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Abstract

We study superconformal field theories (SCFTs) with a one-complex-dimensional moduli
space of vacua in three and four dimensions. We develop an effective field theory on moduli
space to describe the large-R-charge sector of the theories, and by using it we calculate
physical quantities associated to operators carrying large R-charge.

In the case of a N = 2 SCFT in three dimensions, we compute the anomalous di-
mension of certain low-lying operators carrying large R-charge J . We find that the lowest
and second-lowest scalar primary operators have vanishing anomalous dimension up to and
including O(J−3), and this result is consistent with the fact that they are in protected su-
permultiplets. We also show that that the anomalous dimension of the third-lowest primary
operator carrying large R-charge must be nonpositive, making use of unitarity of moduli
scattering and the absence of superluminal signal propagation in the effective dynamics of
the complex modulus.

In the case of N = 2 SCFTs of in four dimensions with a one-complex-dimensional
Coulomb branch, we show that two-point functions of chiral primary operators have a non-
trivial but universal asymptotic expansion at large R-charge. In particular, the asymptotic
expansion depends on the difference between the a-coefficient of the Weyl anomaly of the
underlying SCFT and that of the effective theory of the Coulomb branch. For Lagrangian
SCFT, we check our predictions for the logarithm of the two-point functions against ex-
act results from supersymmetric localization, and find reasonably good agreement. In this
way, we show the large-R-charge expansion serves as a bridge from the world of unbroken
superconformal symmetry and SCFT data, to the world of the low-energy dynamics of the
moduli space of vacua.
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1 Introduction and summary

The idea of macroscopic or classical phenomena as aggregates of a huge number of mi-
croscopic constituents goes back to the atomism of Leucippus and Democritus, which is
first confirmed by Einstein’s exhaustive explanation of Brownian motion [7]. In quantum
mechanics, Bohr’s correspondence principle [8] states that the behavior of quantum me-
chanical systems reproduces the classical behavior in the limit of large quantum numbers.
These ideas are enlarged and sophisticated by Wilson, who introduced the notion of renor-
malization group [9,10]. The renormalization group is a theoretical tool which represents a
consecutive application of scaling and coarse graining operations. If one is interested in the
dynamics of a physical system at a very large length scale L, details of the system at short
distances, such as effects of particles much heavier than L−1 are generically not important,
and just encoded as undetermined parameters of an effective theory describing only low
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energy degrees of freedom. The most distinguished low energy effective theories include
Einstein’s general relativity, the standard model in particle physics and hydrodynamics.
The renormalization group is why these models work extremely well without knowing the
dynamics at short distances such as quantum gravity, particle physics beyond the TeV scale
or the detailed chemical composition of fluids.

Although renormalization group and the effective theoretic description of low energy
dynamics are very powerful, there are interesting systems where these techniques are not of
immediate practical use, due to the strongly coupled nature of the systems. In such systems,
the effective Hamiltonian describing the low energy physics contains infinitely many terms
of the same order of magnitude, and it is quite difficult to compute physical quantities by
making use of it.

Nonetheless, one can perform the effective-field-theoretic analysis for some sectors in
such strongly coupled systems. One example is the Regge trajectories in hadron physics.
Experimentally observed spectra of baryons and mesons obey the simple linear formula J '
α′M2, where M and J are the mass and angular momentum of hadrons, respectively [11].
This formula is easily derived by an effective theory of rotating strings [12] at large angular
momentum J , in which the loops and higher-derivative corrections1 to the classical result are
suppressed by powers of J−1, and works remarkably well even at J of order one. This kind
of effective field theory (EFT) at sectors where some quantum number (conserved charge) is
large has been used to extract nontrivial information from various strongly coupled systems,
in which the standard perturbative method loses its power. For instance, in [15,16] the large
charge limit has played a key role in the correspondence between single-trace operators in
planar N = 4 super-Yang–Mills in four dimensions and fundamental strings in AdS5 × S5.
In this thesis we analyze the large charge sector of conformal field theories using EFT.

1.1 Conformal field theories

Conformal field theories (CFTs) generically arise at ultraviolet (UV) and infrared (IR) fixed
points of renormalization group flow of Poincaré-invariant quantum field theories. At a fixed
point, coupling constants do not run under renormalization group flow and therefore it is
invariant under rescaling of the energy scale. In general2 scale invariance is enhanced to
conformal invariance, which is very powerful to study theories at fixed points.

Also, critical phenomena in statistical mechanics and condensed matter systems are often
described in terms of CFTs.3 When a system is approaching a second-order phase transition,

1The first correction to the linear spectrum predicted by the effective theory of rotating strings is later
rederived by the S-matrix bootstrap [13,14].

2In two dimensions, it is proven [17] that unitary scale- and Poincaré-invariant fixed points of renormal-
ization group flow are also conformal. The same statement is proven in four dimensions [18–20] in specific
setups under mild assumptions.

3See [21,22] and references therein for condensed matter applications of CFT.
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its correlation length diverges and the system becomes scaleless at longer distances than the
intrinsic scales of the theory such as the lattice spacing.

An important point is that dynamical properties of a CFT do not depend on its mi-
croscopic description. For instance, let us take a three-dimensional Ising model on a cubic
lattice, which describes antiferromagnetic systems such as FeF2. At the critical temperature
and in the long-distance limit, it is well known that the system exhibits the order-disorder
phase transition and is described by a Z2-invariant CFT, which we call the Ising CFT in
three dimensions. The same CFT is reached by taking the low-energy limit of the φ4-theory
in three dimensions in Euclidean signature, whose action is4

S =

∫
d3x

(
1

2
(∂µφ)(∂µφ) +

1

2
m2φ2 +

1

4!
λφ4

)
. (1.1)

In addition, the liquid-vapor critical point of water5 has the same critical exponents as
the three-dimensional Ising CFT. So, the same CFT appears in many, different physical
systems, and physical observables do not depend on its microscopic description, that is,
where it comes from. This property, called universality, allows CFT to describe physics in
nature and thus makes it a very important class of quantum field theory.

The AdS/CFT correspondence [23] is another reason why CFT is worth being studied.
Every CFT in d dimensions is believed to be equivalent to some UV-complete quantum
gravitational theory in (d+ 1)-dimensional anti-de Sitter (AdS) spacetime. Especially, CFT
gives a nonperturbative definition of quantum gravity in AdS, and one can study rather
enigmatic gravitational physics such as the dynamics of black holes by analyzing CFT.

1.2 Conventional techniques

Despite its ubiquity and importance, CFTs are very often strongly coupled, and therefore
the ordinary perturbative method loses its power in such theories. The following approaches
are frequently used to tackle nonperturbative CFTs:

• The ε-expansion [24]. In order to study some, for instance, three-dimensional CFT
such as the φ4-theory above, one formally analytically continues the CFT to d = 4− ε
dimensions and regards ε as small. Physical observables are perturbatively expanded
in powers of ε, and resumed somehow to find values in d = 3 dimensions. This
approach is helpful only when the theory becomes free in the ε→ 0 limit.

• The large-N expansion [25–27]. If a theory contains a large (either gauge or global)
symmetry such as U(N) or O(N) with N � 1, one can perturbatively expand physical
observables in N−1. However, the parameter N is usually small in physically interest-
ing systems, and therefore the large-N technique is not applicable straightforwardly.

4In order for the IR of this theory to be conformal, one must fine-tune the value of λ/m.
5There, the order parameter is the density.
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• The numerical conformal bootstrap [28].6 Using the crossing symmetry of four-point
functions in CFT, one can rigorously numerically bound the spectrum of low-lying
operators and their operator product expansion (OPE) coefficients. This method is
quite successful in hunting up "minimal" interacting CFTs, e.g., those with a small
number of relevant operators and small stress-tensor two-point functions. On the
other hand, it is computationally difficult to access to more generic, "nonminimal"
theories.

• Monte Carlo simulations. If a CFT is realized as a system on a lattice, one may
be able to use Monte Carlo methods to evaluate physical observables. However, a
notorious problem, the so-called sign problem, often appears when one deal with
systems involving fermions. Also, there are CFTs which cannot be put on a lattice,
due to the gravitational anomaly [31,32].

Still, there are quite many strongly coupled theories to which none of the above methods
can be applied.

1.3 Large-charge expansion

Instead of dealing with a particular single theory, one can discuss general features of phys-
ical quantities in some sector of CFTs. CFTs with global symmetries exhibit alluring and
useful simplifications in the sector of large global charge (either an internal symmetry such
as spin, or an internal global symmetry such as a U(n) or O(n) symmetry). Thanks to
these simplifications, one can compute physical quantities associated with operators carry-
ing large global charge as asymptotic expansions in negative powers of the global charge.
One prominent example is the large-spin expansion of the anomalous dimension and three-
point functions of operators with large spin [33,34]. This method is applicable to the most
general CFTs, as it uses only the eikonal limit of the analytic conformal bootstrap and does
not use any Lagrangian description as its input. The results of the large-spin expansion
looks particularly intuitive in AdS holographic duals.

More recently, in [35] and related work [36–45] it was noted that CFTs with global
symmetries simplify in some familiar strongly coupled systems, when one considers the op-
erator dimensions and three-point functions of low-lying operators of large global charge J .7

The large-global-charge expansion employs an effective-field-theoretic description of super-
fluids [48]. Superfluids are states with finite density and correspond to operators with large

6See also recent reviews [29,30] and references therein.
7These large-quantum-number limits themselves appear to be special cases of an even more general

situation, a "macroscopic limit" in which one takes pure or mixed states or density matrices into some
extreme direction in Hilbert space. The "eigenstate thermalization hypothesis" (ETH) [46], when it holds,
is perhaps the most famous example of this behavior. For a recent bootstrap derivation of some properties
of the large charge behavior in [35–37] making use of Regge theory and the conceptual connection with the
ETH, see [47].
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global charge, via the operator-state correspondence reviewed in section 2.2. Vacuum cor-
relation functions of operators with large global charge are mapped to correlators at finite
charge density, and therefore can be computed in a systematic perturbation in J−1 by us-
ing the EFT of superfluids. As discussed in detail in section 3.1, the EFT works due to
a large hierarchy between the IR cutoff EIR and the scale defined by the charge density
ρ, EIR � |ρ|

1/d−1, and the loops and the higher-derivatives are suppressed by powers of
EIR/ρ

1/d−1. This situation is analogous to that of the chiral perturbation theory of pion
physics [49], where one considers the EFT in the regime the pion mass mπ is much smaller
than the scale defined by the decay constant fπ, and physical observables are controlled by
a perturbative expansion in mπ/fπ.

We regard these large-charge expansions as a new, useful tool for studying strongly
coupled CFTs. Although operators with large global charge have the large operator dimen-
sion ∆ and therefore highly irrelevant (∆� d) in the sense of renormalization group flow,
it is possible to learn some physical consequences from them. First of all, we can bound
the behavior of physical quantities in the large charge limit as we do in section 3 and 4,
so theories violating the bounds at large charge cannot be unitary CFTs. This is similar
in spirit to the bounds found in the numerical bootstrap [28], but is complementary in the
sense that the numerical conformal bootstrap usually bounds quantities associated with op-
erators of low dimension whereas the large-charge expansion gives constraints for operators
of large dimension. Also, the large-charge expansion may be useful for studying quantum
gravity in AdS via the AdS/CFT correspondence. In [50] it has been pointed out that the
scaling behavior of operator dimensions studied in [35] is precisely that of the extremal
non-Bogomol’nyi–Prasad–Sommerfeld (BPS) AdS-Reissner–Nordström (RN) black brane,
which is a electrically charged solution of the Einstein–Maxwell theory in AdS. Since the
models studied in [35] do not have weakly coupled gravity duals, the result of [35] does not
give immediate strong implications for notorious problems in quantum gravity such as the
weak gravity conjecture [51] for now. However, given the nontrivial correspondence between
the CFT operator dimensions and the energy of the extremal AdS-RN black blane at large
charge, it may be possible that the same technique applied to CFTs with weakly coupled
gravity description shed light on these problems. Furthermore, we note that condensed
matter literature [52] has studied a very similar EFT description of a strongly interacting
Fermi gas, which is realized in experiments (see, e.g., [53] and references therein), where the
large number density suppresses the loops and higher-derivatives.

Thus, the large-charge expansion has a potentially wide range of applications in physics.
So far, most of the existing literature studying the large-global-charge expansion of CFTs has
considered the universality classes including the Wilson–Fisher fixed points with an O(N)

global symmetry [35–39], with a notable exception being the large-R-charge expansion of
four-dimensional N = 4 super-Yang–Mills theory in the large-N limit [15,16]. In particular,
a general structure of the EFT at large charge in the case of CFTs with a family of Lorentz-
invariant vacua, i.e., moduli space, is completely unknown. CFTs with moduli space very
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often have a fermionic spacetime symmetry called supersymmetry, and then the conformal
group is enlarged to a supergroup, termed the superconformal group.

There are various motivations to study supersymmetric CFTs (SCFTs) with moduli
space of vacua using the large-global-charge expansion. First of all, the behavior of SCFTs
with moduli space in the large-global-charge limit is very different from that of generic non-
supersymmetric CFTs because of special properties of SCFTs such as a stronger unitarity
bound called the BPS bound, and the existence of a ring structure formed by certain scalar
operators. In addition, it is worth pointing out that some SCFTs do not have a known
UV Lagrangian description (see, e.g., [54]). In these theories, it is impossible to compute
nontrivial physical quantities using conventional methods such as the Monte Carlo simu-
lations. The large-global-charge expansion can be regarded as a new tool to study such
mysterious SCFTs. Furthermore, it is suggested that a three-dimensional SCFT with mod-
uli space, which is exactly the one we study in section 3, may be realized in systems where
supersymmetry emerges at quantum critical points [55]. So, the large-charge expansion may
be useful to estimate the measurable critical exponents associated with operators carrying
large charge density.

1.4 Summary of this thesis

In this thesis, we explore the large-charge expansion in three- and four-dimensional SCFTs
with a continuous family of Lorentz-invariant vacua (moduli space), in which behavior of
physical quantities at large charge is interesting and very different from that in theories
with no moduli space.

This thesis is organized as follows.
In section 2 we review basic facts about CFT such as the conformal algebra, radial

quantization, the unitarity bounds and OPE. These are necessary to understand the later
sections.

In section 3 we consider the spectrum of operators in a N = 2 SCFT in three dimensions
with one-complex-dimensional moduli spaces, that is the IR fixed point of three free chiral
superfields X, Y , Z perturbed by a relevant superpotentialW = XY Z. We develop an EFT
on each branch of moduli space, and compute the operator dimensions of certain low-lying
operators with large U(1)R-charge J . This EFT is quite different from the one describing
the nonsupersymmetric O(2) Wilson–Fisher CFT in three dimensions, as it should be since
there the operator dimension ∆ carrying large charge J behaves like ∆ ∝ J 3/2, whereas
in the present case the lowest operator dimension should be linear in R-charge due to the
unitarity bound. While the superconformal primary operator with the lowest dimension
is a chiral primary, the scalar primary with the second-lowest dimension is in a so-called
semishort representation, with dimension exactly J + 1, a fact that is hard to discern from
the Lagrangian of theW = XY Z theory. The scalar primary operator with the third-lowest
dimension is in a long representation with dimension J+2−bJ−3 +O(J−4), with b being an
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unknown positive constant. The coefficient b is proportional to the lowest-derivative super-
conformally invariant (or super-Weyl-invariant) interaction term in the effective action on
moduli space, which we explicitly construct in section 3.1.3. The fact that b is positive is not
a consequence of supersymmetry, but follows from unitarity of the forward 2→ 2 scattering
amplitude and the absence of superluminal fluctuations in the low-energy dynamics of the
moduli field [56]. We also present a proof of a lemma which states that scalar semishort
primary operators can be naturally considered as a module over the chiral ring, by usual
multiplication of local operators. This lemma, together with the existence of scalar sem-
ishort primary operators at large charge J , proves that scalar semishort primary operators
exist for all values of J ∈ 2N/3. The contents in section 3 are heavily based on work [43]
done in collaboration with Simeon Hellerman and Masataka Watanabe.

It is very interesting to compare predictions made from the effective-field-theoretic anal-
ysis in the large-charge limit, with other methods which make maximal use of the full
superconformal symmetry. Recent studies [1–4] have shown that correlation functions of
a number of chiral primary operators and a single antichiral primary operator in N = 2

Lagrangian SCFTs in four dimensions can be exactly computed by supersymmetric local-
ization. In order to compare predictions from the EFT with these exact results, in section 4
we consider two-point functions of chiral and antichiral primary operators with large U(1)R-
charge, in N = 2 SCFTs in four dimensions using the EFT at large U(1)R-charge. We
restrict ourselves on the case of one-complex-dimensional Coulomb branch, and make use
of the effective-field-theoretic techniques developed in section 3, to evaluate the asymptotic
behavior of the two-point function

Yn := |x− y|2n∆O
〈
On(x)Ōn(y)

〉
(1.2)

in the limit where the operator insertion On has large R-charge 2n∆O, which is equivalent
to taking n→∞. The asymptotic expansion of Yn at large n is shown to be nontrivial but
universal, and of the form

Yn = (n∆O)!

∣∣∣∣NO2π

∣∣∣∣2n∆O

(n∆O)αỸn, (1.3)

where Ỹn converges to a constant in the large-n limit, and NO is a constant which is in-
dependent of n and characterizes the normalization of O relative to the effective Abelian
vector multiplet scalar. We also show that the constant α is positive and proportional to
the difference between the so-called a-coefficient of the Weyl anomaly of the underlying
SCFT and that of the EFT of the Coulomb branch. For SCFTs with a Lagrangian de-
scription,8 we compare our predictions from the EFT for the logarithm of the two-point
function Bn = logYn, up to O(log n), with exact computations obtained by supersymmet-
ric localization [1–4]. In the case of SU(2) N = 4 super-Yang–Mills theory we achieve

8Most of known SCFTs with one-complex-dimensional Coulomb branch do not have a known Lagrangian
description. [57–60]
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explicit analytic agreement, and in the case of SU(2) N = 2 supersymmetric quantum chro-
modynamics (SQCD) with four fundamental hypermultiplets we see fairly nice numerical
agreement at n ' 30 employing the zero-instanton approximation to the sphere partition
function. The contents in section 4 are heavily based on work [44] done in collaboration
with Simeon Hellerman.

Section 5 is devoted to the conclusion.

2 Review on conformal field theories

We first review basic properties of CFTs in d ≥ 3 dimensions,9 which are necessary to
understand the later sections. See, e.g., [29, 30, 64–66] for more complete reviews. In this
section we discuss what the conformal symmetry and unitarity can say about a general
CFT. Their consequences will turn out to be very powerful, and play a very important role
in later sections where we derive the large-R-charge expansion of dynamical quantities in
SCFTs in three and four dimensions.

2.1 Conformal algebra

The conformal group is the subgroup of general coordinate transformations xµ 7→ x′µ(x)

which leaves the spacetime metric invariant up to an overall factor,

gµν(x) 7→ g′µν(x
′) = c(x)gµν(x). (2.1)

We work in Euclidean signature, where the conformal group is SO(d+ 1, 1) in d dimensions.
The defining property (2.1) of conformal transformations implies that the Jacobian of the
coordinate transformation xµ 7→ x′µ(x) must be of the form

∂

∂xν
x′µ(x) =

√
c(x)Mµν(x), (2.2)

with some matrix M(x) ∈ SO(d) and c(x) being the factor which appears in (2.1).
Conformal transformations are generated by the SO(d) rotation Mµν , momentum Pµ,

special conformal Kµ and dilatation D, which are given by

Mµν = −i(xµ∂ν − xν∂µ), Pµ = −i∂µ, Kµ = i
(
2xµxν∂ν − |x|2∂µ

)
, D = ixµ∂µ, (2.3)

9Two-dimensional CFTs are special due to the infinite-dimensional Virasoro symmetry [61]. For details,
see [62,63] and references therein.
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where the Greek indices run over 1, 2, · · · , d. Their commutation relations are given by10

[Mµν ,Mρσ] = −i(δµσMνρ + δνρMµσ − δµρMνσ − δνσMµρ),

[Mµν , Pρ ] = −i(δνρPµ − δµρPν),
[Mµν , Kρ ] = −i(δνρKµ − δµρKν),

[ D , Pρ ] = −iPρ,
[ D , Kρ ] = +iKρ,

[ Pµ , Kρ ] = −2i(δµρD +Mµρ),

(2.4)

with all other commutators vanishing. In our conventions the action of the dilatation
generator D on an operator O at the origin is11 [D,O(0)] = −i∆OO(0), where ∆O is the
conformal dimension of O which is nonnegative real number in unitary CFTs, as shown in
section 2.4. Note that Pµ (Kµ) are raising (lowering) operators with respect to D. Since D
and Mµν commute we can simultaneously diagonalize them and label physical states by the
conformal dimension and the SO(d) spins.

Since special conformal transformations generated by Kµ may be less familiar than the
others, let us make some comments. A finite special conformal transformation maps a
point xµ in Rd to

xµ + vµ|x|2

1 + 2vµxµ + |v|2|x|2
, (2.5)

where vµ is an arbitrary real vector. From (2.5) it is easy to show that a special conformal
transformation is generated by an inversion

I : xµ 7→ x′µ := − xµ

|x|2
, (2.6)

followed by a translation x′µ 7→ x′µ+vµ followed by a second inversion. We note that we do not
claim that the inversion operation I is a symmetry of CFTs in general.12 One can show that
I belongs to O(d+1, 1) but not to SO(d+1, 1), so I is merely an outer automorphism of the
conformal group. Instead, the combined action of the inversion and a parity transformation
such as xµ=1 7→ −xµ=1 is an element of the conformal group SO(d + 1, 1) [66]. Therefore,
CFTs invariant under parity are invariant under the inversion and vice versa. Chern–Simons-
matter CFTs in three dimensions (see, e.g., [77, 78] and references therein) are the typical
examples of parity-violating CFTs. As we will see in section 2.3, the action of I is equivalent

10These commutation relations are the same as those used in, e.g., [67, 68].
11Hereafter we assume D is diagonalizable, which is the case in reflection-positive theories, as we dis-

cuss in section 2.3. In theories where reflection positivity is lost D can admit a nontrivial Jordan block
decomposition. Details can be found in [69–72] for two-dimensional theories and [73] for higher-dimensional
ones.

12Related comments are made in [29,30,66,74–76].
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to the time reversal on the cylinder R× Sd−1, which may or may not be a symmetry of the
theory on the cylinder.

It is known [79–81] that special conformal invariance requires the stress tensor to be
traceless in flat space,

Tµµ = 0, (2.7)

so that the corresponding Noether current JKµρ can be constructed as

JKµρ =
(
δνρ|x|2 − 2xνxρ

)
Tµν . (2.8)

2.1.1 Primary states and descendants

A primary state is defined as a state annihilated by the generators of special conformal
transformations Kµ,

Kµ |primary〉 = 0, µ = 1, 2, · · · , d. (2.9)

Given a primary state |primary〉, we can construct a series of state of higher conformal dimen-
sions, which are dubbed as descendants, by acting on |primary〉 with momentum operators.
For any primary state, there is an associated infinite-dimensional representation, the Verma
module, which is given by

V∆,{`} := span

{
d∏

µ=1

P nµ
µ |∆, {`}〉

∣∣∣∣∣nµ ∈ N

}
, (2.10)

where |∆, {`}〉 is a primary state of conformal dimension ∆, i.e.,

D |∆, {`}〉 = −i∆ |∆, {`}〉 , (2.11)

and {`} =
{
`1, `2, · · · , `bd/2c

}
denotes a set of SO(d) spins.

2.2 Radial quantization and the operator-state correspondence

Here we review radial quantization in CFT, which allows one to identify states in the Hilbert
space with local operators. This property will be essential when we derive the anomalous
dimension of near-BPS operators carrying large R-charge in section 3.

2.2.1 General remarks

In general, quantization of a quantum field theory is related to the choice of a foliation of
the spacetime. That is, the d-dimensional spacetime is expressed as a series of (d − 1)-
dimensional spatial leaves which evolves in time, and each leaf is endowed with its own
Hilbert space.
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In CFTs, correlation functions of operators are the most basic observables. They are
often defined by the path integral

〈O1(x1)O2(x2) · · · On(xn)〉 =

∫
[Dφ]O1(x1)O2(x2) · · · On(xn)e−S[φ]. (2.12)

Once the foliation is specified, a correlation function can be interpreted as a time-ordered
expectation value

〈O1(x1)O2(x2) · · · On(xn)〉 = 〈0|T
[
Õ1(x1)Õ2(x2) · · · Õn(xn)

]
|0〉 , (2.13)

where T denotes the time ordering with respect to the foliation, |0〉 is the vacuum state in
the Hilbert space H living on a spatial leaf,13 and Õi(xi) are quantum operators acting on
H which correspond to the path integral insertions Oi(xi).

A different foliation of the spacetime leads to a different Hilbert space and a time order-
ing T′. However, if we rearrange the right-hand side of (2.13) we get the same correlator on
the left-hand side of (2.13).

There is a particularly useful quantization scheme in CFTs. In d-dimensional theories,
let us take a series of (d−1)-spheres of various radii with center at the origin as the foliation,
and the associated time direction as the radial direction. Therefore, the Hamiltonian, which
generates the time translation, is identified with the dilatation generator D.

This choice of the foliation is called radial quantization. An important fact is that there
is a bijection between local operators and states in the Hilbert space in radial quantization.
Let us review how this correspondence works in theories with a Lagrangian description
following [30,82].

2.2.2 To states from local operators

First we would like to see how to construct states in the Hilbert space in radial quantization
from operator insertions. Let |φb〉 be a field eigenstate, where φb = φb(n) is a field config-
uration on a sphere of, for instance, unit radius r = 1 and n is a vector of unit length. A
set of field eigenstates spans the Hilbert space in radial quantization. Then, a general state
|Φ〉 is expressed as a linear combination of field eigenstates,

|Φ〉 =

∫
[Dφb] |φb〉 〈φb|Φ〉 , (2.14)

where the measure [Dφb] indicates the path integral is over the field on unit Sd−1.
For the vacuum |Φ〉 = |0〉, the inner product 〈φb|0〉, i.e., the wave function in the

"position representation", is given by the path integral over the interior of unit Sd−1 with
13Hereafter we assume that a vacuum state exists as a unique state belonging to the kernel of all the

conformal generators.
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boundary condition φ(r = 1, n) = φb(n) and without operator insertions,

〈φb|0〉 =

∫
φ(r=1,n)=φb(n)

r≤1

[Dφ(r, n)]e−S[φ].
(2.15)

A general state created by an operator O of definite conformal dimension can be defined
in a similar manner. Let us define a state O(r, n) |0〉 by the path integral with an operator
insertion,

〈φb|O(r, n)|0〉 :=

∫
φ(r=1,n)=φb(n)

r≤1

[Dφ(r, n)]e−S[φ]O(r, n).
(2.16)

In this language, we can state that the vacuum state |0〉 is defined by inserting the identity
operator O = 1 in the path integral.

2.2.3 To local operators from states and back

Now we would like to show operators can be constructed from states. Let |Φ〉 be a state in
the Hilbert space in radial quantization, which is an eigenstate of the dilatation operator
with dimension ∆. We would like to define from |Φ〉 correlation functions of local operators
involving an operator Φ. We cut a (d− 1)-ball B of unit radius centered at the origin in the
path integral with operator insertions outside B, and glue the state |Φ〉 at the boundary of
B. From this procedure, we have∫

[Dφb] 〈φb|Φ〉
∫
φ|
∂B
= φb

[Dφ]e−S[φ]O1(x1)O2(x2) · · · On(xn), x1, x2, · · · , xn /∈ B, (2.17)

where the first path integral with the measure [Dφb] is carried out over the field on the
boundary ∂B, and the second path integral is performed over the region outside B with the

boundary condition φ

∣∣∣∣
∂B

= φb on ∂B. The quantity (2.17) should behave exactly the same

way as the correlation function of local operators

〈O(x1)O(x2) · · · O(xn)Φ(0)〉 , (2.18)

under symmetry transformations. If there are insertions inside the (d − 1)-ball B of unit
radius, we can perform a scaling symmetry transformation x 7→ λx with sufficiently large
λ so that the insertions become sufficiently far from the origin. On the other hand, in the
limit where B shrinks to a point, the path integral over the boundary of B can be regarded
as defining a local operator at the origin. We emphasize that the dilatation symmetry is
crucial in this construction.
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The mapping from states to operators made here is by construction inverse to the one in
section 2.2.2. This is called the state-operator correspondence [83], which states that there
is a one-to-one mapping between local operators at the origin and states in the Hilbert space
in radial quantization,

O(0)←→ |O〉 = O(0) |0〉 . (2.19)

For a primary operator O∆,{`} of conformal dimension ∆ and SO(d) spin {`}, we have the
correspondence[

D ,O∆,{`}(0)
]

= −i∆O∆,{`}(0) ←→ D
∣∣O∆,{`}

〉
= −i∆

∣∣O∆,{`}
〉
,[

Mµν ,O∆,{`}(0)
]

= −iΣ{`}µν O∆,{`}(0) ←→ Mµν

∣∣O∆,{`}
〉

= −iΣ{`}µν
∣∣O∆,{`}

〉
,

(2.20)

where Σ
{`}
µν is the matrix acting on the spin indices.

In the discussion above we have assumed there is a Lagrangian description, but it is be-
lieved that the operator-state correspondence works for theories without an UV Lagrangian
description.

2.2.4 Cylindrical point of view

One can perform a Weyl transformation which transforms flat space Rd to the cylinder
R× Sd−1,

ds2
[
Rd
]

= dr2 + r2ds2
[
Sd−1

]
= r2

(
(d log r)2 + ds2

[
Sd−1

])
= e2τ

(
dτ 2 + ds2

[
Sd−1

])
= e2τds2

[
R× Sd−1

]
,

(2.21)

where τ := log r plays a role of the time coordinate on the cylinder. A dilatation r → λr is
equivalent to a shift τ → τ + log λ. Radial quantization on flat space Rd is equivalent to the
usual quantization on the cylinder R×Sd−1. An operator at the origin of flat Rd is mapped
to an operator at the past infinity τ → −∞ on the cylinder, which specifies the initial
boundary condition. That is, the path integral on flat Rd with an operator insertion O(0)

at the origin is equivalent to the path integral on the cylinder with a fixed initial state |O〉.
Under a general Weyl transformation gµν = δµν → [Ω(x)]2δµν , a scalar operator O of

conformal dimension ∆ transforms as14

O(x)→ [Ω(x)]∆O(x), (2.22)

and correlation functions on flat space and on the cylinder are related to each other by15

〈O1(x1)O2(x2) · · · On(xn)〉δµν = 〈O1(x1)O2(x2) · · · On(xn)〉[Ω(x)]2δµν

n∏
i=1

[Ω(xi)]
∆i . (2.23)

14See, e.g., [29] for a general conformal symmetry action on operators with spin.
15Here we have implicitly normalized the correlation functions dividing by the partition functions, so that

the Weyl anomaly in even dimensions [84,85] cancels between the denominator and the numerator.

16



In the case of the cylinder, Ω(x) = e−τ and we define a scalar operator on the cylinder by

Ocylinder(τ, n) := eτ∆Oflat(r, n) (2.24)

and the general relation (2.23) becomes

〈O1(x1)O2(x2) · · · On(xn)〉Rd = 〈O1(x1)O2(x2) · · · On(xn)〉R×Sd−1

n∏
i=1

e−τ∆i . (2.25)

2.3 Unitarity and reflection positivity

2.3.1 On flat space

In Lorentzian signature we are interested in unitary theories, where the energy and momen-
tum operators are Hermitian and the evolution is unitary. When Wick rotated to Euclidean
signature, unitarity becomes a property dubbed as reflection positivity.

In unitary field theories in Lorentzian signature, a local operator OL(t, x) obeys a unitary
spacetime translation,

OL(t, x) = eiHt−ix·PLOL(0, 0)e−iHt+ix·PL , (2.26)

where the generators H and PL are Hermitian in the usual flat space quantization. For the
sake of simplicity suppose that OL(t, x) is a Hermitian scalar operator,

[OL(t, x)]† = OL(t, x), (2.27)

and let us Wick rotate the theory to Euclidean signature. Then, (2.26) becomes

OE(tE, x) := OL(−itE, x) = eHtE−ix·PLOL(0, 0)e−HtE+ix·PL , (2.28)

which implies that the Euclidean operator OE(tE, x) satisfies

[OE(tE, x)]† = OE(−tE, x). (2.29)

Let us call an Euclidean operator real if it is Hermitian in Lorentzian signature. Unlike
the Lorentzian case, the Hermitian conjugation in Euclidean signature depends on which
direction we choose as the time direction. Let us consider a state

|ψ〉 := OE,1(tE,1, x1)OE,2(tE,2, x2) · · · OE,n(tE,n, xn) |0〉 (2.30)

with Oi,E being real Euclidean operators. The conjugate of this state is

〈ψ| = (|ψ〉)† = 〈0| OE,1(−tE,1, x1)OE,2(−tE,2, x2) · · · OE,n(−tE,n, xn) (2.31)
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That is, 〈ψ| is given by the vacuum state in the future acted on by operators in a time-
reflected way. If the theory under consideration is equivalent to a unitary Lorentzian theory
via the Wick rotation, the positivity of the norm

〈ψ|ψ〉 > 0 (2.32)

should hold. In Euclidean signature, from (2.31) we see that any 2n-point functions with
operators inserted in a time-reflection-invariant way must be positive. This property is
called reflection positivity.

2.3.2 On the cylinder

Let us consider reflection positivity for CFTs on the cylinder. We define the Hermitian
conjugation operation on the conformal generators as

P ‡µ = Kµ, M ‡
µν = −Mµν , D‡ = D. (2.33)

Here, we have used the symbol ‡ for the Hermitian conjugation in radial quantization,
instead of † in the usual quantization in flat space, to emphasize that the Hermitian con-
jugation operation depends on the quantization scheme used. This definition of the Her-
mitian conjugation is an involutive anti-automorphism of the Euclidean conformal algebra
(2.4), known as the Belavin–Polyakov–Zamolodchikov conjugation [61], and is geometri-
cally equivalent to an inversion (2.6). To see the latter statement, let us first understand
how the conformal generators are expressed in the cylindrical variables (τ, n). Assuming
(r, n1, · · · , nd−1) as independent variables and nd ≡

√
1−

(
n2

1 + · · ·+ n2
d−1

)
, from (2.3) we

have

Mµν = −i
[
nµ(1− δνd)

∂

∂nν
− nν(1− δµd)

∂

∂nµ

]
,

Pµ = −ie−τ
[
nµ

∂

∂τ
+ (1− δµd)

∂

∂nµ
−

d−1∑
j=1

nµnj
∂

∂nj

]
,

Kµ = +ie+τ

[
nµ

∂

∂τ
− (1− δµd)

∂

∂nµ
+

d−1∑
j=1

nµnj
∂

∂nj

]
,

D = i
∂

∂τ
.

(2.34)

From this expression, we see that an inversion (τ, n) 7→ (−τ,−n) and a complex conjugation
transform the conformal generators transform in the same way as the conjugation (2.33).
Therefore, real Euclidean operators on the cylinder satisfies the property

[OE,cylinder(τ, n)]‡ = OE,cylinder(−τ,−n). (2.35)
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2.4 Unitarity bounds

Demanding unitarity in CFTs in Lorentzian signature, or equivalently reflection positivity in
Euclidean signature, imposes several bounds on conformal dimensions of primary states [67,
86,87]. Here, we derive the bounds using only conformal algebra. Similar bounds for N = 2

SCFTs in three dimensions are discussed in appendix A.

2.4.1 Level one

Let |∆, {`}〉 be a primary state of conformal dimension ∆ and the SO(d) spin {`}. Assuming
reflection positivity, we impose the condition that the matrix element

Aµν := 〈∆, {`}|P ‡µPν |∆, {`}〉 = 〈∆, {`}|KµPν |∆, {`}〉 (2.36)

have only nonnegative eigenvalues. Using (2.4) and (2.20), we have

Aµν = 2 〈∆, {`}|
(
δµν∆− Σ{`}µν

)
|∆, {`}〉 . (2.37)

Now, we rewrite the spin matrix Σ
{`}
µν as

Σ{`}µν =
1

2
Lµν,µ′ν′Σ

{`}
µ′ν′ , Lµν,µ′ν′ := (δµµ′δνν′ − δµν′δνµ′). (2.38)

The matrix L defined here is the generator of SO(d) in the vector representation V. Writing
A = (µ′, ν ′) for an adjoint index of SO(d) and interpreting LA and ΣA to be acting on the
representation V⊗R{`}, where R{`} is the representation of SO(d) to which the state |∆, {`}〉
belongs, we have (

LAΣA

)
µν

=
1

2

[
(V + Σ)2 − V 2 − Σ2

]
. (2.39)

Then, the requirement of the nonnegativity of the matrix (2.37) is equivalent to

∆ ≥ 1

2

[
c2(R) + c2(V)−min

R′
c2(R′)

]
, (2.40)

where R′ runs over all possible irreducible representations which appear in the Clebsch–
Gordan decomposition of R⊗ V, and c2 is the quadratic Casimir invariant of SO(d).

Let us explicitly evalaute the lower bounds of (2.40) for the spin-` symmetric traceless
representation, which has

c2

(
1 2 · · · `

)
= `(`+ d− 2), ` = 0, 1, 2, · · · . (2.41)

Furthermore, in this case it is easy to show that

min
R′

c2(R′) = c2

(
1 2 · · · `−1

)
= (`− 1)(`+ d− 3), ` = 1, 2, 3, · · · , (2.42)
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where R′ runs over irreducible representations which appear in the Clebsch–Gordan decom-
position of ⊗ 1 2 ··· ` . From (2.40), (2.41) and (2.42), we get the unitarity bound for
scalar primaries (` = 0)

∆`=0 ≥ 0, (2.43)

and for primaries in the spin-` symmetric traceless representation with ` ≥ 1,

∆` ≥ `+ d− 2, ` = 1, 2, 3, · · · . (2.44)

The bound (2.43) for scalar primary operators is saturated by the identity operator, whereas
(2.44) is saturated by conserved current operators of spin `. To see this is the case, we
notice that the bound (2.40) for R being the spin-` symmetric traceless representation is
saturated when R′ is the spin-(`− 1) symmetric traceless representation, so the scalar state
Pν
∣∣Jνµ1···µ`−1

〉
is null. This implies the corresponding primary operator Jνµ1···µ`−1

satisfies
the conservation law ∂νJνµ1···µ`−1

(x) = 0.
We note that conserved currents with ` = 1 and ` = 2 are usual global symmetry currents

and stress tensors.16 If there are conserved currents with ` ≥ 3 in d ≥ 3 dimensions, the
theory is free [88,89].

Strictly speaking, if there are global symmetries in the theory under consideration there
are always the associated Noether charge operators, but it is not guaranteed that these
charge operators are generated by conserved current operators. In this thesis we postulate
that CFTs with global symmetries always have the associated conserved current operators.

2.4.2 Level two

Let |∆〉 be a primary state of conformal dimension ∆ and spin 0, and we consider the matrix
element

〈∆|(P · P )‡(P · P )|∆〉 = 〈∆|(K ·K)(P · P )|∆〉 = 8d∆

(
∆− d− 2

2

)
〈∆|∆〉 . (2.45)

If ∆ = 0, we see from (2.37) that the state |∆ = 0, ` = 0〉 is annihilated by all the conformal
generators. That is, ∆ = 0 automatically means the corresponding operator is the identity
operator. On the other hand, if ∆ > 0, in order for this matrix element to be nonnegative,
we need the condition

∆ ≥ d− 2

2
. (2.46)

This bound is saturated by a free scalar. Indeed, if the bound is saturated (2.45) implies
that the state (P · P ) |∆〉 is null. Since Pµ = −i∂µ, this means in the operatorial language
that the corresponding operator satisfies the Klein–Gordon equation ∂2O(x) = 0.

16There is always a unique stress tensor which generates global conformal transformations. However, if,
for example, the theory under consideration is a sum of several decoupled CFTs, there are multiple spin-2
conserved currents.
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It can be shown that considering higher levels than two (i.e., descendants with three or
more Pµ’s) does not yield tighter bounds than obtained above. See [86] for details in four
dimensions.

2.5 Operator product expansion

Operator product expansion (OPE) is the idea that we can expand a product of operators,
in the limit where they are close to each other, in terms of local operators. In general, a
state created by two operators O1 and O2, O1(x)O2(0) |0〉, is a linear combination of basis
states of the Hilbert space. In CFT, since any state of definite dimension corresponds to a
local operator at the origin, one can write

O1(x)O2(0) |0〉 =
∑
i

Cijk(x, P )Oi(0) |0〉 , (2.47)

where the sum runs over all the primary operators, and Cijk(x, P ) represents an operator
which encodes the contribution of the primary operator Oi and all of its descendants. The
OPE (2.47) is often expressed as the operatorial equation,

O1(x)O2(0) =
∑
i

Cijk(x,−i∂)Oi(0), (2.48)

which is understood to be inside correlation functions.
One important aspect of OPE is that (2.48) converges if all the other operators in

a correlation function are outside the ball of radius |x|. That is, if we write a general
correlation function as

〈O1(x1)O2(x2)O3(x3) · · · On(xn)〉

=
∑
i

C12k(x1 − x2,−i∂x2) 〈Ok(x2)O3(x3) · · · On(xn)〉 , (2.49)

it is converging as long as

|x1 − x2| < min
i=3,··· ,n

|xi − x2|. (2.50)

This fact follows from the theorem which states that the overlap of two states is convergent
when one of the two is expanded in terms of an orthonormal basis of the Hilbert space [90,91].

3 Operator dimensions from moduli

As mentioned in section 1, generic CFTs do not have to be weakly interacting, in the sense
of lying in discrete or continuous families with certain limits in which the theory is simplified
to a weakly interacting field theory or a theory which is exactly solvable in a more general
manner. However strongly interacting theories may have a set of observables with limits in
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which they are calculable by using a weakly coupled field theory. The simplest such limit
is that of large global charge.

In [35] and following work [36–39] various familiar CFTs in three dimensions with global
symmetries have been shown to simplify in this sense, when the conformal dimensions
of low-lying primary operators carrying large global charge J is considered. In [35] the
authors have studied the Wilson–Fisher fixed point of the O(2) model and the IR fixed
point of the so-called Wess–Zumino model, i.e., the N = 2 supersymmetric field theory
which consists of a chiral superfield Φ and cubic superpotential W = Φ3. In each case, the
conformal dimension of the lowest primary operator with global charge J is a scalar primary
operator with dimension ∆J = b3/2J

3/2 + b1/2J
1/2 − 0.093 + O

(
J−1/2

)
, where the unknown

coefficients b3/2, b1/2 may be different in different theories but the constant term, which is
equal to −0.093, is universal.17 In the case of the O(2) Wilson–Fisher CFT, this large-charge
behavior is in agreement with the results from lattice Monte Carlo simulations [45]. The
common form of the large-global-charge expansions for ∆J is because of the fact that an EFT
in the same universality class governs both of the two CFTs at large global charge. The EFT
contains a compact real scalar field χ ' χ+2π transforming as χ→ χ+(const.) under global
symmetry transformations. One can use this EFT to compute the conformal dimensions
of low-lying operators carrying large global charge by radially quantizing the theory on the
sphere of radius r, and taking the Wilsonian cutoff Λ to satisfy r−1 � Λ �

√
Jr−1. Then

higher-derivative interaction terms in the effective action and quantum loop corrections are
both suppressed by inverse powers of large global charge J , and the RG equation at the
IR fixed point obligates all Λ-dependence in physical quantities to vanish at each order in
J . It is important to note that conformal invariance is a symmetry of the EFT at the
quantum level, which forces the Λ-independent terms in the effective action to be classically
conformally invariant (indeed, Weyl invariant in curved backgrounds) and, in addition,
uniquely determines the form of the Λ-dependent terms in the effective action in terms of
the Λ-independent terms.

The ∆J ∼ J 3/2 scaling in the O(2) Wilson–Fisher and N = 2 Wess–Zumino fixed points
in three dimensions follows from the fact that both theories do not have a moduli space of
Lorentz-invariant vacua on flat spacetime R3. Accordingly, the Ricci curvature of the spatial
slice is never relevant for high-energy states on S2 (i.e., states carrying large conformal
dimension), and therefore the relationship between the charge density ρ and the energy
density H in the large-global-charge ground state can only be H ∼ |ρ|3/2.

In the case of the IR fixed point of the N = 2 Wess–Zumino model, the ∆J ∼ J 3/2

scaling follows from the fact that supersymmetry is broken spontaneously at large global
charge (R-charge in this case). Supersymmetry must be broken because the chiral ring of

17The value of the constant term is corrected in [92] from the one originally appearing in [35], which
misused ζ-function regularization.
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the N = 2 Wess–Zumino model truncates; the only chiral primary operators in this model18

are the identity operator 1 and φ := Φ
∣∣
θ=θ̄=0

, and there is no chiral primary operator of
the form φn with n ≥ 2. Nevertheless it is hard to understand the fact that the breaking
of supersymmetry is parametrically large at large R-charge from the structure of the chiral
ring, and only the application of the EFT can reveal it.

Theories with an infinite-dimensional chiral ring exhibit a quite different behavior at
large global charge. N = 2 SCFTs with an infinite-dimensional chiral ring have a continuous
family of Lorentz-invariant vacua on flat space R3, whose holomorphic coordinate ring forms
the chiral ring [93]. Also, if the theory has a m-complex-dimensional moduli space of
vacua, it is described by a freely-generated chiral ring with m algebraically independent
ring generators, or m+ k generators with k algebraic relations.

When the curvature of the spatial slice vanishes, the existence of a moduli space indicates
that the energy spectrum is degenerate, and therefore the curvature cannot be irrelevant
in the relationship between the energy density H and the charge density ρ on the sphere,
unlike the nondegenerate case. For SCFTs with an infinite-dimensional chiral ring, low-
lying states carrying large R-charge satisfy H ∼ |ρ|

√
R/2, where R is the Ricci scalar of

the cylinder R× S2. When radially quantizing the theory, this means ∆J ∼ |J | at large J .
This relation is satisfied exactly by the scalar primary state of R-charge J and the lowest
dimension, which is always chiral or antichiral if the theory has an infinite-dimensional chiral
ring, and J obeys a certain quantization condition.

Conceivably the simplest nontrivial SCFT having a moduli space of vacua may be the
so-called XY Z theory, the IR fixed point of the N = 2 supersymmetric field theory of
three free chiral superfields X, Y , Z perturbed by a relevant superpotential W = gXY Z

where g is a coupling constant with mass dimension [g] = [mass]1/2. This theory may
find condensed matter applications in systems where supersymmetry emerges at quantum
critical points [55]. At mass scales much lower than g2 this theory flows to a strongly
coupled SCFT in the sense that the OPE coefficients and anomalous dimensions of the
fields19 X, Y , Z are all of order one. As shown by a Leigh–Strassler type argument [94] and
studied recently in [95], this SCFT has one exactly marginal operator, given by the integral
of the superpotential ∫

d2θ
(
X3 + Y 3 + Z3

)
+ c.c., (3.1)

which breaks the U(1)X × U(1)Y × U(1)Z flavor symmetry and lowers the dimension of
the moduli space, but no exactly marginal operators uncharged under the full symmetry
group. The complex dimension of the chiral ring of this SCFT is one since there are
three generators with two algebraic relations. The three chiral ring generators X, Y , Z

18That is, primary operators annihilated by the supercharges Q̄α, Sα and S̄α. See appendix A for a
review on the superconformal algebra and its representations.

19We will use the same notation for the superfields X, Y , Z and their θ = θ̄ = 0 bosonic components.
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satisfy the algebraic relation XY = XZ = Y Z = 0 modulo descendants, and therefore the
moduli space of vacua consists of three branches, coordinatized by X, Y , Z, respectively.
Correspondingly, the chiral ring of this SCFT is spanned by the monomials, {Xq, Y q, Zq | q ∈
N}. As mentioned above, there are three independent U(1) flavor symmetries U(1)X,Y,Z
under which X, Y , and Z have charge +1, respectively. The R-charge JR, which appears
in the N = 2 superconformal algebra in three dimensions (A.7), is a linear combination of
the U(1)X,Y,Z-charges JX,Y,Z , that is,

JR =
2

3
(JX + JY + JZ). (3.2)

Primary operators in the chiral ring satisfy ∆ = JR. If primary operators are not in the
chiral ring, but obey (∆ − JR)/JR � 1, one can regard them as "near-BPS", and their
conformal dimensions should be calculable by a perturbative expansion in J−1

R .
In this section we show that conformal dimensions of near-BPS operators can be com-

puted in a straightforward manner by using a perturbative expansion in J−1
R in the XY Z

model. Especially, we extend the method of [35] to analyze the low-lying spectrum of
near-BPS scalar primary operators carrying large R-charge on the "X-branch", i.e., those
satisfying JX � 1, JR � 1, and ∆− JR and JX − 3JR/2 of order one. We radially quantize
the theory and utilize the EFT of the X-branch of moduli space, to calculate the conformal
dimension, which is equivalent to the energy eigenvalue of the state on S2 via the state-
operator correspondence. In the large-R-charge limit, the EFT of the X-branch of moduli
space becomes practically useful: Both quantum loop corrections and higher-derivative
terms in the effective action are suppressed by inverse powers of large R-charge.

We obtain various fascinating results:

• Whereas the primary state carrying large R-charge JR and the lowest conformal dimen-
sion is always chiral, the primary state with the same R-charge and the next-to-lowest
conformal dimension is also a scalar primary and in a "semishort" representation,
which means that its Q̄2-descendant state has a vanishing norm and its conformal
dimension is exactly equal to JR + 1. (Basic properties of the N = 2 superconformal
algebra and superconformal multiplets are summarized in appendix A.)

• The primary state with the same R-charge and the third-lowest conformal dimension
is in a long multiplet and has an anomalous dimension of order J−3

R .

• The anomalous dimension of order J−3
R emerges from a insertion of the lowest-derivative

interaction term invariant under superconformal (or super-Weyl) transformations in
the effective action on the X-branch.

• We cannot compute the coefficient of this interaction term perturbatively, but by
using unitarity of the forward 2 → 2 scattering amplitude of the moduli field it is
possible to show that its sign is positive [56]. Consequently, the anomalous dimension
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of order J−3
R of the scalar primary state with the third-lowest dimension is shown to

be negative.

The contents in this section are based on work [43] done in collaboration with Simeon
Hellerman and Masataka Watanabe.

3.1 Effective theory of the X-branch

As in [35], we first argue that at large values of the fields X, Y, Z, the effective action admits
an expansion in powers of Λ/EUV, where Λ is the Wilsonian cutoff and EUV is the UV scale
defined by the vacuum expectation values (VEVs) of the scalar fields X, Y, Z. When the
VEV of one of the three fields is nonzero and those of the other two are zero, the other two
become massive, with masses much heavier than the Wilsonian cutoff Λ. By integrating
these massive fields out, one can obtain an EFT for only one of the three.

3.1.1 Structure of the effective action

Let the VEV of X be nonzero and large. The EFT of the X field has the following form.
In flat R3, each term in the effective action can be expressed as an integral over the full
superspace, ∫

d3xd2θd2θ̄I, (3.3)

where I is an operator with JX = JR = 0.
Terms in the effective action can be divided into two types: classical and quantum

terms. Classical terms do not depend on Λ and invariant under the Weyl transformation,
under which the X field transforms as X → e2σ/3X and the fermionic superpartner ψ of X
transforms as ψ → e7σ/6ψ. The scaling dimension of I has to be exactly 1.

Quantum terms depend on positive powers of Λ. They are not scale invariant as terms
in the effective action since the Λ-dependence breaks scale invariance. These terms are in
general of the form

I = ΛqI1−q, (3.4)

where I1−q is an operator of scaling dimension 1 − q and q > 0. We note that the condi-
tion q > 0 is not always true in general EFTs: When a shell of modes between Λ and Λ−δΛ
is integrated out, the propagators are proportional to Λ−2 and naïvely it would seem that
negative powers of Λ can appear in the effective action. Instead, the condition q > 0 follows
from the fact that the EFT on moduli space is free at deep IR. As a result, the one-particle
irreducible (1PI) effective action for X is finite when we expand it around a nonzero VEV,
since X itself is an observable in the IR theory. So we conclude that the Wilsonian effective
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action must be finite in the Λ→ 0 limit, because the 1PI effective action is just the Λ→ 0

limit of the Wilsonian effective action.
As discussed above, our Wilsonian EFT is perturbatively controlled by taking EIR �

Λ � EUV, where EIR is an IR scale and EUV = |X|3/2. We use conformal invariance as
an input, which implies that the effect of integrating out a shell of modes and changing
the Wilsonian cutoff infinitesimally from Λ to Λ − δΛ has to be compensated exactly by
rescaling the momenta by a factor of (1− δΛ/Λ)−1, and redefining the effective fields in order
to retain the original normalization of the kinetic term. The RG equation can be used to
obtain the coefficients of the Λ-dependent quantum terms from the Λ-independent classical
terms, order by order in Λ/EUV = Λ|X|−3/2. That is, once we choose the regulator and
use conformal invariance as an input, the Λ-dependent quantum terms have no independent
information.

Specifically speaking, the RG evolution of the classical Lagrangian is of the form20

δ[RG]Lclassical =
∑
qi>0

ciΛ
qiOi, (3.5)

where Oi is an operator of dimension ∆i = 3− qi. As explained above, the RG evolution of
the Λ-independent classical Lagrangian (3.5) must be cancelled by the Λ-dependent quantum
terms,

Λ
δ[RG]

δΛ
Lquantum(Λ) = −

∑
qi>0

ciΛ
qiOi = −δ[RG]Lclassical, (3.6)

so that the total Lagrangian Lclassical + Lquantum(Λ) is conformally invariant.
It is not necessary to know the actual form of the Λ-dependent quantum terms for

most practical purposes. In physical observables, their only role is to compensate the Λ-
dependence from quantum amplitudes at each order in EIR/EUV. Practically speaking, we
can simply quantize the Λ-independent classical action with a (sufficiently supersymmetric)
cutoff, and add local counterterms with positive powers of Λ to cancel any divergences.
Since the underlying theory is conformal, there is no harm in obtaining the wrong answer
by doing this.

For tree-level amplitudes we do not have to consider the Λ-dependent quantum terms at
all, and for one-loop amplitudes the simplest regularization scheme may be a scale-free (and
sufficiently supersymmetric) one, such as or dimensional regularization ζ-function. Since we
do not compute loop amplitudes in this section, we do not have to consider the Λ-dependent
quantum terms further.

20In principle there can be terms of the form Λqi [log (Λ/EUV)]
si with qi > 0. These can be included into

the RG equation but we omit them for the sake of simplicity.
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3.1.2 Weyl invariance and super-Weyl invariance

Weyl invariance in curved backgrounds imposes constraints on terms more strongly than
scale invariance, and super-Weyl invariance constrains them more strongly still. Since the
original CFT is super-Weyl-invariant and can be formulated on an arbitrary curved back-
ground,21 the same must be true for the EFT of theX-branch. We use super-Weyl invariance
to determine low-derivative terms in the effective action.

First, let us see why certain scale-invariant low-derivative terms do not have a Weyl-
invariant completion on curved backgrounds, and therefore cannot appear in the effective
action, even without imposing constraints which come from supersymmetry.

Let us first define the field22

φ := X
3/4, (3.7)

so that φ has dimension 1/2, which is that of a free scalar in three dimensions. Then we see
that the term which has scaling dimension 3 and the largestX-scaling would be |φ|6 = |X|9/2,
which has the X-scaling 9/2. This term is disallowed by supersymmetry, however.

The term which has the next-to-largest X-scaling and dimension 3 would be the kinetic
term (∂µφ)

(
∂µφ̄

)
. This term is scale-invariant but not Weyl-invariant and therefore not

conformally invariant either. However it has a Weyl-invariant completion obtained by adding
the conformal coupling to the Ricci scalar, R|φ|2/8. That is,∫

d3x
√
|g|Okinetic, Okinetic := (∂µφ)

(
∂µφ̄

)
+

1

8
R|φ|2 (3.8)

is absolutely invariant under Weyl transformations. This term can be made super-Weyl-
invariant by adding the kinetic term for the fermionic superpartner.

3.1.3 Leading interaction term

We would like to discuss the interaction term and how it contributes to the spectrum of the
X-branch. There are no bosonic operators with three derivatives and scaling dimension 3.
This is an immediate consequence of Lorentz invariance and parity. At the four-derivative
level, there is a unique bosonic operator of scaling dimension 3 [96–100] which is called the
operator of Fradkin–Tesytlin–Paneitz–Riegert (FTPR) operator [100–103]. In flat space, it
is given by

OFTPR

∣∣∣∣
R1,2

=
1

φ̄
∂2∂2 1

φ
, (3.9)

21At least, a smooth one of nonnegative scalar curvature.
22This transformation is harmless when calculating conformal dimensions, but may be subtle when cal-

culating correlation functions of operators carrying large global charge, when the classical solution can have
0 and ∞ and the path integral may be sensitive to the singular branch points there. See section 4.1.2 for
further comments on this point.
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and in curved backgrounds it takes the form [100]

OFTPR =
1

φ̄

[
∇2∇2 +∇µ

(
5

4
gµνR− 4Rµν

)
∇ν −

1

8

(
∇2R

)
+RµνRµν −

23

64
R2

]
1

φ
, (3.10)

where Rµν is the Ricci tensor and R is the Ricci scalar constructed out of the background
metric. The operator OFTPR is a tensor of Weyl weight 3, so∫

d3x
√
|g|OFTPR (3.11)

is invariant under Weyl transformations.
For purposes of this thesis, we only have to find the action on the cylinder R×S2, which

is conformally flat. So we could have obtain the additional terms appearing in (3.10) for this
particular geometry by transforming the FTPR term in flat space (3.9) under the conformal
transformation

ds2
R1,2 → ds2

R×S2 =
r2

|x|2
ds2

R1,2 , (3.12)

where xµ are the linear coordinates on R1,2 and r is the radius of the sphere. In principle,
there may be terms in the effective action which are invariant under Weyl transformations
but do not have a super-Weyl-invariant completion. However, the N = 2 super-Weyl-
invariant completion of the bosonic FTPR term exists [104]. In flat space, it can be expressed
as an integral over the full superspace,∫

d3xOsuper-FTPR =

∫
d3xd2θd2θ̄Isuper-FTPR, Isuper-FTPR =

∂µΦ∂µΦ̄(
ΦΦ̄
)2 , (3.13)

where Φ ≡ φ+
√

2θψ+ · · · is a chiral superfield, whose complete expression is given in (A.4).
By coupling the supersymmetric FTPR term (3.13) to a background supergravity multi-

plet (see for instance [105,106]), in principle we should be able to determine the component
field expression for the couplings of the fermionic superpartner to the background fields in
general curved backgrounds as well. However in practice, it is quite cumbersome to deter-
mine the explicit component form of the super-FTPR term in general curved backgrounds
from the curved superspace expression. Instead, we directly Weyl-transform the flat-space
expression (3.13) to obtain the expression in the cylinder R × S2. For a sphere of radius r
and in Lorentzian signature, we get

Osuper-FTPR = L4b + L2b2f + L4f, (3.14)

L4b = OFTPR =
1

φ̄

[(
∇2
)2

+
3

2r2
∇2 +

4

r2
∂2
t +

9

16r4

]
1

φ
, (3.15)

L2b2f = −ψ̄α
[(
∇2 − 3i

r
∂t +

2

r2

)
1

φ̄2

] [(
γµαβ∇µ +

i

r
γtαβ

)
1

φ2

]
ψβ, (3.16)

L4f = − ψ̄βψ̄
β

φ̄3

(
∇2 − 1

4r2

)
ψαψα
φ3

, (3.17)
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where t is the Lorentzian time coordinate of R×S2, and by φ̄ and ψ̄ we mean the Hermitian
conjugation ‡ of φ and ψ in radial quantization discussed in section 2.3.2. Here ∇2 is the
Laplacian of the Lorentzian R× S2.

3.1.4 Sign constraint

The purely bosonic term with four derivatives in the flat-space classical action comes exclu-
sively from the bosonic FTPR term (3.9). It has been shown [56] that such a term can only
appear with a positive coefficient in the effective action for a massless field, if the underlying
theory is unitary. A negative coefficient would causes superluminal signal propagation and
violates unitarity in the 2 → 2 forward scattering amplitude, within the regime of validity
of the EFT. When we compute the operator spectrum, we will see that the positivity of
the coefficient (which we shall call κ) of the super-FTPR term shall imply immediately
the negativity of the leading large-J correction to the conformal dimension of the lowest
unprotected scalar primary operator carrying large R-charge J .

3.1.5 Global symmetries

We present in table 1 the action of the global symmetries on the fields of the UV descrip-
tion and on the φ and ψ fields of the moduli space of the X-branch. As mentioned earlier,
the XY Z model has three independent U(1) global symmetries, so two out of the five are
redundant, but we present them for the sake of usefulness. Note that the U(1)φ and U(1)ψ
symmetries are separately conserved as exact symmetries in the moduli space EFT. These
separate boson- and fermion-number conservation laws simplify the classification of opera-
tors and states in the large-R-charge EFT to a great extent.

3.2 Quantization of the effective X-branch theory

Now we would like to derive the Feynman rules for the EFT of the X-branch. We have
a double hierarchy EIR � Λ � EUV, where EIR is the IR scale defined by the inverse of
the radius r of the sphere, Λ is the Wilsonian cutoff (of unspecified form) and EUV is the
UV scale defined by the "VEV" of |φ|2. We will be working in finite spatial volume, so
the "VEV" does not truly mean an expectation value in the vacuum state; however we shall
call it a "VEV" informally. In section 3.3.2 we will comment on the precise meaning of
the "VEV" in the sense we use it here. For the moment, it is enough to refer to it by its
practical meaning: We define the path integral by separating φ = X3/4 into a "VEV" φ0

and a fluctuation F , and path integrate over F in the standard way, imposing Feynman
boundary conditions on it.
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U(1)X U(1)Y Z U(1)R U(1)φ U(1)ψ

W 0 0 2 2 −2

Q 0 0 −1 −1 1

Q̄ 0 0 1 1 −1

X 1 0 2/3 4/3 0

Y −1/2 1 2/3 1/3 −1

Z −1/2 −1 2/3 1/3 −1

φ 3/4 0 1/2 1 0

ψ 3/4 0 −1/2 0 1

Table 1: R and non-R global charges. W = gXY Z is the superpotential and Q and Q̄

are the Poincaré supercharges. The charge assignments in the EFT are Jφ = 2JX/3 + JR
and Jψ = 2JX/3 − JR. The U(1)Y Z symmetry is generated by JY Z := 2(JY − JZ) and
acts trivially on all light states on the X-branch. The fermion-number symmetry U(1)ψ
is unbroken even when φ gets an expectation value, and organizes Feynman rules in large
R-charge states.

3.2.1 VEV and fluctuations

Let us first define the superfield

Φ := X
3/4, (3.18)

and divide the bosonic component φ = Φ
∣∣
θ=θ̄=0

into

φ = φ0 + F, φ0 = exp

(
it

2r

)
ϕ0, F = exp

(
it

2r

)
f, (3.19)

where F is presumed to satisfy the free equation of motion on R× S2,

∇2F =
1

8
RF =

1

4r2
F, (3.20)

and ϕ0 is a constant of order
√
J , as we will explain in section 3.3.1. We then decompose

the FTPR term (3.15) into the VEV and fluctuations, and keep terms of four or fewer
fluctuations for the purpose of this section. Note that substituting φ0 into the FTPR term
will only yield zero, so that the classical correction vanishes.

Here we would like to list a few terms which will be relevant later. By explicit computa-
tion, when we expand the bosonic FTPR term in the cylinder, there are no terms quadratic
in fluctuations, modulo terms proportional to the leading-order equation of motion. There
are also terms with three bosonic fluctuations, as well as two fermions and one bosonic fluc-
tuation, but they do not contribute to the physical quantities we will compute and therefore
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we do not list them. Generally, the term in the effective action with nB bosonic fluctuations
and nF fermions, scales as |φ0|−(nB+nF+2), so the cubic terms scale as |φ0|−5 ∝ J−5/2 and the
quartic terms scale as |φ0|−6 ∝ J−3. Hereafter we denote the propagators of the bosonic
fluctuation by solid lines and those of the fermions by dotted lines.

The four-point bosonic vertex is

=
2F̄ 2

φ̄3
0

[(
∇2
)2

+
3

2r2
∇2 +

4

r2
∂2
t +

9

16r4

]
2F 2

φ3
0

∝ J−3. (3.21)

The vertex with two fermions and two bosonic fluctuations is

= −4ψ̄α
[(
∇2 − 3i

r
∂t +

2

r2

)
F̄

φ̄3
0

] [(
γµαβ∇µ +

i

r
γtαβ

)
F

φ3
0

]
ψβ ∝ J−3,

(3.22)

and the vertex with four fermions and no bosonic fluctuations is

=
ψ̄αψ̄

α

φ̄3
0

(
∇2 − 1

4r2

)
ψβψ

β

φ3
0

∝ J−3. (3.23)

As we will explain later when we provide a precise meaning of the "VEV" φ0, the fluc-
tuation F field obeys Feynman boundary conditions, and therefore has the usual Feynman
propagator.

3.2.2 Feynman rules and J-scaling of diagrams

Having divided the field into the "VEV" and fluctuations, we can most easily understand
the scaling of corrections by writing the Feynman rules for the F and ψ fields. A diagram
with m FTPR vertices with k1, k2, · · · , km lines on each vertex, will scale as |φ0|−2m−

∑
i ki ,

and therefore as J−m−
∑
i ki/2.
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3.3 Corrections to operator dimensions

3.3.1 Dynamics on R× S2

Now we would like to analyze the theory in radial quantization, in which conformal di-
mensions of operators are equivalent to energies of the corresponding states on the cylinder
of radius r, in units of r−1. We will focus on the lowest primary states carrying large R-
charge J , and low-lying excited states carrying the same R-charge. We will see that the
lowest state is described by a classical solution with a particular symmetry, and that the
fluctuations around the classical solution are weakly coupled when the global charges are
large. Therefore, the physical observables such as conformal dimensions of the low-lying
states are computable in a perturbative expansion in J−1.

Classical solutions with lowest energy for a given global charge. There is a certain
family of classical solutions on the cylinder which saturates the lower bound on the energy E
for a given R-charge JR, that is, E ≥ JR/r, where r is the radius of the spatial sphere.

This solution exists irrespective of the form of the terms in the effective action for the
moduli field X. This follows from the fact that the lowest classical solution with a given
value of a conserved charge J , always has a "helical" symmetry, i.e., a combined symmetry
under a time translation and action of the corresponding global symmetry transformation
by Poisson brackets. Moreover, the angular frequency of the global symmetry action is
given by ω := dE/dJ . In the case where the global symmetry is the R-charge, the lowest
classical solution with a given R-charge JR is invariant under a combined time translation
and R-symmetry transformation, and the angular frequency of the R-symmetry rotation
is exactly r−1 for any value of JR. That is, the lowest classical solution on the X-branch
carrying a given value of the R-charge has a helical symmetry, with the moduli field X

depending on the cylindrical time as exp
(
2it(3r)−1).

Since the theory has the superpotential W = gXY Z, there is no such solution with
more than one of X, Y , Z turned on simultaneously, the classical solutions carrying a given
R-charge and the lowest energy are simply X = X0 exp

(
2it(3r)−1), and then two other

branches of solutions, with X replaced by Y or Z. These branches of solutions have X, Y
and Z charge equal to 3/2 times their R-charge, respectively. Due to the S3 symmetric group
permuting the three branches, there is no harm in neglecting the Y and Z branches, and
we focus only on the properties of the X-branch.

We emphasize that we do not assume any relation between classical solutions of the
UV free XY Z model, and solutions of the moduli space EFT. Rather, we are simply using
known structure of the moduli space and the known properties of the moduli space effective
action to describe the large charge states in the IR. In particular, each branch of moduli
space has exactly one light complex scalar field with a particular combination of global
charges.

Unlike the values of E and ω for a given JR, which are universal, the absolute value |X0|
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of the helical solution as a function of the R-charge JR depends on the unknown form of the
effective action. However it is possible to estimate the dependency of |X0| on J = JR using
dimensional analysis. Each scale-invariant bosonic term in the effective action takes the form
of a polynomial in derivatives of X and X̄ in the numerator, divided by the appropriate
power of |X| in the denominator to make the term scale-invariant. So each additional
derivative (or curvature) in the numerator requires an additional power of |X|3/2 (or two)
in the denominator. Similarly, terms with fermions are also suppressed by powers of |X|−1.
Thus the derivative (and curvature) expansion of the effective action is also an expansion
in |X|−1, because of the underlying conformal invariance of the theory, which we make use of
as an input in constraining the effective action. It follows that the leading term (3.8) in the
effective action for X (or φ), which is simply the free kinetic term with conformal coupling
to the Ricci scalar, controls the leading large-J asymptotics of the magnitude of |X0| in
the helical solution. Since the free charge density is proportional to φ̄φ̇ + c.c., we conclude
that |φ0| is proportional to (J/r)1/2 and |X0| is proportional to (J/r)3/4 at leading order, with
a coefficient depending on the normalization of the kinetic term and corrections that are
subleading at large J .

3.3.2 Meaning of the "VEV"

Free-field matrix elements with a "VEV" are coherent state matrix elements.
Spontaneous symmetry breaking does not occur in finite volume. This is because the expec-
tation value of a charged operator in a charge eigenstate, always vanishes. This statement
is true only if the state is an exact eigenstate of the charge operator. However, it is possible
to construct states with exactly Gaussian correlation functions for charged free fields, as
coherent states. Let a‡ be a creation operator for an excitation of the φ field in the s-wave.
Then the coherent state defined by

|[v]⟫ := eva
‡ |0〉 (3.24)

is an eigenstate of the annihilation operator a,

a |[v]⟫ = v |[v]⟫ , (3.25)

and correlation functions of the oscillators in the coherent state |[v]⟫ are exactly Gaussian.
Thus, free fields φ, φ̄ constructed from the oscillators have the property that f := φ − 〈φ〉
and f̄ := φ̄ −

〈
φ̄
〉
have the same correlation functions as the vacuum correlation functions

of φ and φ̄: 〈
[v]
∣∣O[φ, φ̄]∣∣[v]

〉
=
〈
0
∣∣O[f, f̄]∣∣0〉 , (3.26)

where we have defined

|[v]〉 :=
|[v]⟫

⟪[v]|[v]⟫1/2
= exp

(
−|v|

2

2

)
|[v]⟫ . (3.27)
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Now let us compare the expectation values in a large-J eigenstate with those in a coher-
ent state,23 and show that the latter approximates the former in the large-J limit, with
computable corrections. Using

|J〉 :=

(
a‡
)J

√
J !
|0〉 , (3.28)

the definition (3.24) can be expressed as

|[v]⟫ =
∑
J

vJ√
J !
|J〉 , (3.29)

and by inverting this we find

|J〉 =
1

2πi

∮
dv

vJ+1
|[v]⟫ . (3.30)

This state has exactly Gaussian correlators, with a connected two-point function identical
to that of the (uncharged) vacuum. It follows that the relation between the vacuum and
coherent-state two-point function is simply a shift of the one-point functions, by a free
classical solution. We can therefore use Feynman diagrams in a "background" given by the
classical solution represented by the coherent state expectation value, to calculate arbitrary
free-field correlation functions in the coherent state. So the usual Feynman diagrammatic
perturbation theory with a "VEV" given by a nontrivial free classical solution for the scalar
field, is simply a way of doing time-ordered perturbation theory in the coherent state in finite
volume. This is relevant to the large-J expansion for definite-J matrix elements, because as
we will now see, large-J matrix elements in charged Fock states are approximated at leading
order by matrix elements in the corresponding coherent state.

Relationship between Fock states and coherent states. A consequence of this rep-
resentation is that expectation values for Fock states are approximated at leading order in J
by expectation values in coherent states, up to (calculable) subleading large-J corrections.
To see this concretely, we need the following facts:

• The definite-J Fock matrix element is given by a double contour integral of coherent-
state matrix elements;

• The double contour integral for a neutral operator can be evaluated by saddle point;

• Fluctuation corrections to the saddle-point approximation are suppressed by powers
of J ; and

23This calculation was developed by Simeon Hellerman and Ian Swanson, and used to estimate corrections
to the energies of rotating relativistic strings [12].
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• The leading saddle-point approximation is simply given by the coherent-state matrix
element in the coherent state where the expectation value of the charge, is J .

First we write the expectation value AO[J ] := 〈J |O|J〉 in the state J as a double contour
integral,

AO[J ] =
1

(2π)2

∮
dw

wJ+1

∮
dv

vJ+1
⟪[w]|O|[v]⟫ . (3.31)

One combination of the two integrals simply projects onto operatorsO that commute with Ĵ .
Assume without loss of generality that O carries a definite charge JO. If JO 6= 0, then clearly
its expectation value in Fock states must vanish. The first of the two contour integrals simply
implements the projection that causes the Fock state expectation value to vanish. If O is
uncharged, the remaining contour integral is nonzero, and can be evaluated by saddle point
when J is large, with fluctuation corrections that can be calculated as a series in J−1.
Define FO[J ] as the expectation value of an uncharged operator O in a coherent state of
classical charge equal to J :

FO[J ] := 〈[w]|O|[v]〉
∣∣∣∣
J=wv

. (3.32)

Then the Fock expectation value AO[J ] is given by

AO[J ] =
∑
m,n≥0

1

2
RmnJ

m dn

dJn
FO[J ], (3.33)

where the leading coefficient R00 is 1, and all the other coefficients are given by the gener-
ating function ∑

m,n≥0

Rmnx
myn = e−xy(1 + y)x. (3.34)

Note that Rmn = 0 unless m ≤ n/2, so there are only a finite number of nonzero terms at
a given order in J . Concretely, if we expand

AO[J ] =
∑
k≥0

A
(k)
O [J ] (3.35)

where A(k)
O is the relative order J−k contribution to the Fock-state expectation value, then

A
(k)
O [J ] =

∑
n−m=k

RmnJ
m dn

dJn
FO[J ], (3.36)

and the first few contributions are

A
(0)
O = FO[J ], A

(1)
O = −1

2
J

d2FO[J ]

dJ2
, A

(2)
O =

1

8
J2 d4FO[J ]

dJ4
+

1

3
J

d3FO[J ]

dJ3
. (3.37)

As expected, the leading approximation A(0)
O [J ] is simply equal to the coherent-state expec-

tation value.
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Conical deficit and φ-charge quantization. The change of variables from X to φ :=

X3/4 is well-behaved at large values of X (compared to the IR scale) but singular at X = 0.
The classical helical solution never comes near the origin X = 0 of field space, nor do fixed-
energy perturbations of the helical solution in the limit of large-J . So one would expect
that the singularity of the change of variables is irrelevant in large-J perturbation theory.

On the one hand, this expectation is entirely accurate, in the sense that the details of
the "resolution" of the singularity are really irrelevant to all orders in the J−1 expansion.
Any two physically well-defined resolutions of the singularity, must necessarily correspond to
different HamiltoniansH1,2 which modify the moduli space effective action in a neighborhood
of φ-field space of size M 1/2 (equivalently, a neighborhood of X-field space of size M 3/4),
where M is some UV scale. If the correction terms scale like M k/2/|φ|k at long distances
in field space, then the corresponding large-J corrections are of order (M/J)

k/2. If the two
resolutions of the geometry are both exactly conical outside a region of field space |φ| < M 1/2,
then the corrections to observables from the modified geometry vanish to all orders in J−1.
This is the precise sense in which the singularity at the origin is "irrelevant" for large-J
physics: At large J , the field does not live at the origin or anywhere near it.

However the conical deficit of the moduli space is a property of the geometry which is
visible asymptotically, and the EFT should know about all properties of the moduli space
geometry where the VEV is large compared to the IR scale. The quantization rule for φ-
charge is precisely the property of the quantum EFT in which the conical deficit at large
VEV is encoded. In order to compute a large-J asymptotic expansion in the EFT, one may
simply take X-charge to be a multiple of 3, in which case the number of φ-excitations is an
integer, and in particular a multiple of 4.

In order to confirm that the conical deficit only imposes the quantization rule, one can
simply redo any computation in the moduli space EFT using a logarithmic superfield defined
as L := log Φ. In terms of L, the only effect of the conical deficit is to change the periodicity
of ImL; otherwise the effective action is completely unaffected by the deficit. We conclude
that the conical deficit does not affect the energy spectrum to all orders in J−1, so long as
the classical solution uniformly satisfies |φ|2 � EIR.

3.3.3 BPS property and vanishing of the vacuum correction

The classical energy of the large-J ground state. First, as a consistency check,
we would like to study the energies of the chiral primary states, at the classical and one-
loop level. By general multiplet-shortening arguments [67,107–109], these energies must be
uncorrected and equal to the R-charge of the state. However even at the classical level,
it is not so obvious that the super-FTPR term does not contribute to the energies of the
chiral primary states. The super-FTPR term is a sum of many contributions with certain
coefficients determined by super-Weyl invariance, none of which individually vanishes for
the helical classical solution. Nevertheless the sum of the terms in the FTPR expression
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(3.15) indeed combines to give zero when evaluated on the helical solution:

OFTPR

∣∣∣∣
φ=φ0

=
1

φ̄

[(
∇2
)2

+
3

2r2
∇2 +

4

r2
∂2
t +

9

16r4

]
1

φ

∣∣∣∣
φ=φ0

= 0, (3.38)

for any spherically homogeneous helical solution with frequency (2r)−1, that is,

φ = φ0 = ϕ0 exp

(
it

2r

)
. (3.39)

This gives us some confidence in the applicability of the moduli space effective action to
compute energies consistently. Next, we would like to compute the one-loop energies of
the ground states, as well as semiclassical and one-loop energies of first-excited states as a
consistency check, to build further confidence in our methods.

One-loop energy of the large-J ground state. We now check the one-loop energy of
the large-J ground state, by expanding the action around the helical solution to quadratic
order in fluctuations, and summing ±ω over bosonic and fermionic fluctuations with fre-
quency ω, with the sign appropriate to the statistics. At the free level, the contributions
from the bosonic and fermionic fluctuations cancel with each other. The super-FTPR term
does not contributes to the energies at order J−2 because as noted in section 3.2, the super-
FTPR term, when expanded around the helical solution, does not have terms quadratic
in fermions or in bosonic fluctuations, and therefore there is no energy correction at abso-
lute order J−2 (which is relative order J−3) even without any further nontrivial Bose-Fermi
cancellation. So we see that the energy of the chiral primary ground state is therefore
uncorrected up to and including order J−2, as it must be to all orders in J . A nontrivial
check of the large-J expansion would be to prove that the energy of the chiral primary
state is uncorrected to all orders in the large-J expansion. It may be that some type of
superfield formalism adapted to quantization about the helical ground state would make
such cancellations more transparent.

3.3.4 Semishort property of the s-wave one-particle state

Next we would like to compute energies of the first-excited states at large J . The lowest
state above the large-J ground state with the same U(1) quantum numbers, is the state with
an additional φ excitation and φ̄ excitation, both in the ` = 0 mode, i.e., the s-wave. At the
free level, each fluctuation has frequency ω = (2r)−1, and we have seen that the frequency is
uncorrected by the super-FTPR term up to and including order J−2. Therefore, the energy
of the first-excited state is simply J + 1 up to and including order J−2. Since this state is
not a chiral primary, one might be interested in computing corrections to its energy in the
large-J expansion. However the one-loop correction actually vanishes, because this state is
semishort and the dimension is exactly equal to J + 1.
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Heuristically speaking, the first-excited state can be thought of as obtained by shifting
the R-charge of the ground state from J → J + 1, and then cancelling it by adding a single
quantum of φ̄ in the s-wave. It is possible to show explicitly that the one-loop correction
to the energy of the state coming from the super-FTPR term vanishes. The one nontrivial
aspect of this cancellation is the operator ordering of the super-FTPR term. A convenient
description is in terms of normal-ordered operators in the Hilbert space on the sphere: All
operators appearing have no less than two φ̄-multiplet annihilation oscillators ordered to
the right, and thus the perturbing Hamiltonian does not affect the energy of the semishort
state, which has only a single φ̄ excitation.

The existence of semishort states with the appropriate charges is visible in the supercon-
formal index; we have included an expression for the superconformal index in appendix D,
as well as its expansion to several orders. It is interesting to note that the semishort states of
the X-branch persist down to J = 0: The "moment map" operator is semishort on general
grounds (see appendix A.3), because it is the superconformal primary whose descendant is
the U(1)X current [67, 110, 111]. This operator can be thought of as the conformal Kähler
potential itself for the EFT of the X-branch, namely K ∝ (XX̄)3/4. This expression in
terms of the X-field is not a well-defined, controlled operator generally, but this expression
is well-defined and precise in matrix elements between large-J states.

The one-particle states with nonzero spin are also in semishort representations at the
free-field level. At the interacting level, it is easy to prove in many cases that the semishort
property persists, because there are no other states with the appropriate angular momen-
tum, U(1)R, and U(1)X charges to be combined with the semishort states to become a full
long representation at weak but finite coupling. For instance, the vector states obtained
by acting on the chiral primary state corresponding to the operator φ2J+1, with the ` = 1

modes of the φ̄ field, can be shown to be protected by such an argument. This prediction
is also verified by the superconformal index in appendix D.

3.3.5 Correction to the two-particle energies

Semishort property means no disconnected diagrams. Let us compute the energy
correction to the state with two φ̄’s on top of the chiral primary state corresponding to
the operator φ2J+2. By expanding the super-FTPR term in VEV and fluctuations, two
diagrams we need to consider at order J−3 are as follows:

∝ J−3 (3.40)
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and

∝ J−3. (3.41)

Incidentally, we know from the argument in section 3.3.4 that the following diagram should
vanish:

= 0. (3.42)

Note that these Feynman diagrams with loops in them have scheme dependence, i.e., how
loop integrals are regularized and renormalized – once we choose one scheme which is suffi-
ciently supersymmetric on the cylinder, the expression makes sense, and the diagram (3.42)
exactly vanishes. Hence the only contribution to the energy correction at order J−3 is the
diagram (3.41).

The above statement is true even when some of the φ̄’s are replaced by ψ̄, the Q̄-
descendant of φ̄. The only diagram which contributes to the energy correction to the
state ψ̄φ̄

∣∣φJ〉 is

∝ J−3, (3.43)

while for ψ̄ψ̄
∣∣φJ〉 this is

∝ J−3. (3.44)

Two-particle states energy correction. Now we would like to compute the energy
correction to the state φ̄φ̄

∣∣φJ〉 by expanding the super-FTPR term in VEV and fluctuations.
Here note that we only need to care about a spatially uniform field because of the above-
mentioned argument, that is, we lose nothing by truncating the fluctuation f to s-waves.
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By doing so we obtain the Lagrangian density for the spatially uniform fluctuation f(t),

L = L0 + κLint,

L0 = ˙̄FḞ − 1

4
F 2 = ˙̄fḟ +

i

2

(
˙̄ff − f̄ ḟ

)
, Lint = − 24

|ϕ0|6
f̄ 2ḟ 2.

(3.45)

Here we have set r = 1 for the sake of simplicity, as we shall continue to do in the rest of this
section. Dots represent derivative with respect to t. The conjugate momenta in terms of f
and f̄ are Π := ∂L0/∂ḟ = ˙̄f− if̄/2 and Π̄ := ḟ+ if/2, respectively, and the Hamiltonian H,
which is 4π times the Hamiltonian density, is

H = H0 + κHint,

H0 = 4π

(
Π +

i

2
f̄

)(
Π̄ +

i

2
f

)
Hint =

96π

|ϕ0|6
f̄ 2ḟ 2.

(3.46)

We define creation and annihilation operators as

a‡ =
√

4π

(
Π +

i

2
f̄

)
, a =

√
4π

(
Π̄− i

2
f

)
,

b‡ =
√

4π

(
Π̄ +

i

2
f

)
, b =

√
4π

(
Π− i

2
f̄

)
,

(3.47)

and in terms of these the interaction Hamiltonian Hint becomes

Hint = − 6

π|ϕ0|6
(
a‡ − b

)2
a2. (3.48)

The energy correction to the state
(
a‡
)2 |0〉, which corresponds to φ̄φ̄

∣∣φJ〉, is computed as

∆E = − 6κ

π|ϕ0|6
〈0|a2

[(
a‡ − b

)2
a2
](
a‡
)2|0〉

〈0|a2
(
a‡
)2|0〉

= − 12κ

π|ϕ0|6
. (3.49)

The energy correction to ψ̄φ̄
∣∣φJ〉 and ψ̄ψ̄

∣∣φJ〉 can be computed in a similar way and is
equal to (3.49), as it should be due to supersymmetry. Detailed calculations are given in
appendix C.

Note that the form of the interaction Hamiltonian (3.48) is normal-ordered rather than
time-ordered. This is needed in order for supersymmetry to be preserved, and can be
achieved directly from the necessity of the existence of a set of generators implementing
the N = 2 superconformal algebra on the cylinder; in fact, it can be understood just from
the consistency of a smaller subalgebra generated by half the generators, namely those
which annihilate the chiral primary states corresponding to the operators of the form XJ .
In appendix E, we discuss how the closure of the subalgebra in the interacting theory
implies the form of the operator perturbation of the Hamiltonian in a toy model, obtained
by truncating the antichiral φ̄ multiplet down to its s-wave mode on the cylinder.
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In the energy correction (3.49), there are no disconnected contributions coming from
vacuum bubbles and propagator corrections. The vanishing of these contributions come
from the nonrenormalization of the vacuum energy and semishort one-particle energy, re-
spectively.

As noted in section 3.1, the sign of κ appearing in (3.49) must be positive due to
unitarity of the 2 → 2 forward scattering amplitude of the moduli field [56], and therefore
the order J−3 contribution to the operator dimension is negative.

3.4 Operator algebras and the semishort spectrum

In this section we return to the question of the semishort energy (non)correction. We have
seen explicitly that the one-loop correction to the energy of the scalar semishort primary
state vanishes, and there is an independent algebraic argument which states that the it is
uncorrected to all orders in J−1: The energy can be corrected only if the semishort primary
state combines with other primary states to form a long multiplet. However, there are no
states which have appropriate charges and energy approximately equal to ∆ = J + 1 at
large J , to fill out a long multiplet. Therefore, there is a scalar semishort primary state at
sufficiently large J . In this section we would like to show that semishort primary operators
form a module over the chiral ring, and as a result associativity of the algebra relates
semishort primary operators at large values of J to those at low values of J .

3.4.1 Nonsingularity of certain OPE structure functions

As shown in appendix A.3, all superconformal primary operators in any unitary N = 2

SCFT in three dimensions satisfy the following bound,

∆ = |R|, ` = 0

or

∆ ≥ |R|+ `+ 1, ` ≥ 0.

(3.50)

where ` is the spin quantum number and R is the R-charge. The first bound is saturated if
and only if the operator is annihilated by Qα or Q̄α, the energy-raising supercharges. For
instance, an element of the chiral ring, i.e., a scalar superconformal primary operator O
satisfying [

Q̄α,O
]

= 0, (3.51)

has dimension equal to its R-charge

R = ∆. (3.52)

Let OSSS be a scalar primary operator in a semishort multiplet. That is, OSSS satis-
fies

{
Q̄α,

[
Q̄α,OSSS

]}
= 0 but

[
Q̄α,OSSS

]
does not vanish. Such an operator OSSS saturates

the inequality in (3.50) with ` = 0.

41



It is well known that chiral parimary operators have a ring structure because their OPE
is automatically nonsingular [112, 113]. The argument follows immediately from supercon-
formal invariance and especially the formula (3.50). Let O1,2 two chiral primary operators.
Their R-charges and conformal dimensions obey ∆1,2 = R1,2. In general their OPE has the
following form

O1(x)O2(0) =
∑
i

fi(x)Oi(0), (3.53)

where Oi are operators of R-charge Ri = R1 +R2, dimension ∆i and spin `i. The function fi
has x-scaling γi := ∆i −∆1 −∆2 = ∆i −Ri.24 So by (3.50) and the fact that all the super-
Poincaré generators Pµ, Qα and Q̄α satisfy ∆ ≥ R + `, we have γi ≥ `i ≥ 0, and therefore
all the functions fi vanish at x = 0 if `i > 0. When Oi is a scalar the function fi(x) has
a finite limit. Therefore, the OPE (3.53) is nonsingular in the |x| → 0 limit, and we can
define an associative multiplication by the ordinary product of two chiral primary operators
at coincident points, which is the multiplicative structure of the chiral ring.

Let us consider the OPE of a chiral primary operator Ochiral of R-charge ROchiral with
a scalar semishort primary operator OSSS of R-charge ROSSS . The conformal dimensions of
the operators are given by ∆Ochiral = ROchiral and ∆OSSS = ROSSS + 1. This OPE may be
singular and contain the following operator

Ochiral(x)OSSS(0) = · · ·+ cchiral
|x|
O′chiral(0) + · · · , (3.54)

where O′chiral is a BPS scalar primary of dimension ∆O′chiral
= RO′chiral

= ROchiral + ROSSS .
There may also be the nonsingular term

Ochiral(x)OSSS(0) = · · ·+ cSSSO′SSS(0) + · · · , (3.55)

which will be of principal interest in this section. Let us show that the smooth term (3.55)
in the OPE defines an associative multiplication of the chiral ring elements on the scalar
semishort primary operators. We cannot reach this argument directly from the OPE above,
since the nonsingular terms in a generic OPE are not associative generally; only the sum of
all terms in the OPE, singular and not, obeys associativity when taken together. However
by taking a Q̄-descendant, we can establish associativity of (3.55) indirectly. Let Q̄↑ be
the energy- and R-charge-raising supercharge which carries the third component of the
spin `3 = 1/2. By taking the Q̄↑-descendant, we can define an associative multiplication
of the chiral ring elements on the superpartners

[
Q̄↑,OSSS

]
of scalar semishort primary

operators. By the same arguments as above, any function f̃i appearing in the OPE of Ochiral

and Q̄α · OSSS :=
[
Q̄α,OSSS

]
,

Ochiral(x)
(
Q̄α · OSSS

)
(0) =

∑
i

f̃i(x)Oi(0) (3.56)

24That is, fi(x) satisfies fi(λx) = λγifi(x).
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must scale as |x|γ̃i , with the exponent γ̃i defined as

γ̃i := ∆Oi −∆Ochiral −∆Q̄α·OSSS
= ∆Oi −ROchiral −ROSSS −

3

2
, (3.57)

where ∆Oi and ROi = ROchiral +ROSSS + 1 are the dimension and R-charge of Oi appearing
in (3.56). In the case where the Oi is a superpartner of a scalar semishort primary operator,
then `Oi = 1/2, and

∆Oi = ROchiral +ROSSS +
3

2
⇔ γ̃i = 0. (3.58)

In this case, f̃i can have two possible Lorentz tensor structures, that is,

Ochiral(x)
(
Q̄α · OSSS

)
(0) = · · ·+ cAOαA(0) + cBγ

αβ
µ

xµ

|x|
OβB(0) + · · · . (3.59)

However, in a N = 2 SCFT in three dimensions such as the XY Z model, it can be shown
that cB = 0.25 Therefore, the OPE (3.59) becomes

Ochiral(x)
(
Q̄α · OSSS

)
(0) = · · ·+ cAOαA(0) + · · · , (3.60)

where OαA is an operator of spin 1/2 satisfying ∆ = R + 1/2. Any such operator has to
be the Q̄α-descendant of a scalar semishort primary operator, as shown by the following
argument. By virtue of the unitarity bound (3.50), all other operators on the right-hand side
of (3.60) vanish in the limit x→ 0. Therefore the Q̄-descendants of scalar semishort primary
operators form a module over the commutative ring of the chiral primary operators:26

Ochiral(x)
(
Q̄α · OSSS

)
(0) = c

(
Q̄α · O′SSS

)
(0) + (terms vanishing at x = 0). (3.61)

From this, it follows that the scalar semishort primary operators themselves form a module
over the chiral ring. Naïvely this would appear to follow without any further justification,
as one expects that the OPEs of descendant operators are completely determined by the
OPEs of primary operators. For nonsupersymmetric conformal invariance this is indeed the
case, a fact synonymous with the existence and uniqueness of the conformal blocks. For
superconformally covariant OPEs, this argument does not generalize; there are multipa-
rameter families of nontrivial, functions of three-point functions in superspace [114] which
is invariant under superconformal transformations. By multiplying a superconformally co-
variant three-point function by such a superconformally invariant function of three copies
of superspace, one can obtain another three-point function which is also covariant under
superconformal transformations. However, in the case where one of the three operators is a

25One can show by using the formulation of [114] that superspace three-point functions of scalar superfields
is uniquely determined up to an overall constant, if any one of the superfields is a chiral superfield. Since cB =

0 in the free theory of a chiral superfield, one concludes that cB = 0 in any theory.
26In four dimensions this module structure is discussed in [115].
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chiral primary operator, there is no such problem: The identity, up to an overall constant, is
the only function on three copies of superspace that is annihilated by the superderivative D̄α

acting on any one of the three points. Therefore, the OPE coefficient c appearing in (3.61)
uniquely determines the OPE coefficient cSSS appearing in (3.55) and vice versa. So, we
can define the module structure of scalar semishort primary operators indirectly from the
nonsingular OPE (3.61).

Heuristically, we can discuss about the action of the chiral ring elements on scalar sem-
ishort primary operators directly through the following operation,

Ochiral ×OSSS = O′SSS =
(
Q̄↑
)−1 · Ochiral · Q̄↑ · OSSS. (3.62)

Since the chiral ring element Ochiral is annihilated by Q̄↑, the operator Ochiral indeed formally
commutes with Q̄↑, justifying the above definition. However, we need the uniqueness of
superconformally covariant three-point functions of three copies of superspace with one
chiral primary operator in order to make logical sense of equation (3.62).

The fact that scalar semishort primary operators form a module over the chiral ring
implies the existence of scalar semishort primary operators at low values of J as well.
Starting with the moment map operator, which is the primary operator of the flavor current
multiplet and may be expressed as

(
XX̄

)3/4
= φφ̄ in the EFT, we act 2J times with φ to

obtain a scalar semishort primary operator φ̄φ2J+1, which carries R-charge J . Algebraically,
this state could in principle vanish: a priori the representation of the chiral ring on the
module of scalar semishort primary operators does not have to be faithful, i.e., the OPE
coefficient cA appearing in (3.60) could vanish for some intermediate value of J . However
we have seen already that the scalar semishort primary operator φ̄φ2J+1 is nonvanishing for
sufficiently large value of J , using the effective description. By associativity, we conclude
that any of the intermediate products φ̄φk+1 cannot vanish, for any nonnegative value of k
satisfying the certain quantization condition.

The existence of scalar semishort primary operators for all values of k can in principle
be checked via the superconformal index; and in appendix D we expand the superconformal
index to several orders and verify our prediction. However we would like to emphasize that
the same conclusion can be obtained in a less arduous way by using the large-J perturbation
theory.

3.5 Conclusion of section 3

In this section we have considered the N = 2 superconformal XY Z model in three di-
mensions, and calculated the conformal dimensions of certain low-lying operators carrying
large charges to the first nontrivial order in an expansion in large R-charge JR and large X-
charge JX ∼ 3JR/2. In order to do so, we have radially quantized the theory and used the
EFT on the X-branch of the moduli space. In this theory, both loop corrections and higher-
derivative interaction terms in the effective action are suppressed by powers of |φ| = |X|3/4
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when |φ| is large and scales as J 1/2. We have seen that the state with one φ̄ excitation
in the s-wave is protected because it is in a scalar semishort multiplet [67, 107–109] The
third-lowest scalar primary operator can be viewed as the state with two φ̄ quanta in the s-
wave, atop a sea of (2JR + 2) φ-quanta in the s-wave. This state is in a long multiplet and
has a nontrivial anomalous dimension which is proportional to the coefficient of the leading
interaction term in the effective action – the superconformal extension of the FTPR term.
Due to unitarity and causality of the EFT [56], the coefficient of the super-FTPR term
must be positive, and therfore the anomalous dimension of the third-lowest state must be
negative. There is an curious similarity between the large-R-charge expansion of the anoma-
lous dimension, and the large-spin expansion of the anomalous dimension of operators with
large SO(d) spin [33, 34], although the two expansions are based on rather different logical
arguments. It would be interesting to understand these two expansions within a unified
framework of operator dimensions with large charges. For recent work in this direction,
see [41].

One advantage of the large-R-charge expansion, in the case where the theory has a
family of Lorentz-invariant vacua, is that it gives us the tools to connect properties of a
SCFT which are called the CFT data, i.e., conformal dimensions and OPE constants, with
those which can be expressed in terms of EFT on the moduli space of vacua.

In the low-energy dynamics of moduli space, superconformal invariance is spontaneously
broken and physical observables can be calculated perturbatively by using the EFT. Such
perturbative calculations do not depend on any weak coupling limit of the underlying SCFT;
the perturbative parameter in the context of moduli space EFT is the ratio of the IR to
the UV energy scale, which in the present case is simply an inverse power of the charge
eigenvalue of the state. Therefore we can make use of the large-charge EFT to calculate
physical observables associated with near-BPS primary states as a perturbative expansion
in J−1.

As a consistency check, we have checked that the scalar primary operators in protected
multiplets with large R- and X-charge exist. For chiral primary operators this is straightfor-
ward, and it is a bit more nontrivial for scalar semishort primary operators. Curiously, once
the existence of scalar semishort primary operators at large values of X-charge is verified,
the module structure of scalar semishort primary operators over the chiral ring indicates that
scalar semishort primary operators exist at low values of X-charge as well. This prediction
agrees with the operator spectrum of protected multiplets obtained by explicitly expand-
ing the superconformal index. Thus it seems that the combination of holomorphy with
the large-J expansion is quite powerful in studying SCFTs. It could be possible that this
combination of points of view provides some insights into the dynamics of other interesting
SCFTs as well.
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4 On the large-R-charge expansion in N = 2 supercon-
formal field theories in four dimensions

In section 3 we have analyzed the large-R-charge expansion for operator dimensions in a
three-dimensional SCFT with a one-complex-dimensional moduli space, and have quantized
the EFT on moduli space in radial quantization, in order to compute operator dimensions
of near-BPS primary operators of large R-charge. It is reasnoable to try to make a further
connection between the large-R-charge expansion and other methods which maximally uses
superconformal invariance. In order to do so, one would like to find a set of physical
quantities associated with operators carrying large R-charge, which both has a nontrivial
expansion in large R-charge, like the near-BPS operator dimensions calculated in section 3,
and can also be computed directly by making use of exact superconformal invariance. The
three-point functions of two chiral and one antichiral primary operators in SCFTs with eight
or more Poincaré supercharges are prime candidates and studied in this section. These
three-point functions are equivalent to the OPE coefficients of chiral ring elements and
have a nontrivial dependence on R-charges of the operators, unlike the dimensions of chiral
primaries, whose dependence on R-charge is determined by the superconformal algebra. For
SCFTs with a UV Lagrangian description, one can in principle calculate these three-point
functions exactly by supersymmetric localization and in some cases they have been worked
out explicitly [1–4,116–123] (see also an earlier work [124]).

In this section we calculate three-point functions of two chiral primary operators and
one antichiral primary operator in N ≥ 2 SCFTs in four dimensions, with a one-complex-
dimensional Coulomb branch. As explained in section 4.1, considering three-point functions
is equivalent to considering two-point functions of chiral and antichiral primary operators,

Yn := |x− y|2n∆O
〈
On(x)Ōn(y)

〉
R4 , (4.1)

which is independent of the positions x, y in a CFT, and therefore invariant under con-
formal transformations. For SCFTs with a one-complex-dimensional Coulomb branch, the
chiral ring is generated by a single chiral primary operator O, whose dimension ∆O and
R-charge JO satisfy the following relation,

∆O =
1

2
|JO|. (4.2)

Here, we normalize the U(1)R-charge JO so that the unitarity bound for scalar primary
operators is ∆ ≥ |J |/2, and a free vector multiplet scalar φ has ∆φ = |Jφ|/2 = 1. Note that
a four-dimensional N = 2 SCFT has an SU(2)R × U(1)R R-symmetry, and chiral primary
operators are neutral under SU(2)R. The parameter n appearing in (4.1) is related to the R-
charge of the chiral primary operator On as JOn = 2n∆O, and therefore the large-R-charge
limit is the limit where the parameter n is large.
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We show in section 4.2.3 that the asymptotic behavior of the logarithm of the two-point
function Yn in the large-n limit is universal, behaving as

Bn := logYn = log [(n∆O)!] + b−1n∆O + α log (n∆O) +O
(
n0
)
. (4.3)

The coefficient b−1 appearing in (4.3) is independent of n but depends on the normalization
of the metric on the Coulomb branch relative to the normalization of the chiral primary
operator O itself. The coefficient α appearing in the logarithmic term of (4.3) is shown to be
determined by the the a-coefficients of the Weyl anomaly.27 The definition of the anomaly
coefficients is convention-dependent, but α is not. The value of α can be expressed in a
convention-independent manner as

α :=
5∆a

12afavm
, (4.4)

where ∆a := aCFT − aEFT is the difference between the a-coefficient aCFT of the underlying
SCFT and the a-coefficient aEFT of the low-energy EFT of massless moduli fields. The
constant afavm in the denominator is the a-coefficient of a free Abelian vector multiplet
of N = 2 supersymmetry in four dimensions. We have expressed the value of α in this form
so that it is independent of the overall normalization of the a-coefficient of the Weyl anomaly.
In one popular convention used in [6] by Anselmi, Erlich, Freedman and Johansen (AEFJ),
the value of afavm is 5/24, and so α is given by

α = 2
(
a
[AEFJ]
CFT − a[AEFJ]EFT

)
, (4.5)

in that convention. In table 2, we provide a list of values for α in all known N ≥ 2 SCFTs28

whose Coulomb branch space at a generic point has only one Abelian vector multiplet (plus
possibly massless hypermultiplets), in the convention of [6]. For instance, N = 4 super-
Yang–Mills theory with gauge algebra su(2), has α = 1.

As in section 3, an operator carrying large R-charge is equivalent to a state of large
R-charge on S3 via radial quantization. Although we will not be radially quantizing the
theory or making use of the cylindrical frame in this section, the underlying physics is the
same as in section 3. The large-n limit of the two-point functions Yn is the large-R-charge
limit, in which the EFT becomes weakly interacting.

The first term on the right-hand side of (4.3) comes from the effective action evaluated
on the classical solution created by the operator insertions On(x)Ōn(y), the constant b−1

depends on the normalization of the operator O, and the third term α log(n∆O) comes from
the Wess–Zumino Lagrangian (also known as the dilaton effective action) [5, 125] in the
EFT on the Coulomb branch. The remaining terms of order n0 are contributed by quantum
loops within the EFT, as well as superconformally invariant higher-derivative interaction

27Basics facts about the Weyl anomaly are summarized in appendix H.
28As of December 2017.
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terms in the effective action of the moduli space, with coefficients nontrivially depending
on the underlying theory.29 Quantum loops within the EFT contributes only at order n0

and smaller; even those are summed up entirely by the free-field action. That is, the only
quantum loops contributing at order n0 are determinants in the free EFT, and these can be
computed by Wick contractions of the free Abelian vector multiplet scalar describing the
Coulomb branch.

The contents in this section are based on work [44] done in collaboration with Simeon
Hellerman.

4.1 Large-R-charge expansion of two-point functions

The strategy for the computation is analogous with that of section 3. Some of the differences
are the number of spacetime dimensions (four here versus three in section 3) and the number
of supercharges (eight Poincaré supercharges in the present section versus only four in
section 3), but these differences are not significant when considering the large-R-charge
expansion. In particular, one can regard a four-dimensional SCFT with eight Poincaré
supercharges as a special case of N = 1 SCFT in four dimensions, which becomes by
dimensional reduction a theory with N = 2 supersymmetry in three dimensions, as in the
case of the theory analyzed in section 3.

Our computation applies to all four-dimensional N ≥ 2 SCFTs with a one-complex-
dimensional Coulomb branch. Such theories are sometimes called rank-one theories. SCFTs
with N ≥ 3 supersymmetry are regarded as special cases of N = 2 SCFTs. When we refer
to dimensions of moduli spaces, we will always be using the N = 2 terminology, in terms
of which, e.g., N = 4 SU(N) super-Yang–Mills theory, can be considered as an N = 2

super-Yang–Mills theory with gauge group SU(N) and a single adjoint hypermultiplet, and
its moduli space is described by N−1 vector multiplets and N−1 massless hypermultiplets,
again in the N = 2 terminology.

4.1.1 Basics

Two-point functions as three-point functions. For four-dimensional N = 2 SCFTs
with a one-complex-dimensional Coulomb branch parametrized by the chiral primary oper-
ator O, we consider the three-point functions〈

On1(x)On2(y)Ōn1+n2(z)
〉
, n1, n2 ∈ N. (4.6)

29Some low-derivative interaction terms in effective actions have been constructed in [126–129]. However
there is no complete classification of superconformally invariant interaction terms even at low orders in the
derivative expansion. Furthermore, nothing is known about the coefficients of higher-derivative interaction
terms even for simple N = 2 SCFT.
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Similarly to the three-dimensional case in section 3.4.1, due to the unitarity bounds the
OPE of chiral primary operators is nonsingular,

On1(x)On2(y) = On1+n2(y) + (terms vanishing at x = y). (4.7)

So three-point functions of two chiral primary operators and one antichiral primary operator
can be reduced to two-point functions, by taking the two chiral primary operators to lie at
the same point. In order to get rid of the position dependence, we define

Yn := lim
y→x
|x− z|2m∆O |y − z|2(n−m)∆O

〈
Om(x)On−m(y)Ōn(z)

〉
= |x− z|2n∆O

〈
On(x)Ōn(z)

〉
.

(4.8)

This quantity is independent of the integer m and the positions x, y, z, and therefore
invariant under conformal transformations.

At first sight, one may wonder if there is a meaningful normalization for two-point
functions in CFT, because one generically regards two-point functions of primary operators
as simply being unit-normalized. However this normalization convention, while widely used,
is not the natural one for chiral primary operators. Once one chooses a set of generators
of the chiral ring, the higher chiral primary operators generated from them by algebraic
multiplication, are defined by associativity, including their normalization. That is, if one
unit-normalizes the generators O1 and O2 of the chiral ring, one cannot freely unit-normalize
the product O3 := O1O2.

In the case of a rank-one SCFT, one can freely choose the normalization of the chiral
ring generator O, but once it has been fixed, one does not have the freedom to normalize the
higher chiral primary operators On with n ≥ 2, and their two-point functions Yn depend
nontrivially on n. It is the dynamics of the SCFT that determines the value of Yn.

4.1.2 Free-field approximation

Two-point functions on R4. In the beginning of section 4.1 we have quoted some dis-
similarities between the present case and the case of section 3, such as the number of
supercharges and the dimensionality of spacetime, which do not quite change the structure
of the computation. A more important difference is that we compute the two-point func-
tions Yn directly on flat space R4, instead of the cylinder as we have done in section 3. This
is because the quantities we are going to compute are the two-point functions, which are
viewed as the norms of the corresponding states in radial quantization, and therefore it is
not easy to see them directly in radial quantization, as the Hilbert space formalism usually
begins by taking the norms of the states as inputs. Radial quantization is more beneficial
when we calculate the energies of the states than the overall normalizations of them. We
could calculate these normalizations in radial quantization as three-point functions, as was
done in [37] for the O(2) Wilson–Fisher CFT or other nonsupersymmetric CFTs whose dy-
namics is described by the conformally invariant EFT of a Goldstone hydrodynamic mode
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at large charge. It would be interesting to verify that these two methods give the same
asymptotic formula for Yn at large n, but we will not do it in this thesis.

Free effective field. For rank-one N = 2 SCFTs in four dimensions, the low-energy EFT
consists of a single vector multiplet, plus possibly massless hypermultiplets. We ignore the
hypermultiplets for now, since they do not take part in the classical solution which gives the
leading contribution to the two-point function. When we consider the EFT of the vector
multiplet, we will mostly30 follow the conventions of [130, 131]. The holomorphic gauge
coupling τ is defined as

τ :=
4πi

g2
+
θYM
2π

. (4.9)

An Abelian vector multiplet contains a U(1) gauge field, as well as fermions and a complex
scalar field A both neutral under the U(1) gauge group. In terms of the complex scalar
field A, the holomorphic effective coupling τeff is given by

τeff =
∂2Feff

∂A2
, (4.10)

where Feff is the effective holomorphic prepotential for the Abelian vector multiplet.
The kinetic term for the complex scalar field A has nontrivial dynamical information

and is related to the gauge coupling constant, but the only thing we know a priori about
the kinetic term for A is that it is invariant under symmetry transformations. Conformal
invariance and R-symmetry implies that the metric on the Coulomb branch has to be flat.
Then the kinetic term for A must be of the form

Sfree =

∫
d4xLfree, Lfree :=

Im τeff
4π

(∂µA)
(
∂µĀ

)
. (4.11)

The holomorphic effective gauge coupling τeff is related to the effective prepotential by (4.10)
and has to be independent of A in SCFTs, so we conclude that the effective prepotential is
of the form

F(A) =
τeffA

2

2
. (4.12)

30With one particular exception: For the microscopic holomorphic gauge coupling in N = 2 superconfor-
mal quantum chromodynamics, [130,131] define

τ =
8πi

g2
+
θYM

π

for reasons to do with duality and Dirac quantization condition. Instead, we will use the convention

τ =
4πi

g2
+
θYM

2π

for all gauge couplings, both microscopic and effective, uniformly in the representation of the hypermul-
tiplets. This convention is more frequently used recently, especially in the literature on supersymmetric
localization, e.g., [132] and works making use of it.
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We can define a scalar field with unit kinetic term by

φ :=

√
Im τeff

4π
A (4.13)

so that the kinetic term becomes

Lfree = (∂µφ)
(
∂µφ̄
)

(4.14)

Note that the change of the variable (4.13) is holomorphic in A and φ but not in the
complexified coupling constant τeff.

Normalization of the effective scalar. In order to compute the term of order n in the
logarithm of the two-point function Bn = logYn, one would need to express the generator O
of the chiral ring in terms of the complex scalar field A in the vector multiplet. Since A has
dimension ∆A = 1, the only possibility is

O = (MOA)∆O , (4.15)

where ∆O is the conformal dimension of O and MO is a constant. Defining NO = NO(τ, τ̄)

such that

NOφ = MOA, (4.16)

the quantities NO and MO are related by

NO =

√
4π

Im τeff
MO. (4.17)

Since φ has the unit kinetic term in the effective action, we cannot absorb NO into the
normalization of φ. We could of course absorb NO into the normalization of O, but we
might want to normalize O in some other way. For example, we might want to normalize O
to have the unit two-point function, Y1 = 1. For general rank-one N = 2 SCFTs, we do not
know how to compute the constant NO, provided some fixed normalization of O: This is an
interesting problem for future investigation of the large-R-charge limit. For now, we leave
the constants MO and NO undetermined. The map between O and φ can be expressed as

O = (NOφ)∆O . (4.18)

Multivaluedness of the map between O and φ. Note that the map between the
chiral ring generator O and A or φ is not one to one in general. If ∆O is an integer, then the
map from φ to O is single-valued, but it is one-to-one if and only if ∆O = 1, which means
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that O is a free vector multiplet scalar and therefore the underlying SCFT is free. If ∆O is
not an integer, the map from φ to O is multivalued.31

The coordinate φ or A should be considered only as a local holomorphic coordinate of
the Coulomb branch here. As long as we are far away from the origin of the Coulomb
branch, the singularity of the map (4.15) at the origin should not invalidate the use of the
EFT.

When ∆O is a noninteger rational number, we may for simplicity restrict ourselves to
the situations where n∆O is an integer, so that our Wick-contraction of n∆O free scalar
fields is well-defined.32 However a further transformation to a logarithmic field log φ, might
validate the calculation even for n∆O /∈ Z; a similar point was made in section 3.3.2. For the
purpose of calculating conformal dimensions as we have done in section 3, the existence of
the logarithmic field is a persuasive reason to believe that there is no possibility of peculiar
behavior happening due to the fractional part of n∆O. On the other hand, the computation
of correlation functions is slightly different, as the multivaluedness of the map may become
relevant at the insertion points of the operator O and its conjugate. We will leave this an
open question, and for now we simply choose n such that n∆O is an integer. In all SCFTs
with a UV Lagrangian description, ∆O is always an integer, with the chiral ring being
generated by traces of powers of the non-Abelian vector multiplet scalar, and therefore
we can evade the above-mentioned issue. For a rank-one SCFT with a UV Lagrangian
description, ∆O is always equal to 2, and the chiral ring generator O is in the multiplet of
the exactly marginal operator cotangent to the microscopic holomorphic gauge coupling τ .

Calculation of the free-field contribution. Now we would like to write down the
leading approximation to the two-point function in the large-n limit. For general rank-one
SCFTs, we choose n so that n∆O is an integer, and by Wick-contraction of n∆O complex
free scalar fields, we get

Yn ' |x− y|2n∆O
〈
On(x)Ōn(y)

〉 ∣∣∣∣
free

=

∣∣∣∣NO2π

∣∣∣∣2n∆O

(n∆O)!, (4.19)

where the factor of 2π in the denominator comes from the normalization of the free scalar
propagator with the unit kinetic term, (F.3).

This is simply the free approximation and is not exact in n. However we show below that
superconformally invariant higher-derivative interaction terms in the effective action only

31Although ∆O is integer in rank-one SCFTs with a UV Lagrangian description, there are various non-
Lagrangian rank-one SCFTs (so-called Argyres–Douglas theories [133–135]) with fractional ∆O. See, e.g.,
table 1 of [60].

32It is believed that the conformal dimensions of chiral primary operators in four-dimensional N ≥ 2

SCFTs are always rational. This is true obviously in SCFTs with a UV Lagrangian description and also in
all known non-Lagrangian N ≥ 2 SCFTs. Especially in the rank-one case, all known SCFTs in the general
classification [57–60] have rational conformal dimensions for chiral primary operators.
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have n-suppressed contributions in the logarithm of the two-point function Bn = logYn,
using arguments similar to those we have made in section 3.

To do this, we relate the two-point function with a classical solution of the effective
action with sources which correspond to the insertions of the operators. Doing this we
verify that the classical approximation to Bn agrees with (4.19) up to terms of order log n,
which come from loop corrections in the path integral over the free action with sources.

4.1.3 Classical solution with operator insertions

Large-n insertions as classical sources. The path integral of the free Euclidean theory
with insertions is equivalent to a path integral with sources,〈∏

i

Oi(xi)

〉
:=

∫
DφDφ̄ exp (−Sfree − Ssource), Ssource := −

∑
i

logOi(xi). (4.20)

In our case,

O1(x1) = [O(x1)]n∆O = [NOφ(x1)]n∆O , O2(x2) =
[
Ō(x2)

]n∆O =
[
N∗Oφ̄(x2)

]n∆O , (4.21)

where we have used (4.18). Then, the total action in (4.20) becomes

Sfree + Ssource = −2n∆O log |NO|+
∫
d4xLdyn,

Ldyn := (∂µφ)
(
∂µφ̄
)
− δ(x− x1)n∆O log φ− δ(x− x2)n∆O log φ̄,

(4.22)

so the equations of motion for the scalar fields are given by

∂2φ̄(x) = −n∆O
φ(x)

δ(x− x1), ∂2φ(x) = −n∆O
φ̄(x)

δ(x− x2). (4.23)

Solution to the equation of motion. The classical solution to (4.23) has a U(1)R-
phase zero mode and therefore is not unique. One can regard this phase zero mode as an
R-symmetry Goldstone boson of the solution,33 which shifts by a constant under a U(1)R
transformation. An EFT including this R-symmetry Goldstone boson has been analyzed
in [136]. At higher orders in n−1 the path integral over the phase zero mode develops cor-
rections to the effective action through the path integral measure, but these are suppressed
and contribute only at order n−1 or smaller. As we are calculating the effective action only
up to and including order log n in this section, we do not have to consider such quantum
corrections.

The classical solution to (4.23) is of the form

φ(x) =
cφ

|x− x2|2
, φ̄(x) =

cφ̄

|x− x1|2
, (4.24)

33Note that scaling invariance is explicitly broken by the sources, and therefore there is no scaling zero
mode in the solution.
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with cφ and cφ̄ satisfying

(2π)2cφcφ̄

|x1 − x2|2
= n∆O. (4.25)

The absolute value of φ is evaluated as

|φ(x)| =
√
n∆O
2π

|x1 − x2|
|x− x1||x− x2|

. (4.26)

The value of the action (4.22) at the saddle point (4.24) is given by∫
d4xLdyn = n∆O[− log (n∆O) + 1 + 2 log |x1 − x2|+ 2 log (2π)]. (4.27)

Classical approximation to the free two-point function. The classical action is of
order n log n. Thus the R-charge 2n∆O of the operator plays a role of an inverse Planck
constant ~−1 in a perturbative expansion, and suppresses quantum fluctuations of any prod-
uct

∏
i

O′i of operators O′i carrying R-charge of order one, inserted into the two-point func-

tion. Especially, one can divide the scalar field φ into its classical solution plus a fluctua-
tion, φ = φcl+φfluc, and n plays a role of a parameter which suppresses quantum corrections
relative to the classical partition function Zcl := exp(−Sfree − Ssource)

∣∣
φ=φcl

. In other words,
we expect

logZfree+sources := log

[∫
DφDφ̄ exp (−Sfree − Ssource)

]
' logZcl = −(Sfree + Ssource)

∣∣∣∣
φ=φcl

,

(4.28)

with errors of relative order n−1.
We would like to verify this prediction explicitly. Since the classical partition func-

tion Zfree+sources is exactly determined by the Wick contraction result (4.19), we only need
to calculate the value of the classical free action with sources at the saddle point (4.24),
and check if it agrees with the asymptotic formula of the logarithm of the Wick contraction
result (4.19). The right-hand side of (4.28) is

−(Sfree + Ssource)

∣∣∣∣
φ=φcl

= log

[(
n∆O|NO|

2π|x1 − x2|

)2n∆O

e−n∆O

]
, (4.29)

so from (4.8) we have

Yn '
(
n∆O|NO|

2π

)2n∆O

e−n∆O . (4.30)
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This approximation can be viewed as Stirling’s approximation to the Wick contraction
result (2π)−2n∆O(n∆O)! of the two-point function, multiplied by the normalization fac-
tor |NO|2n∆O .

So we have verified the prediction (4.28), and that the R-charge 2n∆O indeed plays
a role of a parameter which suppresses corrections to the classical approximation. If we
were satisfied with the approximation (4.30), which is accurate only at order n log n and n,
it would be a rather unsophisticated way to approximate a free two-point function; if the
effective action were exactly free, then we would just use the exact formula (4.19). However
the approximation of the large-n Wick contraction by a classical saddle point, allows us
to go beyond free-field ones, and include corrections coming from interaction terms in the
effective action. In section 4.2 we compute contributions to Bn = logYn of order log n,
which come from interaction terms in the effective action.

4.2 Contributions of interaction terms

In (4.30) an approximation to the two-point function Yn is given, with the symbol "'"
implying that interaction terms beyond the free kinetic term in the effective action are
discarded. We would like to understand how accurate the approximation (4.30) is. To do
this, we need to know how interaction terms contribute in the large-n limit. Since n controls
the magnitude of the classical value (4.26) of |φ|, which is of order

√
n, we can determine

the order of contribution of each interaction term in the effective action at large n from
its |φ|-scaling.

4.2.1 n-scalings and the dressing rule

The |φ|-scaling of an interaction term in the effective action means the number of φ’s and φ̄’s
appearing in the numerator of the term, minus that appearing in the denominator. In the
denominator, the fields can only appear without derivatives. This rule, long (correctly)
regarded as obvious for study of moduli space EFTs, is based on the nontrivial fact that
moduli spaces exist, and so the leading term in the denominator in a moduli space effective
action, must be an undifferentiated field.

More generally, in any EFT where scale invariance is spontaneously broken, the field
appearing in the denominator of an interaction term needs to be a dimensionful field that
has an expectation value in the spontaneously broken vacuum. The spontaneously broken
scale invariance and R-symmetry severely constrain interaction terms which can appear
in the effective action, even without making full use of superconformal invariance. The
most important point is that, since φ and φ̄ themselves are the lowest-dimension fields with
VEVs, they are the unique dressing fields to make a term invariant under scaling and R-
symmetry transformations. For instance, let (term)undressed be some monomial in ∂kφ, ∂kφ̄,
the curvature of the Abelian gauge field and its derivatives, and the fermions in the vector
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multiplet and their derivatives. Then it has a unique scale-invariant and U(1)R-symmetry-
invariant dressing by φ and φ̄:

(term)dressed = φ−`φ̄−
˜̀
(term)undressed,

` =
1

2
∆undressed +

1

4
Jundressed, ˜̀=

1

2
∆undressed −

1

4
Jundressed,

(4.31)

where ∆undressed and Jundressed represent the scaling dimension and R-charge of (term)undressed,
respectively.

In the N = 2 superspace formalism [137,138], we can express each term in the effective
action as an integral over all the Grassmann variables (N = 2 D-terms) or a subset (N =

2 F -terms and θ6-integrals), and therefore make it manifestly supersymmetric. The dressing
rule can then be enforced at the level of the superspace integrands themselves, taking into
consideration the contributions of the integration measure to the scaling dimension and
R-charge of the term.

Let Φ be a superfield consisting of the effective vector multiplet. The dressing rules im-
plies that one need to dress each (super-)derivative ∂µ or Di

α, D̄i
α̇ to make it invariant under

scale and U(1)R-transformations, using undifferentiated Φ’s and Φ̄’s themselves. Each ∂µ
has to be dressed by (ΦΦ̄)−1/2 and each Di

α or D̄i
α̇ has to be dressed by Φ−1/2 or Φ̄−1/2,

respectively.
Before coming to the classification of terms, several comments are in order:

• Dressing with the appropriate amount of Φ and Φ̄ in the denominator, is necessary but
clearly not a sufficient condition for a term which can appear in the effective action:
Besides rigid scale invariance and supersymmetry, there are many other conditions
such as invariance under special conformal and SU(2)R transformations, as well as
super-Weyl covariance on curved backgrounds. These conditions give additional severe
constraints on terms in the effective action, but as we shall see supersymmetry, U(1)R-
symmetry, and scale invariance alone deny any contribution from superconformally
invariant interaction terms up to order n0.

• We classify terms in flat space; one should be aware of the fact that this classifi-
cation can underestimate the n-scaling of a term in a general curved background.
There can be a Weyl-invariant term involving curvature tensors, where the n-scaling
of the curvature-dependent piece of the term in a curved background is larger than
the n-scaling of the term in flat space. For instance, the large-charge EFT of the non-
supersymmetric O(2) Wilson–Fisher CFT [35] contains the following Weyl-invariant
term,

|∂χ|R+ 2
(∂|∂χ|)2

|∂χ|
, (4.32)
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where the first piece scaling as n1/2, and the second piece scaling only as n−1/2 for a
helical solution in the cylinder.34

• A systematic classification of superconformally invariant terms including their super-
Weyl-invariant curvature completions in general curved backgrounds requires to de-
velop a superconformal version of the formalism of [37], which is based on the general
Callan–Coleman–Wess–Zumino (CCWZ) methodology [139, 140]. One can make use
of this formalism in large-charge EFTs such as [35–38, 40–43] in order for the classi-
fication of terms in effective actions when some combinations of internal symmetry
and conformal symmetry are preserved with the rest spontaneously broken.35 In the
case of N = 2 SCFTs in three dimensions such as the model discussed in section 3,
a conformal supergravity formalism such as [104] would give a superconformal exten-
sion of [37], and actually the leading superconformally invariant interaction term, the
super-FTPR term, is constructed in a most general curved background by utilizing
the formalism of [104].

• However in the present EFT one can easily see that the only possible scale- and U(1)R-
invariant curvature-dependent term scaling as greater than n0, is given by R|φ|2. This
term is just the usual conformal coupling which is always needed to make the flat-
space kinetic term |∂φ|2 Weyl-invariant, with coefficient36 1/6. One more Ricci scalar
would necessitate an additional factor of |φ|−2. Tensorial curvature terms are not
dangerous either: The Ricci tensor Rµν , for instance, has weight 4 under a rigid Weyl
transformation, and therefore would have to be compensated with

(
∂µφ∂νφ̄

)
|φ|−2 in

order to have weight 4 so that it can appear in the effective Lagrangian. In this case
the n-scaling of the resulting term is zero. Terms involving curvature tensors with
more free indices, have even higher Weyl weight, and therefore require even more
undifferentiated |φ|’s in the denominator in order to make a term of total weight 4

after contracting tensor indices with derivatives of the fields. So in the present case
we never underestimate the n-scaling of superconformally invariant terms contributing
larger than n0, by classifying them simply in flat space.

• Our classification is valid only for superconformally invariant terms in the effective
action. Since the underlying SCFT is invariant under superconformal transformations
modulo the anomaly, so must the effective action be invariant, modulo the anomaly.

34The field χ is the O(2) Goldstone boson, i.e., a compact scalar transforming as χ→ χ+ (const.) under
an O(2) transformation. The gradient ∂χ scales as n1/2 whereas ∂pχ with p ≥ 2 scales as n0.

35While enlarging the previous scope of the CCWZ formalism [139,140], the formalism of [37] still requires
a ground state to be invariant under spatial translations. It would be interesting to understand how the
formalism of [37] can be generalized to cases where the ground state is not spatially homogeneous at large
charge [36,39].

36When the kinetic term is unit-normalized, the coefficient of R|φ|2 must be (d− 2)/(4d− 4) in d ≥ 2

dimensions.
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That is, the full effective action must nontrivially transform under superconformal
transformations in order to correctly reproduce the anomaly of the underlying SCFT.
So, the effective action should contain terms which are not invariant under super-
conformal transformations. Such terms are known as the Wess–Zumino terms or the
dilaton effective action [5, 125], and compensate the difference of the Weyl anomaly
between the underlying SCFT and the EFT of moduli space. The coefficients of these
terms are c-numbers, independent of the state, and therefore cannot depend on n. The
Wess–Zumino terms scale as n0 in flat space, but it is enhanced to log n in a curved
background, as we see explicitly in section 4.3.

4.2.2 Dressing and n-scaling of superconformally invariant interaction terms

Here we demonstrate that no superconformally invariant interaction term can contribute at
order n0 or larger to Bn.

Higher-derivative terms for vector multiplets. The analysis here is very similar to
that in section 3: each superderivative Di

α or D̄i
α̇ in a superspace integrand needs to be

accompanied by no less than one factor of Φ−1/2 or Φ̄−1/2 respectively, and each derivative ∂µ
has to be accompanied by no less than one factor of |φ|−1, in order for scale invariance
to be maintained. The measure d8θ for full superspace integrals, D-terms, have scaling
dimension 4, and therefore their integrands have to satisfy

D-term dressing: NΦ+Φ̄ = −N∂ −
1

2
ND+D̄, (4.33)

where NΦ+Φ̄ is the |Φ|-scaling of an integrand, and N∂ and ND+D̄ are the numbers of
derivatives and superderivatives in the numerator, respectively. Therefore, even the n-
scaling of aD-term with no derivatives or superderivatives would be n0. However, integrands
without derivatives or superderivatives are just constants, which vanish when integrated over
superspace. Any nontrivial D-term must have definitely negative n-scaling.

Integrands of half-superspace integrals (F -terms) have scaling dimension 2, and therefore
must satisfy

F -term dressing: NΦ+Φ̄ = 2−N∂ −
1

2
ND+D̄, (4.34)

The F -term integrand with zero derivatives is merely the kinetic term proportional to Φ2 (see,
e.g., section 7.3 of [138]). It is known [126–129] that the term with the second largest value
of NΦ+Φ̄ has N∂ = 2 as a half-superspace integrand, given in equation (5.13) of [126]. The
integrand is of the form G[Φ](∂µΦ)(∂µΦ) for some holomorphic function G[Φ]. Since the
half-superspace measure d4θ has scaling dimension 2, this half-superspace integrand needs
to have scaling dimension 2 in order for scale invariance to be preserved. Therefore, the only
possible form for the function G[Φ] is G[Φ] = cGΦ

−2, where cG is a constant. However, in

58



order for R-symmetry to be preserved, the R-charge of any half-superspace integrand must
be JF = 4. Since the R-charge of Φ−2(∂µΦ)(∂µΦ) is obviously zero, this term is disallowed.
So we conclude that any half-superspace integral in the effective action must have strictly
negative n-scaling, except for the kinetic term.

Inclusion of massless hypermultiplets. So far we have considered superconformally
invariant terms constructed only out of vector multiplets. If massless hypermultiplets are
present in the low-energy dynamics of the underlying SCFT, the classification of terms
becomes a little subtler, because there can be superconformally invariant higher-derivative
terms which involve both vector and hypermultiplets. In the N = 2 superspace formalism,
such terms can be expressed as integrals over six out of the eight Grassmann variables. Such
a 3/4-superspace integrand must satisfy

mixed term dressing: NΦ+Φ̄ = 1−N∂ −
1

2
ND+D̄ −Nh, (4.35)

where Nh is the number of powers of hypermultiplets appearing in the integrand.
In the classical solution, only the complex scalar field in the vector multiplet has a

nonvanishing value, because there are sources only for the vector multiplet scalar, and the
metric of the moduli space factorizes into hypermultiplet and vector multiplet factors. All
fields in the hypermultiplets are vanishing in the classical solution in order for SU(2)R to be
preserved, and therefore the terms which contribute with the maximal n-scaling are those
consisting of degrees of freedom of the vector multiplets. That is, the only terms which are
nonvanishing when evaluated at the saddle point, are those with Nh = 0, and these n-scaling
cannot be larger than n1/2. However any superconformally invariant term which contains
only vector multiplets must be equal to an F -term, and therefore the n-scaling of such a term
is strictly less than n0 as shown above. Also, in [126] it is shown that any 3/4-superspace
integrand involving both vector and hypermultiplets satisfies N∂ + ND+D̄/2 > 1. So we
conclude that the effective action can contain mixed 3/4-superspace terms, but their classical
value at the saddle point is always zero and they contribute only through their quantum
fluctuations. Each loop is suppressed by powers of n−1 relative to the maximum n-scaling
determined by (4.35). Therefore, any contribution coming from mixed 3/4-superspace terms
which really involve vector and hypermultiplets must be strictly smaller than n0.

Order logn contribution from the Wess–Zumino term. We have shown above that
contributions coming from superconformally invariant interaction terms are of order strictly
smaller than n0. Now we turn to consider the Wess–Zumino anomaly term and its super-
symmetric completion [5,125,136]. It is not superconformally invariant and compensates the
difference of the Weyl and U(1)R anomalies between the underlying SCFT and the moduli
space EFT. Contributions coming from this term are of order log n and n0, and therefore
provide a power-law factor nα in the two-point function Yn, where its coefficient α is deter-
mined by the a-coefficient of the Weyl anomaly. Since we are only calculating Bn = logYn
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up to and including order log n, the Wess–Zumino anomaly term is the only interaction
term in the effective action we have to consider. Furthermore, we only need to compute its
classical contribution, as its quantum contributions to Bn are suppressed by inverse powers
of n−1.

The only contribution of order log n comes from the coupling of the dynamical effective
dilaton τ to the Euler density of the background metric; all other contributions coming
from the Wess–Zumino term are of order n0 and smaller. The Euler density is vainishing in
flat space R4, and we need to transform to the S4 frame in order to see the contribution of
order log n clearly. We shall elaborate why it is necessary to do so in section 4.2.4.

4.2.3 Structure of the large-n expansion

Before computing the O(log n) contribution from the Wess–Zumino term, let us clarify the
structure of the large-n expansion of the logarithm of the two-point function, Bn = logYn.

We have all the data which are necessary to determine the large-n expansion of Bn up
to and including order log n. The two-point function Yn can be regarded as a partition
function with sources. That is, it can be expressed as

Yn = eBn = |x1 − x2|2n∆OZn, (4.36)

where Zn is defined by the path integral with the integrand exp(−Sn), where

Sn := SCFT − n log [O(x1)]− n log
[
Ō(x2)

]
. (4.37)

In the large-n limit, the path integral is approximated by the saddle point corresponding to
the classical solution (4.24), in which the value of φ is large. In this regime the action SCFT

is approximated by by its moduli space effective action and we identify the chiral primary
operator O with (NOφ)∆O . The quantity Bn has a well-behaved perturbative expansion
in n, which can be computed as a sum of connected diagrams. In the large-n expansion,
the terms nonanalytic in n, if any, cannot come from singular low-energy dynamics of the
EFT, since the EFT is free at deep IR. The logarithmic terms arise since there are explicitly
nonanalytic terms in the effective action, as a function of the scalar field φ: Since φ scales
as
√
n and the action (4.37) explicitly has an n∆O log φ + c.c. term, the quantity Bn has

contributions of order n log n as well as of order log n. The latter, O(log n) contribution
can be understood as a one-loop contribution in quantizing the theory around the saddle
point, or more simply as the next-to-next-to-leading term in the expansion of log [(n∆O)!]

by Stirling’s formula at large n.
So far we have shown that superconformally invariant interaction terms only provide

contributions of order smaller than n0 in the effective action. The only term in the effec-
tive action which gives a contribution larger than n0 is the Wess–Zumino term, whose
contribution is of order log n with a coefficient determined by the difference of the a-
coefficients, ∆a := aCFT − aEFT, as we will elaborate in section 4.3.
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To sum up, we have the following large-n expansion of Bn up to contributions of order n0,

Bn = log [(n∆O)!] + b−1n∆O + α log (n∆O) +O
(
n0
)
, b−1 = 2 log

∣∣∣∣NO2π

∣∣∣∣, (4.38)

where α is determined by the Weyl anomaly, and NO is an n-independent constant which
describes the normalization of the chiral ring generator relative to the effective vector multi-
plet scalar. The expansion (4.38) gives the large-n expansion of the two-point function Yn,

Yn = (n∆O)!

∣∣∣∣NO2π

∣∣∣∣2n∆O

(n∆O)αỸn, (4.39)

where Ỹn converges to a constant in the n→∞ limit. These large-n asymptotic expansions
are our main formulæ.

Sum and product rules. Although N = 2 superconformal symmetry simplifies corre-
lation functions of chiral and antichiral primary operators, it is still nontrivial to compute
them. For some rank-one SCFTs, one might be able to get only approximate or numerical
data, with which one might want to compare our predictions (4.38) and (4.39) in the large-n
limit. In such theories, it is convenient to express the properties of the large-n expansion
as product/quotient rules for the two-point function Yn, or equivalently as sum rules for
its logarithm Bn, which extract particular terms in the expansion. The simplest rules are
simply limits for Bn,

Bn
log [(n∆O)!]

= 1 +O

(
1

log n

)
. (4.40)

The error on the right-hand side is due to the O(n) term in (4.38), which depends on the
normalization of the chiral ring generator. The inverse of log n falls off quite slowly, and
therefore (4.40) is not so useful. If we already knew the value of the constant NO, we could
have the more accurate limit,

Bn − b−1n∆O
log [(n∆O)!]

= 1 +O
(
n−1
)
. (4.41)

However, it is burdensome to determine the value of b−1 = 2 log |NO/(2π)|, since it depends
on the normalization of the chiral ring generator itself and we have to deal with information
from a lot of choices of conventions which may be troublesome to compare among definitions
of the chiral ring generator. We would like to obtain sum rules which do not involve the
factor NO, so that we need not to bother to deal with the normalization issue. The simplest
such sum rule may be

nBn+1 − (n+ 1)Bn = n∆O −
(
α +

1

2

)
log (n∆O) +O

(
n0
)
. (4.42)
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This sum rule looks useful, because each term on the left-hand side is of order n2 log n

whereas the error on the left-hand side is of order n0, and furthermore the normalization
constant NO is absent.

It may be burdensome analytically or costly numerically to extract the logarithm on the
right-hand side of (4.42), so in some cases it may be better to use product or quotient rules
for Yn rather than sum rules for Bn. The exponential of the sum rule (4.42) is given by

(Yn+1)n

(Yn)n+1 = en∆O(n∆O)−α−
1/2[O(n0

)
+O

(
n−1
)

+ · · ·
]
. (4.43)

The difficulty in using this quotient rule is that each of the numerator and denominator of
the left-hand side is of order larger than (n∆O)! to the nth power, and we need to take ratios
of them. That is, both the numerator and denominator have digits of order n2 log n, which
cancel with a precision of digits of order n, so quite a lot of significant figures of precision
are squandered.

The use of three adjacent values let a product or quotient rule evade this difficulty
and still be independent of the normalization factor NO, while both the numerator and
denominator of the left-hand side have only O(n log n) digits each. We have:

Yn+2Yn
(Yn+1)2 =

[
1 +O

(
n−3
)]

exp

(
n−1∆O − n−2

[
∆O +

1

2
+ α

])
. (4.44)

This product rule is equivalent to the following sum rule for Bn,

Bn+2 − 2Bn+1 + Bn = n−1∆O − n−2

(
∆O +

1

2
+ α

)
+O

(
n−3
)
. (4.45)

This rule may be the most useful one, because we can make three independent consistency
checks from it, at orders n0,−1,−2, respectively, without encountering neither terrible com-
putational difficulty nor the need to know the value of the normalization constant NO. The
three independent checks for Bn can be expressed as:

lim
n→∞

(Bn+2 − 2Bn+1 + Bn) = 0, (4.46)

lim
n→∞

n(Bn+2 − 2Bn+1 + Bn) = ∆O, (4.47)

lim
n→∞

[
n2(Bn+2 − 2Bn+1 + Bn)− n∆O

]
= −

(
∆O +

1

2
+ α

)
. (4.48)

The multiplicative version of the rule is

Yn+2Yn
(Yn+1)2 = 1 + n−1∆O + n−2

(
∆2
O

2
−∆O −

1

2
− α

)
+O

(
n−3
)
, (4.49)
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from which we can make the following three independent checks,

lim
n→∞

Yn+2Yn
(Yn+1)2 = 1, (4.50)

lim
n→∞

n

(
Yn+2Yn
(Yn+1)2 − 1

)
= ∆O, (4.51)

lim
n→∞

n2

(
Yn+2Yn
(Yn+1)2 − 1− n−1∆O

)
=

∆2
O

2
−∆O −

1

2
− α. (4.52)

In section 4.4 we shall check (4.45) in two Lagrangian SCFTs with ∆O = 2 using exact results
from supersymmetric localization, with the value of α determined by the a-coefficients of
the Weyl anomaly computed in appendix H.2.

4.2.4 Correlation functions on R4 versus S4

The determination of the contribution of order log n to the two-point function, will be the
major nontrivial portion of the EFT computation. As the next step, we Weyl-transform the
system to the round four-sphere S4, because the term of order log n cannot be seen easily
in flat space.

Why do we have to consider the four-sphere at all? First we would like to explain
why we have to use the spherical conformal frame. Eventually, our basic strategy is to
quantize the EFT around the classical solution, and in principle we should be able to do
this either on R4 or S4. That is, if the term of order log n is hidden on R4, then where is it
and why cannot we see it?

In order to comprehend why the computation cannot be performed on R4, we would like
to recall the basic scheme for understanding corrections to large-n quantities in EFT, as
done in [35, 37, 43]. As in [35, 37, 43] the EFT can be regularized and renormalized at an
energy scale Λ much smaller than the UV scale EUV, while keeping Λ much larger than the
IR scale EIR. The EFT then has a perturbative expansion in n−1 if

EIR � EUV. (4.53)

This criterion is satisfied if

EUV = npEIR, p > 0. (4.54)

In the present case, the UV scale is given by the expectation value of |φ|,

EUV = 〈|φ|〉 . (4.55)

On R4, the only IR scale is

EIR = |x1 − x2|−1, (4.56)
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so the criterion (4.53) becomes

|x1 − x2|−1 � 〈|φ|〉 . (4.57)

In the large-n limit, one can make 〈|φ|〉 as large as we want in the region in R4 containing
the points x1 and x2, as one can see explicitly from the classical solution (4.24). However
we must be careful: The VEV of |φ| is not a global but a local quantity, and in the classical
solution (4.24), the value of |φ| falls off to zero sufficiently far away from the insertion points.
So we cannot use the EFT straightforwardly, because R4 is not completely in the regime of
validity of the EFT.

However this is not disastrous: The criterion (4.57) is not a necessary but only a sufficient
one. In a CFT, there is clearly a less tighter criterion which is still sufficient to make the
two-point function under control in the large-n limit. Large-n corrections are controlled if
the criterion (4.57) is satisfied in any one of conformal frames at all, and it does not have
to be the R4 conformal frame. Especially, if we conformally transform to S4 of radius r &
|x1 − x2|, in which the insertion points have an angular separation of order one, then the
criterion (4.57) is satisfied in the conformally transformed spherical frame, which includes
a conformal transformation of the scalar field φ:

φS4(x′) =

[
det

(
∂x′

∂x

)]−1

φR4(x), (4.58)

where x′ denotes the coordinates on S4 and x denotes the coordinates on R4.
If we were to compute Bn up to and including corrections of order n0, we would have

to perform this transformation explicitly, in order to evaluate the fluctuation determinant
around the classical solution and the spacetime integral of the Wess–Zumino term. Since we
only want to calculate up to order log n, the situation is much simpler. In the R4 frame, the
integral of the Wess–Zumino term is divergent at infinity; in the S4 frame, the contributions
of order log n coming from the Wess–Zumino term and fluctuation determinant are finite. It
is now clear that the term of order log n in flat space is hiding in the fluctuation determinant,
in the region where the EFT is broken down and it is not easy to compute it directly in flat
space. However by conformally transforming to the S4 frame we can recover it.

Note that the EFT we will be using preserves the full SU(2)R × U(1)R R-symmetry
group and the entire SO(5, 1) conformal group modulo the anomaly, rather than the smaller
group preserved by the D-term deformation used to calculate the S4 partition function by
supersymmetric localization in [132] and used to calculate correlation functions of chiral and
antichiral primary operators in [1–4, 116–120]. While the results from these exact methods
are used in section 4.4 to check our predictions in the large-n limit, our EFT is never
deformed by the supergravity background from the maximally superconformal one. So our
chiral ring does not have any ambiguity caused by curvature-dependent contact terms; our
four-sphere background is equivalent to flat space just by a conformal transformation, not
by a D-term deformation.
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Instead of computing the classical solution on S4 explicitly, we can obtain it indirectly
by conformally transforming the classical solution on R4 by using (4.58). We would have
to know the explicit form of the solution on S4 in order to calculate the terms of order n0

in Bn, but since we are only calculating the terms of order log n in the present section,
we only have to understand some qualitative properties of the classical solution, and the
expression (4.58) suffices to do so.

4.3 Anomaly terms

In section 4.2.2, we have shown that no superconformally invariant term in the effective
action can make contributions of order larger than n0. However the Wess–Zumino term is
not superconformally invariant, and they evade the analysis in section 4.2.2.

In order to calculate the contribution of order log n correctly, we have to express the
Wess–Zumino term taking care of their normalization. We will concentrate on the normal-
ization of the coefficient of the O(log n) contribution to the effective action. We will see
that the form of the term of order log n generated from the Wess–Zumino term is simple
and comes only from the coupling term of the effective dilaton with the Euler density.

Let us begin with the Wess–Zumino term which captures the Weyl and U(1)R anomalies
in general N = 1 SCFTs [125,136]. Its explicit form in Lorentzian signature is given by

SWZ =

∫
d4x
√
|g|LWZ, (4.59)

with

LWZ := τ
(
∆c[KS]W 2(g)−∆a[KS]E4(g)− 6∆c[KS]F 2

)
+ β

[
2
(
5∆a[KS] − 3∆c[KS])FF̃ +

(
∆c[KS] −∆a[KS])RR̃]

−∆a[KS]
[
4

(
Rµν(g)− 1

2
R(g)gµν

)
∂µτ∂ντ− 2(∂τ)2(2�τ− (∂τ)2)],

(4.60)

where in our context ∆c := cCFT − cEFT and ∆a := aCFT − aEFT. The fields τ and β

are Goldstone fields corresponding to the conformal and U(1)R-symmetries, respectively.
The Komargodski–Schwimmer a-theorem [5] requires ∆a to be positive. Note that the
normalization of the coefficients a and c used in [5, 18, 125, 136] and here, which we denote
by the superscript [KS], is different from the one used in [6] and in (4.5). The two differ by
a factor of 16π2 (see appendix H.2), that is,

(a, c)[KS] =
1

16π2
(a, c)[AEFJ]. (4.61)

In (4.60), we have only expressed the scalar components of the Wess–Zumino term, rather
than a fully supersymmetric completion. It has been argued [125,141] that a supersymmet-
ric version of the Wess–Zumino term can be expressed as manifestly supersymmetrically
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invariant but conformal- and R-symmetry-breaking terms in superspace. The fermionic as
well as gauge contributions are suppressed by inverse powers of MUV ∝ |φ| ∝

√
n, and

therefore of order smaller than n0.

4.3.1 Evaluating the Wess–Zumino term on S4

Now we would like to compute the contribution of the Wess–Zumino term of order log n

on S4. As we have explained above, this, rather than the computation on flat space, is in
the regime of validity of the EFT.

Euler coupling of the modulus on S4. It is clear that on S4 there is only one contri-
bution of order log n from the Wess–Zumino term, and it is topological, being proportional
to the Euler density E4. In order to determine the normalization of the contribution of the
Euler term, we need some facts about the geometry of S4, which we have summarized in
appendix G.

The natural normalization of the Euler density would be the "integer normalization" EZ
4 ,

in which the integral of the Euler density is just the Euler number χ of the spacetime:∫
d4x
√
|g|EZ

4 = χ ∈ Z, (4.62)

which is equal to 2 for S4, so the value of EZ
4 for S4 of radius r is

EZ
4 =

2

Area (S4)
=

3

4π2r4
, (4.63)

where we have used the fact that the area of S4 of radius r is given by Area (S4) = 8π2r4/3.
However, the integer-normalization convention (4.63) for E4 is not so popular. In [5], the
normalization of E4 is defined as

E
[KS]
4 := RµνρσRµνρσ − 4RµνRµν +R2, (4.64)

in terms of which the value for S4 is given by

E
[KS]
4 =

24

r4
= 32π2EZ

4 . (4.65)

Rewriting the Euler term37 of [5] in terms of the momre intuitive integer-normalized one EZ
4 ,

the Euler term in Euclidean signature is given by

LEuler termWZ = ∆a[KS]E
[KS]
4 τ = 32π2∆a[KS]EZ

4 τ = 2∆a[AEFJ]EZ
4 τ. (4.66)

37We have also changed the sign of the Euler term, which in [5] was the Lorentzian one, as suitable
to compute the dilaton scattering amplitude studied in that paper. In order to compute a path integral
on four-sphere, the relevant sign is the Euclidean one, in which the action is the negative of the one in
Lorentzian signature after Wick rotation.
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The dilaton τ is defined in [5] such that exp(−τ) is a scalar field of scaling dimension 1;
in the present case, then, the field exp(−τ) is identified with |φ| which breaks the scale
invariance spontaneously, and therefore we identify

τ = − log
|φ|
µ
, (4.67)

where µ is an arbitrary mass scale, such as r−1.

Boundedness of the O(n0) contribution. In order to calculate the full contribution
coming from Wess–Zumino term including the O(n0) contribution, we would need to cal-
culate the explicit profile of the dilaton τ, determined by substituting the classical solu-
tion (4.24) and the integral of the Wess–Zumino term. Since we are not going to compute
the order n0 term, we do not have to do so at all: The classical solution (4.24) for |φ| is
proportional to

√
n∆O in the n → ∞ limit, and therefore we can decompose its logarithm

as the sum of an position-independent piece of order
√
n, and a position-dependent piece of

order n0. That is,

|φ| =
√
n∆O

∣∣∣φ̂∣∣∣, (4.68)

where
∣∣∣φ̂∣∣∣ is of order n0 in the S4 frame, with the singularities at the insertion points x1

and x2.
One may wonder if these singularities cause the large-n expansion to break down. In

general, UV singularities are not problematic, as our theory is regularized and renormalized
at a energy scale Λ� |φ|. In the present situation, regularization and renormalization are
not even necessary to evaluate the classical contributon of the Wess–Zumino term: Due
to cancellations of the most naïvely singular contributions and the fact that the classical
solution is complex rather than real, the integral of the Wess–Zumino term over S4 is finite.
Therefore, using (4.68) we can express the Wess–Zumino Lagrangian density as

LWZ = LEuler termWZ +O
(
n0
)
, (4.69)

where the O(n0) term is finite, and we discard it as our desired order of precision is O(log n).
Then, (4.67) and (4.68) give

τ = −1

2
log (n∆O) +O

(
n0
)
, (4.70)

and from (4.66) and the fact that the Euler number of S4 is χS4 = 2, we get

SWZ = −α log (n∆O) +O
(
n0
)
, (4.71)

where

α = 2
(
a
[AEFJ]
CFT − a[AEFJ]EFT

)
. (4.72)
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Then Zn, defined by the Euclidean path integral with the action (4.37), gets a multiplicative
contribution,

Zn = Zfree+sourcese
−SWZ

[
O
(
n0
)

+O
(
n−1
)

+ · · ·
]

=

(
|NO|

2π|x1 − x2|

)2n∆O

(n∆O)!(n∆O)α
[
O
(
n0
)

+O
(
n−1
)

+ · · ·
]
.

(4.73)

4.4 Localization in rank-one theories with marginal couplings

Following [1–4] we briefly review how to calculate by supersymmetric localization two-point
functions of various N ≥ 2 rank-one SCFTs in four dimensions with exactly marginal
couplings in R4. We will then apply the results of [1–4] to Lagrangian rank-one SCFTs
with gauge group SU(2) (or SO(3)), and compare with our large-n expansion of Yn. The
two interacting SCFTs with exactly marginal couplings are N = 4 super-Yang–Mills theory
with gauge group SU(2) (or SO(3)), and N = 2 SQCD with four hypermultiplets in the
fundamental representation of gauge group SU(2).

4.4.1 Relation of conventions

For rank-one SCFTs with ∆O = 2, our two-point function Yn is a function of the exactly
marginal couplings τ , τ̄ and is identified with the two-point function G2n(τ, τ̄) of [3], up to
powers of a normalization factor we denote by K such that

Ohere = K∆OOrefs [1–4]
2 . (4.74)

The conformal dimension of the chiral ring generator O is ∆O = 2 for the two SCFTs
under consideration in this section. With the relative normalizations defined this way, the
relationship of the two-point functions is

Yn(τ, τ̄) = |K|4nG2n(τ, τ̄). (4.75)

With this identification we will review the computation of two-point functions in [1–4] and
then compare with our own predictions in the large-n limit.

4.4.2 Method of [1–4]

To calculate two-point functions on R4 by supersymmetric localization, one first needs the S4

partition function ZS4(τ, τ̄) associated with the N ≥ 2 SCFT action SSCFT deformed by the
chiral ring generators Oi,

SSCFT → SSCFT −
1

32π2

(∫
d4xd4θE

∑
i

τiOi + c.c.

)
, (4.76)
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where E is the chiral density of N = 2 supergravity [142, 143] and τi are holomorphic
coupling constants. Since this deformed theory (4.76) preserves osp(2|4), the massive N = 2

supersymmetry algebra on S4, the associated partition function can be evaluated exactly
by supersymmetric localization.

In the case of rank-one SCFTs,38 the two-point functions of the chiral ring operators
defined by

G2n(τ, τ̄) :=
〈
On(0)Ōn(∞)

〉
, Ōn(∞) := lim

|x|→∞
|x|2n∆OŌn(x), (4.77)

can be calculated systematically in the following way. First, one evaluates derivatives
of ZS4(τ, τ̄) and constructs a matrix M whose (m,n)-entry (m,n = 0, 1, 2, · · · ) is given
by

Mm,n :=
1

ZS4(τ, τ̄)
∂mτ ∂

n
τ̄ ZS4(τ, τ̄). (4.78)

Then, the two-point function (4.77) can be computed by39

G2n(τ, τ̄) = 16n
detM(n)

detM(n−1)

, n = 1, 2, 3, · · · , (4.79)

where M(n) is the upper-left (n+ 1)× (n+ 1) submatrix of M .

4.4.3 The case of SU(2) N = 4 super-Yang–Mills

The sphere partition function of N = 4 super-Yang–Mills with gauge group SU(2) is very
simple [132],

ZN=4
S4 (τ, τ̄) =

1

4π(Im τ)
3/2
, (4.80)

where in this case τ is the complexified Yang–Mills coupling40

τ =
θYM
2π

+
4πi

g2
. (4.81)

From (4.80) we get

G2n(τ, τ̄) =
(2n+ 1)!

(Im τ)2n , Yn(τ, τ̄) = |K|4nG2n(τ, τ̄) =

(
|K|2

Im τ

)2n

(2n+ 1)!. (4.82)

38For Lagrangian SCFTs with multi-dimensional Coulomb branch, two-point functions can also be exactly
computed, but one needs to disentangle operator mixings. For details, see [3, 4].

39The two-point function (4.79) satisfies the so-called tt? equation [1, 124].
40Again, note that we use this convention regardless of matter content, which is different from the con-

ventions of [130,131].
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In the large-n limit, the logarithm of G2n(τ, τ̄) becomes

log [G2n(τ, τ̄)] = 2n log n+ n(2 log 2− 2− 2 log (Im τ)) +
3

2
log n+O

(
n0
)
. (4.83)

This matches our prediction (4.39) up to and including order log n, as we explicitly see in
section 4.4.5.

4.4.4 Numerical analysis of SU(2) N = 2 SQCD with four fundamental hypers

One would like to find as many other rank-one N = 2 SCFTs as possible for which we could
compare our predictions with two-point functions computed by supersymmetric localization.
Unfortunately, there are not so many examples in the literature which have been worked out
already. In [1–3] the example of SU(2) N = 2 SQCD with four fundamental hypermultiplets
is studied. Even for that relatively simple SCFT the sphere partition function and therefore
the two-point functions are determined nonperturbatively by a complicated integral which
has a nontrivial τ -dependence. It is possible however, to compute the two-point function Yn
numerically for any value of τ , to good enough accuracy to obtain the coefficients of the
asymptotic expansion of Bn = logYn with some precision. Especially, we can extract the
coefficient α numerically and compare it with the prediction from the EFT.

The sphere partition function of SU(2) N = 2 SQCD with four fundamental hypermul-
tiplets is given by [132,144]

ZN=2
S4 (τ, τ̄) =

∞∫
−∞

daa2e−4a2 Im τ |G(1 + 2ia)|4

|G(1 + ia)|16 |Zinst(ia, τ)|2, (4.84)

where the function G(x) is the so-called Barnes G-function [145], and Zinst(ia, τ) is the
instanton partition function [146], which is expanded at small τ as41

Zinst(ia, τ) = 1 +
1

2

(
a2 − 3

)
e2πiτ +O

(
e4πiτ

)
. (4.85)

For simplicity we focus on the region Im τ ≥ 1 and ignore all the instanton corrections. The
zero-instanton sector of the sphere partition function is independent of Re τ . Using (4.78)
and (4.79), we compute numerically the two-point function G2n up to n ' 30 for various
values of Im τ in section 4.4.5.

4.4.5 Comparison of exact results with the large-R-charge expansion

Now we would like to compare our predictions from the EFT with the results from super-
symmetric localization, using the value of the α-coefficient determined in appendix H.2.

41See e.g., [147] for higher order terms in this expansion.
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The case of SU(2) N = 4 super-Yang–Mills. In (H.13) we have computed the α-
coefficient for N = 4 super-Yang–Mills with gauge group SU(2), and it is given by

αSU(2) N = 4 = 1. (4.86)

So we expect

Yn(τ, τ̄) = (2n)!n

∣∣∣∣NO2π

∣∣∣∣4nỸn, Ỹn = O
(
n0
)
. (4.87)

The exact formula (4.82) can be written as

Yn(τ, τ̄) = |K|4nG2n(τ, τ̄) = (2n)!n

(
|K|2

Im τ

)2n(
2 +

1

n

)
, (4.88)

which agrees with the form of our asymptotic expansion, with

Ỹn = 2 +
1

n
,

∣∣∣∣NO2π

∣∣∣∣ =
|K|

(Im τ)
1/2
. (4.89)

The case of SU(2) N = 2 SQCD with four fundamental hypers. For SU(2) N = 2

SQCD with four fundamental hypermultiplets, we have ∆O = 2 and in (H.18) we have
computed

αSU(2) N = 2 SQCD =
3

2
. (4.90)

In this case, the results from supersymmetric localization is only numerical. Therefore it
is easier to verify the accuracy of the sum and/or product rules of section 4.2.3 than to fit
the data to a curve. Our prediction for the two-point functions is expressed as the sum
rule (4.45) with ∆O = 2 and α = 3/2,

Bn+2 − 2Bn+1 + Bn = 2n−1 − 4n−2 +O
(
n−3
)
, (4.91)

which implies the following three independent checks,

lim
n→∞

(Bn+2 − 2Bn+1 + Bn) = 0, (4.92)

lim
n→∞

n(Bn+2 − 2Bn+1 + Bn) = 2, (4.93)

lim
n→∞

[
n2(Bn+2 − 2Bn+1 + Bn)− 2n

]
= −4. (4.94)

In figures 1, 2, 3 we plot the left-hand side of equations (4.92), (4.93), (4.94), up to n = 30,
for several (purely imaginary) values of τ . These values have been computed by the method
of [1–4], approximating the sphere partition function by its zero-instanton piece alone. Even
in this approximation, the large-n prediction (4.94) is close to −4 for n of order 30. Note
that the agreement is best at Im τ = 1, which is expected to have the lowest threshold
for the applicability of the large-n approximation, as the gap above the massless sector is
largest there. We do not know whether the zero-instanton approximation affects the true
asymptotic value of the left-hand side of the sum rule (4.94).
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Figure 1: Approximate values of the left-hand side of sum rule (4.92) in SU(2) N = 2 SQCD
with four fundamental hypermultiplets, calculated via the method developed in [1–4], with
instanton corrections omitted.
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Figure 2: Approximate values of the left-hand side of the sum rule (4.93) in SU(2) N = 2

SQCD with four fundamental hypermultiplets, computed via the method developed in [1–4],
with instanton corrections omitted.
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Figure 3: Approximate values of the left-hand side of sum rule (4.94) in SU(2) N = 2

SQCD with four fundamental hypermultiplets, computed via the method developed in [1–4],
with instanton corrections omitted. For the exact S4 partition function, with all instanton
corrections, our analysis predicts the left-hand side of (4.94) should approach −4 for any τ ,
in the n→∞ limit. It would appear unlikely that the asymptotic value of of the sum rule
is truly −4 for the zero-instanton approximation to the S4 partition function, but at present
we have no theory of the error.

4.5 Discussion and conclusion of section 4

4.5.1 Other SCFTs with one-dimensional Coulomb branch

There are many other rank-one SCFTs (or more generally with a single vector multiplet and
massless hypermultiplets) with or without exactly marginal couplings. Since many of them
do not have UV Lagrangian description, they are harder to do explicit calculations with by
supersymmetric localization and we do not have results in the literature with which we can
easily compare. In order to predict correlation functions of On in the large-n limit, we need
to know the dimension of the chiral ring generator O, the a-coefficient of the Weyl anomaly
of the underlying SCFT, and the massless field content of the EFT on moduli space.

Rank-one SCFTs have been the subject of intensive recent study by [57–60], in which
SCFTs with one-complex-dimensional Coulomb branch have been classified under broad
conditions. We make use of the nice results in [57–60] on the classification of rank-one
SCFTs. In fact we will do more than just "make use of" them: We copy directly42 a table

42Table 2 is created in part by copying the LATEX code of table 1 of [60]. We are doing so with the
intention of communicating our results for the α-coefficients and their relation to [60], in a context that
is most easily understood by the reader. We do not claim as original work the creation of the content or
appearance of our table 2 insofar as it overlaps with table 1 of [60]. According to our best understanding,
this is a legitimate use of the work [60] under the arXiv non-exclusive license to distribute, https://arxiv.
org/licenses/nonexclusive-distrib/1.0/license.html.
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from [60], but making our own additional columns highlighted in blue, giving data on the
Wess–Zumino term and the value of the α-coefficient of the theory in table 2.

Coulomb br: Higgs br. massless central charges: Wess–Zumino term: α-coeff.:
singul.
type ∆O dim. hypers 24aCFT 12cCFT 24aEFT 24∆a α = 2∆a

II∗ 6 29 0 95 62 5 90 15/2

III∗ 4 17 0 59 38 5 54 9/2

IV ∗ 3 11 0 41 26 5 36 3

I∗0 2 5 0 23 14 5 18 3/2

IV 3/2 2 0 14 8 5 9 3/4

III 4/3 1 0 11 6 5 6 1/2

II 6/5 0 0 43/5 22/5 5 18/5 3/10

I 1
se
ri
es

I1 1 0 0 6 3 5 1 1/12

II∗ 6 16 5 82 49 10 72 6

III∗ 4 8 3 50 29 8 42 7/2

IV ∗ 3 4 2 34 19 7 27 9/4

I∗0 2 0 1 18 9 6 12 1I 4
se
ri
es

I4 1 0 0 6 3 5 1 1/12

II∗ 6 9 4 75 42 9 66 11/2

III∗ 4 ? 2 45 24 7 38 19/6

IV ∗ 3 0 1 30 15 6 24 2

I
∗ 1
se
ri
es

I∗1 2 0 0 17 8 5 12 1

II∗ 6 ? 3 71 38 8 63 21/4

III∗ 4 0 1 42 21 6 36 3

I
V
∗ Q
=

1
se
r.

IV ∗Q=1 3 0 0 55/2 25/2 5 45/2 9/4

I∗0 2 0 1 18 9 6 12 1

I 2
se
r.

I2 1 0 0 6 3 5 1 1/12

Table 2: Argyres, Lotito, Lü and Martone’s partial list of rank-oneN = 2 SCFTs. This table
has been copied directly (at the level of the LATEX code) from [60], to clarify the identification
of SCFTs, which are labelled exactly as in [60]. The convention of [6] for the a- and c-
coefficients of the Weyl anomaly is used. The three columns on the right highlighted in blue
are not in the original table of [60] and are created by Simeon Hellerman and the author of
this thesis. The column "massless hypers" denotes the number of hypermultiplets massless
at a generic point on the Coulomb branch, a situation dubbed in [60] as an "enhanced
Coulomb branch" (ECB) if the number of massless hypermultiplets is nonzero.
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4.5.2 Conclusion of section 4

In this section we have considered the large-R-charge expansion of two-point functions of
chiral primary operators On and their conjugates, where O is the holomorphic generator
of a chiral ring in a rank-one SCFT. To do this, we have followed earlier works and used
the EFT describing the large-R-charge sector of the Hilbert space. As in section 3 on
the superconformal large-n expansion, the relevant EFT is the low-energy dynamics of the
supersymmetric moduli space, which is governed by spontaneously broken superconformal
invariance. We have used the EFT to obtain the asymptotic expansion of the two-point
function,

Yn = |x1 − x2|2n∆O
〈
On(x1)Ōn(x2)

〉
, (4.95)

at large R-charge, i.e., in the n → ∞ limit. The EFT predicts that Yn has an asymptotic
expansion at large n, behaving as

Yn = (n∆O)!

∣∣∣∣NO2π

∣∣∣∣2n∆O

(n∆O)αỸn, (4.96)

where Ỹn approaches a constant in the n→∞ limit, and NO is an n-independent constant
which depends on the normalization of the chiral ring generator relative to the effective
vector multiplet scalar. We have shown that the exponent α can be computed by the
coupling between the Euler density of S4 and the logarithm of the scalar field |φ|. The
coefficient of this coupling is fixed by anomaly matching to be proportional to the difference
between the a-coefficient of the Weyl anomaly of the underlying SCFT and that of the EFT
of massless moduli fields. In the conventions of [6], α is given by

α = 2
(
a
[AEFJ]
CFT − a[AEFJ]EFT

)
. (4.97)

In SCFTs with a exactly marginal coupling, we have used results from supersymmetric
localization [1–4] to check our predictions. In the case ofN = 4 super-Yang–Mills with gauge
group SU(2) (or gauge algebra su(2) in general), the exact result can be expressed in a simple
closed form, and our large-R-charge expansion for the logarithm of the two-point function
agrees precisely with the exact result to the precision to which we have computed, that is,
up to and including the term of order log n in Bn = logYn. In the case of SU(2) N = 2

SQCD with four fundamental hypermultiplets, we compare our large-n expansion with the
numerical computation of the two-point functions up to n ' 30, with the n = 0 expression
approximated by the zero-instanton part of the S4 partition function. We obtain precise
numerical agreement for the two leading-order behaviors, and good agreement for the next-
to-next-to-leading order behavior, determined by the α-coefficient α = 3/2, which predicts a
value −4 for the left-hand side of the sum rule (4.94) in the large-n limit. Although it is not
clear we should expect the sum rule to approach the value −4 exactly for the zero-instanton
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approximation to the initial condition ZS4 , the sum rule for τ = i appears to asymptote to
a value at most −3.8, within our numerical precision. It would be great to develop a robust
theory of the error in the large-n limit, provided an approximate partition function.43

In summary, we have shown that it is practical to use the large-R-charge expansion as
a bridge from the world of unbroken superconformal symmetry, OPE data, and bootstraps,
to the world of the low-energy dynamics of the moduli space of vacua.

5 Conclusion and future prospects

CFTs are important in many ways. However, since they are generically strongly interacting,
we cannot study them using the conventional perturbative methods. The Wilsonian EFT is
very powerful so that by using it we can investigate sectors of large global charge in strongly
coupled CFTs. In this thesis we studied the large-R-charge limit of SCFTs with a moduli
space of vacua.

After reviewing basic facts about CFT in section 2, we established the EFT of the
large-R-charge sector of N = 2 SCFTs with a one-dimensional moduli space in section 3.
The Wilsonian effective action is given by the free action of the moduli field corrected by
higher-derivative operators which are suppressed by the R-charge. We showed that the
lowest and second-lowest scalar primary operators carrying large R-charge J have vanishing
anomalous dimension, up to and including O(J−3). This result is consistent with the fact
that these operators are in short and semishort multiplets and therefore their dimensions are
protected. The first correction for unprotected operators comes from by the supersymmetric
extension (3.14) of the FTPR operator, whose coefficient has to be nonnegative by virtue
of unitarity and causality. Correspondingly, the anomalous dimension of the third-lowest
state with large R-charge has to be nonpositive and of order J−3.

In section 4, the analysis done in 3 is generalized to four-dimensional N = 2 SCFTs with
one-dimensional Coulomb branch. We argued that the first correction to the free-theory
result comes from the Wess–Zumino term, and gave an explicit formula (4.39) for the large-
R-charge asymptotics of two-point functions of chiral and antichiral primary operators. This
formula was checked against the exact results of supersymmetric localization. In the case
of N = 4 super-Yang–Mills we find perfect analytic agreement, and in the case of N = 2

SQCD we find reasonably good numerical agreement using the no-instanton approximation
to the S4 partition function.

These analyses have shown that the large-R-charge expansion of SCFTs with moduli
space is described in terms of an EFT on moduli space. As a result, information about
geometry of moduli space and the Weyl anomaly of the underlying theory is encoded in
operator dimensions and correlation functions of operators carrying large R-charge. For
instance, the fact that the logarithm of the two-point functions of chiral ring generators at

43We thank Z. Komargodski for correspondence on this point.
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large R-charge is approximated at leading order by that of the free theory, is a consequence
of the flatness of the moduli space. It would be interesting to study SCFTs with a curved
moduli space by generalizing the EFT analysis developed in this thesis. In particular, in
three-dimensional N ≥ 4 SCFTs with a curved Coulomb and/or Higgs branch, one may be
able to make use of supersymmetric localization [121–123] to check the validity of the EFT
on a curved moduli space, similarly to the analysis done in section 4.

Since moduli spaces of N ≥ 4 SCFTs in three dimensions are hyperkähler cones, one
would inevitably have to extend the EFT to the case where multiple massless scalar fields
are involved to study such theories using the large-charge EFT. Such an extension would
also allow one to compare predictions from the EFT with localization results of other four-
dimensionalN = 2 Lagrangian SCFTs, such as SU(N) SQCD (N ≥ 3) with 2N fundamental
hypermultiplets [4].

Another future direction is to consider higher order corrections to observables. From the
effective-field-theoretic perspective, it amounts to classify all the possible higher-derivative
interaction terms compatible with spacetime and internal symmetries order by order. For
this purpose, the CCWZ method described in [37] may be useful in general situations. In
addition, we would like to mention that in the case of N = 2 SCFTs in four dimensions
studied in 4, if the theory has an exactly marginal coupling, then one can make use of the
so-called tt?-equation [124] satisfied by the two-point functions of chiral ring operators, in
order to compute the large-R-charge expansion of them. Especially in the rank-one case,
the tt?-equation is reduced to the two-dimensional semi-infinite Toda chain equation, which
is integrable [148]. By making use of the tt?-equation and other physical constraints coming
from, e.g., the S-duality on the conformal manifold, one may be able to obtain higher order
corrections to all orders in the large-R-charge expansion at least in the rank-one case.44

As an important application, one may hope to use the large-charge methods to estimate
critical exponents associated with operators carrying large global charge in condensed matter
systems. A surprising observation made in [45] is that the large-charge expansion can
sometimes predict operator dimensions carrying global charge of order one, which is beyond
the regime of validity of the EFT. One optimistic hope is that we may be allowed to use
of the EFT to compute experimentally measurable quantities due to a hidden theoretical
reasoning which makes the EFT applicable beyond its expected regime of validity, analogous
to the one made in [149] in the case of the large-Lorentz-spin expansion.

In summary, in this thesis we have shown that it is practical to use the large-R-charge
expansion as a bridge from the world of unbroken superconformal symmetry and SCFT
data, to the world of the low-energy dynamics of the moduli space of vacua.

44We thank S. Hellerman, D. Orlando and M. Watanabe for discussions on this point.

77



Acknowledgments

The author thanks his collaborator Simeon Hellerman for many exciting discussions, guid-
ance and permanent encouragement. He is also grateful to Nozomu Kobayashi, Jonathan
Maltz, Ian Swanson and Masataka Watanabe for collaborating with him, and to Taizan
Watari for counsel at various stages of his Ph.D. course. He also acknowledges the students,
postdocs and faculty members at Kavli Institute for the Physics and Mathematics of the
Universe for discussions and chats. Especially, he thanks Satoshi Shirai for treating Ryo
Matsuda and the author to delivery pizza on the last night of submission of this thesis. He
is supported in part by JSPS Research Fellowships for Young Scientists.

A N = 2 superconformal field theories in three dimen-
sions

A.1 Notation for N = 2 superspace in three dimensions

Here we summarize the notation used in section 3. In Lorentzian signature, the metric on
flat R1,2 is ηµν = diag (−,+,+) with µ = 0, 1, 2. The Dirac matrices (γµ)α

β satisfy the
Clifford algebra,

{γµ, γν}α
β = (γµ)α

δ(γν)δ
β + (γν)α

δ(γµ)δ
β = 2ηµνδβα. (A.1)

Then, γµαβ := (γµ)α
δεδβ is symmetric in α ↔ β. One may choose (γµ)α

β = (iσ2, σ1, σ3), so
that (γµ)∗ = γµ. We define the complex conjugation on products of Grassmann variables
as (ψ1ψ2)∗ = ψ̄1ψ̄2. A chiral superfield Φ

(
x, θ, θ̄

)
is defined by D̄αΦ = 0, where Dα and D̄α

are the superderivatives,

Dα :=
∂

∂θα
− (γµ)α

β θ̄β
∂

∂xµ
, D̄α :=

∂

∂θ̄α
− (γµ)α

βθβ
∂

∂xµ
. (A.2)

They satisfy the anticommutation relation,{
Dα, D̄β

}
=
{
Dβ, D̄α

}
= 2(γµ)αβ∂µ. (A.3)

Φ
(
x, θ, θ̄

)
is expanded as

Φ
(
x, θ, θ̄

)
= φ(x) +

√
2θφ(x) + θ2F (x)

−
(
θγµθ̄

)
∂µφ(x)− 1√

2
θ2
(
θ̄γµ∂µψ(x)

)
+

1

4
θ2θ̄2∂µ∂

µφ(x).
(A.4)

The normalization for the Berezinian integral is∫
θ2θ̄2d2θd2θ̄ = 1, (A.5)
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and it is convenient to note that, up to total derivatives,∫
Id2θd2θ̄ =

1

16
D2D̄2I

∣∣∣∣
θ=θ̄=0

. (A.6)

We can obtain the corresponding equations in Euclidean signature easily by the Wick rota-
tion t = −itE.

A.2 Algebra

Here we present the N = 2 supersymmetric extension of the conformal algebra in three
dimensions, as we need it to understand section 3. We mostly follow the convention of [68].

In the N = 2 superconformal algebra in three dimensions there are fermionic generators,
Qα, Q̄α, Sα and S̄α, in addition to the bosonic conformal generators Mµν , Pµ, Kµ and D,
and the U(1)R generator R. The spinor indices α ∈ {1, 2} are raised and lowered by the
antisymmetric tensor εαβ and εαβ, respectively, so that, e.g., QαQ

α = εαβQαQβ transforms
as a scalar under SO(3) transformations. The commutation relations involving the fermionic
generators are given by[

R ,Qα

]
= −Qα,[

R , Q̄α

]
= Q̄α,[

Mµν , Qα

]
=

1

2
εµνρ(σρ)

β
αQβ,[

Mµν , Q̄α

]
=

1

2
εµνρ(σρ)

β
αQ̄β,[

D ,Qα

]
= − i

2
Qα,[

D , Q̄α

]
= − i

2
Q̄α,[

Kµ , Qα

]
= (σµ)βαS

β,[
Kµ , Q̄α

]
= (σµ)βαS̄

β,

[
R , Sα

]
= −Sα,[

R , S̄α
]

= S̄α,[
Mµν , S

α
]

=
1

2
εµνρ(σρ)β

αSβ,[
Mµν , S̄

α
]

=
1

2
εµνρ(σρ)β

αS̄β,[
D ,Sα

]
=
i

2
Sα,[

D , S̄α
]

=
i

2
S̄α,[

Pµ , S
α
]

= −(σµ)βαQβ,[
Pµ , S̄

α
]

= −(σµ)βαQ̄β,

(A.7)

with all other commutators vanishing. The anticommutation relations between the fermionic
generators are given by{

Q̄α, Qβ

}
= Pµ(σµ)αβ,{

S̄α , Sβ
}

= Kµ(σµ)αβ,

{
Sα, Q̄β

}
= (iD −R)δαβ +

1

2
εµνρMµν(σρ)

α
β,{

S̄α, Qβ

}
= (iD +R)δαβ +

1

2
εµνρMµν(σρ)

α
β.

(A.8)

Here the Pauli matrices (σµ)αβ (µ ∈ [1, 2, 3]) are defined by

(σ1)αβ :=

(
0 1

1 0

)
, (σ2)αβ :=

(
0 −i
i 0

)
, (σ3)αβ :=

(
1 0

0 −1

)
, (A.9)
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and we have defined

(σµ)αβ := εαγ(σµ)γβ, (σµ)αβ := (σµ)αγε
γβ, (σµ)α

β := εαγ(σµ)γδε
δβ. (A.10)

The algebra (2.4), (A.7) and (A.8) is called osp(2|4) in the literature.45 We also define the
Hermitian conjugation in radial quantization acts on the fermionic generators as

(Qα)‡ = S̄α,
(
Q̄α

)‡
= Sα, (A.11)

which is consistent with the algebra (A.7) and (A.8).

A.3 Superconformal primaries and unitarity bounds

There is a supersymmetric analog to conformal primary states. A superconformal primary
state is defined as a state annihilated by Sα and S̄α,

Sα |superconformal primary〉 = Sα |superconformal primary〉 = 0. (A.12)

From (A.8) it is obvious that a superconformal primary state is a conformal primary. It
is natural to label superconformal primary states by conformal dimension ∆, spin ` and
R-charge R. The infinite-dimensional representation, the Verma module associated with a
superconformal primary state |∆, `, R〉 is given by

V∆,`,R := span

{(
3∏

µ=1

P nµ
µ

)(
2∏

α,β=1

Qnα
α Q̄

nβ
β

)
|∆, `, R〉

∣∣∣∣∣ nµ ∈ N
nα, nβ ∈ {0, 1}

}
. (A.13)

A.3.1 Unitarity bound at level one.

We proceed to derive the unitarity bounds for superconformal primary states [67,68,107]. At
level one, we consider the matrix element of a Q̄α-descendant of a superconformal primary,

〈∆, `′, R|
(
Q̄α

)‡
Q̄β|∆, `, R〉 = 〈∆, `′, R|SαQ̄β|∆, `, R〉

= 〈∆, `′, R|
[
(∆−R)δαβ −

i

2
εµνρΣ

`
µν(σρ)

α
β

]
|∆, `, R〉 .

(A.14)

The condition for the matrix element (A.14) to have only nonnegative values can be derived
in a similar way as was done in section 2.4.1, and is given by

∆−R ≥ 1

2

[
c2(`) + c2

(
1

2

)
− c2

(
`− 1

2

)]
=

{
0, (` = 0)

`+ 1, (` > 0)
(A.15)

where c2(`) = `(`+ 1) is the quadratic Casimir invariant of the spin-` representation of
SO(3). Considering the matrix element of a Qα-descendant of a superconformal primary,

45Detalis on Lie superalgebras are found in [150,151].
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one gets the bound (A.15) with R replaced by −R. As a result, the unitarity bound at level
one is expressed as

∆ ≥

{
|R|, (` = 0)

|R|+ `+ 1. (` > 0)
(A.16)

A.3.2 Unitarity bound at level two.

At level two, one considers the state

εαβQ̄αQ̄β |∆, R〉 , (A.17)

where |∆, R〉 is a scalar superconformal primary of dimension ∆ and R-charge R. This state
has a norm

〈∆, R|
(
εα
′β′Q̄α′Q̄β′

)‡
εαβQ̄αQ̄β|∆, R〉 = 2(∆−R)(∆−R− 1), (A.18)

which is nonnegative if and only if ∆ ≤ R or ∆ ≥ R + 1. An analogous result with R

replaced by −R holds for the state εαβQαQβ |∆, R〉. Since ∆ < |R| violates the bound
(A.16), at level two the unitarity bound for scalar superconformal primaries is given by

∆ = |R| or ∆ ≥ |R|+ 1. (A.19)

The bounds (A.16) and (A.19) can be collectively expressed as

∆ = |R|, ` = 0

or

∆ ≥ |R|+ `+ 1, ` ≥ 0.

(A.20)

Scalar superconformal primaries (` = 0) with ∆ = R,−R are called chiral and antichiral
primaries, respectively. Superconformal primaries with ∆ = ±R+ `+1 are called semishort
and anti-semishort primaries. These special superconformal primaries have a smaller number
of superpartners than generic (long) primary operators with ∆ > |R| + ` + 1, and their
dimensions are supersymmetrically protected from quantum corrections.

The bound (A.20) is the most stringent one for general N = 2 SCFTs in three dimen-
sions [67, 110, 111]. That is, the matrix elements of states at higher levels do not give a
stronger bound than (A.20). The primary operator of the multiplet including the stress
tensor is the R-charge current, which has dimension ∆ = 2 and spin ` = 1 and thus sat-
urates the inequality in (A.20). A global symmetry current is a descendant of a neutral
scalar primary operator of dimension ∆ = 1, called the moment map operator, which also
saturates the inequality in (A.20) with ` = 0. This fact will be used to justify the existence
of scalar semishort primaries with arbitrary R ∈ 2N/3 in the XY Z model in 3.4.
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B Uniqueness of the super-FTPR operator on flat space

We would like to show here that on flat space there is no supersymmetric dimension-3
operator constructed with four superderivatives, except for the super-FTPR operator (3.13).
We work in Lorentzian signature here. First of all, we do not have to consider operators
containing any odd number of superderivatives acting on a single Φ or Φ̄, because such
operators are always equal to ones containing only even number of superderivatives acting
on a single Φ or Φ̄, modulo the leading-order superspace equations of motion, D2Φ ' 0 and
D̄2Φ̄ ' 0.

From (A.3), we have

D̄αDβΦ = D̄βDαΦ, (B.1)

and especially D̄αDαΦ = 0. These identities are useful in decreasing the number of index
structures. For instance, one can show that any candidate containing four superderivatives
acting on a single Φ in any order vanishes modulo the leading-order superspace equations
of motion.

By the above consideration, we conclude that only the following operators possibly
survive,

O(4)
1 :=

∫
d2θd2θ̄

(
D̄αDβΦD̄αDβΦ

Φ3Φ̄
+ c.c.

)
,

O(4)
2 :=

∫
d2θd2θ̄

D̄αDβΦDαD̄βΦ̄(
ΦΦ̄
)2 .

(B.2)

The operator O(4)
2 is equivalent to the super-FTPR operator (3.13), since

{
Dα, D̄β

}
=

2γµαβ∂µ. The operator O(4)
1 is also equivalent to the super-FTPR operator, because

D̄αDβΦD̄αDβΦ

Φ3Φ̄
∼ ∂µΦ∂µΦ

Φ3Φ̄
∼ 1

Φ2
∂µ

(
∂µΦ

Φ̄

)
∼ ∂µΦ∂µΦ̄(

ΦΦ̄
)2 . (B.3)

Here, by "∼" we mean modulo total superderivatives, the leading-order equations of motion,
and numerical coefficients. So, there is only one supersymmetric dimension-3 operator with
four superderivatives on flat space modulo total superderivatives, and it is nothing but the
unique super-Weyl completion of the FTPR operator.

C Energy correction to one-boson one-fermion and two-
fermion excitations

We set the radius of S2 to be unity here.
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C.1 One-boson one-fermion excitation

Quantization of the fermionic state with lowest spin is done as follows:

ψα(x) =
∑
s=±

βsu
α
s (x) + γ‡sv

α
s (x),

/∇S2us = ius, /∇S2vs = −ivs,
ū(−) = v(−), ū(+) = −v(+), γ0u(−) = v(+), γ0v(+) = −u(−)

(C.1)

We also use the equation of motion for ψ:

(γt)αβ∂tψ
β + (γi)αβ∇S2,iψ

β = 0. (C.2)

Furthermore we set
ūsαu

α
r =

1

4π
δsr, ūsαv

α
r = 0 (C.3)

as a normalization condition. With this quantization convention we obtain the free Dirac
Hamiltonian,

HDirac
0 =

∑
s=±

(
β‡sβs + γ‡sγs

)
, (C.4)

with the anticommutation relation{
β, β‡

}
=
{
γ, γ‡

}
= 1. (C.5)

The interaction Hamiltonian of order J−3 which includes the two-fermion two-boson inter-
action is given by

κH
(2,2)
int = −4πκ× 4ψ̄α

[(
−∂2

t +∇2
S2 − 3i∂t + 2

) F̄
φ̄3

0

][(
γµαβ∇µ + iγtαβ

) F
φ3

0

]
ψβ, (C.6)

where κ is a proportionality constant as in (3.45). Using the equation of motion and the fact
that φ0 = eit/2ϕ0 and then taking only the spin-1/2 and spin-0 contribution for the fermion
and the scalar, respectively, we get

H
(2,2)
int = − 4π

|ϕ0|6
× 24ψ̄γ0ψ × (f̄ − i ˙̄f)f (C.7)

Using the quantization of the scalar field given in section 3.3.5 and that of the fermionic
field given above, we obtain

H
(2,2)
int = − 6

π|ϕ0|6
(2a‡ − b)a×

∑
s=±

(
β‡sβs + γ‡sγs

)
, (C.8)

from which we compute the energy correction to the state a‡β‡+ |0〉 as

∆E = − 12κ

π|ϕ0|6
. (C.9)

This agrees with the energy correction to the two-boson state, as it should be from super-
symmetry.
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C.2 Two-fermion excitation

The interaction Hamiltonian of order J−3 which includes four-fermion interaction is given
by

κH
(0,4)
int = 4πκ× ψ̄βψ̄

β

φ̄3

(
−∂2

t +∇2
S2 −

1

4

)
ψαψα
φ3

, (C.10)

where κ is a constant as in (3.45). Using the fact that φ0 = eit/2ϕ0 and taking only the
spin-1/2 contribution for the fermionic field, we obtain

H
(0,4)
int =

4π

|ϕ0|6
L̄
(

2L+ 3iL̇− L̈
)
, (C.11)

where L = ψψ. Then by using (C.1) and the normalization condition, we have

L̄L = − 1

8π2

(
γ−γ+ + β‡−β

‡
+

)(
γ‡+γ

‡
− + β+β−

)
,

L̄L̇ =
i

4π2

(
γ−γ+ + β‡−β

‡
+

)(
γ‡+γ

‡
− + β+β−

)
,

L̄L̈ =
1

2π2

(
γ−γ+ + β‡−β

‡
+

)(
γ‡+γ

‡
− + β+β−

)
,

(C.12)

and the interaction Hamiltonian H(0,4)
int becomes

H
(0,4)
int = − 12

π|ϕ0|6
(
γ−γ+ + β‡−β

‡
+

)(
γ‡+γ

‡
− + β+β−

)
, (C.13)

and the resulting energy correction to the two-fermion state β‡+β
‡
− |0〉 is computed as

∆E = − 12κ

π|ϕ0|6
, (C.14)

which agrees with the energy correction to the two-boson state and the one-boson one-
fermion state, as it should be from supersymmetry.

D Superconformal index and scalar semishort multiplets

In this appendix we check the superconformal index for the XY Z model to confirm that
scalar semishort multiplets really exist in the theory. The superconformal index for theXY Z
model is given by the following plethystic exponential [152,153],

IXY Z(x, tX , tY Z) := Tr
(

(−1)F z∆−R−`3x∆+`3tJXX tJY ZY Z

)
= exp

(
∞∑
n=1

1

n
F (xn, tnX , t

n
Y Z)

)
.

(D.1)
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Here, `3 is the third component of the spin on S2, and tX and tY Z are the fugacities for U(1)X
and U(1)Y Z , respectively. The function F (x, tX , tY Z) is the so-called letter index, defined
as

F (x, tX , tY Z) := f(x, tX) + f
(
x, t
−1/2
X tY Z

)
+ f
(
x, t
−1/2
X t−1

Y Z

)
,

f(x, t) :=
tx2/3 − t−1x4/3

1− x2
.

(D.2)

Because of the superconformal algebra, only protected multiplets can contribute to the
superconformal index and therefore it is independent of the variable z in (D.1). Let ∂↑↑
be the derivative which raises the third component of the spin by one, and Q̄↑ be the
energy- and R-charge-raising supercharge which has the third component of the spin `3 =
1/2. In a chiral multiplet, the chiral primary operator and its ∂↑↑-derivatives contribute
to the superconformal index, whereas contributions from the other states in the chiral
multiplet cancel between themselves. In a given scalar semishort multiplet, it is the Q̄↑-
descendant of the scalar semishort primary operator and its ∂↑↑-derivatives that contribute
to the superconformal index. When the superconformal index is expanded with respect
to x, contributions from chiral multiplets have positive coefficients, whereas those from
scalar semishort multiplets have negative coefficients.

In principle, the superconformal index contains all information about operators in short
or semishort representations. However, the terms in a full and explicit expansion of the su-
perconformal index do not necessarily have to correspond one-to-one with operators in short
and semishort representations, because cancellations can happen. In practice, cancellations
happen frequently in many familiar SCFTs, including the XY Z model in three dimensions.
These cancellations can be removed by organizing the superconformal index into characters
of the particular short and semishort representations which appear.

We do not do this, since the organization of the superconformal index into characters
is burdensome and we are just computing the some particular terms in the superconformal
index to verify its agreement with the spectrum of semishort representations as calculated by
using the large-R-charge EFT. Instead, we list both the positive and negative contributions
to the superconformal index separately, noting the cancellations as they happen.

To see the existence of the scalar semishort multiplets, we expand the superconformal
index (D.1) with respect to x up to and including O

(
x10/3

)
. However, some contributions

from scalar semishort multiplets are canceled by those from chiral multiplets, and therefore it
is impossible to see all the contributions from scalar semishort multiplets just by expanding
the superconformal index. So, we separate these two kinds of contributions order by order
in x, by brute force. We also identify all the positive contributions up to and including
O
(
x10/3

)
with (descendants of) chiral primary operators. The superconformal index (D.1)
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is expanded with respect to x as follows:

IXY Z(x, tX , tY Z)

= 1

1

+ x
2/3

(
tX

X

+
tY Z

t
1/2
X
Y

+
1

t
1/2
X tY Z
Z

)
+ x

4/3

(
t2X

X2

+
t2Y Z
tX
Y 2

+
1

tXt2Y Z
Z2

)

+ x2

(
t3X

X3

+
t3Y Z

t
3/2
X
Y 3

+
1

t
3/2
X t

3
Y Z

Z3

)
−2x2

Q̄↑DX
Q̄↑DY Z

+ x
8/3

(
t4X

X4

+
t4Y Z
t2X
Y 4

+
1

t2Xt
4
Y Z

Z4

+ tX

∂↑↑X

+
tY Z

t
1/2
X

∂↑↑Y

+
1

t
1/2
X tY Z
∂↑↑Z

)
− x8/3

(
tX +

tY Z

t
1/2
X

+
1

t
1/2
X tY Z

)

+ x
10/3

(
t

1/2
X tY Z

X∂↑↑Y

+
1

tX
Y ∂↑↑Z

+
t

1/2
X

tY Z
Z∂↑↑X

+ t5X

X5

+
t5Y Z

t
5/2
X
Y 5

+
1

t
5/2
X t

5
Y Z

Z5

+ t2X

∂↑↑X
2

+
t2Y Z
tX

∂↑↑Y
2

+
1

tXt2Y Z
∂↑↑Z

2

)

− x10/3

(
t2X +

t2Y Z
tX

+
1

tXt2Y Z

)
+O

(
x4
)
.

(D.3)

The negative contribution at order x2 is due to the Q̄↑-descendants of the moment map oper-
ators DX and DY Z , which obviously exist since the theory has the U(1)X and U(1)Y Z flavor
symmetries. The negative contributions at O

(
x8/3
)
and at O

(
x10/3

)
are nontrivial, however.

These cannot be descendants of the moment map operators on dimensional grounds. For
instance, the −x8/3tX and −x10/3t2X terms correspond to the Q̄↑-descendants of semishort
operators of spin 0 and dimension 5/3 and 7/3, respectively. In terms of the almost-free φ
variables, these semishort primary states can be represented as φ0φ̄0 |X〉 and φ0φ̄0 |X2〉,
where as explained in section 3.3.2, the state

∣∣XJ
〉
can be thought of as φ4J/3

0 |0〉.
Heuristically, these semishort primary operators can be thought of asDX ·X andDX ·X2,

respectively, where DX is the scalar semishort "moment map" primary operator, whose
descendant is the spin-1 U(1)X current. However this description is not really accurate,
because the leading term in the OPE of DX with XJ is not the semishort operator DX ·XJ

but the chiral primary operator XJ , and the coefficient function is singular, |x|−1.
We emphasize that, for the purpose of understanding the spectrum directly at sufficiently

large R-charge J , the power of supersymmetric representation theory is useful mainly as a
convenience: The explicit computations of the large-J EFT simply agree with those of the
superconformal index, with the spectrum computation becoming more reliable at large J .

The most important thing we learn directly is that there is a nonzero scalar semishort
primary operator in the OPE of DX with XJ , for sufficiently large J :

DX(x)XJ(0) = · · ·+ cDXX
J

XJ |x|−1XJ(0) + · · · , (D.4)

where the OPE coefficient cDXXJ

XJ can be computed semiclassically as an expectation
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value of DX in the state
∣∣XJ

〉
, and is nonzero. This gives information about the index only

asymptotically.
Combined with the power of associativity, the existence of semishort primary operators at

large J has more consequences: Since the product "·" defines an associative multiplication,
and sinceDX ·XJ 6= 0 at large J , then all the lower-dimensional productsDX ·X,DX ·X2, · · ·
have to automatically be nonzero as well. This is in agreement with the superconformal in-
dex as expanded above. Therefore, we see that large-J methods combined with associativity,
provide information about scalar semishort primary operators at low J as well.

E Semishort superalgebra

Here we would like to set up a formalism of truncating the superconformal algebra to a finite
number of degrees of freedom, which are creation and annihilation operators. This section
is useful in understanding the vanishing of the one-loop energy correction to the chiral and
scalar semishort primary state with given R-charge J .

E.1 Commutation relations

We radially quantize the system. We have the dilatation operator ∆, whose eigenvalues are
the operator dimensions, as well as the Hermitian conjugation ‡ on the cylinder. Then it
is inevitable to dismiss either P or K at least, because of the fact that the full (nonsuper-
symmetric) conformal algebra can only be unitary represented in the infinite-dimensional
Hilbert space. Nevertheless, we are trying to find a truncation of the superconformal algebra
which contains as many supercharges as possible, under such a constraint.

To specify such a subalgebra of the full superconformal algebra which has the above
property, let us fix some conventions. We denote by Q(σ∆,σR)

α the fermionic generator which
changes the conformal dimension by σ∆/2 units, and the R-charge by σR units. For exam-
ple, Q(+,+)

↑ is the generator which raises both dimension ∆ and R-charge JR, and also the
third component `3 of the angular momentum `µ.

We would like to concentrate on fermionic generators which are preserved by the chiral
primary states. In other words, we are only going to consider Q(+,+)

α and Q
(−,−)
α . These

fermionic generators have to be related by Hermitian conjugation. Since we choose the
spinorial index convention as[

sµ, Q(±,±)
α

]
=

1

2
(σµ)βαQ

(±,±)
β , sµ :=

1

2
εµνρMνρ, (E.1)

these two are related by (
Q(±,±)
α

)‡
= ±εαβQ(∓,∓)

β . (E.2)
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Hereafter, by using these conventions, we simplify our notation the following way,

Qα := Q(+,+)
α , Q‡α =

(
Q(+,+)
α

)‡
= εαβQ

(−,−)
β . (E.3)

From to the N = 2 superconformal algebra, we choose the following (anti)commutation
relations for these generators to be preserved:{

Qα,Q
‡
β

}
= δαβ(∆−R) + σµβαsµ, {Qα,Qβ} =

{
Q‡α,Q

‡
β

}
= 0,

[sµ, sν ] = iεµνρs
ρ, [R,∆] = [R, sµ] = [∆, sµ] = 0,

[R,Qα] = Qα

[
R,Q‡α

]
= −Q‡α

[∆,Qα] =
1

2
Qα

[
∆,Q‡α

]
= −1

2
Q‡α

[sµ,Qα] =
1

2
(σµ)βαQβ

[
sµ,Q‡α

]
= −1

2
(σµ)βαQ

‡
β.

(E.4)

Note that neither P nor K appears in this expression.

E.2 Oscillator realization

Let us consider the case where there is a single free multiplet with the transformation law of
the s-wave mode of a free antichiral superfield Φ̄ on the cylinder. We shall call the bosonic
oscillators a, a‡ and the fermionic oscillators b‡α. Note that here we will use the convention
which assigns b‡α the same transformation property under spatial rotational group SO(3) as
that of Qα. The oscillator realization of the superalgebra (E.4) is given by

J =
1

2

(
b‡αbα − a‡a

)
, sµ =

1

2
(σµ)βαb

‡αbβ,

∆ =
1

2
a‡a+ b‡αbα, Qα = b‡αa, Q‡α = a‡bα,

(E.5)

where the oscillators satisfy the canonical commutation and anticommutation relations[
a, a‡

]
= 1,

{
bα, b

‡
β

}
= δαβ. (E.6)

The generators (E.5) satisfy the algebra (E.4). On the oscillators they act as[
sµ, b‡α

]
=

1

2
(σµ)βαb

‡
β, [sµ, bα] = −1

2
(σµ)βαbβ, (E.7)[

J, a‡
]

= −1

2
a‡, [J, a] =

1

2
a (E.8)[

J, b‡α
]

=
1

2
b‡α, [J, bα] = −1

2
bα. (E.9)
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E.3 Perturbation theory

We would like to set our perturbation theory. Let us make a small change to the generators,
at order ε, and demand that the structure of the superalgebra still be unchanged at order ε.
Let Qα(ε), Q‡α(ε), ∆(ε) be

Qα(ε) = Qα(0) + εQ′α(0) +O
(
ε2
)
,

Q‡α(ε) = Q‡α(0) + εQ‡′α(0) +O
(
ε2
)
,

∆(ε) = ∆(0) + ε∆(0) +O
(
ε2
)
.

(E.10)

Many first-order perturbations of the superalgebra are not physically interesting, and cor-
respond merely to first-order redefinitions of the variables induced by transformations on
Hilbert space; we fix much of this ambiguity by requiring that sµ and J do not depend on
ε:

dsµ

dε
=

dJ

dε
= 0. (E.11)

Then we use the notation

Qα := Qα(0), Q‡′α := Q‡α(0),

qα := Q′α(0), q‡α := Q‡′α(0),

∆′ := ∆′(0),

(E.12)

and the ε-derivative of the superalgebra (E.4), and evaluate at ε = 0. This procedure gives
a set of "easy" perturbation equations, which involve commutators with the ε-independent
generators J and sµ,

[J,qα] = qα,
[
J,q‡α

]
= −q‡α,

[sµ,qα] =
1

2
(σµ)βαqβ,

[
sµ,q‡α

]
= −1

2
(σµ)βαq

‡
β,

[sµ,∆′] = 0,

(E.13)

and "hard" perturbation equations:

{Qα,qβ}+ {Qβ,qα} =
{
Q‡α,q

‡
β

}
+
{
Q‡β,q

‡
α

}
= 0, (E.14){

Qα,q
‡
β

}
+
{
Q‡β,qα

}
= δαβ∆′, (E.15)

[∆,qα]− [Qα,∆
′] =

1

2
qα, (E.16)[

∆,q‡α
]
−
[
Q‡α,∆

′] =
1

2
q‡α. (E.17)

The "easy" perturbation equations (E.13) just imply that the transformation laws of the
perturbed generators under the ε-independent generators J , sµ are the same as those of the
corresponding unperturbed generators.
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We would like to solve the hard perturbation equations. Let us start with (E.14). Solving
this in full generality may be cumbersome, but can be done at least in a sufficient condition
way, that is, this equation is solved by the ansatz

qα =
[
Qα,O[2]

]
, q‡α = −

[
Q‡α,O

‡
[2]

]
. (E.18)

Let us introduce the notation "·" for acting by commutation or anticommutation. We denote
this by Q̃, and rewrite (E.18) as

qα = Q̃α · O[2], q‡α = −Q̃‡α · O
‡
[2]. (E.19)

The meaning of the subscript [2] will become clear shortly. The equation (E.19) is just an
ansatz, but this ansatz does automatically solve (E.14). The "easy" equations (E.13) just
constrain O[2] to be a scalar operator with vanishing R-charge.

Next, we would like to solve (E.15). Contracting it with δαβ/2, this equation implies

∆′ =
1

2
Q̃‡α · Q̃α · O[2] −

1

2
Q̃α · Q̃‡α · O‡[2]. (E.20)

An imaginary part of O[2] contributes as a total derivative to ∆′. For real A, when O[2] is
shifted by iA, then ∆′ is shifted by Ȧ. That is,

O[2] → O[2] + iA, ∆′ → ∆′ + Ȧ, (E.21)

so an imaginary part of O[2] just corresponds to changing the Hamiltonian by conjugation by
an infinitesimal unitary transformation parametrized by A which is scalar and R-neutral.
Since ultimately we only care about the system up to change of basis, we can fix that
ambiguity by simply taking the convention

O‡[2] = O[2]. (E.22)

With this convention we have

∆′ =
1

2

[
Q̃‡α, Q̃α

]
· O[2]. (E.23)

So now equation (E.15) reads: [
Q̃‡β, Q̃α

]
· O[2] = δαβ∆′. (E.24)

Since we can take (E.23) to define ∆′, the only remaining content of (E.24) is equivalent to
the condition

(σµ)αβ

[
Q̃‡β, Q̃α

]
· O[2] = 0. (E.25)
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The ansatz we are going to make to solve (E.25) is

O[2] =
1

2

[
Q̃‡α, Q̃α

]
· O[0] −O[0]. (E.26)

The first term would be present in flat-space supersymmetry. Indeed, the formula for ∆′

in terms of four supercharges acting on O[0], is just an operator realization of superspace
perturbation theory, with O[0] playing the role of the superspace integrand of D-term type.
The second term on the right-hand side of (E.26) is not present in flat-space supersymmetry,
and corresponds to a nontrivial background curvature of superspace in the sense of [105,106].

E.4 A last bit of closure of the algebra

There is one last nontrivial condition that must be satisfied. It comes from (E.16) (and its
conjugate (E.17)), which reads

[∆,qα]− [Qα,∆
′] =

1

2
qα. (E.27)

This equation does not impose any further independent conditions on the perturbation of
the generators. In principle it is automatically satisfied and can be verified directly on the
generators constructed from O[0]. To see this it is simplest to note that this equation is the
commutator [∆,Qα] = Qα/2 at first order in ε, and this must hold order by order in ε. Thus
(E.27) follows automatically from the other first-order closure equations (E.14) and (E.15)
without imposing further conditions on the perturbation.

E.5 Examples

Now we would like to apply our formula to some examples of O[0], which correspond to
the superspace integrand of superspace perturbation theory, to see concretely how inter-
action terms made from the semishort zero mode correspond to perturbations ∆′ of the
Hamiltonian. In particular, we will see that all such perturbations come out automatically
normal-ordered, with no less than one semishort zero mode annihilation operator on the
right.

E.5.1 Example: Perturbation corresponding to quadratic deformations

The simplest sort of deformation to add would of course be O[0] := Ea‡a. Then using (E.5),
we find that

O[2] = Q̃‡α · Q̃α · O[0] − ∆̃O[0] −O[0] = E
(
a‡a+ b‡αbα

)
(E.28)

and the perturbation of the supercharges and dilatation operator simply vanish:

qα = Q‡α = ∆′ = 0. (E.29)
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E.5.2 Quartic perturbation

Now let us work out the formulae for the quartic perturbation. We define

O[0] =
E
4

(
a‡
)2
a2. (E.30)

Then we have

O[2] = E
(

3

4

(
a‡
)2
a2 + b‡αbαa

‡a

)
, (E.31)

and

qα =
E
2
b‡αa

‡a2 − Ebβb‡αbβa,

q‡α =
E
2

(
a‡
)2
bαa− Eb‡βa‡bαbβ.

(E.32)

The first-order modification ∆′ of the Hamiltonian is

∆′ = 2Ea‡b‡αbαa+ E
(
a‡
)2
a2 + Eb‡βb‡αbαbβ. (E.33)

E.5.3 More general perturbations with a single semishort multiplet

The most general perturbation O[0] you can write down made from the bosonic oscillator,
preserving the R-symmetry, is

O[0] :=
E
p2

(
a‡
)p
ap. (E.34)

So then

E−1O[2] =

(
2

p
− 1

p2

)(
a‡
)p
ap + b‡β

(
a‡
)p−1

ap−1bβ,

E−1qα =

(
1− 1

p

)(
a‡
)p−1

b‡αa
p − (p− 1)b‡βb‡α

(
a‡
)p−2

ap−1bβ,

E−1q‡α =

(
1− 1

p

)(
a‡
)p
bαa

p−1 − (p− 1)b‡β
(
a‡
)p−1

ap−2bαbβ

E−1∆′ = 2(p− 1)b‡α
(
a‡
)p−1

ap−1bα +

(
2− 2

p

)(
a‡
)p
ap

+ (p− 1)2b‡βb‡α
(
a‡
)p−2

ap−2bαbβ.

(E.35)

For p = 1, note that qα, q‡α and ∆′ vanish, as we found earlier.
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E.5.4 The BPS zero mode multiplet

Now we introduce the BPS zero mode. Let us call it z, but we shall think of it as corre-
sponding to φ0, up to a constant. From the point of view of our small superalgebra, this
operator z is actually a rather funny object. It has J = 1/2 and at the free level, it has
∆ = 1/2 too. This means it commutes with ∆ − J . Since it is a BPS primary field, it also
commutes with the Q and Q‡ as well. So, from the point of view of the small superalgebra,
z is really just a c-number. However, on the other hand, z only commutes with ∆− J , and
not with ∆ and J individually. So, since we have not yet specified the normalization of z,
let us define it so that [

z‡, z
]

= 1. (E.36)

Note that this is only possible in a unitary theory because z is the energy-raising, rather
than the energy-lowering part of φ.

So, z has the same R-charge as a, but the same frequency as a‡. The composite object
Â‡ := za‡ has frequency r−1 and vanishing R-charge. We can therefore make new interesting
perturbations out of this operator.

Since z, z‡ commute with the whole superalgebra, Â and Â‡ have the same supersym-
metry representations as a, a‡ respectively. Defining B̂‡α := zb‡α, we have

Qα · Â = 0, Q‡α · Â = −B̂α,

Qα · Â‡ = B̂α, Q‡α · Â‡ = 0,

Qα · B̂β = δαβÂ, Q‡α · B̂β = 0,

Qα · B̂‡β = 0, Q‡α · B̂
‡
β = δαβÂ

‡.

(E.37)

E.5.5 General bosonic perturbations involving a semishort and a BPS multiplet

So now we can make all sorts of fascinating R-symmetric perturbations such as

O[0] =
1

pq

(
Â‡
)q
Âp. (E.38)

This is non-Hermitean, but we can always add the Hermitean conjugate to make it Her-
mitean. So we have

Q̃α · O[0] =
1

p
B̂‡α

(
Â‡
)q−1

Âp, (E.39)

and

Q̃‡α · Q̃α · O[0] =
2

p

(
Â‡
)q
Âp + B̂‡α

(
Â‡
)q−1

Âp−1B̂α. (E.40)
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One major difference, now that z and z‡ have been introduced, is that R-neutral operators
no longer necessarily commute with ∆. In particular we have[

∆, Â‡
]

= Â‡,
[
∆, Â

]
= −Â,[

∆, B̂‡α

]
=

3

2
B̂‡α,

[
∆, B̂α

]
= −3

2
B̂α,

(E.41)

and so [
∆,
(
Â‡
)q
Âp
]

= (q − p)
(
Â‡
)q
Âp. (E.42)

The expressions for O[2] and the perturbed generators are:

O[2] =
p+ q − 1

pq

(
Â‡
)q
Âp + B̂‡α

(
Â‡
)q−1

Âp−1B̂α,

qα =
q − 1

p
B̂‡α

(
Â‡
)q−1

Âp − (q − 1)B̂βB̂α

(
Â‡
)q−2

Âp−1B̂β,

q‡α =
p− 1

q
B̂α

(
Â‡
)q
Âp−1 − (p− 1)B̂‡β

(
Â‡
)q−1

Âp−2B̂αB̂β,

∆′ = (p+ q − 2)B̂‡α
(
Â‡
)q−1

Âp−1B̂α +

(
q

p
+
p

q
− p+ q

pq

)(
Â‡
)q
Âp

+ (p− 1)(q − 1)B̂‡βB̂‡α
(
Â‡
)q−2

Âp−2B̂αB̂β.

(E.43)

Here, we assume that neither p nor q vanishes; otherwise (E.38) is not well-defined. If we
had defined

O[0] :=
(
a‡
)q
ap, (E.44)

then we would have had

∆′ = pq(p+ q − 2)B̂‡α
(
Â
)q−1

Âp−1B̂α +
(
q2 + p2 − p− q

)(
Â
)q
Âp

+ (p− 1)(q − 1)B̂‡βB̂‡α
(
Â‡
)q−2

Âp−2B̂αB̂β.
(E.45)

E.5.6 Protection of the semishort state

Now we see, regardless of the form of the perturbation, the Hamiltonian perturbation not
only has vanishing expectation value in the semishort state, it simply annihilates the entire
semishort state. This much stronger condition would seem to guarantee the protection of
the semishort multiplet not just to first order, but to all orders in perturbation theory.

The nonzero modes of the free antichiral superfield φ̄ and the free chiral superfield φ

should also be included; from the point of view of quantum mechanics, these are higher-spin
multiplets, obtained by Kaluza–Klein reduction of the 2 + 1-dimensional superfields on the
spatial sphere.

94



F Massless scalar propagator

Define the free massless complex scalar field φ to have kinetic term

L = (∂µφ)(∂µφ), (F.1)

in Euclidean signature. The massless euclidean scalar propagator on R4 is defined as

∆unit(x, y) :=
〈
φ(x)φ̄(y)

〉
R4 . (F.2)

Given (F.1), the Ward identity yields the equation of motion for the propagator

∂2

∂xµ∂xµ
∆unit(x, y) =

∂2

∂yµ∂yµ
∆unit(x, y) = −δ(4)(x− y), (F.3)

so the propagator for φ has normalization

∆unit(x, y) = (2π)−2|x− y|−2, (F.4)

where we have used the identity

∂2

∂xµ∂xµ
|x− y|−2 = −(2π)2δ(4)(x− y) (F.5)

on R4. More generally, for a massless complex scalar field normalized as

LM := M2(∂µφ)(∂µφ) (F.6)

the scalar propagator is 〈
φ(x)φ̄(y)

〉
R4 = (2πM)−2|x− y|−2, (F.7)

for any positive realM. In particular, for the A-field of the effective Abelian vector multiplet,
whose kinetic term is (4.11), the two-point function is〈

A(x)Ā(y)
〉

R4 =
g2
eff

(2π)2 |x− y|
−2 = (π Im τ)−1|x− y|−2. (F.8)

G Geometry of the four-sphere

The d-sphere of radius r is a symmetric space, so its Riemann tensor satisfies

Rµνρσ =
1

r2
(gµρgνσ − gµσgνρ). (G.1)

So we have

Rµρ = gνσRµνρσ =
d− 1

r2
gµρ, R = gµρRµρ =

d(d− 1)

r2
. (G.2)
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Now let us calculate the Euler density, according to Komargodski–Schwimmer’s normaliza-
tion convention (4.64). The square of the Riemann tensor, Ricci tensor and Ricci scalar
are

RµνρσRµνρσ =
2d(d− 1)

r4
, RµνRµν =

d(d− 1)2

r4
, R2 =

d2(d− 1)2

r4
. (G.3)

Komargodski–Schwimmer’s normalization of the Euler density is given in (4.64). For the
four-sphere of radius r,

E
[KS]
4 =

24

r4
. (G.4)

H Weyl anomaly

H.1 Basics

The stress tensor must be symmetric and traceless in CFTs in flat space. However, it is
well known that in curved space in even dimensions the tracelessness of the stress tensor
can be broken by the so-called Weyl anomaly [84,85] (see also [76,154–157] for reviews). It
is known that in odd dimensions there is no Weyl anomaly.

In general, the one-point function of the stress tensor 〈Tµν〉 must vanish in flat space
due to the Poincaré invariance, but it does not have to in a curved space with a nontrivial
metric. One can derive the most general form of the Weyl anomaly 〈Tµµ〉 [158] from the
Wess–Zumino consistency condition [159]. In four dimension, it is of the form

〈Tµµ〉 ∝ aE4 − cWµνρσW
µνρσ, (H.1)

where E4 is the Euler tensor of the curved background,

E4 := RµνρσRµνρσ − 4RµνRµν +R2, (H.2)

and the square of the Weyl tensor Wµνρσ is

WµνρσW
µνρσ = RµνρσRµνρσ − 2RµνRµν +

1

3
R2. (H.3)

The a- and c-coefficients appearing in (H.1) differ in different theories. In flat space, the
values of a- and c-coefficients can be obtained from the two- and three-point functions of
the stress tensor [160]. Especially in SCFTs, there are techniques to exactly evaluate the
values of a and c [161–163]. Also, it is shown in [5] that under a renormalization group
flow from a unitary UV CFT to a unitary IR CFT, the a-coefficient is always monotonically
decreasing, i.e.,

∆a := aUV − aIR ≥ 0. (H.4)

This property is known as the a-theorem.
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H.2 Conventions and values for the a-anomaly coefficient

Here we compare two conventions for the normalization of the a-coefficient of the Weyl
anomaly (and also the c-coefficient), and we determine values of the coefficients in various
N = 2 SCFTs of interest. We also give a definition of the α-coefficient which does not
depend on the normalization of the a-coefficient.

H.2.1 Translation between normalization conventions in [5] vs. [6]

The a- and c-coefficients are normalized differently in different parts of the literature. We can
match by comparing anomalies for a given physical system across conventions. The simplest
case is a free scalar field. In [5] the anomalies are normalized so that the contributions of a
single real massless scalar field, are

a
[KS]
real massless scalar =

1

90(8π)2 , c
[KS]
real massless scalar =

1

30(8π)2 . (H.5)

This normalization is given below (A.6) of [5]. In [6], the authors give the anomalies of a
single real massless scalar field, as

a
[AEFJ]
real massless scalar =

1

360
, c

[AEFJ]
real massless scalar =

1

120
. (H.6)

The relation between the two normalizations is therefore

(a, c)[KS] =
1

16π2
(a, c)[AEFJ] (H.7)

In the body of the thesis we indicate our conventions to avoid ambiguity, but we shall use
the convention of [6], since it is normalized such that the anomalies of free fields, and of all
N = 2 SCFT, are rational numbers.

H.2.2 Values of the anomaly coefficient in various N = 2 SCFTs in four di-
mensions

We have defined the exponent α in (4.4), which appears in the factor nα in the asymptotic
formula for the two-point function, in terms of the a-coefficient in the Weyl anomaly. The
Weyl anomaly does not have a universally used normalization in the literature. So in order
to find actual values for α, we need to use some particular conventions.

The a-coefficients for many Lagrangian and non-Lagrangian theories, have been given
in e.g., [6, 162], and we collect the relevant results here. Those authors normalize the a-
coefficient according to the widely-used convention in [6], in which we have

a
[AEFJ]
fvmG =

5

24
dimG, a

[AEFJ]
fhmR

=
1

24
dimC R, (H.8)

where avmG is the a-coefficient for the N = 2 free vector multiplet of gauge group G, and
afhmR

is the a-coefficient for the N = 2 free hypermultiplet in some representation R of a
symmetry group.
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Value of the a-coefficient for N = 4 super-Yang–Mills. Organizing into N = 4

vector multiplets of gauge group G, we have

a
[AEFJ]
CFT, N = 4 =

1

4
dimG, (H.9)

and its Coulomb branch effective theory has

a
[AEFJ]
EFT, N = 4 =

1

4
rankG, (H.10)

so

∆a
[AEFJ]
N=4 =

1

4
(dimG− rankG). (H.11)

For SU(N) gauge group, we have

∆a
[AEFJ]
SU(N) N = 4 =

1

4

(
N2 −N

)
. (H.12)

In particular, for N = 2 we have

∆a
[AEFJ]
SU(2) N = 4 =

1

2
, αSU(2) N = 4 = 1. (H.13)

Value of the a-coefficient for conformal N = 2 SQCD. For N = 2 SQCD with
gauge group SU(Nc) and Nf fundamental hypermultiplets at weak coupling, we have

a
[AEFJ]
UV, SQCD =

5

24

(
N2
c − 1

)
+

1

24
NfNc. (H.14)

In the superconformal case, Nf = 2Nc and we have

a
[AEFJ]
CFT, SCQCD =

7

24
N2
c −

5

24
. (H.15)

The moduli space effective theory consists of (Nc − 1) free Abelian vector multiplets and
no hypers, so we have

a
[AEFJ]
EFT, SCQCD =

5

24
(Nc − 1), (H.16)

so the difference in central charge is

∆a
[AEFJ]
SCQCD = a

[AEFJ]
CFT, SCQCD − a

[AEFJ]
EFT, SCQCD =

1

24

(
7N2

c − 5Nc

)
. (H.17)

In particular for Nc = 2, we have

∆a
[AEFJ]
SU(2) SCQCD =

3

4
, αSU(2) SCQCD =

3

2
. (H.18)
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H.2.3 Convention-independent formula for the α-coefficient

We would like to define the α-coefficient in a convention-independent way, as a ratio of the
a-anomalies. Our convention-independent formula is:

α =
5(aCFT − aEFT)

12afavm
, (H.19)

where afavm is the unit of a-anomaly contribution carried by a free N = 2 vector multiplet
for a U(1) gauge group. In order to actually compute the value of α for some theories of
interest, we must pick an actual normalization convention. The value of α in the convention
of [6] is

α = 2
(
a
[AEFJ]
CFT − a[AEFJ]EFT

)
, (H.20)

and in the convention of [5] it is

α =
1

8π2

(
a
[KS]
CFT − a

[KS]
EFT

)
. (H.21)
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