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A

The response of the quantum fields in 4-dimensional de Sitter spacetime to the electromag-

netic background fields is studied in the cosmological context. We analytically calculate the

expectation value of the bosonic (scalar) and fermionic (Dirac) current induced by the homo-

geneous and constant electric background configuration. The adiabatic subtraction and point-

splitting renormalization are employed, and dependence of the result on the renormalization

condition is discussed. We find that quantum electrodynamics in de Sitter spacetime causes anti-

screening. The physical origin of the counterintuitive anti-screening effect is explained by anal-

ogy with Hawking radiation. The electro-thermodynamical description of the anomalous charge

transportation associated with the anti-screening effect is also given in terms of the informati-

cal action of Maxwell’s demon on the horizon. The implication of the findings contains a new

scenario of the spontaneous generation of the primordial electromagnetic fluctuation without tra-

ditional gauge field enhancing mechanisms which intentionally break the conformal invariance.

We redevelop the gauge-invariant effective field theoretical approach as a feasible approximation

method for quantum electrodynamics in curved spacetime following the explanation of the non-

perturbative renormalization group technique established initially in the flat spacetime. We also

propose a new renormalization condition which supplements the want of experimental knowl-

edge about curved spacetime quantum field theory with additional requirements on the asymp-

totic behavior of the physical quantity. The new renormalization condition yields predictions

compatible with our physical insights and the results of the semiclassical calculation.
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The flow of the river is incessant, and yet its water

is never the same, while along the still pools foam

floats, now vanishing, now forming, never staying

long: So it is with men and women and all their

dwelling places here on earth.

Kamo no Chomei, An Account of My Hut

1
Introduction

1.1 B

T lie inside the domain of

modern cosmology. The former is described as the quantum mechanical generation of the pri-

mordial fluctuations while the latter is the main subject of the cosmological perturbation theory.

Inflation [1] is the most promising paradigm of the earliest stages of the universal evolution giv-

ing a mechanism for the generation of the primordial fluctuations which evolve themselves to

form every structure in the later universe. In this mechanism, quantum field theory (QFT) in

curved spacetime [2, 3, 4] plays an essential role. Quantum field theory in curved spacetime,

especially de Sitter spacetime which approximates the inflationary spacetime, reveals that the

cosmological expansion of the inflationary spacetime can stretch the quantum fluctuations of the

matter fields. At the moment when the wavelength of a fluctuation mode becomes long enough,

the mode is supposed to be classicalized. After the classicalization, we can treat the quantum

mode as a classical perturbation, and the classical dynamics becomes capable of tracing the later

evolution of the primordial fluctuations. Though the precise justification of the classicalization

is still a controversial problem [5, 6], it is widely accepted as an assumption which connects the
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quantum physics with the classical physics avoiding intricate problems about quantum observa-

tion. Thus, quantum field theory in de Sitter spacetime provides us with the solid basis of dis-

cussion and the concrete results. One of the most important predictions of the QFT in de Sitter

spacetime is the almost flat spectrum of the primordial fluctuations, which is observationally

confirmed by CMB experiments, see, e.g., [7, 8].

It should be pointed out that interactions between quantum fields in de Sitter space has not

sufficiently been considered despite the inflationary theory has been successful and has given

us profound knowledge about the universe. The problem of primordial magnetogenesis theory

illustrates this point well. In the context of the primordial magnetogenesis, which seeks the ori-

gin of the observationally inferred large-scale magnetic fields [9, 10, 11, 12, 13] in a physical

process during inflation [14, 15, 16], strong electric fields naturally occur in the primordial uni-

verse, which hinders us proceeding with negligible interactions. The observations of the galactic

and extra-galactic magnetic fields encourage people to study the origin of the magnetic fields,

and inflationary magnetogenesis is considered as one of the promising candidates as a way to

achieve long enough coherent length. For instance, the kinetic coupling model (or f2FF model

[17, 18, 19, 20]), which is a well-studied model of inflationary magnetogenesis, predicts that

very strong electric fields are inevitably produced during inflation, if it is assumed to generate

the magnetic fields which are strong enough to leave observable signatures. Usually, it is consid-

ered by many authors that the overproduced electric fields would spoil the inflationary spacetime

background evolution [21], so it violates the observational limit from the cosmic microwave

background radiation [22, 23, 24, 25]. Nevertheless, only a limited number of works has been

based on models which properly take the quantum electrodynamic interactions into account re-

gardless of its potential to change the dynamics drastically.

Quantum electrodynamics in de Sitter spacetime (dS-QED) is a straight way to treat the inter-

actions between the charged particles and the electromagnetic fields in the inflationary universe.

The concrete form of the dS-QED is obtained from the flat-spacetime version of it by some mod-

ifications required to adapt to the principal of the general spacetime background. As we will see

in the following chapter, the description of dS-QED is somewhat simple. However, it is also ad-

mittedly challenging to address the fully interacting theory.

Fortunately, there are a couple of ways to deal with the analytical complexity of interacting

theories. Most preferably, we could find the exact solutions in some cases, understandably not al-
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ways. The perturbation technique dating back to the Feynman’s work can be implemented in ev-

ery situation. However, we should notice that some of the physical effects which are the interest

of the present dissertation cannot be obtained by the perturbative methods. For instance, particle-

antiparticle production process from a strong electric background field as known as Schwinger

effect [26, 27] in flat spacetime is one of the consequences of the nonperturbative nature of the

quantum field theory. There are no reasons that we should expect the phenomena becomes the

perturbative effect in curved spacetime.

A popular nonperturbative method is the lattice calculation which is also extended to the case

of curved spacetime background [28]. The lattice technique is attracting because it is numer-

ically possible to study the nonperturbative effects. The drawbacks are that we have the sign

problem [29] in case of the time-dependent electric background field, and that we are not sure

whether the zero separation limit of the lattice QED theory recovers the continuous theory since

QED is not an asymptotically-free theory unlike the QCD. Therefore, the lattice calculation as an

approach to nonperturbative QED effect is difficult, and even if we overcome the sign problem,

the result would be doubtful.

None of the methods above can be perfect, but, with careful treatment, the results obtained

could offer physical insights. Before explaining the scope of the present dissertation, we will

review the achievements in the field up to the present in the next section.

1.2 R

The inflationary cosmology was first proposed as a solution to fundamental problems of the Big

bang theory, the horizon and flatness problem [30, 31]. The inflation, or the exponential expan-

sion of the spacetime, at the beginning of the universe aptly explains the emergence of the ex-

tremely flat and homogeneous background. Furthermore, the inflation theory predicts the gen-

eration of the primordial perturbations as we mentioned. The tensorial perturbation (primordial

gravitational wave) was analyzed with amazing foresight in [32]. After that, the generation of

the scalar perturbation was discussed in [33, 34]. In contrast to the scalar and tensor perturba-

tions, the generation of the vector modes is insignificant since vector fields have the conformal

invariance which prevents the vector quantum fluctuations from growing even in the inflationary

spacetime. Thus the theories which explicitly break the conformal symmetry have been consid-

ered after the pioneering work [17]. Some of the conformal symmetry-violating theories are in
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possible descent from developing higher energy theories. For example, the dynamic coupling

in the context of the f2FF model can be a direct consequence of the dilaton field in the theo-

ries with compactified extra dimensions. Therefore, the cosmological magnetic fields can be a

natural probe of the inflationary physics. Note that the electric fields, if generated during the in-

flationary period, would be erased by the screening effect caused by charged particles created in

the later universe. Since the existence of the large-scale magnetic fields has observationally been

implied, the inflationary magnetogenesis scenarios have another advantage that it is possible to

generate coherent magnetic fields on large scales, especially, on Mpc scale. Although the f2FF

model is attractive, it has been recognized that the model suffers from either the backreaction

problem (excess of the electric fields over the magnetic fields) or the strong coupling problem

(the electromagnetic coupling becomes extremely large at early times whenever we avoid the

backreaction problem) [21].

We might be possible to neatly get around both of the problems of the inflationary magneto-

genesis theory. However, it is also a means of reaching a consistent magnetogenesis scenario

to attack the problems squarely dealing with dS-QED. The simplest and analytical set up is the

QED system with constant, homogeneous electric background fields in de Sitter spacetime.

A number of studies on this system have appeared [35, 36, 37, 38, 39, 40, 41, 42]. These re-

search have the wide variety of the quantum physical motivations from false vacuum decay

and bubble nucleation to a thermal interpretation of particle production or cosmological conse-

quences including magnetogenesis. Schwinger effect and its induced current in de Sitter space-

time for a scalar charged particle have been investigated both in the 1 + 1 dimension case [37],

in the 1 + 2 dimension case [43] and the 1 + 3 case [39, 40]. In those works, it is found that

the scalar induced current is strongly enhanced for the small mass field and weak electric field

regime. This phenomenon was called IR hyperconductivity and found in [37] for the first time.

In [39, 40], the authors reported a negative current which flows in a direction against the electric

field in addition to the IR hyperconductivity. In the 1 + 3 dimensional case, it was also found the

terms which are not suppressed by the exponential factor exp(−πm2/eE) or exp(−2πm/H)

appear in the massive field limit. These suppression factors are naturally expected from the

semiclassical approximation. Thus it suggests the breakdown of the semiclassical description

in the massive limit. The physical implication of the negative current and the incorrect semiclas-

sical limit has not been understood yet. Until very recently, the spinor induced current has been
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calculated only in the case of 1 + 1 dimensional de Sitter spacetime [41], in which the authors

have shown that there is neither the IR hyperconductivity nor the negativity of the current. The

fermionic induced current in 1 + 3 dimensional de Sitter spacetime [42] will be the subject of

Chapter 3 of the present thesis.

Historically, the electromagnetic response of quantum fields has been a central problem in a

field of condensed matter physics. The methodology established in the context of condensed mat-

ter physics is to some extent similar to the one in the cosmological context. Both consider the

response of the quantum fields on nontrivial backgrounds (e.g., gravity, interactions inside mat-

ters) to the test electromagnetic fields. Through the research, multifarious phenomena have been

found. A noteworthy recent example is the negative electric capacitance (anti-screening effect)

in a ferroelectric system [44, 45, 46] possibly corresponds to the negative current we mentioned

above.

Another perspective of electromagnetic response is to regard the induced current as a trans-

portation phenomenon. The transportation theories can naturally involve thermodynamical con-

cepts such as heat conveyance. Meanwhile, it is also known gravitational systems with event

horizon bear thermodynamical properties. However, thermal aspects of transport phenomena in

the gravitational background have not gained much attention so far.

1.3 S

This dissertation addresses the following research questions:

• Does dS-QED have curious phenomena?

• If so, what is the physics behind the phenomena?

• What is their cosmological consequence?

In other words, we aim to explore new effects of dS-QED and their consequence. Our focus

is at first on the spinor QED in 1 + 3 dimensional de Sitter spacetime where we will discover

the negativity of the current like the scalar QED case. We will then argue a problem with renor-

malization condition employed to obtain the finite expectation value of the current operator and

propose an alternative (we call it maximal subtraction) to the conventional renormalization con-

dition called minimal subtraction. While we lack the experimental information about the renor-

malization point of QFT in curved spacetime, theoretical evidence will be presented to persuade
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ourselves of the appropriateness of the maximal subtraction scheme. We will also advocate the

use of a variant of renormalization group technology as an approximation method aspiring after

the extension of the analytical result of the relatively simpler system.

With these purposes in mind, the following contents will be discussed in each of the succeed-

ing chapters. In chapter 2, the fundamentals of the quantum field theory in curved spacetime

required for the later part of the dissertation will be introduced. In chapter 3, analysis of the elec-

tric response of the Dirac field will be shown. We will, then, discuss the relation between the

thermodynamical aspect and microphysical QED process near de Sitter horizon. The calculation

of the scalar QED based on another renormalization scheme, point-splitting renormalization, will

be implemented in chapter 4 to examine the validity of the conventional renormalization scheme

(the minimal adiabatic subtraction). Finally, in chapter 5, we will summarize the results obtained

and discuss the cosmological consequence. Appendices A, B, C, and D show analytical details.

Appendix E will be dedicated to developing a more flexible analytical method which applies to

more complex systems. The effective field theoretical approach combined with nonperturbative

renormalization group technique will be employed, and a germinal result will be shown at last.
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Not only does God play dice but... he sometimes

throws them where they cannot be seen.

Stephen Hawking

2
Fundamentals of Quantum Field Theory in

Curved Spacetime

H , theory of general relativity and quan-

tum field theory, is arguably one of the most recondite problems in physics.

2.1 P

The ultimate goal of fundamental science is supposed to be an unattained quantum gravity the-

ory which both matter and gravity are quantized. Nevertheless, it is practical and meaningful to

consider the theory of quantized matter with classical gravity. This type of theories is usually

called quantum field theory in curved spacetime. The classical treatment of the gravity part is

validated unless we consider the Planck scale physics. Sub-Planck scale curvature is typically as-

sumed in the context of the modern cosmology. Accordingly, the quantum field theory in curved

spacetime can be a basis of the inflationary cosmology.

The theory of general relativity tells us that properties of a curved spacetime are encoded in a

metric tensor gµν . This metric gives the infinitesimal proper distance between two points in the
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spacetime ds2 = gµνdx
µdxν . Here, dxµ is the coordinate difference between the two points.

Minkowski space, or the flat spacetime is characterized by ds2 = −dt2 + dx2 and the flat

spacetime metric is written as ηµν = diag(−1, 1, 1, 1). Physics in the flat spacetime can be

elevated to the one in the curved spacetime by a few replacements required by a principle of

general relativity, i.e., general covariance. Only three changes are practically necessitated:

ηµν −→ gµν , d4x −→
√
−gd4x, ∂µ −→ ∇µ. (2.1)

Firstly, Minkowski metric is replaced by a general metric. The second replacement makes the 4-

volume d4x covariant. g = det gµν is the determinant of the metric tensor. Finally, the covariant

derivative which is transformed as a vector under the general coordinate transformation is used

instead of the partial derivative. The action of the covariant derivative differs depending on the

spin of the field on which it operates.

It is possible to consider modifications beyond the minimal replacement shown above while

abiding by the general covariance. An example is a non-minimal coupling ξRϕ2 between a

scalar field ϕ and Ricci scalar R (ξ is the coupling constant). Another example is electromag-

netic fields Fµν coupled to gravity in the form of RFµνFµν , RµνFµλF λν , · · · and so on. At the

same time, we can stay on the field theory minimally coupled to gravity to enjoy the theoretical

beauty and simplicity. In this dissertation, our focus will be limited to this most straightforward

but pithy extension of the flat spacetime physics.

In the rest of this section, the quantization procedures of the scalar field, the Dirac field, and

the treatment of the gauge field theory in curved spacetime are demonstrated in turn with fur-

ther clarifying our convention and notation. This chapter is heavily based on the standard text-

books [3, 4].

2.2 S

Let us begin with the simplest case: a free complex scalar field ϕ. The classical action is given

by

S[ϕ, ϕ†] =

∫ √
−g(x)d4x

(
−gµν(x)ϕ†;µ(x)ϕ;ν(x)−m2ϕ†(x)ϕ(x)

)
, (2.2)

where the semicolon ϕ;µ in super/subscript denotes the covariant derivative∇µ. The partial

derivative ∂µ is, in contrast, abbreviated to the comma notation ϕ,µ. Both of these have an identi-
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cal action on a scalar field, i.e.

ϕ;µ = ϕ,µ, (2.3)

while the covariant derivative on a vector field V µ is given by

V µ
;ν = V µ

,ν + ΓµνλV
λ, Vµ;ν = Vµ,ν − ΓλµνVλ. (2.4)

Here Christoffel symbol Γµνλ consists of the first derivatives of the metric:

Γµνλ =
1

2
gµλ(gλµ,ν + gλν,µ − gµν,λ). (2.5)

The equation of motion for the scalar field ϕ is readily obtained by functional differentiation

of the action with respect to ϕ†. We obtain the following Klein-Gordon (KG) type equation of

motion
1√
−g(x)

δS[ϕ, ϕ†]

δϕ†(x)
=
(
□x −m2

)
ϕ(x) = 0. (2.6)

The definition of □ is given by □ϕ = gµν∇µ∇νϕ = 1√
−g (
√
−ggµνϕ,ν),µ.

Once a normalized time-like vector nµ is fixed, the scalar product (KG inner product) (·, ·) is

defined as follows

(ϕ1, ϕ2) = i

∫
Σ

√
−gΣdΣ nµϕ∗2

←→
∂µϕ1, (2.7)

where gΣ is an induced metric on a space-like hypersurface Σ orthogonal to the time-like vec-

tor nµ and dΣ is the volume element of the hypersurface. This expression is independent of the

choice of Σ. This is a consequence of Gauss’s theorem and the equation of motion (2.6). In a

specific spacetime coordinate (t,x), quantization of the scalar field is done by imposing the

canonical commutation relation between ϕ and its canonical conjugate

πϕ(t,x) =
1√
−g

δS

δϕ̇(t,x)
. (2.8)

The canonical commutation relation is given by

[ϕ̂(t,x), π̂ϕ(t,x
′)] = iδ(x− x′). (2.9)

The Dirac’s delta function is defined as
∫
dΣδ(x− x′) = 1.
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A complete set of the mode solutions ui(x) of (2.6) yields the decomposition of the quantized

field

ϕ̂(x) =
∑
i

(
âiui(x) + b̂†iu

∗
i (x)

)
. (2.10)

The second quantization is performed by imposing the commutation relations between the creation-

annihilation operators:

[âi, â
†
j ] = [âi, â

†
j ] = δij , (others) = 0. (2.11)

Orthogonality of these modes is given, in terms of KG product, by

(ui, uj) = −(u∗i , u∗j ) = δij , (ui, u
∗
j ) = 0. (2.12)

The index i schematically labels the mode functions, and it can be discrete or continuous. The

vacuum state |0⟩ is defined as a state that satisfies the relation âi |0⟩ = b̂i |0⟩ = 0 for all i.

What matters here is how to select a natural complete set of modes. It is an a priori procedure

to decompose the flat spacetime into space and time. Conversely, in a general spacetime, we

cannot determine a unique set of physically relevant modes without assistance of any particular

symmetry. This fact leads to the vagueness of the definition of the vacuum state and vague con-

cept of particles in a general background spacetime. More importantly, even when we can find

a physical vacuum at some point of time ti, This is not generally the same as the one at another

time tf . In brief, the notion of the vacuum state can change in time affected by background grav-

ity. This is the mechanism of gravitational particle production.

To demonstrate this point more concretely, let us consider two different complete sets of

mode functions ui and ũi. The two complete sets respectively determine the associated creation-

annihilation operators expressed as

ϕ̂(x) =
∑
i

(
âiui(x) + b̂†iu

∗
i (x)

)
=
∑
i

(
ˆ̃aiũi(x) +

ˆ̃
b†i ũ

∗
i (x)

)
. (2.13)

The vacuum states |0⟩ and |0̃⟩ accompanied by these operators are also defined. Owing to the

completeness, there must exist a linear relation between the sets ui and ũi, which takes the fol-

lowing forms

ui = αij ũj + βij ũ
∗
j , ũi = α∗

jkuk − βjku∗k. (2.14)
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The relation is called Bogoliubov transformation. The coefficients αij , βij are called Bogoliubov

coefficients, which satisfy the following conditions

αijα
∗
jk − βijβ∗jk = δik, αijβjk − βijαjk = 0. (2.15)

Combining these relations, the following linear relations between the creation-annihilation opera-

tors can be immediately obtained

âi = α∗
ji
ˆ̃aj − β∗ji

ˆ̃
b†j , b̂†i = −βjiˆ̃aj + αji

ˆ̃
b†j . (2.16)

When the expectation value of the number operator of ui mode particles is calculated by the ũi

vacuum |0̃⟩, it yields non-zero expectation values

⟨0̃|N̂i|0̃⟩ ≡ ⟨0̃|â†i âi|0̃⟩ = ⟨0̃|b̂
†
i b̂i|0̃⟩ =

∑
j

βijβ
∗
ji. (2.17)

In other words, |0̃⟩ vacuum contains
∑

j βijβ
∗
ji particles of ui modes.

2.3 D

Treatment of Dirac spinor in curved spacetime is explained in this section. The spin of a field

in the flat spacetime is determined by transformation property under Lorentz transformations.

We need to extend the consideration of the spin to curved spacetime. Needless to say, there is

no global Lorentz symmetry in a general curved spacetime, but local Lorentz transformations

are still possible to be considered. We employ with this intention the tetrad formalism, in which

a set of four normalized, orthogonal vector fields eaµ(x) is defined. The four vectors span the

tangent space at each spacetime point x. Hereafter, the Latin indices (a, b, c · · · = 0, 1, 2, 3) are

associated with the tetrads, and the Greek letters (µ, ν · · · ) are the indices for spacetime.

The metric of curved spacetime is related to the Minkowski metric using a tetrad as an inter-

mediary

gµν(x) = eaµ(x)e
b
ν(x)ηab. (2.18)

The dual of a tetrad eaµ(x) is written as e
µ
a(x) and determined by eaµ(x)e

µ
b (x) = δab. A tetrad

eaµ(x) behaves as a covariant vector in the case of general coordinate transformations. Besides, it

is also possible to consider a local Lorentz transformation Λ b
a (x) which changes the local coordi-

11



nate at each spacetime point yielding

eaµ(x) −→ Λ a
b (x)e

b
µ(x). (2.19)

Contraction of a tetrad and an arbitrary covariant vector field Vµ(x) makes the vector an object

Va(x) = eµa(x)Vµ(x) that behaves as a collection of four scalars under general coordinate trans-

formations. This produces a local Lorentz vector instead.

It is enough to consider an infinitesimal local Lorentz transformation Λ b
a = δ ba + ω b

a for the

purpose of revealing transformation properties of fields with spin. The generator Σab of local

Lorentz transformations obeys the algebra

[Σab,Σcd] = (ηacΣdb − ηbcΣda)− (ηadΣcb − ηbdΣca). (2.20)

For a Dirac spinor ψ, which is a reducible (12 , 0)⊕ (0, 12) representation of local Lorentz trans-

formations, the generator Σab has an explicit expression

Σab = −1

4
[γa, γb], (2.21)

in terms of gamma matrices γa defined on the tangent space. The gamma matrices obey the anti-

commutation relation (Clifford algebra)

{γa, γb} = −2ηab. (2.22)

The covariant derivative∇µ acting on a Dirac field is written in terms of the spinor connec-

tion Γµ as

∇µ(x) ≡ ∂µ + Γµ(x), (2.23)

which ensures the general covariance. We can explicitly write down the spinor connection as

Γµ =
1

2
eνaebν;µΣ

ab. (2.24)

To see the transformation property of the covariant derivative, let us begin with examining the

local Lorentz transformation of the spin connection. The infinitesimal transformation of Γµ by

12



Λ b
a = δ ba + ω b

a up to linear order of ω b
a is given by,

Γµ(x)→ Γ̄µ =
1

2
Λ c
a e

ν
c (Λ

d
b edν);µΣ

ab

= Γµ +
1

2
ωab[Σ

ab,Γµ]−
1

2
ωab,µΣ

ab.

(2.25)

Equation (2.25) is also written as

Γµ → Γ̄µ = D(Λ)ΓµD
−1(Λ)− (∂µD(Λ))D−1(Λ), (2.26)

with D(Λ) = 1 + 1
2ωabΣ

ab being a representation of the infinitesimal transformation Λ. The

latter term absorbs the difference of Lorentz transformations at different points. As a result, we

obtain the required transformation nature of the covariant derivative on a Dirac field e µa ∇µψ as a

Lorentz scalar

e µa (∂µ + Γµ)ψ → Λ b
a e

µ
b

(
∂µ +D(Λ)ΓµD

−1(Λ)− (∂µD(Λ))D−1(Λ)
)
D(Λ)ψ

= Λ b
a e

µ
b D(Λ) ((∂µ + Γµ)ψ) .

(2.27)

The product ψ†ψ does not behave as a Lorentz scalar as is the case with the flat spacetime.

This is because ψ† is transformed as ψ† → ψ†D(Λ)†, and D(Λ)† = γ0D(Λ)−1γ0 Instead we

can make the quantity ψ̄ψ a Lorentz scalar where ψ̄ = ψ†γ0 is Dirac conjugate of the field ψ. 1

Finally, the action of a free Dirac field ψ in curved spacetime is available,

S[ψ, ψ̄] =

∫ √
−g d4x

{
i

2

(
ψ̄eµaγ

a∇µψ − (∇µψ̄)eµaγaψ
)
−mψ̄ψ

}
=

∫ √
−g d4x ψ̄(ieµaγa∇µ −m)ψ.

(2.28)

Dirac equation, namely, the equation of motion for the Dirac field ψ is obtained by differentiat-

ing the action with respect to the conjugate ψ̄

1√
−g(x)

δS[ψ, ψ̄]

δψ̄(x)
= (ieµaγ

a∇µ −m)ψ(x) = 0. (2.29)

1 Note that Dirac conjugate ψ̄ is defined by the gamma matrix on the tangent space, γ0 = δ0aγ
a even in

a curved spacetime. See also Appendix A for more details.
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For the Dirac conjugate field ψ̄, equation of motion is given by

i(∂µψ̄ − ψ̄Γµ)eµaγa +mψ̄ = 0. (2.30)

The property of the hermite conjugate of the spin connection Γ†
µ = −γ0Γµγ0 is useful to find the

equation of ψ̄ from (2.29).

In the quantization procedure, we impose the anti-commutation relation {ψ(t,x), πψ(t,x′)} =

iδ(x− x′) instead of the commutation relation. The canonical conjugate momentum πψ is given

by

πψ(t,x) =
1√
−g

δS

δψ̇(t,x)
. (2.31)

Mode decomposition of a Dirac field takes the following form

ψ̂(x) =
∑
i

(
b̂iui(x) + d̂†ivi(x)

)
, (2.32)

where ui and vi are four spinors which independently satisfy the Dirac equation (2.29). The rela-

tion between the u spinor and the v spinor will be discussed in the next chapter.

2.4 G

The action for a complex scalar field (2.2) and for a Dirac field (2.28) each has a global U(1)

symmetry which is invariant under simultaneous rotations of the phase of fields by α

(ϕ, ϕ†) −→ (e−iαϕ, eiαϕ†), (2.33)

(ψ,ψ†) −→ (e−iαψ, eiαψ†), (2.34)

where α is a constant in spacetime.

In U(1) gauge theory, the global U(1) symmetry is upgraded to the local symmetry by the

replacement of the parameter α by an arbitrary function eα(x) dependent on the spacetime point.

e is a constant parameter. This prescription requires that we take a gauge vector field Aµ(x) into

account to compensate an excess term appears in the transformation of the derivatives,∇µϕ, and

∇µψ.
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As transformation of the gauge field is determined by

Aµ(x)→ Aµ(x) + α,µ(x), (2.35)

we can recover the correct gauge transformation rules for the objects such as

Dµϕ ≡ (∇µ + ieAµ)ϕ→ e−iα(x)Dµϕ, (2.36)

and similarly,

Dµψ → e−iα(x)Dµψ. (2.37)

As a result, the combinations (Dµϕ)
†Dνϕ and ψ̄γµDµψ become gauge invariant quantities. The

operator we have defined Dµ ≡ ∇µ+ieAµ is also called (gauge) covariant derivative. Moreover,

the kinetic term of the gauge field is given by Maxwell Lagrangian with ηµν replaced by the

general curved spacetime metric gµν .

2.5 Q

The descriptions above in all gives manifestly covariant and gauge invariant action in curved

spacetime for spinor QED:

S = Sgauge[Aµ]+Sfermion[ψ, ψ̄, Aµ] =

∫
d4x
√
−g
{
−1

4
gµαgνβFµνFαβ + ψ̄(iγµDµ −m)ψ

}
,

(2.38)

and for scalar QED:

S = Sgauge[Aµ]+Sboson[ϕ, ϕ
†, Aµ] =

∫
d4x
√
−g
(
−1

4
gµαgνβFµνFαβ − gµν(Dµϕ)

†Dνϕ−m2ϕ†ϕ

)
.

(2.39)

The equation of motion for the gauge field, i.e. Maxwell equation is given by

Fµν;ν =
1√
−g

(
√
−gFµν),ν = Jµ, (2.40)

where the source term Jµ is defined by the differentiation of the matter action Sfermion/boson

with respect to the gauge field Aµ(x). The explicit forms for the fermionic/bosonic current are,
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respectively, given by

Jµ(x) =
1√
−g

δSfermion[ψ, ψ̄, Aµ]

δAµ(x)
= −eψ̄γµψ, (2.41)

Jµ(x) =
1√
−g

δSboson[ϕ, ϕ
†, Aµ]

δAµ(x)
= ieϕ̂†(x)

←→
Dµϕ̂(x)

= ie{ϕ̂†(x)Dµϕ̂(x)− (Dµϕ̂(x))†ϕ̂(x)}.
(2.42)

By taking covariant derivative of (2.40), we can explicitly confirm the conservation law of the

current

∇µJµ = Fµν;ν;µ =
1√
−g

(
√
−gFµν),νµ = 0. (2.43)

The current conservation is also proved by direct calculation with the aid of the equations of

motion for the Dirac field ψ 2

(iγµDµ −m)ψ = (iγµ∇µ − eAµγµ −m)ψ = 0, (2.44)

and for the scalar field ϕ

(gµνDµDν −m2)ϕ = (gµν(∇µ + ieAµ)(∇ν + ieAν)−m2)ϕ = 0. (2.45)

The fermionic current (2.41) can be expressed similarly to the bosonic current (2.42),

−eψ̄γµψ =
ie

2m

(
ψ̄
←→
Dµψ − 1

2
∇ν
(
ψ̄[γµ, γν ]ψ

))
≡ ie

2m

(
ψ̄Dµψ − (Dµψ)ψ − 1

2
∇ν
(
ψ̄[γµ, γν ]ψ

))
.

(2.46)

Here, the first term ψ̄
←→
Dµψ, which has the same structure as the bosonic current, corresponds

to the free charge and current. The remaining part, the divergence of an anti-symmetric tensor

Mµν ≡ −(ie/4m)ψ̄[γµ, γν ]ψ, corresponds to the bound charge and current. The tensorMµν is

called polarization-magnetization tensor. We can define two 3-vectors P i (polarization) andM i

2Note that the sign in front of the charge e differs in case of the field equation for the Dirac conjugate
field ψ̄, which is given by iDµψγ

µ +mψ̄ = i(∇µ − ieAµ)ψ̄γ
µ +mψ̄ = 0.
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(magnetization) as

P i =Mi0 = −M0i, M i =
1

2
ϵijkMjk. (2.47)

In terms of these 3-vectors, the bounded charge and current are given by

ρb = −
1√
−g

(
√
−gP i),i, jib =

1√
−g

(
√
−gP i),0,+

1√
−g

(
√
−gϵijkMk),j (2.48)

both of which are the curved spacetime extension of the familiar results ρb = −∇ · P and jb =

Ṗ +∇×M in the flat spacetime.

The canonical quantization procedure of the gauge field involves a subtle complication stems

from the gauge invariance. This is usually cured by the gauge fixing technique used with the

path integral quantization scheme. We will come back to this point in Appendix E.
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Daemon irrepit callidus,

Allicit cor honoribus.

Anonymous Goliyard

3
Fermionic Induced Current in de Sitter

Spacetime

T

. Even before Ratra pioneered the possibility of the inflationary magnetoge-

nesis [17], studies on the quantum electrodynamics in de Sitter spacetime have gained great at-

tention. Strong electromagnetic fields on large scales naturally arise in the context of the magne-

togenesis theory, which requires the utmost care of the interaction between the electromagnetic

fields and charged fields in the presence of gravity. However, it is a challenging task to analyze

the quantum interaction in curved spacetime due to both technical complexities and conceptual

difficulties, which quantum field theory in curved spacetime possesses.

In this chapter, our focus will be on the fermionic current induced by the electric field in 4-

dimensional de Sitter spacetime rather than the particle production rate. We will also discuss the

stability of the background electric field considering the backreaction from the induced current.

Finally, we will try to understand the physics of the complex result exploiting thermodynamical

concepts including Maxwell’s demon.
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3.1 I

At the early stage of the research on this topic, the particle production from the electric field

known as Schwinger effect was the subject of discussion. Those works were done with the Bo-

goliubov calculation, which necessarily depends on the particle concept and involves with the

ambiguity as we have remarked in the previous chapter. Regarding Schwinger effect in de Sitter

spacetime, two nontrivial backgrounds, electric field and gravitational field, are involved. Both

fields are responsible for the particle production from the quantum vacuum. The combination of

the two different production sources makes the problem challenging and interesting.

Moving through the electric field, the produced particles induce the electric current in the

universe and cause the backreaction to the electric field. The induced electric current which char-

acterizes the size of the backreaction is quantitatively evaluated by the vacuum expectation value

of the current operator Ĵµ. Notably, the induced electric current is a well-defined physical quan-

tity since it appears in the semiclassical Maxwell equation as the source term in contrast to the

particle production rate, which has no connection to basic equations.

In the calculation of the induced electric current, one has to deal with the divergence originat-

ing from vacuum contribution. In [39, 41], the adiabatic subtraction method [47, 48] was em-

ployed. It is known that the WKB (adiabatic) expansion for a fermionic field cannot satisfy the

equation of motion while satisfying the normalization condition to all orders of the expanding pa-

rameter ℏ. Nevertheless, the equivalence of the adiabatic and the DeWitt-Schwinger renormaliza-

tion schemes was shown in [49], and there appeared applications of the adiabatic regularization

of fermionic fields [50, 51].

The rest of the present chapter is organized as follows. In Sec. 3.2, we introduce the Dirac

equation in de Sitter spacetime and solve it in a background electric field. In Sec. 3.3, the eval-

uation of the induced current is described. The properties of the renormalized current are inves-

tigated in Sec. 3.4. Finally, an electro-thermodynamical point of view is introduced to gain the

understanding of the result in Section 3.5. Some of the technical details can be found in appen-

dices B, C, and D.
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3.2 D

In a spatially flat Friedman-Lemaître-Robertson-Walker spacetime

ds2 = a(η)2(−dη2 + dx2), (3.1)

the action (2.38) reduces to

S =

∫
d4x

{
−1

4
ηµαηνβFµνFαβ + ξ̄ (iγa∂a − δµaeAµγa −ma) ξ

}
, (3.2)

where ξ(η,x) is the canonical Dirac field ξ = a3/2ψ, and we have used the following equations

held in the FLRW universe:

e µa =
1

a
δ µa , γae µa Γµ =

3a′

2a2
γ0, γae µa (eAµ) =

1

a
δµaeAµγ

a, (3.3)

where the prime denotes the derivative with respect to the conformal time η. It is clearly shown

that the conformal symmetry is recovered for massless fermion case,m = 0.

The equation of motion for ξ field (the Dirac equation) is given by

(iγa∂a − eAaγa −ma)ξ(η,x) = 0. (3.4)

Substituting ξ = (iγa∂a − δµaeAµγ
a + ma)ζ into Eq. (3.4), we obtain the quadratic Dirac

equation,

{
(∂a + ieAa)

2 −m2a2 + i
(
ma′γ0 − e

2
γaγbFµνδ

µ
a δ

ν
b

)}
ζ(η,x) = 0. (3.5)

Hereafter, we consider a homogeneous electric background field Aµ(x) = (0, 0, 0, Az(η)) in

de Sitter spacetime, which is determined by the constant Hubble parameter a′/a2 = H = const..

Explicit time dependence of the background field Az is given by

Az = −
E

H
(a− 1) = −E

H

(
1

1−Hη
− 1

)
, (3.6)

where E is a constant represents electric field strength. The scale factor is taken as a = 1/(1 −

Hη) and the offset −1 is introduced in (a − 1) so that we can properly take Minkowski limit
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(H → 0) resulting in a gauge field which represents the homogeneous constant electric field in

Minkowski spacetime,

Az
H→0−−−→ −Et. (3.7)

Note here that η = (1 − e−Ht)/H
H→0−−−→ t and η ∈ (−∞, 1/H) in our notation. The physi-

cal strength of electric field in de Sitter spacetime is given by −a−2∂ηAz = E. Therefore the

background gauge (3.6) has a constant electromagnetic energy density.

Let us further manipulate Eq. (3.5). It can be shown that

i
(
ma′γ0 − e

2
γaγbFab

)
= iH2a2

(
m

H
γ0 +

eE

H2
γ0γ3

)
, (3.8)

and (
m

H
γ0 +

eE

H2
γ0γ3

)2

=
(
Mγ0 + Lγ0γ3)2 = (M2 + L2

)
1, (3.9)

hold. We have introduced two dimensionless parameters,

M ≡ m

H
, L ≡ eE

H2
. (3.10)

M is the mass and L is the electric field strength normalized by the Hubble parameterH .

A matrix B ≡ r−1(Mγ0 + Lγ0γ3) with r =
√
M2 + L2 plays an important role in this

problem and behaves nicely. First, B2 = 1 as is described in (3.9). In addition, B is traceless

trB = 0 due to trace properties of the gamma matrices, tr(γa) = 0 and tr(γaγb) = 4ηab. Uni-

tarity and hermiticity B = B† = B−1 also follow from the Hermitian/anti-Hermitian property of

the gamma matrices (γµ)† = γ0γµγ0 immediately.

From these properties, we can conclude that there exist four time-independent eigenvectors

ws (s = 1, 2, 3, 4) of the matrix B,

Bws = λsws, (3.11)

which have eigenvalues λs = +1 (for s = 1, 2) and λs = −1 (for s = 3, 4), respectively. The

normalization and the completeness conditions are respectively given by

w†
sws′ = δss′ ,

4∑
s=1

wsw
†
s = 1. (3.12)
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Now we introduce charge conjugation operator C whose operation is defined by

C tγµC−1 = −γµ, (3.13)

where tγµ denotes the transpose of the gamma matrices. It is possible to choose C to be an opera-

tor which satisfies C = −C−1 = C∗ = −C†. We then find CB∗C−1 = C tBC−1 = −B. Thus,

Cw∗
s is an eigen vector of the matrix B corresponding to the eigenvalue −λs, that is,

B(Cw∗
s) = −λs(Cw∗

s). (3.14)

For later convenience, we specify the relations among ωs as follows

w1 = −Cw∗
3, w3 = Cw∗

1, w2 = −Cw∗
4, w4 = Cw∗

2. (3.15)

With the aid of the spatial homogeneity of the system we consider, we introduce the following

decomposition of the solution for the Dirac equation:

ζ(η,x) = e−iHLzeik·xζk, s(η)ws, (3.16)

where we multiplied a gauge fixing phase factor e−iHLz to simplify equations below. The Schrödinger

type equation for the mode function ζk, s(η) becomes

(
∂2η + ω2

k(η)− iλsσ(η)
)
ζk, s(η) = 0, (3.17)

where

ω2
k(η) ≡ k2 − 2aHLkz + a2H2r2, σ ≡ a2H2r, k ≡

√
k2x + k2y + k2z . (3.18)

Two independent solutions for Eq. (3.17) are obtained in terms of the Whittaker functionsMκ,µ±(z)

andWκ,µ±(z). The parameters are given by

κ = −iLkz
k
, µ+ =

1

2
+ ir, z = −2i k

aH
, (3.19)
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for s = 1, 2 and

κ = −iLkz
k
, µ− =

1

2
− ir, z = −2i k

aH
, (3.20)

for s = 3, 4 respectively. To determine the positive frequency mode in the in-region (η → −∞),

we can make use of an asymptotic formula of the Whittaker function [52]Wκ,µ±(z) ∼ e−z/2zκ,

and the positive frequency mode is given by

ζ+k, s=1,2 =
eπiκ/2√

2k

√
r

r − iκ
Wκ,µ+(z)

η→−∞, a→0−−−−−−−−→
z→−i∞

1√
2k

√
r

r − iκ
e−ikη(−2kη)κ, (3.21)

where the normalization is chosen to satisfy the canonical quantization condition as seen below.

We can also find the negative frequency mode as

ζ−k, s=1,2 =
eπiκ/2√

2k

√
r

r + iκ
W−κ,µ+(−z)

η→−∞, a→0−−−−−−−−→
z→−i∞

1√
2k

√
r

r + iκ
e+ikη(−2kη)−κ. (3.22)

The mode functions for s = 3, 4 is given by complex conjugation as follows

(ζ±k, s=1,2)
∗ = ζ∓k, s=3,4. (3.23)

This choice of the mode functions corresponds to the so-called Bunch-Davies vacuum.

From Eqs. (3.15) and (3.23), we can obtain four independent solutions for the Dirac equation

Eq. (3.4) and construct the mode expansion for the quantized Dirac field ξ̂ as

ξ̂(η,x) = e−iHLz
∫

d3k

(2π)3

∑
s=1, 2

[
b̂k, suk, s(η)e

ik·x + d̂†k, svk, s(η)e
−ik·x

]
, (3.24)

where only s = 1, 2 components are exploited. From the first order Dirac equation (3.4), u-

spinor and v-spinor satisfy the equations of motion below

D̂−uk, s =
(
i∂η − kiγ0γi − aHrγ0Bγ0

)
uk, s = 0, (3.25)

D̂+vk, s =
(
i∂η + kiγ

0γi − aHrγ0Bγ0
)
vk, s = 0. (3.26)

Importantly, v-spinor can be constructed from u-spinor. If uk, s satisfies its equation of motion,

then a spinor Cu∗−k, s automatically satisfies the equation of motion for vk, s because of an equa-

tion CD̂∗
±C† = −D̂±. Hence we can identify vk, s with Cu∗−k, s.
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Finally, u and v spinors are given in terms of the mode function and the eigen vector by

uk, s = γ0D̂ζ+k, sws, vk, s = Cu∗−k, s, D̂ =
(
i∂η − kiγ0γi + aHrB

)
. (3.27)

The anti-commutation relations

{b̂k, s, b̂†k′, s′} = {d̂k, s, d̂
†
k′, s′} = (2π)3δ(3)(k − k′)δs, s′ , others = 0, (3.28)

are imposed as usual. The conjugate momentum of the canonical Dirac field ξ̂ is given by π̂(η,x) =
δS

δξ̂′
= iξ̂†. Therefore we obtain the conventional canonical quantization condition

{ξ̂(η, x), π̂(η, y)} = iδ(3)(x− y). (3.29)

For the detailed explanation on the consistency of the normalization conditions, namely, for

the mode functions (3.21) and (3.22), for the creation-annihilation operators (3.28), and for the

canonical anti-commutation relation (3.29), see Appendix B.

3.3 E

3.3.1 V

The in-vacuum state |0⟩ is defined as a state that satisfies the condition bk, s |0⟩ = dk, s |0⟩ = 0

for all k and s = 1, 2. Then, using the mode decomposition (3.24) and the anti-commutation

relation (3.28), the expectation value of the spinor current operator Ĵ3 (along z-axis) is expressed

as 1

⟨Ĵ3⟩ = −e
⟨
0
∣∣∣ ˆ̄ξγ3ξ̂ ∣∣∣ 0⟩ = −e

∫
d3k

(2π)3

∑
s=1, 2

v†k, sγ
0γ3vk, s. (3.30)

1 Other components of the vacuum expectation value of the current operator Ĵa = −e ˆ̄ξγaξ̂ vanish dew
to the cylindrical symmetry of the spacetime and electric field configuration.
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The spinors vk, s are defined in Eq. (3.27). Since the matrix B can be regarded as 1 on ws or −1

on Cw∗
s for s = 1, 2, the vacuum expectation value of the induced current can be computed as

− e
⟨
0
∣∣∣ ˆ̄ξγ3ξ̂ ∣∣∣ 0⟩

=
−2eL
r

∫
d3k

(2π)3

{
ζ+

′
ζ+

∗′
+ i (γkz − Fk) (ζ+ζ+

∗′ − ζ+′
ζ+

∗
) +

(
2F 2

k − ω2
k − 2γFkkz

)
|ζ+|2

}
=
−2eL
r

∫
d3k

(2π)3

{
1 + iγkz(ζ

+ζ+
∗′ − ζ+′

ζ+
∗
) + 2

(
F 2
k − ω2

k − γFkkz
)
|ζ+|2

}
,

(3.31)

where the parameters are given by

γ ≡ r

L
− L

r
, Fk ≡

ωkω
′
k

σ
= aHr − Lkz

r
, (3.32)

and we have used the normalization condition (B.6) (see Appendix B) in the last line. This in-

tegral diverges in the ultraviolet (UV) region (k → ∞), so some renormalization procedure is

required. Here, we will apply the adiabatic subtraction method.

3.3.2 A

The adiabatic subtraction is a renormalization scheme with which one subtracts the lower-order

parts in the adiabatic (WKB) expansion of a quantity from its unrenormalized calculation result.

The leading term in the adiabatic expansion of the expectation value of the current −e ⟨0| ˆ̄ξγ3ξ̂|0⟩
∣∣(A)

imitates the divergence(s) in the UV (large k) region in the momentum space. Here, the adia-

batic part −e ⟨0| ˆ̄ξγ3ξ̂|0⟩
∣∣(A) is obtained by replacing the mode function ζ+ by the adiabatically

(WKB) expanded counterpart ζ+
∣∣(A). Subtracting this quantity from the formally divergent ex-

pectation value −e ⟨0| ˆ̄ξγ3ξ̂|0⟩, one obtains the renormalized expectation value of the current

operator. We perform these calculations in this subsection.

In this subsection, Planck constant ℏ is temporally visualized to clearly count the adiabatic

order. The equation of motion for ζ = ζ+k, s=1,2 is, again with ℏ, given by

(
ℏ2∂2η + ω2

k(η)− iℏσ(η)
)
ζ(η) = 0. (3.33)

Because the −iσ term in the equation above comes from a first-order derivative term, we have

to assign ℏ1 in front of it. This odd order term does not appear in the scalar case. Thus, the usual

26



WKB ansatz, which is valid for the scalar mode function,

ζ
!
=

1√
Ωk(η)

e−
i
ℏ
∫
dη′Ωk(η

′), (3.34)

is inappropriate (Ωk is a function supposed to be determined as a power series of ℏ). Instead, the

WKB ansatz for the spinor positive mode function should take the following form [49, 50, 51,

53] (see Appendix C for the derivation),

ζ =

√
σ

2ω2(σ + ω′)
(1 + ℏF (1) + ℏ2F (2) + · · · ) e−i/ℏ

∫
dη′(ω+ℏω(1)+ℏ2ω(2)+··· ), (3.35)

where F (i)s and ω(i)s are (real) unknown functions to be determined by the equation of motion

(3.33) and the normalization condition 2

ℏ2ζ ′(ζ∗)′ − iℏFk(ζ(ζ∗)′ − ζ ′ζ∗) + ω2
k|ζ|2 = 1, (3.36)

where we have recovered ℏ.

Note that this normalization condition can be satisfied only perturbatively (in an order-by-

order manner). More detailed explanation on this ansatz is shown in Appendix C. It is easy to

find that all the odd order terms vanish, that is, F (1) = F (3) = · · · = 0 and ω(1) = ω(3) = · · · =

0. We can express F (i) and ω(i) in terms of ω and σ. For example, at the second order they read

ω(2) = −σ + ω′

8σ

σ2 + 2ωσ′ − 5ω′σ

ω3
, F (2) = −σ + ω′

16σ

5ω′σ − 2ωσ′

ω4
. (3.37)

With the adiabatic subtraction method, the renormalized current is given by

⟨
0
∣∣∣ Ĵ3

∣∣∣ 0⟩
ren

=
⟨
0
∣∣∣ Ĵ3

∣∣∣ 0⟩− ⟨0 ∣∣∣ Ĵ3
∣∣∣ 0⟩ ∣∣∣∣(2), (3.38)

where |(2) means that the second term in the right hand side includes the contribution up to adia-

batic order two, i.e order of O(ℏ2).

The calculation of the momentum integral takes the following procedure. First, we introduce

a momentum cutoff Λ to control the divergences. Second, the momentum integrals of the exact

2 This condition is valid only for s = 1, 2 mode functions. For s = 3, 4 case, the normalization condi-
tion becomes ℏ2ζ ′(ζ∗)′ + iℏFk(ζ(ζ

∗)′ − ζ ′ζ∗) + ω2
k|ζ|2 = 1. Of course, this is obtained by a replacement

ζ ↔ ζ∗ in (3.36).

27



part (the first term in (3.38)) and the adiabatic part (the second term) are computed separately.

Third, the subtraction is implemented while the momentum cutoff Λ is kept finite. Finally, the

limit Λ→∞ is taken, and we obtain a finite result.

The detailed calculation of the integrals can be found in Appendix D, and here we show the

final results. The first term of (3.38) is given by

⟨Ĵ3⟩ = −2eL(aH)3 lim
Λ→∞

[
1

6π2

(
Λ

aH

)2

− 1

6π2
ln

(
2Λ

aH

)
+

7

72π2
− L2

15π2
− M2

12π2
− 3rM2

8π2L2
− 3M2r

16π2L3
log

(
r − L
r + L

)
− rcsch(2πr)

48π5L2

{
(45− π2(11− 12L2 + 8r2)) cosh(2πL)− (45− π2(11− 72L2 + 8r2))

sinh(2πL)

2πL

}
+

3rM2csch(2πr)

32π2L3

∑
s=±

se2πrs(Ei(2πs(r + L))− Ei(2πs(r − L)))

+
csch(2πr)

16π2
ℜ[
∫ 1

−1
dx(1 + r2 − (1 + 3L2 + 3r2)x2 + 5L2x4)

∑
s=±

s(e2πLx − e−2πrs)ψ(i(Lx+ rs))]

]
,

(3.39)

where Ei(z) is the exponential integral function defined as Ei(z) = −P
∫∞
−z dte

−t/t (P denotes

Cauchy’s principal value) and ψ(z) = (ln Γ(z))′ is the digamma function. We can see there are

the quadratic and the logarithmic divergences in momentum cutoff Λ.

The second term of (3.38) (the subtraction term) is directly calculated and the result is given

by

⟨
0
∣∣∣ Ĵ3

∣∣∣ 0⟩ ∣∣∣∣(2)= − lim
Λ→∞

2eL

{(
aHΛ2

6π2
− (aH)3(2L2 + 5M2)

60π2

)
ℏ0 +

(aH)3

18π2

(
4− 3 ln

(
2Λ

aHM

))
ℏ2
}
,

(3.40)

where ℏ is a constant which is taken to be a small expansion parameter in the adiabatic expansion

and set to be unity after the truncation. It should be noted that the divergent parts of (3.39) and

(3.40) are the same. Therefore, after the subtraction, we obtain the renormalized expectation
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value of the induced current as follows

⟨
Ĵ3
⟩
ren

=
eL(aH)3

4π2

[
1 +

4L2

15
+

4

3
logM +

3M2

L2

(
1 +

r

2L
log

(
r − L
r + L

))
+
rcsch(2πr)

6π3L2

{
(45− π2(11− 12L2 + 8r2)) cosh(2πL)− (45− π2(11− 72L2 + 8r2))

sinh(2πL)

2πL

}
− 3rM2csch(2πr)

4L3

∑
s=±

se2πrs(Ei(2πs(r + L))− Ei(2πs(r − L)))

− csch(2πr)

2

∫ 1

−1
dx(1 + r2 − (1 + 3L2 + 3r2)x2 + 5L2x4)

∑
s=±

s(e2πLx − e−2πrs)ℜψ(i(Lx+ rs))

]
.

(3.41)

This expression is a bit lengthy and it requires farther effort to extract relevant physical implica-

tions from this result. We will examine it in detail in the next section.

3.4 R

3.4.1 G

We will investigate the renormalized current (3.41) in this section. To this end, we introduce a

dimensionless quantity J which is a function of the two dimensionless parameters L = eE/H2

(electric field strength) andM = m/H (spinor mass),

J (L,M) ≡
| ⟨Ĵ3⟩ren |
ea3H3

. (3.42)

Behavior of the spinor current J (L,M) is shown in Fig. 3.1.

The renormalized current J (L,M) has some remarkable properties. The most intelligible one

is an antisymmetry J (L,M) = −J (−L,M) and its consequence J (0,M) = 0. This means

that the renormalized current always vanishes at L = 0 as expected. Besides, J (L,M) also

becomes zero at a certain positive L depending onM , namely L∗(M) > 0, for any value of the

mass parameterM . The spinor renormalized current is positive for L > L∗ (represented by solid

lines in Fig. 3.1), and is negative for 0 < L < L∗ (by dashed lines). The negative spinor current

is always (for any value ofM ) observed in the weak electric field regime unlike the bosonic case

[39] which shows the negative current only in the small mass regimeMscalar ≲ 0.003.

Another striking difference between the bosonic and the fermionic current is the absence of

the IR hyperconductivity which is the rapid growth of |J | for smaller L. The hyperconductivity
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Figure 3.1: The renormalized spinor current (3.41).
The current induced by the homogeneous, constant energy density electric field in 1 + 3 de Sitter
spacetime given by (3.6) is plotted. The horizontal axis denotes the strength of the electric field
L ≡ eE/H2. The solid (dashed) line indicates that the sign of the renormalized current is positive
(negative). The mass parameter of the charged particles is M ≡ m/H = 10−3 (blue), 10−2 (orange),
1.5 (green) and 10 (red). The sign flips around L ∼ 10 in the spinor case with any mass.

happens only in IR regime (L < 1 andM < 1) of the bosonic current. It was first found and

discussed for the bosonic current in the 1 + 1 dimensional de Sitter spacetime [37] and that in

the 1 + 3 dimensional de Sitter spacetime [39]. The absence of the hyperconductivity of the

fermionic current in the 1 + 1 dimensional de Sitter spacetime is also reported in [41]. We will

come back to this point again in the next chapter.

3.4.2 S

In the strong electric field limit, L ≫ 1, M , the second line of (3.41) dominates the expectation

value and we obtain (for L > 0)

J ≃ L2

6π3
e−

πM2

L = H−4 (eE)2

6π3
e−

πm2

eE , (3.43)
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where the famous suppression factor of Schwinger effect in Minkowski spacetime exp(−πm2/eE)

is reproduced. This factor comes from terms like

lim
L→∞

2(
√
L2 +M2 − L) = M2

L
. (3.44)

We see the quadratic behavior (J ∼ L2) of the renormalized current. This strong electric field

limit corresponds to the Minkowski (weak curvature) limitH → 0. Thus, ⟨Ĵ⟩ren has H−1 di-

vergence in this limit. This can be regarded as a consequence of the lack of cosmic dilution in

the flat spacetime limit. The particles produced at the initial time t = −∞ can contribute to the

electric current forever, which results in the diverging result. If we regulate theH−1 divergence

by the cosmic time interval (t− t0) with t0 being the turn-on time of the electric field, we obtain

⟨Ĵ⟩ren ∼ e3E2(t − t0) exp(−πm2/eE). This replacement makes sense for two reasons. First,

this linear growth in time is consistent with the study on Schwinger effect in Minkowski space-

time shown in a previous work [54]. Second, it is natural to recover the flat spacetime physics

in the strong field regime because microscale effects dominate global effects and the spacetime

curvature becomes negligible.

In contrast to the intuitive behavior in the strong field limit, the strange negativity of the renor-

malized current appears in the weak electric field regime L ≪ 1. In this limit, (3.41) becomes

J ≃ L

3π2

[
logM −ℜψ(iM)− πM(4M2 + 1)

3 sinh(2πM)

]
. (3.45)

We can define a dimensionless conductivity in the weak electric field limit as

σ(M) ≡ J (L,M)

L

∣∣∣∣
L→0

=
1

3π2

[
logM −ℜψ(iM)− πM(4M2 + 1)

3 sinh(2πM)

]
, (3.46)

which is negative for allM . The massless limit of the conductivity is given by

σ(M)
M→0−−−→ 1

3π2
logM +

6γE − 1

18π2
+O(M2), (3.47)

where γE is Euler constant. There is no power-law IR enhancement but the logarithmic diver-

gence in the spinor conductivity. Meanwhile, the massive limit is given by

σ(M)
M→∞−−−−→

(
− 1

36π2M2
+O(M−4)

)
− 2

9π
e−2πMM(4M2 + 1). (3.48)
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As naively expected, σ(M) is suppressed in the massive limit. Schwinger mechanism cannot

produce massive fermions effectively due to the suppression factor exp(−πm2/eE). Also the

gravitational particle production is suppressed by the factor (exp(2πM) + 1)−1 ∼ exp(−2πM).

Thus we might be able to identify the latter term in (3.48) as the effect of the gravitational parti-

cle production. Moreover, the terms in the parenthesis in (3.48) do not have exponential suppres-

sion factors and cannot merely be attributed to either of Schwinger or the gravitational particle

production. Their origins are still unidentified. Here, we note that the higher order adiabatic sub-

traction can remove some of these terms with the power-law dependence onM . For instance, the

first term withM−2 in (3.48) can be removed by the adiabatic subtraction of order ℏ4, while it

adds a new O(L3/M2) term to the induced current and changes the IR behavior of the current.

Nevertheless, the higher order (O(M−4)) terms which are not suppressed by the exponential

factor in (3.48) still remain even in this case.

3.4.3 N

One may feel it questionable whether we should take the strange negativity of the current se-

riously. The range of wavelength which is short enough to verify the adiabatic subtraction de-

pends on the particle mass, and only the modes with (k/aH)2 +M2 ≫ 1 can imitate the correct

behavior of the exact mode function. Thus, the adiabatic approximation is not necessarily correct

for the long wavelength modes whenm ≪ H . A possible criticism is that the adiabatic expan-

sion is inappropriate for fields with tiny masses and the adiabatic subtraction scheme becomes

invalid for the modes withm/H ≪ k/(aH) ≪ 1 though they are in the UV regime. However,

it has been confirmed that the point-splitting renormalization scheme is in perfect accord with

the adiabatic subtraction for the scalar current. This will be the subject of the next chapter. This

implies that the strange behaviors we have found in the previous section have nothing to do with

the accuracy of the WKB expansion in infrared regime. Therefore, it is worthwhile to investigate

physical consequences of the result (3.41) in this section.

The semiclassical equation of motion for the gauge field (Maxwell equation) is given by

Fµν,ν = ⟨Ĵµ⟩ren in our convention. For the electric background field Ez = −A ′
z , the equation of

motion reduces to

E ′
z = −⟨Ĵ3⟩ren , (3.49)

which can be regarded as an equation for a feedback system. It is easy to figure out the stability
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of the electric field-current system by looking at the signature of the renormalized current. The

positive current reduces the background electric field while the negative current enhances it. The

zeros of the current correspond to either a stable point or a saddle (unstable) point.

Surprisingly enough, the trivial zero L = 0 (i.e., zero electric fields) is not a stable point but

a saddle point 3. Another zero L = L∗ > 0 is always a stable point. We plot L∗ as a function of

spinor massM = m/H in Fig. 3.2. We have numerically confirmed that L∗(M) ∼ M for the

massive particles,M ≫ 1, and L∗(M) ∼ − logM forM ≪ 1. This figure can be seen as a

phase diagram of the system. The negative current occurs in the shaded region below the red line.

A similar diagram for the scalar current is discussed also in the next chapter. Note that the nega-

tivity of the induced current is not past redemption even though it indicates the instability of the

system. This is not a bottomless instability since the current becomes positive for a sufficiently

strong electric field due to the high Schwinger particle production rate.

0.001 0.010 0.100 1 10
M

5

10

50

L

Figure 3.2: Zeros of the renormalized current J (L,M) in L-M plain. The white (unshaded) region
corresponds to the positive current J > 0 (negative feedback) and the shaded region corresponds
to the negative current J < 0 (positive feedback). The line shows positions of the stable points
L = L∗(M) of the electric field-current system. The trivial zero L = 0 is not shown as this is a
logarithmic plot. The values of L∗ are numerically evaluated.

3 This situation is opposite of the case of the scalar current.

33



The remaining problem – what is the physical mechanism of the negative current? – will be

addressed in the next section.

3.5 M ’

3.5.1 M

As we have discussed in the previous section, de Sitter QED can cause electrical instability. Put

another way, the anti-screening effect occurs in QED theory, which is well known as a screen-

ing theory in flat space. It is just enough to consider a capacitor exploiting high school-level

physics in order to demonstrate the screening in electromagnetism. When a voltage (or equiva-

lently, an electric field) is applied, a simple capacitor consists of a dielectric sandwiched by two

metallic plates can accumulate charges in it by producing an amount of polarization inside the

dielectric. Usually, the polarization is in the same direction as the electric field and produces an

oppositely directed electric field. The strength of the applied electric field between the plates

is consequently screened. Even if the electric field is strong enough to cause electrical break-

down, electric current will be generated and screens the electric field. In any event, there seems

no room for the anti-screening effect, which necessitate us to seek for a physical interpretation of

this effect.

Fortunately, we have very recently reached an understanding that the anti-screening effect can

be regarded as a consequence of a counter-intuitive thermodynamical phenomenon: Maxwell’s

demon. There are a couple of circumstantial evidence that he is responsible for it. The fact that

the quantity j ·E is the Joule heating and is actually negative indicates the current should convey

thermal heat to the horizon of de Sitter spacetime in the first place. Second, it is well known that

spacetime horizons can have entropy Shorizon identical to its surface area Ahorizon. Third, the

weak limit result (3.45) can be rewritten as

⟨
ĵ3
⟩
∼ −ea3

∣∣∣∣σ (mH )
∣∣∣∣×( eEH2

)
×H3 ∝ −Ahorizon × V −1

horizon, (3.50)

where Vhorizon ∝ H−3 is the 3-volume of de Sitter horizon patch and should naturally appear in

expressions for the electric current density ⟨ĵµ⟩. Then, the total electric current is proportional

to the surface area of the horizon Ahorizon
4. This suggests that the electromotive force E is in

4 If Compton wavelength of the Dirac fieldm−1 is properly scaled with the horizon radiusH−1.
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connection with other thermal quantities such as entropy. The electromotive force E which is

a source of kinetic motion of charged particles generates the electric current in the following

manner

j = σcE −∇E , (3.51)

where σc denotes the local conductivity. The first term σcE is the usual linear response to the

electric field E while the second term describes effects from other types of electromotive force.

As long as we respect the second law of thermodynamics, the local conductivity becomes posi-

tive, σc > 0, and semiclassically proportional to the local charge number density.

Let us neglect the local conductivity σc keeping in mind that we are considering the weak

electric field regime where the particle production is insignificant. Now we have

j = −∇E ∝ −AhorizonV
−1
horizon ∝ −H. (3.52)

We also introduce the central concept of thermodynamics, namely, temperature T . It has been

commoditized to exploit de Sitter temperature T = H/2π which is an analog to the Hawking

temperature in Schwarzschild spacetime 5 [55, 56, 57]. Therefore the electromotive force phe-

nomenologically has a natural relation with the spacetime temperature, −∇E ∝ −T . Since the

system we consider is homogeneous, the relation

E ∝ zT, (3.53)

follows from our assumption that the electromotive force E must vanish when the minkowski

limit T = H/2π → 0 is taken.

For an observer who stays in de Sitter spacetime, the negative current necessarily creates

charge distribution on the horizon. This is because, when seen by an observer, the homogeneous

current together with the horizon has a cross-section and has nonzero divergence∇ · j ̸= 0 at

any point on the horizon. From the local current conservation∇µjµ = 0, the observer must also

see charge distribution associated with the nonzero divergence of the current. The surface charge

density Σ on the horizon must be negative for z > 0 and positive for z < 0. This distribution

is compatible with the sign of the electromotive force E we have derived above. Because, in our
5In the case of de Sitter spacetime, the temperature T is a global constant as the spacetime is homoge-

neous. The application of the thermodynamical concepts, however, should always be local in space and
also in time.
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convention, positively charged particles move in a direction in which E decreases, and vice versa

for negative charges.

The first law of (electro-)thermodynamics including the electromotive force is given in terms

of Helmholtz free energy by

dF = −SdT − pdV + Ede. (3.54)

Then Maxwell’s relation automatically holds true,

(
∂E
∂T

)
e

= −
(
∂S

∂e

)
T

. (3.55)

Combining this with (3.53) and the argument about the sign of the charge distribution Σ on the

horizon, we can conclude that the negative current is a normal entropy-increasing process de-

spite the fact that it generates the ununiform charge distribution from an observer’s perspective.

For example, at a point on the horizon with z > 0, the electromotive force E is positive and the

current generates the negative charge∆e < 0 in a short time interval. Then the entropy change

during the interval become positive,∆S > 0. This is also true in the region with z < 0. As the

uniform distribution maximizes the informatical entropy, processes such as the negative current

which augments the distributional inhomogeneity are prohibited unless the system throws away

more entropy than it loses. Otherwise, such a process would violate the second law of thermody-

namics. Of course, in a gravitational system, horizon serves as an entropy reservoir.

What must be remembered, information and entropy are not observer-independent concepts.

More precisely, it makes a difference whether a particular physical degree of freedom is accessi-

ble to an observer or not. If some degrees of freedom are inaccessible, an observer should count

the information about those degrees of freedom as thermodynamically coarse-grained quantities.

The quantity in problem (3.31) is calculated based on the assumption that we have perfect access

to all the region of the spacetime determined by (3.1), which permits the integration from k = 0

to k =∞. However, this is in contradiction to the perspective of a non-accelerated observer who

stays in a rest frame. The observer sees the horizon at a distance ofH−1, and thus, in principle,

has no access to the information about the region outside the horizon.

Here, a couple of questions are in order: How can we reconcile these two perspectives? What

is the logical link between the omniscient divine view and the half-blinded human view? To

answer the questions, we need to look further into the physical mechanisms of this phenomena
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and to unveil the role of the horizon as Maxwell’s demon.

3.5.2 D

The previous subsection dictates the macroscopic aspect of the anomalous transportation of the

charges in de Sitter spacetime. One may wonder what the microphysical mechanism which en-

ables the horizon to winnow appropriate particles from the vacuum fluctuation so as to cause

anti-screening is. This subsection will describe the microphysical process corresponds to the

macroscopic description we have seen in the previous section.

Let us consider the quantum vacuum fluctuations in the vicinity of the horizon after the model

of Hawking [58]. By analogy with the famous explanation for the Hawking radiation around a

black hole, we can understand how the horizon can distinguish the particles. Fundamentals of

quantum field theory tell us that microscopic, virtual creation-annihilation processes of particles

and antiparticles continuously occur in the quantum vacuum. These processes can be interrupted

by the horizon because in the event that one of a particle pair drops to the horizon, there will no

longer be any chance for the other particle to find the partner again to annihilate. Therefore the

particle production from the horizon is caused as a consequence of the missing counterpart of the

virtual pair particles.

The exposition of the gravitational particle production and the Hawking radiation above has

been widely accepted. As one could see, it alone is not sufficient to elucidate the unexplained

mechanism of the electric current generation. With the aid of the background electric field which

supplies the system with asymmetry, however, one can reach a satisfactory understanding. The

electric fields slightly affect the polarization of the virtual particle pairs. In the region with z >

0, positive charges are more likely to exit from the horizon as their motion towards the horizon is

enhanced by the electric field. As a result, an observer sees that the negative charge production

exceeds the positive charge. Similarly, the observer sees the positive charge distribution on the

horizon with z < 0. In total, an amount of electric polarization production is observed and si-

multaneously the negative electric current flows. This is consistent with the result (3.41) and the

consideration in the previous subsection. The situation is schematically summarized in Fig. 3.3.

We can also put the same situation in a different way. The observer gains the information of

the ununiform charge distribution on the horizon in exchange for the information of the space-

time region outside the horizon. This argument makes sense at least qualitatively. It might be
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Figure 3.3: Schematic description of the anti-screening in de Sitter spacetime.
An observer sees the de Sitter horizon with radius H−1 and the gravitational particle production
caused by it. Due to the weak large-scale electric field, more positive (negative) charges are escap-
ing from the horizon in the region z > 0 (z < 0), respectively. Consequently, the observer sees the
electric polarization in the counter-intuitive direction. The generation of the charges and polarization
require the flow of the charges, the electric current shown in green dashed line whose endpoints are
on the horizon. It amounts to the homogeneous negative electric current inside the horizon (green
arrow) and causes the anti-screening effect.

possible to conjecture the perfect equivalence between the two pictures, one based on the knowl-

edge of all the spacetime region and another based on the effect of the horizon to an observer. If

all the exterior information is encoded on its boundary, i.e., the horizon, the system we consider

is a concrete example of the realization of the Holographic principle [59, 60, 61] originally pro-

posed by Gerard ’t Hooft. It seems an exciting topic to pursue the relation of this kind of prob-

lem to one of the most challenging hypotheses in the modern theoretical physics.

To summarize, we have to consider Maxwell’s demon who can deprive charged particles of

entropy and transfer it to the horizon. In an informatical sense, he accesses information to gener-

ate the directed motion of charges, namely, the electric current. If he can distinguish the charge

and momentum of a coming particle, he can also harness that information to make a directed mo-
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tion of charged particles by controlling an ideal shutter without any consumption of energy. 6 In

our set up, the Hubble horizon plays this role in cooperation with the background electric field.

Note again that the anti-screening effect and enhancement of the electric field will come to

a halt when the electric field strength increases. In this case, particle production caused by the

electric field is no more negligible compared to the gravitational particle production. Thus the

local conductivity (the first term of (3.51)) becomes larger than the second term.

Finally, we should mention that all the argument above is valid with the reservation that the

particle picture is correct. The conditionM = mH−1 ≫ 1 ensures this point. WhenM < 1, the

Compton wavelength of the Dirac fieldm−1 is larger than the horizon radiusH−1. This means

there exist over-horizon scale correlations of the Dirac field, so the particle picture cannot be

used. For the cases where the long-range correlation is significant, the description in this section

is not applicable and we need to take over-horizon quantum correlations into account. This may

also be an exciting challenge.

6 A microscale device which realizes Maxwell’s demon who extracts the electric energy from the
thermal motion of particles has very recently been developed [62].
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One of the advantages of being disorganized is that

one is always having surprising discoveries.

A.A. Milne

4
Gauge Invariance and Renormalization of

Scalar QED

H - -

? As the explicit violation of the gauge invariance occurs while employing the momen-

tum UV cutoff, our treatment in the previous section is not gauge invariant. Even though this

does not always indicate that the result is also not gauge invariant, there is a theoretical motiva-

tion to validate the calculation especially if we lack the experimental/observational counterpart

for comparison. The simplest way to check the gauge invariance of the result is to compare it

with another result obtained by a gauge-invariant renormalization scheme.

In this chapter, we explicitly show the gauge invariant point-splitting renormalization proce-

dure and concordance between the adiabatic regularization and the point-splitting renormaliza-

tion in the case of the scalar QED for simplicity. After that, we also make a comparison between

the fermionic and bosonic induced current.
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4.1 S QED

The action for the scalar QED is already given in (2.39). Similar to the fermionic case, we treat

the gauge field Aµ as a background field giving rise to a constant electric field. That is, we adopt

the gauge field configuration (3.6) again. This system also becomes solvable like the fermionic

case.

The mode decomposition of the quantized scalar field is given by

ϕ̂(x) =
1

a

∫
d3k

(2π)3
eik·x

(
χk(η)âk + χ∗

k(η)b̂
†
−k

)
, (4.1)

where χk(η) is the canonical mode function.

From the Klein-Gordon equation (2.45), the mode function χk(η) satisfies the following

mode equation

[
∂2

∂η2
+
(
M2 + L2 − 2

)
a2H2 − 2aHL (kz +HL) + k2 + 2HLkz +H2L2

]
χk(η) = 0,

(4.2)

which has the following solution in terms of the Whittaker functionWκ,µ(z) [52] as

χk(η) =
eiπκ/2√

2p
Wκ,µ(z), (4.3)

with the parameters defined as

z ≡ −2i p
aH

, κ ≡ −iLpz
p
, µ ≡

√
9

4
− L2 −M2, L ≡ eE

H2
, M ≡ m

H
. (4.4)

Here we have introduced shifted momentum p = (kz, ky, kz +HL). The choice of the positive

frequency mode function (4.3) is corresponding to the Bunch-Davies vacuum.

The creation and annihilation operators ak, bk, a†k, b
†
k satisfy the canonical commutation

relations [ak, a†k′ ] = [bk, b
†
k′ ] = (2π)3δ(3)(k − k′) and (others) = 0.

4.2 G

The local electric current operator is defined by

Ĵµ(x) ≡ ieϕ̂†(x)
←→
Dµϕ̂(x) = ie{ϕ̂†(x)Dµϕ̂(x)− (Dµϕ̂(x))

†ϕ̂(x)}. (4.5)
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As the vacuum expectation value of the current operator is divergent, we adopt the symmetric

point separation xµ → xµ ± ϵµ to control the divergence and renormalize it in a gauge-invariant

manner.

The gauge-invariant two-point current operator with the symmetric point separation is given

by

Ĵµ(x; ϵ) ≡ ie exp

[
−ie

∫ x+ϵ

x−ϵ
dxµAµ

]
ϕ̂†(x+ ϵ)

←→
Dµϕ̂(x− ϵ), (4.6)

which is invariant under the gauge transformation with an arbitrary function Γ(x),

ϕ̂(x)→ e−ieΓ(x)ϕ̂(x), ϕ̂(x)† → e+ieΓ(x)ϕ̂†(x), Aµ(x)→ Aµ + Γ,µ(x). (4.7)

Note that the transformation of the covariant derivative is given byDµϕ̂(x) → e−ieΓ(x)Dµϕ̂(x),

and it changes the overall phase. This is canceled by the prefactor exp[−ie
∫ x+ϵ
x−ϵ dx

µAµ] which

becomes unity when the coincidence limit ϵ → 0 is taken. Of course, we can recover the locality

of the current operator in the coincidence limit,

Ĵ(x) = lim
ϵ→0

Ĵ(x; ϵ) (4.8)

We can also separate the vacuum expectation value lim
ϵ→0
⟨Ĵ(x; ϵ)⟩ into the ϵ-dependent divergent

terms and the ϵ-independent finite terms as we will see below. This fact means that the diver-

gence comes from the ultraviolet (UV) physics. Therefore this can be absorbed by renormaliza-

tion of the charge e and the field redefinition.

If a straight line is selected as the integration contour in (4.6), we obtain

⟨Ĵz(x; ϵ)⟩ = −2e
(
a+
a−

)−iL∆z
∆η
∫

d3p

(2π)3
e−ip·∆x

a+a−
(pz − āHL)χk

(
η +

∆η

2

)
χ∗
k

(
η − ∆η

2

)
,

(4.9)

where we have used ϵµ = (∆η/2,∆x/2) and introduced a± = [1 − H(η ± ∆η/2)]−1 and

ā = (a+ + a−)/2. We can make use of the Mellin-Barnes representation for the Whittaker

function [52] to evaluate this quantity, 1

Wκ,µ(z) =

∫
Cs

ds

2πi
zse−z/2

Γ(s− κ)Γ(−s− µ+ 1
2)Γ(−s+ µ+ 1

2)

Γ(12 − κ− µ)Γ(
1
2 − κ+ µ)

, (4.10)

1See also Appendix D for the integration of the Whittaker function.
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where the integration contour Cs runs from −i∞ to i∞ and is taken to separate the poles of

Γ(s − κ) (s = κ − n, n = 0, 1, 2, · · · ) from those of Γ(−s − κ − µ + 1
2)Γ(−s − κ + µ + 1

2).

After substituting (4.10), the expectation value reads

⟨Ĵz(x; ϵ)⟩ = −
e

(2π)3a+a−

(
a+
a−

)−iL∆z
∆η
∫ ∞

0
dp

∫ 1

−1
dξ

∫ 2π

0
dφ e−ipη−ip·∆x

∫
Cs

ds

2πi

∫
Ct

dt

2πi

× p(pξ − āHL)eπLξeπi(t−s)/2
(
2p

H

)s+t
a−s+ a−t−

× Γ(s+ iLξ)Γ(−s− µ+ 1/2)Γ(−s+ µ+ 1/2)Γ(t− iLξ)Γ(−t− µ+ 1/2)Γ(−t+ µ+ 1/2)

Γ(1/2− iLξ − µ)Γ(1/2− iLξ + µ)Γ(1/2 + iLξ − µ)Γ(1/2 + iLξ + µ)
.

(4.11)

We are now ready to perform the p-integral with a tiny shift in p axis (p → p + iε). The residue

theorem and perturbative ordering by the point separation ϵ give an analytic expression for the

expectation value,

⟨Ĵz(x; ϵ)⟩ =
eaH3

4π2

[
−L
3
(log ϵ+ logH +

3

2
+ γE)−

2

15
L3

+
µ

12π3L sin(2πµ)

{
(45 + 4π2(−2 + 3L2 + 2µ2)) cosh(2πL)

− (45 + 8π2(−1 + 9L2 + µ2))
sinh(2πL)

2πL

}
+ ℜ

[ iL

16 sin(2πµ)

∫ 1

−1
dξ(1− 4µ2 + (−7− 12L2 + 12µ2)ξ2 + 20L2ξ4)

×
{
(e2πLξ + e−2iπµ)ψ

(
1

2
− iLξ + µ

)
− (e2πLξ + e2iπµ)ψ

(
1

2
− iLξ − µ

)}]
+O(ϵ1)

]
,

(4.12)

where ψ(z) = Γ′(z)/Γ(z) denotes the digamma function and γE is the Euler-Mascheroni con-

stant. The covariant separation is expressed as ϵ2 ≡ ϵµϵµ = a2(−∆η2 + |∆x|2)/4. Note

that the separation in scale factor (a± ̸= a) must be preserved during calculation. Otherwise, it

would lead to an incorrect result. We have only a logarithmic divergence of the separation to be

absorbed by the renormalization of the charge and the gauge field. In fact, direction dependent

divergent terms such as (−∆η2 + |∆x|2)−2∆z appear in the calculation. We eliminate them by

adopting a rule that the limit∆z → 0 must always be taken in advance when the coincidence

limit ϵ→ 0 is taken.
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4.3 P

The vacuum expectation value of the current operator is placed at the right-hand side of the semi-

classical Maxwell equation Fµν;ν(x) = ⟨Ĵµ(x)⟩.

Renormalization prescription is required to deal with the divergence. In our set up, only the

z-component is relevant. We can use the usual ansatz for renormalized field AR z and charge eR

involving a divergent coefficient C such as

AR z = CAz, eR = C−1e, (4.13)

or instead of renormalizing Az we can introduce renormalized electric field strength ER =

CE. Note that the combination of the charge and the field is unchanged eRER = eE, and

⟨Jz(e,E)⟩ = C ⟨Jz(eR, ER)⟩. The minimal choice for the renormalization factor C is found

to be

C2 = 1− e2

24π2
log ϵ. (4.14)

This choice eliminates the log ϵ term from (4.12). We can further subtract the terms proportional

to L from the large parenthesis [· · · ] in (4.12) in addition to it. So, the form of C is given by

C2 = 1− e2

24π2
{log ϵ+ (finite terms)} . (4.15)

A physical condition is required to determine the finite part in (4.15). We adopt the require-

ment that the renormalized current must vanish in massive scalar limit (m2 ≫ E, H2),

lim
M→∞

⟨Ĵz⟩ren = 0. (4.16)

The asymptotic behavior of the digamma function ψ(z) ∼ log(z)− 1/(2z)+O(z−2) is useful to

find non-vanishing terms in the massive limit

⟨Ĵz⟩
M≫1, L≪1−−−−−−−→ − lim

ϵ→0

eaH3

4π2
L

3
(log ϵ+ logm+ γE + 3/2) . (4.17)

This tells us the minimal form of the finite terms in (4.15). It is still possible to subtract decaying

terms O(M−1), however, we stay in the minimal subtraction at this moment. We finally obtain
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the following expression for the renormalized current

⟨Ĵz(x)⟩

=
eaH3

4π2

[
L

3
logM − 2

15
L3 +

µ

12π3L sin(2πµ)

{
(45 + 4π2(−2 + 3L2 + 2µ2)) cosh(2πL)

− (45 + 8π2(−1 + 9L2 + µ2))
sinh(2πL)

2πL

}
+ ℜ

[ iL

16 sin(2πµ)

∫ 1

−1
dξ(1− 4µ2 + (−7− 12L2 + 12µ2)ξ2 + 20L2ξ4)

×
{
(e2πLξ + e−2iπµ)ψ

(
1

2
− iLξ + µ

)
− (e2πLξ + e2iπµ)ψ

(
1

2
− iLξ − µ

)}]]
,

(4.18)

Thus we have reached the exactly same expression as obtained by Kobayashi and Afshordi [39]

by using the adiabatic regularization up to the second order.

4.4 R

It is remarkable that our result perfectly agrees with the previous one [39], and worthwhile to list

its physical significance. Note that the dimensionless current defined as

J = J (L,M) ≡ ⟨Ĵz⟩
eaH3

, (4.19)

is a function of only L andM . The plot of J (L,M) as a function of the electric field strength L

is shown in Fig. 4.1 for different values of the mass parameterM .

4.4.1 W

First, let us consider various limiting behaviors.

The renormalized current in the weak electric field regime eE ≪ m2,H2 is expressed as

J L→0−−−→ L

12π2

{
logM − 1

2

[
ψ

(
1

2
+ µ0

)
+ ψ

(
1

2
− µ0

)]
+

8π

3

µ0(µ
2
0 − 1)

sin(2πµ0)

}
, (4.20)

where µ0 =
√

9/4−M2.

We can define the dimensionless conductivity σ(M) = J /L|L→0 as

σ(M) =
1

12π2

{
logM − 1

2

[
ψ

(
1

2
+ µ0

)
+ ψ

(
1

2
− µ0

)]
+

8π

3

µ0(µ
2
0 − 1)

sin(2πµ0)

}
. (4.21)
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Figure 4.1: Absolute value of the renormalized current J = ⟨J⟩ /eaH3 is shown as a function of
L = eE/H2. Each line corresponds to different mass parameter M = m/H. Negative current is
observed in L = 1 ∼ 10 for M = 0.001 case.

The asymptotic behaviors of σ(M) are given by

σ(M)→


3

4π2M2
(M ≪ 1)

(
7

72π2M2
+O(M−4)

)
− e−2πM

(
4

9π
M3 +O(M1)

)
(M ≫ 1)

. (4.22)

First of all, it is easy to find that the conductivity in this limit is always positive σ(M) > 0. This

forms a striking contrast to the fermionic conductivity in the weak field limit, which is always

negative for any value ofM . Additionally, the strongM−2 enhancement for the small scalar

mass is observed. This is the four-dimensional analog of the two dimensional IR hyperconductiv-

ity reported first in [37]. The physics of the IR hyperconductivity is still unknown.

The exponentially suppressed term (∝ e−2πM ) in the massive regime must exist naturally

because the standard Bogoliubov calculation gives the number density of the scalar particles

in dS spacetime n ∼ H4(e2πM − 1)−1 which means the exponential suppression of heavy
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particle production. Nevertheless, we also have inexplicable terms, which are not protected by

the exponential factor in the conductivity.

As we mentioned, there is room for changing the renormalization fixing without breaking the

condition ⟨Jz⟩ren → 0 forM → ∞. If one naively tried to remove theM−2 term in (4.22), it

would cause a huge IR correction and even worse negativity to the renormalized current. Further-

more, if all the unprotected terms should be subtracted from the current J , i.e. if we impose the

exponential damping of the induced current in the massive limit, then the last term in (4.21) will

be left and the maximally-subtracted bosonic conductivity is given by

σboson(M)|maximal =
2

9π

µ0(µ
2
0 − 1)

sin(2πµ0)
. (4.23)

In Fig.4.2, we exhibit the behaviors of the minimally and maximally-subtracted bosonic conduc-

tivity. The fermionic conductivities are also plotted for comparison.

The maximally-subtracted bosonic conductivity has a discontinuity atM =
√
2. This mass

parameter corresponds to the conformal coupling ξRϕ2 in dS spacetime, with the parameters

being ξ = 1/6 and R = 12H2. Thus this is conformally equivalent to the case of a massless

scalar field in Minkowski spacetime. For this reason, this discontinuity (or divergence) atM =
√
2 might be physically reasonable. It is also obvious that σ|maximal is positive forM <

√
2 (the

blue solid line in Fig.4.2) and negative forM >
√
2 (the blue dashed line in the same figure) in

this treatment. We will examine the consequences of the maximal subtraction in the next section.

Note also that the 7/(72π2M2) term in (4.22) corresponds to the fourth order adiabatic term.

The terms in (4.17) correspond to the zeroth and second order adiabatic subtraction terms. We

can expect that the formal infinite order adiabatic subtraction of the terms proportional to L

(WKB is an asymptotic expansion) will result in the removal of the exponentially unprotected

behavior in the massive limit.

4.4.2 S

In the case of the strong electric field limit eE ≫ m2, H2, or H2 ≪ m2, eE, the L3 term in the

first line of (4.18) and the integration of the digamma functions cancel each other. We find

J ≃ L2

12π3
sgn(L)e

−πM2

|L| , (4.24)
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Figure 4.2: The conductivities σboson,max, σboson,min, σfermion,max, and σfermion,min respectively
given in (4.23) (blue, maximally-subtracted boson), (4.21) (light green, minimally-subtracted boson),
(4.27) (red, maximally-subtracted fermion), and (3.46) (orange, minimally-subtracted fermion).
The solid and dashed lines indicate that the sign of the conductivity is positive and negative, respec-
tively. Both of the maximally-subtracted conductivities show the exponential damping in the massive
region while the minimally-subtracted conductivities drop in the power. Moreover, the divergence
and sign flipping occur for the maximally-subtracted bosonic conductivity at M =

√
2. Factor 2 is

introduced for the bosonic conductivity to compensate the difference in the spin degrees of freedom.

and recover the Schwinger’s famous suppression factor exp(−πm2/eE). This is equivalent to

the strong field limit of the fermionic current (3.43) except for the factor of 2. The factor comes

from the excess spin degrees of freedom of the Dirac field. The mass dependence of the current

for L → ∞ disappears, indeed, all the lines in Fig. 4.1 converge at infinity. Furthermore, the

strong limit form is expressed in terms of the dimensionful quantities as

⟨Jz⟩ren
H→0−−−→ e

12π3
(eE)2

1

H
e−

πm2

eE , (4.25)

where asymptotic analysis reveals that no O(H0) term appears. Similar to the fermionic current,

the divergenceH−1 is due to the lack of the cosmic dilution in the Minkowski spacetime limit.

The particles produced at t = −∞ contributes to the current expectation value forever, soH−1

must be replaced by some regulator such as (t− t0) with t0 being the turn-on time of the electric
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field. This prescription is also justified because the differentiation d
dη ⟨Jz⟩ is finite when H → 0.

Note that the conformal time η is identical to the cosmic time t in this limit as we are taking the

scale factor a = (1 − Hη)−1. This behavior corresponds to the result obtained in Minkowski

space. This linear growth of the current in time was previously shown in [54].

4.4.3 S

Noteworthy is the existence of the negative current J < 0 around L ∼ O(1) for small mass

regimeM ≲ 10−3. The precisely no electric field state L = 0 is a trivial zero of the bosonic

current J (L,M). However, two more zeros of the current appear in L > 0 and J becomes

negative between them.

The positive current causes negative backreaction to the background electric field as expected.

The negative current conversely enhances the background electric field. The current-electric

field system can be seen as a sort of feedback system, and the stability analysis is easily imple-

mented. The first (nontrivial) zero of the current corresponds to the so-called diverging point.

No backreaction occurs at this point. However, a small deviation from this point induces posi-

tive feedback which enhances the deviation. The second zero and also the trivial zero are stable

points of the system. A small deviation will be pulled back to this point.

Note that negativity of the induced current does not mean fatal instability of the system, as

it occurs only in a finite range of the electric field. Actually, the induced current recovers its

positivity as L increases. The position of the second zero is numerically given by L = −1
3 logM

forM ≪ 1.

In Fig. 4.3, we show the position of the zeros of J (L,M) in the L-M plane, which also

serves as a phase diagram of the current versus electric field. Each line represents the zeros of

the current. The lower (upper) line corresponds to the first (second) zero of the current J (L,M).

The negativity happens in the shaded region between the two lines. There exists a critical mass

Mc ∼ 0.0033, that is, the maximum value of the scalar mass which can cause the negativity of

the current. We also emphasize that the negativity be usually mild compared to the IR hypercon-

ductivity which occurs coincidently and the J ∝ L2 behavior in the strong field regime as we

mentioned.

So far, our discussion has been mainly based on the minimal subtraction scheme. In the next

section, the maximal subtraction scheme will be investigated.
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Figure 4.3: Linear stability analysis of the current-electric field system. The upper (blue) line repre-
sents the trajectory of stable points, and the lower (orange) line represents that of diverging points.
There is a critical point (Lc,Mc) = (5.7, 0.0033).

4.5 M

We have introduced two different renormalization conditions, the minimal and maximal subtrac-

tions. The minimal subtraction requires that the subtraction term should be minimal, i.e., all the

term disappear form → ∞ must be left in the renormalized current. The maximal subtraction

imposes the exponential mass damping on the renormalized current. As a result, we need to re-

move all the power-law contributions of O(M−1),O(M−2), · · · from the minimally-subtracted

current. Note that the idea of the maximal subtraction can naturally arise guided by the fact that

some asymptotic terms inM → ∞ lack the expected exponential suppression factor. In this sec-

tion, the difference between the two renormalization condition will be shown and their physical

consequences will be discussed.

4.5.1 F

One might discard the possibility of the maximal subtraction, in which we impose the exponen-

tial damping of the physical result in the massive limit, for the reason that it brings about the

divergence and sign flipping to the bosonic conductivity. Although the aversion to the analytical

discontinuity may be reasonable, it is also true that there is no good excuse to simply accept the

minimal subtraction scheme without due deliberation. Besides, there are a couple of facts which

motivate us to prefer the maximal subtraction over the minimal subtraction.
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The first point, which has been already mentioned, is the appearance of the power-low damp-

ing of the currents in the massive limit shown in (3.48) (spinor) and (4.22) (scalar). From the

semiclassical point of view, we naively expect the exponential damping factor exp(−2πm) of

the quantities which are effectively proportional to the created particle number density. The max-

imal subtraction can immediately remove these counterintuitive terms from the current, or equiv-

alently, the conductivity. This argument entirely fixes the form of the subtraction term. We need

to subtract the term
L

3π2
[logM −ℜψ(iM)] , (4.26)

from the minimally-subtracted fermionic current (3.41), yielding the maximally-subtracted

fermionic conductivity

σfermion(M)|maximal = −
M(4M2 + 1)

9π sinh(2πM)
. (4.27)

For the bosonic current, the subtraction term is given by

L

12π2

{
logM − 1

2

[
ψ

(
1

2
+ µ0

)
+ ψ

(
1

2
− µ0

)]}
, (4.28)

with µ0 =
√

9/4−M2.

The result of the maximal subtraction is shown in Fig. 4.4 (fermion) and Fig. 4.5 (boson), see

the minimally-subtracted results Fig. 3.1 and Fig. 4.1 for comparison. Figure 4.6 is the phase di-

agram of the maximally-subtracted results, which is the counterpart of the minimally-subtracted

results Fig. 3.2 and Fig. 4.3.

The second motivation is the disagreement of the bosonic and fermionic current in the semi-

classical limit. This is because the charged fields can be treated as a classical particle without

spin in this limit. The particle picture, in general, is validated in the semiclassical limit, which in

our case is given by

L2 +M2 ≫ 1. (4.29)

In case of the strong field L ≫ 1, the two currents unerringly correspond to each other bar the

factor 2 related to the spin degrees of freedom. However, if we take the other end of the semi-

classical limit, viz. considering the massive fieldsM ≫ 1 while keeping the electric field rela-

tively weaker L ≲ 1, then the (minimally-subtracted) bosonic and fermionic current behave quite
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differently. This is unfavoured also because the bosonic current becomes positive in this limit de-

spite the physically acceptable explication for the negativity of the current or the anti-screening

effect we gave in the previous chapter, which is arguably independent of the spin of charged par-

ticles.

We will see, in the next subsection, how the flaws in the minimal subtraction are cured by the

maximal subtraction.

4.5.2 E

There are four striking features of the maximally-subtracted induced currents plotted in Fig. 4.4

and Fig. 4.5:

1. Exponential damping of the current in the massive particle limit.

2. Boson/Fermion agreement in the semiclassical limit.

3. Removal of the IR hyperconductivity in the bosonic case.

4. Finite behavior of the massless fermionic currentM = 0.

The first point is rather trivial since we have imposed it as the renormalization condition. The

second point is understood by observing the boson-fermion agreement in the conductivities in

the massive limit shown in Fig.4.2 (the blue and red lines). Note that the maximal subtraction

does not change the UV (strong electric field) behavior of the current and the correspondence

of the currents in the strong field limit L → ∞ remains unchanged. The third point, unlike the 2

(= 1+1) dimensional case, comes in exchange for the enhancement of the (bosonic) conductivity

in theM →
√
2 limit from above σboson,max ∝ (M −

√
2)−1. The final point is similar to the 2

dimensional fermion in de Sitter spacetime.

Now we have a much clearer sight of the phenomenon: the maximal subtraction gives the

”physical” results in this case. As we lack the reference to the experimental or observable renor-

malization point information in curved spacetime, we need some physical conditions to fix the

renormalization. The assumption on the asymptotic behavior in the massive limit was employed

in this problem. The implementation of the subtraction was possible because we could separate

the perturbative part from the nonperturbative part which has the physical origin. Our regulariza-
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Figure 4.4: The maximally-subtracted fermionic current. The finite behavior of the massless
fermion can be seen. Though the negativity of the current is suppressed, it exists for sufficiently small
electric field L = eE/H2.

tion scheme is schematically written as

⟨(Observable)⟩ asymptotic expansion−−−−−−−−−−−−−→ (perturbative part) + (nonperturbative part)

regularization−−−−−−−−→ (nonperturbative part)

= ⟨(Observable)⟩reg .

(4.30)

In the present problem, (perturbative part) denotes the power series in O(M−n), and (nonpertur-

bative part) represents the exponentially suppressed term in (3.48) and (4.22).

We would like to put a few comments with regard to the correspondence between the adia-

batic subtraction and the point-splitting renormalization. The removal of the perturbative part

may also be achieved by the adiabatic subtraction as we mentioned. However, the perturbative

part as a power series inM−1 is not a convergent series. It is rather a formal divergent series

since the digamma function has an asymptotic expansion for large z, ψ(z) ∼ ln z − Σc2nz
−2n

with the rapidly increasing coefficients behaves c2n ∼ (2n − 1)! for large n. Therefore, we

should formally define the meaning of the higher-order (or infinite order) adiabatic subtraction
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Figure 4.5: The maximally-subtracted bosonic current. The positivity/negativity of the bosonic cur-
rent now looks similar to the fermionic current, i.e., negative for the weaker electric field and positive
for the stronger electric field. The IR hyperconductivity observed in the minimal subtraction is re-
moved. Instead, the enhancement of the negative current in the conformally massless limit M →

√
2

is seen.

as the adiabatic expansion is also an asymptotic expansion. It involves analytical challenges, and

we have not yet had any specific result. Nevertheless, we expect that an establishing tool called

complete WKB, which makes diverging WKB expansion meaningful in a nonperturbative way,

can shed light on the renormalization of quantum theory in curved spacetime.

4.5.3 S

To support our arguments in this section and Sec.3.5, we explicitly perform the semiclassical

calculation of the surface charge density induced on the horizon. Disappointingly, the Bogoli-

ubov coefficients for the Dirac field in the 4-dimensional case are not available, but we can find

the result for the scalar QED case in [39]. The particle number density of the positive (negative)

55



Scalar

Fermion

210.5 5
M

10-4

0.01

1

100

104

L

Figure 4.6: The maximal subtraction version of the phase diagram for the spinor (red) and scalar
(blue) QED in de Sitter spacetime. The shaded regions correspond to the negative current phase,
or the anti-screening phase, while the regions above the curves correspond to the phase with the
positive current and the standard screening effect. The mass of the scalar field M = m/H is taken
larger than the value

√
2 conformally corresponding to the massless scalar field in the flat spacetime.

See also the minimal subtraction counterparts, Fig. 3.2 and Fig. 4.3.

charged χ-particles 2 n+k (n−k ), which is determined by the Bogoliubov calculation, is given by

n±k = |β±k |
2 =

e±2πL cos θ + e−2π|µ|

e2π|µ| − e−2π|µ| , (4.31)

where the adiabatic condition |µ| =
√
L2 +M2 − 9/4 > 0 is assumed. The charge density

induced on the horizon is then given by

ρ(x) = e

∫
d3k

(2π)3
(
|β+k |

2 − |β−k |
2
)

= e

∫
d3k

(2π)3
e2πL cos θ − e−2πL cos θ

e2π|µ| − e−2π|µ| ,

(4.32)

In the massive (M ≫ 1) and weak field (L≪ 1) limit, this expression becomes

ρ(x) = 4πeLe−2πM

∫
d3k

(2π)3
cos θ. (4.33)

2See the definition of the canonical field (4.1) again.
Note that the electric current of the χ-field Jχµ is related to ϕ-current Jµ in (4.5) by Jχµ = a2Jµ. The

index of the χ-current is raised by the Minkowski metric ηµν , so the relation between the ϕ and χ currents
with upper indeces is given by Jµ

χ = a2ηµνJν = a4Jµ.
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Because of the symmetry of the integration, we immediately obtain ρ = 0 for all the spacetime

points x /∈ (horizon). This is compatible with the charge conservation law. However, the ex-

istence of the de Sitter horizon breaks the symmetry as we mentioned in Sec.3.5. To realize the

concept of Maxwell’s demon on the horizon, all we need to do is to restrict the region of the mo-

mentum integration to the inward direction k · x < 0. Note also that the momentum UV cutoff

k ∼ am can be safely introduced since we are considering the massive particle limit. Therefore,

we obtain the charge density on the horizon

ρ(x)
∣∣
x∈(horizon) = 4πeLe−2πM

∫ am

0

k2dk

(2π)

∫∫
x·k<0

d(cos θ′)

(2π)

dϕ′

(2π)
cos θ′

= − e

6π
LM3e−2πM cos θ(aH)3.

(4.34)

Using the delta function 3, the charge density is rewritten as

ρ(x) = − e

6π
LM3e−2πM cos θ(aH)3

{
rδ

(
r − 1

aH

)}
. (4.36)

From the local charge conservation, we find, with multiplying the Heaviside’s step function and

the homogeneous induced current in z- direction together,

∂z

(
JzχΘ

(
1

aH
− r
))

= −Jzχ cos θδ
(
r − 1

aH

)
= −dρ

dη

=
2e

3π
LM3e−2πM cos θ(aH)3δ

(
r − 1

aH

)
.

(4.37)

Then, we obtain the semiclassical approximation for the induced current in the massive particle

limit,

Jzχ|semiclassical = −
2e

3π
LM3e−2πM (aH)3. (4.38)

3The delta function δ(x) has dimension [x]−1, so rδ(r − r0) is dimensionless. The surface charge den-
sity on the horizon is given by

Σ|horizon = − e

6π
LM3e−2πM cos θ(aH)2. (4.35)
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This estimation corresponds to the massive limit of the maximally subtracted scalar current (see

the massive limit of the renormalized dimensionless conductivity (4.22)) which is given by

Jzχ = a4Jz
M≫1−−−→ − 4e

9π
LM3e−2πM (aH)3, (4.39)

except for the numerical factor 2
3 .

The (approximate) correspondance between the semiclassical estimation (4.38) and the maximally-

subtarcted current (4.39) in the massive particle limit,m2 ≫ H2, eE, shows the physical pref-

erence of the maximal subtraction over the traditional minimal adiabatic subtraction, which has

been employed in many literature, e.g., [39, 47, 48, 50, 51, 63, 64]. Remarkably, some authors

reported the unphysical consequences of the minimal subtraction scheme such as the negative

value of the renormalized primordial power spectrum [65, 66].
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Nobility is the master of talent and talent is the ser-

vant of nobility. Otherwise it’s as though the family

had no head but is ruled by menials. Before long,

nasty goblins will be storming madly around.

Hong Zicheng, Caigentan

5
Conclusion

We discussed the analytic aspects of dS-QED in the previous part of the dissertation. We focused

primarily on the system consists of the scalar or spinor charged field and homogeneous and con-

stant energy-density electric background field (3.6) in 4-dimensional de Sitter spacetime.

In this chapter, the presented results are summarized, and then their consequences in the con-

text of the cosmology are discussed. Finally, we close the present dissertation with concluding

remarks.

5.1 S

5.1.1 S 3

We have investigated the fermionic current induced by the electric field in 1 + 3 dimensional

de Sitter spacetime. Using the adiabatic subtraction, we obtained the renormalized expectation

value of the current operator for the charged fermion. The analytic result (3.41) which is plotted

in Fig. 3.1 was studied in detail. The similarity to and difference from the bosonic (scalar) case

was discussed.

The analytic result (3.41) yields information about the behaviors of the induced current in

both the weak and strong electric field limits. In the strong field limit, we obtained (3.43) which
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coincides with the behavior of the bosonic current (4.18) evaluated in the next chapter as well as

that of the current in flat spacetime found in [54]. Since the contribution to the induced current

mainly comes from Schwinger pair production in this limit, the induced current carries the mass

suppression factor for the Schwinger effect exp(−πm2/eE) as expected. Meanwhile, in the

weak electric field regime, we have found two remarkable features, namely, the absence of the

IR hyperconductivity and the negativity of the induced current. These two features have already

been observed in the 1 + 1 dimensional fermionic case [41] and the 1 + 3 dimensional bosonic

case, respectively.

The negative current occurs for the electric field smaller than a certain value L∗(M) which is

determined by the spinor massM = m/H . The plot of L∗(M) shown in Fig. 3.2 can be seen

as the phase diagram where the positive and negative current phase are separated by the curve

of L∗. Although the negativity of the current indicates the positive feedback which leads to the

counterintuitive enhancement of the background electric field (anti-screening), it does not mean

an unbounded instability. The system is stable for the electric field stronger than L∗(m/H), and

thus the electric field is not enhanced beyond L∗.

We also found the terms which do not carry any exponential mass suppression factor in the

massive limit of the fermionic conductivity (3.48). If the particle is sufficiently heavy, the semi-

classical description must be precise, and it suggests that the exponential mass suppression fac-

tors such as exp(−πm2/eE) or exp(−2πm/H) should appear. Thus, the lack of the exponen-

tial suppression factor guided us in a physical choice of the renormalization point in chapter 4.

We have reached the physical understanding of the negative current. The thermodynamical

(macroscopic) aspect and the microscale physics of the anti-screening phenomenon were ex-

plained. Employing the fact that an observer stays at an inertial system in de Sitter spacetime

will not have access to the information outside the horizon, we argued that the observer will

see the surface charge distribution Σ on the horizon, which seemingly reduces the informatical

entropy of the observer. We, however, showed that the transportation of the charges itself is a

healthy entropy-increasing process abiding by the second law of thermodynamics based on the

electro-thermodynamical equation (3.55). We pointed out that the de Sitter horizon plays the role

of Maxwell’s demon who can separate the charged particles according to their momentum to gen-

erate the directed transportation of the charge. The horizon can be functioning as Maxwell’s de-

mon with the electric field which breaks the spatial symmetry in its direction. This is graphically
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summarized in Fig. 3.3. Besides, the possible connection between the gravity and thermodynam-

ics through the informatical arguments was also implied.

5.1.2 S 4

The point-splitting regularization scheme in a covariant and gauge-invariant manner was per-

formed for the scalar QED case. The only divergence we have encountered is the logarithmic

divergence which can be absorbed into the kinetic term of the gauge field in a conventional fash-

ion. In a previous calculation done with the momentum cutoff technique and the adiabatic sub-

traction up to the second order [39], there was also a quadratic divergence which was an obstacle

to the gauge-invariant renormalization. We have imposed the renormalization condition (4.16)

instead of employing the adiabatic subtraction. Remarkably, the result of the minimal subtraction

eliminating the terms appearing in (4.17) and that with the second-order adiabatic subtraction

show the perfect agreement.

We have also investigated the properties and the consequences of the renormalized current

(4.18) shown in Fig.4.1. We found the negativity of the current and the exponentially unpro-

tected terms in the massive limit again in the bosonic case as well as the fermionic case. The

negativity of the renormalized current which shows up in tiny mass regimem ≲ 0.003H , which

can be observed in the phase diagram Fig. 4.3.

Due to the lacking experimental knowledge of the renormalization point in curved spacetime,

we had been adopting the minimal subtraction scheme in both the adiabatic and point-splitting

renormalization for the time being. However, as we have seen, the minimal subtraction scheme

is not physically acceptable for the following reasons. Firstly, the massive charged particle limit

of the bosonic current does not correspond to the fermionic current, though their behavior must

be the same as that of the classical particles, which is independent of the particle spin. Secondly,

there appear the terms without exponential suppression factor exp(−2πm/H) in the massive

limit of the bosonic and fermionic currents. Lastly, the bosonic current shows the negativity rel-

atively restricted parameter region unlike the fermionic current which shows the negativity for

sufficiently weak electric field regime regardless of the particle mass. Importantly, the physics

behind the counterintuitive negative current in the case of the weaker electric fields is already

understood, and the explanation does not depend on the particle spin.

To fix the problems with the minimal subtraction, we proposed the use of the maximal sub-
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traction which is defined by the further subtraction of the terms in (4.26) (fermion) or (4.28)

(scalar) from the minimally-subtracted currents. The resulting currents are visualized in Fig. 4.4

(fermion) and Fig. 4.5 (boson). The comparison of the behaviors of the conductivities (boson/fermion,

minimal/maximal) is made in Fig. 4.2, which explicitly shows the boson-fermion agreement and

the negativity of the maximally subtracted conductivity. The revised phase diagram is also exhib-

ited in Fig. 4.6. We have checked that the behavior of the maximally-subtracted currents in the

massive region corresponds to that of the semiclassical calculation (4.38) without an irrelevant

O(1) numerical factor. Note that the change in the renormalization condition does not affect the

behavior of the flat spacetime or the strong electric field limit.

5.1.3 S A E

This part advocates using the effective field theoretical method in combination with the nonper-

turbative renormalization group (NPRG) technique. We found the governing equation (E.41)

(Wetterich equation, or flow equation) reviewing the original derivation in the flat spacetime. We

have derived the detailed functional dependence of the flow equation for the scalar QED in de

Sitter spacetime in the form of (E.47), which, in principle, describes the dynamics of the scalar

field and also the gauge field. We could not found the analytical solution to the full equation.

Instead, we gave the functional flow equation for the effective scalar potential (E.63) under the

existence of the background electric fields to explain the capability of the method as a numeri-

cally friendly way to deal with the quantum field theory which is apparently free of the UV and

IR divergence.

What is remarkable about the method is that the flow equation (E.41) is exact, and even after

the truncation like (E.43), it still contains nonpertabative contributions. Another advantage of

the method together with the (modified) Ward-Takahashi identity (E.38) is the maintained gauge

symmetry. This enables us to greatly reduce the number of the relevant terms which should be

considered.

The work shown in this appendix is still inconclusive, however, we, as a first step, obtained

the result (E.63) which describes the flow of the effective potential affected by the background

electric field. The solution of the flow equation (E.63) shows how the shape of the effective

scalar potential is deformed by the applied electric fields, which is considered to give further

physical insights about the systems with electromagnetic interaction in future studies.
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5.2 D

The cosmological consequences of our analyses summarised in the previous section are dis-

cussed in this section. The implications of the anti-screening phenomena we have found in dS-

QED are first considered. Then, possible impacts of the proposed renormalization condition are

discussed. In addition, we explain the possible impacts of the present work on other research

fields.

5.2.1 P

The anti-screening effect of QED theory as a physically relevant process with an acceptable in-

terpretation is not only theoretically interesting but also cosmologically crucial. As the gauge

field naturally couples to the charged fields, this effect totally changes the original program of

the inflationary magnetogenesis scenario: to produce the primordial electromagnetic fields by

breaking the conformal invariance and consider the subsequent QED interactions caused by the

overproduced electric fields.

With the justification of the anti-screening effect, we point out that spontaneous electromag-

netic field generation could be realized even without modifying the QED theory. The homoge-

neous and constant electric field assumed in our analyses can be naturally produced in the infla-

tionary spacetime where the physical length of a quantum mode is stretched by the cosmic expan-

sion, and eventually the mode exits from the horizon. Needless to say, the produced over-horizon

scale electric field is insignificant.

A curious scenario is that the strength of the over-horizon electric field will grow in time due

to the instability caused by Maxwell’s demon aided by the symmetry-breaking electric field. The

growth of the electric field strength continues until it reaches the value of the equilibrium (zero

induced current) indicated by the lines in Fig. 4.6. 1 Importantly, the induced current which dy-

1 To validate the use of the present result for this argument, it is needed to show that the time scale
of the backreaction is sufficiently longer than that of the cosmological dynamics, or, Hubble timeH−1.
From (2.40), we can obtain the backreaction equation for the proper electric field strength in z-direction
Ez ≡ a−2A′

z(η),

(a2Ez)
′ = a2H

d

da
(a2Ez) = −ea3H3Jboson/fermion(M,L =

eEz

H2
). (5.1)

In the weak electric field regime, the induced current is given by J = σboson/frmion(M)L. We, then, read-
ily obtain

1

a2Ez

d

da
(a2Ez) = −e2σ

1

a
, (5.2)
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namically appears during the process towards the equilibrium state can source magnetic fields

by which the horizon is encircled. We can conjecture that, in the realistic inflatinary model with

slowly varying Hubble parameter and the transition to the reheating era, the anti-screening effect

of the QED adiabatically produces the electromagnetic fields at the horizon scale in each hori-

zon patch and results in the primordial electromagnetic fluctuations with randomly distributed

directions at a certain coherent length.

Since our result is limited to the pure de Sitter, homogeneous and constant background electric

field, and neglected effects of and to the magnetic fields, further investigations are required to

establish the spontaneous generation scenario of the primordial (electro)magnetic fields by the

QED instability. It seems that the understanding of the negative current by Maxwell’s demon

explained in Sec. 3.5, the semiclassical calculation shown in Sec. 4.5.3, and the approximation

method proposed in Appendix E are useful for future research. The correct dynamical evolution

of the electromagnetic fields during the inflationary era itself is interesting enough to be studied.

The basic treatment of it is shown in [67]. The consideration of the magnetic fields can also be

done analytically in the light of [68].

Another application of the anti-screening effect is considered in the context of the anisotropic

inflation models [69, 70, 71] where a vector field is coupled to the inflaton field and causes

anisotropic expansion of the universe. Very recently, Schwinger effect caused by a vector field

background configuration which appears in an anisotropic inflation model was studied in [72].

5.2.2 P

We reasoned out that the renormalization condition (the maximal subtraction scheme) proposed

in Sec. 4.5 gives physically more decent predictions than the traditionally employed condition.

This, however, could be incompatible with the adiabatic subtraction scheme as we explained in

the last part of Sec. 4.5.2. The adiabatic subtraction scheme is also often used in many studies

involving QFT in curved spacetime because of its simplicity and wide applicability.

whose solution is given by a2Ez ∼ a−e2σ = e−e2σHt. Therefore, the typical time scale of the backreac-
tion is given by

tbr =
1

e2|σ(M)|
1

H
. (5.3)

The backreaction dynamics can be much slower than the cosmic expansion if (i) the coupling is suffi-
ciently weak, e ≪ 1, or (ii) the conductivity σ(M) is small, |σ| ≪ 1. These conditions are the limitation
of our analysis but there exist some parameter regions in which the condition |σ(M)| ≪ 1 is satisfied, see
Fig. 4.2.

64



In [73], it was discussed that cosmologically observable quantities are insensitive to the pre-

cise renormalization condition. In contrast to this statement, we revealed that a physical process

during the inflation can be affected qualitatively as well as quantitatively by choice of the renor-

malization condition. There is no doubt at the end of the day that the correct renormalization

condition is obtained only experimentally or observationally. Notwithstanding, it also seems

true that matching the asymptotic behavior of a physical quantity to its semiclassical estimation

should be imposed.

We would like to emphasize that the consideration of the gauge interaction was essential to

our understanding about the renormalization. Though want of observations cannot perfectly be

satisfied, we can elicit novel phenomena from quantum field theories in curved spacetime com-

mensurate with their complexity when we step into interacting theories.

5.2.3 C

The search for yet incompletely understood aspect of the theory of quantum gravity and thermo-

dynamics is one of the hottest topics in fundamental physics. As we pointed out in Sec. 3.5, the

negative induced current has the thermodynamical interpretation. Therefore, the system we con-

sidered serves as an analytical example of the study of the Holography. We considered the mas-

sive particle limit in Sec. 4.5.3 which corresponds to vanishing quantum correlation length. It

is interesting to take the quantum correlation into account so as to obtain the physical quantities

such as the electric current. This will enable us to examine the effect of the correlation between

the interior and exterior of the event horizon in an explicit way.

At last, the possible connection between our findings and physics of the scales much closer

to ours, i.e., condensed matter physics, should be remarked upon. Actually the negative current

and negative Joule heating can be seen in many places such as Peltier device (a heat conveying

device) and an osmosis membrane [74]. The negative capacitance [44, 45, 46] is also regarded

as a static version of the negative current. All the phenomena mentioned above increases inho-

mogeneity by consuming energy or dropping entropy. The only difference between dS-QED and

desktop devices is the experimental verifiability. The fluid dynamical analog of curved space-

time QFT system proposed, e.g., in [75, 76] has potential to realize the experimental study of the

anti-screening effect of dS-QED we found.
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5.3 C

We analytically investigated dS-QED in background electric fields in response to the research

questions we set:

• Does dS-QED have curious phenomena?

• If so, what is the physics behind the phenomena?

• What is their cosmological consequence?

As a result of theoretical exploration, we reached the new prediction of the anti-screening

effect in dS-QED explained as a consequence of Maxwell’s demon lives on the de Sitter hori-

zon. This leads us to a scenario of the spontaneous electromagnetic fields generation in the infla-

tionary spacetime, which, in principle, can be studied with the effective field theoretical method

we explicitly wrote down for dS-QED case. We also proposed a new renormalization condition

which imposes the nonperturbative behavior expected by the semiclassical argument on the phys-

ical quantity, which directs questions to the validity of the traditional adiabatic regularization

scheme and necessitates reconsideration. Not only the cosmological significance of the present

work, but also the relation to other topics such as thermodynamics and gravity, quantum correla-

tions, and condensed matter physics were pointed out.
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A
Dirac Field in Curved Spacetime

The details about Dirac field in a curved spacetime is described here while exhibiting some use-

full formulae.

Commutator of the spin connection and the gamma matrices is directly calculated and reads

[Γν , γ
µ] = −∇νγµ = −(∂νγµ + Γµνλγ

λ), (A.1)

which is equivalent to the following condition

∇′
νγ

µ ≡ ∂νγµ + Γµνλγ
λ + [Γν , γ

µ] = 0. (A.2)

Besides, since ψ̄ψ is a scalar, Leibnitz rule reads ∂µ(ψ̄ψ) = (∇µψ̄)ψ + ψ̄∇µψ, which yields

{ψ̄,Γµ} = ψ̄Γµ + Γµψ̄ = 0. (A.3)

These are used to show the partial integration rule

−
∫ √

−g d4x
(
(∇µψ̄)eµaγaψ

)
=

∫ √
−g d4x

(
ψ̄eµaγ

a∇µψ
)
. (A.4)
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The probability four current is defined by jµ = ψ̄γµψ and its conservation law holds in the

sense of tensorial covariant derivative, i.e.

∇µjµ = jµ,µ + Γµλµj
λ = ψ̄,µγ

µψ + ψ̄γµψ,µ + ψ̄γµ;µψ

= (ψ̄,µ − ψ̄Γµ)γµψ + ψ̄γµ(ψ,µ + Γµψ)

= imψ̄γµψ − imψ̄γµψ

= 0,

(A.5)

where we have used (A.1) and the equations of motion for the Dirac field (2.29) and (2.30).
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B
Spinor Calculation

We need the so-called spin sum formula to determine the normalization condition compatible

with the anti-commutation relation {ξ̂(η, x), π̂(η, y)}. Target quantity is

∑
s=1, 2

(uk, su
†
k, s + v−k, sv

†
−k, s). (B.1)

Let X be a matrix constructed from the eigenvectors ws of B defined in (3.11)

X ≡
∑
s=1, 2

wsw
†
s. (B.2)

X is hermitian, X† = X . The completeness condition of the eigenvectors ws reads X+CX∗C† =

1. X also satisfies a condition BX = X . One can show that the unique representation for X in

terms of the gamma matrices is

X =
1

2
+
M

2r
γ0 +

L

2r
γ0γ3 =

1

2
(1 +B). (B.3)

The definition of the charge conjugate operator (3.13) leads to CX∗C† = 1
2(1 − B), and one can

again check that the completeness condition is manifestly satisfied.
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After some algebra, we reach the following expression,

∑
s=1, 2

(uk, su
†
k, s + v−k, sv

†
−k, s) =

[
ζ ′(ζ∗)′ − iFk(ζ(ζ∗)′ − ζ ′ζ∗) + ω2

k|ζ|2
]
1, (B.4)

where ζ is a shorthand notation for ζ+k, s=1,2. Indeed, the suffix s is verbose since ζ
+
k, s=1 =

ζ+k, s=2. Also Fk is defined as Fk ≡
ωkω

′
k

σ
. Using the equation of motion (3.17) and the nor-

malization (3.21) of the mode function, it is straightforward to prove that the quantity inside the

large parenthesis [ ] in (B.4) is a constant in time and equals to unity. Therefore we obtain the

spin sum formula, ∑
s=1, 2

(uk, su
†
k, s + v−k, sv

†
−k, s) = 1, (B.5)

which guarantees that the cononical quantization condition (3.29) is compatible with the normal-

ization conditions (3.21), (3.22), and (3.28).

We can express this normalization condition for the mode function ζ in a simpler way by intro-

ducing an auxiliary function ζ̃ ≡ i(ω2
k − F 2

k )
−1/2(∂η − iFk)ζ as

|ζ|2 + |ζ̃|2 = 1

ω2
k − F 2

k

, (B.6)

where ω2
k −F 2

k = k2− L2

r2
k2z is a time independent constant. It is straightforward to confirm that

ζ̃ satisfies the equation of motion for ζk,s=3,4 by using F ′
k = σ. The inverse of this transforma-

tion is given by ζ = i(ω2
k−F 2

k )
−1/2(∂η+ iFk)ζ̃. By making comparison between the asymptotic

behaviors of the mode functions, we found

ζ̃±k,s=1,2 = ζ±k,s=3,4. (B.7)

This result can also be proved explicitly by recurrence relations for the Whittaker’s functions.

In our convention, the normalization condition for u, v spinors is expressed as

u†k, suk, s′ = v†−k, sv−k, s′ = δs, s′ , (B.8)

and we can also check the orthogonality condition for s, s′ = 1, 2

u†k, sv−k, s′ = v†−k, suk, s′ = 0. (B.9)
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Let us also write down a useful formula which is needed in calculation of the expectation

value of the current operator (3.31), for s, s′ = 1, 2,

w†
sγ

0γiws′ = w†
s

Bγ0γi + γ0γiB

2
ws =

L

r
η3iδs, s′ , (B.10)

where we have used Bws = ws for s = 1, 2 and B† = B.
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C
Consistent Adiabatic Expansion for Spinor

Mode Function

In order to find the consistent WKB expansion (3.35) for the equation of motion of the spinor

mode function (3.33), we should begin with the most primitive WKB-type ansatz given by

ζ = exp

(
±ℏ−1

∫ η

dη′(X(η′) + iY (η′))

)
, (C.1)

where X and Y are real functions to be determined by the equation of motion. Substituting this

ansatz into (3.33), we obtain two conditions

X2 − Y 2 ± ℏX ′ = −ω2, 2XY ± ℏY ′ = ℏσ. (C.2)

Note that X (Y ) has only odd (even) order terms in the power series expansion by ℏ, respec-

tively. The latter of (C.2) reads ℏ−1X = ∓1
2(lnY )′ + σ

2Y . This enables us to eliminateX from

(C.1), which yields

ζ =
N√
Y

exp

(
± i
ℏ

∫ η

dη′
(
Y − iℏ σ

2Y

))
, (C.3)
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where we have introduced a normalization factor N .

Unfortunately, this expression does not satisfy the normalization condition (3.36) in a nonper-

turbative way. However, the normalization condition can still be satisfied at each order of the ℏ

expansion.

At the zeroth order, the solution is found to be Y = ω. The relation F ′
k = (ωω

′

σ )′ = σ can

be used to find an integral σω = (ln(ω + Fk))
′ and then we find that the normalized positive

frequency mode is given by

ζ+|(0) =
√

σ

2ω2(σ + ω′)
e−

i
ℏ
∫
dη′ω. (C.4)

If we write Y in a power series of ℏ as Y =

∞∑
n=0

ℏnω(n) with ω(0) = ω(= ωk(η)) and also

rewrite
σ

2Y
term in the exponential as

√
σ

2ω2(σ + ω′)

∞∑
n=0

ℏnF (n) with F (0) = 1 , we finally

obtain the consistent expansion (3.35). This expression gives correct asymptotic behavior of the

exact solution (Whittaker functions) as described in (3.21). Moreover, we can find that the zeroth

order ansatz for the negative frequency mode function ζ−|(0) is given by

ζ−|(0) =
√

σ

2ω2(σ − ω′)
e+

i
ℏ
∫
dη′ω, (C.5)

which is slightly different from the positive counterpart.
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D
Integration of Whittaker Function

Here we describe the procedure to evaluate the integral (3.31),

⟨J3⟩ = −2eL
r

∫
d3k

(2π)3

{
1 + iγkz(ζ

+ζ+
∗′ − ζ+′

ζ+
∗
)− 2

(
ω2
k − F 2

k + γFkkz
)
|ζ+|2

}
, (D.1)

with a cutoff Λ in the momentum integral
∫ ∞

0
dk → lim

Λ→∞

∫ Λ

0
dk. The parameters are given,

again, by

γ ≡ r

L
− L

r
, Fk ≡

ωkω
′
k

σ
= aHr − Lkz

r
. (D.2)

The procedure is similar to the previous works [37, 39, 41] but involves much more complex-

ity.

In the cylindrical coordinates (k, x = cos θ, ϕ), the equation above reads

−2eL
r

lim
Λ→∞

∫ Λ

0

dk

2π
k2
∫ 1

−1

dx

2π

∫ 2π

0

dφ

2π{
1 + iγkx(ζ+ζ+

∗′ − ζ+′
ζ+

∗
)− 2

(
(1− x2)k2 + aHrγkx

)
|ζ+|2

}
,

(D.3)
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and the first trivial term gives a divergent contribution

−2eL
r

lim
Λ→∞

∫ Λ

0

dk

2π

∫ 1

−1

dx

2π

∫ 2π

0

dφ

2π
k2 = lim

Λ→∞

−2eLΛ3

6π2r
. (D.4)

The positive frequency mode function ζ+ defined in (3.21) is, again, given by

ζ+k (η) =
e

π
2
Lx

√
2k

√
r

r − Lx
W−iLx, 1

2
+ir

(
−2i k

aH

)
. (D.5)

For the remaining part, we exploit the Mellin-Barnes type integral representation of the Whit-

taker functionWκ,µ(z):

Wκ,µ(z) =

∫
Cs

ds

2πi
zse−z/2

Γ(s− κ)Γ(−s− µ+ 1
2)Γ(−s+ µ+ 1

2)

Γ(12 − κ− µ)Γ(
1
2 − κ+ µ)

, (D.6)

where the contour Cs runs from −i∞ to i∞ and is taken to separate the poles of the gamma

function Γ(s − κ), which is located at s = κ − n (n = 0, 1, 2, · · · ), from the ones of Γ(−s −

κ − µ + 1
2)Γ(−s − κ + µ + 1

2) at s = n − κ ± µ + 1
2 . Using the complex conjugation nature

(Wκ,µ(z))
∗ = Wκ∗,µ∗(z

∗), a derivative rule d
dzWκ,λ(z) =

(
1
2 −

κ
z

)
Wκ,λ(z) − 1

zW1+κ,λ(z), and

the reflection formula for gamma function, the integral is rewritten as

− 2eL lim
Λ→∞

∫ Λ

0
dk

∫ 1

−1
dx

∫
Cs

ds

2πi

∫
Ct

dt

2πi

eπLx

4π2
e

πi
2
(t−s)Γ(s+ iLx)Γ(−s− ir)Γ(−s+ ir + 1)

× Γ(t− iLx)Γ(−t+ ir)Γ(−t− ir + 1)
sinhπ(r − Lx) sinhπ(r + Lx)

π2(r + Lx)

(
2k

aH

)s+t
×
{
(x2 + γx− 1)k2 − aHγ(r + Lx)(1 +

1

2

(
1 + i(r − Lx)
s+ iLx− 1

+
1− i(r − Lx)
t− iLx− 1

)
)kx

}
.

(D.7)

The integration contours Cs and Ct run from −i∞ to +i∞. Cs sees the poles at s = −iLx − n

(n = 0, 1, 2, · · · ) on the left and the ones at s = −ir + n, ir + 1 + n on the right. Ct sees the

poles at t = +iLx − n on the left and the ones at t = ir + n, −ir + 1 + n on the right. See

Fig. D.1.

Since Cs and Ct can be taken to ensure ℜ(s+ t) > 0, we can perform the k-integral explicitly

to find O(Λ(s+t+2)) and O(Λ(s+t+3)) terms. At this moment, the k-integration produces other

poles on complex t-plane at t = −s− 2,−s− 3. We then perform the t-integral with closing the

integration path positively (by a counterclockwise path). The residues from t = iLx−m, (m =
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Figure D.1: Graphs of the contours Cs and Ct (green lines) on the complex s, t-plane.
Additional poles s + t = −2 and s + t = −3 appear when the k-integration is done. As one can see,
the contours can be deformed to meet the condition ℜ(s + t) > 0. This condition ensures that the
poles at t = −s−2,−s−3 are on the left side of the contour Ct and contributing to the t-integration.

0, 1, 2, · · · ) and t = −s − 2,−s − 3 can contribute to the integral. Note that the contributions

fromm ≥ 4 poles will vanish after taking the limit Λ→∞.

The s-integral can be similarly done for the contributions from the ploes at t = iLx −m with

m = 0, 1, 2, 3, and remains only the residues from the poles at s = −iLx− n with n = 0, 1, 2, 3.

The non-vanishing contribution is calculated as

−2eL
(
− Λ3

6π2r
+
aH

6π2
Λ2 + 0× (aH)2Λ1 − (aH)3

6π2
ln

(
2Λ

aH

)
+ (aH)3O(Λ0)

)
. (D.8)

We see the cancelation of the Λ3 divergence here and in the trivial part (D.4). The finite part

(O(Λ0) in (D.8)) is given by

O(Λ0) =
γE
6π2
− 23

144π2
− 7L2

120π2
+

L4

420π2
− 23M2

192π2
− 3M2

4π2L2
+

L2M2

1440π2
− 5M4

576π2

− 3M2r

8π2L3
log

(
r − L
r + L

)
+ i

(
1

12π
− 1

2π2r
+

121L2

216π2r
− 91L4

1440π2r
+

L6

2016π2r
− 65r

144π2

+
89rL2

1440π2
− rL4

1120π2
− 41rM2

576π2
− rM2L2

1440π2
− rM4

576π2

)
+

1

8π2

∫ 1

−1
dx(1 + r2 − (1 + 3L2 + 3r2)x2 + 5L2x4)(ψ(iLx− ir) + ψ(iLx+ ir)),

(D.9)

where ψ(z) = (ln Γ(z))′ denotes the digamma function and γE is the Euler constant. The x-

integral cannot be expressed in terms of simpler functions, but it is real since the imaginary part
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of the digamma function is given by 2ℑψ(iy) = 1/y + π coth(πy).

The remining part (residues from t = −s− 2,−s− 3) is calculated as

−2eL(aH)3
∫ 1

−1
dx

∫
Cs

ds

2πi

e−iπseπLx sinh(π(r − Lx)) sinh(π(r + Lx))

sin(π(s+ iLx)) sin(π(s− ir)) sin(π(s+ ir))
f(s), (D.10)

where f(s) is meromorphic, and has only single poles located at s = −iLx + 1,−iLx,−iLx −

1,−iLx− 2,−iLx− 3. We further introduce a function

g(s) = b3(s+ iLx)3 + b2(s+ iLx)2 + b1(s+ iLx)

+
c0

s+ iLx
+

c1
s+ iLx+ 1

+
c2

s+ iLx+ 2
+

c3
s+ iLx+ 3

(D.11)

to express f(s) as

f(s) = g(s)− g(s+ 1) +
d

s+ iLx− 1
. (D.12)

Of course, all the coefficients bi, ci, and d have no s-dependence.

The shift of the contour s → s − 1 does not change the coefficient in front of f(s) in (D.10),

then we find that the (g(s)− g(s− 1)) part of (D.10)

∫
Cs

ds

2πi
· · · (g(s)− g(s− 1)) =

(∫
Cs

−
∫
Cs−1

)
ds

2πi
· · · g(s), (D.13)

is given by the sum of the residues of the poles between Cs and Cs−1, i.e. s = −ir − 1, s = ir,

and s = −iLx+ 1.

The contributing poles of the d-term of (D.10),

∫
Cs

ds

2πi

e−iπseπLx sinh(π(r − Lx)) sinh(π(r + Lx))

sin(π(s+ iLx)) sin(π(s− ir)) sin(π(s+ ir))

d

s+ iLx− 1
, (D.14)

are s = −iLx + 2 + n, s = ir + n + 1, and s = −ir + n (n = 0, 1, 2, · · · ). These poles

are negatively encircled by the integration path (Cs+(semicircle on the right half plane)), and the

residue theorem gives

−2eL(aH)3
∫ 1

−1
dx
d

π

∞∑
n=0

{
− 1

1 + n
+

eπ(r+Lx)

n+ i(r + Lx)

sinh(π(r − Lx))
sinh(2πr)

+
e−π(r−Lx)

n− 1− i(r − Lx)
sinh(π(r + Lx))

sinh(2πr)

}
.

(D.15)
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Each of the sums
∞∑
n=0

1

n+ α
(α ̸= 0) seems divergent, however, they are indeed finite. Because,

using a series formula for the digamma function, one can show

∞∑
n=0

{
− 1

1 + n
+

eπ(r+Lx)

n+ i(r + Lx)

sinh(π(r − Lx))
sinh(2πr)

+
e−π(r−Lx)

n− 1− i(r − Lx)
sinh(π(r + Lx))

sinh(2πr)

}

=
∞∑
n=0

{
eπ(r+Lx)

sinh(π(r − Lx))
sinh(2πr)

(
1

n+ i(r + Lx)
− 1

n+ 1

)
+ e−π(r−Lx)

sinh(π(r + Lx))

sinh(2πr)

(
1

n− 1− i(r − Lx)
− 1

n+ 1

)}
= eπ(r+Lx)

sinh(π(r − Lx))
sinh(2πr)

(−γE − ψ(ir + iLx))

+ e−π(r−Lx)
sinh(π(r + Lx))

sinh(2πr)
(−γE − ψ(−1− ir + iLx)).

(D.16)

This result is also achieved by just applying the (Hurwitz’s type) ζ-function regularization tech-

nique to each of the sum.

The contribution of (D.10) is then given by −2eL(aH)3 times

− γE
6π2

+
37

144π2
− L2

120π2
− L4

420π2
+

7M2

192π2
+

3M2

8π2L2
− L2M2

1440π2
+

5M4

576π2

+
3M2r

16π2L3
log

(
r − L
r + L

)
− i
(
imaginary part of (D.9)

)
− r

48π5L2 sinh(2πr)

{
(45− π2(11− 12L2 + 8r2)) cosh(2πL)

− (45− π2(11− 72L2 + 8r2))
sinh(2πL)

2πL

}
+

3rM2

32π2L3 sinh(2πr)

∑
s=±

se2πrs(Ei(2πs(r + L))− Ei(2πs(r − L)))

−ℜ[
∫ 1

−1
dx

(1 + r2 − (1 + 3L2 + 3r2)x2 + 5L2x4)

16π2 sinh(2πr)

× ((e2πLx − e2πr)ψ(i(Lx+ r))− (e2πLx − e−2πr)ψ(i(Lx− r)))].

(D.17)

Finally, (D.8), (D.9) and (D.17) together yield (3.39).
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E
Attempt to Effective Field Theoretical

Approach

T

. To extend our analysis to more complicated systems, it

is to be hoped that we establish an approximation method which is capable to correctly capture

the nonperturbative effects of the field theory. There are many possible candidates, and in this

appendix, we will advocate the use of the nonperturbative renormalization group (NPRG) tech-

nique [77, 78, 79] combined with the effective field theoretical approach as a truncation method.

We will review the basics of the method, which was originally developed in the flat spacetime, in

the general curved spacetime employing the scalar QED as one of the simplest examples of the

gauge theories.

In Sec. E.1, we will clarify our purpose and show the outline of the method. In Sec. E.2, we

will follow the derivation of the main equation, called the flow equation, while amending details

necessitated by the general curved spacetime background. Finally, we will put the method to trial

employing a simple example so as to obtain physical results in Sec. E.3.
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E.1 O

Before the detailed explanation, we will explain the general view of the NPRG method in this

section.

E.1.1 M

All the relevant information of a quantum field theory is encoded in effective action Γ, which is a

functional of the classical field variables. As we have already understood, flat spacetime physics

can describe the strong field regime, so our focus will mainly be on the weak field regime where

curvature effect is significant. Since we treated the gauge field as a background, the method we

are going to establish is desired to be flexible enough to include the general electromagnetic field

configurations and its dynamics.

Our purpose is, hence, to find the effective action Γ[ϕ, ϕ†;Aµ] of the scalar QED in de Sitter

spacetime with a general but weak background electromagnetic field Aµ. More precisely, we aim

to investigate the electromagnetic response of the charged scalar field in inflationary universe

and to calculate electric conductivity σ and magnetic susceptibility χ as functions of the strength

of electromagnetic field and mass of the charged carriers.

E.1.2 S

We will exploit the NPRG technique in which an IR cutoff κ is used to control the IR behavior.

An IR-cutoff effective potential Γκ[ϕ, ϕ†;Aµ] and its flow equation,

∂κΓκ = ∂κTr log(Γ
(2)
κ + Γgf +Rκ), (E.1)

originally found by Wetterich, play the leading part. Here, Γ(2)
κ is the second functional deriva-

tives of Γκ itself with respect to the fields ψ = (ϕ, ϕ†, Aµ), Γgf is a gauge fixing term in the ac-

tion of the theory and Rκ term introduces the momentum dependent masses for the IR modes of

the fields. The momentum dependent mass term Rκ vanishes for the full quantum limit κ → 0.

The cutoff effective action reaches the full effective action in this limit,

Γ[ϕ, ϕ†;Aµ] = lim
κ→0

Γκ[ϕ, ϕ
†;Aµ]. (E.2)

82



Initial condition for the Wetterich equation (E.1) is given by the classical action of the theory

S, so we have a condition lim
κ→∞

Γκ → S. Further clarification including the meaning of the

formulae and quantities is given in the next section.

What is important is the functional flow equation (Wetterich equation) (E.1) is exact at this

moment. Thus, all the quantum information (about the momentum scale larger than the cutoff

p > κ) is contained in the solution Γκ. Moreover, the functional trace Tr appears in the flow

equation is involved with the momentum integration. The cutoff term Rκ can be chosen to make

the momentum integration finite in both UV/IR region. Accordingly, we can at least numerically

solve the flow equation starting from the classical action S with the bare parameters to obtain the

quantum action Γ.

E.1.3 P

Our strategy is summarized as follows:

1. Derive the Wetterich equation (E.1) again in general curved spacetime by following previ-
ous works.

2. Pose an ansatz for the form of the cutoff effective action Γκ by means of the symmetries
such as the general covariance and gauge invariance. We also neglect higher derivatives
of the field because we only consider nearly constant and homogeneous fields. We will
use the following ansatz,

Γκ =

∫
dDx
√
−g
{
−
ZF,κ
4

FµνFµν −Zϕ,κgµν(Dµϕ)
†(Dνϕ)

− Uκ(ϕ†ϕ) +
1

2
FµνMµν

κ (ϕ†ϕ)

}
,

(E.3)

where Dµ = ∇µ + ieAµ is the covariant derivative. Z factors are the usual field renormal-
izations but can depend on the cutoff κ. Uκ is the potential of the scalar field.Mµν

κ is the
magnetization-polarization tensor which can also be depend on κ. The last term FµνM

µν

is considered to describe the amount of deformation of the effective scalar potential.

3. Put the ansatz (E.3) into the flow equation (E.1) and solve it with an appropriate parametriza-
tion of the potential Uκ and the magnetization-polarization tensorMµν

κ to find the ef-
fective action Γ = Γκ→0. The components of the magnetization-polarization tensor
Mµν = Mµν

κ |κ→0 correspond to the polarization P i = −M0i = Mi0 and the mag-
netizationM i = 1

2ϵ
ijkMjk.
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4. Find potential minimum ϕ = ϕ0 by solving the equation of motion

1√
−g

δΓ

δϕ
= 0. (E.4)

5. Finally, we obtain the electric current Jµ and electromagnetic displacement tensor given
by Dµν

Jµ =
1√
−g

δΓ

δAµ

∣∣∣∣
ϕ=ϕ0

, Dµν =
1√
−g

δΓ

δFµν

∣∣∣∣
ϕ=ϕ0

, (E.5)

where components of the electromagnetic displacement tensor represent the electric dis-
placement vector Di = Ei + P i = D0i = −Di0 and the magnetic fieldH i =

Bi −M i = 1
2ϵ
ijkDjk. In our convention, E and B fields are given by Ei = F 0i = −F i0

and Bi = ϵijkFjk, respectively.

The quantities obtained by the last step carry information of the electromagnetic response of

the system. For linear response regime (both E and B fields are weak), we introduce the elec-

tric conductivity σij , the electric permittivity εij and the permeability µij which relate E and B

fields to D and H fields,

ji = σijE
j , Di = εijE

j , Bi = µijH
j . (E.6)

E.2 D W

In this section, we review the derivation of the renormalization group flow equation or Wetterich

equation (E.1) following the early-stage works on Wetterich equation for Yang-Mills theory

[77, 78, 79] and the recent work [80] on the pure scalar field theory in de Sitter spacetime in

which closed time path (in-in) formalism [81] was employed to extend. See also [82] for a re-

view of the subject. We combine these works to derive Wetterich equation for scalar quantum

electrodynamics (QED) in de Sitter spacetime.

E.2.1 E

The metric of D = d+ 1 dimensional de Sitter spacetime is given by

ds2 = gµνdx
µdxν = a(η)2(−dη2 + dx21 + · · ·+ dx2d), (E.7)

where η is the conformal time, defined as adη = dt, and a(η) = eHt = −(Hη)−1 is the scale

factor. The scalar QED action S is given in (2.39). This action is explicitly invariant under the
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gauge transformation of scalar fields ϕ→ e−ieαϕ, ϕ† → eieαϕ† and gauge field Aµ → Aµ +α,µ.

We will briefly summarize the definition of the effective action and related concepts clarifying

our convention and notation. The generating functional Z and 1-PI connected generated func-

tionalW are defined by

Z[J†, J,Kµ] = eiW [J†,J,Kµ]

=

∫
DϕDϕ†DA exp

{
iS[ϕ, ϕ†, Aµ] + iSgf [Aµ]

+ i

∫
dDx
√
−g(J†ϕ+ ϕ†J +KµAµ)

}
,

(E.8)

where J, J†,Kµ are the source functions and Sgf [Aµ] = 1
2α

∫
dDx
√
−g(A ;µ

µ )2 denotes the

gauge fixing term. We hereafter use slim notations for the spacetime integrals,
∫
x =

∫
dDx

√
−g(x),∫

xy =
∫
dDxdDy

√
−g(x)

√
−g(y) and so on.

The effective action Γ is defined by the following Legendre transformation,

Γ[ϕcl, ϕ
†
cl, Aclµ] =W [J†, J,Kµ]−

∫
x
(J†ϕcl + ϕ†clJ +KµAclµ). (E.9)

The classical fields are defined by functional derivatives ofW ,

1√
−g(x)

δW

δJ†(x)
= ϕcl(x),

1√
−g(x)

δW

δJ(x)
= ϕ†cl(x),

1√
−g(x)

δW

δKµ(x)
= Aclµ(x).

(E.10)

Functional derivatives of the effective action Γ with respect to the classical fields give the sources,

for example,

1√
−g(x)

δΓ

δϕcl(x)

=

∫
y

1√
−g(y)

1√
−g(x)

(
δW

δJ†(y)

δJ†(y)

δϕcl(x)
+

δW

δJ(y)

δJ(y)

δϕcl(x)
+

δW

δKµ(y)

δKµ(y)

δϕcl(x)

)
− J†(x)−

∫
y

1√
−g(x)

(
δJ†(y)

δϕcl(x)
ϕcl(y) +

δJ(y)

δϕcl(x)
ϕ†cl(y) +

δKµ(y)

δϕcl(x)
Aclµ(y)

)
= −J†(x),

(E.11)

where we have used the definitions (E.10) to see the first term and the third term cancel each
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other. Similarly, we obtain

1√
−g(x)

δΓ

δϕcl(x)†
= −J(x), 1√

−g(x)
δΓ

δAclµ(x)
= −Kµ(x). (E.12)

E.2.2 C

The path integral in (E.8) corresponds to in-out formalism if the integration path on the expo-

nential factor is straightly taken from the remote past t = −∞ (or, in terms of the conformal

time, η = −∞) to the infinite past t = ∞ (η = 0). Resulting expectation values obtained by

functional derivatives of the generating function Z will be elements such as ⟨0out|Ô|0in⟩. These

states |0in⟩ and |0out⟩ are the vacuum states at the initial (η = −∞) and final (η = 0) time,

respectively. These vacuum states are not identical to each other in general.

A simple technique to obtain the in-in values like ⟨0in|Ô|0in⟩ is to bend the path of the time

integration. In the closed time path formalism [81], the time contour is taken on C = C+∪C− =

{η+iϵ|η ∈ (−∞, 0)}∪{η−iϵ|η ∈ (−∞, 0)}. η runs from −∞ to 0 on C+ but it turns back from

0 to −∞ on C−. As a result, the contour C wraps the negative real axis of the complex η-plane.

We always employ the closed time path without any notice in the rest of the present appendix.

Any special functions (e.g., delta function, step function) involved with time ordering are defined

along the contour C.

E.2.3 E

Here, we introduce the infrared momentum cut off κ by adding cutoff terms∆κSS and ∆κSG

which serve as momentum dependent masses of the scalar and gauge fields. These terms give

larger masses for IR modes of the quantum fluctuations and do not affect the UV modes. We also

introduce the background formalism. The gauge field Aµ is divided into background part Āµ and

the fluctuation part aµ. The generated functionals with IR cutoff and background gauge field are

then defined as

Zκ[J
†, J,Kµ; Āµ] = eiWκ[J†,J,Kµ;Āµ]

=

∫
DϕDϕ†Da exp

{
iS[ϕ, ϕ†, Āµ + aµ] + iSgf [aµ]

+ i∆κSS [ϕ, ϕ
†; Āµ] + i∆κSG[aµ] + i

∫
x
(J†ϕ+ ϕ†J +Kµaµ)

}
.

(E.13)
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The definition of the effective action will also be involved with the cutoff terms. The effective

average action Γκ is defined by

Γκ[ϕcl, ϕ
†
cl, aclµ; Āµ] =Wκ[J

†, J,Kµ; Āµ]−
∫
x
(J†ϕcl + ϕ†clJ +Kµaclµ)

−∆κSS [ϕcl, ϕ
†
cl; Āµ]−∆κSG[aclµ],

(E.14)

here the classical functions are defined by functional variations ofWκ instead ofW in (E.10),

1√
−g(x)

δWκ

δJ†(x)
= ϕcl(x),

1√
−g(x)

δWκ

δJ(x)
= ϕ†cl(x),

1√
−g(x)

δWκ

δKµ(x)
= aclµ(x).

(E.15)

Note that the arguments inside the cutoff functions in (E.14) are the classical fields.

Though we do not specify the particular form of the cutoff terms, we still impose some condi-

tions on them. First of all, the cutoff terms must vanish as cutoff κ reaches to 0,

lim
κ→0

∆κSS,G = 0, (E.16)

so that we can recover the normal effective action in the κ → 0 limit, or Γκ→0|Ā=0 = Γ. The

second condition is that the cutoff terms should suppress the quantum fluctuations of the IR

modes with physical momentum p ≪ κ and leave the modes with p ≫ κ unaffected. This is

done by giving momentum-dependent masses to the scalar and the gauge fields. The cutoff terms

are chosen to be quadratic. The third requirement is concerning about the UV limit (κ → ∞).

The cutoff terms are supposed to remove all contributions to the path integral except for that

from classical trajectory. Therefore we impose a condition

Γκ→∞[ϕcl, ϕ
†
cl, aclµ; Āµ] = S[ϕcl, ϕ

†
cl, Āµ + aclµ]. (E.17)

This condition provides the initial condition of the flow equation as we mentioned.

We further introduce collective field notation. We define a collective field ψm = (ϕ, ϕ†, aµ)

and a collective source Jm = (J†, J,Kµ). The standard effective action is expressed as

Γ̃κ[ψclm; Āµ] =Wκ[Jm; Āµ]−
∫
x
ψclmJm. (E.18)
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Similar to (E.10), functional derivative ofWκ with respect to the source gives the classical field,

we can write it as
1√
−g(x)

δWκ

δJm(x)
= ψcl,m(x). (E.19)

It is straightforward to show

1√
−g(x)

δΓ̃κ
δψcl,m(x)

= −Jm(x). (E.20)

The cutoff terms can be taken as follows

∆κSS [ϕcl, ϕ
†
cl; Āµ] + ∆κSG[aclµ]

=
1

2

∫
x, y

ψcl,m(x)R
mn
κ (x− y; Āµ)ψcl, n(y),

(E.21)

where Rmnκ (x − y; Āµ) is an arbitrary regulator function which can depend on the cutoff scale κ

and background gauge Āµ.

A notion of the gauge transformation is in order. In our version of the gauge transformation,

the background field Āµ transforms while the fluctuation aclµ is unchanged. It assures the invari-

ance of the resulting effective action Γκ[ϕcl, ϕ†cl, aclµ; Āµ] at κ = 0. A new gauge field defined

by Aµ ≡ aclµ + Āµ also transforms under the same gauge transformation. We define an average

effective action depending on two gauge fields Aµ and Āµ

Γκ[ϕcl, ϕ
†
cl, Aµ, Āµ] = Γκ[ϕcl, ϕ

†
cl, aclµ; Āµ], (E.22)

which is invariant under the simultaneous transformations of the scalar field and both gauge field

Aµ and Āµ at κ = 0. If gauge invariant cutoff functions∆κSS,G = 0 are chosen, the effective

action will also be invariant for all κ.

It is not necessary to select gauge invariant regulators because it does not affect the final result

at κ = 0. However, careful and appropriate choice of the cutoff functions makes the problem

easier and simpler. We will come back to this point later.

E.2.4 F

We derive the flow equation for the effective average action Γκ in this section. It is straightfor-

ward to calculate the flow of the effective average action Γ̇κ ≡ κ∂κΓ using the definitions (E.13),
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(E.14), (E.21) and connected Green’s function defined by

Gκ, mn(x, y) =
−i√

−g(x)
√
−g(y)

δ2Wκ

δJm(x)δJ n(y)
. (E.23)

We also make use of the following equation

⟨ψm(x)ψn(y)⟩ = Gκ, mn(x, y) + ψcl,m(x)ψcl, n(y). (E.24)

We obtain

Γ̇κ = Ẇκ +

∫
x

1√
−g

δWκ

δJm
J̇m −

∫
x
ψclmJ̇m

− 1

2

∫
x, y

ψcl,m(x)Ṙ
mn
κ (x− y; Āµ)ψcl, n(y),

=
1

2

∫
x, y

Ṙmnκ (x− y; Āµ) {⟨ψm(x)ψn(y)⟩ − ψcl,m(x)ψcl, n(y)}

=
1

2

∫
x, y

Ṙmnκ (x− y; Āµ)Gκ, mn(x, y)

=
1

2
Tr{ṘκGκ},

(E.25)

in the last line, Tr runs over all the indices and spacetime. The inverse of the connected Green’s

function can be found as follows

δmn
δ(D)(x− y)√
−g(x)

=
1√
−g(x)

δψcl, n(y)

δψcl,m(x)

=

∫
z

1√
−g(x)

√
−g(z)

δψcl, n(y)

δJ l(z)
δJ l(z)
δψcl,m(x)

=

∫
z

1√
−g(x)2

√
−g(z)2

δWκ

δJ l(z)δJ n(y)
δΓ̃κ

δψcl,m(x)δψcl, l(z)

= i

∫
z

{
(Γ(2)
κ )ml(x, z) +Rmlκ (x− z)

}
Gκ, ln(z, y),

(E.26)

where Γ(2)
κ denotes the second functional derivatives of the effective average action,

(Γ(2)
κ )ml(x, z) ≡ 1√

−g(x)
√
−g(z)

δ2Γκ
δψcl,m(x)δψcl, l(z)

. (E.27)
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We can rewrite (E.25) as

Γ̇κ[ϕcl, ϕ
†
cl, Aµ, Āµ] = −

i

2
Tr

{
Ṙκ

Γ
(2)
κ +Rκ

}
= − i

2
Tr
{
κ∂κ ln(Γ

(2)
κ +Rκ)

}
, (E.28)

here, we use the rule that κ∂κ acts only on Rκ. It is much easier to see that the right hand side

of (E.28) will give a 1-loop result for the effective action if Γκ inside the Tr ln is replaced by the

classical action S + Sgf .

To obtain an effective action which depends only on one gauge field Aµ, we identify Āµ with

Aµ. At first, we split the effective average action

Γκ[ϕcl, ϕ
†
cl, Aµ, Āµ] = Γ(inv)

κ [ϕcl, ϕ
†
cl, Aµ] + Γ(gauge)

κ [ϕcl, ϕ
†
cl, Aµ, Āµ], (E.29)

where Γ(inv)
κ [ϕcl, ϕ

†
cl, Aµ] ≡ Γκ[ϕcl, ϕ

†
cl, Aµ, Āµ = Aµ] and as a result Γ

(gauge)
κ must vanish when

we set Āµ = Aµ. This Γ
(gauge)
κ term is a generalized gauge fixing term and is needed to obtain

a well-behaved propagator. (We can prove that Γ(gauge)
κ vanishes when the longitudinal mode of

the fluctuation vanishes aL,clµ = 0.)

E.2.5 S

Symmetry structure is particularly important since it helps us reduce the number of the terms to

elaborate. It would be admittedly sufficient to focus only on gauge-invariant quantities if there is

an explicit gauge symmetry, whereas it has been lost due to the gauge fixing procedure and the

introduced IR cutoff terms. Even though the theory is not invariant under the original version

of the gauge transformation which involves ϕ, ϕ† and Aµ, there is an explicit invariance under

simultaneous transformations of ϕ, ϕ†, Aµ and also Āµ. Let G be a generator of the infinitesimal

gauge transformation. This is a combination of infinitesimal field transformations

G = Gϕ + Gϕ† + GA, (E.30)

where each term on the right hand side is given by

Gϕ = −ieϕ(x) 1√
−g(x)

δ

δϕ(x)
, Gϕ† = ieϕ†(x)

1√
−g(x)

δ

δϕ†(x)
,

GA = ∂µ

(
1√
−g(x)

δ

δAµ(x)

)
.

(E.31)
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The variations of the fields are given by

δΦ(x) =

∫
y
α(y)G(x)Φ(y), (E.32)

where α is the parameter of the transformation and Φ represents ϕ, ϕ† or Aµ. In addition to this,

we define a generator Ḡ of the gauge transformation of Āµ.

The theory considered in (E.13) is, again, explicitly invariant under G + Ḡ. Therefore we

observe

(G + Ḡ)Γκ[ϕcl, ϕ†cl, Aµ, Āµ] = 0, (E.33)

setting Āµ = Aµ, we obtain

GΓ(inv)
κ [ϕcl, ϕ

†
cl, Aµ] = 0, (E.34)

consequently, it is shown in (E.29) that the effective average action is split into the gauge invari-

ant part Γ(inv)
κ and the gauge non-invariant remainder Γ(gauge)

κ . Though the latter does not have

the explicit invariance under G, it is invariant under G + Ḡ.

In the following subsections, we exploit the symmetry structures of the theory to gain an in-

sight of the gauge dependence of the flow equation for non-zero κ. At first, we will see the Ward-

Takahashi identity which describes the symmetry of the theory in quantum level. We, then, will

use it to make an appropriate truncation for the flow equation above.

E.2.6 W -T

The behavior of the effective action under the gauge transformation is directly derived from the

gauge invariance of the generating functional. From (E.8), we observe

0 =
1

Z

∫
Dψm G

(
iS + iSgf + i

∫
x
ψmJm

)
eiS+iSgf+i

∫
x ψmJm

= i ⟨GS⟩+ i ⟨GSgf⟩+ ie−iW
∫
x
Jm(Gψm)

∣∣∣∣
ψm= −i√

−g
δ

δJm

eiW .
(E.35)

After the Legendre transformation, we immediately obtain

0 = ⟨GS⟩+ ⟨GSgf⟩ −
∫
x

1√
−g

δΓ

δψcl,m
(Gψcl,m) (E.36)
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where the third term is nothing but GΓ. Therefore transformation property of the effective action

is given by the following Ward-Takahashi identity

GΓ[ψcl,m] = ⟨GS⟩+ ⟨GSgf⟩ . (E.37)

This manifests, before the gauge fixing, the effective action Γ is gauge invariant provided that

the classical action S is gauge invariant. It is not difficult to find the Ward-Takahashi identity for

the effective average action Γκ,

GΓκ[ψcl,m] = ⟨GS⟩+ ⟨GSgf⟩+ ⟨G∆κS⟩ − G∆κS, (E.38)

here the extra terms from the cutoff function have appeared. The last two terms do not cancel

each other in general. The modification shows the deviation of the effective average action from

the gauge invariant surface in the theory space. However, modified version of Ward-Takahashi

identity (E.38) comes down to the normal one (E.37) for vanishing cutoff limit κ → 0. There-

fore, we do not necessarily choose a gauge invariant cutoff function∆κS to obtain a gauge in-

variant final result Γ = Γ0. In any case, as long as the cutoff function disappears for κ → 0, we

will obtain a gauge invariant result.

An advantage of the modified Ward-Takahashi identity is revealed by writing down the flow

of a quantityWκ ≡ GΓκ[ψcl,m] − (⟨GS⟩ + ⟨GSgf⟩ + ⟨G∆κS⟩ − G∆κS). It is known that the

flow ofWκ is proportional toWκ itself

Ẇκ = −1

2
Tr

[
GṘG

(
1√
−g

δ

δψ

)
⊗
(

1√
−g

δ

δψ

)]
Wκ. (E.39)

Suppose Γκ is a solution of the modified Ward-Takahashi identityWκ = 0 at some scale κ =

Λ, we then automatically obtain Γκ which satisfiesWκ = 0 for all κ by integrating the flow

equation (E.28). Therefore, the modified Ward-Takahashi identityWκ = 0 is compatible with

the flow equation for the effective average action.

In a word, a solution obtained by solving the flow equation (E.28) and the modified Ward-

Takahashi identityWκ = 0 at the same time will show the physical gauge invariance at κ = 0,

i.e. GΓ(inv)
0 = 0.
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E.2.7 T

Exact solutions for the flow equation (E.28) are not generally available. Thus, truncation tech-

nique is required to solve the flow equation. To implement this, an ansatz for the effective aver-

age action is employed. The symmetry structure we have observed is particularly useful to build

the ansatz. For the gauge invariant part of the effective average action Γ(inv)
κ , we only have to

pick up the gauge-invariant quantities and implement the truncation procedure as usual. More-

over, the modified Ward-Takahashi identity (E.38) fixes the truncated form of the gauge non-

invariant reminder Γ(gauge)
κ .

Our ansatz for Γ(inv)
κ is given in (E.3). The reminder part Γ(gauge)

κ depending on the two gauge

fields Aµ and Āµ has an invariance under G + Ḡ and must vanish after identifying Āµ with Aµ.

We can expand Γ(gauge)
κ with these in mind as follows

Γ(gauge)
κ =

∫
x
(Aµ − Āµ)Mµν(Aν − Āν) +O((Aµ − Āµ)3). (E.40)

From the lowest order of the modified Ward-Takahashi identity (E.38) (neglect the loop contribu-

tion in it), we findMµν = 1/(2α)∇µ∇ν . Thus, at tree level, Γ(gauge)
κ is identical to the gauge

fixing term Γgf and does not depend on the cutoff κ. Hereafter, we neglect contributions from

higher-loop reminder Γ̂(gauge)
κ = Γ

(gauge)
κ − Γgf .

E.3 S

In the previous section, we discussed the gauge invariant flow equation for the effective average

action. The approximated flow equation for the gauge invariant effective action is obtained by

setting Āµ = Aµ and replacing gauge non-invariant part of the effective average action (E.28) by

Γgf ,

Γ̇(inv)
κ [ϕcl, ϕ

†
cl, Aµ] = −

i

2
Tr

 Ṙκ(
Γ
(inv)
κ

)(2)
+ Γ

(2)
gf +Rκ


= − i

2
Tr

{
κ∂κ ln

((
Γ(inv)
κ

)(2)
+ Γ

(2)
gf +Rκ

)}
,

(E.41)

in the last line, κ∂κ acts only on Rκ as we mentioned. Note also that even the generalized gauge

fixing term Γgf disappears in the coincidence limit Āµ = Aµ, the second functional derivative
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Γ
(2)
gf can have contribution.

We adopt (E.3) as the ansatz for the gauge invariant part of the effective action Γ(inv)
κ . The

truncation is justified based on the following assumptions:

1. Only gauge invariant building blocks can appear in the expression.

2. We consider the weak and slowly-varying electromagnetic fields.

3. The local interaction and negligible higher-derivative terms.

It is convenient to use a set of new (real) field variables (χ(x), θ(x),Aµ(x)) defined as

ϕ(x) =
1√
2
χ(x)eieθ(x), ϕ†(x) =

1√
2
χ(x)e−ieθ(x), Aµ(x) = Aµ(x)− θ,µ(x), (E.42)

so as to obviate the troubles with the gauge redundancy. In fact, the ansatz (E.3) becomes inde-

pendent of the phase field θ(x), and the ansatz is given in terms of the new variables by

Γ(inv)
κ [χ,Aµ] =

∫
dDx
√
−g
{
−
ZF,κ
4

FµνFµν −
Zϕ,κ
2

gµν(χ,µχ,ν + e2χ2AµAν)

− Uκ(χ2) +
1

2
FµνMµν

κ (χ2)

}
,

(E.43)

where the gauge field strength is gauge invariant, i.e. Fµν = Aν,µ −Aµ,ν = Aν,µ −Aµ,ν .

The second functional variation of the effective action is directly obtained,

δ(2)Γ(inv)
κ [χ,Aµ]

=

∫
dDxdDy

[
1

2
δAµ(x)δAν(y)

{
ZF

x
∂β(
√
x
gµ[ν(x)gα]β(x)

x
∂αδxy)−Zϕe2

√
x
gµνχ2δxy

}

+
1

2
χ(x)δχ(y)

{
Zϕ

x
∂µ(
√
x
gµν(x)

x
∂νδxy)−Zϕe2

√
x
AµAνδxy

− 2
√
x
δxy

(
(2χ2U ′′

κ + U ′
κ)−

1

2
Fµν(2χ

2M′′µν
κ +M′µν

κ )

)}

+ δAµ(x)δχ(y)
{
−2Zϕe2

√
x
gµνχAνδxy + 2

x
∂ν

(√
x
χM′µν

κ δxy

)}]
,

(E.44)

where we have introduced abbreviated notations,

√
x
=
√
−g(x), δxy = δ(D)(x− y), gµ[νgα]β = gµνgαβ − gµαgνβ . (E.45)
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The prime ′ on the functions Uκ andMµν
κ denotes the derivative with respect to their arguments

χ2, e.g. U ′
κ = ∂Uκ(χ2)/∂χ2.

In the form of operators,

(
Γ(inv)
κ

)(2)
=
(
Γ(inv)
κ

)(2)ml
(x, z) =

1√
−g(x)

√
−g(z)

δ2Γ
(inv)
κ

δψcl,m(x)δψcl, n(z)

=

 Γχχκ (x, z) Γ
χAµ
κ (x, z)

Γ
Aµχ
κ (x, z) Γ

AµAν
κ (x, z)

 ,

(E.46)

the functional derivative in the conformally flat spacetime gµν = a2(x)ηµν is given by

Γχχκ (x, z) =
Zϕηµν

aD(x)aD(z)

x
∂µ

(
aD−2(x)

x
∂νδxz

)
+

δxz
aD(x)

(
−
Zϕe2

a2(x)
ηµνAµAν − 2(χ2U ′′

κ + U ′
κ) + Fµν(2χ

2M′′µν
κ +M′µν

κ )

)
,

Γ
χAµ
κ (x, z) = −2Zϕe2

δxz
aD

gµνχAν − 2χ(x)M′µν
κ (x)

x
∂νδxz
aD(z)

,

Γ
Aµχ
κ (x, z) = −2Zϕe2

δxz
aD

gµνχAν + 2χ(z)M′µν
κ (z)

x
∂νδxz
aD(x)

,

Γ
AµAν
κ (x, z) =

ZF
aD(x)aD(z)

x
∂β

(
aD−4ηµ[νηα]βδxz

)
−
Zϕe2δxz
aD+2

ηµνχ2.

(E.47)

Also, the second derivative of the gauge fixing term is given by

Γ
AµAν

gf (x, z) =
1

α
√
−g(z)

x
∂
µ
(

1√
−g(x)

x
∂α

(√
−g(x)gανδxz

))
, (E.48)

and other components are zero.

In the case of de Sitter QED, we can take advantage of the Fourier transformation due to the

homogeneity of the spacetime. It is easier to consider the explicit form of the regulator function

Rκ in the Fourier space. A special form of the regulator called Litim’s regulator is often em-

ployed,

R̃κ(k) = ZϕH2Θ

(
κ2 −

(
k

aH

)2
)(

κ2 −
(
k

aH

)2
)
, (E.49)

where the Θ function is Heaviside step function defined on the contour C of the in-in formalism.

It is obvious that the Litim’s regulator gives momentum dependent mass to the IR modes with
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the physical momentum p < κ while leaving UV modes p ≥ κ unaffected. When we take the

vanishing cutoff limit κ→ 0, the regulator also vanishes. Besides, all the quantum modes will be

suppressed in the UV limit κ→∞ so that only the classical contribution exists.

Substituting these expressions into (E.26), the set of the equations for the exact Green’s func-

tions is obtained. Unfortunately, we have not found any way to solve the fully dynamical equa-

tions nor to approximate the solution. Instead, we will treat the gauge field as a background at

the outset in the next section.

E.4 B

It seems a challenging task to obtain the full Green’s functions which are solutions of the equa-

tion (E.26). However, it is still possible to find the analytical solution if the gauge field is treated

as a background field. In this case, the only equation to be addressed is,[
Zϕ
a2
{∂2η + (D − 2)

a′

a
∂η − ∂2i + ηµνe2AµAν}+ ∂2χ(Uκ −

1

2
FµνMµν) +Rκ(x, y)

]
Gχχ(x, y)

= i
δ(D)(x− y)
aD(x)

.

(E.50)

From the translation symmetry of the system, Fourier transformation of the Green’s function is

given by

Gχχ(x, y) =

∫
dD−1k

(2π)D−1
e−ik·(x−y)G̃κ(k, ηx, ηy). (E.51)

The canonical form of the Green’s function is given by

G̃κ(k, ηx, ηy) = (axay)
− (D−2)

2
Ĝκ(px, py)

k
, (E.52)

where p = k/(a(η)H) is the physical momentum. The regulator function transforms as

Rκ(x, y)

∫
dD−1k

(2π)D−1
e−ik·(x−y)R̃κ(k), (E.53)

where the form of R̃κ is chosen to be the Litim’s regulator (E.49).

For the solvable configuration

Aµ = (0, 0, · · · ,−E
H
a2), (E.54)
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where only the electric background exists, the equation for the Green’s function Ĝκ becomes

[
∂2px + 1−

(L2 + D(D−2)
4 −Θ(κ2 − p2x)(κ2 − p2x)−Z−1

ϕ ∂2χ(Uκ + LΠκ))

p2x

]
Ĝκ(px, py)

= −iδ(px − py)
Zϕ

.

(E.55)

Here, L = (eE)/H2 is the dimensionless electric field,Πκ is the dimensionless polarization

in the Dth-direction which gives the electric energy when multiplied by L. 1 Using the homoge-

neous solution of the equation uκ(p), we can construct the Green’s function as follows,

Ĝκ(px, py) = TC [uκ, u∗κ](px, py)

= Θ(px − py)uκ(px)u∗κ(py) + Θ(py − px)uκ(py)u∗κ(px),
(E.56)

where we have defined the time ordering operator TC along with the time contour C of the in-in

formalism.

In the local potential approximation, Zϕ = 1, the homogeneous equation for uκ(p) is given by
(
∂2p −

ν2κ − κ2 − 1/4

p2

)
uκ(p) = 0 (p < κ)(

∂2p + 1− ν2κ − 1/4

p2

)
uκ(p) = 0 (p > κ)

, (E.57)

where the parameter νκ is defined by

νκ =
(D − 1)2

4
− ∂2χ (Uκ + LΠκ) + L2. (E.58)

The solution corresponds to Bunch-Davies vacuum is immediately obtained,

uκ(p) =


√
πp

4
ei

π
2
(νκ+

1
2
)

[
c+κ

(p
κ

)ν̄κ
+ c−κ

(p
κ

)−ν̄κ]
(p < κ)√

πp

4
ei

π
2
(νκ+

1
2
)H(1)

νκ (p) (p > κ)

, (E.59)

where we have defined ν̄2κ = ν2κ − κ2. H(1)
νκ (p) is the Hankel function of the first kind. The

1Hereafter,Πκ, instead ofMµν , is supposed to be determined as a function of χ2.
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connection condition, continuity of the solution and its first derivative, at p = κ yields

c±κ =
1

2

[
H(1)
νκ (κ)± κ

ν̄κ
H(1)′
νκ (κ)

]
. (E.60)

Now is the time for examining the flow equation (E.41). We obtain

1

2
Tr[ṘκGκ] = −

1

2

∫
dDx

√
−g(x)

∫
dD−1p

(2π)D−1
HD−2Ṙκ(p)

Ĝκ(p, p)

p

= −1

2
Ω4H

D−2

∫
dD−1p

(2π)D−1

{
2κΘ(κ2 − p2)

} |uκ(p)|2
p

,

(E.61)

where Ω4 is the spacetime 4-volume factor. The momentum integration is trivial because of the

vanishing behavior of Ṙκ for p > κ and the simple functional form of uκ(p). We also obtain

Γ̇(inv)
κ = −Ω4

(
U̇κ + LΠ̇κ

)
. (E.62)

Finally, we reached the following functional flow equation for the effective potential,

U̇κ + LΠ̇κ = β
(
∂2χUκ, ∂2χΠκ;κ

)
= HD π(D−1)/2

16(D − 1)Γ
(
D−1
2

)
(2π)D−2

κD+1

κ2 + ∂2χ (Uκ + LΠκ)
BD(νκ, κ),

(E.63)

where BD is given by

BD(νκ, κ) = e−πℑ(νκ)

{
((D − 1)2 − 2ν2κ + 2κ2)|H(1)

νκ (κ)|2

+ 2κ2|H(1)′
νκ (κ)|2 − 2(D − 1)κℜ[H(1)∗

νκ (κ)H(1)′
νκ (κ)]

}
.

(E.64)

Note that this functional flow equation is an extension of previous result (Eq.(2.20) in [80]), and

we recover the same result when we take the zero electric field limit L → 0 in our expression

(E.63).

It seems appealing to numerically investigate the physical consequences of the flow equation

with the electric field (E.63) after the fashion of previous works [80]. Once the unknown func-

tions Uκ(χ2),Πκ(χ
2) are expanded as serieses, for instance,

Uκ(χ2) =
N∑
n=0

c2n,κχ
2n, Πκ(χ

2) =
N∑
n=0

d2n,κχ
2n, (E.65)
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the flow equation merely yields the coupled differential equations for the coefficients c2n,κ and

d2n,κ. Therefore we can, in principle, solve the flow equation (E.63) numerically.
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