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Abstract

Thermal equilibrium in quantum many-body systems can be fully described by pure quan-
tum states as far as local observables are concerned, while the conventional description
of it is based on mixed-state ensembles. The thermodynamic entropy, in that case, is
identified with the entanglement entropy of small subsystems. It scales with the size of
the subsystem, which is called the volume law of entanglement. When the size of the
subsystem increases, however, the correspondence between thermal and entanglement en-
tropies fails and there appears a quantum correction to the simple volume-law scaling.
Explicating the scaling of the entanglement entropy with the subsystem size is hence of
great importance in connecting quantum physics to thermodynamics as well as analyz-
ing recent experiments on ultracold atoms. In this thesis, we study the volume law of
entanglement for pure quantum states representing thermal equilibrium. We derive an
analytic formula of the volume law of entanglement for a certain class of pure states called
canonical Thermal Pure Quantum (cTPQ) states which represent thermal equilibrium.
We illustrate an advantage of the formula by numerically calculating the entanglement
entropy of the cTPQ states and applying the formula to it. Furthermore, we argue that
our formula universally applies to any sufficiently scrambled pure state, even if the state is
not thermal. We consider two examples of such scrambled states, namely, stationary pure
states after quantum quench and energy eigenstates of general Hamiltonians with and
without integrability. The entanglement entropy of the former states, including actual
experimental data in ultracold atoms, is in an excellent agreement with our formula as
long as the states are scrambled. For the latter states, we find that our formula works
as a good fitting function in non-integrable models to extract information in the thermo-
dynamic limit from finite size systems. We also show that our formula can distinguish
eigenstates of integrable models from non-integrable ones.
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Chapter 1

Introduction

In this chapter, we introduce notions which are central to the contents of this thesis. In
the first two sections, we review two different backgrounds of this study: entanglement
in quantum many-body systems and thermodynamics in terms of pure states. Then in
the following sections we present the main theme of this thesis, the volume law scaling of
the entanglement for thermal pure states, and explain a purpose and motivations of this
study.

1.1 Entanglement in quantum many-body systems

Quantum entanglement lies at the heart of quantum mechanics. It was firstly noticed by
Einstein-Podolsky-Rosen [1] and Schrödinger [2] as a phenomenon where some composite
systems cannot be written as a product of its subsystems, which implies the existence of
hidden non-local correlations in quantum systems beyond the classical mechanics. One
consequence of this “spooky” feature of quantum mechanics was formulated as the viola-
tion of Bell’s inequality [3], and it was experimentally verified by a series of experiments in
quantum optics [4–6]. Since the 1990’s, quantum entanglement has played a crucial role
in quantum information science and its applications [7,8], such as quantum computation,
quantum teleportation, and quantum cryptography.

Recently, entanglement has also become an important tool to study quantum many-
body systems in condensed matter physics as well as high-energy physics. By calculating
entanglement measures in the many-body wave function |ψ⟩, one can tell various prop-
erties of a system [9, 10]. The most famous and celebrated measure among them is the
von Neumann entanglement entropy (vN-EE). With a bipartition of the system into a
subregion A and its complement B, the vN-EE is defined as

SEE := − trA (ρA ln ρA) , (1.1)

which is the von Neumann entropy of the reduced density matrix (RDM) on the subsystem
A,

ρA := trB |ψ⟩ ⟨ψ| . (1.2)

Another important measure of the entanglement is the n-th Rényi entanglement entropy

5



Chapter 1. Introduction

(nREE), defined as

Sn :=
1

1− n
ln (trA ρ

n
A) . (1.3)

This is a one-parameter generalization of the vN-EE and has properties

lim
n→1

Sn = SEE, (1.4)

Sn ≥ Sn′ for n < n′. (1.5)

Moreover, the REEs including the vN-EE are symmetric under the exchange of the sub-
systems A↔ B,

ρB := trA |ψ⟩ ⟨ψ| , trB ρ
n
B = trA ρ

n
A for ∀n. (1.6)

From the viewpoint of quantum many-body systems, these EEs (the vN-EE and REE)
are interesting in that (i) they cannot be expressed as expectation values of a single
operator, i.e. “non-linear” quantities, and (ii) they are highly non-local when the size of
the subsystem is comparable with that of the total system. Therefore the EEs have a
potential to reveal properties of quantum many-body systems which cannot be detected by
conventional (linear and local) observables. While the EEs were featured on the theoretical
side at first, state-of-the-art techniques can now measure them experimentally in ultracold
atoms, trapped ions, superconducting qubits, and nuclear spins of molecules [11–16], which
fuels further growing interest among both theorists and experimentalists.

In particular, when the state |ψ⟩ is a ground state of local Hamiltonian1, there are a
lot of studies about the entanglement properties in the literature. The scaling of the EEs
of the ground state is known to obey the “area law” of entanglement. That is, the EEs
scale with the boundary size of A with a possible logarithmic correction [17,18],

Sn ∼ α1 ℓ
d−1 ln ℓ+ α2 ℓ

d−1 + · · · , (1.7)

where we take the subsystem A as a d-dimensional ball-like region of a linear dimension
ℓ, for simplicity. The specific form of the scaling can reflect universal numbers charac-
terizing the system or the presence of certain nontrivial correlations. For example, in
one-dimensional quantum critical systems, the REE for a subsystem of length ℓ exhibits
the (area law) logarithmic scaling Sn = (n+1)c

6n
ln ℓ

a
, where c and a are the central charge

and the (non-universal) short-distance cutoff of underlying conformal field theory [19–22].
Another example is free fermions and Fermi liquids in general dimensions, where the
vN-EE and the REE detect a presence of the Fermi surface through a multiplicative log-
arithmic correction (the first term of Eq. (1.7)) in the area law [23–28]. Furthermore,
in topologically ordered systems the EEs obey the area law with a subleading universal
constant that specifies the underlying topological properties which cannot be identified
by conventional local observables [29–32].

In contrast to the ground state, excited pure states of local Hamiltonians exhibit an-
other scaling of the entanglement. This is called the “volume law” of entanglement, which
states that the amount of entanglement between the subsystems A and B is proportional
to the size of the subsystem,

Sn ∼ α′ ℓd + · · · , (1.8)
1 In this thesis, we mean by local that all terms in the Hamiltonian have the support which does not

scale with the system size.
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Chapter 1. Introduction

where we use the same notation as Eq. (1.7). Compared with the area law for the ground
state, the volume law for excited states has not been investigated extensively and its
universal behavior (if any) remains an open question. However, the volume law is quite
important in that it can bridge quantum mechanics and thermodynamics when one con-
siders the notion of pure state thermodynamics. We will introduce this point in the next
section.

1.2 Pure state thermodynamics and thermal pure

states

Standard textbooks on quantum statistical mechanics teach that a quantum system in
thermal equilibrium at an inverse temperature β is described by the following density
matrix,

ρGibbs(β) =
1

Z(β)
e−βH , (1.9)

where H is the Hamiltonian of the system and Z(β) := tr e−βH is the partition function
of the system. We call this state as the Gibbs state and stress that the Gibbs states are
mixed states2 except for the ground state, β = ∞.

Usual justification of the usage of the Gibbs state is based on the postulate of “the
equal a priori probability”. The postulate claims that the state in thermal equilibrium
which has energy E is described by an equally-weighted classical superposition of many
eigenstates,

ρMC(E) =
1

N(E)

∑
Ei∈[E− δ

2
,E+ δ

2 ]

|Ei⟩ ⟨Ei| . (1.10)

Here the microcanonical (MC) ensemble ρMC(E) is composed of the energy eigenstates of
the system {|Ei⟩}, and the normalization constant N(E) is the number of states within
the energy shell at the energy E with δ being the width of the energy shell. Let us
divide the system into the subsystem of interest, A, and the bath, B, and decompose
the Hamiltonian of the total system into the Hamiltonian on each subsystem and the
interactions between them, H = HA +HB +Hint. When the subsystem B is quite large3

compared with A, one obtains

trB (ρMC(E)) ≈ ρGibbs,A(βE) :=
1

ZA(βE)
e−βEHA , (1.11)

where ZA(β) := trA e
−βHA . The temperature βE is determined by the microcanonical

entropy of the system4 S(E) = lnN(E) through the relation βE = ∂S(E)
∂E

. This is how
2 The density matrix (or the quantum state) ρ is called mixed when there is no vector |ϕ⟩ in the

Hilbert space that satisfies ρ = |ϕ⟩ ⟨ϕ|. This condition is equivalent to tr ρ2 < 1.
3 In this statement, we consider the thermodynamic limit where the size of the subsystem B becomes

infinite while keeping the size of the subsystem A finite. The same thermodynamic limit is considered
also in Eq. (1.12).

4 Strictly speaking, S(E) is the microcanonical entropy of the subsystem B. Here we assume transla-
tional invariance in the total system.
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Chapter 1. Introduction

the Gibbs state is derived in the standard ensemble formalism of quantum statistical
mechanics based on the postulate of the equal a priori probability.

However, the very assumption of the equal a priori probability has been debated for a
long time, and construction of thermodynamics with only using pure quantum states has
been considered as early as the age of von Neumann [33,34]. Recently, a series of studies
based on “typicality” [35–41] revealed that the postulate actually can be abandoned and
that one can take another more natural principle. Instead of taking the MC ensemble
ρMC(E) (mixed state), one can randomly choose a pure state |ϕE⟩ in the energy shell of
the total system at the energy E, and it follows almost surely that

trB (|ϕE⟩ ⟨ϕE|) ≈ ρGibbs,A(βE), (1.12)

as long as the bath (subsystem B) is by far larger than the subsystem A. In other words,
almost all pure states |ϕE⟩ in the energy shell give the same physical consequences as
the MC ensemble does, as long as the subsystem A is much smaller than the subsystem
B. In this sense, one can think of the pure state thermodynamics under the “typicality
principle”: typical pure states in the Hilbert space represent the thermal equilibrium.

Motivated by the above discussion on the pure state thermodynamics, in this thesis
we focus on “thermal pure states” which is defined as follows.

Definition. When a given pure state |ψ⟩ satisfies the following property for all local5

operators O in the Hilbert space, we call |ψ⟩ as a thermal pure state at inverse temperature
β,

⟨ψ|O|ψ⟩
⟨ψ|ψ⟩

= tr (OρGibbs(β)) . (1.13)

Clearly, typical pure states in the Hilbert space satisfy the above condition and can be
considered as thermal pure states because one can take the support of the operator O
as the subsystem A in the previous paragraph. Although we have so far introduced the
thermal pure states from a conceptual (or purely-theoretical) aspect, there are actually
several situations where it is inevitable to consider them rather than the conventional
mixed-state ensemble. One of the examples is the thermalization in closed quantum
systems that is discussed in detail in section 3.1. If a given initial state of the system,
say the universe, is pure, then the unitary time-evolution ρ(t) = U †

t ρ(0)Ut preserves the
purity of the system: tr ρ(t)2 = tr ρ(0)2 = 1. Hence the initial state cannot relax into the
mixed-state ensembles, so the thermalization in closed quantum systems must be written
in the language of pure states. The dynamics in closed quantum systems has also been
realized in experiments during the past decade, for example, in ultracold atoms, trapped
ions, and so on [12,15,16,42–49].

1.3 Volume law of entanglement

The difference between the thermal pure states and the mixed-state ensembles, by defi-
nition, appears only in non-local quantities in the system. One natural candidate of such

5 Again we mean by local that the support of the operator does not scale with the size of the total
system.
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A B

Gibbs state

Thermal
pure state

Figure 1.1: A schematic picture of the REE of the thermal pure states and the Gibbs
states. (left) We divide the total system into the subsystems A and B whose volumes
are parameterized as ℓ and L− ℓ, respectively. (right) The REE curve Sn(ℓ) for thermal
pure states (black line) and the Gibbs states (green line). Both curves follow the volume
law when ℓ is small, but the former one gradually deviates from it as ℓ grows and takes
maximal at the middle (ℓ = L/2). Past the middle, it decreases toward ℓ = L so that the
whole curve becomes symmetric under the exchange ℓ ↔ L − ℓ. In contrast, the latter
curve simply grows with ℓ.

quantities is the entanglement which we introduced in section 1.1, and in fact it manifests
the difference clearly. Figure 1.1 is a schematic picture of the REE of the thermal pure
states and the Gibbs states in translation invariant systems. Here, the REE of the Gibbs
states is defined by its RDM on the subsystem A,

σA := trB (ρGibbs(β)) , Sn,Gibbs :=
1

1− n
ln (trA σ

n
A) , (1.14)

in the same way as the thermal pure states. For simplicity, we parametrize the volume of
the subsystem A as ℓ and the subsystem B as L− ℓ, so the total size of the system is L.
We note that the dimensionality does not matter here. When the subsystem A is much
smaller than half of the total system (ℓ≪ L), the REE of two states scales with the volume
of the subsystem (∝ ℓ, the volume law), and matches with each other because the RDMs
of both states are the same (Eqs. (1.11) and (1.12)). However, when the subsystem A is
comparable to or larger than the subsystem B, the REE of two states starts to deviate.
The REE of the thermal pure states deviates from the volume law Sn ∝ ℓ around ℓ = L/2,
and decrease after ℓ = L/2 so as to be symmetric under the exchange of the subsystem
A ↔ B. In contrast, the Gibbs states do not have such symmetry and the REE grows
linearly6 as ℓ until it reaches ℓ = L. Therefore, in the region of ℓ ∼ L/2 and ℓ > L/2, the
REEs of the thermal pure states and the Gibbs states exhibit different behaviors.

The overall functional form the REE curve Sn(ℓ) for thermal pure states, which is
the main theme of this thesis, has not been elucidated except for the random state that

6 This is because the REE of the Gibbs states contains contributions from a classical superposition
of a huge number of pure states (eigenstates of the system). The amount of entanglement, or quantum
correlation, in the Gibbs states must be measured by the mutual information between two subsystems
that is known to obey the area law [50].
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Chapter 1. Introduction

corresponds to infinite temperature β = 0. In the seminal paper [51] which has become
important for solving the black hole information paradox [52], Page conjectured the shape
of the curve for ℓ ≤ L/2 is

SEE(ℓ) =

(
dAdB∑

k=dB+1

1

k

)
− dA − 1

2dB
, (1.15)

where dA(B) is the Hilbert space dimension of the subsystem A(B). When we denote
dA = λℓ and dB = λL−ℓ with λ being the local dimension of the Hilbert space (in spin
S = 1/2 systems, for example, λ = 2) and assume ℓ≫ 1, the result leads to

SEE(ℓ) ≈ ℓ lnλ− 1

2
λ−L+2ℓ. (1.16)

This conjecture, which was proved afterwards [53–55], tells that the vN-EE deviates from
the volume law by O(e−ℓ) for 1 ≪ ℓ ≪ L/2 and by exactly O(1) = 1

2
at ℓ = L/2. We

also note that the nREE of the random state for ℓ ≫ 1 and L − ℓ ≫ 1 was studied in
Ref. [56], and the deviation from the volume law is also O(1) for general n > 0.

1.4 Motivations and purpose of our study

In this thesis, we will address the following questions.

(1) What is the functional form of the REE curve Sn(ℓ) for thermal pure states at finite
temperature 0 < β <∞?

(2) Is the result universal among the thermal pure states?

Indeed, there are a plenty of implications in answering these questions. First, since
the REE is a highly non-local and non-linear quantity, revealing the precise behavior
of the REE of thermal pure states will contribute to the foundation of the pure state
thermodynamics where local and linear observables have been mainly studied. The REE
is a fundamental quantity from the theoretical point of view because it would correspond
to the entropies of the (thermal) Gibbs states. Particularly, it is interesting to see whether
the deviation of Sn(ℓ) from the simple volume law (∝ ℓ) around the center ℓ ∼ L/2 is O(1)
or O(L). If the deviation is O(1) (which turns out to be the case as shown in Chapter 2),
it means that the density of the REE, Sn(ℓ)/ℓ, is still consistent with that of the thermal
ensembles even though the size of the subsystem A is comparable to the rest of the system
(= the subsystem B = bath). Second, elucidating properties of entanglement in thermal
pure states is important to study the thermalization in closed quantum systems. As we
introduced in section 1.2, entanglement plays an important role to make pure states look
mixed-state thermal ensembles (because the RDM of a given pure state cannot become
mixed if there is no entanglement in the state). In this sense, spreading of entanglement
in the whole system is crucial for the thermalization to occur. Thus studying the REE
Sn(ℓ) of given pure states and comparing it with that of the thermal pure states help to
give a criterion of the thermalization. Third, identifying and characterizing parameter(s)
in the functional form of the volume-law scaling of thermal pure states would pave the
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Chapter 1. Introduction

way to study various (including unconventional) ordered states in quantum many-body
systems at finite temperature. This is analogous to the case of the ground state of local
Hamiltonians introduced in section 1.1, where the parameters (coefficients, offset) of the
area-law scaling diagnose the orders in the ground state of the system. Fourth, a complete
characterization of the REE curve Sn(ℓ) will be of benefit to the estimation of the slope of
the volume law at the small subsystem (1 ≪ ℓ ≪ L/2). The slope of the volume law for
thermal pure states corresponds to the density of the REEs of the thermal Gibbs ensemble,
so it is important for inferring thermodynamic profiles (entropy, free energy, etc.) of the
thermal pure states7. Actually, the curve like Fig. 1.1 is observed ubiquitously in many
theoretical and experimental studies [12,57–60]. Nevertheless, the available system size L
in numerical and experimental studies is often limited to L ∼ 20, so the estimation of the
volume-law slope is deteriorated by the curved structure of the REE curve. Hence the
knowledge of the functional form of the curve will be of quite use to improve the analysis
of the data.

We mainly focus on the second Rényi entanglement entropy S2(ℓ) in this thesis. One
of the reasons for this is because the 2REE is simplest among nREEs (0 < n < ∞) to
compute theoretically (for example, by the Monte Carlo method [61–63]) and measure
experimentally [11,12,14,16]. Another reason is because the 2REE can be related to the
out-of-time-order correlators (OTOCs) [64], which are important to study one of the most
interesting problems in quantum many-body systems: chaos in quantum systems [65–67].
Here we define the OTOC as

F (t) = ⟨Ŵ (t)V̂ (0)Ŵ (t)V̂ (0)⟩β ,

where Ŵ (t) = eiHtŴe−iHt, V̂ (t) = eiHtV̂ e−iHt are some Hermite operators in the system
and the expectation value is taken for the thermal ensemble at inverse temperature β.
The decay of the OTOC in time implies that the commutator ⟨[Ŵ (t), V̂ (0)]2⟩β gets large,
so it would reflect the chaotic behavior of the system (the butterfly effect). Indeed, the
OTOC is expected to decay exponentially in chaotic quantum systems. Ref. [64] showed

exp(−SV
2 (t)) =

∑
Ŵ∈B

⟨Ŵ (t)V̂ (0)Ŵ (t)V̂ (0)⟩β=0 ,

where SV
2 (t) is the 2REE of the infinite-temperature Gibbs state excited by

√
V̂ at t = 0,

or ρ(t) = e−iHt ·
√
V̂ ρGibbs(β = 0)

√
V̂ ·eiHt = e−iHtV̂ eiHt, and the summation is taken over

a complete orthonormal set of operators in the subsystem B. This equation states that
the decay of (the average of) the OTOC is equivalent to growth of the 2REE, and hence
the 2REE can extract information about the chaotic behavior of the system. Although
the analytical relation between the OTOC and the 2REE in the above was proved only
when the initial state at t = 0 is mixed, numerical results in Ref. [64] suggest that the
correspondence is also the case for pure states.

7 Strictly speaking, only the vN-EE (n = 1 REE) corresponds to thermal entropy directly. However,
if trB(|ψ⟩ ⟨ψ|) = ρGibbs,A(β) holds, the nREE of |ψ⟩ is equal to nβ

n−1 (FA(nβ)− FA(β)), where FA(β) =

−β−1 ln
(
trA(e

−βHA)
)
is the free energy of the subsystem A [57]. In addition, since the inequality SEE =

S1 ≥ S2 ≥ · · · holds, the information of the 2REE, 3REE, · · · gives a lower bound of the (thermal)
entropy of the system.
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1.5 Organization of this thesis

This thesis is organized as follows. Chapter 2 is dedicated to an analytical derivation of a
functional form of the volume law of entanglement for thermal pure states, by using the
canonical Thermal Pure Quantum states (the cTPQ states). The cTPQ state is an explicit
and analytically-tractable construction of thermal pure states in general systems, and we
derive the functional form of the REE curve Sn(ℓ) for the cTPQ states. We also deepen
the discussion of the volume law and conjecture that our formula will universally apply
to general scrambled pure quantum states, which include many kinds of thermal pure
states other than the cTPQ states. In Chapter 3, we numerically study the conjecture by
applying our formula of the volume law to pure states after quantum quench. We observe
an excellent agreement of the formula to stationary states after quantum quench, as long
as the states are “scrambled”. Moreover, we apply the formula to recent experimental
data obtained in ultracold atoms [12], and it works quite well. In Chapter 4 we present
the application of the formula to another type of thermal pure states: energy eigenstates
of general Hamiltonians. As expected, our numerical results seem consistent with the
formula in non-integrable systems, whereas it is not the case in integrable systems. How-
ever, Lu and Grover [68] recently derived a different functional form of the volume law for
energy eigenstates in non-integrable systems. We study this point in detail and claim that
our formula is still useful to energy eigenstates in non-integrable systems even though the
exact functional form of the volume law in a certain thermodynamic limit does not match
with our formula. Finally, the summary and conclusion of this study will be presented in
Chapter 5.
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Chapter 2

Universal functional form of the
volume law of entanglement derived
by using canonical Thermal Pure
Quantum states

In this chapter, we present an analytical formula of the volume law of entanglement by
employing the canonical Thermal Pure Quantum states. First we introduce the cTPQ
states and explain their properties. Next we derive the analytical expressions of the n-th
REE of the cTPQ states, especially focusing on the second Rényi entanglement entropy
(2REE). Interestingly, the formula of the 2REE contains only two parameters and the
whole structure of the volume law is determined by them. We also demonstrate that
our formula of the volume law has advantages in extracting the entropic density of a
system in the thermodynamic limit from numerical data of finite size systems. Finally
we conjecture that our functional form will apply to any “scrambled” pure state, which
includes a broad class of thermal pure states other than the cTPQ states, based on the
discussion in deriving the functional form for the cTPQ states.

2.1 Definition of canonical Thermal Pure Quantum

states

Inspired by the studies of the typicality [33–40], Sugiura and Shimizu [41] proposed a
class of pure states which reproduce expectation values of the canonical ensemble for any
local operator. It is called the canonical Thermal Pure Quantum (cTPQ) states, defined
as

|ψβ⟩ =
1√
Z(β)

∑
j

zje
−βH/2 |j⟩ , (2.1)

where Z(β) := tr
(
e−βH

)
is a partition function of the system, {|j⟩}j is an arbitrary

complete orthonormal basis of the Hilbert space, and the coefficients {zj} are random
complex numbers zj = (xj + iyj)/

√
2 with xj and yj obeying the standard normal distri-

bution N (0, 1). For any local observable O in the Hilbert space, random average of the

13
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expectation values by the cTPQ states matches with that of the Gibbs state,

⟨ψβ|O|ψβ⟩ = tr(Oe−βH)/ tr(e−βH), (2.2)

where random average over the coefficients {zj} is denoted by · · ·. Moreover, the standard

deviation from the average

√
⟨ψβ|O2|ψβ⟩ −

(
⟨ψβ|O|ψβ⟩

)2
is exponentially small in the

volume of the system [41]. In this sense, one can regard the cTPQ states |ψβ⟩ as an
explicit example of thermal pure states at inverse temperature β. We note that |ψβ⟩
is normalized only after the random average, ⟨ψβ|ψβ⟩ = 1. It is usually difficult or
computationally costly to calculate the normalization factor Z(β), but we can use an
unnormalized version of the cTPQ states, |ϕβ⟩ =

∑
j zje

−βH/2 |j⟩, in practice. One can

prove ⟨ϕβ|O|ϕβ⟩ / ⟨ϕβ|ϕβ⟩ = tr(Oe−βH)/ tr(e−βH) and the standard deviation is still small.

The cTPQ states are practically useful because we only need to prepare a single pure
state (vector) and apply the Hamiltonian (matrix) to it to calculate physical quantities
at finite temperature1 T = β−1 > 0, whereas computation of them by the Gibbs states
requires full diagonalization of the Hamiltonian that costs huge computational resources.
Therefore more and more numerical studies in condensed matter physics have employed
the cTPQ states recently [69–73].

Since this cTPQ formalism can apply to general systems, we employ the cTPQ states as
analytically-tractable thermal pure states which exhibit the volume law of entanglement.
In the following section, we derive a functional form of the volume law of entanglement.

2.2 Derivation of a functional form

2.2.1 Exact result of random average

Let us clarify our setup. We consider a lattice Σ containing L × M sites (left panel
of Fig. 1.1) with a local Hamiltonian H. We divide Σ into two subsystems, A and
B, each containing ℓ × M and (L − ℓ) × M sites. For simplicity we set M = 1, i.e.,
consider a one-dimensional system throughout this thesis, but our results in this thesis
will hold in general dimensions as long as the volumes of the subsystems are parameterized
as one-dimensional parameters ℓ and L − ℓ. We assume translation invariance of the
Hamiltonian2. In addition, we assume ℓ, L− ℓ≫ 1 to facilitate thermodynamic behaviors
of the subsystems (we will see this point later).

As introduced in Chapter 1, the nREE of the cTPQ state |ψβ⟩ is

Sn(ℓ) =
1

1− n
ln (trA ρ

n
A) , ρA = trB |ψβ⟩ ⟨ψβ| . (2.3)

1 Throughout this thesis, we set kB = ℏ = 1.
2 Precisely speaking, we can loosen the assumption of the translational invariance a little; the trans-

lational invariance can be broken on the boundary, i.e., the boundary condition does not matter. This
is because we will focus on bulk (extensive) properties of the system and subsystems in derivation of
the formula of the volume law. It is enough to assume that the subsystems A and B have the same
thermodynamic limit for all bipartitions of the system.

14



Chapter 2. Universal functional form of the volume law of entanglement derived by
using canonical Thermal Pure Quantum states

The reduced density matrix ρA can be written as

ρA =
1

Z(β)

∑
a1,a2,b1,i1,j1

π12 |a1⟩ ⟨a2| , (2.4)

where πpq := zipz
∗
jp ⟨apbp|e

− 1
2
βH |ip⟩ ⟨jp|e−

1
2
βH |aqbp⟩, |ab⟩ := |a⟩⊗ |b⟩, and {|a⟩}a and {|b⟩}b

are complete orthonormal bases in the subsystem A and B, respectively. Two indices
ip, jq ∈ {|j⟩}j run over a complete orthonormal basis {|j⟩}j in the total system. In this
notation we obtain

trA ρ
n
A =

∑
(a),(b),(i),(j) π12π23 · · · πn1

Z(β)n
, (2.5)

where (x) := x1, x2, · · · , xn. What we would like to compute is a random average of n-th

REE, Sn :=
1

1− n
ln (trA ρnA). The term π12π23 · · · πn1, however, includes the product of

random variables such as zi1z
∗
j1
zi2z

∗
j2
· · · zinz∗jn and it is difficult to calculate the average

of the logarithm of it. Instead, we calculate Sn by averaging the trace before taking the

logarithm of it, S̃n :=
1

1− n
ln
(
trA ρnA

)
. As we give a proof in appendix A, the difference

between Sn and S̃n is exponentially small in terms of the system size L (see also Ref. [68]
for a similar discussion). In the following calculation we just use Sn to denote S̃n.

Taking the random average of trA ρ
n
A can be performed by using several properties of

{zi} such as zi = 0, z∗i zj = δij and |zi|2|zj|2 = 1 + δij. For example, calculation of the
second REE goes like

trA ρ2A =
∑
i,j,k,l

a1,b1,a2,b2

ziz∗j zkz
∗
l ⟨a1b1|e−βH/2|i⟩ ⟨j|e−βH/2|a2b1⟩ ⟨a2b2|e−βH/2|k⟩ ⟨l|e−βH/2|a1b2⟩

Z(β)2

=
∑

a1,b1,a2,b2

⟨a1b1|e−βH |a2b1⟩ ⟨a2b2|e−βH |a1b2⟩+ ⟨a1b1|e−βH |a1b2⟩ ⟨a2b2|e−βH |a2b1⟩
Z(β)2

=
trA (trB e

−βH)2 + trB (trA e
−βH)2

Z(β)2
, (2.6)

which results in

S2 = − ln

[
trA (trB e

−βH)2 + trB (trA e
−βH)2

Z(β)2

]
. (2.7)

Similarly, the third REE is

S3 = −1

2
ln

[
trA(trB e

−βH)3 + 3 tr
(
e−βH

(
trB e

−βH ⊗ trA e
−βH

))
+ trB (trA e

−βH)3 +N

Z(β)3

]
,

(2.8)

where N =
∑

a1,a2,a3,b1,b2,b3
⟨a1b1|e−βH |a3b2⟩ ⟨a2b2|e−βH |a1b3⟩ ⟨a3b3|e−βH |a2b1⟩. We can cal-

culate the nREE for given integer n ≥ 2 systematically, but it is difficult to write down
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trA trBe
−βH( )

2
= 2β

β

β

trBe
−βH = β

∝ ZA (2β) ⋅ZB (β)
2

Figure 2.1: Pictorial expression of the approximation trA(trB e
−βH)2 ∝ ZA(2β)ZB(β)

2.
(top) The matrix trB e

−βH can be considered as a cylinder of radius β with a slit on
the subsystem A by the Suzuki-Trotter decomposition [74]. The horizontal direction is
the spacial dimension and the circumferential direction represents the imaginary time-
evolution. (bottom) trA(trB e

−βH)2 can be considered as a Y-shaped cylinder. If we
neglect the contribution from the boundary between A and B, it is approximated as
ZA(2β) · ZB(β)

2.

general expressions of it because the calculation of trA ρnA involves a contraction of 2n com-
plex numbers which yields complicated products of the matrix e−βH . Thus the vN-EE
SEE = limn→1 Sn = − trA(ρA ln ρA) has yet to be calculated, and it would be interesting to
study it by computing a general formula of Sn and performing the analytic continuation
n→ 1 to it.

2.2.2 Simplification to a universal functional form of the volume
law

It is possible to make several simplifications of Eq. (2.7) under physically-reasonable
assumptions. The first step is to decompose the Hamiltonian H as H = HA +HB +Hint,
where HA,B are the Hamiltonians of the corresponding subsystems and Hint describes the
interactions between them. Since the range of interaction Hint is much smaller than ℓ and
L− ℓ because of the assumption that H is local, we can approximate

Z(β) ∝ ZA(β)ZB(β), trB(trA e
−βH)2 ∝ ZA(β)

2ZB(2β), trA(trB e
−βH)2 ∝ ZA(2β)ZB(β)

2,
(2.9)

where ZA,B(β) := trA,B (e−βHA,B) is the partition function of each subsystem and the
proportional constants are independent of ℓ and β (we will consider these approximations
in detail later). A pictorial understanding of the second and the third approximations is
presented in Fig. 2.1. By putting these approximations into Eq. (2.7), one obtains

S2(ℓ) = − ln

(
ZA(2β)

ZA(β)2
+
ZB(2β)

ZB(β)2

)
+ lnR(β), (2.10)

where R(β) is a constant coming from the proportional constants in Eq. (2.7).
Further simplification can be obtained by considering the extensiveness of the free

energy, − 1
β
lnZA ∝ ℓ and − 1

β
lnZB ∝ L− ℓ, which is valid (see also the last paragraph of

this subsection) when ℓ, L− ℓ≫ 1. We thus replace ZA(2β)/ZA(β)
2 and ZB(2β)/ZB(β)

2
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with Q(β)a(β)−ℓ and Q(β)a(β)−(L−ℓ), respectively, where a(β) > 1 and Q(β) are O(1)
constants dependent only on β. We note that the constant a(β) can be taken the same
both for A and B because of translation invariance of the system. Finally, we reach a
simple expression,

S2(ℓ) = ℓ ln a(β)− ln
(
1 + a(β)−L+2ℓ

)
+ lnK(β) , (2.11)

where K(β) := R(β)/Q(β). This is the first main result of this thesis. In a similar
manner, general nREE (n > 2) can be simplified and one can reach similar formulas. For
example, the 3REE is

S3(ℓ) = ℓ
ln b

2
− 1

2
ln

(
1 +K ′

1

bℓ

a(β)L
+ b−L+2ℓ

)
+ lnK ′

2, (2.12)

where b, K ′
1 and K ′

2 are O(1) constants that depend only on β and a(β) is common in
the 2REE (Eq (2.11)). We note that the term N in Eq. (2.8) is neglected in the above
expression because it is estimated to be small compared with the other terms.

A lot of implications can be observed in Eq. (2.11). It tells that the whole 2REE
curve is determined by only two parameters, a(β) and K(β). The first term of Eq. (2.11)
denotes the volume law of entanglement for ℓ ≤ L/2, and its slope ln a(β) is a density of
the 2REE in the thermodynamic limit L → ∞. The third term lnK is an offset of the
volume law. The second term, most importantly, describes the deviation from the volume
law. As ℓ approaches L/2, this quantum correction to the volume law becomes large and
eventually gets to ln(1 + 1) = ln 2 at ℓ = L/2, irrespective of the inverse temperature β
and the Hamiltonian. This is a unique feature of the 2REE as we do not observe such
universal behaviors in the nREEs for n ≥ 3. We also note that the formula (2.11) is
universal among spin systems, bosonic systems, and fermion systems because we have
only used the thermodynamic properties of the system in the derivation3.

Lastly, we remark on the validity of the approximations (Eq. (2.9) and ZA(2β)/ZA(β)
2 ≈

Q(β)a(β)−ℓ, ZB(2β)/ZB(β)
2 ≈ Q(β)a(β)−L+ℓ) and the effect of subleading corrections of

them to the formula (2.11). Those approximations are based on the extensiveness of the
(sub)system, so they must be independent of whether the system is critical, integrable,
and so on. Thus they are thought to be valid when ℓ, L − ℓ is much larger than trivial
length scales of the system such as the range of the interaction. In addition, ℓ and L− ℓ
should be large enough so that there are a large number of energy eigenstates in the
energy spectrum of the subsystems around the energy expectation values (EA,B(β)). We
denote the length scale where both conditions above are satisfied as ℓext. We stress that
the correlation length of the system does not play an important role for the extensiveness
of the system. As for the subleading corrections, we can write

Z(β) = c(β)(1 + fβ,L(ℓ))ZA(β)ZB(β), trA(trB e
−βH)2 = c′(β)(1 + gβ,L(ℓ))ZA(2β)ZB(β)

2,

ZA(2β)/ZA(β)
2 = Q(β)(1 + hβ,L(ℓ))a(β)

−ℓ,

where c(β), c′(β) are O(1) constants independent of ℓ, and f, g, h are subleading correc-
tions of the approximations which vanish, or become o(1), for ℓ, L− ℓ ≫ ℓext. By taking

3 For bosonic systems one should be careful about a case of β = 0 and β = ∞ where there will be some
divergence in physical quantities. The formula is still valid as long as 0 < β <∞ for bosonic systems.
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into account these subleading corrections, we reach

S ′
2 = ℓ ln a− ln

(
1 +

1 + gβ,L(L− ℓ)

1 + gβ,L(ℓ)

1 + hβ,L(L− ℓ)

1 + hβ,L(ℓ)
a−(L−2ℓ)

)
+ lnK(β)

+ ln

(
(1 + gβ,L(ℓ))(1 + hβ,L(ℓ))

(1 + fβ,L(ℓ))2

)
.

When L is fixed and large enough, there is a region where ℓ, L− ℓ≫ ℓext is satisfied (note
that ℓext does not depend on L). In that region, the subleading corrections f, g, h get
sufficiently small (o(1)), so that our formula (2.11) holds4.

2.2.3 Comments on relation to the area law (β = ∞) and the
random state (β = 0)

We comment on the relation between Eq. (2.11) and the celebrated area-law of entangle-
ment for the ground state [17, 18]. When β = ∞ the cTPQ state reduces to the ground
state |GS⟩, so the area law of entanglement will appear; in our setup, Sn(ℓ) = const. In-

deed, the derivation of the volume-law formula (2.11) fails at the approximation ZA(2β)
ZA(β)2

∝
a(β)−ℓ because ZA(β = ∞) = 1. At β = ∞, the term lnR(β) in Eq. (2.10) which comes
from the boundary of two subsystems becomes important and responsible for the area
law (with a possible logarithmic correction).

We also take a quick look at the case of infinite temperature β = 0. When β = 0,
the cTPQ state (2.1) reduces to a random state and we can obtain a simple equation for
general n:

Sn = ℓ ln d− 1

n− 1
ln

[
n∑

k=1

N(n, k)

(
λℓ

λL−ℓ

)k−1
]
, (2.13)

where the local dimension of the Hilbert space is λ (for qubit systems λ = 2), and
N(n, k) = 1

n

(
n
k

)(
n

k−1

)
is known as the Narayana numbers. When n = 2, this expression

reproduces the previous results of the 2REE of the random state in Refs. [75, 76],

S2 = − ln

(
λℓ + λL−ℓ

λL + 1

)
= ℓ lnλ− ln

(
1 + λL−2ℓ

)
, (2.14)

where we have ignored 1 in the denominator.

2.3 Numerical check of the universal functional form (2.11)

for the cTPQ states

In order to confirm the validity of the approximations and clarify the advantages of our
formula (2.11), we present numerical simulations of the 2REE curve of the cTPQ states

4 The second term is ln
(
1 + (1 + o(1))a−(L−2ℓ)

)
= ln

(
1 + a−(L−2ℓ)

)
+ o(1) and the last term is

ln(1 + o(1)) = o(1).
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Figure 2.2: Numerical results of ZA(β)ZB(β)/Z(β) (top left),

ZA(2β)Z
2
B(β)/ trA

(
trB e

−βH
)2

(top right), and ZA(2β)/ZA(β)
2 (bottom) in the XX

chain (2.15) of L = 16 as a function of the subsystem size ℓ.

for the S = 1/2 XX chain under a periodic boundary condition,

H =
L∑
i=1

(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
, (2.15)

where Sx
i , S

y
i are the spin S = 1/2 operators on site i. This system is mapped to

the free fermion system by the Jordan-Wigner transformation [77], and the quantities
trA(trB e

−βH)2 and trB(trA e
−βH)2 can be efficiently calculated in a large system (L ∼ 100)

by the correlation functions of the system [78].
First, we check the validity of approximations Eq. (2.9) and ZA(2β)/ZA(β)

2 ∝ a(β)−ℓ

used in the derivation of the Eq. (2.11). Figure 2.2 shows the numerical results of

ZA(β)ZB(β)/Z(β), ZA(2β)ZB(β)
2/ trA

(
trB e

−βH
)2
, and ZA(2β)/ZA(β)

2 in the XX chain (2.15)
of L = 16 at inverse temperature β = 1 and 4. As clearly seen from the figures,

ZA(β)ZB(β)/Z(β) and ZA(2β)ZB(β)
2/ trA

(
trB e

−βH
)2

do not depend on ℓ for 2 ≲ ℓ ≲
L− 2. Also ZA(2β)/ZA(β)

2 ∝ exp(−ℓ) holds well down to ℓ = 3.
Next, we numerically calculate the 2REE of the cTPQ states at inverse temperatures
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β = 2 and β = 4 by directly evaluating Eq. (2.7). In top panels of Fig. 2.3, we present the
numerical data of the 2REE and the fits of them by our formula (2.11)5. For all system
sizes L and subsystem sizes ℓ, the fitting works quite well. In addition, we compare several
estimations of the density of the 2REE from the numerical data in order to illustrate the
advantage of our formula. We extract the density of the 2REE from the numerical data
in three ways: ln a from the fits by our formula, the density of the 2REE for half of the
system, S2(L/2)/(L/2), and the average slope of the curve between ℓ = 1 and ℓ = 5,
(S2(5) − S2(1))/4. From the bottom panels of Fig. 2.3, it is clear that ln a does not
contain any systematic error and converges rapidly as large L compared with the other
two estimates, which manifests one of the practical advantages of our formula (2.11).

5 The fitting is performed for the data of {S2(ℓ)}ℓ=L−1
ℓ=1 by setting a and K in Eq. (2.11)

as fitting parameters, through the least squares method implemented in the numerical package
scipy.optimize.leastsq.
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Figure 2.3: The second Rényi entanglement entropy of the cTPQ states. (top) The dots
are the 2REE of the cTPQ states of the XX chain (2.15) at inverse temperature β = 2
(left) β = 4 (right) calculated by Eq. (2.7) for various system sizes L. The lines are the fits
by Eq. (2.11) for the numerical data. (bottom) Comparison among ln a, S2(L/2)/(L/2),
and (S2(5)− S2(1))/4. The dashed lines are extrapolations to L→ ∞ by 1/L scaling for
ln a and S2(L/2)/(L/2) and by 1/L2 scaling for (S2(5)−S2(1))/4. All three data coincide
at the thermodynamic limit L→ ∞ but the extent of the convergence in L is different.
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2.4 Conjecture for applicability of the formula to gen-

eral pure states

We have derived the functional form of the volume law of the 2REE (Eq. (2.11)) and how
well it describes the numerical data of the cTPQ states. However, there are many kinds
of thermal pure states other than the cTPQ states; the cTPQ state is just a canonical
and analytically-tractable example of thermal pure states. In this section, we discuss the
applicability of the formula to general pure states.

For a given pure state |ψ⟩ =
∑

i ci |i⟩, where {|i⟩}i is some complete basis of the
system, one obtains by definition

S2 = − ln
(
trA ρ

2
A

)
= − ln

(
trA

(∑
i,j,k,l

cic
∗
jckc

∗
l trB (|i⟩ ⟨j|) trB (|k⟩ ⟨l|)

))
. (2.16)

We can decompose the summation into a contribution from the “diagonal ensembles” and
that from others as

S2 = − ln
[
trA
(
trB (ρ̂dia)

2)+ trB
(
trA (ρ̂dia)

2)+ Ioff
]
, (2.17)

where the diagonal ensemble (dependent on a choice of the basis) is defined as

ρ̂dia :=
∑
i

|ci|2 |i⟩ ⟨i| , (2.18)

and the off-diagonal contribution Ioff is

Ioff := trA

(∑
i,j,k,l

′
cic

∗
jckc

∗
l trB (|i⟩ ⟨j|) trB (|k⟩ ⟨l|)

)
. (2.19)

Here, the summation
∑′ runs all (i, j, k, l) without those satisfying (i, k) = (j, l) or

(i, k) = (l, j).
From Eq. (2.17), we can see that our formula (2.11) will apply to the 2REE of |ψ⟩ if

(1) Ioff is absent or negligible, and

(2) The 2REE of ρdia is extensive with a constant density, i.e.,

trA
(
trB (ρ̂dia)

2) ≈ c · a−ℓ, trB
(
trA (ρ̂dia)

2) ≈ c · a−(L−ℓ), (2.20)

where a and c are constants independent of ℓ.

This is because by putting the above equations into Eq. (2.17) and neglecting Ioff it follows
that

S2(ℓ) = − ln
(
a−ℓ + a−(L−ℓ)

)
− ln c = ℓ ln a− ln(1 + a−(L−2ℓ))− ln c, (2.21)

which is exactly the same form of our formula (2.11).
We have several comments on these two conditions.
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• First, we think that the negligibility of the off-diagonal contribution Ioff is not so
special but rather common in general thermal pure states, because the coefficients
{ci}i of typical pure states are expected to be uncorrelated in general [39]. Say
that {ci}i are uncorrelated random numbers, then the off-diagonal term Ioff will
die out for large systems without taking average of the random numbers due to
the central limit theorem. This is what happens for the cTPQ states. In general
thermal pure state the coefficients are not random numbers, but we expect that
the uncorrelated nature of them results in the negligibility of Ioff . We call pure
states whose coefficients {ci}i are uncorrelated as “scrambled” states, although
the definition of them depends on the basis in which we expand the states. In most
cases we take the basis as a local basis (such as {|↑↑↑ · · ·⟩ , |↑↑↓ · · ·⟩ , . . .} in S = 1/2
spin systems), or as energy eigenstates {|Ei⟩}i of the system.

• Second, the extensiveness of 2REE for the diagonal ensemble is not guaranteed
in general and it has to be checked for each specific case. In the case of the
cTPQ states, the diagonal ensemble after the random average is the Gibbs state
ρdia,cTPQ = e−βH/Z(β) and the extensiveness is apparent (note that the basis de-
pendence disappears in this case because of the random average). If one considers
stationary states after quantum quench as we will do in Chapter 3, it is useful to take
energy eigenstates of a system as a basis to define the diagonal ensemble. Indeed, the
diagonal ensemble in the energy eigenstate basis has been studied by many authors
in connection with thermodynamic entropy, and the vN-EE of it (called diagonal
entropy) is known to behave consistently with the thermodynamic laws [79, 80].
Therefore it is natural to expect that the 2REE of the diagonal ensemble in the
energy eigenstate basis exhibits the thermodynamic behavior, or the extensiveness.
On the other hand, for energy eigenstates in non-integrable systems which are also
believed to be thermal, the extensiveness of the 2REE of ρdia is weakly broken [68]
and the applicability of the formula (2.11) becomes approximate (see Chapter 4).

• Third, strictly speaking, the conditions (1)(2) are only sufficient for the formula to
hold. The uncorrelated or scrambled nature of the coefficients {ci}i, however, is
expected in any typical (thermal) pure state [39], so we exclude a possibility that
the formula (2.11) will hold without the conditions (1)(2) throughout all discussions
in this thesis.

Based on the above considerations, we conjecture the following statement:

Conjecture. The equation (2.11), named as the volume-law scaling formula, applies to the
second Rényi entanglement entropy of general thermal pure states and general scrambled
states as a fitting function with the fitting parameters a(β) and K(β).

In the following chapters, we numerically examined this conjecture by taking (a) sta-
tionary states after quantum quench (Chapter 3) and (b) energy eigenstates of general
Hamiltonians (Chapter 4) as examples.
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Chapter 3

Application of the volume-law
scaling formula to stationary states
after quantum quench

In this chapter, as a nontrivial test of the validity of our formula in general thermal pure
states, we numerically investigate stationary pure states after quantum quench. Such
stationary states are considered as thermal if a system is non-integrable but athermal
if integrable. Our numerical results by exact diagonalization in spin chain models show
that the formula (2.11) applies to the stationary states after quantum quench in non-
integrable model and in interacting-integrable models. We ascribe the reason for this
somewhat unexpected result to the scrambling nature of the wave function invoked by
time-evolution after quantum quench. To confirm the above argument further, we also
present a numerical result of the quench in quadratic-integrable models where there is no
scrambling after time-evolution. Finally, we show that the recent experimental results of
the 2REE can actually be fitted by our formula.

3.1 Quantum quench in closed quantum systems and

thermalization

Quantum quench means a sudden change of parameter(s) in a quantum system and
has been featured in recent studies of condensed matter physics as well as high-energy
physics [12, 15, 16, 42–48, 58, 81–89]. It is one of the simplest protocols to make systems
nonequilibrium and study the nature of such situations. In studies of quantum quench,
an initial state is typically prepared as the ground state of pre-quench Hamiltonian, and
then a parameter of the system (Hamiltonian) is changed in time. Since the initial state
is not in general the eigenstate of the post-quench Hamiltonian, there occurs non-trivial
dynamics in the system, and one can study the dynamics itself and/or its long-time limit
by the quantum quench protocol.

One of the most fundamental questions that can be addressed by quantum quench
is the problem of thermalization in closed quantum systems, which was briefly men-
tioned in the last part of section 1.2. Let us denote the time-dependent Hamiltonian
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Figure 3.1: Schematic picture of quantum quench. (top) A parameter λ(t) in a system
is abruptly changed at time t = 0 and it will invoke non-trivial dynamics in the system.
(bottom) Since the unitary time-evolution U(t) keeps the pure state ρ(0) being pure, it
cannot relax into the mixed-state thermal ensembles.

as H(t) and an initial pure state as |ψ(0)⟩ in quantum quench. Since time-evolution in

closed quantum systems is described by the unitary operator U(t) = T e−i
∫ t
0 dsH(s), where

T is the time-ordered product, the purity of the initial state is preserved: tr ρ(t)2 =

tr
(
U †(t)ρ(0)U(t)

)2
= tr ρ(0)2 = 1. Hence the initial state remains pure under time-

evolution and cannot relax into the mixed-state thermal ensembles (see Fig. 3.1). In this
case, one should consider a local thermalization of the system, which is defined as

∃ρGibbs(β), lim
T→∞

1

T

∫ T

0

ds ⟨ψ(s)|Â|ψ(s)⟩ = tr
(
ρGibbs(β)Â

)
for all local Â. (3.1)

We note that the time average is introduced in the left hand side to avoid recurrence due
to the finite size effect and that the exact equality holds only in the thermodynamic limit.
Equation (3.1) implies that a stationary state after quench in a closed quantum system
can be considered as a thermal pure state if thermalization occurs and the temporal
fluctuation of ⟨ψ(t)|A|ψ(t)⟩ is small.

Thermalization in terms of (3.1) is widely believed to happen in general interacting
systems (for a review, see Refs. [44, 47]). Intuitive understanding of the thermalization
can be made by the typicality introduced in section 1.2. Most of the pure states in the
Hilbert space look thermal and athermal states (including the initial state of quantum
quench) are very rare, so the dynamics in the Hilbert space from the initial state will
easily bring it to some thermal state. Furthermore, there is a more quantitive and attrac-
tive augment for the cause of the thermalization named the Eigenstate Thermalization
hypothesis (ETH) [90–92], which we will discuss in detail in section 4.1. A general proof
of the thermalization in closed quantum systems, nevertheless, has been still lacking.

On the other hand, there is an important exception for the thermalization in closed
quantum systems. In the so-called integrable systems, it is believed that no thermalization
occurs even in the sense of Eq. (3.1). Here, we call quantum many-body systems which
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are exactly solved by the Bethe ansatz and have infinitely many conserved quantities
as integrable systems1 [94]. The reason for the absence of thermalization in integrable
systems is naively understood by the fact that the infinitely many conserved quantities
restrict the dynamics of the state in the Hilbert space so that it cannot reach “typical”
thermal states. Nevertheless, one can construct another statistical ensemble describing
stationary states after quantum quench in integrable systems: Generalized Gibbs ensemble
(GGE) [82]. GGE is defined through additional conserved quantities other than the
Hamiltonian (energy),

ρ
β,{λi}
GGE =

1

ZGGE

exp

(
−βH −

∑
i

λiQi

)
, (3.2)

where Qi are conserved quantities2 in a system, {λi} are Lagrange multipliers and ZGGE

is a normalization constant. Relaxation after quantum quench in integrable systems is
described by replacing the Gibbs state ρGibbs(β) in Eq. (3.1) with the GGE ρ

β,{λi}
GGE . A

number of papers confirmed the validity of the GGE in many kinds of integrable models
[44,81–83,86,95,96], and the relaxation to the GGE was observed in experiments [42,45].

In the following sections, we investigate the 2REE of stationary states after quantum
quench both for integrable and non-integrable models.

3.2 Numerical results

We consider the S = 1/2 Heisenberg model up to next-nearest neighbor interactions under
periodic boundary condition,

H =
L∑
i=1

(Si · Si+1 + J2Si · Si+2) , (3.3)

where Si = (Sx
i , S

y
i , S

z
i ) is the S = 1/2 spin operators on site i. This model can be

thought as a prototype of quantum many-body systems and the quantum quench in this
model has been explored by a lot of papers [82,83,95,97–99]. This model is known to be
non-integrable for J2 ̸= 0 and integrable for J2 = 0. In numerical calculation, we employ3

J2 = 0.5 (J2 = 0) as a non-integrable (integrable) case. The initial state of the quench is
taken to be the Néel state |Néel⟩ := |↑↓↑↓↑↓ ...⟩ and we compute the dynamics after the
quench, |ψ(t)⟩ = e−iHt |Néel⟩, by exact diagonalization. We take a time step of evolution
as dt = 0.1 and calculate the dynamics of 2REE curve S2(t, ℓ) up to t ≤ T = 300.

3.2.1 Non-integrable case

The numerical results for the non-integrable model (J2 = 0.5) with the system size L = 16
are presented in the top left panel of Fig. 3.2 (interested readers can find animations of the

1 We include quadratic models such as free particle systems in the definition of integrable models. We
note that the complete definition of integrability and integrable systems is still under active discussion [93].

2 Operators which commute with the Hamiltonian: [Qi,H] = 0.
3 The model with J2 = 0.5 is known as Majumdar-Ghosh model where the ground state is exactly

obtained [100]. However, general excited states are not analytically calculable so we call the model as
non-integrable.
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Figure 3.2: Dynamics of the second REE curve S2(t, ℓ) after quantum quench. (top
panels) Time-evolution of the 2REE after quantum quench from the Néel state. The
dashed line is the fit by Eq. (2.11) for the time average of S2(t, ℓ). The left panel is for the
non-integrable Hamiltonian (Eq. (3.3) with J2 = 0.5 and L = 16) and the right one is for
the integrable Hamiltonian (J2 = 0, L = 16). (bottom panels) The dynamics of the 2REE
at ℓ = 3 and ℓ = L/2 = 8. The dashed lines indicate the values of the time average.
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dynamics in ancillary files of arXiv:1703.02993v1). Initially at t = 0, the 2REE curve is
flat because the initial state is the Néel state which has no entanglement at all. After the
quench (t > 0) the thermalization starts to take place and the volume law of entanglement
appears. Since the numerical data oscillate in time as long as t = T = 300 due to the
finite size effect (as seen in the bottom left panel of Fig. 3.2), we calculate the long-time
average of the 2REE curve S2(t, ℓ),

S̄2(ℓ) :=
1

T

∫ T

0

dtS2(t, ℓ), (3.4)

as an estimation of the long-time limit limt→∞ S2(t, ℓ). Clearly, one can tell from the
top left panel of Fig. 3.2 that the time average of S̄2(ℓ) (black circles) is well fitted by
our formula (2.11) (dashed line). The figure illustrates the validity of our formula for
stationary states after quantum quench in non-integrable systems.

3.2.2 Integrable case

In the right panels of Fig. 3.2 the numerical data of the quench for the integrable model
(J2 = 0) are shown. The qualitative dynamics is the same as in the integrable case;
the 2REE curve S2(ℓ, t) starts from the flat line and eventually exhibits the volume law.
Somewhat surprisingly, the fitting to the long-time average S̄2(ℓ) by our formula (2.11)
also works well in this integrable model. As explained in the previous section, there is
no thermalization in integrable systems so that other local observables, such as staggered
magnetization, are not explained by the cTPQ states or mixed-state thermal ensem-
bles [82, 83, 95]. In this sense, the applicability of the formula (2.11) which is derived for
thermal pure states is rather a special feature of the 2REE, and we will discuss the reason
in the next section.

In addition, we find that the temporal fluctuation in the integrable case is larger than
that in the non-integrable case as implied in the bottom panels of Fig. 3.2. This is because
the infinitely many conserved quantities in the system make the number of effective degrees
of freedom small. As presented in Fig. 3.3, we observe that the fluctuation possibly decays
algebraically with the system size L for the integrable case, whereas it decays exponentially
in the non-integrable case. This is in contrast to Ref. [101] where the fluctuation of local
observables in the same integrable model as ours exhibits the exponential decay with the
system size. We think the difference is due to either a genuine characteristic of the non-
local nature of the 2REE or simply the finite size effect of our numerical calculation. We
note that S2(L/2)/L has a support as large as half of the system so that the finite size
effect would be strong compared with local observables.

3.3 Discussion on applicability of the formula by time

average

The reason why the result of the integrable model (Eq. (3.3) with J2 = 0) is well fitted
by our formula can be explained by the uncorrelated or scrambled nature of the wave
function after time-evolution introduced in section 2.4.
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Figure 3.3: Temporal fluctuations of a density of the 2REE at the center of the system,
S2(L/2)/L. We calculate the standard deviation of the {S2(t, L/2)/L}t=300

t=100, where the
time t is discretized in dt = 0.1. The left panel is the result for the non-integrable system
(Eq. (3.3) with J2 = 0.5) in a semilog scale and the right panel is for the integrable system
(J2 = 0) in a log-log scale. One can see that the fluctuation in time decays exponentially
with the system size L in the non-integrable model but algebraically in the integrable
model.

First, let us consider a slightly different time average of the 2REE from what is con-
sidered in the numerical calculation (we omit ℓ in this section for brevity),

S2
time′

= − ln

(
lim
T→∞

1

T

∫ T

0

dt trA(ρA(t))
2

)
. (3.5)

If one assumes that S2(t) reaches a stationary value at t → ∞ with a small temporal
fluctuation (which is the case for large L (Fig. 3.3)), two time-averages coincide with each
other.

Next let us take the energy eigenstates {|n⟩E}n as a basis and expand the initial state
of the quench as |ψ(0)⟩ =

∑
n cn |n⟩E. Thanks to the choice of the basis it is easy to write

down the time-evolution after the quench, and the density matrix for t > 0 is

ρ(t) = |ψ(t)⟩ ⟨ψ(t)| =
∑
n,m

cnc
∗
me

−i(En−Em)t |n⟩E ⟨m|E . (3.6)

By taking partial trace of the subsystem B one obtains the reduced density matrix on A
as

ρA(t) = trB ρ(t) =
∑
n,m

cnc
∗
me

−i(En−Em)tρA(n;m), (3.7)

where ρA(n;m) := trB (|n⟩E ⟨m|E). Thus the time-averaged REE is written as

S2
time′

= − ln

(
′∑

n,m,k,l

cnc
∗
mckc

∗
l trA (ρA(n;m)ρA(k; l))

)
, (3.8)
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where the summation is taken over the indices satisfying En−Em+Ek−El = 0. In general
interacting systems, regardless of integrable or non-integrable, it is quite rare to satisfy this
condition except for the trivial solutions of it, (n = m; k = l) or (n = l; k = m) [101,102].
Hence we assume that the dominant contribution in Eq. (3.8) comes from those trivial
combinations of the indices, we reach a simple expression:

S2
time′

= − ln
[
trA(trB ρdiag,E)

2 + trB(trA ρdiag,E)
2
]
, (3.9)

where ρdiag,E =
∑

n |cn|2 |n⟩E ⟨n|E is the diagonal ensemble in the energy eigenstate basis.
Equation (3.9) implies that the time average of the 2REE does not contain the off-

diagonal term Ioff in Eq. (2.17) due to the “dephasing” induced by interactions of the
system during time-evolution. Moreover, the diagonal ensemble in the energy eigenstates
basis is expected to be extensive4 as we discussed in section 2.4. Therefore, the time-
averaged 2REE in interacting systems, regardless of integrable or non-integrable, obeys
our formula (2.11) because two conditions in section 2.4 are reasonably satisfied.

3.4 Further results for quadratic-integrable models:

where there is no scrambling

In order to confirm the above scenario, we examine quantum quench in other integrable
models where there is no scrambling at all even after a long time. The important point
of the discussion in the previous section is that the condition En − Em + Ek − El = 0 is
satisfied only for trivial combinations of indices, (n = m; k = l) and (n = l; k = m). This
is the case for interacting-integrable models5, but not the case for “quadratic-integrable
models” which are equivalent to some quadratic (or free-particle) Hamiltonian. The notion
of one-particle spectrum holds well in such quadratic models and therefore the condition
En−Em+Ek−El = 0 is satisfied for a lot of non-trivial sets of indices6 (similar discussion
is found in Refs. [101,105]). In the following, we study two specific examples of quadratic-
integrable models.

3.4.1 S = 1/2 XX chain

A first example of quadratic-integrable models is the S = 1/2 XX chain (2.15). Again we
numerically calculate the quantum quench from the Néel state7, |Néel⟩ = |↑↓↑↓↑↓ ...⟩. The
results are shown in Fig. 3.4. Apparently the fit by our formula (2.11) (black dashed line
in the left panel) is not well for the time-averaged value of S2(t, ℓ) from t = 0 to t = 300.
This is consistent with the discussions above. Moreover, the temporal fluctuation is found

4 We consider the extensiveness, which is one of the most fundamental properties of quantum many-
body system, is not affected by the integrability of a system.

5 We denote integrable models which are not equivalent to any quadratic model as “interacting-
integrable models”.

6 We note that some exceptional interacting-integrable systems which have larger symmetries com-
pared with the usual Bethe-ansatz solvable models, such as the Haldane-Shastry model [103, 104], may
also fall into the same class as quadratic-integrable models because their energy spectra are quite simple.

7 Although the system is completely free, the Néel state is not an eigenstate of the system and there
will happen non-trivial dynamics after the quench.
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Figure 3.4: The dynamics of S2(t, ℓ) for the quantum quench from the Néel state in the
XX chain (2.15). (left) ℓ-dependence at several fixed times t. The black dots are the time
average of the S2(t, ℓ) from t = 0 to t = 300. The black dashed line is the fitting of them
by the formula (2.11). (right) t-dependence at fixed ℓ. Horizontal dashed lines indicate
the values of the time average.

to be by far larger than that of the Heisenberg model (bottom right panel of Fig. 3.2) as
seen in the right panel of Fig. 3.4.

3.4.2 Free relativistic Dirac fermions in two-dimensional space-
time

We investigate a field-theoretical model as another example of quadratic-integrable mod-
els. We consider the free massless Dirac fermions in (1+1)-dimensional space-time, which
reduces to the conformal field theory (CFT) in (1+1)-dimensions with the central charge
c = 1 [106]. We note that the dynamics of entanglement of (conformal) field theories after
quantum quench in a finite system size L and at non-zero temperature 0 < T < ∞ has
not been explored so much [58–60,88,107–109], although there are a number of studies for
infinite system size or zero temperature [87,89]. We also comment that in the holography
(or the gauge-gravity duality [110]) it is hard to calculate the n-th Rényi entanglement
entropy [111] compared with doing the entanglement entropy by the celebrated Ryu-
Takayanagi formula and HRT (Hubeny-Rangamani-Takayanagi) formula [84,112].

In Ref. [58], Ugajin and Takayanagi studied the dynamics of the entanglement entropy
in (1+1)-dimensional CFT of the central charge c = 1 consisting of the free massless Dirac
fermions. The CFT lives on a circle of unit radius and the size of the subsystemA is param-
eterized by σ ∈ [0, 2π]. They considered the dynamics of a pure state |ψ0⟩ = e−βH/4 |B⟩
on a cylinder of the length L, where |B⟩ is the conformal boundary state [86, 87]8. The
time-evolution is defined as |ψ(t)⟩ = e−iHCFT t |ψ0⟩, where HCFT is the Hamiltonian which
describes the CFT. By employing the path integral formulation of the Rényi entanglement

8 Here, the parameter β is not a temperature but a cutoff energy scale of the initial state. It is named
after the fact that the stationary value of the entanglement entropy after the quench turns out to be the
same as the thermal entropy of the system at inverse temperature β [87].
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entropy and converting it into to a 2n point function of the twist operator though several
conformal maps, they reached

S ′
n(t, σ) =

n+ 1

12n

2 ln

(
2β

πaUV

)
+ ln


∣∣∣θ1( iσ4β | iπ2β )∣∣∣2 ∣∣∣θ1(β+it

2β
| iπ
2β
)
∣∣∣2

η( iπ
2β
)6
∣∣∣θ1(2β+2it+iσ

4β
| iπ
2β
)
∣∣∣ ∣∣∣θ1(2β+2it−iσ

4β
| iπ
2β
)
∣∣∣

 ,

(3.10)
where aUV is a ultraviolet cutoff of the theory, θ1 is a variant of the theta function, and
η is the Dedekind eta function:

θ1(ν|τ) := i
∞∑

n=−∞

(−1)nq(n−1)2/2zn−1/2, (3.11)

η(τ) := q1/24
∞∏
k=1

(1− qk), (3.12)

with q = e2πiτ and z = e2πiν . The first term is divergent due to the cutoff aUV , but has
no σ dependence. Thus the volume law of entanglement will come from the second term.
We call the second term as Sn(t, σ). From the expression, one can see the symmetric and
periodic properties of Sn(t, σ),

Sn(t, 2π − σ) = Sn(t, σ), Sn(t+ π, σ) = Sn(t, σ). (3.13)

The form of Sn(t, σ) looks complicated, but it exhibits the volume law as shown in
the numerical data for n = 2 in the top panels of Fig. 3.5 (σ-dependence of S2(t, σ)). We
perform the fit by our formula (2.11) to those numerical data, and find that the fitting
does not work well. This is again consistent with the discussion in the beginning of this
section. We note that the numerical data clearly satisfies the properties (3.13) as inferred
from the bottom panels of Fig. 3.5.

3.5 Application of the formula to the experimental

result by Kaufman et al.

As a closing of this chapter, we show that our formula (2.11) is actually applicable to the
experimental data.

Recently, Kaufman et al. experimentally measured the 2REE after quantum quench
in Ref. [12]. They prepared two copies of the Bose-Hubbard model in one dimension
in an optical lattice loaded with 87Rb and measured the second Rényi entanglement
entropy of the single system by a sophisticated many-body interference measurement of
two copies [11]. They realized quantum quench in the system and observed the dynamics
of the 2REE after the quench like our setup in this chapter. The initial state of the
quench was prepared as a state with a single atom at all sites, which is the ground state
of the Bose-Hubbard model with infinitely strong repulsive interactions. Here, we apply
our formula (2.11) to their experimental results.

In Fig. 3.6, we provide a fitting of the experimental data by our formula (2.11). The
data are extracted from Fig. 4A of Ref. [12] by us and all data points (ℓ = 1, . . . , 6) are
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Figure 3.5: The numerical data of the S2(t, σ) (the second term of Eq. (3.10)). We
discretize the spatial direction σ ∈ [0, 2π] and the time direction t ∈ [0, π] into 100 points
(dσ = 2π/100 and dt = π/100). (top) σ-dependence at fixed t. The black dots are the
time average of the S2(t, σ) from t = 0 to t = π. The black dashed line is the fitting of
them by the formula (2.11). The left panel is for β = 0.1 and the right one is for β = 0.2.
(bottom) t-dependence at fixed σ. Horizontal dashed lines indicate the time-averaged
value of each colored line.
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Figure 3.6: Fitting of the experiential data of the 2REE in Fig. 4A of the Ref. [12] by
our formula (2.11).

used in the fitting. We do not take into account the error bar of each point in the fitting.
The fitting seems well and yields ln(a) = 0.974, lnK = 0.162. This illustrates the validity
of our formula (2.11) to the actual experimental data, although the data were obtained in
a small system (L = 6) so it is not strongly conclusive. The applicability of the formula
supports our numerical results in this chapter and provides a positive evidence for the
usefulness of our formula in experiments in the near future.

In appendix B, we also give a brief result of the mutual information between two
subsystems which was also measured in the experiment. We find that our analytical
calculation by the cTPQ states reproduces well the experimental data of the mutual
information.

3.6 Summary of this chapter

In this chapter, we find that stationary states after the quench obeys the formula (2.11)
when a system is non-integrable and interacting-integrable. On the other hand, quadratic-
interacting systems are not the case, and the difference between two cases are understood
by the scrambling (dephasing) of a wave function during the time-evolution. Lastly we
take advantage of our formula to fit the experimental data of the 2REE in ultracold
atoms [12] and the agreements between the formula and the data are well.
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Chapter 4

Application of the volume-law
scaling formula to energy eigenstates

In this chapter, we present an application of our formula to energy eigenstates of gen-
eral Hamiltonians by taking an integrable/non-integrable spin chain as an example. First
we introduce the eigenstate thermalization hypothesis which claims that energy eigen-
states are thermal, and explains a relation between the hypothesis and thermalization in
closed quantum systems. Next we present numerical results by exact diagonalization in
spin chains up to L = 18 sites and observe that our formula seems to apply to energy
eigenstates of non-integrable systems and does not to those of integrable systems. We
compare our numerical results with a recent study by Lu and Grover [68] claiming that
the Rényi entanglement entropy of eigenstates of non-integrable models is not a linear
function of ℓ (i.e. the volume law) and has some curvature. By checking the validity of
our formula in a toy model for eigenstates of non-integrable Hamiltonians, we conclude
that our formula (2.11) can work as an approximate function of the volume-law in eigen-
states of non-integrable models and distinguish integrable models from non-integrable
ones correctly.

4.1 Eigenstate thermalization hypothesis

Rigol et al. [92] proposed the Eigenstate Thermalization Hypothesis (ETH) to explain
the thermalization after quantum quench in closed quantum systems. When we denote
energy eigenstates of a system with energy Eα as |α⟩, the ETH claims [91] that for any
local operator A it follows

Aαβ := ⟨α|A|β⟩ = ⟨A⟩mc,Ē δαβ + e−S(Ē)/2rαβ, (4.1)

where Ē =
Eα+Eβ

2
, ⟨A⟩mc,E is an expectation value of A in the microcanonical ensemble

at energy E, S(E) is the microcanonical entropy of the system, and rαβ is a random
fluctuation with zero mean and a variance of O(1). The postulate (4.1) implies that all
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Chapter 4. Application of the volume-law scaling formula to energy eigenstates

energy eigenstates are thermal pure states1 because the second term in the right hand
side is exponentially small in the volume of the system.

The connection between the ETH and the thermalization after quantum quench in
closed systems is formulated as follows, similar to the discussion in section 3.3. If one
expand an initial state of the dynamics as |ψ(0)⟩ =

∑
α cα |α⟩, it evolves as ψ(t) =∑

α cαe
−iEαt |α⟩. The time average leads to

Ā = lim
T→∞

1

T

∫ T

0

ds ⟨ψ(s)|Â|ψ(s)⟩ =
∑
α

|cα|2Aαα, (4.2)

where we assume there is no degeneracy in the energy level spacing Eα − Eβ. Therefore,
because the ETH (4.1) states that all energy eigenstates in the energy shell give the same
expectation value Aαα, the thermalization occurs as Ā = ⟨A⟩mc,Ē, as long as the initial
state has a narrow distribution of |cα|2, i.e., a well-defined energy. We stress that the
ETH is merely a sufficient condition for the thermalization.

There are two versions of the ETH, the strong ETH and weak ETH. The strong ETH
indicates a situation where all energy eigenstates of a system satisfy Eq. (4.1), while
the weak ETH means that almost all eigenstates of a system satisfy Eq. (4.1) and that
the fraction of eigenstates which does not satisfy Eq. (4.1) is vanishingly small in the
thermodynamic limit. Although the strong ETH sounds too strong because it requires all
eigenstates are thermal without any exception, Ref. [113] proved that the strong ETH is
necessary if all product states between a subsystem and the rest of the system thermalize
after quantum quench. However, the authors of Ref. [114] argued that all of those product
states are not experimentally accessible and necessary to thermalize, and construct a
concrete model satisfying only the weak ETH where the cTPQ states at all non-zero
temperature thermalize after quantum quench. On the other hand, it is known that the
weak ETH holds even in integrable systems [115]. This somewhat surprising fact can
reconcile with the absence of the thermalization in integrable models in the following
way: the weight |cα|2 on non-thermal states which do not satisfy (4.1) dominates even
though the number of such states are small [116]. In short, extent of the validity of
the strong/weak ETH and its relation to the thermalization have yet to be solved (for a
review, see Ref. [117]), but at least the weak ETH is believed to hold in general models.

In this chapter, we will investigate the REE of energy eigenstates in integrable/non-
integrable spin chains and compare the results with our formula (2.11) derived by the
cTPQ states. From the viewpoint of the ETH, this is an extension of the ETH to non-local
quantities, discussed also in Refs. [57, 68, 118] (note that the REEs are highly non-local
when ℓ ∼ L/2).

1 Since A is local, the microcanonical ensemble and the canonical ensemble is equivalent in the ther-
modynamic limit in this equation.
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Chapter 4. Application of the volume-law scaling formula to energy eigenstates

4.2 Numerical calculations in spin chains

As a numerical test whether our formula applies to energy eigenstates in general systems,
we study the S = 1/2 XXZ spin chain with/without next-nearest neighbor interactions
under the periodic boundary condition,

H =
L∑
i=1

(
Sx
i S

x
i+1 + Sy

i S
y
i+1 +∆Sz

i S
z
i+1 + J2Si · Si+2

)
, (4.3)

where we set ∆ = 2 and J2 = 4 (J2 = 0) for a non-integrable (integrable) case [94].

We perform exact diagonalization to this Hamiltonian and calculate the 2REE curve
S2(ℓ) of the eigenstates of this model with various energies (Fig. 4.1a and Fig. 4.1b). We
see that the fit by the formula (2.11) works well for the non-integrable case while it does
not for the integrable case. To analyze the difference between two cases quantitatively,
we consider the residual of the fit divided by the system size,

ri :=
1

L

L−1∑
ℓ=1

(S2(ℓ)data,i − S2(ℓ)fit,i)
2 . (4.4)

Here S2(ℓ)data,i is the 2REE of the i-th energy eigenstate of the system and S2(ℓ)fit,i is the
fitted value of it. If S2(ℓ)data,i−S2(ℓ)fit,i is o(1) for the whole region, or the formula (2.11)
fits the numerical data well, ri tends to decrease with L. In Figs. 4.1c and 4.1d, we show
the distribution of {ri}i for all eigenstates in the sector of zero magnetization

∑
i S

z
i = 0

and zero momentum k = 0 by sorting them in descending order of the value ri. It is
clear that {ri}i decreases with respect to L for the non-integrable case but increase for
the integrable case. In Fig. 4.2, we also show the mean of {ri} and the decrease (increase)
of the {ri} for the non-integrable (integrable) case is evident. Those results suggest that
our formula (2.11) is applicable to eigenstates of non-integrable models but not to those
of integrable models. However, we need a special care about the numerical result in
non-integrable models because a recent paper by Lu and Grover [68] propose a different
functional form of the nREE Sn(ℓ) from ours. We will discuss this point in the following
section 4.3.

Before doing it, we comment on the failure of the formula in integrable models which is
apparent in the numerical calculations. First, our numerical result for integrable models
is consistent with a recent study by Vidmar et. al [119] where it was shown that the
vN-EE of eigenstates of quadratic fermion models is not the same as that of the random
state (thermal state at β = 0, Eq. (1.16)). Second, in terms of the “scrambling” discussed
in section 2.4, the failure of our fitting function (2.11) may indicate that the off-diagonal
term Ioff is not negligible in the case of eigenstates of integrable systems. Infinitely many
conserved quantities would hinder the uncorrelated nature of the coefficients {ci} of the
wave function, for example, in the local basis. Third, it is clear from the distribution of
the {ri}i in Fig. 4.1 that almost all eigenstates are violating the formula (2.11) derived
for thermal pure states. This is in stark contrast to the weak ETH concerning with
local observables, where almost all eigenstates satisfy the ETH (4.1) even in integrable
systems [115].
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Figure 4.1: (a) The second Rényi entanglement entropy of several energy eigenstates of
the non-integrable Hamiltonian, Eq. (4.3) with L = 18, ∆ = 2 and J2 = 4 (dots). The
fits by our formula (2.11) are also shown as lines. The inset is the energy spectrum of
the Hamiltonian and the arrows indicate the eigenstates shown in the figure. (b) Same
as figure (a) for the integrable Hamiltonian (L = 18, ∆ = 2, J2 = 0). (c) Distribution of
the residual of the fit of the i-th eigenstate, ri (Eq. (4.4)). We plot ri of all eigenstates of
the non-integrable Hamiltonian (Eq. (4.3) with L = 18, ∆ = 2 and J2 = 4) in the sector
of zero momentum and total magnetization. The residuals {ri} are sorted in descending
order, and the horizontal axis represents their percentiles. (d) Same as figure (c) for the
integrable Hamiltonian (L = 18, ∆ = 2, J2 = 0).
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Figure 4.2: The mean of {ri} presented in Fig. 4.1c and Fig. 4.1d.

4.3 More analysis to non-integrable models: compar-

ison with the result by Lu and Grover

4.3.1 Review of result by Lu and Grover for eigenstates of non-
integrable models

In Ref. [68], Lu and Grover studied the nREE of energy eigenstates in general non-
integrable systems. In particular2 they focused on the thermodynamics limit where L→
∞ with a non-zero fixed fraction of the subsystem, f := ℓ/L ̸= 0. As a model of
energy eigenstates, they took the following “ergodic bipartite (EB) state” introduced in
Refs. [36, 37],

|E⟩EB :=
∑

EA
i +EB

j ∈(E−δ/2,E+δ/2)

Cij |EA
i ⟩A |EB

j ⟩B , (4.5)

where E is the total energy of eigenstate, |EA(B)
i ⟩A(B) is an energy eigenstate of the

Hamiltonian on subsystem A(B) with energy E
A(B)
i (H = HA +HB +Hint), δ is a width

of the energy shell, and {Cij} are random complex numbers taken uniformly from the

unit sphere
∑

ij |Cij|2 = 1. When the eigenstates |EA(B)
i ⟩A(B) satisfy the ETH within

each subsystem A(B), the EB state is proved to reproduce expectation values of any local
operator taken by the microcanonical ensemble (1.10) of the total system; that is, the EB
state is a thermal pure state [68].

Lu and Grover calculated the random average of nREE of the EB state, Sn,EB :=
1

1−n
ln trA(trB |E⟩EB ⟨E|EB)

n. The result for the second REE is

S2,EB = − ln

(∑
EA
eSA(EA)+2SB(E−EA) + e2SA(EA)+SB(E−EA)(∑

EA
eSA(EA)+SB(E−EA)

)2
)
. (4.6)

2 We treat only a case of one-dimensional systems for simplicity, although their results as well as ours
are not limited to one-dimensional systems.
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Chapter 4. Application of the volume-law scaling formula to energy eigenstates

Here the number of states in the energy shell (i.e. density of states) is denoted as eSA ,
so that SA(EA) is a microcanonical entropy of the subsystem A at the subsystem energy
EA. Furthermore, for general n in the thermodynamic limit L → ∞ with f < 1/2, their
result reduces to

Sn,EB =
1

1− n
ln

( ∑
EA
eSA(EA)+nSB(E−EA)(∑

EA
eSA(EA)+SB(E−EA)

)n
)
. (4.7)

By employing intensive quantities like

u := E/L, uA := EA/ℓ, uB :=
−fuA + u

1− f
, s(EA) := SA(EA)/ℓ,

the above equation can be rewritten as

Sn,EB =
1

1− n
ln

( ∑
uA
eL(fs(uA)+n(1−f)s(uB))(∑

uA
eL(fs(uA)+(1−f)s(uB))

)n
)
. (4.8)

Both the numerator and the denominator can be evaluated by the saddle point method
when L→ ∞. The saddle point equation for the numerator is

∂s(y)

∂y

∣∣∣∣
y=u∗

A

= n
∂s(y)

∂y

∣∣∣∣
y=u∗

B :=(−fu∗
A+u)/(1−f)

, (4.9)

while that for the denominator is

∂s(y)

∂y

∣∣∣∣
y=u∗∗

A

=
∂s(y)

∂y

∣∣∣∣
y=u∗∗

B :=(−fu∗∗
A +u)/(1−f)

, (4.10)

which has a trivial solution u∗∗A = u∗∗B = u for any f . With the solution u∗A of the saddle
point equation (4.9), the final result is

Sn,EB =
ℓ

1− n
(fs(u∗A) + n(1− f)s(u∗B)− ns(u)) . (4.11)

This is one of the main results in Ref. [68]. We note that the above calculations are
quite similar to ours using the cTPQ states, as seen in apparent resemblance of Eq. (4.6)
to Eq. (2.7). In addition, it is worthwhile to note that Eq. (4.11) coincides with our
formula (2.11) in the limit of f → 0 [68].

The most important finding by them relevant to our results is the non-zero curvature
of the REE curve. They showed that the density of the REE, s̃n(f) = lim

ℓ,L→∞
0<f=ℓ/L<1

Sn(ℓ)/L

is a concave (convex) function of f for n ≥ 1 (n ≤ 1),

d2s̃n(f)

df 2
> 0 (n > 1),

d2s̃n(f)

df 2
< 0 (n < 1). (4.12)

This equation indicates that our fitting function (2.11), which gives a linear dependence
s̃2(f) = (ln a)f for f ≤ 1/2, would not be suitable to the eigenstates of non-integrable
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Hamiltonians, contradicting our numerical calculation in the previous section. We think
that the reason for the discrepancy is simply due to the finite size effect of the numerical
calculation. In the thermodynamic limit L→ ∞ with fixed f = ℓ/L, Eq. (4.12) is correct
and our fitting function will not work in a strict sense. However, as already presented
in Fig. 4.1a, the numerical data of the 2REE for the finite size system (L = 18) look
convex rather than concave, suggesting that the finite size effect is too strong to see the
curvature (4.12) in numerically-accessible finite systems (L ∼ 20− 30). Therefore we can
expect that our formula (2.11) is still meaningful in finite size systems as a reasonable
approximation to the 2REE curve. We examine this statement in the next subsection.

Before doing it, we comment on the derivation of Eq. (4.12). In the derivation, the
calculation of the curvature reduces to the following equation:

d2s̃n(f)

df 2
∝ (n− 1) · (u∗A − u∗B).

Generally, the saddle point equation (4.9) has a solution with u∗A ̸= u∗B, which results in
the non-zero curvature of the REE curve. However, the solution with u∗A ̸= u∗B means
that the energy density of the subsystem A is different from that of the subsystem B,
or the temperatures of A and B are different each other. This situation is not physical
if the system is in thermal equilibrium. We think the solution with u∗A ̸= u∗B is merely
a mathematical artifact and does not have any physical meaning since it depends on
the index n of Rényi entanglement entropy and the fraction of the subsystem f = ℓ/L.
However, we admit the possibility that the EB state (or a single energy eigenstate) is not
suitable to describe thermal equilibrium for non-local quantities such as nREE.

4.3.2 Numerical calculation in Gaussian density-of-states model

Lu and Grover [68] also studied the Gaussian density-of-states (G-DOS) model as an
analytically-solvable example of their formula (4.11). Here we investigate the G-DOS
model as a concrete platform for comparing the result by the cTPQ states with that by
the EB states.

The G-DOS model is defined through the microcanonical entropy density,

s(u) = ln 2− 1

2
u2. (4.13)

The inverse temperature is β = ∂s(u)
∂u

= −u. This model can be considered as a good
approximation to general models which satisfies s(u) = s(−u) around infinite temper-
ature [68]. Lu and Grover derived the exact results of the 2REE for this model by
analytically solving the saddle point equation (4.9),

S2,GDOS(ℓ) = − ln

(
1√

1− f 2
e−Lγ(u,f) +

1√
1− (1− f)2

e−Lγ(u,1−f)

)
, (4.14)

γ(u, f) = f ln 2− f

1 + f
u2. (4.15)

In top panels of Fig. 4.3, we plot the above function S2,GDOS(ℓ) for β = −u = 0.3 and
0.6. The concave nature of the curve is observed for β = 0.6 with L ≳ 18, but hardly
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visible for β = 0.3. We perform the fitting to those numerical data by our formula (2.11)
(drawn as line in the figures) and calculate the residual of the fit (Eq. (4.4)). The middle
panels of Fig. 4.3 show the dependence of the residual to L, which is found to be propor-
tional to L2. This is because S2(ℓ)data−S2(ℓ)fit becomes O(ℓ) due to the curvature (4.12),
so the r = L−1

∑L−1
ℓ=1 (S2(ℓ)data − S2(ℓ)fit)

2 becomes L−1 × L×O(L2) = O(L2).
The most important numerical finding is in the bottom panels of Fig. 4.3. We compare

the fitted values of ln a with the density of the 2REE for half of the system, S2(L/2)/(L/2).
As clearly seen in the figures, those two quantities exhibit almost the same extrapolation
for 1/L → 0, but ln a converges faster than S2(L/2)/(L/2). This observation indicates
that ln a obtained by the fitting by our formula is a nice estimation of the 2REE density
for half of the system in the thermodynamic limit, s̃(1/2) = limL→∞ S2(L/2)/(L/2). We
ascribe the reason why ln a can extract the density s̃(1/2) correctly to the following two
points. First, the fitting by our formula which is basically a linear function of f will
yield the average slope of the (nonlinear) REE curve of energy eigenstates as ln a, and the
density of the 2REE s̃(1/2) is a reasonable candidate for such average slope. Second, the
curvature d2s̃(f)/df 2 turns out to be large at small f and 1 − f as seen in the top right
panel of Fig. 4.3, so that the fitting by the (linear) function (2.11) might prefer the region
around f = 1/2 and extract information there. In short, we claim that the fitting by our
formula (2.11) applies approximately to energy eigenstates of non-integrable models and
is still useful in numerical calculation in practice.

Finally, we stress that the failure of the formula (2.11) for the integrable model in
section 4.2 is clearly valid since the residual {ri} grows exponentially in L there, in
contrast to the O(L2) growth of the G-DOS model. In other words, the fitting by our
formula can tell the integrable model from the non-integrable model.

4.3.3 Origin of difference between the cTPQ state and the EB
state

We discuss the reason for the different functional forms of the 2REE between the cTPQ
states (2.11) and the EB states (4.11), (4.12).

From the viewpoint of “scrambling” discussed in section 2.4, the different functional
form of the EB states comes from absence of the extensiveness of the diagonal ensemble
in Eq. (2.17) (the condition (2) in section 2.4). The diagonal ensemble of the EB state
after random average is

ρ̂dia,EB =
1

N

∑
EA

i +EB
j ∈(E−δ/2,E+δ/2)

|EA
i ⟩A |EB

j ⟩B ⟨EA
i |A ⟨EB

j |B , (4.16)

and the 2REE curve of the EB state (4.6) can be reproduced by plugging in the above
expression into Eq. (2.17). We note that the off-diagonal contribution Ioff is again absent
after the random average. Therefore, the nonlinear property of the 2REE curve of the
EB states traces back to a nonlinear extensiveness of the diagonal ensemble ρ̂dia,EB,

trA
(
trB (ρ̂dia,EB)

2) ≈ c ·
(
aℓ/L

)−ℓ
, trB

(
trA (ρ̂dia,EB)

2) ≈ c ·
(
aℓ/L

)−L+ℓ
, (4.17)

where aℓ/L depends on the fraction of the subsystem ℓ/L.
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Figure 4.3: Numerical result of the 2REE of the G-DOS model at β = 0.3 (left panels)
and β = 0.6 (right panels). (top) Dots are the 2REE of the G-DOS model (Eq. (4.14))
and lines are the fit of them by our formula (2.11). The horizontal axis is f = ℓ/L.
(middle) The residual of the fit defined in Eq. (4.4). The dashed line is a guide for eyes
which is proportional to L2. (bottom) Comparison between the fitted slope of the curve,
ln a, and the density of the 2REE for half of the system, S2(L/2)/(L/2). The dashed
lines are linear extrapolations to 1/L→ 0.
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The reason for this surprising nonlinearity has not been understood clearly, but from
the viewpoint of energy variance in the total system ⟨(H − ⟨H⟩)2⟩, it might be rather
a special feature of a single eigenstate. A single eigenstate by definition has no en-
ergy variance ⟨(H − ⟨H⟩)2⟩ = 0, while the usual microcanonical ensemble (1.10) has
energy variance of O(δ2). Indeed, energy variance of the EB state after random average
is ⟨(H − ⟨H⟩)2⟩EB ∝ f(1− f)L, which is zero for f = 1 (where the subsystem A becomes
the total system). Although the EB state and a single eigenstate correspond to the micro-
canonical ensemble in terms of the definition of thermal pure states in section 1.2, energy
variance of such eigenstates is different from that of the microcanonical ensemble with a
non-zero width of the energy shell. On the other hand, if one employs a superposition of
energy eigenstates in the energy shell rather than a single eigenstate like the EB state, the
superposed state is still a thermal pure state and has non-zero of energy variance. The
calculation of the 2REE for that superposed state, however, may not proceed in parallel
to the derivation of Eq. (4.11) because the finite energy variance might affect, for exam-
ple, the expression (4.6) and its thermodynamics limit (4.8). In that case we expect the
2REE curve becomes close to our formula (2.11). We admit that the discussion in this
paragraph is heuristic, and the explicit calculation of the 2REE of the superposed state
would be an interesting direction for future study.

Lastly, we point out that stationary states after quantum quench usually correspond
to the microcanonical ensemble with a non-zero width of the energy shell or possibly
the canonical ensemble (the Gibbs state). This is because energy variance of typical
initial states which are accessible by experiments is large (O(L) for the cTPQ states and
the Gibbs state) and the energy variance is consevered during time-evolution (a related
discussion is found in Ref. [57]). Energy variance of the Néel state which we considered
in Chapter 3 is O(L) in the model (3.3) and actually the energy distribution of the Néel
state is broad [101]. Therefore, we claim that the 2REE of the stationary states after the
quench from the Néel state is described by our formula (2.11).

4.4 Summary of this chapter

In this chapter we study the 2REE of energy eigenstates of integrable and non-integrable
spin chains. Our numerical results by exact diagonalization suggest that the 2REE of the
non-integrable model exhibits the volume law of the form of Eq. (2.11) whereas that of
the integrable model does not. We also compare our numerical result with a recent result
for eigenstates in non-integrable systems [68] which showed that the slope of the volume
law, limℓ→∞ S2(ℓ)/ℓ, is not constant while our formula (2.11) gives a constant value to it.
By numerically examining an analytically solvable toy model, we find that the fitting by
our formula is still meaningful to energy eigenstates in the sense that (1) it can correctly
distinguish integrable models from non-integrable ones and (2) it is a nice approximation
to the actual 2REE curve in non-integrable models and extracts the density of the 2REE
for half of the system well.
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Chapter 5

Summary and Conclusion

In this thesis, we study the volume law of entanglement mainly focusing on the second
Rényi entanglement entropy for thermal pure states.

In Chapter 2, an analytical formula of the volume law scaling is derived by employing
the cTPQ states. The whole curve, including the deviation from a linear volume law
scaling S2 ∝ ℓ, is determined by only two parameters: the 2REE density ln a and the offset
lnK (Eq. (2.11)). We illustrated a practical advantage of the formula by numerically
computing the 2REE of the cTPQ states and fitting it by the formula. The formula
extracts the density of the 2REE more accurately than other naive ways based on the
linear volume law. Furthermore, we discuss the universality of the formula by considering
the scrambling, or dephasing, of wave functions of general pure states. We conjecture
that our formula of the 2REE will apply to various scrambled pure states, which include
thermal pure states.

In Chapter 3, we study the 2REE of stationary pure states after quantum quench
by numerical exact diagonalization. The 2REE of the stationary states in non-integrable
models exhibits the volume law of the form (2.11). Somewhat surprisingly, the formula,
which is derived by the cTPQ states (thermal states), is shown to apply also to interacting-
integrable models where there is no thermalization. Those results are understood by the
“scrambling” of the wave function during time-evolution, along with a numerical result
for quadratic-integrable models where there is no scrambling at all. Finally, we perform
the fitting of the experimental data of the 2REE in ultracold atoms [12], which works
quite well.

In Chapter 4, energy eigenstates in general integrable/non-integrable systems are
investigated. We again employ the exact diagonalization and calculate the 2REE of
eigenstates numerically. Our numerical results suggest that the 2REE of non-integrable
models obeys Eq. (2.11) while that of integrable models does not. Although a recent
study [68] derived the different functional form of the volume law for energy eigenstates
of non-integrable models as ours, our formula (2.11) is still meaningful in extracting in-
formation of the system in the thermodynamic limit from finite size systems and telling
non-integrable models from integrable models.

The result in this thesis will contribute to link quantum mechanics with thermody-
namics, whose connection is a long-standing problem since the early days of the discovery
of quantum mechanics. Our formula (2.11) and its universality in many kinds of thermal
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Chapter 5. Summary and Conclusion

pure states have a lot of implications. First, our formula (2.11) tells that the deviation
from the linear volume law S2(ℓ) ∝ ℓ is at most O(1) at general finite temperatures, which
means that the density of the 2REE limℓ→∞ S2(ℓ)/ℓ of thermal pure states is exactly the
same as that of (if any) thermal ensemble. This is an extension of the previous studies of
the pure state thermodynamics to one of the most important non-local quantities in quan-
tum many-body systems; the REE. Second, the applicability of our formula to stationary
states after quantum quench demonstrated in Chapter 3 offers a way to investigate the
“scrambling” of a given initial state in closed quantum systems. The fitting of the REE
curve S2(t, ℓ) at each time t will give a criterion for the system to “scramble”, a cousin of
the thermalization. The result in Chapter 3 can also be seen as a non-local extension of
the studies on the thermalization in the previous literature. Third, the formula gives an
accurate prediction of the density of the 2REE in the thermodynamics limit from a result
in finite size systems. This is definitely of use in numerical/experimental studies on the
entanglement entropy in the future.

As a future direction, it is interesting to compute the functional form of the vN-EE
S1(ℓ), which is directly related to thermal entropy of a system, by finding an expression
of the nREE for general integers n = 2, 3, · · · . Another interesting direction is to apply
our formula to various topics in quantum many-body systems related to the REE. For
example, chaos in quantum systems that is known to have a deep connection to the out-
of-time-order correlations [65–67] can be examined by the 2REE in some setup [64]. Since
our result is quite fundamental in that it just gives a functional form of the volume law of
the REE for generic thermal (as well as scrambled) pure states, we hope the applications
of it will be diverse.
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Appendix A

Proof on the difference between Sn
and S̃n

In this appendix we prove the following property of the cTPQ states mentioned in sec-
tion 2.2:

ln [trA (ρnA)] = ln [trA (ρnA)] +O(e−L), (A.1)

where · · · is random average over the coefficients {zi} of the cTPQ states and L is the
system size. This property justifies our derivation of the formula (2.11) where we sub-
stitute ln [trA (ρnA)] for ln [trA (ρnA)]. First we provide a (non-rigorous) sketch of the proof
of the above equation and then we give a more rigorous proof which is rather technical.
We note that a proof on the same statement for the EB states (Eq. (4.5)) is provided in
Ref. [68].

A.1 Sketch of the proof

Let us set up definitions and notations. We assume that n is integer satisfying n ≥ 2. We
denote W [z, z∗] := trA (ρnA), where z = {zi} are the random complex numbers whose real
and imaginary parts are taken from the normal distribution N (0, 1/

√
2). We write the

random number average of W [z, z∗] over z as Ω := W [z, z∗]. Then what to prove is

lnW [z, z∗] = lnΩ +O(e−L) ⇐⇒ ln

[
W [z, z∗]

Ω

]
= O(e−L). (A.2)

Now we formally expand the logarithm around W [z,z∗]
Ω

= 1 and obtain

ln

[
W [z, z∗]

Ω

]
= −1

2

(
W [z, z∗]

Ω
− 1

)2

+
1

3

(
W [z, z∗]

Ω
− 1

)3

− 1

4

(
W [z, z∗]

Ω
− 1

)4

+ · · · ,

(A.3)

where we used W [z,z∗]
Ω

= 1. The first term
(

W [z,z∗]
Ω

− 1
)2

can be written as

(
W [z, z∗]

Ω
− 1

)2

=
W 2 − Ω2

Ω2
. (A.4)
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By directly calculating the random average, one can show that W 2 − Ω2 is Ω2 ×O(e−L).

Likewise, the term (W − Ω)m scales as

(W − Ω)m

Ωm
= O(e−⌊m/2⌋L), (A.5)

as explained in section A.3. Therefore, by summing up all the contributions in Eq. (A.3),
we reach

ln

[
W [z, z∗]

Ω

]
=

∞∑
k=1

ake
−kL, (A.6)

where ak is independent of L and scales at most exponentially in k because it comes
from combinatorial numbers appearing in contracting the random numbers z (see also
discussions in section A.3). For sufficiently large L, the right hand side of the above
equation converges, which is order of O(e−L).

A.2 More rigorous Proof

The above argument is not mathematically rigorous because there is always a chance that
W [z,z∗]

Ω
becomes larger than two, which is out of the convergence radius of the logarithm

(note that the random number z is taken from the normal distribution). In this section
we provide a proof with taking care of this point.

We introduce the probability distribution for Φ := W [z, z∗]/Ω as P [Φ], so that we
have

ln

[
W [z, z∗]

Ω

]
=

∫ dn−1
A

1/dn−1
A

dΦP [Φ] lnΦ. (A.7)

Here the range of integration is taken as
[
1/dn−1

A , dn−1
A

]
since 1/dn−1

A ⩽ trA (ρnA) ⩽ 1
holds by construction, where dA is the dimension of the subsystem A, and therefore
1/dn−1

A ⩽ Φ ⩽ dn−1
A follows. We assume the subsystem A is smaller than the subsystem B

(when A is larger than B then the bound is given by dB and the proof goes in parallel).
Next we expand lnΦ = (Φ− 1)− (Φ− 1)2/(2ξ2), where ξ takes a value between 1 and Φ
(the Taylor ’s theorem),

lnΦ =

∫ dn−1
A

1/dn−1
A

dΦP [Φ](Φ− 1)− 1

2

∫ dn−1
A

1/dn−1
A

dΦP [Φ]
(Φ− 1)2

ξ2
, (A.8)

but the first term gives zero because Φ− 1 = 0. In the following, we evaluate the second
term by dividing the range of integration into two parts, [1/dn−1

A , 1/2] and [1/2, dn−1
A ].

Integration range [1/dn−1
A , 1/2]. First we evaluate

J1 :=

∫ 1/2

1/dn−1
A

dΦP [Φ]
(Φ− 1)2

ξ2
≥ 0. (A.9)
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Since ξ ≥ 1 > 1/dn−1
A we have

J1 <

∫ 1/2

1/dn−1
A

dΦP [Φ]d
2(n−1)
A (Φ− 1)2, (A.10)

and also because (Φ− 1)2 < 1 in the range of integration, it follows that

J1 <

∫ 1/2

1/dn−1
A

dΦP [Φ]d
2(n−1)
A (Φ− 1)2 < d

2(n−1)
A

∫ 1/2

1/dn−1
A

dΦP [Φ]. (A.11)

The rightmost expression has an upper bound by the Chebyshev inequality for higher mo-
ments. The inequality on the 2n-th moment states that Prob (|Φ− 1| > 1/2) ≤ 22n(Φ− 1)2n,
so we obtain

J1 < d
2(n−1)
A × 22n(Φ− 1)2n. (A.12)

From Eq. (A.5), it follows that (Φ− 1)2n = O(e−nL). In addition, the assumption that
the subsystem A is smaller than B means dA ≤ O(eL/2). Hence the right hand side of the
above inequality is O(e−L).

Integration range [1/2, dn−1
A ]. What to evaluate is

J2 :=

∫ dn−1
A

1/2

dΦP [Φ]
(Φ− 1)2

ξ2
≥ 0. (A.13)

From ξ > 1/2 we have

J2 < 4

∫ dn−1
A

1/2

dΦP [Φ](Φ− 1)2. (A.14)

Since the integrand is positive, it is possible to enlarge the range of integration,

J2 < 4

∫ dn−1
A

1/2

dΦP [Φ](Φ− 1)2 ≤ 4

∫ dn−1
A

1/dn−1
A

dΦP [Φ](Φ− 1)2 = 4(Φ− 1)2. (A.15)

The right hand side is O(e−L) from Eq. (A.5).
Finally, by summing up the above two results, we reach

lnΦ = O(e−L), (A.16)

which is the desired result.

A.3 Proof of Eq. (A.5)

Here we explain about Eq. (A.5) whereas a proof of it for general m and n is fairly
complicated. The proof proceeds in the same way as in computing S̃n in section 2.2, i.e.,
just contracting a lot of random numbers {zi}.
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Like Eq. (2.5), we write

(trA ρnA − Ω)m

=
m∏

α=1

 1

Z(β)n

∑
i(α)j(α)

a(α)b(α)

z
i
(α)
1
z∗
j
(α)
1

· · · z
i
(α)
n
z∗
j
(α)
n

⟨a(α)1 b
(α)
1 |e−βH/2|i(α)1 ⟩ · · · ⟨j(α)n |e−βH/2|a(α)1 b

(α)
n ⟩ − Ω

 .

The random average is performed by contracting pairs of z and z∗ (recall that ziz∗j = δij
and so on) in the above expression, which results in a lot of different terms corresponding
to many combinatorial ways of the contraction. Since Ω =W [z, z∗] = (trA ρnA), the terms
which survive come from contractions where al least one of zi(α) (or z∗

j(α)) is contracted to

z∗
j(β)

(or zi(β)) with α ̸= β. However, the order of such terms is smaller than the order of

Ωm by at least O(e−⌊m/2⌋L). A naive way to understand this is that the degrees of freedom
in the indices of the sum significantly decrease in such contractions. When computing
Ωm =

∑
a,b (· · ·), the indices (a, b) of the summation run for (ℓn(L− ℓ)n)m combinations.

On the other hand, when computing the terms which contain “bridging” contractions
between α and β (α ̸= β), the indices run for ℓmn−c(L − ℓ)mn−c′ combinations, where c
and c′ are some integers (≥ 1) dependent on the way of the contractions. This means that
the order of the latter terms is smaller than that of the former ones. Actually, among all
terms in (trA ρnA − Ω)m, the largest contribution will come from the ones in

(trA ρnA − Ω)2 × (trA ρnA − Ω)2 × · · · × (trA ρnA − Ω)2 (m is even)

(trA ρnA − Ω)3 × (trA ρnA − Ω)2 × · · · × (trA ρnA − Ω)2 (m is odd),

which is order of Ωm ×O(e−⌊m/2⌋L).

For example, for n = 2 and m = 2, (W [z, z̄]− Ω)m contains

1

Z(β)4
×
(
ZA(β)

2ZA(2β)ZB(4β), ZA(4β)ZB(β)
2ZB(2β),

ZA(β)ZA(3β)ZB(β)ZB(3β), ZA(2β)
2ZB(2β)

2, ZA(4β)ZB(4β)
)
,

whereas Ωm = 1
Z(β)4

(ZA(β)
2ZB(2β) + ZA(2β)ZB(β)

2)
2
. Here we assume e−βH ≈ e−βHA ·

e−βHB as in the same sprit of the approximations (2.9). One can tell that all terms of

(W [z, z̄]− Ω)m are of the order of Ωm ×O(e−L) in this example.

A.4 Numerical comparison of S2 and S̃2

Finally, we present numerical results on the difference between S2 and S̃2 just for illus-
tration. We take the XX chain (2.15) in Chapter 2 as an example and calculate both

S2 = −ln (trA ρ2A) and S̃2 = − ln
(
trA ρ2A

)
of the (unnormalized) cTPQ state |ϕβ⟩ at

β = 2. As Fig. A.1 clearly indicates, the difference between S2 and S̃2 is quite small even
for L = 10 and it decays rapidly with L.
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Figure A.1: (top left, top right, bottom left) Numerical result of the 2REE of the
unnormalized cTPQ states |ϕβ⟩ at β = 2 for L = 10, 12, 14. Blue circles are the data

of S2 = −ln (trA ρ2A) and green squares are those of S̃2 = − ln
(
trA ρ2A

)
. The random

average is taken over 1000 realizations and the error bars are the standard deviations of
S2 = − ln (trA ρ

2
A). (bottom right) The difference between S2 and S̃2 at the center of the

system ℓ = L/2 is plotted with the system size L in semi-log scale.
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Appendix B

Functional form of mutual
information

Kaufman et al. measured the second Rényi mutual information (2RMI) between two
subsystems as well as the second Rényi entanglement entropy of a single subsystem [12].
In this appendix, we derive a functional form of the 2RMI for thermal pure states and
show that the qualitative behavior of that function is the same as the one observed in the
experiment.

The 2RMI between two subsystems A and B is defined as

I2(A,B) := S2(A) + S2(B)− S2(A ∪B), (B.1)

where S2(X) is the second Rényi entanglement entropy of a subsystem X. It is known
that the mutual information can properly measure quantum correlations between two
subsystems even for excited states, while the Rényi entanglement entropy does not [50].
We choose subsystems A and B which consist of ℓa×M sites and ℓb×M sites, respectively.
We will consider both cases where A and B share a boundary (i.e. A ∪ B is connected)
and where they do not (A∪B is disconnected). According to our result in Chapter 2, the
2REEs of these subsystems are

S2(A) = − ln(a−ℓa + a−L+ℓa) + lnK, (B.2)

S2(B) = − ln(a−ℓb + a−L+ℓb) + lnK, (B.3)

S2(A ∪B) = − ln(a−(ℓa+ℓb) + a−L+(ℓa+ℓb)) + (2− q) lnK, (B.4)

where q = 1 when A∪B is connected and q = 0 when A∪B is disconnected1. The 2RMI
between A and B is hence written as

I2 = ln

(
a−(ℓa+ℓb) + a−L+(ℓa+ℓb)

(a−ℓa + a−L+ℓa)(a−ℓb + a−L+ℓb)

)
+ q lnK. (B.5)

For simplicity, let us set ℓa = ℓb = ℓ/2 where ℓ denotes a combined volume of the
subsystems. The above formula reduces to

I2 = ln

(
a−ℓ + a−L+ℓ

(a−ℓ/2 + a−L+ℓ/2)2

)
+ q lnK. (B.6)

1 We note that lnK comes from the boundary of the subsystem(s).
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For (1 ≪) ℓ≪ L/2, I2 can be approximated as

I2 ≈ a−L+ℓ · (aℓ − 2) + q lnK, (B.7)

which means that I2 grows exponentially with ℓ. For L/2 ≪ ℓ (≪ L), one finds

I2 ≈ (2ℓ− L) ln a− 2 ln(1 + aℓ−L) + ln(1 + aL−2ℓ) + q lnK, (B.8)

which indicates a linear growth of I2 with ℓ. Those behaviors resemble the result of the
experiment (Fig. 4C of Ref. [12]), though the experimental data were the mean of 2RMI
for all configurations of the subsystems whose combined volume is ℓ.
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