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Abstract

A bilayer membrane is a fundamental component of living cells. It has been exten-
sively studied from the perspective of not only biology but also soft matter physics.
Due to the soft nature of the bilayer membranes, they exhibit various shape trans-
formations by external stimuli. These shape transformations are well described in
the theory of elasticity, and to examine the mechanical properties of the bilayer
membrane is essential. In this dissertation, we focus on the two aspects of bilayer
membranes: morphologies and mechanical properties. Specifically, we examined
morphological changes induced by chemical reactions and pressure profile within
the bilayer membrane.

First, we investigated shape transformations of bilayer membranes induced
by hydrolysis and condensation reactions of amphiphilic molecules using coarse-
grained molecular simulations. Asymmetric chemical conditions between inside
and outside the vesicles are widely observed both in vitro and in vivo. Thus, we
investigate the shape transformations of vesicles under such an asymmetric chemi-
cal condition. The asymmetric chemical condition causes the asymmetric chemical
reactions between the inner and outer leaflets of a vesicle, leading to the transport
of amphiphilic molecules between two leaflets. It is found that the resulting area
difference between the two leaflets induces the two types of shape transformations:
bilayer sheet protrusion (BP) and budding. Both BP and budding occurs at low
reduced volume, whereas only BP occurs at high reduced volume. The probabil-
ities of these two types of transformations depend on the shear viscosity of the
surrounding fluids compared to the membrane as well as the reaction rates. A
higher surrounding fluid viscosity leads to more BP formation. The inhomoge-
neous spatial distribution of the hydrophobic reaction products embedded in the
bilayer forms the nuclei of BP formation in the bilayer, and faster diffusion of the
products enhances BP formation.

Next, we studied the pressure profile calculation method in molecular simula-
tions. The pressure profile within the bilayer membrane has been calculated for
understanding the mechanical properties of the bilayer membrane in molecular
simulations. We point out the severe problem of conventional methods regarding
the force decomposition from multibody forces to pairwise forces. The conventional
method to calculate the stress fields containing the multibody forces is based on the
central force decomposition, in which the multibody forces are decomposed into
the pairwise forces, and Irving-Kirkwood-Noll procedure is applied to these decom-
posed pairwise forces. We introduce a force center of a three-body potential and
propose different force decompositions that also satisfy the conservation of trans-
lational and angular momentum. The position of force center can be arbitrarily
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chosen, and the change of force center position modifies the force decomposition.
Thus, we need to select physically plausible force center position. We propose a
candidate criterion, stress-distribution magnitude (SDM) and compare the force
decompositions by the SDM. We discuss their difference in the stress profile of
a bilayer membrane by using coarse-grained and atomistic molecular dynamics
simulations.
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Chapter 1

Introduction

1.1 Background

1.1.1 Bilayer membrane

A biomembrane is a fundamental component of a living cell. Its primary function
is the boundary between two regions, but the biomembrane is not a simple wall. It
also acts as the transporter of several ions and sensor of external stimuli [10]. The
biomembrane consists of several membrane proteins and lipids as schematically
shown in Fig. 1.1. Although the composition ratio of these biomolecules depends on
the organs [81], the main component is the lipid in many organs. The lipid is loosely
defined as the biomolecule that is not dissolved in water but dissolved in organic
solvents such as benzene. Typically, the lipid has two segments: hydrophilic and
hydrophobic segments. To avoid the contact with water molecules, the lipids in
water self-assemble and form clusters such as micelle and bilayer sheet depending
on the packing parameter [50]. The membrane composed of only lipids (more
generally amphiphilic molecules) is referred to as the bilayer membrane, and the
closed bilayer membrane is referred to as the vesicle.

The vesicles have been examined as a simple model of the biomembrane [93].
Although its composition is simple, they exhibit various shape transformations.
Figure 1.2 shows an example of shape transformations: shape transformations by
the constant osmotic pressure difference [124]. The decrease of the volume of vesicle
by the osmotic pressure difference induces the various shape transformations from
a spherical shape. The biconcave shape, which is a typical shape of red blood cell,
is also found for the simple vesicle.

Helfrich theory can describe the various shape transformations of vesicles ob-
served in the experiments [39]. In Helfrich theory, the bilayer membrane is treated
as the thin elastic sheet (this is justified by the large-scale gap between the ra-
dius of vesicle and bilayer thickness). The free energy of the bilayer membrane is
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1.1. BACKGROUND

Fig. 1.1: Schematic picture of a biomembrane. The figure is adapted from [1].

Fig. 1.2: Various shape transformations of vesicles by the constant osmotic pressure
difference. The figure is adapted from Fig. 1 in [124]
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CHAPTER 1. INTRODUCTION

written as

Fcv =

∮
κ

2
(2H − c0)

2dA+

∮
κ̄KGdA, (1.1)

where κ, κ̄, H, KG, and c0 are the bending rigidity, Gaussian curvature modulus,
mean curvature, Gaussian curvature, and spontaneous curvature of the membrane,
respectively. The integral in Eq. (1.1) is performed on the membrane surface. The
predicted shapes, which are obtained by the minimization problem of Eq. (1.1),
agree well with experimental observations. However, pear, peal-neckless, and
branched starfish-like shapes were also found in the experiments [44,59,93]; these
shapes are not obtained by the minimization problem of Eq. (1.1). As an extension
of Helfrich theory, area difference elasticity (ADE) model was proposed [93, 125].
In ADE model, the spontaneous curvature caused by the mismatch between the
geometric area difference ∆A and intrinsic area difference ∆A0 is considered. ∆A
and ∆A0 are defined as

∆A = dneut

∮
2HdA, (1.2)

∆A0 = (Namp,out −Namp,in)a0, (1.3)

where, Namp,out and Namp,in represent the number of amphiphilic molecules in the
outer and inner leaflets, respectively. dneut is the distance between inner and outer
leaflets, and a0 is an area per amphiphilic molecule. The free energy caused by
the mismatch ∆A and ∆A0 is written as

FADE =
πkADE

2Ambd2neut
(∆A−∆A0)

2, (1.4)

where kADE is the elastic constant of ADE, and Amb is the area of the bilayer
membrane. The total free energy of bilayer membrane is F = Fcv + FADE. The
theoretical predictions by ADE model agree well with experimental observations
quantitatively [91].

1.1.2 Molecular simulations of bilayer membranes

The elastic theory described in the previous section is suitable for investigating
the shape transformations of vesicles on µm scale. However, for investigating more
microscopic length scale phenomena, in which the effect of thermal fluctuation
plays an important role, molecular simulation is a suitable tool [67, 73, 120]. In
this method, amphiphilic molecules are modeled by atomistic or coarse-grained
(CG) molecules (see Fig. 1.3); the particles, which represent the atoms or blobs
of several atoms, are moved based on Newton’s equations of motion. When using
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1.2. OVERVIEW OF THE DISSERTATION

the atomistic model of lipid molecules, nm length scale motion of lipid molecules
can be examined during ∼100 ns.

The use of CG models broadens the accessible length and time scale com-
pared with the atomistic model. The CG models are roughly classified into two
types: implicit and explicit solvent model. In the implicit solvent model, we in-
tegrate only the motion of lipid molecules. The hydrophobic interaction is taken
into account phenomenologically using local density-dependent multibody poten-
tial [42,78] or wide range attractive potential [17,18]. The implicit solvent models
are widely used to examine the fusion pathway of lipid vesicles [77], phase sepa-
ration dynamics of two-component lipid vesicles [18], and self-assembly process of
lipid molecules [78]. In the explicit solvent model [32, 34, 98], we integrate both
solvents and lipid molecules. The accessible length and time scale decreases com-
pared with the implicit solvent models, but the explicit models are suitable for
investigating the effect of hydrodynamic interactions [29,102].

Fig. 1.3: Snapshots of various types of membrane models. (a) Atomistic model. (b)
Explicit solvent coarse-grained model. (c) Implicit solvent coarse-grained model.
The image is adapted from Fig. 1 in [73].

In this dissertation, we use both atomistic and explicit solvent CG bilayer mem-
brane models. In the explicit solvent CG bilayer membrane model, we employed
the dissipative particle dynamics (DPD) simulation technique, which is widely
used in the simulations of bilayer membranes. Since we use the DPD method in
the studies of both Chapter 3 and Chapter 4, we explain the details of the DPD
simulation in Chapter 2.

1.2 Overview of the dissertation

In this dissertation, we show two independent studies regarding the bilayer mem-
branes:

• Shape transformations of the bilayer membranes induced by the hydrolysis
and condensation reactions (in Chapter 3).
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CHAPTER 1. INTRODUCTION

• Pressure profile calculation method in molecular simulations (in Chapter 4).

We briefly overview these two contents in the following.

1.2.1 Shape transformations of the bilayer membranes in-
duced by the hydrolysis and condensation reactions

Chemical reactions occur ubiquitously in the biological cells. For example, in the
cells, the lipid molecules are synthesized and degraded by the chemical reactions
such as condensation and hydrolysis reactions via several enzyme activities. These
processes are called lipid metabolism; its main function is the storage of fats for
energy. When the glucose level gets low, the triacylglycerols stored in fat droplets
are hydrolyzed into fatty acids, which are used for the energy production in mito-
chondria [10].

The lipid molecules consisting of the biomembranes (e.g., phospholipids) are
synthesized in the ER (endoplasmic reticulum). Interestingly, the synthesis occurs
only in the cytosolic leaflet of the ER membrane (see Fig. 1.4). Thus, the den-
sities of phospholipids become asymmetric between the cytosolic leaflet and ER
lumen leaflet by this synthesis of lipids [15]. Since the trans-bilayer diffusion of
phospholipids, i.e., the flip-flop is slow, the phospholipids newly synthesized in the
cytosolic leaflet is transferred via phospholipid scramblase activities. Other lipids,
such as cholesterol and ceramide are also synthesized in the ER membranes. The
synthesized lipids are transported to other organelles via vesicle transport mecha-
nisms.

Several in vitro experiments show that the synthesis and degradation of lipids
induce the shape transformations of the membranes. For example, the experi-
ments of hydrolase enzymes injection to lipid vesicles and red blood cells show the
invagination [8,41] and rupture [88] of membranes. A possible explanation of these
morphological changes was proposed in terms of elastic theory [8]. The effects of
chemical reactions are taken into account by the change in the amphiphilic molec-
ular densities of the inner and outer leaflets. However, other experiment reports
that the hydrophobic reaction products of hydrolysis reaction, which are embed-
ded in the bilayer, reduce the spontaneous curvature of the membrane leading to
the continuous morphological changes from the micelles to vesicles [107, 114] (see
Fig. 1.5). This experiment demonstrates that the effects of the chemical reactions
on the morphological changes cannot be simply explained by the change in the
amphiphilic molecular densities in terms of the elastic theory.

In Chapter 3, we discuss the shape transformations of the bilayer membranes
induced by the hydrolysis and condensation reactions of amphiphilic molecules.
We use CG simulation technique and investigate the shape transformations of
the bilayer membranes and the effects of the reaction products on the membrane
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1.2. OVERVIEW OF THE DISSERTATION

Cytosol

ER Lumen

Lipid bilayer of ER

Cytosol

ER Lumen

Cytosol

ER Lumen

(a)

(b)

(c)

Synthesis of phospholipids

Flipping of phospholipids

Fig. 1.4: The process of phospholipid synthesis in ER membrane. Phospholipids
are synthesized on the cytosolic leaflet of the ER membrane (from (a) to (b)).
Phospholipid scramblase causes the flipping of phospholipids (from (b) to (c)) to
transfer newly synthesized phospholipids to the ER lumen leaflet.
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CHAPTER 1. INTRODUCTION

Fig. 1.5: Spontaneous morphological changes from spherical micelles to nested
vesicles induced by the hydrolysis of amphiphilic molecules. The figure is adapted
from Fig. 4 in [107].
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1.2. OVERVIEW OF THE DISSERTATION

morphologies.

1.2.2 Pressure profile calculation method in molecular sim-
ulations

In the elastic theory described in Sec. 1.1.1, the bilayers are treated as the thin
elastic sheets; the internal bilayer structures are not considered. However, the real
membranes have the finite thickness, which is ∼10 nm. When we regard the bilayer
as the three-dimensional elastic object, we can define the pressure profile within
the bilayer. Especially, the lateral component of the pressure within the bilayer
has been discussed since Tanford proposed the two opposing forces concept [50].
Figure 1.6 shows the schematic picture of a bilayer membrane and lateral pressure
profile within the bilayer. At the interface between the hydrophobic core and the
water, the interfacial tension γ exerts to minimize the interfacial area due to the
hydrophobic interaction. On the other hand, steric repulsion also exerts to expand
the area at the hydrophobic core and the head-segment region. Therefore, the
lateral pressure profile within the bilayer membrane is inhomogeneous as shown in
the right panel of Fig. 1.6.

The balance between these two opposing forces, interfacial tension, and steric
repulsion determines the area per amphiphilic molecule. The free energy per an
amphiphile due to the interfacial tension is written as γa, where a is the area
occupied by an amphiphile. The free energy term due to the steric repulsion is
roughly estimated as CA/a to first order. Thus the free energy per an amphiphile
is written as

µ = γa+ CA/a. (1.5)

The optimal area a0 of an amphiphile is determined by the minimum of µ as√
CA/γ.
The lateral component PL and normal component PN of the pressure within the

bilayer membrane give the two dimensional elastic properties of bilayer membrane.
For example, the relationship between PL, PN, and κ̄ is written as [40,46,90]

κ̄ =

∫
[PN(z)− PL(z)] z

2dz. (1.6)

κ̄ is an important elastic property of the bilayer membrane; κ̄ plays a key role in
the shape transformation with topological changes, such as fusion and fission of
vesicles [10] and bicelle to vesicle transformation [26,45].

The attempts to capture the inhomogeneous pressure profile within the bilayer
membrane and the estimation of κ̄ via PN and PL have been carried out using
molecular simulations [120] since the landmark paper by Goetz and Lipowsky [32].
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CHAPTER 1. INTRODUCTION

PL

z

Fig. 1.6: Schematic picture of a lateral pressure profile of bilayer membrane. The
left panel shows the simulation snapshot of CG bilayer membrane that is used
in this dissertation. Water, hydrophilic, and hydrophobic particles are colored by
blue, red, and yellow, respectively. The right panel shows the schematic representa-
tion of lateral pressure within the bilayer membrane. At the interface between the
hydrophobic core and hydrophilic head region, a negative pressure is exerted due
to the hydrophobic interaction leading to the decrease of the area per amphiphilic
molecule. On the other hand, a positive pressure is exerted in the hydrophobic
cores and head-segment region due to the steric repulsion and chain disorder.
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1.2. OVERVIEW OF THE DISSERTATION

The lateral pressure profile within the bilayer membrane qualitatively is similar to
the theoretical prediction [32].

In the pressure profile calculation in molecular simulations, the Irving-Kirkwood-
Noll (IKN) procedure is applied for the pairwise forces [49]. For the multibody
forces, there are two steps to calculate the pressure profile: the decomposition of
multibody forces to the pairwise forces and the application of IKN procedure to
each decomposed pairwise forces. Conventionally, the force decomposition is per-
formed using Goetz-Lipowsky decomposition (GLD) [32], which does not satisfy
the strong law of action and reaction for decomposed pairwise forces. The cen-
tral force decomposition (CFD) proposed by Admal and Tadmor overcomes this
problem [6]. The calculations of the pressure profile within the bilayer membrane
using CFD have been carried out [112,118].

However, the pressure profile calculation method has been still debated for
the systems containing multibody interactions. In Chapter 4, we revisit the force
decomposition of the multibody forces to the pairwise forces. We discuss the
nonuniqueness caused by the nonunique force decomposition from multibody forces
to pairwise forces.

10



Chapter 2

Simulation techniques

In this chapter, we introduce the simulation techniques used throughout in this
dissertation. First, we introduce the dissipative particle dynamics (DPD) simula-
tion technique which is commonly used as a CG molecular simulation method. We
introduce the basic concepts, discretizations, and choices of interaction parameters
and describe the CG bilayer membrane model used in this dissertation.

Next, we introduce an acceleration technique of molecular simulations. Here
we focus on a SIMD (single instruction multiple data) acceleration technique of
molecular simulations. SIMD instructions are widely used to explore data-level
parallelism in modern CPUs. For example, for x86 architecture, SSE (128-bit
SIMD), AVX (256-bit SIMD), and AVX-512 (512-bit SIMD) are added as the
SIMD instructions. Without the use of SIMD instructions, achievable perfor-
mance decreases by 1/2–1/8. Therefore, the optimization with the use of SIMD
instructions is crucial to maximizing the application performance. We first intro-
duce the basic algorithms of molecular simulations then discuss the performance
improvement of molecular simulations with the use of SIMD instructions.

2.1 Dissipative particle dynamics

2.1.1 Basic concepts

The dissipative particle dynamics (DPD) method is one of the meso-scale hydro-
dynamics simulation techniques. The DPD method was first proposed by Hooger-
brugge and Koelman [43] and has been used to investigate several soft matter
systems such as polymers [106], colloids [54], and bilayer membranes [34]. In the
DPD method, one particle is regarded as a blob of several atoms. The motion
of this particle is given by the following Newton’s equations of motions with a

11



2.1. DISSIPATIVE PARTICLE DYNAMICS

thermostat:

m
dvi

dt
= −∂U

∂ri
+
∑
j ̸=i

ffd(vij, rij), (2.1)

ffd(vij, rij) =

(
−w(rij)vij · r̂ij +

√
w(rij)ξij(t)

)
r̂ij,

w(rij) = γij

(
1− rij

rcut

)p

Θ

(
1− rij

rcut

)
, (2.2)

where vij = vi − vj, rij = ri − rj, rij = |rij|, r̂ij = rij/rij, and Θ is the unit step
function. The Gaussian white noise ξij(t) in Eq. (2.1) satisfies the fluctuation and
dissipation theorem, i.e., ⟨ξij(t)⟩ = 0, ⟨ξij(t)ξkl(t′)⟩ = 2kBT (δikδjl + δilδjk)δ(t− t′),
where kBT is the thermal energy. The exponent p of weighting function w(rij)
is typically set to 2 [35]. Since one DPD particle represents the blob of several
atoms, the position overlap between particles is permitted. A harmonic potential

Urep(rij) = aij(1− rij/rcut)
2/2, (2.3)

which vanishes at finite cutoff rcut is used as the repulsive potential between par-
ticles. The cutoff length rcut has the same value for any particle pair.

Typically, three types of DPD particles are considered in a bilayer membrane
model: water, hydrophilic, and hydrophobic particle. Three water molecules are
treated as one DPD particle [35]. Coarse-grained amphiphilic molecule is mod-
eled as several DPD particles that are connected via bonded potentials such as
harmonic bond Ubond and bend potentials Ubend [30, 101]. In this dissertation, an
amphiphilic molecule consists of hydrophilic head and hydrophobic tail segments
that are represented by one and three particles, respectively (see Fig. 2.1). These
four particles are connected via the bond potential Ubond = (kbond/2)(1 − rij/l0)

2

and bend potential Ubend = kbend(1 − r̂ij · r̂jk). In the following, the particle
types are represented as W for water particle, H for hydrophilic particle and T for
hydrophobic particle, respectively.

The thermostat of DPD is a pairwise Langevin thermostat, i.e., Langevin ther-
mostat is applied to every particle pair within cutoff rcut. The strong law of action
and reaction is satisfied for all pair forces (even for dissipative and random forces);
thus the momentum and angular momentum conservation law are satisfied.

2.1.2 Discretizations

Several discretizations of Eq. (2.1) have been proposed [35, 86, 96]. The most
famous one is the modified velocity Verlet method [35]. In modified velocity Verlet

12



CHAPTER 2. SIMULATION TECHNIQUES

Head

Tail
Water

Fig. 2.1: Schematic picture of coarse-grained amphiphile and water.

method, Eq. (2.1) is discretized as

ri(t+∆t) = ri(t) + ∆tvi(t) +
∆t2

2m
fi,sum(t),

ṽi(t+∆t) = vi(t) +
λVV∆t

m
fi,sum(t),

fi,sum(t+∆t) = fi,sum(ri(t+∆t), ṽi(t+∆t)),

vi(t+∆t) = vi(t) +
∆t

2m
(fi,sum(t) + fi,sum(t+∆t)),

(2.4)

where fi,sum = −∂U/∂ri +
∑

i ̸=j ffd(vij, rij) and ∆t is the simulation timestep.
When λVV is set to 0.5, Eq. (2.4) corresponds to the original velocity Verlet method.
In modified velocity Verlet method, λVV = 0.65 is usually used because better
temperature control is achieved with larger timestep ∆t compared with λVV =
0.5 [35].

Other choice of the discretization of Eq. (2.1) is the Shardlow’s S1 (the first
order sympletic) splitting algorithm [96]. In this method, the conservative forces
−∂U/∂ri, and dissipative and random forces ffd(vij, rij) are integrated differently.
For the integration of the conservative forces, the original velocity Verlet method is
used. For the integration of the dissipative and random forces, ij pair is integrated
as

vnew
i = vold

i + [−A(rij)vij · r̂ij +B(rij)ξij,n] r̂ij,

vnew
j = vold

j − [−A(rij)vij · r̂ij +B(rij)ξij,n] r̂ij,
(2.5)

with

A(rij) =
w(rij)δt/m

1 + w(rij)δt/m
, B(rij) =

√
w(rij)δt/m

1 + w(rij)δt/m
. (2.6)

The updates of velocities using Eq. (2.5) are performed for all interacting pairs.
The multi-time-step algorithm is often used, i.e., the integration timestep δt for
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2.2. SIMD ACCELERATION OF MOLECULAR SIMULATIONS

ffd is different from the integration timestep ∆t for −∂U/∂ri. In this disserta-
tion, we discretize Eq. (2.1) using Shardlow’s S1 splitting and use multi-time-step
algorithm.

2.1.3 Choices of interaction parameters

The repulsive parameters aij for same types of particles are typically set to 25kBT
with the number density ρ = 3r−3

cut to match the compressibility of liquid water
at room temperature [35]. There exist several parameter choices of aij for dif-
ferent types of particle pairs. For simulations of polymers, aij for different types
of particle pairs are set to match the χ-parameters [35]. For simulations of am-
phiphiles, aTα, α = H,W is set to satisfy aTα > aTT, aWW, aHH for simulating the
hydrophilicity of head segments and hydrophobicity of tail segments.

The choice of dissipative parameters γij affects the shear viscosity η and diffu-
sion constant D of DPD fluids. The analytical relationships between η,D and γij
in the small timestep limit are written as [76]

η =
3mkBT

2
∫
gRDF(r)w(r)dV

+
ρ2

30

∫
r2gRDF(r)w(r)dV, (2.7)

D =
3kBT

ρ
∫
gRDF(r)w(r)dV

, (2.8)

where gRDF(r) is the radial distribution function. Both η and D are controlled by
γij via the weighting function w(r) in Eq. (2.2). According to Eqs. (2.2), (2.7),
and (2.8), p and ρ also affect the viscosity of DPD fluids. p is set to 2 in most of
DPD simulations to reduce the computational costs (by setting p to 2, we do not
need to calculate the square root of w(r)), but a liquid phase (Schmidt number
Sc ≳ 10) is not obtained without increasing γij up to 50

√
mkBT/rcut [76]. To

simulate the liquid phase, other choices of p have been proposed: p = 1 [100]
or p = 1/2 [23]. There exist several parameter choices of γij for different types
of particle pairs [30, 101, 122]. To ensure the correct hydrodynamic behavior for
the multi-viscosity system, γij are chosen to satisfy a harmonic mean rule, i.e.,
γij = 2/(1/γii + γjj) [122].

2.2 SIMD acceleration of molecular simulations

The most time-consuming part of molecular simulations is the non-bonded force
calculation. Thus, the acceleration technique of the non-bonded force calculation is
essential. In this section, only non-bonded short-range interactions are considered;
bonded interactions and long-range electrostatic interactions are not considered.
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2.2.1 Basic algorithms of molecular simulations

Verlet neighbor list and bookkeeping method

Verlet neighbor list is widely used to reduce the computational cost of finding pairs
that interact each other within cutoff length rcut [9,121]. In the Verlet neighbor list,
indices of particle pairs whose distance are less than search length rs are registered.
In the computation of non-bonded forces, we calculate the distances only for the
pairs in the Verlet neighbor list. Since the computational cost of Verlet neighbor
list construction is high, bookkeeping method is used by setting rs = rcut+∆r (see
Fig. 2.2). rs is greater than rcut, so same Verlet neighbor list is reusable during
several time steps.

Fig. 2.2: Cutoff length rcut and search length rs = rcut +∆r.

A naive way to construct Verlet neighbor list is to calculate the distances
between all particle pairs (Fig. 2.3 (a)), but this approach has an O(N2) time
complexity [121]. To reduce the computational cost, grid search method [123]
(also known as the cell linked-list method [9,87]) is often used (Fig. 2.3 (b)). The
grid search method has an O(N) time complexity [123], so this method is much
faster than O(N2) naive way.

After the grid search, particle pairs (i, j) such that i < j, |rij| < rs are ob-
tained (Fig. 2.4 (a)). We call the particles whose indices are i (j) key (partner)
particles. We sort the partner particles by key particles and store these indices
as one dimensional array SortedList (Fig. 2.4 (b)). The beginning of neighbor
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Naive Grid search method

(a) (b)

Fig. 2.3: Two types of Verlet neighbor list construction method. (a) naive O(N2)
method (b) grid search method.

list of kth key particle are stored in KeyPointer[k] (Fig. 2.4 (b)). The use of
SortedList and KeyPointer as a Verlet neighbor list is efficient from the view-
point of cache utilization [123].

0 4 107

3 5 6 9 4 8 10 115 6
i=0 i=1 i=2

KeyPointer

SortedList ......

......

......

......

Key particles

Partner particles ............

............

3

0

5

0

6

0

9

0

4

1

8

1

10

1

5

2

6

2

11

2
(a)

(b)

Fig. 2.4: (a) Indices of key (partner) particles stored as a one-dimensional array.
(b) Indices of partner particles sorted by the indices of key particles.

Force calculation

After building the Verlet neighbor list, we calculate the non-bonded forces using
this list. Algorithm 1 shows the pseudo code of non-bonded force calculation. The
innermost loop is iterated over the Verlet neighbor list of ith particle.

16
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Algorithm 1 Reference scalar implementation of non-bonded force calculation.
q[i] and p[i] represent the position and momentum of ith particle, respectively.
U , f , and dt are the non-bonded potential, force, and timestep, respectively.
NumberOfPartners[i] represents the number of particles included in the Verlet
neighbor list of ith particle.

1: for i = 0 to NumberOfParticles - 1 do
2: qi ← q[i]
3: np← NumberOfPartners[i]
4: kp← KeyPointer[i]
5: fidt← 0
6: for k = 0 to np− 1 do
7: j ← SortedList[k + kp]
8: r← q[j]− qi

9: if r2 < r2cut then
10: fdt← −U ′(|r|)× dt/|r|
11: fidt← fidt+ fdt× r
12: p[j]← p[j]− fdt× r
13: end if
14: end for
15: p[i]← p[i] + fidt
16: end for

2.2.2 Benchmark conditions

We consider Lennard-Jones potential with finite cutoff rcut as the non-bonded
interaction, which is written as

ULJt(r) =

4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(r < rcut),

0 (otherwise),
(2.9)

where ϵ is well depth, and σ is a diameter of particle. In this section, we use
ULJt(r) as the non-bonded interaction potential.

We use reduced units with σ as the unit of length, ϵ as the unit of energy,
m as the unit of mass. Dimensionless quantities are denoted as ∗, e.g. r∗ is the
dimensionless quantity of distance.

The benchmark conditions are as follows:

• The simulation domain size is set to 50σ × 50σ × 50σ.

• The number of particles is set to 119164.
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• As an initial configuration, particles are placed randomly with the avoidance
of particle position overlapping.

• Boundary condition is rigid for all axes.

• Cutoff length r∗cut = 3.

• Search length r∗s = 3.3.

• The elapsed time for force calculation 100 steps is measured.

2.2.3 SIMD optimization

There exist three ways to use SIMD instructions. We briefly introduce these ways
in the following.

Inline assembly

The use of inline assembly is difficult and low-productivity because the by-hand
register mapping of variables is required. Additionally, the inline assembly style
depends on compilers, thus the code-portability decreases.

Intrinsics

Intrinsics are the functions corresponding to SIMD instructions. The simdization
of scalar codes is performed by calling these functions. The register mapping of
variables is performed automatically by the compilers. Therefore, the productivity
is higher compared with the use of inline assembly. However, the code-portability
decreases because there are the processor-specific instructions.

Auto-vectorization

Recent compilers detect the parallelism of code (e.g., for-loops) and auto-vectorize
it if possible. The compilers cannot always auto-vectorize the for-loops due to the
data-dependency. The addition of compiler directives such as #pragma ivdep or
#pragma simd enable the auto-vectorization in some cases. This way does not
require any processor-specific functions; thus code-portability does not decrease.

We focus on the simdization of Algorithm 1 and resulting performance im-
provement. We carry out the simdization of the code for two different SIMD
widths: 256-bit and 512-bit. The benchmarks are performed on the two differ-
ent platforms: SGI Altix ICE XA at ISSP Supercomputer Center, University of
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System CPU
SGI Altix ICE X Intel R⃝ Xeon R⃝ E5-2680v3 (2.50 GHz)
FUJITSU Server PRIMERGY CX1640 M1 Intel R⃝ Xeon PhiTM 7250 (1.40 GHz)

Table 2.1: Summary of system configurations.

Tokyo and FUJITSU Server PRIMERGY CX1640 M1 at the Information Tech-
nology Center (ITC), the University of Tokyo. For the performance evaluation of
256-bit simdization, a single node of SGI Altix ICE XA is used. We used Intel
C++ Compiler Ver. 16.0.4 with the compiler options -O3 -xCORE-AVX2. For the
performance evaluation of 512-bit simdization, a single node of FUJITSU Server
PRIMERGY CX1640 M1 is used. We used Intel C++ Compiler Ver. 17.0.4 with
the compiler options -O3 -qopt-prefetch=4 -xMIC-AVX512. System configura-
tions are summarized in Table 2.1. All calculations are performed with double
precision. We compare three different implementations for each CPU: simdized
implementation by auto-vectorization, simdized implementation by intrinsics, and
scalar implementation.

2.2.4 Performance evaluation of 256-bit SIMD

The compiler cannot auto-vectorize the code without any directives. The failure
of auto-vectorization is because the compiler cannot recognize that there is no du-
plication in Verlet neighbor list of the same key particle. Thus, compiler directives
are added to the innermost loop as follows:

const auto np = number_of_partners[i];

double pfx = 0, pfy = 0, pfz = 0;

#pragma vector aligned

#pragma simd reduction(+:pfx, pfy, pfz)

for (int k = 0; k < np; k++) {

// calculate forces

}

to auto-vectorize the code.
The simdization of Algorithm 1 is performed using intrinsics following Ref. [85]

As pointed out by Pennycook et al. [85], gather-scatter operations of positions
become the performance bottlenecks. Although gather instructions are included
in AVX2, their latencies are relatively high. Therefore, gather-scatter operations of
positions are performed using vmovupd instruction and several swizzle instructions,
such as vunpckhpd and vpermpd. Moreover, the software pipelining are applied
to increase IPC (instructions per cycle). The software pipelining increases the
application performance by 1.2 times.
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Implementation Scalar Auto-vectorization Intrinsics
Elapsed time [s] 7.138 8.226 2.984

Table 2.2: Results of the benchmark simulation on a single node of SGI Altix ICE
X.

Implementation Scalar Auto-vectorization Intrinsics
Elapsed time [s] 33.344 9.794 7.926

Table 2.3: Results of the benchmark simulation on a single node of FUJITSU
Server PRIMERGY CX1640 M1.

Table 2.2 shows the performance comparison of three different implementa-
tions. The by-hand simdization code using intrinsics gives the best performance.
Although the compiler can auto-vectorize the code, the achieved performance is
lower than the scalar code. To analyze the performance loss, we look into the
assembly of the auto-vectorized code. In the assembly, vgatherdpd is used to load
positions into YMM registers. Since the latencies of gather instructions are high,
auto-vectorized code become slower than the scalar code.

2.2.5 Performance evaluation of 512-bit SIMD

The same compiler directives as Haswell auto-vectorization code are added to the
innermost loop. With these compiler directives, the compiler successfully auto-
vectorize the code.

For the simdization using intrinsics, there is a minor change from Haswell
implementation in the gather-scatter operations of positions. Since the latencies of
the gather-scatter instructions in AVX-512 are low, we perform the gather-scatter
operations of positions via these instructions. We also apply software pipelining
technique to increase IPC. Additionally, we add data prefetch instructions, such
as vgatherpf0dpd and vgatherpf1dpd.

Table 2.3 shows the performance comparison of three implementations. The
performance of the auto-vectorized code is nearly equal to the performance of
by-hand simdization code using intrinsics unlike the case in Haswell. The low-
latency gather-scatter instructions introduced in AVX-512 significantly improve
the performance of the auto-vectorized code.
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2.3 Summary

In this section, we first overview the DPD method. In the following two chapters,
we use the DPD method for the simulation of bilayer membranes. Next, we discuss
the SIMD acceleration technique of molecular simulations. We simdized the force
calculation code in molecular simulations with two different ways and compare
these two implementations with the scalar implementation for two different com-
binations of hardware and SIMD width. We show that the simdized code using
intrinsics gives the best performance for Haswell and Knights Landing processors.
The performance of simdized code by the compiler auto-vectorizer is significantly
improved by the low latency gather-scatter instructions introduced in AVX-512.
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Chapter 3

Shape transformations of bilayer
membranes induced by the
hydrolysis and condensation
reactions

In this chapter, we report the CG simulation study of shape transformations of
bilayer membrane induced by the hydrolysis and condensation reactions.

3.1 Introduction

A lipid vesicle, which is one of the basic self-assembled structures of lipid molecules,
has been studied as a minimum model of living cells. Although vesicles are com-
posed of only lipid molecules, they exhibit various shape transformations such as
discocyte, stomatocyte, and starfish depending on reduced volumes and sponta-
neous curvatures [93]. These various shape transformations can be well described
using the elastic theory proposed by Helfrich [39, 93]. The theoretical prediction
agrees well with experiments quantitatively [91].

For the above-mentioned studies on vesicle morphology, it is assumed that the
membrane composition is constant. However, in living cells, synthesis and de-
composition of lipids continually occur by lipid metabolism so that the membrane
composition changes. For example, phospholipids are synthesized from fatty acids
on endoplasmic reticulum (ER) membrane [15], after which these molecules are
transported to other organelles via vesicle transport mechanisms. Another exam-
ple is hydrolysis of phospholipids [71, 72]. The reaction products, diacylglycerols
(DAGs), play the key role in protein kinase C activation [14].

The effects of non-constant membrane composition on shape transformations
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of cells have been studied by several groups [7, 8, 41, 48, 88]. The nature of non-
constant membrane composition is often mimicked by hydrolysis and condensa-
tion reactions. For example, an injection of a hydrolase enzyme to red blood
cells (RBCs) [7,8] and lipid vesicles [41,48] hydrolyzes amphiphilic molecules into
hydrophilic and hydrophobic molecules. In these chemical reactions, amphiphilic
molecules, which are composed of hydrophilic (A) and hydrophobic (B) parts,
change as follows:

AB + H2O ⇌ A−H+ B−OH, (3.1)

where the right and left arrows represent the hydrolysis and condensation reac-
tions, respectively. The experiments demonstrate that vesicles show the various
shape transformations under these chemical reactions [7, 8, 41, 48]. The injection
of hydrolase enzyme to RBCs and liposomes induces membrane invagination and
rupture. Toyota et al. [114] reported that discocytes transform into tubular and
invaginated shapes under the hydrolysis reaction of amphiphilic molecules.

A possible explanation of these morphological changes was proposed in terms
of the ADE model [8]. The hydrolase enzyme is injected from the outer solution
so that the density of the amphiphilic molecules in the outer leaflet of a vesicle
decreases, whereas the density of the inner leaflet is nearly constant. Therefore, the
amphiphilic molecular densities in the inner and outer leaflets become different. To
reduce the ADE energy [93, 97] of this area difference, liposomes and RBCs form
an invagination. A similar asymmetry in amphiphilic molecules that is induced by
chemical reactions is widely observed in vitro [107] and in vivo [15].

However, in the previous works, the effects of the resulting products (A–H and
B–OH molecules in Eq. (3.1)) are not taken into account explicitly. Instead, the
effect of these chemical reactions is taken into account implicitly by the change
in the amphiphilic molecular densities of the inner and outer leaflets in the ADE
model. However, the chemical reaction products, hydrophobic molecules (B–OH)
are included in the bilayer membrane, and such inclusions modify the elastic prop-
erties of the bilayer [63]. We have previously examined how such inclusions affect
shape transformations of a bilayer membrane induced by a binding reaction of
hydrophobic and hydrophilic molecules [68]. The inclusions are concentrated in
the branches of the membranes. The stabilization of branched structures by these
inclusions was also reported in Refs. [12,20]. Thus, shape transformations of mem-
branes occur due to the presence of the resulting hydrophobic molecules, but these
shape transformations are not fully understood.

The aim of this chapter is to clarify the effect of embedded hydrophobic prod-
ucts on shape transformations under the hydrolysis and condensation reactions.
We use the coarse-grained molecular dynamics simulation technique, in which the
hydrolysis and condensation reaction processes of amphiphilic molecules are taken
into account explicitly. We will show that the shape transformation strongly de-
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W H T
W 25 25 200
H 25 25 200
T 200 200 25

Table 3.1: Repulsive interaction parameters aij with units kBT . W, H, and T
represent water, hydrophilic and hydrophobic particles, respectively.

pends on the distribution of the resulting products (B–OH) included in the bi-
layer. We will also show that not only membrane invagination but also bilayer
sheet formation occur depending on the reduced volume. The shape transforma-
tion pathway is also affected by the transport coefficients of the surrounding fluids
and membrane.

In Sec. 3.2, the simulation model, method, and simulation settings are de-
scribed. The results are presented in Sec. 3.3, and discussions and conclusions are
given in Sec. 3.4.

3.2 Simulation methods

3.2.1 Model and method

We use the dissipative particle dynamics (DPD) simulation technique [34, 35, 43].
Since we describe the essence of DPD method and CG model of amphiphile in
Chapter 2, we only show the choices of parameters in this section. Four particles
constituting an amphiphile are connected via the bond potential Ubond = kbond(1−
rij/l0)

2/2 and the bend potential Ubend = kbend(1− r̂ij · r̂jk) with kbond = 272kBT ,
kbend = 60kBT , and l0 = 0.8rcut. We choose p = 1/2 to increase the shear viscosity
of the DPD fluids [23]. The multi-time-step algorithm [76, 86, 115] is employed
with the integration time step ∆t = 0.005rcut

√
m/kBT for the conservative forces

and δt = 0.05rcut
√
m/kBT for dissipative and random forces.

The repulsive parameters aij are listed in Table 3.1. The dissipative parameters
γij for the same type of particle pairs are shown in Sec. 3.3. For different types of
particle pairs, a harmonic mean rule is employed, i.e., γij = 2/(1/γii + 1/γjj), to
ensure the correct hydrodynamic behavior for the multi-viscosity system [122]. A
stable bilayer structure forms with bending rigidity κ = 18.1 ± 0.4kBT and area
expansion modulus KA = 18.9 ± 1.1kBT/r

2
cut. These elastic properties agree well

with the experimental results at room temperature [16,93].

We use reduced units with rcut as the unit of length, kBT as the unit of energy,
and m as the unit of mass. rcut is the length scale of the molecule, rcut ∼ 1 nm,
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and τ = rcut
√

m/kBT is estimated to be ∼1 ns at room temperature T ∼ 300 K.
Dimensionless quantities are denoted by ∗, e.g., t∗ = t/τ .

Several chemical reaction models combined with the DPD method have been
proposed [47,60,61,68]. In this work, we use the chemical reaction model, in which
hydrolysis and condensation reactions of amphiphilic molecules are represented by
a bond dissociation and bond binding as shown in Fig. 3.1. Because the dissociated
hydrophilic and hydrophobic molecules are typically dissolved in surrounding fluids
and embedded in the bilayer, we refer to them as the hydrophilic solute (HS) and
embedded oil (EO), respectively. The HS can have a binding reaction to only
the one end particle of the EO (jam = 2 shown in Fig. 3.1). Both binding and
dissociation processes are treated as stochastic processes, as in the polymerization
model [47]. Probabilities for the bond binding and dissociation during ∆t are given
by

pdiss =

{
pf∆t (nwater > 0)

0 (otherwise)
, (3.2)

pbind = pr∆tΘ

(
1− rmin

rbind

)
, (3.3)

where pf and pr denote the transition rates of the dissociation and binding reac-
tions, respectively. nwater is the number of water particles that exist in a sphere
with a radius of 0.69rcut around a hydrophobic particle of jam = 2 connecting with
a hydrophilic particle. The hydrophobic particles of jam = 2 in the EO bind with
the closest HS by the reaction rate pr when the distances rmin between the two par-
ticles are less than the cutoff length rbind. In this study, rbind = rcut is used. The
bond dissociation probability increases when the HS concentration is low. When
the bond binding rate is equal to the bond dissociation rate, the system reaches
chemical equilibrium.

We investigate the effects of the viscosity ηsol of the surrounding solutions and
the effective viscosity ηmb in the membrane. The viscosity of the surrounding fluids
can be controlled by γsol = γHH = γWW. The shear viscosity of the DPD fluids
increases with increasing γ. The shear viscosity ηsol is estimated from a simple
shear flow for the DPD fluid consisting of only W particles [76]: η∗sol = 1.119±0.004
and 5.262 ± 0.007 for γ∗

sol = 2 and 24.5, respectively. The diffusion constants D of
the DPD fluids are estimated from the mean square displacement: D∗ = 1.326 and
0.301 for γ∗

sol = 2 and 24.5, respectively. To change the effective viscosity ηmb in
the membrane, we vary γTT of the tail and EO particles: γ∗

TT = 2 and γ∗
TT = 24.5.

Thus, the DPD fluids consisting of nonbonded tail particles have η∗mb = 1.119
and 5.262. However, the bond and angle potentials in the amphiphilic molecules
modify this simple linear viscosity. In the bilayer membranes, the amphiphilic
molecules in the membrane have two types of hydrodynamic interactions: lateral
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Fig. 3.1: Schematic picture of hydrolysis and condensation reactions. For clarity,
the hydrophobic particles in amphiphilic molecules and in the EOs are colored
yellow and green, respectively. Both hydrophilic and hydrophobic particles have
their own ids: jam = 1 for the hydrophilic particles, and jam = 2, 3, 4 for the
hydrophobic particles. The figure is adapted from Fig. 1 in [70].

interactions that give rise to 2D membrane viscosity and the friction between two
leaflets [21,93,104]. A greater value of γTT yields a higher 2D viscosity and stronger
friction. However, because the EOs in the bilayer modify both the interactions,
it is difficult to quantitatively estimate them. Therefore, we consider only the
qualitative effects of the membrane viscosity using the viscosity ηmb of the DPD
fluid, in this study.

3.2.2 Simulation settings

All simulations are carried out in an NV T ensemble (constant number N of par-
ticles, volume V , and temperature T ) at the particle density N/V = 3/r3cut. The
cubic simulation boxes with Lx = Ly = Lz = 36rcut and 48rcut are used for a flat
membrane and vesicle, respectively.

We prepare a flat bilayer membrane with Namp = 4950 and NEO = 0. The
bounce-back rule is employed at the boundary of the simulation box along the
normal (z) direction to the bilayer, and periodic boundary conditions are employed
in the lateral (x, y) directions. Initially, the HS concentrations of the fluids above
and below the membrane are c∗up = 3 and c∗low = 0, respectively. The solvent
particles are distributed in the above and below the membrane; the number of
solvent particles in the above and below the membrane are Nsol,up = 60084 and
Nsol,low = 60084, respectively. The initial parameter settings are summarized in
Table 3.2. Since these two fluids do not contact each other directly, their HS
concentrations are changed only by the reactions on the membrane.

To investigate the spatial distribution of the EOs in the membrane in the
absence of the chemical reactions, a flat membrane with NEO = 1000 and Namp =
3950 is used. The EOs are distributed uniformly in the bilayer membrane as
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Namp Nsol,up Nsol,low c∗up c∗low NEO L∗
x L∗

y L∗
z

flat bilayer 4950 60084 60084 3 0 0 36 36 36

Table 3.2: Initial simulation settings for investigating morphological changes of
flat bilayer membranes induced by chemical reactions.

Namp Nsol,in Nsol,out NEO L∗
x L∗

y L∗
z

spherical vesicle 17730 52670 208186 0 48 48 48
disk vesicle 19338 35679 218745 0 48 48 48

Table 3.3: Initial simulation settings for investigating morphological changes of
vesicles induced by chemical reactions. HS concentration of inside and outside the
vesicle are described in the main text.

initial conformations, and the positions of the EOs are fixed for the first 500τ to
make the amphiphilic molecules relax first. The position constraint of the EOs is
removed at t = 500τ . The surface density is calculated with a spatial mesh size of
rmesh = 4rcut.

We consider initially a nearly spherical vesicle and a discocyte-shaped vesicle
under periodic boundary conditions in all three directions. The spherical vesicle is
formed by Namp = 17730 of amphiphilic molecules, and Nsol,in = 52670 (Nsol,out =
208186) particles are inside (outside) the vesicle. The discocyte has Namp = 19338
and Nsol,in = 35679. The reduced volumes v = Vves/(4/3π(Amb/4π)

3/2) for the
spherical vesicle and discocyte are nearly equal to 1 and 0.5, respectively, where
Vves and Amb are the volume and surface area of the vesicle. Initial vesicles are
prepared using the methods described in Appendix 3.A. The simulation time t is
set to zero when the chemical reactions start. The initial parameter settings are
summarized in Table 3.3.

In the experimental studies [7, 8, 41, 48] shown in Sec. 1, the chemical envi-
ronment is different inside and outside a vesicle. As a model of such asymmetric
situations, we consider the vesicle whose inner and outer solutions have different
concentrations of HSs. One may consider that the asymmetric concentration along
the bilayer membrane causes the osmotic pressure difference. However, the time
scale of the volume change due to the osmotic pressure difference is much longer
than the shape transformation timescale. We will show how the shape transforma-
tion of vesicles under the hydrolysis and condensation reactions is changed by the
concentration difference of HSs. The initial concentration cout of HSs outside the
vesicle is set to 0. The initial concentration cin of HSs inside the vesicle is varied
to control the concentration difference.
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3.3 Simulation results

3.3.1 Bilayer sheet protrusion from flat membrane

First, we consider the shape transformations of the flat membrane by chemical
reactions (see Fig. 3.2). The HS concentration difference causes different time
developments of the number of amphiphilic molecules between the upper and lower
leaflets as shown in Fig. 3.2(d): the number of amphiphilic molecules Namp,up

(Namp,low) of the upper (lower) leaflet increases (decreases). On the lower leaflet,
the condensation reaction is very slow owing to the low HS concentration of the
lower solution, with the result that the hydrolysis reaction largely proceeds. The
EOs are then generated at the lower leaflet and embedded in the bilayer membrane,
as indicated by the green color in Fig. 3.2(a). On the other hand, the condensation
reaction largely proceeds on the upper leaflet owing to the high HS concentration
of the upper solution, with the result that amphiphilic molecules are synthesized
in the upper leaflet.

The resulting asymmetric distribution of amphiphilic molecules produces a
negative surface tension in the upper leaflet and a positive surface tension in the
lower leaflet, so that the upper (lower) leaflet is compressed (expanded). This
compression induces a large undulation of the upper leaflet. Figures 3.2(e) and (f)
show the time development of the surface tension Γ of the bilayer and maximum
height hmax of the membrane. The surface tension (mechanical frame tension) is
estimated as Γ = (Pzz − (Pxx + Pyy)/2)Lz from the stress tensor [120]. Note that
Γ is the sum of two surface tensions: the surface tension Γup of the upper leaflet
and the surface tension Γlow of the lower leaflet. Since the hydrolysis reaction is
faster than the condensation reaction, ⟨Namp,low⟩ has a greater slope than ⟨Namp,up⟩
, and the total surface tension Γ then increases (see the data at 0 < t∗ < 2000 in
Figs. 3.2(d) and (e)). A further increase in the surface tension induces the buckling
of the upper leaflet into the protrusion of a bilayer sheet (indicated by arrows in
Fig. 3.2(b)). We hereafter refer to this deformation as bilayer protrusion (BP)
formation. The edge of the BP is tongue-shaped owing to the edge line tension.
Because the line tension of the branching junction between the BP and the bilayer
is low in the high-EO-density area, the BP grows in the high-EO-density area as
shown in Figs. 3.2(b’) and (b”). The surface tension Γ and maximum membrane
height hmax rapidly increase during BP formation at t∗ ≃ 2000 (see Figs. 3.2(e)
and (f)). The BP releases the compressive (negative) surface tension Γup in the
upper leaflet, which increases Γ.

To investigate the effects of the viscosities of the surrounding fluids and mem-
brane on the stress relaxation timescales of BP formation, we started simulations
with different γsol and γTT values from membranes equilibrated at the EO ratio
NEO/Namp ≃ 0.06 by stopping the chemical reactions. When the viscosity ηsol
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Fig. 3.2: (a–c’) Sequential snapshots of a bilayer sheet protrusion (BP) from a flat
membrane at p∗f = 20, p∗r = 180, γ∗

sol = 2, and γ∗
TT = 2. The number presents the

simulation time t∗. (a), (b), (c) Bird’s-eye view. (b’), (c’) Cross sections of (b),
(c) in front view. (b”) Only EOs of (b) are shown from the z direction. Bold line
of (b”) represents the cross section of (b’). Time development of (d) ⟨Namp,up⟩ and
⟨Namp,low⟩, (e) surface tension Γ , and (f) maximum height hmax of the membrane.
The error bars are calculated from eight independent runs. Symbols are shown for
several data points. Smoothed data are shown for Γ. The figure is adapted from
Fig. 2 in [70].
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of the surrounding fluids and the effective membrane viscosity ηmb are increased
roughly fivefold by changing γsol and γTT, BP formation is delayed by 400τ and
800τ , respectively (see Fig. 3.3). This larger delay shows that the viscosity in the
membrane has a stronger influence on BP formation.
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Fig. 3.3: Time development of (a) the surface tension Γ and (b) maximum height
hmax of membrane for different viscosities. The error bars are calculated from eight
independent runs. Symbols are shown for several data points. Smoothed data are
shown for Γ. The figure is adapted from Fig. 3 in [70].

In our simulation, the EOs are inhomogeneously distributed in the membrane.
To clarify whether this EO inhomogeneity is generated thermodynamically or ki-
netically, we simulate the equilibrium flat membrane in the absence of chemical
reactions. Figure 3.4 shows the time development of the surface density inhomo-
geneity δnEO of the EOs. The distribution of the EOs becomes inhomogeneous
even if their initial distribution is uniform. The EOs self-assemble into several clus-
ters in the bilayer membrane (see Fig. 3.4(b)). Thus, this inhomogeneity exists
in thermal equilibrium. The relaxation time τinhomo from uniform to nonuniform
spatial EO distributions depends on the diffusion constant DEO of the EOs. Under
faster EO diffusion, δnEO reaches equilibrium more rapidly (see Fig. 3.4(c)). This
inhomogeneous nature is related to the orientational order of the bilayer mem-
branes [68]. The orientational order of amphiphilic molecules is disturbed by the
contacted EOs.

3.3.2 Morphological changes at v ≃ 1

Next, we consider the shape transformations of a vesicle at v ≃ 1 and the initial
HS concentration difference ∆c∗ = 3 (see Fig. 3.5). This concentration difference
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Fig. 3.4: Time development of δnEO of flat membrane for different DEO values.
Position restraints of EOs are removed at t = 500τ . Two snapshots represent only
EOs in the bilayer membrane for γ∗

TT = 2. The left snapshot shows that EOs
are uniformly distributed in the bilayer membrane. The right snapshot shows the
inhomogeneous distribution of EOs. Symbols are shown for several data points.
The error bars are calculated from three independent runs. The figure is adapted
from Fig. 4 in [70].
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causes the transport of amphiphilic molecules from the outer leaflet to the inner
leaflet as in the flat membrane (see Fig. 3.5(e)).

We estimate the surface tension Γin of the inner leaflet in the following manner.
Since vesicles before shape transformations are nearly spherical because v ≃ 1, the
surface tension Γin of the inner leaflet is approximately estimated as

Γin = KA
4π(Rves − hneut)

2 −Namp,ina0
Namp,ina0

, (3.4)

where a0 = 0.52r2cut is the area per lipid molecule in the tensionless membrane, Rves

is the radius of the vesicle, and hneut = 0.9rcut is the distance between the inner
leaflet neutral surface and the bilayer mid-plane. The negative surface tension of
Γin induces the buckling of the inner leaflet, leading to the formation of multiple
BPs; these BPs are indicated by the arrows in Fig. 3.5(c) and the right panel of
Fig. 3.6. This BP formation process can be captured by the time development
of the standard deviation of the bilayer thickness δd (the calculation method is
described in Appendix 3.B) as shown in Fig. 3.5(g). During the undulation, δd
gradually increases, and after the buckling starts, δd rapidly increases at t∗ > 1500.

BP formation depends on the initial HS concentration difference ∆c as shown
in Fig. 3.7. As ∆c increase, the reaction rates dNamp,in/dt increase, whereas
dNamp,out/dt shows little dependence. BP formation becomes faster with increas-
ing ∆c as a result of the increase in dNamp,in/dt. BP formation occurs everywhere
except at ∆c∗ = 0. Thus, the synthesis of amphiphilic molecules and the resulting
negative surface tension of the inner leaflet are necessary for BP formation.

As shown in the flat membrane simulation in Sec. 3.3.1, the BPs protrude
from the EO clusters (Figs. 3.2 (b’) and (b”)). Thus, these clusters accelerate BP
formation. Hence, we next examine the spatial inhomogeneity of the EOs in the
bilayer membrane and its relation with BP formation. The spatial inhomogeneity
of the EOs is determined by two processes: the synthesis and diffusion of the EOs.
The synthesis of the EOs occurs uniformly on the outer leaflet, leading to a homo-
geneous EO distribution. The characteristic timescale τhomo of this process is the
reciprocal of the EO synthesis speed. On the other hand, the EOs in the bilayer
membrane self-assemble into several clusters, and thus the spatial distribution of
the EOs becomes inhomogeneous as discussed in the case of the flat membrane.
This characteristic timescale τinhomo of the EO assembly into clusters decreases
(increases) for faster (slower) diffusion of the EOs. The relationship between these
two timescales τhomo and τinhomo affects the inhomogeneity of the EOs. When
τhomo > τinhomo, the EOs self-assemble into clusters rapidly, but otherwise they
remain close to the uniform distribution. We confirm this tendency by simulations
in which τinhomo is varied by changing the diffusion constant DEO of the EOs. Fig-
ures 3.8(a) and (b) show the time development of the mean surface density of the
EOs nEO and its inhomogeneity δnEO(t), which is defined as the standard devia-
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Fig. 3.5: (a–d) Sequential snapshots of vesicle at v ≃ 1, p∗f = 80, p∗r = 160, ∆c∗ = 3,
γ∗
sol = 2, and γ∗

TT = 18. The numbers present the simulation time t∗. The front
halves of the vesicles are not displayed to show the inner structures of the vesicle.
(e–g) Time development of (e) ⟨Namp,in⟩ and ⟨Namp,out⟩, (f) surface tension ⟨Γin⟩
of inside monolayer calculated by Eq. (3.4), and (g) thickness inhomogeneity ⟨δd⟩.
Symbols are shown for several data points. The error bars are calculated from
eight independent runs. The figure is adapted from Fig. 5 in [70].
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Fig. 3.6: Snapshots of BP formation. The right panel shows the internal structure
of the left panel. There exist five BPs in the inner leaflet as shown in the arrows
of the right panel. The same simulation settings as Fig. 3.5 are employed.
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Fig. 3.7: Reaction rates of amphiphilic molecules in each leaflet as a function
of the initial concentration difference ∆c∗ at γ∗

sol = γ∗
TT=2. BPs form at c∗ =

0.854, 1.71, 2.56, and 3. The vertical dotted line serves as a guide for the eye for
the threshold of BP formation. The figure is adapted from Fig. 6 in [70].
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tion of the surface density of the EOs, for different DEO values. The EO density is
calculated by using a bin of solid angle ω = 16a0/(4πR

2
ves) in the spherical vesicle.

The time development of nEO(t) is not affected by the change in DEO, as shown in
Fig. 3.8(a), so that τhomo does not depend on DEO. On the other hand, the time
development of δnEO clearly depends on DEO at the late stage t∗ ∈ [1000, 1400].
In the beginning of the chemical reaction (at t∗ < 1000 in Fig. 3.8(b)), the spa-
tial inhomogeneity, δnEO, decreases as the EOs are synthesized. For fast diffusion
1/D∗

EO = 0.75, the EOs form clusters, and δnEO becomes larger compared to slow
diffusion case at t∗ ∈ [1000, 1400]. Thus, τhomo > τinhomo is satisfied. However, for
slow diffusion, 1/D∗

EO = 2.12 and 3.33, the EOs are uniformly distributed even at
t∗ ∈ [1000, 1400], and the cluster formation occurs at later stages.
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Fig. 3.8: Time development of (a) the average ⟨nEO⟩ and (b) standard deviation
⟨δnEO/nEO⟩ of the surface density of EOs for various DEO values at p∗f = 80,
p∗r = 160, and γ∗

sol = 2. γ∗
TT is varied from 2 to 24.5 to change DEO. Symbols are

shown for several data points. The error bars are calculated from eight independent
runs. The figure is adapted from Fig. 7 in [70].

More BPs form at slower diffusion and faster reactions as shown in Fig. 3.9.
At small values of the diffusion constant DEO, slower EO cluster formation delays
BP formation. Since the synthesis rate of EOs does not depend on the DEO as
shown in Fig. 3.8 (a), the number of EOs at the BP formation increases at lower
DEO. At high reaction rates p∗f and p∗r , the surface tension increases more rapidly.
In both cases, at BP formation, the larger number of EO clusters exist in the
bilayer membrane, and the membrane is under a greater compressive tension at
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∗
sol = 2. The error bars are calculated from six independent runs.

The figure is adapted from Fig. 8 in [70].

BP formation. This leads to the formation of more BPs at the same time instead
of a single large BP.

At low number NBP of BPs, the BP bends and finally transforms into the
spherical vesicle as shown in Fig. 3.10. Since the initial shape of the BP is a nearly
flat disk, this shape transformation can be regarded to as the shape transformation
from flat bilayer disk to spherical vesicle. This type of shape transformation is
roughly described by the theory by Fromherz [26]; the excess energy ∆E relative
to the flat bilayer disk is written as

∆E(x, ζ)

4π(2κ+ κ̄)
= x2 + ζ

[√
1− x2 − 1

]
,

ζ =
ΓedgeRmb0

2κ+ κ̄
, x =

Rmb0

Rmb

, andRmb0 =

√
Amb

4π
,

(3.5)

where Γedge, Amb and 1/Rmb are the edge line tension, area, and curvature of the
membrane, respectively. The intermediate shape of bilayer disk is assumed to be
the spherical cap. Equation 3.5 shows that the flat bilayer disk is energetically
unstable at ζ > 2; a flat bilayer disk that has a large Amb tends to shrink its
edge-line and transforms into the sphere to reduce the high edge-line energy. The
growth of flat BP caused by the synthesis of amphiphilic molecules in the inner
leaflet leads to the shape transformation from the flat BP to the spherical vesicle.
At high number NBP of BPs, there is not enough space inside the vesicle for the
shape transformation from the flat BP to spherical vesicle; thus the BP remains
flat.
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Fig. 3.10: (a–c) Sequential snapshots of shape transformation from the flat BP disk
to vesicle at v ≃ 1, p∗f = 80, p∗f = 160, ∆c∗ = 3, γ∗

sol = 2, γ∗
TT = 2. Cross-sectional

images (left) and inside views (right) of the vesicle are shown. The number presents
the simulation time t∗. The figure is adapted from Fig. 9 in [70].
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3.3.3 Morphological changes at v ≃ 0.5

Next, we consider the shape transformations at a low reduced volume, v ≃ 0.5.
The initial shape is discocyte (see Fig. 3.11(a)). The same settings as in Sec. 3.3.2
are considered: the HS concentration is different inside and outside the vesicle.
Thus, the hydrolysis and condensation reactions mainly occur on the outer and
inner leaflets, respectively.

For the low reduced volume, large low-wavelength fluctuations of the bilayer
are permitted unlike for v ≃ 1, leading to a different type of shape transformation,
budding into a stomatocyte. Figure 3.11 shows the typical shape transforma-
tion. As the hydrolysis and condensation reactions proceed, a dimple invagination
forms (Fig. 3.11(b)), and eventually the discocyte transforms into a stomatocyte
(see Figs. 3.11(c) and (d)). A decrease and increase in the amphiphilic molecular
densities of the outer and inner leaflets, respectively, cause an effective negative
spontaneous curvature according to the ADE model so that the inner bud is sta-
bilized. After the budding, a further increase of amphiphilic molecular density of
the inner leaflet causes BP formation, as in the v ≃ 1 case.

Fig. 3.11: Sequential snapshots of bud formation at γ∗
sol = γ∗

TT = 2, p∗f = 20,
p∗r = 180, and ∆c∗ = 3. Cross-sectional images are shown. The figure is adapted
from Fig. 10 in [70].

In order to clarify the relationship between shape transformations and chem-
ical reactions, we calculate the time development of the asphericity αsp [110]
(Fig. 3.12(a)), and the amphiphilic molecular number difference, ∆Namp = Namp,out−
Namp,in between the inner and outer leaflets (Fig. 3.12(b)). The asphericity is the
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degree of deviation from a spherical shape and is defined as αsp = [(λ1 − λ2)
2 +

(λ2− λ3)
2 + (λ3− λ1)

2]/2(λ1 + λ2 + λ3)
2, where λ1, λ2, and λ3 are the eigenvalues

of the gyration tensor of the vesicle. It can distinguish the stomatocyte (αsp ≃ 0)
and the discocyte (0.15 ≲ αsp ≲ 0.25) [74]. When the chemical reaction process
speeds up by increasing pf and pr, the shape transformation also speeds up (from
p∗f = 1, p∗r = 9 to p∗f = 20, p∗r = 180 in Fig. 3.12(a)). As the chemical reactions
proceed, ∆Namp linearly decreases in time, but αsp nonlinearly decreases. This
rapid change corresponds to the shape transformation from the discocyte to the
stomatocyte.

-2500

 0

 2500

 0  1000  2000

<
∆ 

N
am

p>

t*

(b)

p*f = 1, p*r = 9
p*f = 3.4, p*r = 30.6
p*f = 20, p*r = 180

 0.06

 0.14

<
α s

p>

(a)

p*f = 1, p*r = 9
p*f = 3.4, p*r = 30.6
p*f = 20, p*r = 180

Fig. 3.12: Time development of (a) asphericity ⟨αsp⟩, (b) amphiphilic molecular
number difference ⟨∆Namp⟩ between the inner and outer leaflets at ∆c∗ = 3, γ∗

sol =
24.5, and γ∗

TT = 2. Symbols are shown for several data points. The error bars are
calculated from eight independent runs. The figure is adapted from Fig. 11 in [70].

Interestingly, BP formation without budding occurs when the viscosity ηsol is
increased (see Fig. 3.13). Initially, the bilayer bends inward (Fig. 3.13(b)) as in
the budding, but these invaginations transform into BPs (Figs. 3.13(c) and (d)).

In order to distinguish the two types of shape transformations (budding (Fig. 3.11)
and BP formation without budding (Fig. 3.13)), we calculate the bilayer thickness
inhomogeneous δd during shape transformation from αsp ≃ 0.14 to αsp ≃ 0 (see
Fig. 3.14). For BP formation, δd is diverged when αsp changes from 0.14 to 0.025.
For bud formation, δd is not diverged. We set δdth = rcut as the threshold value
to determine the divergence of the thickness inhomogeneity δd. When δd > δdth
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Fig. 3.13: Sequential snapshots of BP formation without budding at γ∗
sol = 24.5,

γ∗
TT = 2, p∗f = 5, p∗r = 45, and ∆c∗ = 3. Cross-sectional images are shown. The

figure is adapted from Fig. 12 in [70].

is satisfied from αsp ≃ 0.14 to αsp ≃ 0, this shape transformation is regarded as
BP formation.

Using this threshold of δd, we construct the dynamic phase diagram of the
shape transformations as shown in Fig. 3.15 for different ηsol values. At each data
point, we carry out eight independent runs. If the number of BP transforma-
tions without budding is more than four at one point, the shape transformation is
regarded as BP formation without budding.

The shape transformation pathway depends on not only d∆Namp/dt but also
on dNEO/dt as shown in Fig. 3.15(a). As mentioned in Sec. 3.3.2, BP formation is
strongly affected by the spatial distribution of the EOs. If the EOs are not suffi-
ciently synthesized, the resulting shape transformations are budding (low dNEO/dt
in Fig. 3.15(a)) because a few EOs do not form clusters in the bilayer. When the
EO synthesis rate increases, the EOs self-assemble into clusters in the bilayer, so
that BP formation occurs. Thus, EO synthesis dramatically affects the resulting
shape transformation.

However, at low viscosity ηsol, BP without budding does not occur, as shown
in Fig. 3.15(b). In this case, the bud formation timescale is shorter than the
timescale τinhomo of the EO cluster formation. The area compressive stress caused
by the chemical reactions is released via bud formation before BP formation starts.
As pointed out by Sens [95], the surrounding solution that has high viscosity sup-
presses bud formation. This suppression of bud formation enhances BP formation.
As mentioned in Sec. 3.3.1, BP formation is more slowed by the membrane vis-
cosity. Thus, compared to budding, BP formation more frequently occurs at low
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Fig. 3.14: Time development of (a) asphericity αsp and (b) bilayer thickness inho-
mogeneity δd at ∆c∗ = 3, p∗f = 5, p∗r = 45, γ∗

sol = 24.5, and γ∗
TT = 2. Blue and red

lines represent budding and BP formation without budding, respectively. Symbols
are shown for several data points. The figure is adapted from Fig. 13 in [70].

membrane viscosity ηmb and high solution viscosity ηsol.

3.4 Discussions and Conclusion

In this paper, we have shown the shape transformations of vesicles and flat mem-
branes induced by hydrolysis and condensation reactions. We use the coarse-
grained molecular simulation technique in which the hydrolysis and condensation
reactions are taken into account explicitly by the bond dissociation and binding.
The asymmetric chemical conditions, which are widely observed both in vitro and
in vivo, cause the transport of amphiphiles between outer and inner leaflets, lead-
ing to the BP formations. The growth process of BPs strongly depends on the EO
density inhomogeneity that is determined by the competition between two differ-
ent dynamics: diffusion of EOs and synthesis of EOs. At a low reduced volume,
budding transformation also occurs. The shape transformation pathway is affected
by the EO synthesis rate and the shear viscosity of the surrounding solution. By
increasing the solution viscosity ηsol while keeping the membrane viscosity ηmb

constant, bud formation is suppressed so that BP formation is enhanced. In the
budding, the membrane mainly moves normal to the membrane surface, but sliding
between two leaflets occurs in BP formation. Thus, the viscosity of the surround-
ing fluids affects budding more than it does BP formation, while the viscosity in
the membrane affects BP formation more.

Similar shape transformations in BP formation are observed in the Langmuir
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monolayer in both experiments [57,62] and simulations [11]. The compression leads
to collapse of the Langmuir monolayer into a bilayer sheet. The formed bilayer
sheet finally transforms into the spherical vesicle [11, 33], which corresponds to
the shape transformation shown in Fig. 3.10. Other experiments, in which bilayer
vesicles are composed of SOPC (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine),
C16:0-SM (N-palmitoyl-sphingomyelin), and Bodipy-sphingomyelin (a fluorescent
tracer), show the invagination of vesicle under the injection of the enzyme sphin-
gomyelinase [41]. Ceramide, which is generated by the hydrolysis of SM, segregates
into a domain in the membrane and causes the invagination of vesicle. We expect
that such a domain helps BP formation in the inner leaflet of the vesicles.

Our results show that the relative viscosity ratio of the membrane and sur-
rounding fluids is significant in determining budding or BP formation. We believe
that two competing shape transformations accompanied by lateral and normal
membrane motions are generally controlled by the viscosity ratio; the former and
latter dynamics are slowed down by increases in viscosities of membrane and sur-
rounding fluids, respectively. Fournier et al. [24] reported that higher friction
between two leaflets slows down membrane tubulation. Thus, we expect a similar
tendency in budding and tubulation. Recently, Fujiwara and Yanagisawa [27, 28]
reported that vesicles containing high concentrations of macromolecules undergo
bud or tube formation depending on the viscosity of the inner solution; the mem-
brane tube formation appears at the high viscosity, otherwise, bud formation ap-
pears. The slow elastic relaxation due to the high viscosity suppresses the bud
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formations, and enhances the tube formations. We consider that the viscosity ra-
tio of membrane and surrounding fluids is also important in their experiments as
well as the viscosity ratio of the inner and outer fluids.

In living cells, lipid droplets are formed on the ER membrane [15]. The hy-
drophilic segments of the lipids are removed by chemical reactions. These reactions
are similar to the hydrolysis reaction in our simulation. The resulting hydrolyzed
hydrophobic molecules assemble into clusters in the bilayer membrane. We expect
that a similar cluster formation plays a role in the initial lipid droplet formation.

In this work, the rupture of the vesicles is not observed due to the high edge line
tension of the bilayer. However, in the experiments conducted by Riske et al. [88],
the rupture of liposomes occurs as a result of the injection of hydrolase enzyme.
The coupling of the asymmetrical amphiphilic molecular density and membrane
rupture causes the inside-out inversion [80]. Under low edge tension, competition
between ruptures and BP formation may occur.

We only consider amphiphilic molecules that form the bilayer in this disser-
tation. Hydrolysis reactions removes the hydrophilic head groups of amphiphiles
leading to the increase of hydrophobic tail region. This effectively increases the
packing parameter of amphiphile. In the experiments by Suzuki et al. [107], the
molecular assembly changes their shapes from tubular micelles to vesicles due to
this packing parameter change by the hydrolysis reactions. In the future, it will be
interesting to investigate the molecular mechanism of these shape transformations
involving non-bilayer structures.
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Appendix

3.A Preparation of vesicles

We prepare the spherical vesicles in the following manner. First, a spherical-cap-
shaped bilayer membrane is centered in the simulation box, and water particles
are distributed around the bilayer membrane. The system is equilibrated during
500τ − −2500τ . A closed spherical membrane is thus obtained. Some water
particles inside the vesicle are then ejected to tune the reduced volume v. After
that, the system is equilibrated for 5000τ . For these system equilibrations, we
use γ∗

ij = 2 to speed up the equilibration processes. The system is then again
equilibrated for 3000τ using the same setting γij as for the production runs. After
the above-mentioned equilibration processes, we turn on the hydrolysis reaction.

3.B Calculation of thickness of vesicles

We calculate the bilayer thickness d of vesicles from the two layers of the hy-
drophilic particles. First, we extract the positions of hydrophilic particles in the
bilayer membrane. Next, we carry out a clustering analysis using depth-first search
with search radius rds = 0.25rcut. Two sets (clusters) of hydrophilic particles are
obtained in most cases before the large shape deformations: One is the head-group
of the inner leaflet, and the other is the head-group of the outer leaflet. We define
the local bilayer thickness as

d(i) = min
j∈Cout

rij (for i ∈ Cin), (3.6)

where Cin and Cout are the sets of hydrophilic particles in the inner and outer
leaflets, respectively. The membrane thickness d is defined as the mean value of
d(i). The thickness inhomogeneity δd defined as

δd =

√
1

n(Cin)

∑
i∈Cin

(d(i)− d)2, (3.7)

where n(Cin) is the number of particles included in the inner leaflet.
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Chapter 4

Nonuniqueness of local pressure
of three-body potentials in
molecular simulations

In this chapter, we discuss the pressure profile calculation method in molecular
simulations and the pressure profile nonuniqueness of the system containing three
body potentials.

4.1 Introduction

The stress tensor is a fundamental quantity that connects discrete molecular sys-
tems and continuum mechanics. The calculation of the local stress field from
molecular simulations has a long history [3–6, 32, 36, 38, 49, 79, 92, 111–113, 118].
Irving and Kirkwood introduced the microscopic stress tensor formula based on
non-equilibrium statistical mechanics [49], following which a rigorous mathemati-
cal formula was proposed by Noll [79]. In the following, we refer to their procedure
as the Irving-Kirkwood-Noll (IKN) procedure, as stated by Admal and Tadmor [6].
Hardy introduced the spatial averaging of the stress tensor using weighting func-
tions to improve statistics [36]. However, these procedures are limited to systems
in which interactions consist of pairwise forces.

The method to map the stress of multibody potentials into the continuum space
has been debated. Multibody potentials have been frequently used in molecular
simulations. Bending and dihedral potentials, which are widely used, are three-
and four-body potentials, respectively. The interaction between adjacent dihedrals
is represented by five-body correction map (CMAP) potential in the CHARMM
force field [65,112]. A curvature potential in meshless membranes is a function of
three rotational invariants of the weighted gyration tensor and produces n-body
forces, where n depends on the local density [75]. Since most of the multibody
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forces are not central forces between particles, the IKN procedure cannot be di-
rectly applied to them. Note that multibody hydrophobic potentials as a function
of the local hydrophobic particle density for proteins [108] and membranes [75,78]
give central forces between particles so that their stress can be calculated directly
using the IKN procedure.

Goetz and Lipowsky proposed a decomposition procedure for multibody po-
tentials [32] based on Schofield and Henderson’s procedure [92]. Multibody forces
are decomposed into pairwise (non-central) forces, and the IKN procedure is ap-
plied to each decomposed force pair. We refer to this method as Goetz-Lipowsky
decomposition (GLD). However, GLD does not satisfy the strong law of action and
reaction, as pointed out by Admal and Tadmor [3, 6], while it satisfies the weak
law of action and reaction: GLD conserves translational momentum but not an-
gular momentum. Consequently, the stress tensor is not symmetric. To overcome
this problem, central force decomposition (CFD) was proposed [3, 5, 6, 112, 118].
The forces decomposed using CFD satisfy the strong law of action and reaction so
that the stress tensor is symmetric by construction. The original CFD is limited
to three- or four-body forces because there exists a unique force decomposition
for only up to four-body forces. For n-body forces with n ≥ 5, the number of
degrees of freedom 3n− 6 is less than the number of pairs n(n− 1)/2 in the three-
dimensional (3D) space. Very recently, the generalization to more than four-body
forces, which is called a covariant CFD (cCFD), was introduced by Torres-Sánchez
et al. [112, 113]. The application to a structural coiled-coil protein with the five-
body CMAP potential was demonstrated [112].

In this chapter, we discuss non-uniqueness in the force decomposition of three-
body forces in classical mechanics. Three-body forces can be uniquely decomposed
by CFD. However, we will show different decompositions, which also satisfy the
strong law of action and reaction. A force center can be uniquely defined for
three-body forces, and the forces are decomposed into central force pairs between
interacting particles and the force center. To combine this decomposition and
CFD, the position of the force center can be arbitrarily taken. This non-uniqueness
is related with the non-unique potential-energy extension discussed in Ref. [3,4,6].
It is a specific case of the degeneracy of four-body forces into 2D space. We will
discuss the choice of this center position by the stress distribution. Although two-
body forces can also similarly be decomposed, the IKN procedure always gives
the minimum stress distribution. In contrast, the stress distribution of three-body
forces depends on the type of the forces. We will also discuss the influence of the
resolution of simulation models.

For an application of the force decomposition, we investigated a bilayer mem-
brane using coarse-grained and atomistic molecular dynamics (MD) simulations.
The stress profile along the normal direction has been widely calculated in the
molecular simulations of lipid membranes. Two opposing forces, interfacial ten-
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sion and steric repulsion, produce the inhomogeneous stress inside the bilayers [50].
This inhomogeneity is a key property of the bilayers because it determines the
area per lipid molecule [50], spontaneous curvature [46, 82, 83, 89, 119], Gaussian
curvature modulus [40,45,46,82,83,90,103,119], and function of the mechanosen-
sitive channel [105, 116]. Since the stress profile cannot be obtained experimen-
tally [25, 109], estimation using molecular simulations is important. Recently,
however, Torres-Sánchez et al. reported that the stress profile is strongly depen-
dent on the force decomposition method [112]. The dihedral forces give the largest
contribution to the stress profile by CFD. We will show that the stress profile is
largely dependent on the decomposition of bending forces.

In Sec. 4.2, we discuss the force decomposition method. After introducing the
existing decomposition method, we describe the alternative decomposition method
for three-body forces. As an example, we show the decomposition for an area
potential and a bending potential. The area potential is one of the simplest three-
body potentials and is connected to continuum mechanics in a straightforward
manner. The bending potential is the most widely used three-body potential. In
Sec. 4.3, the bilayer membrane is examined. The stress profile and Gaussian curva-
ture modulus are calculated for different decomposition methods. The discussion
and summary are given in Sec. 4.4 and 4.5, respectively.

4.2 Force Decomposition

4.2.1 Irving-Kirkwood-Noll Procedure

Stress averaged over the entire simulation box is given by the virial as

σ = σK + σU, (4.1)

σK = − 1

V

∑
i

⟨mivi ⊗ vi⟩, (4.2)

σU = − 1

V

∑
i

⟨fi ⊗ ri⟩, (4.3)

=
1

V

N∑
n=2

∑
kn=1

n∑
i=1

⟨ ∂Ukn

∂rkn,i
⊗ (ri − rkn,0)⟩, (4.4)

where mi, ri, and vi are the mass, position, and velocity of the i-th particle
and fi = −∂U/∂ri. The symbol ⊗ denotes a tensor product and ⟨...⟩ denotes a
statistical average. This global stress is uniquely determined even for multibody
forces. The potential contribution σU can be rewritten with Eq. (4.4) using cluster
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expansion [113] as

U(r1, ..., rN) =
N∑

n=2

∑
kn=1

Ukn(rkn,1, ..., rkn,n), (4.5)

where each Ukn is an n-body potential that is invariant under translation and
rotation. The origin rkn,0 of the positions can be taken differently for each Ukn , as
expressed in Eq. (4.4). Each origin can be arbitrarily chosen but a position close to
interacting particles is preferred to reduce numerical errors, particularly for large-
scale simulations. When the origin is set to the position of one of the interacting
particles, the potential stress of the pairwise potentials takes the well-known form,

σU,pair = −
1

V

∑
i<j

⟨fij r̂ij ⊗ rij⟩, (4.6)

where fij = −∂Uk2/∂rij, rij = ri − rj, rij = |rij|, and r̂ij = rij/rij. Under a
periodic boundary condition, the periodic image is used instead of the original
position when the potential interaction crosses the periodic boundary.

For pairwise interactions, the local stress at a position x is given by the IKN
procedure as [49,79]

σ(x) = σK(x) + σU(x), (4.7)

σK(x) = −
∑
i

⟨mivi ⊗ viδ(ri − x)⟩, (4.8)

σU(x) = −
∑
i<j

⟨fij r̂ij ⊗ rijBIKN(ri, rj,x)⟩, (4.9)

where BIKN(ri, rj,x) =
∫ 1

0
δ[(1− s)ri + srj −x]ds. The force propagates along the

line segment between ri and rj. This local stress tensor is symmetric: σαβ(x) =
σβα(x) for α, β ∈ {x, y, z}.

4.2.2 Central Force and Geometric-Center Decompositions

When the multibody force is decomposed into pairwise forces between interacting
particles, the IKN procedure for pairwise forces is applicable. Therefore, decom-
position methods to pairwise forces have been focused upon. Goetz and Lipowsky
proposed a decomposition (GLD), fij = (fi − fj)/n, for n-body forces [32]. This
decomposition conserves the translational momentum but does not conserve the
angular momentum, since the force fij is not generally parallel to rij.

In order to satisfy the conservation of the angular momentum as well, Admal
and Tadmor proposed the decomposition to central forces between interacting
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particles (CFD) [3, 6]. Three-body forces can be uniquely decomposed by CFD:

f1 = f12r̂12 + f13r̂13,

f2 = f23r̂23 + f12r̂21, (4.10)

f3 = f13r̂31 + f23r̂32.

Since the translational and angular momenta are conserved, f1 + f2 + f3 = 0 and
f1 × r1 + f2 × r2 + f3 × r3 = 0. For f12 > 0, f12 is a repulsive force between r1 and
r2. From Eq. (4.10), f12 is given by

f12 =
f1 · r̂12 − (f1 · r̂13)(r̂12 · r̂13)

1− (r̂12 · r̂13)2
, (4.11)

or

f12 =
1

2

(f1 · (r̂12 + r̂13)

1 + r̂12 · r̂13
+

f2 · (r̂23 + r̂21)

1 + r̂21 · r̂23
− f3 · (r̂31 + r̂32)

1 + r̂31 · r̂32

)
. (4.12)

Similarly, f13 and f23 are given. Equation (4.12) is recommended for numerical
calculations, since it gives smaller numerical errors when two angles of △123 are
close to null and the third is close to π. Alternatively, these force pairs can be
derived directly from f12 = −∂Uk3/∂r12|r13, r23 [6] as demonstrated for the area and
bending potentials in Appendix 4.A and 4.B, respectively. The CFDs of the area
expansion and bending forces are shown in Figs. 4.1(b) and 4.2(b), respectively.
The three interacting particles form a triangle and lie on a plane so that the forces
f1, f2, and f3 are along this plane owing to the conservation of translational and
angular momenta. Hence, we can consider the 2D space without loss of generality.

Alternatively, Heinz et al. proposed a decomposition method that uses the
geometric center,

∑n′

i ri/n
′, of n′ interacting particles in a divided cell for an n-

body potential (n′ < n) [38]. In this decomposition, the angular momentum is
not conserved. The geometric center is determined only by the positions and has
no relation to the force balance. Hence, the geometric center can significantly
deviate from the positions where the forces act. For example, when great forces
act only on two particles in n-body forces, i.e., |fi| ≫ |fj| (i = 1, 2, and j ≥ 3), the
resultant stress should be close to that of the pairwise forces between r1 and r2.
However, the geometric center can be far from the line segment between r1 and r2.
Thus, a center position should be determined by the force balance, or a specific
force decomposition should be employed for a chosen center position to satisfy the
force balance. We consider the center position with the decomposition to satisfy
the strong law of the action and reaction in Sec. 4.2.3.

One may consider the center of mass as an alternative candidate for the cen-
ter position. However, the potential stress term σU is not dependent on mass
distribution in thermal equilibrium. One can calculate σU using a Monte Carlo
simulation, in which the mass distribution is not required at all. Since the values
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Fig. 4.1: Force decomposition for area expansion forces. (a) Original forces. (b)
CFD. (c) FCD. (d) HD. The light gray (green) sphere represents the force center,
rc. The figure is adapted from Fig. 1 in [69].

of the particle masses are arbitrary but positive, the center of mass lies inside
the convex polyhedron (triangle for three-body forces) formed by interacting par-
ticles. As described below, it is important whether the center position for force
decomposition is inside or outside the triangle for three-body forces.

4.2.3 Force Center and Hybrid Decompositions

We consider the alternative decompositions of three-body forces. As mentioned
above, the forces are uniquely determined by CFD for three-body forces. How-
ever, when one more position is taken into account, the forces are not uniquely
determined. For three-body forces, three lines drawn along the force vectors fi
from the particle positions ri (i ∈ 1, 2, 3) always meet at one position owing to the
angular-momentum conservation1. We refer to this position as the force center,
rc. It is determined as

rc =
1

q

(
f̃12f̃13r1 + f̃12f̃23r2 + f̃13f̃23r3

)
(4.13)

q = f̃12f̃13 + f̃12f̃23 + f̃13f̃23 (4.14)

where f̃ij = fij/rij and fij are the forces obtained by CFD. The sign of the de-
nominator q determines the region of the force center as described later. Using

1This is not true for n-body forces (n ≥ 4).
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Fig. 4.2: Force decomposition for bending forces on θ123. (a) Original forces. (b)
CFD. (c) FCD. (d) HD. The same color notation as Fig. 4.1 is employed. The
figure is adapted from Fig. 2 in [69].

the force center, the forces are decomposed into three central force pairs ficr̂ic = fi
between ri and rc for i ∈ {1, 2, 3} [see Figs. 4.1(c) and 4.2(c)]. We refer to this
decomposition as force-center decomposition (FCD). Since these are central forces,
the strong law of action and reaction is satisfied and the symmetric local stress
tensor is obtained by the IKN procedure for these decomposed forces.

When three force pairs have the same sign (f12 > 0, f13 > 0, f23 > 0 or f12 < 0,
f13 < 0, f23 < 0), the force center lies in the interior region of the triangle △123
and q > 0. For an expansion force as shown in Fig. 4.1, the decomposed forces
in CFD and FCD can be physically interpreted as line (surface) tension on the
edge of the triangular region and pressure of the interior region on the particles,
respectively.

The exterior region can be divided into six regions as shown in Fig. 4.3. When
f12f13 > 0 and f12f23 < 0, the force center lies in the region A or D for q > 0
or q < 0, respectively. For bending potentials as a function of the angle θ123 =
cos−1(r̂12 · r̂32), rc always lies outside the triangle and q < 0. As θ123 becomes closer
to π, f1 and f3 approach parallel lines so that rc becomes further from the particle
positions. The details of decomposition for the area and bending potentials are
described in Appendix 4.A and 4.B, respectively.

The force center position can be moved by combining FCD with CFD. We
refer to this combined decomposition as hybrid decomposition (HD). If necessary
to distinguish them, the force center in FCD is called the original force center
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1 2

3

A

B
C

F E

D

Fig. 4.3: Six exterior regions (A–F) of the triangle△123. Shaded and white regions
correspond to q > 0 and q < 0, respectively. The figure is adapted from Fig. 3
in [69].

rc0. In HD, the force pair of each edge of △123 is divided into FCD and CFD
components as f all

12 = fFC
12 + fCF

12 . The force center rc is determined by Eq. (4.13)
with the FCD components fFC

12 , fFC
13 , and fFC

23 . For example, Fig. 4.1(d) shows
the decomposition into three force pairs with rc and one force pair along r12.
When the contribution of force f12 to FCD increases (decreases), the hybrid force
center rc is further (closer) to r3 than the original force center rc0 [see Eq. (4.13)].
Figure 4.2(d) shows HD combining FCD with two force pairs along r12 and r23. If
the force center lies on the edge of the triangle △123, the resultant decomposition
coincides with CFD (if rc lies in the middle of the line segment between r2 and r3,
then f1c = 0).

The hybrid decomposition can be applied to two-body forces if two positions,
r3 and r4, are added as shown in Fig. 4.4. Therefore, the IKN procedure is not
a unique solution to obtain the stress tensor even for the two-body forces. How-
ever, the total length (ℓsum =

∑
i<j rij) and force norm sum (fsum =

∑
i<j |fij|)

become greater than the IKN procedure. Thus, the IKN procedure is the best
decomposition method for two-body forces.

4.2.4 Stress Distribution

Although the force center can be set to an arbitrary position in HD, positions that
are excessively far away are not physically suitable. Thus, we need a criterion to
select the decomposition. We consider the minimization of the stress distribution
as a candidate criterion. Hence, we define the stress-distribution magnitude ΓSDM

as a summation over the cross norm of the stress,

ΓSDM =
∑
i<j

|fij|rij, (4.15)
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Fig. 4.4: Force decomposition for two-body forces. (a) Original forces. (b) Exam-
ple of the hybrid decompositions.

where the summation is taken over all pairs (i, j ∈ 1, 2, 3, c for the three-body
forces). For the two-body forces, the IKN procedure always gives the minimum
value of ΓSDM. Therefore, ΓSDM can be employed as the criterion for the two-body
forces.

In the following, we consider the minimization problem of ΓSDM for three-
body forces. For CFD and FCD, ΓCFD = |f12|r12 + |f13|r13 + |f23|r23 and ΓFCD =
|f1c|r1c+|f2c|r2c+|f3c|r3c, respectively. Interestingly, when the original force center
exists in the interior region of the triangle △123, these two magnitudes take the
same value: ΓCFD = ΓFCD. The force norm sum fsum of CFD is less than that of
FCD, while the total length ℓsum of CFD is greater. For HD with rc lying in the
interior region of △123,

ΓHD = ΓFC
HD + ΓCF

HD (4.16)

= (|fFC
12 |+ |fCF

12 |)r12 + (|fFC
13 |+ |fCF

13 |)r13
+(|fFC

23 |+ |fCF
23 |)r23. (4.17)

When the CFD and FCD components in each force pair have the same sign, i.e.,
when fCF

12 fFC
12 > 0, |f all

12 | = |fCF
12 | + |fFC

12 | so that ΓHD = ΓCFD. When fCF
12 fFC

12 < 0,
|f all

12 | < |fCF
12 | + |fFC

12 | so that ΓHD > ΓCFD. For the hybrid force center inside
the triangle △123, the decomposition with the same sign for each force pair can
be chosen. Thus, when rc exists inside or on the edge of △123, ΓSDM takes the
minimum value ΓCFD = ΓFCD. Figure 4.5 shows the minimum value of ΓSDM for
each force center position rc for an area potential. Here, HD into three FCD force
pairs and two CFD force pairs is used (fCF

12 = 0, fCF
13 = 0, or fCF

23 = 0), since
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Fig. 4.5: Contour map of the stress distribution magnitude ΓSDM with respect to
the force center position rc(x, y) for the surface tension karA123. The color bar
shows the magnitude of ΓSDM/kar. The figure is adapted from Fig. 5 in [69].

infinitely small values can be taken for all FCD pairs if all six force pairs are
allowed. For rc lying in the interior region of △123, ΓSDM is constant, while ΓSDM

is greater for rc lying in the exterior region. Therefore, the ΓSDM minimization
implies the restriction on the decomposition choices to the interior region but does
not give a unique combination.

When the original force center rc0 exists outside the triangle, ΓSDM typically
has the lowest value at a single position of rc. Figure 4.6 shows a typical example
of ΓSDM in the HD of a bending potential on θ123 with fCF

13 = 0. The deepest
minimum of ΓSDM appears between rc0 and the triangle △123 and local minima
appear in the other exterior regions. We consider the case where rc0 lies in the
region B, as shown in Fig. 4.3. We define the position rm, which is geometrically
determined:

rm = r2 +
√
r12r23r̂bv, (4.18)

r̂bv =
r̂12 + r̂32
|r̂12 + r̂32|

,

where r̂bv is a unit vector bisecting the angle θ123. The triangles △12m and △m23
are similar. When rm is in the interior or on the edges of the triangle △13c0
formed by r1, r3, and rc0, ΓSDM has the global minimum at rc = rm, where HD
is taken for five force pairs, fCF

12 , fCF
23 , f1m, f2m, and f3m. This minimum appears

not only for the bending forces but also for the other three-body forces with rc0
lying in the region B. The local minimum in the region E with fCF

13 = 0 appears
at rlm = r2 −

√
r12r23r̂bv. The derivations of these global and local minima are

described in Appendix 4.C. The stress cross norms are balanced at rm: |f1m|r1m =
|f2m|r2m = |f3m|r3m. For the bending forces, the condition for rm lying in △13c0
is r12/r23 ≥ cos2(θ123/2) and r23/r12 ≥ cos2(θ123/2). This condition is satisfied in
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Fig. 4.6: Contour map of the stress distribution magnitude ΓSDM with respect to
the force center position rc(x, y) for the bending potential in Eq. (4.19). The color
bar shows ΓSDM/kbend. The positions of the original force center rc0 and the force
centers rm and rlm of the global and local minima of ΓSDM are shown in the left
panel. The figure is adapted from Fig. 6 in [69].

W H T
W 25 25 200
H 25 25 200
T 200 200 25

Table 4.1: Repulsive interaction parameters aij with unit kBT .

typical simulation conditions including our present simulation. It is violated only
when r12/r23 significantly deviates from unity and θ123 is small.

For general three-body forces, rm can be outside △13c0. In this case, we do
not have an analytical solution for the ΓSDM minimum, but it can be calculated
numerically. In the next section, we investigate how the stress profile of a bilayer
membrane depends on the decomposition.

4.3 Bilayer membrane

We simulate a tensionless bilayer membrane with various decompositions of bend-
ing forces using coarse-grained and atomistic lipid models. In Sec. 4.3.1, the stress
profile and Gaussian curvature modulus are discussed using the dissipative particle
dynamics (DPD) method [22, 35, 43, 120]. DPD is one of the widely used coarse-
grained lipid models. In Sec. 4.3.2, the stress profile of an atomistic MD of DOPC
(1,2-Dioleoyl-sn-glycero-3-phosphocholine) using CHARMM36 force field [52, 53]
is discussed. We refer to HD with the global and local minima of ΓSDM in the
regions B and E as HD(GM) and HD(LM), respectively. In HD, we examine only
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the case fCF
13 = 0, since HD(GM) and HD(LM) are obtained in this condition.

4.3.1 Coarse-grained model

Model description

Basic concepts of DPD is described in Chapter 2. We briefly show the parameter
settings of simulation model in the following.

An amphiphilic molecule is represented by a linear chain of four particles:
one hydrophilic (H) and three hydrophobic (T) DPD particles. Neighboring DPD
particles are connected via the harmonic bond potential, Ubond(rij) = (kbond/2)(1−
rij/ℓ0)

2, with kbond = 150kBT , where kBT is the thermal energy. One of the
simplest bending potentials is employed at the second and third particles of the
amphiphile:

Ubend(θijk) = kbend(1− cos θijk), (4.19)

with kbend = 30kBT . A dihedral potential is not considered. The multi-time-
step algorithm [76, 115] is employed with ∆t = 0.005τ and δt = 0.05τ ,where
τ = rcut

√
m/kBT .

All particle pairs interact through a soft repulsive potential: Urep(rij) = (aij/2)(1−
rij/rcut)

2, which vanishes beyond the cutoff at rij = rcut. We set rcut = 2ℓ0
in this study. The repulsive interaction parameters, aij, are listed in Table 4.1.
γ = 4.5

√
kBTm/rcut, p = 1 are used for the dissipative and random force parame-

ters.
The amphiphilic molecules form a bilayer membrane with the bending rigidity

κ/kBT = 18.3 ± 0.2, which is a typical value for a bilayer membrane at room
temperature [59]. The details of the simulation method are described in Ap-
pendix 4.D.1.

Lateral pressure profile

The lateral and normal pressure profiles along the normal (z) direction of the
bilayer membrane for different force decomposition methods are shown in Fig. 4.7.
The pressure profiles are calculated from the average stress for small slices along the
xy plane with a width of ∆z = 0.2ℓ0: PL(z) = −(σxx(z) + σyy(z))/2 and PN(z) =
−σzz(z). The lateral profile PL(z) strongly depends on the force decomposition
methods, while the normal profile PN(z) is independent of the decompositions
and takes a constant value. The contribution of two-body forces to PL(z) is only
slightly dependent on z [see Fig. 4.7(a)].

The contribution P bend
L of the bending forces to the lateral profile is significantly

different for different decomposition methods. The amplitude of P bend
L of FCD is

much larger than those of CFD, HD(GM), and HD(LM), as shown in Fig. 4.7(b).
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Fig. 4.7: Pressure and density profiles along bilayer normal (z) axis obtained by
the DPD simulation. (a) Total normal pressure profile PN(z) and partial lateral
pressure profile PL(z) given by the sum of three contributions of the kinetic, repul-
sive, and bond potential components. (b) Lateral pressure profile P bend

L (z) given
by bending potential stress with four decomposition methods. (c) Number density
profile of four particles in the amphiphilic molecules. H represents the first (hy-
drophilic head) particle. T1, T2, and T3 represent three hydrophobic particles.
The symbols and error bars are shown at several data points. The figure is adapted
from Fig. 7 in [69].
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shown as the gray-filled curve in arbitrary units. The figure is adapted from Fig. 8
in [69].

Surprisingly, the function shape of PL calculated by HD(LM) has the opposite
sign those calculated by the other force decomposition methods. In addition,
the pressure peaks of FCD slightly shift to the outside of the position of the
head particles of the bilayer [compare Figs. 4.7(b) and (c)]. As mentioned in
the previous section, for all force decompositions shown in Fig. 4.7, linear- and
angular-momentum conservation are satisfied.

To further examine the dependence of lateral pressure on the force decomposi-
tion, we systematically change the force center rc:

rc = r2 + λr̂bv, (4.20)

where λ is the distance between rc and r2. For HD(GM) and HD(LM), λ =√
r12r23 and λ = −√r12r23, respectively. At λ = 2r12r23 cos(θ123/2)/(r12+r23), the

decomposition corresponds to CFD, since the force center is on the line segment
between r1 and r3. Figures 4.8 and 4.9 show the dependence of P bend

L on λ. As
λ increases, the lateral pressure increases. A linear relation between λ and P bend

L

(also λ and PL) is found even for negative values of λ.

This linear dependence on λ is analytically derived when r̂bv is along the x axis
and r̂12 − r̂32 is along the z axis. Since the force pair f2c contributes to the stress
σxx(z) as f2cλδ(z − z2)/Axy, the lateral stress produced by the bending potential
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on θ123 is given by

σbend
xx (z) =

f1r12
Axy sinφ

[
sb1B(z1, z2, z)

+ sb2δ(z − z2) + sb3B(z3, z2, z)
]
, (4.21)

sb1 =−
λ

r12
+ 2 cosφ− cos3 φ,

sb2 =
r12 + r23
r12r23

λ− 2 cosφ,

sb3 =−
λ

r23
+ 2 cosφ− cos3 φ,

where φ = θ123/2 and Axy is the area of the xy plane. Equation (4.21) clearly
shows that σbend

xx (z) is a linear function of λ for z1 < z < z3. Our simulation results
indicate that this linear relation is approximately satisfied even when averaging
the conformations in which r̂bv are fluctuated around the xy plane.

Gaussian curvature modulus

The Gaussian curvature modulus κ̄ can be calculated [40,46,90] as

κ̄ =

∫
{PN(z)− PL(z)}z2dz. (4.22)

From elastic theory, κ̄ is related with κ via [55]

κ̄ = (ν − 1)κ, (4.23)
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κ̄/kBT κ̄/κ
CFD -3.1 ± 0.2 -0.17 ± 0.01

HD(GM) -6.15 ± 0.09 -0.335 ± 0.006
HD(LM) 0.72 ± 0.07 0.039 ± 0.004
FCD -32.8 ± 0.1 -1.79 ± 0.02

Table 4.1: Gaussian curvature modulus κ̄ and its ratio to bending rigidity κ̄/κ
for different force decomposition methods.

where ν is the Poisson’s ratio of the bilayer membrane. Though the Poisson’s
ratio is generally varied in the range of −1 ≤ ν ≤ 1/2, κ̄/κ ≃ −1 was reported
in the simulations by Hu et al. [45, 46] and experiments [13, 94]. Hu et al. calcu-
lated κ̄ from the shape transition between a disk-shaped bilayer patch and vesicle.
They also calculated κ̄ using the pressure profile with Eq. (4.22) but concluded
that the pressure profile yields unphysical results since the resultant κ̄ is pos-
itive or has a small amplitude compared to κ. However, their pressure-profile
calculation was performed using GLD; hence, the pressure tensor does not satisfy
angular-momentum conservation. Recently, Torres-Sánchez et al. calculated κ̄ us-
ing CFD [112]. They reported that the calculated κ̄ agrees well with experimental
values.

As described in Sec. 4.3.1, the lateral pressure profile is strongly dependent on
the force decomposition method. Thus, κ̄ estimated with Eq. (4.22) also varies
significantly on changing the force center in HD. Table 4.1 lists κ̄ and κ̄/κ for four
different decomposition methods. CFD, HD(GM), and HD(LM) give −κ̄/κ ≪ 1,
and FCD gives −κ̄/κ > 1. None of them satisfy κ̄/κ ≃ −1. To further clarify the
dependence of κ̄ on rc, we calculated κ̄/κ as a function of λ. Figure 4.10 shows the
linear dependence of κ̄/κ on λ. This linearity is the consequence of the linearity
of the pressure profile on λ. When λ ≃ 4ℓ0, κ̄/κ ≃ −1 is obtained. However,
this position is too far from the positions of the interacting particles. Thus, it
does not seem to be physically plausible. Our results support Hu’s conclusion that
Eq. (4.22) gives an unphysical value of κ̄ in bilayer membranes.

One may consider κ̄ is not precisely determined because of the membrane
undulation. There is much error in the obtained value of κ̄. However, this does not
strongly affect κ̄ value as shown by Hu [46] as long as the membrane fluctuation is
symmetric along normal direction, which is satisfied for the simulation. Therefore,
membrane undulation does not strongly affect κ̄ obtained from the pressure profile
within the bilayer whose patch size is the order of the persistence length.

60



CHAPTER 4. NONUNIQUENESS OF LOCAL PRESSURE OF
THREE-BODY POTENTIALS IN MOLECULAR SIMULATIONS

-1

-0.5

 0

 0.5

 1

-2 -1  0  1  2  3  4

κ-  
/ κ

λ / l0

Fig. 4.10: Ratio of Gaussian curvature modulus κ̄ to bending rigidity κ as a
function of λ. The figure is adapted from Fig. 10 in [69].

4.3.2 Atomistic model

Model description

The DOPC molecules are modeled by the recent version of CHARMM all-atom
force field (CHARMM36) [52,53], and water molecules are modeled by rigid TIP3P.
We apply CFD, FCD, HD(LM), and HD(GM) to the bending potential. The four-
body potential contribution to local stress field is calculated using CFD. The details
of the simulation method are described in Appendix 4.D.2.

Lateral pressure profile

The lateral pressure profiles along the bilayer normal direction are shown in Fig. 4.11
for four different force decomposition methods. The pressure profiles are calculated
for small slices with slice width ∆z = 0.1nm in the same manner as in Sec. 4.3.1.
The dependence of lateral pressure profile on the force decompositions is qualita-
tively similar to that of the DPD model but its amplitude becomes much smaller
[see Fig. 4.11(b)]. The differences of force decompositions affect the local pres-
sure at the surface between water and amphiphilic molecules. In the hydrophobic
region, there are no significant differences of stress profiles for different force de-
compositions. Thus, in the higher-resolution model, the decomposition methods
of the bending forces modify the pressure profile less than the lower-resolution
(coarse-grained) model.
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4.4 Discussion

The total stress of each three-body potential is independent of the decomposition
method. However, the distribution of this stress in 2D space significantly varies
even under the strong law of action and reaction. We introduced the stress dis-
tribution magnitude ΓSDM to evaluate the decomposition method. For the area
potentials, ΓSDM has the minimum value in the entire triangular region formed
by the three particles, whereas ΓSDM has the minimum value at a single position
for the bending potentials. Hence, ΓSDM can be used to reduce the candidates for
suitable decompositions but the best (unique) decomposition is not determined by
ΓSDM, at least for the area potential.

The discrete stress of a molecular simulation can be mapped into the stress
field in the continuum space. If the corresponding stress field in the continuum
space is known, one can state that the decomposition producing the closest stress
is the best choice. In typical simulation conditions, the resultant stress cannot be
obtained a priori. However, if a particle potential is constructed as a discretized
version of the potential in the continuum space, the corresponding stress field
in the continuum space is obtained from the original continuum potential. The
surface tension karA123 is one of the discretized potentials. When a continuum
surface with area A is discretized to acute triangles, the surface tension of karA
is discretized to kar

∑
k Ak, where Ak is the area of the k-th triangle. When the

triangle is on the xy plane, σxx(x) = σyy(x) = kar/Lz and σxy(x) = 0 are given
in the continuum description, where Lz is the side length of the simulation box
in the z direction. Both CFD and FCD distribute the stress into line segments
so that they deviate from the constant stress field. If HD with multiple force
centers distributed on the triangle is employed, a nearly constant stress field can be
constructed. Alternatively, Hardy’s spatial average with a weighting function [36]
also helps CFD and FCD to approach the constant field.

For surface tension or other discretized potentials, the resultant stress field be-
comes closer to the original continuum field as the surface is discretized into smaller
triangles. Thus, it is related with the resolution of the simulation. For classical
molecular simulations, local interactions in a length scale smaller than the diam-
eter of atoms or particles are not typically taken into account for coarse-graining.
For all-atom simulations, the force fields between atoms are constructed from ab
initio quantum mechanical calculations [19, 64, 66]. Even from the viewpoint of
classical mechanics, each particle has a finite size. For a pairwise interaction such
as chemical bonds, the stress is distributed not only in the line segment between
two particle centers but also in a cylindrical region with the diameter equal to
the particle size. Thus, one may have to determine the decomposition method for
multibody forces through comparison with the underlying high-resolution poten-
tial interactions. For lipid membranes, the pressure profile of the higher-resolution
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atomistic model has much smaller dependence on the decomposition than that of
the lower-resolution (four-particle) DPD model. This also supports our hypothesis
on the resolution.

Let us go back to the discussion on the stress field of the bending forces on θ123.
CFD and HD(GM) of the bending forces give the stress distribution on the edge of
r13 or close to the edge, respectively. If these positions are within the interaction
radius of the atom (or particle) at r1 or r3, they can be employed as a force-acting
point. However, FCD and HD(LM) are unphysical since their force centers are far
from the triangle △123 in most of the case. For real bending potentials, the stress
distribution may strongly depend on the molecules, but it is likely approximated
to the interaction between two chemical bonds (the middle points of r12 and r23).
Thus, HD with the force center rc lying in the middle of △123 may be a physically
reasonable decomposition, where ΓSDM is greater than those of HD(GM) and CFD
but the stress profile of the bilayer membranes is flatter.

A coarse-grained model often does not have a specific underlying higher-resolution
model. In such a case, one may have to calculate the stress field without the higher-
resolution information. We describe our speculative consideration on the choice of
the decomposition when the force center rc0 lies in the interior region of the trian-
gle of three interacting particles like in the area potential. In this case, FCD, CFD,
and HD which force center lying in the interior of the triangle has the minimum
value of ΓSDM. Among of them, FCD gives the minimum of the total length ℓsum,
i.e., the minimum propagation path of the stress. Therefore, the minimum total
length may be employed as an additional criterion so that FCD can be chosen.

For n-body forces with n ≥ 4, all of the extrapolations of the force vectors fi
from ri do not typically meet at a single position. Thus, FCD is not generally
available for n ≥ 4. However, FCD can be performed for specific potentials for
which all fi meet a single position. Let us consider potentials Urg(r

2
gw) on a weighted

radius of gyration r2gw =
∑n

i wi(ri − rGw)
2 for a center position rGw =

∑n
i wiri,

where the weight wi is normalized as
∑n

i wi = 1. Since all of fi meet at rGw, these
forces are decomposed by FCD with the force center rc = rGw. If the force center
rc = rGw or a force center for three of the forces is used, HD is applicable for any
n-body force. The center position rc can be arbitrarily set by adjusting wi in rGw.
Multiple center positions may be useful. However, it has many choices of the force
decomposition for n ≥ 4, and it is currently unclear how the force decomposition
can be tuned.

4.5 Summary

We have proposed a decomposition method (FCD) of three-body forces using the
position, where three force extrapolations from the particle positions meet, and
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combined it with CFD, which decomposes the forces into force pairs between in-
teracting particles. Our study has revealed that the local stress field of three-body
forces is strongly dependent on these decomposition methods. We have discussed
the choice of the decomposition using the stress distribution magnitude ΓSDM and
comparison with the stress fields in continuum fields and in higher resolutions of
discretization. We have not reached a concrete conclusion for the best decompo-
sition but rather considered that it depends on the underlying higher-resolution
potential.
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Appendix

4.A Area Potential

Here, we describe the force decomposition of the general form of area potentials,
Uar(A123), for the triangle △123. The area is given by A123 = |r12 × r13|/2. The
force f1 is given as

f1 = −
∂Uar

∂r1
= − U ′

ar

4A123

[r223r13 − (r13 · r23)r23], (4.24)

where U ′
ar = ∂Uar/∂A123. This force f1 is perpendicular to r23, since the area does

not change if r1 moves parallel to r23. For the potential of the surface tension
Uar(A123) = karA123, U

′
ar = kar.

The force f12 in CFD is obtained by the decomposition of f1 into components
along r̂12 and r̂13 or directly by using f12 = −∂Uar/∂r12|r13, r23 with Heron’s for-
mula A123 =

√
b(b− r12)(b− r13)(b− r23), where b = (r12 + r13 + r23)/2:

f12 = −
U ′
ar

4A123

(r13 · r23)r12. (4.25)

The other forces f2, f3, f13, and f23 are similarly obtained. The original force center
rc0 is the orthocenter of△123. Since q = 1/4U ′

ar
2 > 0, rc0 lies in the interior region

or exterior region A, C, or E of △123 depicted in Fig. 4.3. When △123 is an acute
triangle, rc0 lies in the interior region. When the angle θ123 is obtuse (r12 ·r32 < 0),
rc0 lies in the exterior region E.

4.B Bending Potential

Next, we describe the force decomposition of the general form of bending poten-
tials, Ubendg(r̂12 · r̂32), for the angle θ123 = cos−1(r̂12 · r̂32) of three particle positions
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r1, r2, and r3. The forces on the three particles are given by

f1 = −
U ′
bendg

r12
[r̂32 − (r̂12 · r̂32)r̂12], (4.26)

f2 = −
U ′
bendg

r12r32

[
(r12 · r32 − r212)r̂12

r12
+

(r12 · r32 − r232)r̂32
r32

]
,

f3 = −
U ′
bendg

r32
[r̂12 − (r̂12 · r̂32)r̂32].

The forces f1 and f3 are perpendicular to r12 and r32, respectively, since θ123 is
independent of the lengths r12 and r32. For the bending potential of Eq. (4.19),
U ′
bend = −kb.
In CFD, these forces are decomposed into the following force pairs:

f12 = −U ′
bendg

r12 · r13
r212r23

,

f13 = U ′
bendg

r13
r12r23

, (4.27)

f23 = −U ′
bendg

r23 · r13
r12r223

.

These force pairs can be obtained from Eqs. (4.26) and (4.11) or directly from f12 =
−∂Ubendg/∂r12|r13, r23 with r̂12 · r̂32 = (r212 + r223 − r213)/2r12r23. The original force
center rc0 always lies in the exterior region of△123, since q = −4A2

123/r
4
12r

4
23U

′
bendg

2 <
0. When the angles θ312 < π/2 and θ231 < π/2, f12f23 > 0 and f12f13 < 0 so
that rc0 lies in the exterior region B depicted in Fig. 4.3. For θ312 > π/2 or
θ231 > π/2, rc0 lies in the region D or F, respectively. The stress distribution
magnitudes ΓSDM for FCD and CFD take the same value for the bending poten-
tials: ΓFCD = ΓCFD = 2r213|U ′

bendg|/r12r23 for θ312 < π/2 and θ231 < π/2, and
ΓFCD = ΓCFD = 2r12 · r13|U ′

bendg|/r12r23 for θ231 > π/2. For the typical simulation
conditions including our present simulation, θ312 and θ231 are small. Thus, we
consider only the case of rc0 lying in region B in this paper.

4.C Minimization of Stress Distribution Magni-

tude for Exterior Force Center

Here, we consider the force center rc for the minimum of the stress distribution
magnitude ΓSDM, when rc0 lies in the exterior region B, where f12f13 < 0, f12f23 >
0, and q < 0. As mentioned in Sec. 4.2.3, ΓSDM takes the lowest value at the
position rm given in Eq. (4.18) for HD with fCFD

13 = 0, if rm is in the interior
region surrounded by three positions r1, r3, and rc0. This position is derived as

67



4.C. MINIMIZATION OF STRESS DISTRIBUTION MAGNITUDE FOR
EXTERIOR FORCE CENTER

follows. We consider the minimization of the difference Γdif = ΓSDM − ΓCFD =
ΓFC
HD − (|fFC

12 |r12 + |fFC
13 |r13 + |fFC

23 |r23), since the contribution of the CFD force
pairs does not explicitly appear in Γdif .

Γdif =
2f̃FC

12 f̃FC
23

|q|
(|f̃FC

12 |r212 + |f̃FC
23 |r223 − |f̃FC

13 |r213)

= 2|f̃FC
13 |r213g(x, y), (4.28)

where

g(x, y) =
xy

{(
r12
r13

)2
x+

(
r23
r13

)2
y − 1

}
x+ y − xy

, (4.29)

x = − f̃FC
12

f̃FC
13

and y = − f̃FC
23

f̃FC
13

. (4.30)

The force ratios x and y for the minimum of g are obtained from ∂g/∂x = 0 and
∂g/∂y = 0 as

g(xGM, yGM) = −
r12 + r23 −

√
(r12 + r23)2 − r213

r12 + r23 +
√

(r12 + r23)2 − r213
< 0 (4.31)

with

xGM =
r12 + r23 −

√
(r12 + r23)2 − r213
r12

, (4.32)

yGM =
r12 + r23 −

√
(r12 + r23)2 − r213
r23

. (4.33)

The position rm in Eq. (4.18) is given by xGM and yGM. To minimize Γdif , the factor
|fFC

13 | in Eq. (4.28) is taken as the maximum value while maintaining |fFC
13 |+|fCF

13 | =
|f all

13 |, i.e., fCF
13 = 0. Hence, the lowest value of ΓSDM is obtained for HD with the

force center of rm and fCF
13 = 0.

The local minimum in the region E (LM) is derived from the minimization of
ΓSDM + ΓCFD = −2|f̃FC

13 |r213g(x, y), since fCF
12 fFC

12 < 0, fCF
23 fFC

23 < 0, and fCF
13 = 0.

The maximum of g is given at

xLM =
r12 + r23 +

√
(r12 + r23)2 − r213
r12

, (4.34)

yLM =
r12 + r23 +

√
(r12 + r23)2 − r213
r23

. (4.35)

Hence, the local-minimum position is determined as rlm = r2 −
√
r12r23r̂bv from

xLM and yLM.
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4.D Simulation Method

4.D.1 Coarse-grained model

All simulations are carried out under the NV T ensemble at the particle density
N/V = 3/r3cut with a periodic boundary condition. The pressure profiles are
calculated for a tensionless membrane at Namp = 738, Nw = 9336, and the side
lengths of the simulation box Lx = Ly = Lz = 16rcut by using the IKN procedure
with the decomposition described in Sec. 4.2, where Namp and Nw are the numbers
of amphiphilic molecules and water particles, respectively. Amphiphilic molecules
are pre-formed into a flat bilayer to reduce the equilibration time. After the
equilibration time τeq = 10000τ or 15000τ , production runs are carried out during
5000τ . The bending rigidity κ of the bilayer membrane is estimated at Namp =
2950 and Nw = 86504 by using the undulation mode of a nearly planar tensionless
membrane [31,37,58], ⟨|h(|k|)|2⟩ = kBT/κ|k|4, with the extrapolation of the cutoff
wavelength, kcut → 0 [99], where h(|k|) is the Fourier transformation of bilayer
height h(x, y). Error bars are calculated from five independent runs.

4.D.2 Atomistic model

MD simulations are carried out in the NPT ensemble using the standard version
of GROMACS 5.1 simulation packages [2, 84]. Bilayer membranes consisting of
400 DOPC molecules surrounded by 20000 water molecules are simulated under
T = 303.15◦C and P = 1bar. The temperature and pressure are controlled by the
Nosé-Hoover and Parrinello-Rahman method, respectively. Newton’s equation is
integrated using the leap-frog algorithm with MD time step ∆t = 2 fs. A bond con-
straint is applied to the bonds with hydrogens using LINCS algorithm. Long-range
electrostatic interactions are calculated via Particle Mesh Ewald (PME) method.
All initial configurations and input parameters are generated using CHARMM-
GUI Membrane Builder [51,56]. The total simulation time is 600 ns, and the first
360 ns is taken as the equilibration time.

The obtained MD trajectories are fed into a customized version of GROMACS-
LS [117] to calculate the local stress profiles. The dihedral contribution to local
stress is calculated using CFD. The electrostatic contribution is calculated using
the IKN procedure with cutoff length relcut = 2.2nm. Venegas et al. examined the
electrostatic contributions to the local pressure profile using the IKN procedure
with finite cutoff by changing relcut and reported that the local stress profile shows
little difference at relcut > 2.2nm [118].
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Chapter 5

Conclusion and Perspective

In this dissertation, we studied the two topics regarding the bilayer membranes.
We summarize the central results and show the future perspectives.

First, we investigated the shape transformations of bilayer membranes induced
by the hydrolysis and condensation reactions of amphiphilic molecules using CG
molecular simulations. The hydrolysis and condensation reactions are treated ex-
plicitly by the bond dissociation and binding, whereas these chemical reactions
are taken into account implicitly by the change of the amphiphilic molecular den-
sity difference in the previous works. The asymmetric chemical conditions, which
are widely observed both in vitro and in vivo, cause the asymmetric amphiphilic
molecular densities between inner and outer leaflets, leading to the BP formations.
We examine the effects of EOs (hydrolyzed hydrophobic molecules embedded in
the bilayer) on the BP formation; the density inhomogeneity of EOs enhances the
growth of BPs. We also show that the density inhomogeneity of EOs is determined
by the competition between two different dynamics: diffusion of EOs and synthe-
sis of EOs. Although only BPs formations occur at high reduced volume, buds
formations also occur at low reduced. At low reduced volume, resulting shape
transformations are affected by the viscosity ration of the membrane to the bulk
solution and the synthesis rates of EOs. The higher bulk viscosity compared with
membrane viscosity enhances the BPs formations.

The shape transformations of vesicles induced by the chemical reactions have
been reported by the several researchers, but the theoretical analyses of these shape
transformations were carried out phenomenologically based on the ADE model.
The effects of resultant reaction products on the bilayer membrane morphologies
were not taken into account. Our work reveals the role of these reaction products.
We hope our work will advance the study of vesicle morphology induced by the
chemical reactions from the theoretical point of view.

Next, we studied the pressure profile calculation methods in molecular simu-
lations and point out the severe problem of conventional method regarding the
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multibody forces. The conventional method to calculate the stress fields which
containing the multibody forces is based on CFD, in which the multibody forces
are decomposed into the pairwise forces, and IKN procedure is applied to these
decomposed pairwise forces. However, we propose the different force decomposi-
tion called FCD and HD by adding a force center, and show that the pressure
profile of CG and atomistic bilayer membrane strongly depends on the force de-
compositions; the position of force center changes the resulting pressure profile. In
this dissertation, we only consider the case for the three body forces, but similar
problems exist even for four or higher multibody forces. To remove this ambigu-
ity, we introduce SDM as an candidate criterion and consider the minimization
problem of SDM. We derive the analytical expression of the local minimum and
global minimum of SDM. To check the validity of SDM as an appropriate criterion,
we calculate Gaussian curvature modulus κ̄ from the pressure profile within the
bilayer for CFD, FCD, HD at local minimum of SDM, and HD at the global mini-
mum of SDM as shown in Table. 4.1. The ratio of κ̄ to κ is in the range of −2–−0.5
according to the classical theory of elasticity, but only κ̄/κ calculated using FCD
agrees well with the results of elasticity theory although the force decomposition
point of FCD is far from three interacting particles. The physically plausible force
decomposition point should not be far from three interacting particles. However,
as far as κ̄/κ is employed to verify the pressure profile within the bilayer, the
position of force center point should be far from three interacting points.

There are two possibilities to explain the result. The first possibility is that the
stress distribution magnitude is not a suitable criterion to remove the ambiguity
of the force decompositions. The second possibility is that the equation (4.22)
is not applicable to calculate the Gaussian curvature modulus. In any case, an
alternative criterion to remove the ambiguity should be developed in future works.

Lastly, in this dissertation, we investigated the bilayer membrane using molec-
ular simulations. In the future, the improvement of computational power will
broaden the accessible length and time scale of molecular simulations. We can per-
form the large-scale molecular simulations of atomistic bilayer membrane model.
We expect that the large-scale molecular simulations enable the direct bridging
between the macroscopic and microscopic description and reveal new aspects of
bilayer membranes.
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