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Abstract

This dissertation is dedicated to the experimental studies on a transition to turbulence in
channel flow, a simple open shear flow between two parallel plates. In open shear flows
such as pipe flow and channel flow, laminar flow is known to become turbulent even though
the laminar flow is stable against infinitesimal disturbance. Near the onset of sustained
turbulence in these flows, the flow is in a state of spatiotemporal intermittency where
spatially localized turbulent structure can decay into laminar flow or contaminate adjacent
laminar flow to spread, and once the flow becomes completely laminar, it does not become
turbulent unless additional disturbance is exerted to the flow. This process is qualitatively
similar with the dynamics of the very simple stochastic model of the directed percolation
(DP), which is one of the simplest model exhibiting a phase transition to an absorbing state
(a state that systems can enter but cannot escape from). Indeed, it has long been conjectured
that transitions to turbulence via spatiotemporal intermittency share the same universal
features with DP (that is, the transitions fall into the DP universality class). A primary
purpose of this dissertation is to directly examine, in a case of channel flow, whether the
transition to turbulence falls into the DP universality class.

Keeping the primary purpose in mind, the former half of this thesis is devoted to clarify
a suitable methodology to experimentally measure the critical exponents characterizing an
absorbing phase transition. Given that the most earlier experimental works concerning
a possible relation to the DP universality class have relied on probability distribution of
lenghs/durations of intervals of local inactive state in steady state to estimate the correlation
length/time of the system, we first numerically study the interval distribution in the contact
process, one of the most well-known mathematical models in the DP universality class.
We demonstrate that the conventional method may yield substantially biased results if one
simply constructs a histogram from the data acquired within a short observation window to
estimate the distribution. This is one of the possible reasons why experimental realizations
of the DP universality class had been so rare despite the theoretical robustness of this class.
We also employ an estimator for the interval distribution which properly takes account of
censoring and sampling bias. As a result, we show that the interval distributions for various
values of the control parameter, when estimated and rescaled in the suitable way, collapse
onto a single curve.
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In the latter half, we present the results of the characterization of a transition to turbulence
in channel flow in terms of an absorbing phase transition. Since localized turbulent structures
are advected by a mean flow and eventually goes out from the observation area, we drive the
system at the boundary by a grid at the inlet. We first study how the critical phenomena of the
DP universality class is affected by the advection and the boundary condition. A new model
which whose advection strength can be arbitrarily controlled is introduced for this purpose.
We demonstrate, through a combination of numerical simulation on the model and scaling
argument, a correlation length and a correlation time can be respectively measured through
a characteristic decay time of a temporal interval distribution and a characteristic decay
length of an order parameter. Next we show the experimental results on the measurements
of the critical exponents in the transitional channel flow, where all the exponents are found
to be in a reasonable agreement with the spatially two-dimensional DP universality class.
Furthermore, it turns out the interval distributions for various Reynolds number can be
collapsed into a single universal curve if we rescale the data in a way required by the DP
universality class. These findings constitute experimental evidences suggesting that the
transition falls into the DP universality class.
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Chapter 1

General Introduction

1.1 General background

Ultimate goal of physics as a branch of basic science is “to find a unified set of laws govern-
ing matter, motion, and energy at small (microscopic) subatomic distances, at the human
(macroscopic) scale of everyday life, and out to the largest distances (e.g., those on the
extragalactic scale)” [100]. Progress of modern physics has been made by repeatedly ap-
plying a paradigm which consists of (a) properly specifying a subset of natural phenomena
to describe, (b) developing a theory which exploits an essense of the phenomena, and then
(c) testing the theory by experiments. Owing to the remarkable progress, nowadays we can
describe very wide variety of natural phenomena with modern physics in mind: At a micro-
scopic scale, we know that the fundamental forces of the universe and properties of known
elementary particles can be reasonably well described by the celebrated Standard Model
(although it still falls short with being so-called theory of everything). At a macroscopic
level, on the other hand, we are now able to directly observe black holes by making use of
the gravitational waves.

Nevertheless, there are considerable amount of open problems which await for theoretical
description. For example, studies on so-called complex systems (including biological ones)
has still been at an early stage. One of key difficulties in complex systems is that a set of
equations which is expected to describe such a system is typically non-linear (if known):
Due to the non-linearity, it is difficult in general to describe how the solution behaves like.

1.1.1 Universal laws in non-linear systems

Physicists had spent very hard time with non-linear systems. The only way to systematically
analyze highly non-linear systems had long been so-called perturbation theory: That is,
one starts from linear, solvable model and then expand the quantities of interest in terms
of formal power series. From the tedius (and sometimes inaccurate) calculation, it was

1



2 CHAPTER 1. GENERAL INTRODUCTION

not obvious at all whether universal description insensitive to details of the system can be
gained.

The situation drastically changed with seminal works by Wilson [101, 102] and subse-
quently by Feigenbaum [32]: Wilson applied the theory of renormalization group, which
was originally invented as a tool to get rid of unphysical divergences, into critical phenom-
ena, with self-similarity in his mind. Feigenbaum discovered that the universal constant,
nowadays known as Feigenbaum constant, emerges as a system experiences a chain of
period-doubling bifurcations to chaos. These works posed massive impact on the commu-
nity at that time, as James Gleick, a famous historian of science, put it [37]:

“It was a very happy and shocking discovery that there were structures in
non-linear systems that are always the same if you looked at them the right
way.”

Nowadays these are some of the indispensable tools to deal with non-linear systems.

1.1.2 Transition to turbulence as a testbed of concepts

Studies on motion of fluids, in particular the transitions from laminar flow to turbulent
flow has served as a great testbed for ideas in the study of non-linear systems, ever since
the pioneering work by Reynolds (Fig. 1.1) [80]: Concepts in theoretical physics have
consisderably helped understanding the transitions, and the complex motion of fluids has
provided an inspiration for new general concepts. Examples of the relations in early ages
include an enormous success in application of linear stability analysis to the flow between
two cylinders by G. I. Taylor [96], and the discovery of chaos by E. N. Lorenz [65].

When the aforementioned universality in period-doubling bifurcations has been pro-
posed, it took only 4 years to be experimentally tested in Rayleigh–Bénard convection
(confined flow heated from below): Albert Libchaber and his coworkers performed a set of
experiments on the convection in mercury and in liquid helium [63, 67], and they studied the
onsets of period-doubling in time evolution of the temperature. As a result, the ratio of the
Rayleigh number at the different onset is very close to the value predicted by Feigenbaum.
Thus the universal route to turbulence in confined flow was identified as a period-doubling
route to chaos.

Nearly at the same time, however, it has also been turned out that the situation is
substantially more complex in shear flows such as pipe flow and channel flow. In these
flows, transition to turbulence has been experimentally observed even though the laminar
flow is linearly stable at the Reynolds number under investigation (Tab. 1.1). It means that
the conventional scenario of transition to turbulence, which assumes linear instability of a
regular flow, no longer seems to be very relevant.
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Figure 1.1: Pioneering work by Reynolds on transition to turbulence in pipe flow [80]. The
picture is in a public domain.

Table 1.1: Critical Reynolds number for typical shear flow. Reg is the empirically known
threshold for the transition to turbulence, Rec is the critical Reynolds number in terms of
linear stability theory.

Reg Rec

Pipe flow 2,040 [3] ∞ [83]
Plane Couette flow ∼325 [12] ∞ [81]

Plane Poiseuille flow ≲1,000 [20] 5,772 [75]
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Important progress was made in the beginning of the 21st century, by focusing on
statistical properties of a localized turbulent structure in pipe flow. The localized turbulent
structure (Fig. 1.2a), often called a “puff” in earlier literatures, can either decay or split as it
propagates downstream. Although the puff itself had been recognized in as early as 1970s
[103], it was not until 2010 that experiments and direct numerical simulation (DNS) with
very long precise pipe and extensive accumulation of statistics enabled a group headed by
Björn Hof to reveal that the probability Pd, Ps for a puff to decay or split before time t obeys
exponential distribution (Fig. 1.2b and Fig. 1.2c, [3, 4]):

Pd(Re, t) = 1− exp

(
− t− t0
τd(Re)

)
, Ps(Re, t) = 1− exp

(
− t− t0
τs(Re)

)
. (1.1)

The typical lifetime τd, τs was found to coincide at the Reynolds number of 2,040 (Fig. 1.2d,
[3]) , which is very close to the critical Reynolds number suggested in the 19th century.
From their finding, one can gain an important insight into transition to sustained turbulence
in pipe: Competition between a puff decaying and a puff splitting is relevant for describing
the transition.

Meanwhile, the discovery by Avila et al. posed a difficult puzzle: The fact that spatial
proliferation plays a relevant role means that one has to explicitly take spatial degree of
freedom into account in order to properly describe the transition. In other words, one has
to tackle a problem of transitions to spatiotemporal chaos. Is it, then, possible to consider a
universal scenario on the transition?

1.1.3 Possible relation to absorbing phase transitions

A possible clue in quest of universal scenario of the transition to turbulence in open shear
flow is an analogy to a simple stochastic process called the contact process [42]. In the
contact process, each site can take either active or inactive state, and active site can deactivate
or spread the activity to its neighbor. Then depending on the rate of spreading, activity may
eventually die out or survive forever. In fact, theoretical studies and numerical simulation
show that this model exhibits critical phenomena which are characterized by universal
critical exponents. As it was the case with the Ising model, the set of universal critical
exponents enables one to define a universality class, and the contact process is known to fall
into the directed percolation (DP) universality class. The key feature of the DP universality
class is that it has transition into an absorbing state, a state which systems can enter but
cannot escape from. Recalling that a laminar flow is linearly stable and hence it has a good
analogy to an absorbing state, one may naturally expect that the transition fall into the DP
universality class, as conjectured by Yves Pomeau in 1986 [79].

It must be emphasized, however, that it is not obvious at all whether the transition indeed
belongs to the DP universality class. First, the Navier–Stokes equation which governs the
motion of fluids is a complex non-linear partial differential equation and hence it is totally
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Figure 1.2: Turbulent puffs in pipe flow and their lifetime. a: Turbulent puff visualized
in direct numerical simulation at Re = 2300. Figure is adopted from Ref. [3]. b: The
probability that a puff does not decay up to time t. Figure is adopted from Ref. [4]. c:
The probability that a puff remains “in equilibrium”. Figure is adopted from Ref. [3]. d:
Lifetime of a puff with respect to Reynolds number. Figure is adopted from Ref. [3].
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different from a simple stochastic model. Then it is possible that the dynamics which is not
taken account of by the simple stochastic model affects the critical phenomena, although
the DP universality class is believed to be extremely robust. Moreover, earlier experimental
studies suggest that the DP universality class may be rather fragile in reality despite its
robustness in theory: Many experimental works reported significant deviation from the DP
universality class. Given this, one cannot tell a priori whether the transitions to turbulence in
open shear flows indeed belong to the DP universality class, just because the phenomenology
is similar with the contact process.

1.2 Objectives of this thesis

In the author’s opinion, clarifying whether the transition possesses universal features is
important for two reasons. If the transition is found to possess universal features, it implies
that one can reasonably expect that one can describe the transition in terms of the universal
scenario which does not depend on details of the system such as geometry of the flow.
Conversely, if the universal scenario is ruled out by experimental results, it means that one
has to rely on a system-specific approach to understand the transition. Hence examining
the universal scenario provides us a significant clue on how one should understand the
transition. Another reason for the significance of the examination of the universal scenario
is that it gives a deeper insight into a question of how far one can expect the notion of
universality in absorbing phase transitions to be relevant for describing natural phenomena.
In other words, the examination poses an implication on whether the notion of universality
is applicable for a wide variety of physical systems we observe in reality or it is just an
oversimplified picture so that it is applicable only when some special conditions are met.
Thus, the author believes that examining the universal scenario constitutes a significant
step toward complete understanding of complex phenomena out of equilibrium, including
transitions to turbulence.

That having said, one has to face with several difficulties when addressing the above
issue. First, it has not been clear how one can put the concepts of critical phenomena
in absorbing phase transitions into experimental test. Although the critical exponents
are natural characterizers of the transition, one has to consider carefully about how one
measures them correctly; as will be demonstrated in Chapter 3 of this thesis, one may
obtain significantly biased results if one measures the exponents in a naïve way1. Second,
one has to perform experiments or direct numerical simulation using very large system in
order to make the system close to “thermodynamic limit.” This requirement makes the
direct measurements of the critical exponents costly. Presumably, these difficulties has been

1Note that, paraphrazing James Gleick (see Section 1.1.1), one cannot catch the sign of universality in
non-linear systems unless one looks at them the right way.
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keeping the universal scenario of transitions to turbulence from being directly examined for
over 30 years.

In this thesis, we overcome the aforementioned difficulties and directly examine the
universal scenario of transitions to turbulence by performing a series of experiments in
a very large channel flow. In the former half of this thesis, we propose the method to
experimentally measure the critical exponents. We point out that the conventional method
does not properly take account of the fact that one is observing the system under a finite
observation window in both space and time, and hence it is likely to produce biased results.
We successfully avoid the bias by employing a technique of statistical analysis, which was
originally proposed in a context of medical follow-ups. In the latter half, we present the
results of the experimental characterization of the transition to turbulence in channel flow.
We measured four critical exponents (three of which is independent from each other) and
examined one universal scaling relation developed in the former half of this thesis, all in
agreement in the spatially two-dimensional DP universality class. The experimental results
presented in this thesis suggest that the transition to turbulence in channel flow indeed falls
into the DP universality class.

1.3 Organization of this thesis

The rest of this thesis is organized as follows: In Chapter 2, universal features of the absorbing
phase transitions are discussed. Particular emphasis is placed on similarity and difference in
continuous phase transition at equilibrium, robustness of the universality class in absorbing
phase transition, and experimental realizations. In Chapter 3, we discuss how the universal
features of absorbing phase transitions can be probed numerically and experimentally. After
seeing the substantial difference in these two, validity of the experimental method is validated
numerically. In Chapter 4, we discuss how the critical phenomena of absorbing phase
transitions can be affected by a combination of fixed boundary conditions and advection. In
Chapter 5, we present our experimental results on a huge channel flow. We conclude the
thesis with brief remark on future perspectives in Chapter 6.





Chapter 2

Universality of Absorbing Phase
Transitions

Related publication by the author: None.

Primary purpose of this chapter is to provide readers prior knowledge about absorbing phase
transitions necessary for reading the rest of this thesis. Since there are already thousands
of publications related to this subject, exhaustive review on them is far beyond the scope of
this thesis: See e.g. Refs. [44, 45] for more detailed overview.

2.1 Basic features of absorbing phase transitions

Theory of absorbing phase transitions mainly concerns transitions to an absorbing state,
which systems can enter, but cannot escape from. Absorbing phase transitions are genuinely
non-equilibrium in a sense that they do not obey the detailed balance condition

pσabs→σP∞(σabs) ̸= pσ→σabsP∞(σ), (2.1)

and therefore they cannot be associated with equilibrium models (here, σ, σabs, pσ→σ′

and P∞(σ) denote configuration, absorbing state, transition rate from the configuration σ
to the configuration σ′ and probability to find the configuration σ at the stationary state,
respectively). Because of the non-equilibrium character of the transition, similarity and
difference from phase transitions at equilibrium is of central interest in statistical mechanics.

Besides the conceptual interest, absorbing phase transitions are believed to be ubiquitous
in Nature. Let us consider a wildfire for example: In a wildfire, some trees are on fire while
others are not (left hand side of Fig. 2.1a), and fire may go out or spread to trees nearby.
However, once fire becomes extinct (right hand side of Fig. 2.1a), a wildfire rarely ignites
spontaneously, hence the forest in absence of fire naturally corresponds to an absorbing
phase. One can find similar correspondence in various contexts such as synchronization
of locally coupled oscillators [1, 6], spatiotemporal intermittency (spatial coexistence of

9



10 CHAPTER 2. UNIVERSALITY OF ABSORBING PHASE TRANSITIONS

Figure 2.1: An example of absorbing phase transitions in Nature and mathematical models.
a: Once fire becomes extinct (right hand side), a wildfire rarely ignites spontaneously, hence
the forest in absence of fire naturally corresponds to an absorbing phase. Both pictures are
in a public domain. b: Absorbing phase transition in a mathematical model (directed
percolation).

local turbulent state and laminar one) [79] and even spreading of epidemics [42], and once
formulated in mathematical models, the models also exhibit absorbing phase transitions
(Fig. 2.1b). Thus, it is natural to believe that studying absorbing phase transition may
provide useful insight into a wide subset of natural phenomena.

Vast theoretical and numerical efforts have revealed that absorbing phase transitions
share many features in common with phase transitions in equilibrium. Considerable amount
of models have been found to exhibit continuous transition to an absorbing state. Moreover,
it also turns out that physical quantities such as order parameter and correlation length
exhibit power-law behavior in a vicinity of the critical point. This is quite analogous to what
one finds in the celebrated Ising model, where magnetization M and correlation length ξ
exhibit a power-law behavior and its exponent is universal in a sense that it depends only on
fundamental properties of a system such as number of dimensions and symmetry:

M ∼ (Tc − T )β, ξ ∼ |Tc − T |−ν . (2.2)

As expected from the analogy, the exponents characterizing continuous transitions to ab-
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Figure 2.2: Physical meaning of a correlation length ξ⊥ and a correlation time ξ||. The
figure is adopted from Ref. [45].

sorbing state turn out to be universal. This universality enables one to classify enormous
number of systems exhibiting absorbing phase transitions into a rather small number of
universality classes [74].

Nevertheless, absorbing phase transitions are indeed crucially different from equilibrium
ones in some respects. The crucial differences stem from the fact that time is involved as
an independent degree of freedom. First, stationary state of models with absorbing phase
transitions are naturally characterized by two different scales, namely a correlation length
ξ⊥ and a correlation time ξ||. Roughly speaking, the correlation length and the correlation
time respectively represent typical lateral size and lifetime of a cluster originating from an
initially isolated activity averaged over many independent realizations in a subcritical phase
(where the system eventually falls into an absorbing state) whereas they represent typical
size and duration of an inactive cluster in supercritical phase (Fig. 2.2). These lengthscales
diverge close to criticality as

ξ⊥ ∼ |p− pc|−ν⊥ ; ξ|| ∼ |p− pc|−ν|| (2.3)

and the associated critical exponent ν⊥ and ν|| are different in general (where p represents a
control parameter of the system and pc represents the critical point). Somewhat less obvious
is that there are two essentially different ways to define an “order parameter” so that it
takes non-zero value in an “active” phase and vanishes in an absorbing phase: On one hand,
density of active sites at stationary state ρ∞ corresponds to the probability that a site belongs
to an infinite cluster which was generated in the past at t = −∞ from a fully active state.
On the other hand, one can also consider the probability Psurv,∞ that an isolated active site
given at t = 0 will extend to t = +∞. In other words, ρ∞ probes the past whereas Psurv,∞

probes the future. Hence they behave differently unless the dynamic rules are symmetric
under time reversal, and they are expected to exhibit a power-law scaling

ρ∞ ∼ (p− pc)
β, Psurv,∞ ∼ (p− pc)

β′
, (2.4)
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with generally different exponents β and β′. Thus stationary state of models with absorbing
phase transitions are characterized by four independent critical exponents (β, β′, ν⊥, ν||)

without any further restrictions, in remarkable contrast with equilibrium phase transitions.
Regarding the difference of phase transitions out of equilibrium from those in equilib-

rium, it is interesting to note that absorbing phase transitions also share similar characteristics
with first-order phase transitions in equilibrium. One prominent example is possible pres-
ence of hysteresis. To see this, let us consider gradually changing the control parameter
from below the critical point to above. Ideally, the system never escapes from an absorbing
state and hence the density of active sites remains to be zero during the whole procedure. In
practice, however, small but non-vanishing disturbance which is experimentally inevitable
may cause “spontaneous” nucleation of activity. Once the activity is nucleated above the
critical point, it is likely to spread quickly over the entire system, eventually yielding the
stationary value of the order parameter1. In other words, an absorbing state is metastable
above the critical point, and hence absorbing phase transitions are rather similar to first-
order phase transitions in equilibrium than second-order ones in that respect. Meanwhile,
the order parameter decreases continuously to zero as the control parameter is changed
from above the critical point to below (assuming (2.4) holds) and therefore absorbing phase
transitions can be continuous. The argument given here may be interpreted as a warning
not to give a statement about the order of a phase transition out of equilibrium based only
on qualitative observation of it.

2.2 Theoretical treatment of absorbing phase transitions

2.2.1 Phenomenological scaling theory

One of the most remarkable results of the theory of equilibrium critical phenomena is that,
once we have all the independent critical exponents within the universality class, then the
critical behavior of the other physical quantities can be described in terms of those exponents
through suitable scaling relations. For example, the critical behavior of the specific heat C
and susceptibility χ above the critical temperature

C ∼ (T − Tc)
−α, χ ∼ (T − Tc)

−γ (2.5)

can be described in terms of the critical exponentsβ, δ associated with the critical phenomena
of magnetization

M ∼ (Tc − T )β (T ≤ Tc), M ∼ |H|1/δ (T = Tc) (2.6)

1Indeed, a model exhibiting a continuous absorbing phase transition exhibits hysteresis when a small
probability h that an inactive site turns active is assigned to the model [93].
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(whereH denotes the strength of external magnetic field) by the following scaling relations:

α + 2β + γ = 2, γ = β(δ − 1). (2.7)

Given this, it is tempting to consider how one can find similar scaling relations in critical
phenomena of absorbing phase transitions. As we will see in the following, the phenomeno-
logical scaling theory provides us a general framework to accomplish this task.

The phenomenological scaling theory is based on an assumption that critical phenomena
can be characterized in terms of only two diverging lengthscales, namely a correlation length
ξ⊥ and a correlation time ξ||. As a starting point, we assume that multiplicative change of
the deviation ε from the critical point

ε 7→ Λε (2.8)

rescales the order parameter and the correlation lengths by

ρ 7→ Λβρ; Psurv 7→ Λβ
′
Psurv; ξ⊥ 7→ Λ−ν⊥ξ⊥; ξ|| 7→ Λ−ν||ξ||, (2.9)

where ρ and Psurv respectively denote the density of active sites and survival probability
of an active cluster generated from an isolated active site. The following, for instance,
immediately follows from the assumption:

ρ(Λ−ν||t,Λ−ν⊥r; Λε) = Λβρ(t, r; ε). (2.10)

Since choice of the factor Λ is arbitrary, one can choose Λ so that one of the arguments
becomes constant. For example, if we substitute Λ = t1/ν|| into (2.10), we find

ρ(t, r, ε) = t−β/ν||f(r/t1/z, εt1/ν||) where z := ν||/ν⊥. (2.11)

Likewise, we assume that all other physical quantities have to be rescaled by a power
law with a suitable exponent. Key ingredient of the theory, then, is to determine the
suitable exponent from phenomenological considerations. To see this, let us consider
scaling properties of the two-point correlation function:

G(∆t, r, τ) := ⟨ρ(r1, t1)ρ(r2, t2)⟩, (2.12)

where ∆t = t2 − t1, r = |r2 − r1| and ⟨· · ·⟩ denotes the ensemble average. Although
the correlation function ⟨ρ(r1, t1)ρ(r2, t2)⟩ depends on five parameters (r1, r2, t1, t2, τ )
in general, translational invariance in space and time allows one to represent it in only
three parameters. In the phenomenological scaling theory, the following scaling form for
G(∆t, r, ε) is assumed:

G(∆t, r, ε) = Λ−κG(Λ−ν||∆t,Λ−ν⊥r,Λε). (2.13)
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Substituting Λ = ε−1 into (2.13), one finds

G(∆t, r, ε) = εκG(t/ε−ν|| , r/ε−ν⊥ , 1). (2.14)

Considering the active steady state and taking a limit of long distance r → ∞, then the
two points can be regarded as independent so that limr→∞G(∆t, r, ε) = ρ2 ∼ ε2β . Hence
consistency with (2.14) requires

κ = 2β. (2.15)

We employ the phenomenological scaling theory whenever necessary in what follows.

2.2.2 Field-theoretical methods

Field-theoretical renormalization group theory has been one of the most powerful analytical
tool to study critical phenomena. As we will argue below, this is also the case for study of
absorbing phase transitions. Although the field-theoretical approach does not give accurate
predictions on critical exponents (and hence it is rather of limited interest from a quantitative
viewpoint), it offers a deep insight into the origin of universality and justification of scaling
relations [44].

A standard starting point for the field-theoretical methods is the effective Langevin
equation describing time evolution of the order parameter ρ(x, t). The effective Langevin
equation for a system with an absorbing phase transition typically consists of a deterministic
part and a stochastic multiplicative noise term ζ(x, t). Multiplicativity of the noise term
ensures the presence of an absorbing state: Amplitude of the noise is zero if the system is
in an absorbing state. For a given Langevin equation, one may first perform a dimensional
analysis to clarify relevance of the noise. A key requirement in the dimensional analysis is
that the system is invariant under the following dilation at the critical point:

x 7→ Λx; t 7→ Λzt; ρ 7→ Λ−ψρ; where z = ν||/ν⊥, ψ = β/ν⊥. (2.16)

Also the noise should be rescaled by a suitable exponent χ so that the noise is scale invariant.

ζ 7→ Λχζ. (2.17)

Provided that z, β and χ are obtained, one can track how the coefficient of each term in the
effective Langevin equation changes under the dilation in order to determine whether the
noise term is relevant for the critical phenomena. Typically, there is a certain upper critical
dimension dc such that the noise is irrelevant if the spatial dimension d is larger than dc
(d > dc) and relevant if d < dc.

If the spatial dimension d of a system is below the upper critical dimension dc, mean-
field theory no longer provides quantitatively accurate predictions, and the critical exponents
generally depend on d. In that case, perturbative expansion is usually performed to obtain
the critical exponents in powers of ϵ(:= dc − d) [50].
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2.3 Directed percolation universality class

2.3.1 Basic features of directed percolation

Among the universality classes of absorbing phase transitions, the most fundamental one
is that of directed percolation. Directed percolation (DP) was originally proposed by
Broadbent and Hammersley in 1957 to study how the random properties of a porous medium
influence the percolation of a fluid through it [14]. In this model, the medium is modelled
by a regular lattice of interconnecting paths, each of which is independently assigned a
probability p to be open (that is, to be wide enough for the fluid to pass through). Given the
porous medium and a source, the fluid percolates through the media in a permitted direction.
Interpretation of the direction is arbitrary: While this is naturally understood as the direction
of gravity when considering the porous medium, it is often useful to regard the direction
as that of time if one is interested in applying this framework to describe spatiotemporal
dynamics (as we will see in Section 2.3.3, DP can also be interpreted as reaction-diffusion
process). Each site is said to be wet if it is connected with source by open paths, and to be
dry otherwise. Schematic representation of DP for square lattice is shown in Fig. 2.3.

Natural question is when and how the medium becomes permeable as p is gradually
increased, although the medium is obviously impermeable when p = 0 and permeable
when p = 1. Extensive numerical simulation suggested that the DP exhibits continuous
phase transition at a highly non-trivial critical point (pc = 0.644700185(5) for a square
lattice [55], for example): All the active clusters are finite below the critical point whereas
there is non-vanishing probability Psurv,∞ that wet sites constitute an infinite cluster, and
the probability grows continuously from zero. Later, the continuity of the transition was
rigorously established in 2002 [40].

While DP is quite similar with its “isotropic” counterpart in construction (only one
difference being presence of a permitted direction), resulting cluster of wet sites is totally
different. As expected from the construction, the cluster is characterized by two different
lengthscales, one in a direction parallel with the permitted one, and the other in the perpen-
dicular direction. Another important difference is whether it is related to phase transition
in equilibrium: Isotropic percolation can be exactly mapped to the equilibrium q-state Potts
model (generalization of the Ising model with q different values of the lattice variables) in a
limit of q → 1 [33, 34], but a layer with no wet site in DP corresponds to an absorbing phase
and therefore DP cannot be mapped to any equilibrium models. As a natural consequence,
the critical behavior of DP is characterized by different critical exponents from isotropic
one. In particular, precise numerical estimations [54, 98] summarized in Tab. 2.1 suggest
that the critical exponents of DP may be irrational, and hence that DP might be exactly
unsolvable.

Nevertheless, one could extract some important properties in a rigorous way with a help
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Figure 2.3: Schematic representation of DP in a square lattice. Open path is represented by
a solid arrow whereas closed path is represented by a dashed line. Source is given at the top
of the figure, and wet sites are colored in blue.

Table 2.1: Critical exponents of the DP universality class. Number in parentheses indicate
uncertainty in the last digit claimed by the authors of each work. The column entitled “MF”
shows respective critical exponent obtained via mean-field theory (See Section 2.3.3).

Spatial dimension d d = 1 [54] d = 2 [98] d = 3 [98] MF
β 0.276486(8) 0.580(4) 0.818(4) 1
ν⊥ 1.096854(4) 0.729(1) 0.582(2) 1/2
ν|| 1.733847(6) 1.287(2) 1.106(3) 1
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of a concept of duality [64], even if the system might be exactly unsolvable. In DP, the
duality can be easily understood by simple geometrical argument. Important observation
from Fig. 2.3 is that if a site A is connected with another site B through the directed paths,
then they are still connected even when the direction of all the paths is reversed (physically
this corresponds to time-reversed realization), and vice versa. Hence, if the time-reversed
realization is started from fully wet initial condition, the resulting wet site at the bottom
layer corresponds to the site which generate a cluster which percolates through the medium
at the original realization, leading to the identity

ρ(t) = Psurv(t), (2.18)

meaning that
β = β′. (2.19)

It has to be noted, however, that the identity (2.18) is one of special properties of DP and
hence does not necessarily hold for other models in the DP universality class. Nevertheless,
concept of duality is still valid and the following asymptotic relation generically holds:

Psurv(t) ≃ µ2ρ(t), (2.20)

where µ2 is a suitable (non-universal) proportionality factor between Psurv(t) and ρ(t).
Thus the DP universality class is characterized by only three independent critical exponents
instead of four as in absorbing phase transitions in general.

2.3.2 Other lattice models in the DP universality class

Recalling the notion of universality we have argued in Section 2.1, it is natural to expect that
the same critical exponents can be found in different models as long as they are reasonably
similar to DP. As we shall see below, more general models and some models proposed in a
different context also fall into the DP universality class.

One of the most important generalization of DP was proposed by Domany and Kinzel
[29]. Their automaton (“the DK automaton” hereafter) is of course similar to the original
DP, but this time each site refers to the nearest neighbor in the above layer and the probability
for the site to be wet depends on the number of wet sites (Fig. 2.4a):

P (1|0, 0) = 0, P (1|0, 1) = P (1|1, 0) = p1, P (1|1, 1) = p2 (2.21)

with P (0|i, j) = 1 − P (1|i, j) for i, j ∈ {0, 1}. Note that the DK automaton includes the
original DP as a special case of (p1, p2) = (p, 2p − p2). Since one has two independent
control parameters (namely p1 and p2) in this automaton, one can draw a phase diagram for
the automaton, as shown in Fig. 2.4b. Remarkably, strong numerical evidences suggest that
the critical behavior on this transition curve (except the upper terminal, where the model has
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two symmetric absorbing states) fall into the DP universality class. This is in a high contrast
with a typical phase diagram in equilibrium phase transitions, where a critical “point” often
appears in a phase diagram.

Another example of lattice models in the DP universality class indicates that a model does
not need to be discretized in time to fall into DP. The most famous continuous-time Markov
process in the DP universality class is the contact process [42] which was originally proposed
as a model for epidemic spreading. In the contact process, each site si (i = 1, 2, · · · , N ) is
assigned either of the two states, namely active state (si = 1) and inactive state (si = 0).
Active sites deactivate at a rate of unity while contaminates an activity to adjacent sites at
a rate of λ. The contact process experiences a DP-class phase transition at a certain control
parameter λc. Advantages of the contact process is that one can easily write down master
equation associated with the contact process:

∂P

∂t
=

∑
s′

ws′→sPt(s
′)−

∑
s′

ws→s′Pt(s) (2.22)

with
w0→1,n = nλ/2d, w1→0,n = 1, (2.23)

where n and d respectively denote the number of active neighbors and the spatial dimension
of the model. This helps mathematicians to prove various results rigorously [13, 31].

Numerical evidences and theoretical considerations provide strong footings of robustness
of the DP universality class; we will come back to this point in Section 2.3.4.

2.3.3 Mean-field theory of the DP universality class

Up to here we refrained from quantitative arguments, besides listing precise estimates of
the critical exponents. In order to interpret the critical exponents from theoretical point of
view, however, it is desirable to consider a theory which is analytically tractable. Mean-
field theory we exploit in this Subsection provides us a simple framework to deal with this
problem.

In order to consider the fraction of wet sites in a given layer ρ(t), it is helpful to regard
DP as reaction-diffusion system and the number of layer t as time. Associating wet sites with
particles A and dry sites with vacancy é, one can see that DP consists of four elementary
processes, as illustrated in Fig. 2.5:

self − destruction : A→ é

diffusion : é + A→ A+ é

offspring production : A→ 2A

coagulation : 2A→ A

 (2.24)
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Figure 2.4: Domany–Kinzel automaton as a generalization of DP. a: Transition rule of the
DK automaton. b: Phase diagram of the DK automaton. The figure is reproduced from
Ref. [45].

Self-
destruction Diffusion Offspring Coalescence

Figure 2.5: Interpretation of DP as a reaction-diffusion process.
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The simplest mean-field theory consists of averaging the density of active sites over
entire system. In this case, we may neglect a process which does not change the total
number of active sites (that is, diffusion). Then, self-destruction and offspring production
correspond to the linear term while coagulation gives rise to the quadratic term. Hence the
generic mean-field theory for DP is represented by the following:

dρMF(t)

dt
= ερMF(t)− λρ2MF(t), (2.25)

where ε and λ are phenomenological parameters. This ordinary differential equation for
given initial condition ρ(t = 0) = ρ0 can be exactly solved to yield

ρMF(t) =


ρ0εe

εt

ρ0λeεt + (ε− ρ0λ)
ε ̸= 0,

(λt+ ρ−1
0 )−1 ε = 0

(2.26)

By taking the long-time limit of the solution (2.26), one finds

lim
t→∞

ρMF(t) =

{
ε/λ ε > 0,

0 otherwise.
(2.27)

From this, one can see that the theory exhibits continuous transition at the critical point εc =
0 and that the critical exponent βMF associated with the order parameter is unity. Qualitative
behavior of the time evolution also changes around the critical point, as demonstrated in
Fig. 2.6: ρMF(t) decays exponentially below the critical point whereas it approaches a
steady-state with non-zero stationary value of ρMF. Asymptotic behavior of the solution as
t→ ∞ can be studied to explicitly see that

ρMF(t) ≃


−ε

(
λ− ε

ρ0

)−1

e−|ε|t ε < 0,

(ρ−1
0 + λt)−1 ε = 0,

ε
λ
+ ε

λ2

(
λ− ε

ρ0

)
e−εt ε > 0.

(2.28)

In both ε < 0 and ε > 0, the solution approaches to its stationary value in an exponential
manner with characteristic time of |ε|−1, meaning that the critical exponent νMF

|| associated
with the divergence of correlation time is unity.

In order to study divergence of the correlation length in mean-field theory, one has to
take diffusion into account. This can be done by adding a diffusion term to the original
mean-field theory:

∂ρ

∂t
= ερ− λρ2 +D∇2ρ, (2.29)

where D is a diffusion constant. Unfortunately, this nonlinear partial differential equation
is hard to solve analytically. Nevertheless, one can determine the remaining exponent νMF

⊥

by considering the requirement that (2.29) is invariant under the rescaling

r → Λr, t→ Λν
MF
|| /νMF

⊥ t, ρ(r, t) → Λ−βMF/νMF
⊥ ρ(Λr,Λz

MF

t). (2.30)



2.3. DIRECTED PERCOLATION UNIVERSALITY CLASS 21

κ/λ

ρ0

lo
g

 ρ

log t
Figure 2.6: Solution of mean-field theory of DP (the Eq. (2.25) in the main text). The
solution (2.26) is plotted for ε = 0.3 (magenta), ε = 0 (green) and ε = −0.3 (blue) in a
logarithmic scale. Initial condition ρ0 and a phenomenological parameter λ is respectively
fixed to ρ0 = 1 and λ = 2 for all the three cases. Black solid line is a guide-to-eye for t−1.
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at the critical point. Applying the scale transformation yields

Λ−(βMF+νMF
|| )/νMF

⊥
∂ρ

∂t
= Λ−βMF/νMF

⊥ ερ− Λ−2βMF/νMF
⊥ λρ2 + Λ−(βMF/νMF

⊥ +2)D∇2ρ (2.31)

One can see that the requirement is fulfilled if ε = 0 (this is the critical point) and βMF +

νMF
|| = 2βMF = βMF + 2νMF

⊥ , meaning that νMF
⊥ = 1/2. To summarize, one can find a set

of static critical exponents (βMF, νMF
⊥ , νMF

|| ) in a framework of mean-field theory:

βMF = 1, νMF
⊥ = 1/2, νMF

|| = 1. (2.32)

Recalling theory of critical phenomena in equilibrium phase transitions [73], one may
naturally be interested in number of upper critical dimension dc above which the mean-field
theory provides quantitatively correct predictions. To address this problem, one needs to start
from master equation to derive phenomenological Langevin equation. This procedure can be
performed in a case of the contact process [50], and the resulting Langevin equation highly
resembles the mean-field theory with spatial degree of freedom (2.29) but is accompanied
by multiplicative noise, reflecting the fact that fully inactive state (ρ(x, t) = 0) is absorbing:

∂ρ

∂t
= ερ− λρ2 +D∇2ρ+ ζ (2.33)

where
⟨ζ(x, t)⟩ = 0, ⟨ζ(x, t)ζ(x′, t′)⟩ = Γρ(r, t)δ(x− x′)δ(t− t′). (2.34)

Here δ is a standard Dirac’s delta function. Applying the same scale transformation as what
we have done to obtain (2.31), it turns out that the noise term scales as Λ−(β+dν⊥+ν||)/2ν⊥ζ ,
where d denotes the spatial dimension. Recalling that Λ > 1 implies the system approaches
to the critical point (which can be seen from the rescaling of ρ(r, t)), the noise term is
relevant if the scaling exponent of it is larger than that of other terms, that is,

−
βMF + dνMF

⊥ + νMF
||

2νMF
⊥

> −
βMF + νMF

||

νMF
⊥

= −4. (2.35)

This inequality can be readily solved to yield d < 4, meaning that the noise term is relevant
in d < 4. Conversely, the noise is irrelevant in d > 4, and marginal in d = 4. It means that
the upper critical dimension dc of DP is 4.

The critical exponents below the upper critical dimension can be evaluated by means
of field-theoretical renormalization group theory. Since we do not perform renormalization
group analysis in the forthcoming Chapters, we do not exploit the procedure in detail, but
we show some known results of the ϵ-expansion up to ϵ2 (where ϵ = dc − d) [15, 16, 50]:

β = 1− ϵ

6

[
1−

(
11

288
− 53

144
log

4

3

)
ϵ+O(ϵ2)

]
, (2.36)

ν⊥ =
1

2
+

ϵ

16

[
1 +

(
107

288
− 17

144
log

4

3

)
ϵ+O(ϵ2)

]
, (2.37)
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ν|| = 1 +
ϵ

12

[
1 +

(
109

288
− 55

144
log

4

3

)
+O(ϵ2)

]
. (2.38)

Although these results are not very close to the numerical ones (shown in Tab. 2.1), they
successfully capture qualitative trends of the exponents with respect to ϵ (as ϵ increases, β
decreases while ν⊥ and ν|| increase).

2.3.4 Robustness of the DP universality class

What makes the DP universality class the most fundamental one in absorbing phase transi-
tions is its robustness. As exemplified in Section 2.3.2, critical exponents of an absorbing
phase transition in various models were found to be identical with the those of DP (within
numerical accuracy, of course). Moreover, Cardy and Sugar pointed out [18] that the effec-
tive action of DP (which can be derived from the effective Langevin equation (2.33), (2.34))
coincides with that of the Reggeon field theory [70], which was originally proposed to
describe interactions of hadrons at ultra-relativistic energies. This vast variety of examples
is the source of the common belief that the DP universality class is very robust in theory.

The robustness of the DP universality class is informally expressed in a conjecture by
Janssen and Grassberger: They conjectured that the model should generically fall into the
DP universality class if it satisfies the following conditions [39, 50]:

1. The model displays a continuous phase transition from a fluctuating active phase into
a unique absorbing state.

2. The transition is characterized by a positive one-component order parameter.

3. The dynamic rules involve only short-range processes.

4. The system has no unconventional attributes such as additional symmetries or quenched
randomness.

Although this conjecture is yet to be established with rigorous footing, no counterexample
has been proposed as of this writing. On the contrary, numerical evidences suggest that a
model does not necessarily have to fulfill the above conditions to fall into the DP universality
class. For example, a model with several absorbing states [71, 72] or with multicomponent
order parameter [2, 41, 48, 57, 68, 76, 106] can also fall into the DP universality class in
some cases. Thus it is empirically known that the DP universality class is extremely robust.

Field-theoretical methods provides further substantiation to the robustness of the DP
universality class. To see this, one may consider adding higher-order terms (such as
∇4ϕ, ϕ3) to the effective Langevin equation (2.33). By performing the dimensional analysis
we have outlined in Section 2.3.3, one can show that such perturbations are irrelevant in a
sense of renormalization group. In other words, even though higher-order corrections may
be present in complex systems of physical interest, such corrections do not affect the critical
phenomena of the system. This is the origin of the universality.
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Table 2.2: Critical exponents measured in earlier experimental works, listed in chronological
order. The row entitled “Theory” shows the theoretical value of the DP universality class up
to the digit where comparison with experimental results is meaningful (see Tab. 2.1 for more
precise value) and cells colored in gray indicate significant deviations from the theoretical
value.

d = 1 β ν⊥ ν||

Annular Rayleigh–Bénard [23, 25] (≲0.15) 0.5 0.5
Linear Rayleigh–Bénard [25] 0.30(5) 0.50(5) 0.50(5)
Taylor–Dean [26] 1.30(26) ∼0.64 ∼0.73
Ferrofluidic spikes [82] 0.30(5) 1.2(1) 0.70(5)
Lateral heat convection in annulus [62] 0.27(3) 0.30(4) 0.75(3)
Theory ∼0.28 ∼1.10 ∼1.73

d = 2 β ν⊥ ν||

Turbulent liquid crystal [92, 95] 0.59(4) 0.75(6) 1.29(11)
Theory ∼0.58 ∼0.73 ∼1.30

Partial measurements Results
Interface roughening (d = 1) [17] ν⊥/ν|| = 0.63(4) (cf. ν1DDP

⊥ /ν1DDP
|| ∼ 0.63)

Rayleigh–Taylor (d = 2) [78] β = 0.56(5) (cf. β2DDP ∼ 0.58)

2.3.5 Experimental realization of DP universality class

One of the most surprising facts about the DP universality class is that it has been hard
to observe experimentally in spite of its robustness we outlined previously: Although
researchers have performed many experiments on a system where one would naïvely expect
DP-class transition, some earlier works [17, 78] did not manage to measure all the three
independent static critical exponents, and more importantly, many other works [23, 25, 26,
62, 82] reported considerably large deviation from DP in at least one exponent (results
in earlier literatures are summarized in Tab. 2.2). This apparent contradiction was very
surprising, as noted by Grassberger:

“... there is still no experiment where the critical behavior of DP was seen.
This is a very strange situation in view of the vast and successive theoretical
efforts made to understand it. Designing and performing such an experiment
has thus top priority in my list of open problems.”

Some theoretical studies were performed to identify the likely cause of the difficulty in
experimental realizations. One of the most fruitful directions for this purpose was to study
the influence of the inhomogenity of the control parameter, which was likely to be present
in experiments. Technically, taking inhomogenity into account corresponds to adding an



2.3. DIRECTED PERCOLATION UNIVERSALITY CLASS 25

additional noise term χ(t, r) to the control parameter

ε→ ε+ χ(t, r) (2.39)

so that the minimal effective Langevin equation for DP is modified to

∂ρ

∂t
= ερ− λρ2 +D∇2ρ+ ρχ+ ζ (2.40)

In this formulation, χ is quenched in a sense that physical quantities of interest (such as the
density of the active sites) are averaged over independent realizations of the intrinsic noise
ζ while the disorder field χ is kept fixed. For instance, the disorder field χ(r) for spatially
quenched disorder is defined by the correlations

χ(r)χ(r′) = γδd(r − r′), (2.41)

where the bar denotes the average over independent realizations of the disorder field. Before
field-theoretical consideration is provided, Moreira and Dickman studied two-dimensional
contact process with spatially quenched disorder, and found that survival probability of
active sites P (t) and mean square radius of the cluster of active sites does not approach to
power law but to non-universal logarithmic growth [69]. Later Janssen showed by field-
theoretic analysis that the spatially quenched disorder is marginal and hence it can crucially
disturb the critical behavior of the DP universality class [51].

Likewise, DP with temporally quenched disorder was also studied by Jensen [53]. The
disorder field χ(t) for temporally quenched disorder is defined by the correlations

χ(t)χ(t′) = γδ(t− t′). (2.42)

Jensen showed that the temporally quenched disorder is a relevant perturbation in a sense
of renormalization group and therefore even weak disorder drastically affects the critical
phenomena. These results demonstrate that the DP universality is indeed fragile to a certain
kind of perturbations.

The aforementioned results of experiments and renormalization group might sound
disheartening: They suggest that the DP universality class is too simple to give a quantitative
prediction on realistic systems and one has to be equipped with detailed knowledge of the
system (in particular possible presence of quenched disorder) to correctly describe it after
all. Although one could also argue that the long absence of experimental realizations is
not so surprising recalling the time it took for the Ising universality class to be realized
experimentally since the discovery of the exact solution by Onsager and hence one should
be optimistic [46], whether or not (and if yes, how far) quite simplified dynamics of DP is
relevant for absorbing phase transition has been quite unclear.

This situation began to change in 2007: Takeuchi and his coworkers performed a set of
experiments on electroconvection of nematic liquid crystal, and reported the first convincing
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Figure 2.7: Spatiotemporal intermittency in turbulent liquid crystals. a: Sketch of a DSM2
domain with many entangled disclinations. b: Snapshot of the coexistence of DSM1 and
DSM2. DSM2 appears darker than DSM1 when one observes light transmitted through
the cell. c: Binarized image of b. d: Simplified model of the dynamics (essentially same
as the contact process). A patch of DSM2 stochastically relax to DSM1 or contaminate
neighboring DSM1 region. e: Spatiotemporal diagram of DSM2 patches. This figure is
adopted from Ref. [95].

experimental realization of the DP universality class [92, 95]. In their work, they focused
on the transition between two turbulent regime called dynamic scattering mode 1 and 2
(DSM1 and DSM2), which can be realized by applying strong AC electric field. A crucial
difference between DSM1 and DSM2 lies in the density of topological defects: In DSM2,
topological defects, often called disclinations in a study of liquid crystals, are present
and they elongate and split constantly under the shear due to the fluctuating turbulent
flow around, whereas they disappear immediately in DSM1 (Fig. 2.7a). This difference
is important from both conceptual and practical points of view: Since disclinations are
energetically unfavorable, fully DSM1 state naturally serves as an absorbing state in this
system. Moreover, disclinations leads to the loss of light transmittance, and hence distinction
between DSM1 and DSM2 is very easy (Fig. 2.7b and Fig. 2.7c). Using this system, Takeuchi
and his coworkers successfully measured 12 critical exponents, 8 scaling relations and 5
scaling functions, all in agreement with the DP universality class in 2 + 1 dimensions.

Why turbulent liquid crystals clearly exhibited universal critical phenomena of DP,
despite many other experiments showed significant deviation from DP (apparently, at least)?
Takeuchi et al. argued in Ref. [95] that there are three factors crucially different from earlier
works:

• Experiments with large aspect ratio can be easily realized. Aspect ratio of the cell
they used in their work is 3300h × 3300h × 2h (h represents half depth), which is
larger in one order of magnitude than earlier works.
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Figure 2.8: Critical phenomena in turbulent liquid crystal. a: Area fraction of DSM2 ρ̄
averaged in time with respect to the applied voltage V . The inset shows the same data in a
logarithmic scale as a function of ε = (V 2 − V 2

c )/V
2
c . b: Relaxation of ρ after quenching

for various V . The inset shows the same data with rescaled axes t|ε|ν|| and tβ/ν||ρ(t) and the
dashed curve indicates universal scaling function obtained through numerical simulation
of the contact process. c: Correlation length in the steady state with respect to ε. d:
Correlation time in the steady state with respect to ε. This figure is adopted from Ref. [94].
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• Full DSM1 state has a very good analogy with absorbing state. As we described in
the previous paragraph, spontaneous nucleation of DSM2 is energetically unfavorable
and thus is very rare.

• Local turbulent fluctuation of DSM1 effectively kills long-range interaction. If one
prepares laminar absorbing state, as many other works did, laminar state may introduce
long-range effect through rigidity of their laminar patterns and/or propagation of
soliton-like objects.

Since there are multiple different factors, the most crucial one is hard to tell from only a
single experimental realization. While if the third one is the most crucial then the critical
phenomena of DP may not be so ubiquitous in reality, otherwise it may be more robust
than it had been considered to be. Hence experiments with other systems are needed to
address the question of what the most crucial factor for experimental realizations of the DP
universality class is.



Chapter 3

How to Probe Universal Features of
Absorbing Phase Transitions

Related publication by the author: Section 2 of K. Tamai and M. Sano. How to experimen-
tally probe universal features of absorbing phase transitions using steady state. Submitted
to J. Stat Mech. (Preprint: arXiv, 1712.05789)
Contribution: The author (K.T.) conceived the project and performed numerical simulation,
under advice and direction by the collaborator (M.S.).

In the previous Chapter, we focused on describing the basic universal features of absorbing
phase transition expected theoretically and recent situation on robustness of the DP univer-
sality class in both theory and experiment. Meanwhile, the following question naturally
arises: When a system with an absorbing phase transition is given, how can we examine
the universal features? A primary purpose of this Chapter is to provide an extensive survey
to address this question. As we will see in the following, the methods to do the job is
massively different between numerical simulations and experiments. Furthermore, it turns
out the conventional experimental methods can easily produce biased results unless one
handles them with care, although the universal scaling ansatzs the experimental works have
relied on is indeed valid in principle. Given these, we also propose a practical method to
avoid the bias by employing a technique of statistical analysis which was originally proposed
in a context of medical follow-ups.

3.1 Specific background

3.1.1 Numerical simulation of stochastic models

When one attempts to characterize an absorbing phase transition in a stochastic model, a
critical spreading protocol where he/she introduces a localized active seed in an otherwise
inactive system (as shown in Fig. 3.1) is regarded as one of the most reliable numerical

29



30 CHAPTER 3. HOW TO PROBE UNIVERSAL FEATURES

Figure 3.1: Schematic picture of a critical spreading protocol, showing the dynamics of an
isolated active seed given at t = 0 in spatially one-dimensional DP. The vertical direction
corresponds to the direction of time. The figure is adopted from [45].

techniques. This protocol, originally proposed by Grassberger and de la Torre [38], is
concerned with time evolution of the probability of survival Psurv(t) for the seed, the
number of active sites V (t), and the average of mean square radius of the active cluster
over surviving clusters R2

s (t). These quantities are expected to obey the following scaling
relations:

Psurv(t; ε) ∼ t−δP̃surv(ε
ν||t), (3.1)

V (t; ε) ∼ tΘṼ (εν||t), (3.2)

R2(t; ε) ∼ tζR̃(εν||t), (3.3)

where δ,Θ, ζ are the appropriate scaling exponents as usual.
As we will see in the following, the scaling exponents can be determined in a framework

of phenomenological scaling theory. It follows by definition of the survival probability that
limt→∞ Psurv(t) = εβ

′ , and hence

δ = β′/ν|| (3.4)

so that the scaling relation (3.1) is consistent with this. In order to determine the other
scaling exponentsΘ, ζ , it is convenient to consider so-called the pair-connectedness function
C(r, t; ε) which represents the probability that an active seed at the origin (r = 0, t = 0)
makes a site at r sites away from the origin active at time t1. Utility of the pair-connected
function stems from the fact that V (t; ε) and R2(t; ε) can be regarded as an integral of

1Historically, the pair-connected function has been a quantity of interest in estimating the theoretical
value of the critical exponents of the directed percolation, because it can in principle be expanded as a finite
polynomial of the percolation probability p from which the critical exponents is estimated quite accurately
[54].
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C(r, t; ε) with respect to suitable weight:

V (t; ε) =

∫
drC(|r|, t; ε), R2(t; ε) =

1

V (t)

∫
drr2C(r, t; ε). (3.5)

Now let us consider the scaling relation of the pair-connectedness function in a framework
of phenomenological scaling theory. That is, we now assume the following scaling relation:

C(r, t; ε) = Λ−κC(Λε; Λ−ν⊥r,Λ−ν||t), (3.6)

where κ is some suitable exponent and Λ is an arbitrary scaling factor. In the steady state
(that is, t → ∞), the probability that one finds any active sites is limt→∞ Psurv(∼ εβ

′
) by

definition. Meanwhile, the probability that one finds an active site at a certain site r given
that the cluster is still surviving is the steady area fraction ρ of active sites, and hence scales
as εβ . One can deduce from these observations that C(r, t, ε) is rescaled by the following

lim
t→∞

C(r, t, ε) = εβ+β
′
, (3.7)

suggesting that
κ = β + β′. (3.8)

Substituting (3.6) together with (3.8) into (3.5), one finds the following scaling relations:

Θ =
dν⊥ − (β + β′)

ν||
, ζ =

2ν⊥
ν||

. (3.9)

This protocol has quickly become the de facto standard for measuring critical exponents
[44, 45, 94], thanks to the three important advantages from a numerical point of view:

• The size of the system can be extended arbitrarily (by, e.g. reallocating memory
accordingly) measurement is completely free from notorious finite-size effect and
from impact of (usually periodic) boundary conditions.

• Since one only needs to evolve a few number of active sites for most runs, computation
can be done very quickly.

• Especially if one is interested comparing the system with the DP universality class,
one can directly check β = β′ by this protocol.

3.1.2 Deterministic models and experiments

Unfortunately, the critical spreading protocol is much less useful in experiments or in
deterministic models, as pointed out by Takeuchi [94]. Major drawbacks of the critical
spreading protocol in these situations are the following:
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• One has to evolve the entire system for every time step. Hence, critical spreading
protocol does not contribute to improve efficiency and consequently one suffers from
lack of statistics in general.

• System is inevitably subject to finite-size effect and to impact of boundary conditions.

• Generating an active seed itself is not straightforward.

Given these, most experimental works in this context have relied on steady-state measure-
ments [23, 25, 82].

In steady-state measurements, probability distribution of the lengths (or durations) of
intervals of local inactive state (hereafter referred to as “spatial (temporal) interval distri-
bution”) has been quantity of central interest in earlier experimental studies. Extensive use
of the distribution is based on a belief that critical behavior of absorbing phase transitions
is characterized by only two diverging length scales, namely the correlation length and
the correlation time. Local inactive state does not spontaneously turn active and the state
in which entire system is inactive is absorbing, implying that characteristic length (time)
of the decay of the distribution diverges at the critical point. Assuming that the belief is
indeed the case, it is natural to expect that the characteristic length (time) of the distribution
corresponds to the correlation length (time).

The interval distribution, however, is known to be hard to handle theoretically. As Henkel
et al. pointed out in their book [44], the interval distribution should be regarded as multi-
point correlation function in a sense that inactive interval between two spatially/temporally
distant active sites requires that the activity must be absent along a line connecting them.
This is in a sharp contrast with the ordinary two-point correlation function which probes
correlated activity of the two points ignoring the sites in between. Hence it is not obvious a
priori whether such a quantity obeys a simple scaling form. In earlier theoretical work [8],
Ben-Naim and Krapivsky considered time evolution of a probability En(t) that a randomly
chosen string of n sites is inactive and Rn(t) that a randomly chosen string of n + 1 sites
has n consecutive inactive sites with one active site at the extreme right-hand side, which
are related to each other by

Rn = En − En+1 or En = 1−
n−1∑
i=0

Ri. (3.10)

In this case, contamination of activity causes a loss ofEn whereas deactivation a creation of
empty intervals, depending on the length of intervals of inactive sites next to the deactivated
site. That is, if we denote the density of two neighboring intervals by El,m then the time
evolution of En can be (approximately) described by the following:

dEn
dt

= −Rn + λ

n−1∑
l=0

El,n−1−l. (3.11)
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Further approximating El,m by RlRm/R0 yields

dEn
dt

= −
n−1∑
i=0

dRi

dt
= −Rn +

λ

R0

n−1∑
l=0

RlRn−l−1. (3.12)

which constitutes an infinite hierarchy of equations which is analytically intractable. Al-
though En or Rn is not exactly identical to the interval distribution, the above consideration
clearly illustrates the source of difficulty in rigorous consideration.

Nevertheless, simple phenomenological scaling argument may still be used to “derive”
universal scaling ansatz which one can expect to hold at least to some approximation.
Following the spirit of phenomenological scaling theory, let us postulate that inactive interval
distributions have scaling properties analogous to that of ordinary two-point correlation
function. That is, we put the following scaling ansatz with some unknown exponent κ||:

P (∆t; ε) = λ−κ||P (λ−ν||∆t;λε), (3.13)

Substituting λ = ∆t1/ν|| to (3.13) yields

P (∆t; ε) = ∆t−κ||/ν||g||(∆t
1/ν||ε) where g||(x) := P||(1;x). (3.14)

Then the average ⟨∆t⟩ of the inactive interval is evaluated as follows:

⟨∆t⟩ :=
∞∑

∆t=1

∆tP||(∆t; ε)

∼
∫ ∞

a

d∆t∆t · P||(∆t; ε)

=

∫ ∞

a

d∆t ·∆t1−κ||/ν||g(∆t1/ν||ε)

= εκ||−2ν||

∫ ∞

ε
ν||a

dT · T 1−κ||/ν||g(T )

∼ εκ||−2ν|| ,

(3.15)

where a is a lower cutoff introduced to take the discreteness of the sum (in the first line) into
account. Note that, when we obtain this from the second line from the bottom, we made
use of the fact that κ||/ν|| > 1 which follows from the requirement that the distribution has
to be normalized even in the limit of ε→ +0:

∞∑
∆t=1

P||(∆t, τ) = 1. (3.16)

On the other hand, reciprocal ρ−1 of the order parameter is related to the mean of inactive
intervals ⟨∆t⟩ and that of active ones ⟨∆ta⟩ by

ρ−1 =
⟨∆t⟩+ ⟨∆ta⟩

⟨∆ta⟩
∼ ε−β. (3.17)
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Since ⟨∆ta⟩ is not expected to diverge at the critical point, a manner in which ρ−1 diverges
at the critical point is expected to be identical to that of ⟨∆t⟩, that is,

⟨∆t⟩ ∼ ε−β. (3.18)

Comparison between Eqs. (3.15) and (3.18) yields κ|| = 2ν|| − β, and hence we obtain the
following scaling hypothesis:

P||(∆t; ε) = ∆t−(2−β/ν||)g||(∆t
1/ν||ε). (3.19)

where we assume β < ν||, which is indeed the case with DP universality class, as long as
spatial dimension is not higher than 3. Essentially the same argument can be applied for
spatial interval distributions, and we obtain the following as a result:

P⊥(∆x; τ) = ∆x−(2−β/ν⊥)g⊥(∆x
1/ν⊥ε). (3.20)

If one is interested in considering complementary cumulative distribution function (CCDF)
Rl(∆l; ε) (where l = ||,⊥ and ∆l = ∆t,∆x) defined by

Rl(∆l; ε) :=

∫ ∞

∆l

d∆l′P (∆l′; ε), (3.21)

it follows from (3.19) and (3.20) that

R||(∆t; ε) ∼ εν||−βh||(ε
ν||∆t), (3.22)

R⊥(∆x; ε) ∼ εν⊥−βh⊥(ε
ν⊥∆x), (3.23)

where hl(∆l; ε) is given as follows:

hl(∆l
1/νlε) =

∫ ∞

ε(∆l)1/νl
dxνlx

−(νl+1−β)gl(x)dx. (3.24)

Let us emphasize again that (3.19) and (3.20) are nothing more than ansatzs: Although one
can show that the possible scaling form of P||, P⊥ is limited to (3.19), (3.20) if we assume
P||, P⊥ have scaling properties analogous to that of the ordinary two-point correlation
functions, validity of the assumption is by no means obvious.

3.1.3 Objectives of the research

Given a lack of a rigorous theoretical footing and difficulty of analyzing the interval dis-
tribution, numerical validation of the scaling ansatz (3.19) and (3.20) is necessary in order
to justify the experimental methodology to measure the critical exponents. However, there
has been no published work which directly examined the ansatzs to the author’s knowledge,
besides the power-law decay of spatial interval distribution with the exponent 2 − β/ν⊥

expected in the vicinity of the critical point [27]. Hence the aim of the study is to examine
the universal scaling ansatzs (3.19) and (3.20) through the numerical simulation on the
contact process.
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3.2 Methods

3.2.1 Numerical simulation of the contact process

Let us recall that the master equation of the contact process is given by a master equation

∂P

∂t
=

∑
s′

ws′→sPt(s
′)−

∑
s′

ws→s′Pt(s) (3.25)

with
w0→1,n = nλ/2d, w1→0,n = 1, (3.26)

where n and d respectively denote the number of active neighbors and the spatial dimension
of the model. Although the contact process is continuous in time, discrete-time formulation
is very often used in numerical simulations [66].

1. Choose one active site randomly.

2. Deactivate the site with probability 1/(1 + λ). Otherwise, choose one of the nearest
neighbors randomly and activate it (if inactive).

3. Increment the time by 1/Nact, where Nact is a number of active sites. Then go back
to 1.

We performed Monte–Carlo simulation on the contact process in spatially one-dimensional
ring (lattice system with periodic boundary condition) with length of 1,024 sites. In a case
of d = 1, the critical point has been very precisely estimated to be λc = 3.297848(20) [56].
We varied the control parameter λ in a range of 10−3λc < λ − λc < 3 × 10−1λc and we
performed n = 50 realizations for each λ. In each realization, the system was initially set
to the state where all sites are active, and we evolved the system according to the standard
discrete-time formulation [66] for 107 steps (first 106 steps were discarded in a course of
analysis to ensure that the quasi-steady state is measured).

In order to acquire ensemble of configurations, we adopted the method by Dickman
and Martins de Oliveira [27]: We first saved the Ms = 2, 000 samples of configuration
for each time step during the first Ms steps, and then the list was updated with probability
psrep = 0.005 by replacing a randomly chosen configuration on the list by the current one
whenever the time step was increased by unity. In this way, 100,000 configurations were
recorded. Time series of a certain site with length of W time steps was also accumulated
in a similar manner: Time series of randomly chosen Mt sites were saved during the first
W steps, and the list was updated with probability ptrep = 0.05 by replacing a randomly
chosen time series on the list by the most recent time series obtained at a randomly chosen
site for eachW time steps. Thus we collected 25,000 time series for each λ. These samples
of configuration and time series were used to obtain the interval distributions.
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3.2.2 How to estimate the interval distributions from data

Since one does not have an infinite resource to record the configuration or time series, one
has to estimate the distribution from data acquired within some finite observation window.
Although extensive consideration on this problem has not been given in earlier literatures
concerning experimental realization of the DP universality class (besides a brief remark
given in Ref. [95]), the problem is much more delicate than one might expect it to be.

The simplest way to estimate the distribution Pl(∆l) is just to count the number of
completely observed intervalsN(∆l) of length ∆l and normalize the resulting “histogram”
to unity. If one has n independent realizations of the configuration or time series (we assume
this situation in the following unless otherwise stated), this idea can be represented formally
by the following:

P̂l(∆l) :=

∑n
i=1Ni(∆l)∑n

i=1 Si
, (3.27)

where Ni(∆l) represents the number of completely observed intervals of length ∆l within
the ith realization and Si the sum of Ni(∆l) over ∆l:

Si :=
∑
∆l

Ni(∆l). (3.28)

the total number of completely observed intervals within the ith realization. Although
equivalent, it is often convenient to consider the complementary cumulative distribution
function (CCDF) Rl(∆t)

Rl(∆l) :=
∞∑

∆l′≥∆l

Pl(∆l
′), (3.29)

because then one does not have to bother from selecting the size of the bin. Hereafter,
we concentrate on constructing an estimator for CCDF unless otherwise stated. Replacing
Pl(∆l

′) with the empirical estimator P̂l(∆l′) (3.27) yields the following empirical estimator
R̂l(∆l) for CCDF, that is,

R̂l(∆l) :=
∑

∆l′≥∆l

P̂l(∆l
′) =

∑n
i=1

∑
∆l′≥∆lNi(∆l

′)∑n
i=1 Si

. (3.30)

As expected, it can be shown that the empirical estimator is consistent in a limit of infinite
observation window W [5]:

lim
W→∞

R̂l(∆l) = Rl(∆l). (3.31)

Since this estimator P̂l is easy to construct and it converges to the intrinsic interval distribu-
tion Pl(∆l) of the system in a limit of W → ∞ by construction, it may be tempting to rely
on it.

Unfortunately, the empirical estimator is likely to produce biased results if one use it
when only finite observation is available, as is always the case in experiments. When the
observation is performed under a finite observation window, the first and the last interval is
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Observation window W

Active state

Inactive state

y

x

Figure 3.2: Schematic picture of censoring by finite observation window. The gray region
is out of the observation window and hence not observed. In this observation window, the
leftmost interval of active state and the rightmost interval of inactive state is not completely
observed.

censored by the edge of the window (as illustrated in Fig. 3.2). This censoring makes the
situation complicated in two ways [105]:

• Dependence between adjacent intervals is “induced” even if originally independent
from each other. For example, the longer the first interval is, the more likely the
second interval is censored by the edge of the observation window (and so on).

• Obviously the distribution R(t) is not estimable for t > W where W is the size of
the window. Moreover, the distribution for the second interval is not estimable if
t > W − τ1, where τ1 is a minimum value of t′ such thatR(t′) = 0 (and so on). Thus,
one has to find some quantity which is identifiable and meaningful.

Due to these difficulties, unified appropriate approach has not been emerged up to date
despite extensive effort in literatures, but rather a case-specific approach is needed.

One of the most well-known non-parametric estimator for possibly censored time series
is the Kaplan–Meier estimator [58]. The Kaplan–Meier estimator, named after Edward L.
Kaplan and Paul Meier, was originally proposed to estimate the probability for the event of
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interest occurs later than time t, and is defined by the following:

R̂KM(t) :=
∏
t′≤t

(
1− DKM(t

′)

MKM(t′)

)
; (3.32)

where MKM is the number of subjects “at risk” (neither have experienced the event nor
are censored) and DKM is the number of events observed at time t, and t′ is the ordered
and distinct uncensored times. Key assumption behind this estimator is that the censoring
time is independent from the individual lifetime t. The same assumption is also employed
in other estimators of this (product-limit) form. Fortunately, this is indeed the case in our
study, although one should check the validity of the assumption carefully in more general
situations (e.g. in a medical follow-up where censoring can occur because of a competing
risk and hence a censoring may be informative to a lifetime of a patient).

However, one runs into difficulty when one attempts to apply the Kaplan–Meier estimator
to recurrent data: If one constructs a variant of the Kaplan–Meier estimator (3.32) for pooled
recurrence times by

R̂PKM(t) :=
∏
t′≤t

(
1− DPKM(t

′)

MPKM(t′)

)
; (3.33)

(where MPKM(t) denotes the total number of observed intervals no shorter than t (be it
partially censored or not) and DPKM(t) denotes the total number of completely observed
intervals of length t), the estimator is generally biased because the last (possibly censored)
interval for each realization is subject to biased sampling. Of course one could work around
the issue by constructing the standard Kaplan–Meier estimator (3.32) using only the first
recurrence time, but this implies that one just discards all the other observed intervals and
hence the measurement is very inefficient. Thus the key issue is how one can efficiently
estimate the distribution of interest without causing systematic bias.

The above considerations motivate us to look for an alternative way to estimate interval
distributions. Here we employ the estimator proposed by Wang and Chang [99]. Repre-
senting it in a somewhat informal style for practical purposes, the estimator by Wang and
Chang is given by the following2:

R̂WC(t) :=
∏
t′≤t

(
1− DWC(t

′)

MWC(t′)

)
; (3.34)

DWC(t) :=
n∑
i=1

Θ(Si − 1) · Ni(t)

Si
, (3.35)

MWC(t) :=
n∑
i=1

Mi(t) with Mi(t) =

{
Θ(W − t) Si = 0∑W
t′=tNi(t

′)/Si otherwise
, (3.36)

2Strictly speaking, this is a special case of the Wang–Chang estimator where all the realizations are given
the same weight in estimating the distribution.
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whereΘ is the standard Heaviside step function withΘ(0) = 1,Ni(t) represents the number
of completely observed intervals of length t within the ith realization, Si(=

∑
t′ Ni(t

′))

represents the total number of completely observed intervals within the ith realization, and
t′ is the ordered and distinct uncensored times. Although time series of current interest
is not univariate but consists of two states observed alternately, we can still apply this
technique provided that we begin our observation from a left edge of the inactive interval
(that is, from a point where the observed state turns from active to inactive) [49]. Nice thing
about this estimator is that, assuming conditional independence and independent censoring,
one can theoretically show that the estimator weakly converges to the intrinsic conditional
probability of the system, in a limit of infinite number of realizations (not the infinite size
of the window) [99]. Hence we employ the estimator by Wang and Chang when necessary.

3.3 Results

We first studied the spatial interval distribution where the expected power-law decay has
been already reported [27]: We estimated the CCDF R̂⊥(∆x) using the empirical estimator
(3.30) under the observation window of W = 1, 000. As shown in Fig. 3.3a, the resulting
CCDF R̂⊥(∆x) exhibited an exponential decay for sufficiently large ∆x, through which one
can define a correlation length ξ⊥ of the system. The correlation length ξ⊥, which can be
estimated from the exponential decay of the distriution

R̂⊥(∆x) ∼ exp(−∆x/ξ⊥) for ∆x≫ 1, (3.37)

was found to diverge as ξ⊥ ∼ ε−ν⊥ , as expected from the phenomenological scaling argument
(Fig. 3.3b). This result encouraged us to rescale R̂⊥(∆x) according to the scaling ansatz
(3.23), and we obtained a reasonably good collapse as shown in the inset of Fig. 3.3a.

Given the issue of censoring by a finite observation window outlined in Section 3.2.2, one
might wonder why the empirical estimator worked reasonably well in this case. Comparison
between the correlation length of the system and the finite observation window provides us
a reasonable explanation to this: Within the range of our study, the correlation length of the
system was about 60 sites at the longest, which is shorter than the observation window by
about one order of magnitude. Hence the window is long enough for the system so that the
empirical estimator under this window reasonably well approximates the result expected for
W → ∞.

Now we turn our attention to the temporal interval distribution: We estimated the
CCDF R̂||(∆t) by an empirical estimator under the observation window of W = 500 and
W = 5, 000. We found that the result is very sensitive to the choice of W especially near
the critical point (Fig. 3.4a). Moreover, even if we estimate the correlation time ξ|| through
an exponential decay of the distribution estimated under W = 5, 000, the resulting ξ|| as a
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Figure 3.3: Spatial interval distribution estimated by the empirical estimator. a: Spatial
interval distributions for λ = 3.33785 (magenta, ε := (λ − λc)/λc ∼ 1.2 × 10−2), λ =

3.41098 (orange, ε ∼ 3.4× 10−2), λ = 3.52412 (green, ε ∼ 6.9× 10−2), and λ = 3.75039

(blue, ε ∼ 1.4× 10−1) are shown (λc = 3.297848(20) [56]). The inset shows the result of
rescaling of the plot according to the scaling hypothesis (3.23). Note that the theoretical
value β, ν⊥ of the DP universality class was used to rescale the data. b: The correlation
length ξ⊥ as a function of ε. The blue line is a guide-to-eye for the expected power-law
divergence with exponent −ν⊥.
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Figure 3.4: Temporal interval distribution estimated by the empirical estimator. a: Temporal
interval distributions for λ = 3.33785 (magenta, ε := (λ − λc)/λc ∼ 1.2 × 10−2), λ =

3.41098 (orange, ε ∼ 3.4× 10−2), λ = 3.52412 (green, ε ∼ 6.9× 10−2), and λ = 3.75039

(blue, ε ∼ 1.4× 10−1) are shown. Results of the estimation under the window of W = 500

is painted in light color whereas ones under the window of W = 5, 000 is painted in vivid
color. The inset shows the result of rescaling of the plot according to the scaling hypothesis
(3.22). Note that the theoretical value β, ν|| of the DP universality class was used to rescale
the data. b: The correlation time ξ|| as a function of ε = (λ−λc)/λc. The orange solid line
is a guide-to-eye for the expected power-law divergence with exponent −ν||, and is extended
outside the region where the reasonable agreement was found (orange dashed line). Blue
dashed line shows a guide-to-eye whose slope well approximates the apparent power-law
behavior.

function of ε does not exhibit a clear power-law divergence with the expected exponent −ν||,
as shown in Fig. 3.4b. As expected from these observations, the rescaled complementary
CDFs for various control parameter λ do not overlap in general, as shown in the inset
of Fig. 3.4a, although the scaling collapse is observed at far away from the critical point
for W = 5, 000. Extrapolation from the “scaling regime” (ε ≳ 0.1) suggests that the
correlation time grows up to about 3,000 steps at ε ∼ 0.02, which is comparable to the
size of the window. Hence it is natural that the deviation from the expected power-law
divergence is observed even for W = 5, 000.

This contrast of the results between the spatial interval distribution and the temporal one
is worth emphasizing. Since ν⊥ < ν|| holds in the DP universality class (as well as in other
universality classes of absorbing phase transitions known so far [44]), a correlation length
grows much slower than a correlation time as getting close to the critical point. Suppose,
for example, one performs a set of experimental measurements in spatially one-dimensional
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Figure 3.5: Temporal interval distribution estimated by the Wang–Chang estimator. a:
Temporal inactive interval distribution of spatially one-dimensional contact process for λ =

3.37785 (magenta, ε := (λ−λc)/λc ∼ 1.2× 10−2), λ = 3.41098 (orange, ε ∼ 3.4× 10−2),
λ = 3.52412 (green, ε ∼ 6.9× 10−2), and λ = 3.75039 (blue, ε ∼ 1.4× 10−1). The results
of the estimation under the window ofW = 500 is painted in light color whereas ones under
the window of W = 5, 000 is painted in vivid color. b: Same data as a, but the data was
rescaled according to the universal scaling ansatz The inset shows the result of rescaling of
the plot according to the scaling hypothesis (3.22). Note that the theoretical value β, ν|| of
the DP universality class was used to rescale the data.

system with control parameter ε varied over two orders of magnitude to provide reliable
estimates of the critical exponents (in accordance with a critical remark by Stumpf and
Porter [91]). Then, the correlation length of the system grows about 150 times in a course of
measurements whereas the correlation time grows about 3,000 times(!), if the system does
fall into the DP universality class. This difference of one digit drastically changes the diffi-
culty in measuring critical exponents through interval distributions especially considering
the experiments, although one should also consider the difficulty of performing experiments
with large systems carefully when designing the projects.

Having seen that the empirical estimator yields massively biased results for the temporal
interval distributions, let us employ the aforementioned the Wang–Chang estimator (3.34).
We estimated the CCDF R̂||(∆t) by the Wang–Chang estimator under the observation
window of W = 500 and W = 5, 000. As a result, we found that the result is much less
sensitive to the choice of the value of W than the empirical estimator is, although slight
difference is still present (Fig. 3.5a). We also tested the scaling ansatz (3.22) and we obtained
a reasonable collapse both for W = 500 and W = 5, 000 (Fig. 3.5b).

Provided that the problem of estimation is moderated, the inactive interval distribution
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serves as a very useful tool to characterize collective dynamics off the critical point. The
utility of inactive interval distribution can be seen by comparing it with the static correlation
function Cs(l) := ⟨sisi+l⟩− ⟨si⟩⟨si+l⟩: The spatial interval distribution P⊥(l) and the static
spatial correlation function at λ = 3.41098 (that is, ε ∼ 3× 10−2) is shown in Fig. 3.6 as an
example. The results suggest that both interval distribution function and static correlation
function decay exponentially, and that the characteristic lengths of the decay coincide with
each other3. Significant difference can be found for l ∼ 130, where the correlation function
begins to scatter presumably due to lack of statistics. Thus, the severe demand of statistics
makes the measurement of correlation function impracticable in typical experiments, and
interval distribution function is an attractive alternative in that case.

3.4 Discussions

Given the results we outlined in this work, now let us discuss on interpretation of the
results of experimental literatures concerning possible relation to the DP universality class.
The experimental results prior to Takeuchi et al. [92, 95] have two features in common:
First, as is also pointed out by Henkel et al. [44], the largest deviation from the theoretical
value of DP was found for estimate of the critical exponent ν|| associated with divergence
of a correlation time. Second, the estimated critical exponent ν||, ν⊥ are smaller than the
theoretical value. Our work suggests a likely explanation to this situation: If we measure the
interval distribution using the empirical estimator (3.27) under a short observation window,
estimated correlation length/time saturates near the critical point (Fig. 3.4a), which leads

3Note that the behavior of Cs(l) and P⊥(l) are significantly different from each other for small l just as
expected: It follows from (2.13) and (2.15) that Cs(l) decays as l−2β/ν⊥ whereas it follows from (3.20) that
P⊥(l) decays as l−(2−β/ν⊥).
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one to significant underestimation of the critical exponents. Recalling that effectiveness of
the empirical estimator is a matter of comparison between the size of the window and the
intrinsic correlation length/time of the system, it is reasonable that the estimation of ν|| is
more strongly subject to the impact of a finite observation window than that of ν⊥ is.

To further substantiate our argument, let us revisit an earlier experimental work by Rupp
et al. [82] as an example. In their work, the authors estimated the correlation length (time)
through the distribution of spatial (temporal) interval and the resulting critical exponent
ν⊥ was consistent with theoretical value, whereas ν|| was massively smaller. However, at
ε ∼ 3×10−2 or less, the estimated correlation time is comparable or longer than a one-tenth
of the observation window, and qualitatively consistent behavior can be seen if one neglects
that region as unreliable. Hence, it could be that the correlation time of the system indeed
diverged in a same manner as predicted by the DP universality class but that the authors gave
a biased estimate of the correlation time near the critical point due to a finite observation
window. Thus, one should be cautious when performing and interpreting the measurements
on a correlation time and a correlation length through the interval distributions.

Although the theoretical outcome of the present study (namely validation of the universal
scaling ansatz for interval distributions) itself is not very surprising if one assumes the
phenomenological scaling theory is correct, it can be considered as a lesson: Even if the
physical factor which makes the situation complicated (e.g. quenched disorder) is not present
at all, one may literally fail to capture universal features of absorbing phase transitions if
he/she does this naïvely with limited resources. The present study provides a practical
remedy to the difficulty and demonstrates the utility of the method, which can be utilized
for measurements in other physical (also possibly ecological or social) systems.



Chapter 4

Impact of Active Wall and Advection on
DP-Class Transitions

Related publication by the author: Section 3 of K. Tamai and M. Sano. How to experimen-
tally probe universal features of absorbing phase transitions using steady state. Submitted
to J. Stat Mech. (Preprint: arXiv 1712.05789), and Supplementary Information of M. Sano
and K. Tamai, A universal transition to turbulence in channel flow. Nat. Phys. 12, 249-253
(2016).
Contribution: The author (K.T.) conceived the project and performed numerical simulation,
under advice and direction by the collaborator (M.S.).

When one attempts to characterize transitions to turbulence in shear flow as phase transitions
out of equilibrium, one has an additional factor to concern: A localized turbulent structure
is advected by mean flow. In this case, localized active (turbulent) state travels downstream
and eventually the activity goes out of the observation area. In order to prevent the system
from falling into an absorbing state, one needs to drive the system at the boundary, but then
the effect of advection is no longer negligible because the advection cannot be transformed
away by Galilean transformation. Then, how does the combination of the active boundary
condition and the advection affect the critical phenomena of the DP-class transitions? A
primary purpose of this Chapter is to perform a systematic study on this question.

4.1 Specific background

4.1.1 Impact of an active wall

Impact of boundary conditions on critical phenomena has been a topic of considerable
interest in the field of statistical mechanics. While the standard theoretical framework of
critical phenomena usually assumes thermodynamic limit where the system is infinitely
large (although one can employ finite-size scaling to analyze the data for finite-size systems
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[73]), materials in reality always possess boundaries. Moreover, extensive studies on critical
phenomena in equilibrium show that physical quantities measured close to the boundary
may behave differently than in the bulk [28]. In order to successfully apply the theory of
critical phenomena to real physical systems, therefore, it is desirable to clarify how the
presence of boundaries affect critical phenomena.

In contrast with equilibrium statistical mechanics, where progress in experimental works
and the extension of the conformal field theory [7, 43] to systems with boundaries [19]
substantially boosted systematic studies on the subject, studies on impacts of boundaries
on non-equilibrium critical phenomena have still been in a much more primitive stage.
Rather, the situation may be compared with that of surface equilibrium critical phenomena
in 1970s: Lacking with both experimental realizations and powerful analytical frameworks,
the subject has has not been paid very much attention, although there indeed exist some
theoretical works [35, 47].

Still, an active boundary condition in which sites at the boundary are always forced to
be active is one of the simplest boundary conditions, and it can be studied in a framework
of mean-field theory and phenomenological scaling [44]. To see this, let us consider the
mean-field theory of DP (2.29)

∂ρ

∂t
= ερ− λρ2 +D∇2ρ

supplemented with an active boundary condition

lim
r⊥→+0

ρ(t, r) = ∞ for ∀t, (4.1)

where r⊥ denotes the coordinate perpendicular to the boundary condition (hereafter we refer
to the boundary condition as “the wall”). Note that the third term of the right hand side
of the mean-field theory can no longer be neglected because of the breakdown of Galilean
invariance due to the wall. The stationary solution ρ∞ of the mean-field theory can be found
by observing that ρ∞ depends only on r⊥ (and hence ∇2ρ∞ = ∂2r⊥ρ∞) and thereby solving
the following ordinary differential equation:

0 = ερ∞ − λρ2∞ +D
d2ρ∞
dr2⊥

. (4.2)

In particular, note that ρ∞ is of the form ρ∞(r⊥) ∼ r−2
⊥ if ε = 0 (that is, the system is exactly

on the critical point). Phenomenological scaling theory provides us a way to interpret the
exponent of −2. Recall the phenomenological scaling (2.11) of ρ(t, r), that is,

ρ(t, r, ε) = t−β/ν||f(r/t1/z, εt1/ν||) where z := ν||/ν⊥.

Assuming that r⊥ rescales like a length and averaging over a hyperplane parallel to the wall
yields

ρ̄(t, r⊥, ε) = t−β/ν|| f̃(r⊥/t
1/z, εt1/ν||), (4.3)
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where ρ̄ denotes the average of ρ. Clearly, ρ̄ in close proximity will become constant after
only a short time (more specifically, as long as r⊥/t1/z ≪ 1). In particular, it follows from
the stationarity of ρ̄ near the wall for ε = 0 that

f̃(y, 0) ∼ y−β/ν⊥ for y ≪ 1 (4.4)

and consequently
ρ∞(r⊥; ε = 0) ∼ r

−β/ν⊥
⊥ , (4.5)

which indeed agrees with the results of the mean-field theory (recall βMF = 1, νMF
⊥ = 1/2;

see Section 2.3.3).

4.1.2 Combination of active wall and advection

The next question to ask is how the system with an active wall is affected in the presence of
the advection. It is important to note that the advection can no longer be transformed away
by a suitable Galilean transformation due to the wall, and hence advection may affect the
system in a non-trivial manner.

To address this question, Blythe studied the totally asymmetric contact process (a special
case of the contact process where active sites are not allowed to activate the adjecent inactive
site against the direction of the given bias [97]) driven by an active boundary condition [10]:
He numerically studied mean occupancy ρ(x) at the steady state as a function of the distance
x from the active wall, and he found that the ρ(x) obeys the following scaling form:

ρ(x) ∼ x−β/ν||f(εν||x). (4.6)

This result implies that the correlation length ξ⊥ cannot be observed in the steady-state
density profile ρ(x) of the driven asymmetric contact process (hereafter we will refer to it as
DACP). As argued by Blythe, this implication is reasonable because the decay length L of
the occupancy ρ(x) can no longer be represented by a correlation length alone, but instead
by a combination of the two different lengthscales in general:

L ∼ ξ|| cos θ + ξ⊥ sin θ, (4.7)

where θ represents the strength of the advection. Since the critical exponent ν|| is larger
than ν⊥, the contribution from the first term becomes dominant near the critical point.

How can the exponent ν⊥ be measured? As an alternative strategy, Costa et al. studied
the velocity v of the wave (Fig. 4.1) of the activity [24]. Their idea was that since there is
a single lengthscale and a single timescale, the characteristic velocity of the system should
be given by their ratio:

v ∼ ξ⊥/ξ|| ∼ εν||−ν⊥ . (4.8)
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Figure 4.1: Wave of the activity in DACP. a: Occupancy averaged over 500 realizations at
high-density regime. b: Occupancy averaged over 500 realizations at low-density regime.
The figure is adopted from Ref. [24].

To substantiate their idea, they studied the mean-field theory of DACP. Within our notation,
the mean-field theory is represented by the following:

∂ρ

∂t
= ερ− λρ2 − vx

∂ρ

∂x
+D

∂2ρ

∂x2
, (4.9)

where the third term in the right hand side is introduced to take the advection into account and
vx denotes the velocity of the advection. Note that the mean-field theory possesses a distinct
transition at ε = 0. Assuming that ρ(t, x) can be described by ρ(t, x) = ρ∞(x)f(t, x) with
a suitable function f (where ρ∞ denotes the stationary solution of the mean-field theory),
one finds the following differential equation for f :

∂f

∂x
= λρ∞f(1− f)−

(
vx −

2Dρ′∞
ρ∞

)
∂f

∂x
+D

∂2f

∂x2
. (4.10)

If ε > 0, one can make use of the fact that ρ∞ → ε/λ and ρ′∞ → 0 as x→ ∞ to obtain the
following Fisher wave equation far away from the wall:

∂f

∂t
= εf(1− f)− vx

∂f

∂x
+D

∂2f

∂x2
. (4.11)

Assuming a travelling wave f(t, x) = f(x − vt), one eventually arrives at the following
expression for the velocity v of the travelling wave:

v = vx +
√
4Dε. (4.12)

Thus the velocity of the wave indeed exhibits a power-law behavior, and the exponent of
1/2 coincides with νMF

|| − νMF
⊥ (recall νMF

|| = 1, νMF
⊥ = 1/2; see Section 2.3.3).

4.1.3 Objectives of the research

The method to measure the critical exponent ν⊥ proposed by Costa et al. is unsatisfactory
for our purpose because of the following reasons:
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• The numerical result of the velocity of the travelling wave in DACP by Costa et al.
shows systematic deviation from the expected power law (Fig. 4.2). This suggests that
subleading corrections may be prominent.

• Even if the argument by Costa et al. were correct, this protocol suffers from the same
drawbacks as the critical spreading protocol we have seen in Section 3: One has to
track the time evolution of the wave and hence one typically suffers from lack of
statistics.

Also it is important to note that the speed of the advection and the control parameter cannot
be varied independently in DACP, forbidding one from systematically studying the impact
of advection on the system.

Given these, a main purpose of the present study is to study the impact of advection
in a more systematic way by introducing a new model which allows us to accomplish the
task. By numerically measuring physical quantities which are experimentally accessible
(namely, the steady-state density ρ∞(x) and the inactive interval distribution), we aim to
clarify how the quantities are affected in the presence of the advection, and thereby how one
can measure the critical exponents in this case.

4.2 Methods

4.2.1 Monte–Carlo simulation on a model

The model in the present study consists of a spatially one-dimensional string {si}L−1
i=0 of L

sites each of which can take either of two states, namely an active state (si = 1) or an inactive
state (si = 0). In order to mimic the effect of advection, we introduce a new parameter θ:
If the integer part of t tan θ, which indicates the position of a probe initially placed at the
wall, does not change after the increment of t by 1, we evolve the system according to the
standard rule of directed bond percolation (Fig. 4.3a) and otherwise we apply an advection
by introducing transition rules which are asymmetric in streamwise direction (Fig. 4.3b):

Prob(si(t+ 1/2) = 1|si(t) = 1, si−1(t) = 1) = 1− (1− p)2,

Prob(si(t+ 1/2) = 1|si(t) = 1, si−1(t) = 0) = p,

Prob(si(t+ 1/2) = 1|si(t) = 0, si−1(t) = 1) = p,

Prob(si(t+ 1/2) = 1|si(t) = si−1(t) = 0) = 0.

(4.13)

In other words, the speed of the advection is given by tan θ. We impose an active boundary
condition at the wall:

s0(t) = 1 for ∀t. (4.14)

Note that the system no longer possesses unique absorbing state, and hence that a non-trivial
steady state is well-defined even for finite system [10, 47]. This is in a sharp contrast with
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Figure 4.2: Velocity of the travelling wave in DACP. Velocity of the wave v is plotted as a
function of the control parameter r (which corresponds to ε in our notation of the mean-field
theory). The solid line is a guide-to-eye for v − vc = (r − rc)

ν1DDP
|| −ν1DDP

⊥ . The figures is
adopted from Ref. [24].
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the ordinary setup we discussed in the previous Chapter, where, for finite system, true steady
state is always absorbing and one is often forced to consider quasi-steady state.

Our model is more advantageous than DACP in a sense that it allows us to tune both
percolation probability and speed of advection independently. In DACP, the effective
diffusion coefficient is coupled with a speed of advection, and hence one cannot study the
dynamics with non-vanishing but weak advection. Price to pay for this advantage is that
correspondence between the behavior for the finite system with N sites and that for the
first N sites are not exact (unless θ = π/4, where the state of the ith site from the wall is
independent from that of the jth site for i < j). However, as we will see in the following,
clear scaling behavior can be seen even in the present model, and hence we do not consider
the price to be expensive for our purpose.

We performed a Monte–Carlo simulation on a lattice of the size N . Unless otherwise
stated, we set N = 8, 192. We started our simulation with the system whose site in the wall
is active and other sites are inactive. In order to study the steady state of the model, we
first performed the simulation for Wwarm timesteps and then the statistics were accumulated
over another Wsample timesteps. Unless otherwise stated, we fixed Wwarm and Wsample to be
Wwarm = 15× 104 andWsample = 85× 104, respectively. The simulation was repeated over
16 times to further improve statistics.

4.3 Results – Order parameter

4.3.1 Numerical results

First, we shall see that the model has two distinct phases by studying the order parameter.
Due to the breakdown of Galilean invariance we mentioned above, order parameter ρ has to
be measured with respect to the distance x from the wall. We defined the order parameter
ρ(x) as a fraction of time that the xth site from the wall is active during the stationary
simulation. The results shown in Fig. 4.4a shows that ρ(x) decays exponentially when the
percolation probability p is small whereas it saturates to a finite value when p > pc. This
suggests that the model has a distinct transition from so-called a low-density phase to a
high-density phase, despite the fact that absorbing state is no longer present. Although the
critical point pc is expected to be identical with the original directed bond percolation for a
square lattice (pc = 0.644700185(5) [55]), location of the critical point can be determined
a posteriori by using the power law decay of the order parameter which is expected near the
critical point: At the critical point, the order parameter is expected to decay in a power law
with exponent of −β/ν|| (the inset of Fig. 4.4a), as expected from (4.6).

The exponential decay in the low-density phase allows us to define a decay length L as
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Figure 4.3: Schematic representation of the model. a: Dynamic rules without advection.
b: Dynamic rules with advection ((4.13) in text). c: Typical spatiotemporal dynamics near
the wall for θ = 0. d: Typical spatiotemporal dynamics near the wall for θ = 2π/9. For c
and d, a case with p = 0.64807 (ε := (p− pc)/pc ∼ 5× 10−3) is shown.
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a characteristic length of the decay at p < pc, that is,

ρ(x) ∼ exp(−x/L(p; θ)) for p < pc, x≫ 1 (4.15)

As shown in Fig. 4.4b, we found that L as a function of p− pc shows a power-law behavior
in the vicinity of the critical point, and the exponent of the power-law behavior coincides
with the critical exponent ν|| of DP associated with divergence of the correlation time, as
long as advection is sufficiently strong (that is, θ is large). These results are consistent
with those reported by Costa et al. [24], where a heuristic argument for this result is also
given. Indeed, one can see, from the inset of Fig. 4.4b, that L(p; θ)/ tan θ takes very similar
value among various θ provided that p is same, suggesting that L(p; θ)/ tan θ corresponds
to the correlation time of the system. This implies that one can use ρ(x) instead of interval
distribution to probe divergence of correlation time, allowing him/her to effectively sidestep
the difficulty we described in the previous Chapter.

Price to pay for the ability to measure correlation time using the spatial decay of the
order parameter ρ(x) is difficulty in measuring critical exponent β from stationary value of
ρ(x) which is expected for sufficiently large x. Since the decay length L diverges in a same
manner as the correlation time, there is a considerable fraction of time in which the site is
active even in the low-density phase unless one measures ρ at extremely far away from the
wall. We demonstrate this effect by showing the results of the measurement of the order
parameter ρ at the fixed observation point (8,000th site from the active wall) for θ = π/4,
as shown in Fig. 4.4c. One can see a significant round-off at the onset of the high-density
phase. However, we are still able to plot the stationary value with respect to ε by making
use of the knowledge of the location of the critical point we can obtain through ρ(x), and
power-law behavior with the exponent of β can be confirmed.

Having seen how the critical exponents β and ν|| can be measured using the steady
state of this model, let us now study how ρ(x) experiences crossover from a case without
advection (just a simple active boundary condition, as mentioned in e.g. [35, 47]) to a case
with advection. To address this issue, we measured ρ(x) in a vicinity of the critical point
(p = 0.644710, that is, ε ∼ 1.5× 10−5) for various θ. Since the correlation length and the
correlation time of the system is expected to be very large, we performed the simulation on
a setup which is larger in both space and time: We set N , Wwarm and Wsample respectively
to be N = 32, 768, Wwarm = 106 and Wsample = 3× 106 in this case. As one can see from
the results shown in Fig. 4.4d, we observe a power law decay whose exponent is different
from β/ν|| that we have seen previously: Actually, the exponent coincides with β/ν⊥ which
is expected from a phenomenological scaling argument in a case without advection [44].
Beyond a certain lengthscale, the power-law decay with the exponent −β/ν|| is recovered,
although deviation from the expected behavior is present due to an inactive boundary
condition placed at the other side of the system. We will come back to this point after giving
theoretical interpretations of the numerical results in terms of a mean-field theory.
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Figure 4.4: Order parameter of the directed percolation model with active wall and asymmet-
ric connection. a: Spatial dependence of the order parameter ρ(x) for p−pc = (1.5)2k×10−3

(k = 2, 1, 0), p = pc and p − pc = −(1.5)2k × 10−3 (k = 0, 1, 2), from top to bottom. A
case with θ = π/4 is shown as an example. Inset shows the same data, but the vertical axis
is rescaled by xβ/ν|| . b: Decay length L (see text) of the order parameter for various θ. The
blue line is a guide-to-eye for L ∼ ε−ν|| . The inset shows L/ tan θ as a function of ε. c:
Order parameter ρ measured at x = 8, 000 for various θ = π/4. Solid curve represents a
guide to eye for ρ ∼ (p− pc)

β . d: ρ(x) in a vicinity of the critical point (p = 0.644710) for
θ = π/4 and θ = (7− 2k)π/180 (k = 0, 1, 2, 3), from top to bottom. Here, we performed
a longer numerical simulation in both space and time (except for θ = π/4): N = 32, 768,
Wwarm = 106 and Wsample = 3 × 106, and statistics were acquired over 8 realizations.
Inset shows the same data, but both the horizontal axis and the vertical axis are rescaled as
(tan θ)

ν⊥
ν||−ν⊥ x and xβ/ν⊥ρ(x), respectively. Note that the theoretical value β, ν||, ν⊥ of the

DP universality class was used to rescale the data.
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4.3.2 Mean-field theory

A mean-field theory provides a useful way to interpret the crossover we have seen above.
Although the mean-field theory is not exact in d-dimensional system with d ≤ 3, it success-
fully captures essential features of our results. Let us recall the mean-field theory of DACP
(4.9)

∂ρ

∂t
= ερ− λρ2 − vx

∂ρ

∂x
+D

∂2ρ

∂x2

with an active boundary condition

lim
x→+0

ρ(x) = ∞.

As long as one is interested in the steady state, one may put ∂ρ/∂t = 0, and since Galilean
invariance is expected to hold except for streamwise direction, one may also put ∇2ρ =

∂2xρ. As a result, we obtain the following Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP)
equation:

ερ− λρ2 − vx
dρ

dx
+D

d2ρ

dx2
= 0. (4.16)

As shown by Costa et al. [24], the asymptotic solution of (4.16) for large x takes several
forms depending on ε. For ε < 0, which we will refer to as the low-density phase, we have

ρ(x) ≃ exp(−x/ξ) where ξ = 2D√
v2x + 4|ε|D − vx

. (4.17)

For sufficiently small |ε|, ξ diverges as |ε|−1 for v′x > 0 and thus the exponent 1 coincides
with the mean-field DP exponent of ν||. If vx = 0, ξ diverges as |ε|− 1

2 , and the exponent 1/2
coincides with the mean-field DP exponent of ν⊥. On the other hand, we have ρ(x) ≃ ε/λ

for ε > 0 and the exponent 1 coincides with the mean-field DP exponent of β. Note that the
asymptotic behavior of ρ(x) for vx > 0 does not change even if vx = 0.

To focus on our purpose with the simplest case, we concentrate on a case with ε = 0,
that is, when the system is exactly on a critical point (asymptotic solutions for large x in
both the high-density and the low-density phase has already given [24]). If the advection
is absent (vx = 0), we can easily solve (4.16) to find ρ(x) = 6Dx−2/λ. The exponent of 2
coincides with the mean-field DP exponent of β/ν⊥. Meanwhile, we find ρ(x) = vxx

−1/λ

if the effect of advection is so large (vx ≫ 1) that the diffusive (fourth) term of (4.16) is
negligible compared to the advective (third) term. The exponent of unity coincides with the
mean-field DP exponent of β/ν||.

Given that which solution can be found is a matter of comparison between the second
term and the third term, it is natural to ask for lengthscale x∗ at which the second term
and the third term becomes comparable. To address this question, we check the ratio of
the terms which are assumed to be dominant over one assumed to be negligible [9]. If we
substitute ρ(x) = 6Dx−2/λ (the solution of the (4.16) for vx = 0) to the advection term and
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take a ratio over the diffusion term, we obtain the following:

vx
d

dx

6D

λ
x−2/

(
D

d2

dx2

(
6D

λ
x−2

))
=

vx
2D

x. (4.18)

Thus, the assumption that the advection term is negligible compared to the diffusion term
is valid for x → 0. Conversely, a similar argument leads us to find that the the assumption
that the diffusion term is negligible to advection term is valid for x → ∞. As a result, we
have the following asymptotic solutions of (4.16):

ρ(x) ∼


6D

λ
x−2; x→ 0,

vx
λ
x−1; x→ ∞.

(4.19)

The distance x∗ which satisfies 6Dx−2
∗ /β = vxx

−1
∗ /β, that is,

x∗ = 6D/vx, (4.20)

gives an approximate lengthscale at which ρ(x) experiences the crossover from ρ(x) ∼
6Dx−2/λ to ρ(x) ∼ vxx

−1/λ. As expected, x∗ diverges to infinity as vx → +0.

4.3.3 Numerical results revisited

Even though the mean-field theory cannot be directly applied when the spatial dimension d
is less than 4, one can give a heuristic argument to estimate the typical lengthscale at which
ρ(x) experiences crossover, albeit more roughly. Repeating the similar argument as what
we gave above, one is led to

ρ(x) ∼

{
x−δ⊥ ; x→ 0,

(x/vx)
−δ|| ; x→ ∞,

(4.21)

where δ⊥ = β/ν⊥ and δ|| = β/ν||. Then one can deduce, from a parallel argument to the
mean-field theory, that

x∗ ∼ v
− ν⊥

ν||−ν⊥
x . (4.22)

It is worthwhile to note that the value of ν⊥/(ν|| − ν⊥) is unity in d ≥ 4, so that it coincides
with what we have obtained in the mean-field theory (4.20). Recalling the empirical
observation in Fig. 4.4d that the coefficient of the power-law decay with the exponent β/ν⊥
is not sensitive to the value of θ, we arrive at the following scaling ansatz:

ρ(x; θ) ∼ x−β/ν⊥f((tan θ)
ν⊥

ν||−ν⊥ x), (4.23)

where f is the universal scaling function. We rescaled the data in Fig. 4.4d according to
this ansatz, and we found a reasonably good collapse as a result, as shown in the inset of
Fig. 4.4d (besides the artifact due to the inactive boundary condition).
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4.3.4 Remarks on some preceding studies

A few comments are in order before closing this Section: Statistical property of the decay
length L is different from the curtain width introduced by Chen et al. [22], although the
intuitive meaning of these quantities are similar to each other. In Ref. [22], the authors
considered probability Pw(n) that active state is present until nξ⊥ in the low-density phase,
and mode w of the distribution Pw(n) was defined as the curtain width. In that case, Pw(n)
is equivalent to the probability that the longest-surviving cluster which we observe at time t
was generated at t− nξ⊥/v, where v is the velocity of the advection. Thus, Pw(n) actually
probes extreme value of lifetime of a cluster of active sites in a sense, and it is reasonable
that the resulting curtain width w could be longer than the typical distance for which an
individual cluster can travel from the active wall. As clarified by Chen et al., the curtain
width w does not obey a pure power law, but is affected by the additional logarithmic factor:

w ≃ Aε−ν|| log
(ε0
ε

)
. (4.24)

On the other hand, the order parameter ρ(x) in present work directly probes the survival
probability of individual cluster, and so such an additional factor is absent.

Another comment concerns with apparent contradiction with Costa et al., who claimed
that the exponent ν⊥ cannot be accessed from steady-state density profile. In the driven
asymmetric contact process (DACP) proposed by Costa et al. [24], the velocity vx of the
advection and the diffusion constantD are coupled with the activation rate r by the following:

vx = r(1− ρ), D = vx/2. (4.25)

This implies that the velocity vx of the advection is almost fixed near the critical point,
and vx is not close to zero (recall that rc = 3.3055(5)). Also, assuming (4.22) gives a
good approximation of the lengthscale of the crossover, the typical lengthscale x∗ of the
crossover decreases very rapidly with vx. This makes the observation of the crossover near
the criticality in DACP practically impossible. However, the activation rate and the velocity
of the advection may be safely regarded as independent from each other in some cases
(e.g. applying shear flow to electroconvection of liquid crystals), and the crossover could be
observed in that case. Thus, our claim and that made by Costa et al. are not incompatible to
each other, but the apparent contradiction stems from specific selection of the model.

4.4 Results – Inactive interval distribution

Since the crossover of the order parameter is not clearly observed unless the advection
is sufficiently weak, it is desirable to find an alternative way to measure the remaining
static critical exponent ν⊥. In the following, we demonstrate that ν⊥ can be measured via
probability distribution of duration of interval measured at far away from the wall. Although
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the temporal interval distribution generally depends on the distance x from the active wall
due to the breakdown of Galilean invariance, choice of x does not make noticeable difference
as long as the saturation of ρ(x) is achieved. We measured the complementary cumulative
distribution functionR(τ) for the temporal interval distribution using the empirical estimator
(3.30). The use of the empirical estimator is justified because the correlation time of the
system is about 104 time steps at the longest within the range of p in the present study (recall
the inset of Fig. 4.4b), and hence Wsample is about 100 times longer than the correlation
time.

Just like the ordinary case we have seen in the previous Chapter, we observed a crossover
to an exponential decay for sufficiently large τ (Fig. 4.5a), enabling us to investigate a
characteristic time ξ of the decay:

R(τ) ∼ exp(−τ/ξ) for τ ≫ 1. (4.26)

The characteristic time diverges in a power law with exponent −ν|| when θ = 0 as expected.
As we increase the velocity tan θ, however, we observe that ξ deviates from the expected
power law, but exhibits power-law divergence with different exponent: In fact, the results
shown in Fig. 4.5b suggest that the new exponent is close to the critical exponent ν⊥ of
the DP universality class. The larger a value of θ is, the larger a value of ε∗ at which ξ
experiences the crossover becomes.

Simple heuristics provides clear interpretation on the results, even though analytical
treatment of the interval distribution is substantially more difficult than the order parameter
due to the fact that the distribution should be regarded as a multi-point correlation function
(see Section 3.1.2). Typical spatiotemporal dynamics of DP with advection at far away from
the active wall is shown in Fig. 4.6a. If the distance from an active wall is sufficiently large,
correlation between the local state at the probe and active wall is negligible, and hence
the dynamics looks similar to each other if we apply suitable Galilean transformation (Fig.
4.6b), although active wall is still needed to sustain the high-density phase. Then, in this
coordinate system, measuring the temporal intervals at the fixed position corresponds to
measure the length of the inactive cluster along a tilted line. Here, we apply a somewhat
rough approximation where we regard each cluster of inactive state as an ellipse which has
a major axis of length l|| and a minor axis of length l⊥. Choice of the major axis is based on
the fact that ν|| > ν⊥ in the DP universality class and so that the correlation time diverges
more rapidly than the correlation length. Then, the length L of the longest line across the
ellipse gives the characteristic time for decay of the distribution of the inactive intervals.
Simple geometric argument gives

L ∼

√√√√ 2ξ2||ξ
2
⊥

v2ξ2|| + ξ2⊥
. (4.27)

Important consequence of (4.27) is that, in the presence of the advection, L is expected to
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Figure 4.5: Temporal interval distribution of the directed percolation model with active wall
and asymmetric connection. a: Temporal interval distributions for various p is shown for
θ = π/9 as an example. b: Dependence on the distance to the criticality ε of characteristic
time ξ for θ = 0 (black), θ = π/36 (red), θ = π/18 (orange), θ = π/9 (green) and θ = π/4

(blue). The steeper dashed line shows a guide-to-eye for the power-law behavior with
exponent ν||, and the other line for ν⊥. The inset shows the same data, but the horizontal

axis and the vertical axis is rescaled as ε(tan θ)
− 1

ν||−ν⊥ and εν||ξ, respectively. Note that the
theoretical value ν||, ν⊥ of the DP universality class was used to rescale the data.
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Figure 4.6: Typical spatiotemporal dynamics of DP with advection in the high-density
regime. Active sites and inactive sites are depicted in gray and white, respectively. a: In
original coordinate system, measuring inactive intervals at fixed position corresponds to
measure inactive intervals along a vertical line (red line is shown as an example). b: Same
dynamics as a, but Galilean transformation is applied. The resulting picture is very similar
to ordinary DP. In this coordinate system, the red line is tilted, whose angle depends on the
velocity v of the advection.

exhibit power-law divergence with exponent ν⊥ near the critical point. The crossover is
expected for ε∗ such that v2ξ2|| ∼ ξ2⊥, that is,

ε∗ ∼ v
1

ν||−ν⊥
x . (4.28)

Parallel argument to what we gave for deriving (4.23) leads us to the following universal
scaling ansatz for the characteristic time ξ:

ξ(ε; tan θ) ∼ εν||g((tan θ)
− 1

ν||−ν⊥ ε), (4.29)

where g is the universal scaling function. We rescaled the data in Fig. 4.5b according to
this ansatz, and we again found a reasonably good collapse as a result, as shown in the inset
of Fig. 4.5b. This suggests that the aforementioned simple argument captures the essence
of the numerical results. Note that, if one would like to consider spatially d-dimensional
systems, repeating the geometric argument in a case of ellipsoids instead of ellipses suffices,
although the essential result is not expected to change.

Recalling the phenomenological scaling argument given in Section 3.1.2, it is natural to
speculate that the universal scaling ansatz (3.22)

R(τ ; ε) ∼ εν||−βh||(ε
ν||τ)
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Figure 4.7: Universal scaling of the temporal interval distribution of the directed percolation
model with active wall and asymmetric connection. a: Temporal interval distributions for
θ = 0, rescaled according to the scaling ansatz (3.22). b: Temporal interval distributions
for θ = π/9 (original data is shown in Fig. 4.5a), rescaled according to the scaling ansatz
(3.23). Inset shows the same data rescaled according to (3.22). Note that the theoretical
value β, ν||, ν⊥ of the DP universality class was used to rescale the data.

may hold in a case without advection whereas (3.23)

R(τ ; ε) ∼ εν⊥−βh⊥(ε
ν⊥τ)

with advection, as long as the system is sufficiently close to the critical point. To examine
this speculation, we rescaled the data for θ = 0 and θ = π/9 (as an example) according to
the universal scaling ansatz (3.22) and (3.23), respectively. The results shown in Fig. 4.7a
and 4.7b indicates this is indeed the case (It is important to note that, if the advection is
present, the interval distribution for various p does not overlap under rescaling with respect
to the scaling ansatz (3.22), as shown in the inset of Fig. 4.7b). From these observations,
one can safely conclude that the critical exponent ν⊥ in this case can be measured through
temporal interval distributions at the steady state, even if the advection is too strong for the
crossover of ρ(x) to be observed clearly. Hence we no longer need to rely on measuring
the velocity of the activity wave [24] which suffers from the same drawbacks as the critical
spreading protocol.

4.5 Discussions

To conclude this Chapter, let us summarize how one can measure the critical exponents in
a system with an active wall and advection:
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• Even though the system no longer possesses an absorbing state, qualitative behavior
of the density ρ(x) as a function of the distance from the active wall x is expected
to change across a certain critical point pc. Below the critical point, ρ(x) is expected
to decay exponentially whereas to saturate at some non-zero value above the critical
point. Near the critical point, a power-law decay of ρ(x) may be observed.

• The critical exponent ν|| associated with the divergence of the correlation time can be
measured through the decay lengthL of ρ(x) in the low-density phase: L ∼ (pc−p)−ν||

is expected near the critical point (where p denotes the control parameter of the
system).

• The critical exponent β associated with the order parameter can be measured through
ρ(x) at sufficiently far away from the wall in the high-density phase: ρ ∼ (p − pc)

β

is expected. Although the round-off is expected near the critical point (especially
for spatially one-dimensional systems, where L is expected to change very rapidly),
reasonable estimate of the exponent can be obtained provided that the scaling regime
is wide enough. One could also consider making use of the power-law decay in the
vicinity of the critical point (with exponent −β/ν||) and checking consistency.

• The most secure way to measure the critical exponent ν⊥ associated with the diver-
gence of the correlation length is to study the temporal interval distribution and to
estimate the characteristic time ξ of the decay: ξ ∼ (p − pc)

−ν⊥ is expected near
the critical point, although the crossover to −ν|| is possible for large p − pc. If the
advection is sufficiently weak, one may observe a crossover between two different
power laws (namely, x−β/ν⊥ for small x and x−β/ν|| for large x) for ρ(x) in the vicinity
of the critical point pc.

Thus, the complete set of the static critical exponents (β, ν||, ν⊥) can be observed by steady-
state measurements. In particular, it is worthwhile to emphasize that one does not have to
rely on interval distributions to obtain ν|| and hence one is practically free from considering
rather sophisticated data analysis we have seen in Chapter 3, although intentionally applying
advection in a controlled manner might be more difficult in some systems.

While we concentrated on presenting the numerical results in spatially one-dimensional
systems, the results are expected to be also applicable for higher dimensions, because the
results can be interpreted in terms of the phenomenological scaling theory, which does not
assume specific number of spatial dimensions. Note that we have numerically seen in Ref.
[84] that the essential results does not change in d = 2.



Chapter 5

A Universal Transition to Turbulence in
Channel Flow

Related publication by the author: M. Sano and K. Tamai. A universal transition to
turbulence in channel flow. Nat. Phys. 12, 249-253 (2016).
Contribution: The author (K.T.) set up the system to visualize and record the dynamics
of the transitional channel flow, and performed a series of experiment with his collaborator
(M.S.). The author performed an image analysis independently from the collaborator and
checked the consistency of the results each other. Also, the author devised a method to
measure the critical exponents from the binarized data, which was later developed to a more
systematic study, as reported in Chapter 3 and Chapter 4 in this thesis.

In the previous Chapter, we have seen that the critical exponents of the DP universality
class β, ν||, ν⊥ can be measured respectively through order parameter at far away from the
wall in high-density phase, decay length of the order parameter ρ in low-density phase and
temporal interval distribution in high-density phase respectively, when DP is subject to an
active boundary condition and advection. We are now on a stage where we carry on the
experiments and examine whether the transition indeed falls into the DP universality class
or not.

5.1 Specific backgrounds

5.1.1 Spatiotemporal intermittency and the DP universality class

By the late 1980s, the process of transition to temporal chaos in strongly confined systems
has been reasonably understood, due to the extensive studies on low-dimensional dissipative
dynamical systems and to rapid progress in experimental works. Remarkable results in the
studies along this line include the discovery of the universality for period-doubling route
to chaos [32] and experimental observation of it [63, 67]: A group headed by Libchaber

63
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performed a series of experiments on Rayleigh–Bénard convection in liquid helium and
mercury. In their experiments, the working fluids were strongly confined (in other words,
the aspect ratio of the cell was very small) so that only a small number of convective
rolls were formed, and temperature oscillations were measured using local bolometers. As
the temperature difference ∆T between the top and the bottom part of the fluid (which
is proportional to the Rayleigh number) was increased, the period-doubling cascade was
observed. Precise measurements near the onset of each bifurcation allowed Libchaber and
his colleagues to determine the ratio δ of the difference of the Rayleigh number between
the adjacent bifurcations to be δ = 4.4(1), which was found to be close to the celebrated
Feigenbaum constant δ = 4.669 · · ·.

In many systems of practical interest, however, the system is only weakly confined. In
that case, one may be forced to deal with spatiotemporal chaos where chaos has both a
spatial and a temporal meaning, and hence the situation is much less advanced than that in
strongly confined systems. It has been a challenging question whether universal description
can be obtained for spatiotemporal chaos, especially for subcritical bifurcations where the
transition can happen (as a response to strong disturbance) even though the regular (laminar)
state of the system is stable against infinitesimal disturbance.

The possible relation between subcritical transitions to turbulence and the DP univer-
sality class was first explicitly conjectured by Yves Pomeau in 1986 [79]. The idea behind
this conjecture is to focus on randomness of turbulent fluctuation when trying to understand
the behavior of fronts separating turbulent regions to laminar ones: Due to the randomness,
turbulent fluctuation (which may be localized in space) may either relax spontaneously into
laminar state or contaminate its neighbor, and the competition between the two processes
is highly analogous to the dynamics of the models in the DP universality class. More
specifically, the conjecture can be stated like the following: Transitions to turbulence via
spatiotemporal intermittency (intermittent spatial coexsistence of laminar state and turbu-
lent state) may fall into the DP universality class. This conjecture suggests that the universal
description for subcritical transition to spatiotemporal chaos may be available.

For careful readers who may have confused, let us emphasize here that subcritical nature
of the transition and continuity of it in a sense of statistical mechanics do not contradict
with each other. Indeed, subcritical nature of the transition implies that one expects to
observe hysteresis as one continuously varies the control parameter of the system, which
is one of the prominent characteristics of first-order (discontinuous) phase transitions in
equilibrium. However, as we have already argued in Section 2.1, an absorbing state in
a continuous absorbing phase transition is not completely unstable but metastable, and
hence the expected hysteresis does not necessarily imply that the transition is discontinuous.
Another point to concern is that the localized chaotic (turbulent) state may have the minimal
size below which it cannot be sustained. However, such a presence of the minimal size does
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not constitute a discontinuous jump of the order parameter (which can be typically defined as
an area fraction of a localized chaotic (turbulent) state) in the thermodynamic limit, provided
that the minimal size is not proportional to the aspect ratio of the system. In summary, it is
possible in principle that a system exhibits a subcritical transition to spatiotemporal chaos
which is continuous in a sense of statistical mechanics, although one should be careful not
to confuse with notions in studies of dynamical systems.

Having seen that a continuous transition to spatiotemporal intermittency may fall into
the DP universality class in principle, the next natural question is whether this is indeed
the case in reality. This question led to extensive experimental studies on Rayleigh–Bénard
convection [23, 25] in a system with higher aspect ratio than that of Libchaber’s. As a
result, the researchers reported significant deviation from the conjectured DP universality
class, although β = 0.30(5) in a linear cell is in a reasonable agreement with the spatially
one-dimensional DP (see Tab. 2.2). This suggests that the conjecture by Pomeau is incorrect
at least in a case of Rayleigh–Bénard convection. However, as we have seen in Chapter 3,
measurements of the critical exponents ν||, ν⊥ with a limited resources is a delicate issue
(note that the efficient and non-biased estimator of the interval distribution had not been
studied until the late 1990s [99]), it should be said that it has still been unclear whether the
conjecture is indeed incorrect at this stage.

5.1.2 Transitions to turbulence via spatiotemporal intermittency in
shear flow

Earlier works on transitions to turbulence in shear flow suggest that the transitions are
discontinuous. To the author’s knowledge, the first experimental work in light of the
conjecture by Pomeau has been performed by Bottin and her coworkers [11, 12]: They
conducted experiments on plane Couette flow (simple shear flow between two parallel
plates moving at the same speed but in opposite directions) with an apparatus of moderate
aspect ratio (about 70h in span-wise direction and 380h in stream-wise, where h denotes
the half width of the gap), and their experimental results suggested that the transition is
discontinuous. Similar observation was obtained numerically by Duguet et al. [30] However,
neither of the authors did not manage to study the transition very close to the critical Reynolds
number, presumably due to the huge system size and very long observation time required
to study the flow in that case. This makes drawing a convincing conclusion about the
nature of the transition difficult, especially when there is a considerable possibility that the
system exhibits continuous transition characterized by a power-law onset with a rather small
exponent.

On the contrary, extensive studies on pipe flow performed in the 21st century suggest that
spatiotemporal intermittency observed in pipe flow is highly analogous to DP: It has been
turned out that lifetime of a turbulent puff shares a same characteristics as a memoryless
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process and that the competition between the decaying process and the splitting one is the
crucial factor for transitions to turbulence in pipe flow [3]. This suggests that the transition
to turbulence in pipe flow is highly analogous to the phase transition in DP. More recently,
numerical evidence that Couette flow exhibits scale invariance at the onset of turbulence
[88], which is often interpreted as a sign of a continuous transition, although they made
a tricky selection on a computational domain and hence it is not clear whether the scale
invariance that Shi et al. is observable in reality.

5.1.3 Objectives of the research

As we have seen in the previous Subsection, there is a considerable dispute about whether the
transition to turbulence in shear flow exhibits universal features as conjectured by Pomeau.
Although indirect evidences have been reported from both sides of the opinion, there has
been no published work which directly measured the critical exponents. Hence, the aim of
the present work is to perform a series of systematic experimental studies on transitional
shear flow and to provide a convincing evidence to directly address this problem.

5.2 Methods

5.2.1 Selection of the geometry

Before the experimental system is designed, one needs to consider carefully about the ge-
ometry on which one performs measurements. For example, the effective dimensionality
changes the expected value of exponents and thereby practical difficulty for reliable measure-
ments. Although pipe flow might be a natural choice considering the recent development in
experiments, it is disadvantageous for measuring the critical exponents because of its quasi-
one-dimensional character: In spatially one-dimensional system, the critical exponent β/ν||
of the DP universality class associated with the power-law decay of the order parameter with
respect to the distance from the active wall is very small (see also Chapter 4):

β1DDP/ν1DDP
|| = 0.159464(5) (β2DDP/ν2DDP

|| = 0.4504(10)) (5.1)

This means that one has to measure the order parameter over six orders of magnitude just in
order to observe a decay in one order of magnitude, which is obviously infeasible. Hence
it is desirable to perform measurements in quasi-two-dimensional system for our purpose,
and then channel flow becomes a natural choice.

5.2.2 Construction of the channel

In order to make the system as close to thermodynamic limit as possible, we constructed a
huge experimental channel (Fig. 5.1a, 5.1b). The channel comprised 3 pieces of slots (see
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Fig. 5.1c) with streamwise length of 1,960 mm and spanwise width of 1,000 mm. Both ends
of each slot were reinforced by welding 50-mm-thick flanges to ensure the precision of joint
between two slots using O-ring. The channel walls were made of 25-mm-thick Polymethyl
methacrylate (PMMA) glass plates of optical surface quality. The side walls were made of
PMMA strips of 50 mm×1000 mm×5 mm. When constructed in this way, the precision
of the depth was ±0.1 mm. Gap width of the channel needs to be as small as possible, but
if it is too small then relative inhomogenity of the gap width due to spatial variety in the
thickness of the wall becomes larger, which may work as a quenched disorder and thereby
affect the resulting critical phenomena. As an acceptable compromise, the gap width was
chosen to be 5 mm. Thus, the aspect ratio of the channel was 2352h × 360h × 2h, which
is much larger than what was used in previous studies in this context, e.g. in Bottin et al.
[11, 12].

To avoid further deflection due to static pressure load in the channel, cross-braces were
placed at 425-mm intervals along the channel. The working fluid is water. The channel
inlet was connected to a buffering box via a smoothly curved contracting joint whose area
contraction ratio was 1:20. To set a turbulent boundary condition, we placed a grid near the
inlet. (When the grid is covered with 7 layers of mesh screens, the flow remained laminar
in a whole channel at least up to Re = 1, 400. Since the covering by mesh screen was not
sufficient at the edge, turbulent flows did not decay near the both ends of the buffering box
near z = 0 mm and z = 900 mm at Re = 1400. Those turbulent flows injected from the
inlet gradually grew and spread. Even in that case, no spontaneous nucleation of turbulent
spot from the laminar state in the middle of the channel was confirmed.) Velocity control
was attained by electronically controlling the speed of pump and the opening of the valve.
The flow rate Q was measured by a flow meter (FD-UH40G, Keyence) and the Reynolds
number Re was estimated by

Re =
3Q

4hνK
, (5.2)

where νK denotes the kinematic viscosity of the water. Note that this Reynolds number
coincides with the Reynolds number defined in terms of centerline velocity if the flow
is completely laminar. The temperature of the water was controlled at 25 ◦C within the
accuracy of ±0.1 ◦C.

5.2.3 How to visualize the flow

There are four representative ways to experimentally study the transitional shear flow,
namely hot-wire anemometry, laser Doppler velocimetry, particle image velocimetry and
flow visualization by reflective flakes. Hot-wire anemometry and laser Doppler velocimetry
measure the velocity of the fluid at the certain point, using respectively change in electrical
resistance due to cooling by the flow [77, 86, 87] and the Doppler shift caused by parti-
cles passing through interference fringe of two coherent lasers [86, 90, 104]. Meanwhile
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Figure 5.1: Large experimental channel used in this work. a: A picture of the experimental
channel. b: The experimental channel illuminated by a light source. c: The figure is
reproduced and modified from Supplementary Information of Ref. [84].
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particle image velocimetry and flow visualization by reflective particles are used to extract
information about two-dimensional (or possibly three-dimensional) flow field by making
use of so-called tracer particles. Since we are interested in characterizing the dynamics of
spatially localized turbulent spot, methodologies in the latter category are more favorable
and hence we will describe them in some more detail in the following.

Particle image velocimetry (PIV) is an optical technique where the working fluid is
seeded with small spherical particles and one tracks the motion of the particles, assuming
that these particles faithfully follow the velocity field of the fluid1. Standard procedure for
PIV is as follows:

1. Immerse moderate amount of seeding particles into the working fluid so that one can
find sufficiently large number of particles within small regions on average and yet
each individual particle is identifiable.

2. Illuminate the system with light sheet and take two successive images within reason-
ably short time spacing.

3. Split the acquired image into many small windows (often referred to as “interrogation
windows”) and then compute the displacement vector for each interrogation window
with help of autocorrelation.

Unfortunately, up to the current technology, light sheet with a width of about 6 m is not
available. What is worse, one of the key tasks in the present study is to probe spatiotemporal
correlation of the system, and hence the measurement must be also resolved in time. This
is in a sharp contrast with conventional usage of PIV, where one takes a single snapshot or
accumulate an ensemble of independent snapshots (by taking each snapshots with sufficiently
long time spacing) to compute statistical quantities. Although there indeed is a work by
Lemoult et al. which performed time-resolved PIV for short period of time (100 advective
time units, that is, 100H/ucl where H(= 2h) is a gap width and ucl is a centerline velocity
of the flow) to investigate the detailed inner structures of the turbulent spots in channel flow
[60, 61], the time-resolved PIV is infeasible in the present study considering the amount of
statistics needed for reliable measurements of the critical exponents.

Flow visualization by reflective flakes, which we employed in the present work, is a
substantially different method from PIV, although it may look quite similar at first glance.
Contrary to PIV where the displacement of the spherical particles are assumed to be related
to the velocity field, visualization by reflective flakes utilizes the orientation of the platelets.
Procedure of the flow visualization by reflective flakes is as follows:

1In reality, great care has to be paid to ensure the assumption is indeed valid. For example, the density of
the particles must be close to that of the working fluid, and the size should be small enough to quickly follow
the flow field and yet large enough so that sufficient amount of illuminating light is scattered by particles.
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1. Immerse sufficient amount of seeding particles into the working fluid. In this case,
individual particles do not have to be identifiable from the image, although putting
too much tracers into the fluid may affect the resulting flow field.

2. Illuminate the system with light sheet and record images at an appropriate frame rate
so that the desired time resolution is achieved.

3. Perform a sensible image analysis to distinguish between laminar flow and localize
turbulent spots.

Thus the experimental procedure and accumulation of statistics is simpler than PIV. A price
to pay for this advantage is that it is not straightforward how the resulting orientations of
particles are related to the flow field of interest, as Gauthier et al. points out [36]: There have
been very few published works which are concerned with this issue, one of the exceptions
being the work by Savas [85]. Lack of systematic studies on flow visualization by reflective
flakes presumably stems from the fact that one has to consider a motion of ellipsoid in
general and thereby the governing equation becomes complicated, although one can still
solve it analytically in a very simple case of plane Couette flow [52]. Nevertheless, the
visualization by the reflective flakes is indeed effective as we will see below, and one could
argue, at least qualitatively, that the particles align themselves onto the “stream surfaces”
[85].

In the present study, Iriodin 323 (Merck) was used as a tracer particle. Iriodin 323 is
mica platelets coated with titanium dioxide (10-20 µm in diameter and 3 µm in thickness,
Iriodin, Merck). The concentration of the tracer was reduced to 0.04% in weight to keep the
change of viscosity negligible (<0.1% according to Einstein’s law [20]). Thin platelets tend
to align perpendicular to shear stress which is parallel to the x-z surface in laminar flow
states while they rotate in turbulent spots. The grazing angle illumination brought moderate
light reflections from the laminar regions to the front, while scattering from the turbulent
spots is omni-directional and its intensity deviated significantly from that of laminar regions
(see Fig. 5.1b). Six commercial projectors (PJ4114NW, 3000 lumen, Ultra-short focal
length, Ricoh) were attached 300 mm above and 250 mm apart from the (x, z) surfaces to
illuminate the channel surface with a grazing angle to attain reasonably uniform intensity of
illumination. With this setup, we obtained a clear visualization of localized turbulent spots,
as shown in Fig. 5.2c.

5.2.4 Acquisition of statistics

Three monochrome CCD cameras (B1620M, Imperx, 1608 pixels 1208 pixels, 10 frames/sec)
facing the center of the x-z plane of each slot synchronously captured movies of spatio-
temporal dynamics of the flow of each slot. For the evaluation of the turbulent fraction, ρ(x)
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Figure 5.2: Flow visualization by reflective flakes. a: Raw image of the tracer particles we
used in the present study, Iriodin 323. b: A photomicrograph of the tracer particles. The
scale bar corresponds to 50 µm. c: Typical snapshot of the visualized flow. The picture is
adapted from Ref. [84].
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was measured at 6 positions (x =0.65 m (= 260h), 1.27 m (= 508h), 2.68 m (= 1072h),
3.23 m (= 1292h), 4.70 m (= 1880h), 5.24 m (= 2096h)) where the incident angle from
each of 6 light sources to each measuring position in the channel are almost equal, simul-
taneously the reflection angle from the measuring position to each of 3 CCD cameras are
almost equivalent. This choice was made to avoid unwanted inhomogeneity in the turbulent
fraction ρ(x) due to anisotropic effect of the scattered light from the platelets.

5.2.5 Image analysis

To obtain a background profile, the spatial profile of the scattered light intensity for the
laminar state Ilam(x, z, t) was captured at Re ∼ 600 as movies for 100 sec just before
and after every series of measurements was performed. Then the acquired background
Ilam(x, z, t) was averaged over time, and the resulting image I0(x, z) = ⟨Ilam(x, z, t)⟩t. For
every image I(x, z, t), the image is divided by the average of the background to obtain the
normalized image N(x, z, t):

N(x, z, t) :=
I(x, z, t)

Ilam
(5.3)

This procedure was useful for suppressing the spatial inhomogenity of the image due to
the illumination, as demonstrated in Fig. 5.3c. Since the observed light intensity is not
constant but rather fluctuates in time even at laminar flow, we first quantified the fluctuation
by studying the normalized image of the background itself:

Nlam(x, z, t) :=
Ilam(x, z, t)

I0(x, z)
. (5.4)

It turned out that the fluctuation property of the background can be well approximated by
a Gaussian distribution (black curve in Fig. 5.4). Given this observation, we computed the
standard deviation σ(x, z) of Nlam(x, z, t) and regarded the resulting σ(x, z) as a character-
istic amplitude of the fluctuation. Near the onset of sustained turbulence, where we are most
interested in, the distribution of the value of N(x, z, t) began to deviate from the Gaussian
distribution at

|N(x, z, t)−Nmode(x, z)| ≳ 3σ, (5.5)

as suggested by red curves in Fig. 5.4. Hence, we regarded the pixel (x, z, t) as in a turbulent
state if the normalized intensity N(x, z, t) satisfies the above condition. A few comments
are in order: First, the choice of the coefficient in a right hand side of (5.5) does not affect
the result of binarization so much, although the best visual correspondence was obtained if
we chose it to be 3. Second, in the left hand side of (5.5), we used mode value instead of
just a unity to take systematic variation due to sedimentation of the particles into account.

Still at this stage, erronous detection of a turbulent state is possible, which may drastically
affect the measurements of laminar interval distributions. In order to remove the erroneous
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Figure 5.3: Procedure of binarization. a: Original image (3 illuminating projectors are
used in this sample.). b: Background image taken at Re ∼ 600 and averaged in time. c:
Normalized image divided by the background image. d: Binary image showing detected
turbulent regions which exceed more than 3σ(x, z) at each pixel. The picture is adopted
from Ref. [84].

detection, we excluded clusters of turbulent state whose size was smaller than h2, assuming
that turbulent eddies at moderate Reynolds number cannot be smaller than the gap width.
Typical results of the binarization is shown in Fig. 5.3d, and the results are used to calculate
the quantities of interest in what follows.

One may notice in Fig. 5.3d that the turbulent spot is not completely filled with the
turbulent (white) pixels but it contains some laminar (black) pixels inside it. This is
presumably due to the erroneous nondetection which may happen when turbulent fluctuation
is within 3σ from the laminar profile by chance, and this can indeed cause overestimation of
the laminar interval distribution for short intervals. Typically, the time it takes for individual
turbulent spot to pass through a probe at fixed position is about 1 second, and hence
the interpretation of the interval distribution should be performed in terms of statistical
mechanics only when this criterion is fulfilled.
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Figure 5.4: Typical probability distribution functions (PDF) of image intensity fluctuations
measured at a fixed location (x ∼ 3.2m) in a small region (25 mm× 25mm) and accumulated
for 1,000 frames. All movies were normalized by a time averaged background image taken
for a laminar state (Re ∼ 600), then histogram was accumulated for the normalized images.
Black symbol represents PDF of intensity fluctuations in a laminar state (black), PDF is
close to a Gaussian distribution. As Re increases to Re = 869 (red) and Re = 904, the
turbulent spots gradually increase. Accordingly, intensity fluctuations show large deviations
from the Gaussian both to brighter and darker sides. Note that PDF is a superposition of a
narrow Gaussian originated from laminar states and a broad distribution with large skewed
wings originated from turbulent spots. Large deviations which exceed 3σ (green dashed
line) from the mean laminar intensity were regarded as the turbulent state. This figure is
adopted from the Supplementary Information of Ref. [84].
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Figure 5.5: Typical dynamics of the turbulent spots. Pictures were taken at x = 3.23 m by
the monochrome CCD camera. a: Re ∼ 800, b: Re ∼ 830, c: Re ∼ 900

5.3 Experimental results

5.3.1 Qualitative observation

Results of the qualitative observation for various Reynolds number is shown in Fig. 5.5. If
the Reynolds number is small, the localized turbulent rarely enters the observation region,
and spot would eventually decay into laminar state even if entered (Fig. 5.5a). Near the onset
of sustained turbulence, the turbulent spots enters the observation region intermittently, and
it can sometimes decay or sometimes split (Fig. 5.5c). If the Reynolds number is high, the
observation region is filled with turbulent patterns (Fig. 5.5c).

Normalized image we obtained in Section 5.2.5 enabled us to perform the qualitative
analysis for the entire channel. The results shown in Fig. 5.6 suggests the system indeed
possesses the distinct transition from decaying turbulence to sustained turbulence. Mean-
while, we also found from Fig. 5.6 that the flow tends to be laminar near the sidewall even if
the Reynolds number is sufficiently high, presumably due to dissipative friction at the wall.
Since we are interested in a bulk property of the flow, hereafter we restricted our analysis
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Figure 5.6: Spatial variation of the flow across the transition. a: Snapshots taken by three
CCD cameras from left to right, respectively, at Re = 798. Quick decay of turbulent flow
is evident. Colour represents the normalized image intensity. A black colour is assigned
to the point where the image intensity is close to the laminar state (see the colour map).
b: Snapshots at Re = 842. The intermittent nature of the turbulent spots can be seen.
c: Snapshots at Re = 1, 005. Saturation of the turbulent fraction is evident This figure is
reproduced from Ref. [84].

within a half span width around the mid-height.

5.3.2 Turbulent fraction

In order to characterize the transition, we performed a steady-state measurement of the
area fraction of the turbulent region (hereafter referred to as “the turbulent fraction” ρ) for
various values of x. The value of ρ, estimated by measuring the time fraction occupied
by turbulent flow averaged over a protracted time period (approximately 40 min; that is,
100 times the length of the flow circulation time), was found to saturate to finite value
ρ0(Re) for higher Reynolds number and for larger x, as shown in Fig. 5.7b. The saturation
motivated us to measure ρ0(Re) as a function of Re at several distant locations x (namely,
x/h = 1292, 1880, 2096). Since ρ0 is a natural candidate for an order parameter in a context
of DP-class transition which increases continuously from zero to positive values, the curves
in Fig. 5.7a are fitted by the function

ρ0(Re) ∼ (Re− Rec)
β. (5.6)
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As a result, we obtained the following estimates for the critical exponent β and the critical
Reynolds number Rec:

Rec = 830(4), β = 0.58(3), (5.7)

which is in a reasonable agreement with the spatially two-dimensional DP universality class.
Note that, since the choice of the region for fitting is a delicate issue, we varied the range
for fitting variously to estimate the uncertainty. Also, the critical Reynolds number Rec is
fixed hereafter to prevent further arbitrariness from involving.

The above results encouraged us to measure ρ(x) as a function of the distance from
the grid for Re < Rec. As shown in Fig. 5.7b, ρ(x) showed clear exponential decay for
Re < 803, enabling us to define a decay length L by

ρ(x) ∼ exp(−x/L). (5.8)

We investigated L as a function of Re, as shown in the inset of Fig. 5.7, and the result
suggested that L shows power-law divergence with

L ∼ (Rec − Re)−ν . (5.9)

with the exponent of ν = 1.1(3) as the best fit. This value is consistent with the critical
exponent ν|| of the DP universality class, although the uncertainty is large.

5.3.3 Laminar interval distribution

Given the difficulty to judge the order of the transition from qualitative behavior of the
system and from the empirical measurements of the turbulent fraction, crucial difference
between first-order phase transitions and second-order ones is whether the system exhibits
divergence of the correlation length as approaching to the critical point. The results shown
in Chapter 4 indicate that measuring the temporal interval distribution P (τ) of laminar state
at fixed downstream locations for Re > Rec provides a good opportunity to address this
question: If the system can be described as the DP with an active wall and advection, the
following universal scaling ansatz is expected to hold:

P (τ) ∼ τ−(2−β/ν⊥)f(εν⊥τ). (5.10)

To check whether this is indeed the case for channel flow, the distributions P (τ) at 3,200
mm away from the grid were accumulated for 40 different spanwise positions within a half
span width around the mid-height. First, Therefore, the distributions N(τ) at x = 3, 200

mm were accumulated for 40 different z-positions within a half-span width (±225 mm)
around the mid- height. For small τ , a power-law distribution is expected near Re = Rec.
Fig. 5.8a shows the resulting P (τ) for several different Reynolds numbers. We fit this by
the power law

P (τ) ∼ τ−µ⊥ (5.11)
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Figure 5.7: a: The turbulent fraction ρ versus Re is plotted at different downstream locations:
x/h = 1, 292 (orange square), x/h = 1, 880 (blue diamond) and x/h = 2, 096 (green
square). Error bars represent standard deviation. Inset: a log-log plot of ρ as a function of
reduced Reynolds number ε, where ε := (Rec − Re)/Rec, with Rec = 830(4). The solid
blue lines are the best fit, εβ with β = 0.58(3), for the data in 10−3 < ε < 10−1. Here,
numbers in the parentheses denote 95% confidence intervals in the sense of the Student’s t
distribution. The same applies to the following. Note that data points belowRec are removed
for fitting. A non-vanishing order parameter below Rec due to a finite size effect exists as
usual; however, relatively small systems can show remarkably clear power-law behaviour
in numerical models exhibiting a DP transition. b: The turbulent fraction as a function of
the distance x from the inlet where turbulence is created by a grid. Measurements were
performed for six different xwhere the incidence angles and the reflected angles of the light
were identical. The solid lines show the exponential fittings, ρ(x) ∼ exp(−x/L), applied
for the data satisfying x/h > 1, 040. Error bars represent standard deviation. Inset: log-log
plot for L versus ε. Error bars of the fitted values L are 95% confidence limits. The solid
line is the best fit, L ∼ |ε|−ν|| with ν|| = 1.1(3). The figure is adapted from Ref. [84].
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and found µ⊥ = 1.25(5), as the best fit. This is close to the universal exponent in the DP
universality class: µ = 1.204(2).

To observe the tail of the distributions, a complementary cumulative probability,

R(τ) :=

∫ ∞

τ

P (t)dt (5.12)

was estimated using the empirical estimator (3.30), as shown in Fig. 5.8b. We defined the
characteristic time, ξ, by fitting the tail of R(τ) with an exponential function

R(τ) ∼ exp(−τ/ξ). (5.13)

and we found that ξ as a function of ε shows power-law divergence

ξ ∼ ε−ν⊥ , (5.14)

although deviation from the power law is found at large ε as expected. Fitting the data with
a power law in a region where ξ ≳ 1 (sec) is achieved (keeping the argument in Section
5.2.5 in mind), we find the following estimate of the critical exponent (Fig. 5.8c):

ν⊥ = 0.72(6). (5.15)

Although the range of the power law is limited owing to the finite size of the system, the
resulting exponents β, ν⊥, µ⊥ satisfies the following scaling relation (which follows from
(5.10)) within experimental accuracy:

µ⊥ = 2− β/ν⊥. (5.16)

As such, these results encourage the further exploration of universal features for the subject
phenomena: We rescaled a universal scaling hypothesis (5.10). Note that, in contrast with
fitting, no free parameter is involved in this scaling analysis, as long as we fix the critical
point Rec and we use the theoretical value of the DP universality class for the rescaling.
We found that several curves overlap, as shown in Fig. 5.8d. It is important to emphasize
that it is the first time that the scaling collapse of the experimental results on steady-state
measurements have been performed in a context of absorbing phase transitions. All these
results support that the transition to turbulence in channel flow can be understood as a
critical phenomena of DP subject to advection by a mean flow.

5.4 Discussions

The critical exponents estimated in the experiments, along with the theoretical value of the
spatially two-dimensional DP universality class is summarized in Tab. 5.1. This result sup-
ports the long-standing conjecture that transition to turbulence falls into the DP universality
class. Although our finding described in this Chapter should be substantiated by theory
or numerical evidences, our results suggest some relevant implications. Examples of the
implications are listed up in the following:
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[84].
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Table 5.1: Summary of the critical exponents measured in this experiment. The row
entitled “Theory” shows the theoretical value of the DP universality class up to the digit
where comparison with experimental results is meaningful (see Tab. 2.1 for more precise
value).

d = 2 β ν⊥ ν|| µ⊥

Our results 0.59(4) 0.75(6) 1.29(11) 1.25(5)
Theory ∼0.58 ∼0.73 ∼1.30 1.204(2)

• The fact that the transition to turbulence in channel flow falls into DP universality
class means that the competition between decaying and splitting of the turbulent spots
is the most relevant process for the transition, just as in a case with pipe flow.

• The fact that the spatially two-dimensional DP universality class is observed in this
system (given a rather limited size in spanwise direction) means that experimental
realization of the DP universality class does not necessarily require extremely large
system, although in principle the system should be as close to as the thermodynamic
limit as possible.

• In contrast with turbulent liquid crystals, the absorbing phase in this system is laminar.
Hence it might be unnecessary for a system to have a turbulent absorbing state so that
it falls into the DP universality class.

To sum up, our finding suggests the possibility that transitions to turbulence in shear
flow allows a room for simple and universal description and that the DP universality may
be realized in wider subsets of absorbing phase transitions in reality (than it had been
considered to be, at least).





Chapter 6

Conclusions and Perspectives

Throughout this thesis, we aimed to clarify to what extent the notion of the universality of
absorbing phase transition is relevant for understanding natural phenomena and to examine
whether a transition to turbulence in channel flow exhibits universal features so that it can
be described in terms of an absorbing phase transition. In particular, we pointed out that the
apparent “fragility” of the most fundamental universality class of absorbing phase transitions
may simply stem from the fact that we were actually ignorant of how should we analyze the
data (in Chapter 3), and provided experimental results which suggest that the transition to
turbulence in channel flow falls into the universal scenario of the directed percolation (in
Chapter 5).

It is worthwhile to re-emphasize here that the notion of universality in absorbing phase
transitions possesses a strong potential of providing us a universal description of consider-
able amount of spatiotemporally complex phenomena. By focusing on a statistical features
of macroscopic characterizers (e.g. whether the flow is locally laminar or turbulent) while
skipping other features (e.g. detailed velocity field of the flow), one may be able to find a
universal law in that coarse-grained scale even though the equation governing the micro-
scopic dynamics are very complex and has chaotic solutions. The author believes that the
notion of universality can be used (a) to create a predictive theory on a certain phenomenon
by establishing a link between (universal) macroscopic features and (system-specific) mi-
croscopic dynamics, and (b) to describe various systems in a unified way (e.g. the effective
Langevin equation (2.33),(2.34) with system-specific parameters ε, λ,D,Γ).

Given this, let us discuss some possible directions for future studies:

• Extensive work which shows the transition to sustained turbulence in narrow Taylor–
Couette flow falls into the DP universality class was published [59] at the same
time as ours. More recently, numerical evidences that the transition in model shear
flow also falls into the DP universality class was reported [21]. Now it is high
time, in the author’s opinion, to go one step forward and clarify the relation between a
description in terms of non-equilibrium phase transitions and a conventional approach
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of dynamical systems. A work by Shih et al., in which dynamics among laminar flow,
turbulent flow, and so-called zonal flow are represented by predetor-prey model [89],
might be a sensible clue in this direction.

• Although the author believes that the robustness of the DP universality class had
been “underestimated” in experiments, the author is also aware that an absorbing
phase transition in reality is not necessary so simple as stochastic models, recalling
that even transitions to an absorbing phase in deterministic models are substantially
more complicated than those in stochastic models. Hence, the robustness of the DP
universality class in reality should be re-examined and estimated properly, based on
quantitative and reliable evidences.

Considering these, it could be said that a series of works presented in this thesis is just the first
step along a long and winding road to complete understanding of transitions to turbulence
and of the universality of absorbing phase transitions. Nevertheless the author does hope
that the methodology and experimental results provided in this work play a significant role
to promote an effort to gain a universal insight into spatiotemporally complex phenomena
such as turbulence.
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