |3⟩⟨3| 7

2
, (C.160)

and for V [9]
7
2

as

∑9/2
m=−9/2 |2

1
2(

5
2)KR1KT 2;

9
2⟩⟨2

1
2(

5
2)KR1KT 2;

9
2 | =: I 9

2
⊗ |0⟩⟨0| 9

2
. (C.161)

For M2, we have

M [2]
1
2

1
2

=
[
|0̂0̂⟩ 1

2
1
2
+ |2̂2̂⟩ 1

2
1
2

]
+

1

3

[
|1̂1̂⟩ 1

2
1
2
+ |3̂3̂⟩ 1

2
1
2

]
+

1

6

[
|4̂4̂⟩ 1

2
1
2
+ |6̂6̂⟩ 1

2
1
2

]

+
1

10

[
|5̂5̂⟩ 1

2
1
2
+ |7̂7̂⟩ 1

2
1
2

]
+

1

15

[
|8̂8̂⟩ 1

2
1
2

]
, (C.162)

M [2]
1
2

3
2

=
1

3

[
|1̂0̂⟩ 1

2
3
2
+ |3̂4̂⟩ 1

2
3
2

]
+

1

6

[
|4̂5̂⟩ 1

2
3
2
+ |6̂8̂⟩ 1

2
3
2

]

+
1

10

[
|5̂7̂⟩ 1

2
3
2
+ |7, 10⟩ 1

2
3
2

]
+

1

15

[
|8, 11⟩ 1

2
3
2

]
, (C.163)

M [2]
1
2

5
2

=
1

6

[
|4̂2̂⟩ 1

2
5
2
+ |6̂5̂⟩ 1

2
5
2

]
+

1

10

[
|5̂4̂⟩ 1

2
5
2
+ |7̂7̂⟩ 1

2
5
2

]
+

1

15

[
|8̂8̂⟩ 1

2
5
2

]
, (C.164)
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M [2]
1
2

7
2

=
1

10

[
|5̂0̂⟩ 1

2
7
2
+ |7̂2̂⟩ 1

2
7
2

]
+

1

15

[
|8̂3̂⟩ 1

2
7
2

]
, (C.165)

M [2]
1
2

9
2

=
1

15

[
|8̂0̂⟩ 1

2
9
2

]
, (C.166)

M [2]
3
2

1
2

=
2

3

[
|0̂1̂⟩ 3

2
1
2
+ |4̂3̂⟩ 3

2
1
2

]
+

1

3

[
|5̂4̂⟩ 3

2
1
2
+ |8̂6̂⟩ 3

2
1
2

]

+
1

5

[
|7̂5̂⟩ 3

2
1
2
+ |10, 7⟩ 3

2
1
2

]
+

2

15

[
|11, 8⟩ 3

2
1
2

]
, (C.167)

M [2]
3
2

3
2

=
[
|1̂1̂⟩ 3

2
3
2
+ |3̂3̂⟩ 3

2
3
2

]
+

2

3

[
|0̂0̂⟩ 3

2
3
2
+ |4̂4̂⟩ 3

2
3
2

]
+

1

3

[
|5̂5̂⟩ 3

2
3
2
+ |8̂8̂⟩ 3

2
3
2

]

+
2

9

[
|9̂9̂⟩ 3

2
3
2

]
+

2

5

[
|2̂2̂⟩ 3

2
3
2
+ |6̂6̂⟩ 3

2
3
2

]
+

1

5

[
|7̂7̂⟩ 3

2
3
2
+ |10, 10⟩ 3

2
3
2

]

+
2

15

[
|11, 11⟩ 3

2
3
2

]
, (C.168)

M [2]
3
2

5
2

=
1

3

[
|5̂2̂⟩ 3

2
5
2
+ |8̂5̂⟩ 3

2
5
2

]
+

2

9

[
|9̂6̂⟩ 3

2
5
2

]
+

2

5

[
|2̂0̂⟩ 3

2
5
2
+ |6̂3̂⟩ 3

2
5
2

]

+
1

5

[
|7̂4̂⟩ 3

2
5
2
+ |10, 7⟩ 3

2
5
2

]
+

2

15

[
|11, 8⟩ 3

2
5
2

]
, (C.169)

M [2]
3
2

7
2

=
2

9

[
|9, 1⟩ 3

2
7
2

]
+

1

5

[
|7̂0̂⟩ 3

2
7
2
+ |10, 2⟩ 3

2
7
2

]
+

2

15

[
|11, 3⟩ 3

2
7
2

]
, (C.170)

M [2]
3
2

9
2

=
2

15

[
|11, 0⟩ 3

2
9
2

]
, (C.171)

M [2]
5
2

1
2

=
1

2

[
|2̂4̂⟩ 5

2
1
2
+ |5̂6̂⟩ 5

2
1
2

]
+

3

10

[
|4̂5̂⟩ 5

2
1
2
+ |7̂7̂⟩ 5

2
1
2

]
+

1

5

[
|8̂8̂⟩ 5

2
1
2

]
, (C.172)

M [2]
5
2

3
2

=
1

2

[
|2̂5̂⟩ 5

2
3
2
+ |5̂8̂⟩ 5

2
3
2

]
+

1

3

[
|6̂9̂⟩ 5

2
3
2

]
+

3

5

[
|0̂2̂⟩ 5

2
3
2
+ |3̂6̂⟩ 5

2
3
2

]

+
3

10

[
|4̂7̂⟩ 5

2
3
2
+ |7, 10⟩ 5

2
3
2

]
+

1

5

[
|8, 11⟩ 5

2
3
2

]
, (C.173)

M [2]
5
2

5
2

=
[
|1̂1̂⟩ 5

2
5
2

]
+

1

2

[
|2̂2̂⟩ 5

2
5
2
+ |5̂5̂⟩ 5

2
5
2

]
+

3

5

[
|0̂0̂⟩ 5

2
5
2
+ |3̂3̂⟩ 5

2
5
2

]

+
1

3

[
|6̂6̂⟩ 5

2
5
2

]
+

3

10

[
|4̂4̂⟩ 5

2
5
2
+ |7̂7̂⟩ 5

2
5
2

]
+

1

5

[
|8̂8̂⟩ 5

2
5
2

]
, (C.174)

M [2]
5
2

7
2

=
1

3

[
|0̂1̂⟩ 5

2
7
2

]
+

3

10

[
|4̂0̂⟩ 5

2
7
2
+ |7̂2̂⟩ 5

2
7
2

]
+

1

5

[
|8̂3̂⟩ 5

2
7
2

]
, (C.175)

M [2]
5
2

9
2

=
1

5

[
|8̂0̂⟩ 5

2
9
2

]
, (C.176)

M [2]
7
2

1
2

=
2

5

[
|0̂5̂⟩ 7

2
1
2
+ |2̂7̂⟩ 7

2
1
2

]
+

4

15

[
|3̂8̂⟩ 7

2
1
2

]
, (C.177)

M [2]
7
2

3
2

=
2

9

[
|1̂9̂⟩ 7

2
3
2

]
+

2

5

[
|0̂7̂⟩ 7

2
3
2
+ |2, 10⟩ 7

2
3
2

]
+

4

15

[
|3, 11⟩ 7

2
3
2

]
, (C.178)

M [2]
7
2

5
2

=
4

9

[
|1̂0̂⟩ 7

2
5
2

]
+

2

5

[
|0̂4̂⟩ 7

2
5
2
+ |2̂7̂⟩ 7

2
5
2

]
+

4

15

[
|3̂8̂⟩ 7

2
5
2

]
, (C.179)

M [2]
7
2

7
2

=
2

5

[
|0̂0̂⟩ 7

2
7
2
+ |2̂2̂⟩ 7

2
7
2

]
+

4

9

[
|1̂1̂⟩ 7

2
7
2

]
+

4

15

[
|3̂3̂⟩ 7

2
7
2

]
, (C.180)
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M [2]
7
2

9
2

=
4

15

[
|3̂0̂⟩ 7

2
9
2

]
, (C.181)

M [2]
9
2

1
2

=
1

3

[
|0̂8̂⟩ 9

2
1
2

]
, (C.182)

M [2]
9
2

3
2

=
1

3

[
|0, 11⟩ 9

2
3
2

]
, (C.183)

M [2]
9
2

5
2

=
1

3

[
|0̂8̂⟩ 9

2
5
2

]
, (C.184)

M [2]
9
2

7
2

=
1

3

[
|0̂3̂⟩ 9

2
7
2

]
, (C.185)

M [2]
9
2

9
2

=
1

3

[
|0̂0̂⟩ 9

2
9
2

]
, (C.186)

where we defined the basis states for the multiplicity subspaces V [9]
1
2

as

∑1/2
m=−1/2 |0

1
20(

1
2);

1
2⟩⟨0

1
20(

1
2);

1
2 | =: I 1

2
⊗ |0̂⟩⟨0̂| 1

2
, (C.187)

∑1/2
m=−1/2 |1

1
20(

1
2);

1
2⟩⟨1

1
20(

1
2);

1
2 | =: I 1

2
⊗ |1̂⟩⟨1̂| 1

2
, (C.188)

∑1/2
m=−1/2 |0

1
21(

1
2);

1
2⟩⟨0

1
21(

1
2);

1
2 | =: I 1

2
⊗ |2̂⟩⟨2̂| 1

2
, (C.189)

∑1/2
m=−1/2 |1

1
21(

1
2);

1
2⟩⟨1

1
21(

1
2);

1
2 | =: I 1

2
⊗ |3̂⟩⟨3̂| 1

2
, (C.190)

∑1/2
m=−1/2 |1

1
21(

3
2);

1
2⟩⟨1

1
21(

3
2);

1
2 | =: I 1

2
⊗ |4̂⟩⟨4̂| 1

2
, (C.191)

∑1/2
m=−1/2 |2

1
21(

3
2);

1
2⟩⟨2

1
21(

3
2);

1
2 | =: I 1

2
⊗ |5̂⟩⟨5̂| 1

2
, (C.192)

∑1/2
m=−1/2 |1

1
22(

1
2);

1
2⟩⟨1

1
22(

1
2);

1
2 | =: I 1

2
⊗ |6̂⟩⟨6̂| 1

2
, (C.193)

∑1/2
m=−1/2 |2

1
22(

3
2);

1
2⟩⟨2

1
22(

3
2);

1
2 | =: I 1

2
⊗ |7̂⟩⟨7̂| 1

2
, (C.194)

∑1/2
m=−1/2 |2

1
22(

5
2);

1
2⟩⟨2

1
22(

5
2);

1
2 | =: I 1

2
⊗ |8̂⟩⟨8̂| 1

2
, (C.195)

and for the multiplicity subspaces V [9]
3
2

as

∑3/2
m=−3/2 |1

1
20(

1
2);

3
2⟩⟨1

1
20(

1
2);

3
2 | =: I 3

2
⊗ |0̂⟩⟨0̂| 3

2
, (C.196)

∑3/2
m=−3/2 |0

1
21(

3
2);

3
2⟩⟨0

1
21(

3
2);

3
2 | =: I 3

2
⊗ |1̂⟩⟨1̂| 3

2
, (C.197)

∑3/2
m=−3/2 |2

1
20(

1
2);

3
2⟩⟨2

1
20(

1
2);

3
2 | =: I 3

2
⊗ |2̂⟩⟨2̂| 3

2
, (C.198)

∑3/2
m=−3/2 |0

1
22(

3
2);

3
2⟩⟨0

1
22(

3
2);

3
2 | =: I 3

2
⊗ |3̂⟩⟨3̂| 3

2
, (C.199)

∑3/2
m=−3/2 |1

1
21(

1
2);

3
2⟩⟨1

1
21(

1
2);

3
2 | =: I 3

2
⊗ |4̂⟩⟨4̂| 3

2
, (C.200)

∑3/2
m=−3/2 |1

1
21(

3
2);

3
2⟩⟨1

1
21(

3
2);

3
2 | =: I 3

2
⊗ |5̂⟩⟨5̂| 3

2
, (C.201)

∑3/2
m=−3/2 |2

1
21(

1
2);

3
2⟩⟨2

1
21(

1
2);

3
2 | =: I 3

2
⊗ |6̂⟩⟨6̂| 3

2
, (C.202)

∑3/2
m=−3/2 |2

1
21(

3
2);

3
2⟩⟨2

1
21(

3
2);

3
2 | =: I 3

2
⊗ |7̂⟩⟨7̂| 3

2
, (C.203)
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∑3/2
m=−3/2 |1

1
22(

1
2);

3
2⟩⟨1

1
22(

1
2);

3
2 | =: I 3

2
⊗ |8̂⟩⟨8̂| 3

2
, (C.204)

∑3/2
m=−3/2 |1

1
22(

3
2);

3
2⟩⟨1

1
22(

3
2);

3
2 | =: I 3

2
⊗ |9̂⟩⟨9̂| 3

2
, (C.205)

∑3/2
m=−3/2 |2

1
22(

3
2);

3
2⟩⟨2

1
22(

3
2);

3
2 | =: I 3

2
⊗ |1̂0⟩⟨1̂0| 3

2
, (C.206)

∑3/2
m=−3/2 |2

1
22(

5
2);

3
2⟩⟨2

1
22(

5
2);

3
2 | =: I 3

2
⊗ |1̂1⟩⟨1̂1| 3

2
, (C.207)

and for the multiplicity subspaces V [9]
5
2

as

∑5/2
m=−5/2 |2

1
20(

1
2);

5
2⟩⟨2

1
20(

1
2);

5
2 | =: I 5

2
⊗ |0̂⟩⟨0̂| 5

2
, (C.208)

∑5/2
m=−5/2 |0

1
22(

5
2);

5
2⟩⟨0

1
22(

5
2);

5
2 | =: I 5

2
⊗ |1̂⟩⟨1̂| 5

2
, (C.209)

∑5/2
m=−5/2 |1

1
21(

3
2);

5
2⟩⟨1

1
21(

3
2);

5
2 | =: I 5

2
⊗ |2̂⟩⟨2̂| 5

2
, (C.210)

∑5/2
m=−5/2 |2

1
21(

1
2);

5
2⟩⟨2

1
21(

1
2);

5
2 | =: I 5

2
⊗ |3̂⟩⟨3̂| 5

2
, (C.211)

∑5/2
m=−5/2 |2

1
21(

3
2);

5
2⟩⟨2

1
21(

3
2);

5
2 | =: I 5

2
⊗ |4̂⟩⟨4̂| 5

2
, (C.212)

∑5/2
m=−5/2 |1

1
22(

3
2);

5
2⟩⟨1

1
22(

3
2);

5
2 | =: I 5

2
⊗ |5̂⟩⟨5̂| 5

2
, (C.213)

∑5/2
m=−5/2 |1

1
22(

5
2);

5
2⟩⟨1

1
22(

5
2);

5
2 | =: I 5

2
⊗ |6̂⟩⟨6̂| 5

2
, (C.214)

∑5/2
m=−5/2 |2

1
22(

3
2);

5
2⟩⟨2

1
22(

3
2);

5
2 | =: I 5

2
⊗ |7̂⟩⟨7̂| 5

2
, (C.215)

∑5/2
m=−5/2 |2

1
22(

5
2);

5
2⟩⟨2

1
22(

5
2);

5
2 | =: I 5

2
⊗ |8̂⟩⟨8̂| 5

2
, (C.216)

and V [9]
7
2

as

∑7/2
m=−7/2 |2

1
21(

3
2);

7
2⟩⟨2

1
21(

3
2);

7
2 | =: I 5

2
⊗ |0̂⟩⟨0̂| 7

2
, (C.217)

∑7/2
m=−7/2 |1

1
22(

5
2);

7
2⟩⟨1

1
22(

5
2);

7
2 | =: I 5

2
⊗ |1̂⟩⟨1̂| 7

2
, (C.218)

∑7/2
m=−7/2 |2

1
22(

3
2);

7
2⟩⟨2

1
22(

3
2);

7
2 | =: I 5

2
⊗ |2̂⟩⟨2̂| 7

2
, (C.219)

∑7/2
m=−7/2 |2

1
22(

5
2);

7
2⟩⟨2

1
22(

5
2);

7
2 | =: I 5

2
⊗ |3̂⟩⟨3̂| 7

2
, (C.220)

for J = 7/2,

∑9/2
m=−9/2 |2

1
2(

5
2)2;

9
2⟩⟨2

1
2(

5
2)2;

9
2 | =: I 7

2
⊗ |0̂⟩⟨0̂| 9

2
. (C.221)

Using Lemma 6, one can calculate the relation between the two bases. We
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obtain

|0̂⟩ 1
2
= U(0, 0, 1/2)22|0⟩ 1

2
, (C.222)

|1̂⟩ 1
2
= U(1, 0, 1/2)21|2⟩ 1

2
, (C.223)

|2̂⟩ 1
2
= U(0, 1, 1/2)12|1⟩ 1

2
, (C.224)

|3̂⟩ 1
2
= U(1, 1, 1/2)11|3⟩ 1

2
+ U(1, 1, 1/2)12|4⟩ 1

2
, (C.225)

|4̂⟩ 1
2
= U(1, 1, 1/2)21|3⟩ 1

2
+ U(1, 1, 1/2)22|4⟩ 1

2
, (C.226)

|5̂⟩ 1
2
= U(2, 1, 1/2)21|6⟩ 1

2
, (C.227)

|6̂⟩ 1
2
= U(1, 2, 1/2)12|5⟩ 1

2
, (C.228)

|7̂⟩ 1
2
= U(2, 2, 1/2)11|7⟩ 1

2
+ U(2, 2, 12)12|8⟩, (C.229)

|8̂⟩ 1
2
= U(2, 2, 1/2)21|7⟩ 1

2
+ U(2, 2, 12)22|8⟩, (C.230)

|0̂⟩ 3
2
= U(1, 0, 3/2)22|1⟩ 3

2
, (C.231)

|1̂⟩ 3
2
= U(0, 1, 3/2)22|0⟩ 3

2
, (C.232)

|2̂⟩ 3
2
= U(2, 0, 3/2)21|3⟩ 3

2
, (C.233)

|3̂⟩ 3
2
= U(0, 2, 3/2)12|2⟩ 3

2
, (C.234)

|4̂⟩ 3
2
= U(1, 1, 3/2)11|4⟩ 3

2
+ U(1, 1, 3/2)12|5⟩ 3

2
, (C.235)

|5̂⟩ 3
2
= U(1, 1, 3/2)21|4⟩ 3

2
+ U(1, 1, 3/2)22|5⟩ 3

2
, (C.236)

|6̂⟩ 3
2
= U(2, 1, 3/2)11|8⟩ 3

2
+ U(2, 1, 3/2)12|9⟩ 3

2
, (C.237)

|7̂⟩ 3
2
= U(2, 1, 3/2)21|8⟩ 3

2
+ U(2, 1, 3/2)22|9⟩ 3

2
, (C.238)

|8̂⟩ 3
2
= U(1, 2, 3/2)11|6⟩ 3

2
+ U(1, 2, 3/2)12|7⟩ 3

2
, (C.239)

|9̂⟩ 3
2
= U(1, 2, 3/2)21|6⟩ 3

2
+ U(1, 2, 3/2)22|7⟩ 3

2
, (C.240)

|1̂0⟩ 3
2
= U(2, 2, 3/2)11|10⟩ 3

2
+ U(2, 2, 3/2)12|11⟩ 3

2
, (C.241)

|1̂1⟩ 3
2
= U(2, 2, 3/2)21|10⟩ 3

2
+ U(2, 2, 3/2)22|11⟩ 3

2
, (C.242)

|0̂⟩ 5
2
= U(2, 0, 5/2)22|1⟩ 5

2
, (C.243)

|1̂⟩ 5
2
= U(0, 2, 5/2)22|0⟩ 5

2
, (C.244)

|2̂⟩ 5
2
= U(1, 1, 5/2)22|2⟩ 5

2
, (C.245)

|3̂⟩ 5
2
= U(2, 1, 5/2)11|5⟩ 5

2
+ U(2, 1, 5/2)12|6⟩ 5

2
, (C.246)

|4̂⟩ 5
2
= U(2, 1, 5/2)21|5⟩ 5

2
+ U(2, 1, 5/2)22|6⟩ 5

2
, (C.247)

|5̂⟩ 5
2
= U(1, 2, 5/2)11|3⟩ 5

2
+ U(1, 2, 5/2)12|4⟩ 5

2
, (C.248)

|6̂⟩ 5
2
= U(1, 2, 5/2)21|3⟩ 5

2
+ U(1, 2, 5/2)22|4⟩ 5

2
, (C.249)
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|7̂⟩ 5
2
= U(2, 2, 5/2)11|7⟩ 5

2
+ U(2, 2, 5/2)12|8⟩ 5

2
, (C.250)

|8̂⟩ 5
2
= U(2, 2, 5/2)21|7⟩ 5

2
+ U(2, 2, 5/2)22|8⟩ 5

2
, (C.251)

|0̂⟩ 7
2
= U(2, 1, 7/2)22|1⟩ 7

2
, (C.252)

|1̂⟩ 7
2
= U(1, 2, 7/2)22|0⟩ 7

2
, (C.253)

|2̂⟩ 7
2
= U(2, 2, 7/2)11|2⟩ 7

2
+ U(2, 2, 7/2)12|3⟩ 7

2
, (C.254)

|3̂⟩ 7
2
= U(2, 2, 7/2)21|2⟩ 7

2
+ U(2, 2, 7/2)22|3⟩ 7

2
, (C.255)

|0̂⟩ 9
2
= U(2, 2, 9/2)22|0⟩. (C.256)

Remark. Note that the number of the vector in the bases of the multiplicity

subspaces defined in the case of N = 3, 4 is less than the dimension of the

multiplicity subspaces given by

dimV [M ]
j =

M !(2j + 1)

(M/2− j)!(M/2 + 1 + j)!
. (C.257)

For example, dimV [9]
1
2

= 42, but we only defined nine vectors. This is because the

multiplicities of spin j1 and j2 in KR1 and KR1 do not appear in the calculation.

More precisely, in the calculation of η[N ], a maximally entangled vector in V [N ]
ji

⊗
V [N ]
ji

is associated to spin ji. But the vector rank of the vector is 1 and the vector

is invariant under the integration over the Haar measure. That is the reason

why the number of vector in the basis defined in this section is smaller than the

dimension of the multiplicity subspaces.
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