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Abstract

Universality is a crucial concept in modern physics, which allows us to describe
phenomena without referring to microscopic details of systems. The unitary Fermi gas is
a prime example, where universal relations among physical observables and a universal
equation of state have been developed and studied in detail. In this thesis, we extend
these notions beyond the paradigm of the unitary Fermi gas and investigate universal
effects of few-body correlations in resonantly interacting ultracold atomic gases. In
particular, we discuss (i) universal relations in a spinless Fermi gas with an anisotropic
p-wave resonance and (ii) universality of the few-body spectra and the ground-state
properties of an impurity-boson system.

Firstly, we investigate the universal relations in a spinless Fermi gas with an
anisotropic p-wave resonance. We show that the high-momentum distribution and the
short-range density-density correlation have characteristic power laws, whose coeffi-
cients define the p-wave contact tensor. We derive the adiabatic sweep theorem, which
relates the p-wave contact tensor to the total energy. We also discuss the experimental
scheme to measure the p-wave contact tensor and test our results.

Secondly, we examine the ground states and lower excited states of an impurity
resonantly interacting with one, two, and three non-interacting bosons. We calculate
the energy spectra of this few-body system with two different models. The overall scale
of length depends on the models. However, we find that once we fix the three-body
parameter, which is a critical scattering length of the ground-state Efimov trimer, the
few-body spectrum is independent of a specific choice of the models. This finding is
corroborated by comparing our numerical results with the one obtained by Ardila and
Giorgini [Phys. Rev. A 92, 033612 (2015)].

Thirdly, we investigate the case in which the mass of an impurity is infinite. In this
limit, we show that the model of a Feshbach resonance can be mapped to a bosonic
extension of Anderson’s single impurity model, which can be used to analytically
solve the three-body problem. We find that the ground-state energy with a Feshbach
resonance is drastically different from that in a potential-interaction system, and that the
former approaches the latter logarithmically as the unitarity limit is taken. We argue
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that this logarithmic correction is a universal consequence of an effective three-body
repulsion.

Lastly, we address the universality of the ground-state properties of a Bose polaron,
which is an impurity immersed in a weakly interactinng Bose-Einstein condensate. We
employ a variational wave function that takes into account three Bogoliubov excitations
on top of the background Bose-Einstein condensate. By calculating the ground-state
energy with two different models and comparing the results with those obtained by
Ardila and Giorgini [Phys. Rev. A 94, 063640 (2016)], we argue that the ground-state
energy is a universal function of the three-body parameter, even when the density
is high enough to smear out well-defined Efimov trimers. We also calculate other
observables and discuss their universality. In particular, we find that the quasi-particle
residue is strongly suppressed in the limit of aB→ 0, where the background Bose gas is
non-interacting. This is consistent with the perturbation theory, in which an infrared
divergence leads to the vanishing residue. On the other hand, both the variational
calculation and the perturbative calculation show that the residue is finite for aB > 0.
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Chapter 1

Introduction

1.1 Universality in quantum few-body systems

Few-body problems have played fundamental roles since the early days of classical and
quantum mechanics. For example, studies of the celestial few-body motion fostered
the development of classical mechanics and its derivative areas. Kepler’s laws, which
concerns the two-body problem of a planet and the sun, finally led Issac Newton to the
discovery of the law of universal gravitation. The gravitational three-body problem has
also been a rich source of concepts in dynamical systems theory. On the other hand,
the Coulombic few-body problems, namely atomic and molecular systems, drove the
development of quantum mechanics.

In quantum mechanics, few-body systems can display emergent universality, which
is absent in classical few-body problems. Classical particles can interact with each
other only when two particles are within the range of an interaction, and their motion
follows the detailed structure of the interaction potential. In quantum mechanics, on
the other hand, owing to the wave nature of matter, a particle can affect the motion
of another particle far beyond the interaction range. When this happens, the particle
motion becomes insensitive to microscopic details of an interaction because in most
of the time particles are outside the interaction range and do not feel the interaction
potential itself.

A two-body problem already provides a nontrivial example. For a short-range
potential1, unless the two particles are identical fermions, two-particle collisions are
predominantly of the s-wave type, which has the scattering amplitudewith the following

1A “short-range” potential need not be exponentially decaying in the discussions below. For example,
atomic interactions have the long-range tail of the van der Waals potential C/r6. In that case, the function
r(k2) introduced below has non-analyticity, which is, however, irrelevant for the low-energy physics [1].
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low-energy expansion [1, 2]:

f (k) � − 1
a−1 + ik + k2r(k2) , (1.1)

where k is the magnitude of the incoming momentum, a is the s-wave scattering length,
and r(k2) is a real function of k2, which is analytic at k2 � 0. The s-wave scattering
length can, in general, take any real value, depending on interactions. Suppose that
a is positive and much larger than the range of the interaction. Then the scattering
amplitude f (k) has a pole at k ' ia−1, regardless of the detailed form of r(k2). This
implies that there is a two-body bound state, whose energy is −~2/2mra2, where mr

is the reduced mass of the two particles, and that its radius a is much larger than the
radius of the interaction potential. Remarkably, the energy of the shallowest dimer is
determined by the s-wave scattering length a and is independent of any other details of
the interaction when a is large. The low-energy scattering also becomes universal as the
scattering cross section can be approximated by

σ(k) ≡ | f (k)|2 ' 1
a−2 + k2 . (1.2)

Of particular interest is the limit of |a | → ∞, which is called the unitarity limit. Here, the
scattering cross section is

σ(k) � 1
k2 , (1.3)

which saturates the constraint imposed by the unitarity of the S-matrix [1]. This
limit realizes the strongest possible interaction, which is clearly scale-invariant and
independent of any microscopic details.

Three-body systems at the unitarity limit are even more nontrivial. Vitaly N. Efimov
showed for three identical bosons and three distinguishable particles with arbitrary
mass ratios that there are an infinite number of three-body bound states if at least two
of the three pairwise interactions are at the unitarity limit, and that they dissociate into
three atoms at a negative scattering length and into a pair of a dimer and an atom at a
positive scattering length [3–6]2. The Efimov effect in multicomponent systems was also
discussed by Amado and Noble almost simultaneously [7]. The presence of the bound
states indicates a breakdown of the scale invariance, which we have at the two-body
level for unitarity-limited interactions. However, Efimov found that there is a remnant
discrete scale invariance. In particular, the binding energy of the nth-excited trimer for

2Although it is not explicitly mentioned in Ref. [6], the discussion there also includes the possibility of
the Efimov trimers in the system of one light particle that resonantly interacts with two heavy identical
fermions.
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large n is written as

En � λ−2nE0, (1.4)

where λ is determined by the configuration of the resonating pairs and the mass ratios,
and is independent of microscopic details of interactions. This universal three-body
phenomenon has driven much theoretical effort to investigate a diversity of universal
few-body clusters [8–10] such as two-component fermion systems [11–15], four or more
identical boson systems [16–21], one particle interacting with three or more identical
bosons [22, 23], three identical fermions in three [24, 25] and two dimensions [26–30].

Traditionally, these universal few-body phenomena have been investigated mainly in
nuclear physics. Efimov originally had the 12C nucleus (or three α particles) and three
4He atoms in mind [3]. Today, however, ultracold atomic gases offer ideal experimental
test beds for studies on the universal few-body and many-body physics. As we detail
in Chapter 2, one can control the s-wave scattering length to an arbitrary value by
using a magnetic Feshbach resonance [31–34]. This has enabled us to study universal
phenomena that emerge near the unitarity limit. One can also make various mass ratios
of particles by preparing mixtures of different atomic species. This unprecedented
controllability of ultracold atomic gases enables us to systematically examine a wide
variety of few-body phenomena. The Efimov effect has been experimentally explored
in various setups. For identical boson systems, not only the resonance of the Efimov
trimer [35–37], but also those associated with a tetramer [38, 39] and a pentamer [40]
have been experimentally observed. Experimentalists have also investigated mixtures of
different atomic species [41–45] and of atoms in different spin states [46–48].

1.2 Universality in the unitary Fermi gas

The universality in few-body systems has huge implications for many-body physics.
A prime example is the unitary Fermi gas, which is a gas of spin-1/2 fermions with
a unitarity-limited interaction between a spin-↑ particle and a spin-↓ particle and no
interaction between the same spin particles. Here, let us focus on the mass-balanced
case, where the ↑-particle and the ↓-particle have the same mass. Then no three-body
subsystem of the unitary Fermi gas has Efimov states [6]. The unitary few-body Fermi
systems with more than three particles have also been examined, and to date, breaking
of the scale invariance has not been found [9, 10]. These evidence suggests that the
unitary Fermi gas has a strictly scale-invariant interaction, which saturates the unitarity
bound of the scattering cross section.
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One of the most important consequences of the scale invariance is the universal
thermodynamics [49]. Owing to the absence of any interaction length scale, the free
energy is completely determined only by the number of particles N , the volume V , the
temperature times the Boltzmann constant kBT, the mass of particles m, and Planck’s
constant ~. The dimensional analysis then allows one to write down the following
expression of the free energy:

F(N,V, kBT; m , ~) � 3
5
εFN f

(
kBT
εF

)
, (1.5)

where εF ≡ ~
2

2m

(
3π2N/V

)2/3 is the Fermi energy and f (x) is a universal dimensionless
function3. Once f (x) is determined, either theoretically or experimentally, all the
thermodynamics quantities are derived from this single function and its derivative.
Also the ground-state properties are determined by a set of dimensionless numbers,
among which ξ ≡ f (0) is particularly called the Bertsch parameter [50, 51].

Another important aspect of the universality in the unitary Fermi gas is a set of
universal relations that relate short-range correlations to thermodynamic properties [52–
60]. Such relations do not rely on perturbation expansions, and hold true even in the
strongly correlated regime. Moreover, they are very general; a fermionic system in the
unitarity regime is constrained by those relations whether it is a few-body or many-body
system, in the superfluid or normal fluid phase, at zero or finite temperatures. For
example, the density-density correlation function diverges as

g↑↓(r) ≡ 〈n̂↑(r)n̂↓(0)〉 '
16π2C

Vr2 (1.6)

for r � k−1
F , where kF is the Fermi wave number, n̂σ is the density operator for the spin-σ

particles, V is system’s volume, and C is Tan’s contact, which plays a central role in the
universal relations. The origin of this divergence is the one that appears in two-body
subsystems of the unitary Fermi gas. One can show [61–63] that a relative wave function
of a two-body system composed of an ↑-particle and a ↓-particle is

ψ(r) � 1
kr
− 1

ka
+ O(kr), (1.7)

for r/r0 � kr � 1, where k ≡
√

m |E |/~2, a is the s-wave scattering length, and r0 is the
range of an interaction. For the unitarity regime, where ka & 1, the first term in ψ(r)
dominates over the other terms, leading to the r−2-divergence in the density-density
correlation. The singularity in Eq. (1.6) mirrors this short-range behavior in the two-body

3The prefactor 3/5 is chosen in order that f (0) � 1 for the free Fermi gas at zero temperature.
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subsystems in the many-body unitary Fermi gas, and Tan’s contact C encapsulates all
the other many-body effects. The momentum distribution [52] and dynamical quantities
such as the radio-frequency spectrum [64–67], the dynamic structure factor [68–71], and
the viscosity spectral function [69, 72], have similar factorization of power-low behaviors
originating from two-body physics and many-body effects represented by the contact.
The contact is also related to thermodynamic quantities. A representative example is
the adiabatic sweep theorem [53]:

C �
4πm
~2

∂E
∂(−1/a) . (1.8)

Thismeans that the contact represents the response to the change of the s-wave scattering
length. This interpretation is consistent with Eq. (1.6). As the interaction is short-ranged,
only pairs of two particles that are close to each other are responsible for the energy
change when the s-wave scattering length is shifted. Equation (1.6), on the other hand,
clearly shows that the number of such small pairs is characterized by C. These universal
relations have been extended to bosonic systems [73–75], Bose-Fermi mixtures [73], and
lower dimensions [58, 59, 76–78] with an s-wave resonance. They are also extended to
p-wave [79–82] and d-wave [82, 83] resonances. The present author contributed to one
of the first studies on the universal relations for a p-wave resonance.

Experimental development of ultracold atomic gases has boosted the search for
universal phenomena in the unitary Fermi gas, in spite of the fact that Bertsch, after
whom the Bertsch parameter is named, posed the theoretical challenge on the unitary
Fermi gas originally as a parameter-free model of dilute neutron matter [50, 51, 84]. A
number of experimental groups have studied the unitary Fermi gas. They havemeasured
the universal equation of state [85–87] and transport properties [88–92]. The universal
relations in the unitary Fermi gas have also been tested by many experiments through
the measurement of Tan’s contact from correlation functions and thermodynamic
quantities [93–97].

1.3 Outline of this thesis

Inspired by the progress in the Efimov physics and the unitary Fermi gas, we investigate
effects of universal few-body correlations in strongly interacting ultracold atomic gases
in this thesis. In particular, we discuss the universal relations in an anisotropic p-wave
Fermi gas and the universality of the few-body spectra and the ground-state properties
of an impurity-boson system.
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We begin with reviewing the physics of Feshbach resonances and the derivation of
the two-channel model, which is the effective-field theory for the resonance physics. It
enables us to discuss universal features of resonant interactions without referring to
microscopic details of systems; indeed, the resulting two-channel model has also been
used to describe low-energy nuclear systems[98–100].

From Chapter 3 to Chapter 6, we present our original contributions.

Chapter 3 is devoted to addressing what kind of universal relations are associated
with interactions beyond the conventional s-wave interactions. For this, we previously
found universal relations for a p-wave Fermi gas and introduced the notion of a p-wave
contact, which was, however, restricted to systems with rotational symmetry [79, 80].
Compared with an s-wave resonance, a new feature of a p-wave resonance is the
possibility of anisotropy in ultracold atomic experiments; due to an external magnetic
field to control a Feshbach resonance, the three-fold degeneracy of the p-wave resonance
can be lifted [101, 102]. This can cause, for example, a novel superfluid phase, where the
axisymmetry is spontaneously broken [103–105]. In Chapter 3, we present the universal
relations in an anisotropic p-wave Fermi gaswith anisotropy fully taken into account. We
derive the asymptotic behavior of the momentum distribution and the density-density
correlation function, from which we define the notion of a p-wave contact tensor. It has
nine components, in contrast to Tan’s contact, which is a scalar quantity. We show the
adiabatic sweep theorem for the p-wave contact tensor, which relates the contact to the
derivative of the energy with respect to the generalized p-wave scattering volume. We
also argue that our results can be experimentally tested with the Λ configuration of the
Raman lasers.

The other issue is related to the universal equation of state: do unitary Bose systems
have universal equations of state, and if so, what do they look like? We address these
questions for the ground state of an impurity-boson system, where a mobile impurity
interacts via a unitarity-limited interaction with a weakly interacting Bose gas. Such a
system has recently been realized using a mixture of atomic species, and found to be
relatively stable and amenable to detailed investigations [106, 107].

The impurity-boson system is the simplest bosonic system that may display uni-
versality in its ground state. Two bosons resonantly interacting with a single impurity
are known to support an infinite tower of Efimov states [5–7]. Remarkably, even the
ground Efimov state is extremely loose in the impurity-boson system; the radius of the
ground state trimer is O(103) times larger than microscopic length scales such as the
effective range associated with an interaction between the impurity and a boson [108].
One can expect that this huge separation of the scales makes the system insensitive to
the short-range details of interactions if the density of bosons is sufficiently low. This
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situation should be contrasted with the scalar Bose system in which bosons interact
via a unitarity-limited interaction. There, the three-body ground state has the radius
comparable to the range of the interaction. As a result, its properties depend on specific
interactions, and the scaling factor between the ground state and the first-excited state
deviates from its universal value [3] by 10-20% [9]. On the other hand, the excited states
are exponentially loose and asymptotically follow the universal discrete scale invariance.
The impurity-boson system is, therefore, a good candidate to explore for a universality
in the ground state.

In Chapter 4, we consider an impurity and a few non-interacting bosons, where
the mass of the impurity is equal to that of a boson. When bosons are heavier than
the impurity, the four-body spectrum has been calculated [23, 109]. We calculate the
energy spectra of the impurity with up to three bosons within two different models of
interactions, which we call the r0-model and the Λ-model. We show that the spectra,
including the ground states, have a universal shape with high accuracy, which is
independent of the choice of the models. This finding is corroborated by comparing the
ratio of the three-body and four-body ground-state energies with the one calculated
previously within yet another model [110]. Note that the universality found in this
chapter is different from the universality of the discrete scale invariance in Eq. (1.4),
which generally holds only for excited states [8–10].

In Chapter 5, we discuss an infinite-mass impurity interacting with a few non-
interacting bosons. This limit no longer supports excited Efimov states, and only
the ground state survives, because the scaling factor (λ in Eq. (1.4)) becomes infinite.
This implies that the scale invariance of the unitarity limit is recovered. We show by
analytically solving the 2+1 problem within the r0-model that an effective three-body
repulsion in a Feshbach resonance results in a bound-state spectrum that is drastically
different from that in potential-interaction systems. We find that as the unitarity limit is
approached, the result of the r0-model converges logarithmically to that of potential-
interaction systems. By comparing the analytical result with the numerical calculation
within the Λ-model, we argue that the logarithmic correction is a universal consequence
of the effective three-body repulsion.

In Chapter 6, we discuss the ground-state properties of the many-body impurity-
boson system, that is, an impurity immersed in a finite-density Bose gas, which we
call a Bose polaron [108, 110–125]. There is a study based on a renormalization-group
approach, which, however, has omitted the three-body interaction [121]. To examine the
universality of ground-state properties of the Bose polaron and take the Efimov effect
into account, we employ a variational approach that incorporates three Bogoliubov
excitations on top of the background condensate. Similar wave functions have been
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used to describe the Bose polaron [108, 114], an impurity in a Fermi sea [126, 127],
and an impurity in a Fermi superfluid [128]. We also note that a similar method has
been known for long as the Tamm-Dancoff method [129, 130], which is used to discuss
elementary excitations in nuclear systems. Here, by comparing the ground-state energies
determined within the r0-model and the Λ-model, we argue that for a sufficiently low
density of the Bose gas, the ground-state energy is a universal function of the three-body
parameter, which is a characteristic length scale of the ground-state Efimov state. This
universality is carried over to the density which is high enough to smear out the
well-defined Efimov states. The universal function corresponds to the Bertsch parameter
in the unitary Fermi gas, although in a Bose polaron, it is no longer a pure number but a
function. We also calculate other observables, the quasi-particle residue, the effective
mass, and Tan’s contact, and discuss their universality.

Finally, Chapter 7 is devoted to the summary of this thesis and makes some remarks
on the future prospect.

In the following dissussions, we adopt the unit in which ~ � 1.
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Chapter 2

From atomic properties
to effective-field theories

To discuss universal aspects of dilute atomic gases, it is essential to be equipped
with effective-field theories that correctly reproduce low-energy few- and many-body
physics. In particular, the two-channel model has been successfully employed in the
field of ultracold atoms interacting via a Fano-Feshbach resonance, or a Feshbach
resonance [34, 131–134], especially in describing atomic Bose-Einstein Condensates
(BEC) [135, 136], fermionic superfluids [103, 105, 137–141], and few-bodyphysics [25, 142–
144]. In Section 2.1, we review atomic physics underlying a Feshbach resonance [145]. In
Section 2.2, wedescribe this phenomenon and construct the two-channelmodel [138, 139].
The approach in this chapter is bottom-up; we start from microscopic description of a
Feshbach resonance and arrive at its effective model. On the other hand, the same field
theory can be reached by a top-down approach, where one retains all the terms that are
allowed by symmetry and important for low-energy physics. This approach has been
taken to describe low-energy properties of nuclear systems [98–100]. This fact displays
the power of the two-channel model that it can describe a variety of phenomena near a
scattering resonance in a unified manner regardless of microscopic details.

2.1 Microscopic description of atomic interactions

Feshbach resonances occur because atoms have rich internal structures. Therefore, in
the first subsection, we explain one-atom properties. In the next subsection, we describe
the basic coupled-channel picture of two-atom interactions.
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2.1.1 Atomic properties

In cold-atom experiments, we can safely assume that atoms are in their electronic ground
state unless one intentionally excites them. This is because the energy scale of the
electronic excitation is of the order of 104K while the typical temperatures of atomic
gases are µK to nK. For alkali atoms, all but one electron form closed shells, and the
remaining valence electron occupies the s orbital. Therefore, an atom has the total
electronic spin S � 1/2 and the electronic orbital angular momentum L � 0. The other
component of an atom, a nucleus, also has a spin degree of freedom. The nuclear spin I
depends on atomic species and isotopes.

In the absence of an external magnetic field, the nuclear spin of an alkali atom
couples to the electronic spin by the hyperfine interaction of the form

Ĥhf � AÎ · Ŝ, (2.1)

where A is a hyperfine coupling constant, and Î and Ŝ are the nuclear spin and the
electronic spin1, respectively. By using the total atomic angular momentum F̂ and the
identity Î · Ŝ �

1
2(F̂2 − Î2 − Ŝ2), the eigenstates of the hyperfine interaction is those of F̂2

for a fixed pair of I and S. Therefore, the eigenvalue EF,I ,S of Ĥhf for a given combination
of F, I, and S is,

EF,I ,S �
A
2
[F(F + 1) − I(I + 1) − S(S + 1)] . (2.2)

As alkali atoms have S � 1/2, the addition rule of angular momenta gives F � I ± 1/2.
This leads to the zero-field hyperfine splitting,

∆Ehf ≡ EI+1/2,I ,1/2 − EI−1/2,I ,1/2 � A
(
I +

1
2

)
. (2.3)

Each of the two levels has (2F + 1)-fold degeneracy as in any spherically symmetric
systems with the angular momentum F.

When an external magnetic field B is applied, this degeneracy is lifted due to the
symmetry-breaking Zeeman coupling,

ĤZ �

(
geµBŜ −

µ

I
Î
)
· B �

(
geµBŜz −

µ

I
Îz

)
B. (2.4)

Here, ge ' 2 is the electronic g factor, µB ≡ e~/2me is the Bohr magneton, and µ is the
magnetic moment of the nucleus. For simplicity, we assume B � Bez where ez is the unit

1In general, we need to use Ĵ, the total electronic angular momentum, instead of Ŝ, because the orbital
angular momentum can also couple to the nuclear spin. Here, Ĵ � Ŝ because an alkali atom in the
electronic ground state does not have orbital angular momentum.
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Figure 2.1: Energies of an alkali atomwith I � 1 under amagnetic field, where∆Ehf �
3
2A.

We assume that the hyperfine coupling A is positive, and adopt a scaled magnetic field
b � geµBB/∆Ehf. The labels |F,mF〉 show the corresponding zero-field states, while the
actual eigenstates are not eigenvectors of F̂2.

vector parallel to the z axis. As this term is still symmetric with respect to rotation around
the z axis, the z component mF of F̂ remains to be a good quantum number. Therefore,
the fully polarized states |F � I + 1/2,mF � ±(I + 1/2)〉 are the eigenvectors of Ĥhf + ĤZ

because the subspace specified by mF � I + 1/2 or −I − 1/2 is one-dimensional, while the
other states with −I + 1/2 ≤ mF ≤ I − 1/2 are mixed by ĤZ within the two-dimensional
subspace specified by mF. Each eigenstate is continuously connected to |F,mF〉 when
the magnetic field is turned off.

As a specific example, we show in Fig. 2.1 the energy eigenvalues of an alkali atom
with I � 1 as a function of the magnetic field2. In this case, the hyperfine splitting at
the zero magnetic field is given by ∆Ehf �

3
2A. For small magnetic fields, with which

ĤZ can be regarded as a perturbation, the eigenstates are well approximated by |F,mF〉,
and their energies deviate linearly from EF,1,1/2. In the opposite limit of strong fields,
ĤZ dominates over Ĥhf, and now not only mF � mI + mS but also mI and mS become
good quantum numbers. In particular, as µ/µB � O(10−3), the Zeeman shift due to the
electronic spin gives a major contribution to the energies, with a small splitting A/2 due
to the hyperfine coupling.

2The nuclear spin I � 1 is realized in a 6Li atom.

21



2.1.2 Coupled-channel interaction

Now consider two atoms prepared in the internal states labeled as α and β, which are
referred to as the entrance channel. In general, they can be of two different atomic
species. Suppose that a collision with a relative momentum k produces two scattered
atoms in the internal states α′ and β′, referred to as the exit channel, with an outgoing
relative momentum k′. The energy conservation then reads

k
′2

2mr
+ εα′ + εβ′ �

k2

2mr
+ εα + εβ , (2.5)

where mr is the reduced mass of the two atoms, and εα is the one-atom energy of the
state α. The exit channel α′β′ is said to be closed if the collision energy (given by the
right-hand side of Eq. (2.5)) is less than a threshold energy Eth(α′β′) defined as

Eth(α′β′) � εα′ + εβ′ . (2.6)

There is no real transition to such closed channels, and it can occur only as a virtual
process, because the atoms do not have a sufficient energy. On the other hand, if the
pair of atoms can scatter into a channel α′β′ as a real process, the channel is said to be
open. Note that the definition of “open” and “close” depends on the incident energy.
In a thermal atomic gas, the hyperfine splitting is of the order of GHz, which implies
that the inelastic scattering into a channel α′β′ with Eth(α′β′) > Eth(αβ) is negligible at
temperatures less than mK. Therefore, the channels with larger threshold energies than
that of the entrance channel can generally be regarded as closed.

An interaction potential, in the most general form, has the indices of the entrance
and exit channels, Uα′β′,αβ(r). For alkali atoms in their electronic ground states with
S � 1/2, the dominant part of the interaction is spherically symmetric and diagonal
with respect to the total electronic spin of the two atoms:

Uα′β′,αβ(r) � Us(r)P̂s + Ut(r)P̂t (2.7)

�
Us(r) + 3Ut(r)

4
+ [Ut(r) −Us(r)]Ŝ1 · Ŝ2, (2.8)

where P̂s � 1/4 − Ŝ1 · Ŝ2 and P̂t � 3/4 + Ŝ1 · Ŝ2 are the projection operators onto the
electronic-spin singlet and triplet states, respectively. It is clear from Eq. (2.8) that the
inter-channel coupling is of the electronic-spin exchange type, which conserves the
two-atom total electronic spin and the projection of the total angular momentum on
the quantization axis. Other processes such as the magnetic dipole-dipole interaction
and three-body collisions can lead to other forms of channel couplings; they are not too
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Figure 2.2: Schematic plot of the singlet and triplet potentials for two Rubidium atoms
in the orbital ground state, where a0 is the Bohr radius. Both potentials share the same
long-range van der Waals tail ∝ r−6 and the hard-core repulsive part. Between them,
the singlet potential has a deep minimum due to the covalent bonding, while the triplet
potential does not have such a pronounced dip.

strong for alkali atoms, but often impose limitations on experimental time scales. Here,
we focus on the time scales which are sufficiently short compared to such limitations
but long enough for the spherically symmetric part to cause collisions and eventually
make the system thermalize.

Figure 2.2 shows a schematic plot of Us and Ut. For large separations, the tails of
the interaction potentials are given by the van der Waals interaction. It is an attractive
interaction of the form −C6/r6, where C6 is a constant and r is the separation between
two atoms. The van der Waals interaction originates from the second-order process of
the electric dipole-dipole interaction and is independent of the spin states. For smaller
separations, we can see a strong repulsive core due to the overlap of the electron clouds.
Just before the core, the singlet potential has a pronounced minimum with a depth of
nearly 6000K for Rubidium atoms, while the minimum of the triplet potential is much
shallower, of a few hundred kelvin. This can be understood as the presence or absence
of the covalent bonding. When two atoms possess opposite spins, the two valence
electrons can reduce the energy by sharing the same orbital. By contrast, two polarized
electrons cannot occupy the same orbital, and no energy reduction from the covalent
bonding can be made.

In experiments, we prepare atoms in some selected hyperfine state(s). The entrance
channel of a collision in such an atomic gas may or may not be the electronic spin
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singlet or triplet. If both of the colliding atoms are in the same fully polarized state,
the two-electron spin state is triplet, and therefore no spin exchange occurs during the
collision. In other words, within the approximate potential of Eq. (2.8), the interaction
between such pairs is of single-channel nature. On the other hand, other channels are
superpositions of electronic-spin singlet and triplet, and subject to the spin exchange
interaction. This implies that a pair of atoms in such a channel can undergo inelastic
scattering if there is an open channel coupled to the entrance channel by the exchange
interaction. If there is no available open channel, two atoms interact only elastically.
This process may also be drastically affected by the presence of the channel coupling,
which is a Feshbach resonance.

2.2 Feshbach resonance and the two-channel models

Amajor qualitative difference between single-channel potential interactions and coupled-
channel interactions is that the latter can support inelastic two-body scattering. In
atomic gas experiments, however, such processes are not so important since we usually
prepare atoms in low-lying hyperfine states so that no open channel is available for
inelastic two-body collisions. On the other hand, the channel coupling can strongly
affect an elastic process via a so-called Feshbach resonance [34, 131–134]. It is a resonant
enhancement of elastic scattering caused by coupling to a virtual bound state in a closed
channel.

A Feshbach resonance occurs when a pair of atoms collides with the incoming energy
near that of a bound state in a closed channel. One open and one closed channel are
enough to describe this phenomenon, which is called a two-channel picture. In this
model, the interaction potential in the closed channel has bound states, one of which
lies near the threshold energy of the open channel, as illustrated in Fig. 2.3. An intuitive,
though somewhat oversimplified, understanding is then obtained by considering the
second-order Born approximation of the T-matrix in terms of the coupling between
the open channel and the closed-channel bound state. It gives a shift to the on-shell
T-matrix at the threshold energy, or equivalently the s-wave scattering length a,

δT(0) ≡ 2πδa
mr

� −
∑

n

��〈n
�� Ĥex

�� 0〉��2
En

' −
��〈b

�� Ĥex
�� 0〉��2

Eb
, (2.9)

where mr is the reducedmass of the colliding atoms, Ĥex is an inter-channel Hamiltonian
(here “ex” represents the exchange interaction for concreteness), |0〉 is an unperturbed
open-channel state at threshold, and |n〉 is an unperturbed closed-channel state with an
energy En measured from the open-channel threshold. In the last approximate equality
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Figure 2.3: Sketch of a mechanism of a Feshbach resonance. The low-energy incoming
atoms are coupled via the spin-exchange interaction to a bound state in the closed
channel near the open-channel threshold. Since the incident energy is not enough for
the atoms to scatter into the continuum above Eth, the bound state eventually dissociate
back into the entrance channel.

in Eq. (2.9), we only retain the contribution from the bound state lying closest to the zero
energy. Equation (2.9) implies that the coupling gives an effective attraction if Eb > 0
while it gives a repulsion if Eb < 0. Another important implication is that if we can
control Eb, it amounts to controlling the s-wave scattering length in the open channel.
This is indeed possible in atomic systems, where a pair of atoms in a closed channel
may have the magnetic moment µc that is different from µo in the open channel. In the
presence of an external magnetic field, the bound-state energy Eb is

Eb � (µo − µc)(B − B0) ≡ δµ(B − B0), (2.10)

where B0 is the threshold magnetic field at which Eb vanishes. Therefore, by changing
the strength of the applied magnetic field, we can control the strength and even the sign
of the effective interaction. Note, however, that the Born approximation breaks down
just in the vicinity of the resonance Eb ' 0. A discussion beyond this approximation is
given later.

To discuss many-body physics involving a Feshbach resonance, we now derive an
effective-field theory that encapsulates the essence of this phenomenon [138, 139]. To
this end, first consider the general coupled Schrödinger equations for the relative motion
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of two atoms,

(E − ĤPP) |ΨP〉 � ĤPQ |ΨQ〉 , (2.11)

(E − ĤQQ) |ΨQ〉 � ĤQP |ΨP〉 , (2.12)

where P and Q denote the spaces of the states in the open and closed channels,
respectively. Here again, we can eliminate the far-off-resonant states in the closed
channel such as the continuum. To do this, let us introduce a projection operator
P � IP ⊕ PQ , where IP is the identity operator in the space of the open channel and
PQ �

∑
i |iQ〉 〈iQ | is a projector from the closed-channel space onto the unperturbed

bound state(s) |iQ〉 of ĤQQ that is resonant to the open channel. By restricting the Hilbert
space by P, we obtain a pair of approximate Schrödinger equations,

(E − ĤPP) |ΨP〉 �
∑

i

ĤPQ |iQ〉 〈iQ |ΨQ〉 , (2.13)

(E − νi) 〈iQ |ΨQ〉 � 〈iQ | ĤQP |ΨP〉 , (2.14)

where νi is the unperturbed energy of |iQ〉 given by (νi − ĤQQ) |iQ〉 � 0. In Eq. (2.14),
we do not have summation over the index i because of the orthogonality of |iQ〉. It
is important to note that we no longer need the degrees of freedom of the relative
motion of two atoms in |iQ〉, because Eq. (2.13) and (2.14) contain just the amplitude
〈iQ |ΨQ〉. The equations for a set of |ΨP〉 and 〈iQ |ΨQ〉 are naturally expressed in terms
of a Hamiltonian constructed from the field operator(s) ψ̂α(r) representing atoms and
the molecular field operator φ̂i(r), where the index α denotes the hyperfine state and
the atomic species. If we assume for simplicity that the open channel consists of two
atoms in the same hyperfine state and that only one closed-channel molecular state is
resonant, the indices can be dropped, and the Hamiltonian reads

ĤPP �

∫
dr

1
2m
∇ψ̂† · ∇ψ̂ +

1
2

∫
dr dr′Uo(r − r′)ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r), (2.15)

ĤPQ � Ĥ†QP �
1
2

∫
dr dr′ g(r − r′)ψ̂†(r)ψ̂†(r′)φ̂

(
r + r′

2

)
, (2.16)

ĤQQ �

∫
dr

(
1

4m
∇φ̂†∇φ̂ + νφ̂†φ̂

)
. (2.17)

Here, m is the mass of an atom, Uo is the interaction potential within the open channel,
and g(r − r′) ≡ 〈rr′P |ĤPQ |iQ〉. This so-called two-channel model gives us a natural
starting point of analyzingmany-body systemswith a Feshbach resonance. We can easily
generalize this for systems with multiple hyperfine states or multiple closed-channel
molecular states.
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We can restrict the form of g(r) by symmetry. Suppose that the inter-channel
coupling is induced by the spherically symmetric exchange interaction, as discussed
in the previous section. In this case, the orbital angular momentum in the relative
motion of two colliding atoms is a conserved quantity. Therefore, if the rotational
motion of a closed-channel molecule has the angular momentum l and its projection
m, the associated Feshbach resonance occurs in the scattering processes with the same
quantum numbers. Correspondingly, the angular dependence of g(r) is given by the
spherical harmonic function Ym

l (r̂). This implies that in spherically symmetric systems,
a Feshbach resonance in the lth partial wave has (2l + 1)-fold degeneracy, which reflects
the degeneracy of the closed-channel molecule. In practice, an external magnetic field
is applied to a gas to control the Feshbach resonance. This may result in multiplet
structures of an lth-wave Feshbach resonance for l > 0, which have been observed in
p-wave [101] and d-wave [102] resonances.

In dilute, low-temperature atomic gases described by the Hamiltonian (2.15-2.17),
many-body properties are expectedly independent of the detailed profiles of g(r) and
Uo(r), as typical length scales such as the interparticle spacing and the thermal de
Broglie length are much larger than the range of these functions. Therefore, one can
choose a convenient function suitable for one’s needs.

We would like to emphasize again that Eqs. (2.15-2.17) are the Hamiltonian that
corresponds to the Lagrangians in Refs. [98–100] if one truncates the Taylor expansion
of the Fourier transform of g(r). This indicates that the use of the two-channel model is
not restricted to atomic systems with a Feshbach resonance, and that results that follow
from the two-channel model are potentially relevant not only to ultracold atomic gases
but also to low-energy nuclear systems.

Now, let us discuss specific examples of the two-channel models that are relevant to
our research.

2.2.1 s-wave resonance in a two-component Bose gas

Consider a mixture of two atomic species labeled 1 and 2, each of which is prepared in a
single hyperfine state. For definiteness and later use, we assume the atoms are bosons,
although in this section we only discuss a two-body system consisting of one atom for
each species. If there is an s-wave Feshbach resonance between the two species, the
two-channel Hamiltonian reads

Ĥ �

∫
dr

(
1

2m1
∇ψ̂†1 · ∇ψ̂1 +

1
2m2
∇ψ̂†2 · ∇ψ̂2 + U0ψ̂

†
1ψ̂
†
2ψ̂2ψ̂1

+
1

2M
∇φ̂† · ∇φ̂ + ν0φ̂

†φ̂ + g0ψ̂
†
1ψ̂
†
2φ̂ + g0φ̂

†ψ̂2ψ̂1

)
,

(2.18)
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where mi is the mass of an atom of the ith species (i � 1, 2), M ≡ m1 + m2 is the mass of
a closed-channel molecule, and we adopt Uo(r) � U0δ(r) and g(r) � g0δ(r).

The parameters, U0, ν0, and g0, are determined so that they reproduce low-energy
scattering data, especially the scattering amplitude. To this end, we need to solve the
two-body problem beyond the Born approximation. Let us consider a two-body state
whose total momentum is zero, and write down the coupled Schrödinger equations in
the momentum representation:(

E − k2

2mr

)
Ψo(k) � U0

∫
dk′

(2π)3Ψo(k′) + g0Ψc ≡ T(E), (2.19)

(E − ν0)Ψc � g0

∫
dk′

(2π)3Ψo(k′). (2.20)

Here, Ψo(k) is the wave function for the relative motion of the open-channel atoms,
Ψc is the amplitude of the closed-channel molecule, and mr is the reduced mass of the
two particles. Note that the right-hand side of Eq. (2.19), which is actually a T-matrix
element, is independent of k but implicitly depends on E. This is because we have taken
the zero-range limit of the interaction.

The solutions consists of continuous scattering states with E ≥ 0, and if any, discrete
bound states with E < 0 [1, 2]. To find the scattering state, we need to specify a boundary
condition because otherwise the value ofΨo(k) for |k | �

√
2mrE would not be uniquely

determined. Here, we require the wave function to be a superposition of an incoming
planewave and an outgoing scatteredwave. In themomentum representation, a solution
forΨo(k) reads

Ψo(k) � (2π)3δ(k − k0) +
T(E + i0)

E + i0 − k2/2mr
, (2.21)

where k0 is the momentum of the incoming plane wave that satisfies E � k2
0/2mr, and

the imaginary part of the energy is set to be the positive infinitesimal to ensure that the
scattered wave is outgoing [2]. Solutions of this form constitute a continuous spectrum,
which is physically a set of the scattering states labeled by k0. By substituting this and
Eq. (2.20) into the T-matrix, we obtain

T(E + i0) �
(
U0 +

g2
0

E − ν0

) [
1 + T(E + i0)

∫
dk
(2π)3

1
E + i0 − k2/2mr

]
(2.22)

�


(
U0 +

g2
0

E − ν0

)−1

−
∫

dk
(2π)3

1
E + i0 − k2/2mr


−1

. (2.23)

28



This expression contains an ultraviolet divergence in the k-integration. However, it can
be absorbed into the definition of the bare interaction parameters so that the resulting
T-matrix becomes finite. If we impose an ultraviolet cutoff at the momentum Λ, the
momentum integral above is calculated as∫

|k |<Λ

dk
(2π)3

1
E + i0 − k2/2mr

� −mrΛ

π2 −
imr
2π

√
2mrE. (2.24)

The linear divergence is cancelled by setting

U0(Λ) � Z(Λ)U, g0(Λ) � Z(Λ)g , ν0(Λ) � ν − [1 − Z(Λ)]
g2

U
, (2.25)

where Z(Λ) � (1 − mrUΛ/π2)−1. Therefore, U and g are subject to multiplicative
renormalization, while the closed-channel molecular energy ν is additively shifted. The
resulting T-matrix is

T(E + i0) � 2π
mr

[
2π
mr

(
U +

g2

E − ν

)−1

+ i
√

2mrE

]−1

, (2.26)

which is now cutoff-independent and implies that the s-wave scattering length a is

a �
mr
2π

T(0) � mr
2π

(
U −

g2

ν

)
. (2.27)

This expression results from the exact solution of the two-body problem within the two-
channel model, without relying on the Born approximation. It is therefore applicable
even when a diverges. In particular, the higher-order interaction modifies the condition
for the resonance from ν0 � 0 to ν � 0. Experimentally, if we approximate ν ' δµ(B−B0)
near the resonance and once δµ and B0 are known, one can determine U and g by, for
example, locating the zero crossing of a and measuring a at the zero magnetic field.

We can also find the closed-channel amplitude Ψc. It is obtained by substituting
Eq. (2.21) into Eq. (2.20),

Ψc �
g0T(E + i0)

E − ν0

∫
dk
(2π)3

1
E + i0 − k2/2mr

(2.28)

→
gT(E + i0)

U(E − ν) + g2 (Λ→∞). (2.29)

When taking the infinite cutoff limit, we used the expressions of the bare parameters
in Eq. (2.25). Near the resonance E ' ν ' 0, the expression of the T-matrix as given in
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Eq. (2.26) reduces to

T(E) ' 2π
imr
√

2mrE
, (2.30)

and the closed-channel amplitude is

Ψc '
2π

imr g
√

2mrE
. (2.31)

This indicates that for a given energy, the inter-channel coupling g controls the closed-
channel amplitude. In particular, if g → ∞, the closed-channel amplitude vanishes,
which implies that the two-channel model behaves like a single-channel interaction in
the limit of the large g.

When the detuning crosses the open-channel threshold ν ' 0, the low-energy form
of the T-matrix does not change if one takes the limit U → 0. This limit is equivalent to
the effective-range approximation, where the T-matrix takes the form

T(E + i0) � 2π
mr

[
a−1 − mrr0E + i

√
2mrE

]−1
. (2.32)

Here, r0 is the effective range. In this case, the renormalization factor Z(Λ) is identically
unity, and therefore, the inter-channel coupling g is not renormalized. On the other
hand, the detuning is again additively renormalized,

ν0(Λ) � ν +
mr g2Λ

π2 . (2.33)

These couplings give a and r0 as follows:

a−1
� − 2πν

mr g2 , r0 � − 2π
m2

r g2
. (2.34)

In this limit, the effective range r0 is directly related to the inter-channel coupling g0.
In particular, when g0 is sufficiently large, r0 may be negligible. This implies that a
system with a large g0 looks like a single-channel system, which is consistent with the
observation for the finite U model. Note that the effective range r0 is always negative
within the two-channel model as long as the coupling constant is a real number. It is
realistic for Feshbach resonances, while if we consider more general interactions, the
effective range can take an arbitrary real number.

In addition to the continuous scattering states, the complete energy spectrum may
contain discrete bound states. They are found as poles of the T-matrix. Here, we
focus on the case of U → 0, which is relevant to the later discussion. The equation for
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the bound-state energy T(−EB)−1 � 0 can be easily solved, where EB > 0. Note that
the imaginary part of

√
E for a negative energy should be positive for physical bound

states [2]. If the scattering length is negative, it has no bound-state solution that has a
real energy. By contrast, for positive scattering lengths, there is a single bound state,
whose binding energy is given by

EB �
(
√

1 − 2r0/a − 1)2

2mrr2
0

. (2.35)

The wave function of this bound state is immediately obtained if we setΨc � Z1/2 and
use Eq. (2.19):

Ψo(k) � −
g0Z1/2

EB + k2/2mr
. (2.36)

Note that a discrete negative-energy state does not have a term corresponding to an
incident plane wave. One can also find the closed-channel amplitude Z1/2 from the
normalization condition:

Z1/2
�

√
2mrr2

0EB

1 +

√
2mrr2

0EB

. (2.37)

Note that for r0→ 0, Z is always zero while EB remains finite. This indicates that this
physical bound state is totally different from the bare closed-channel molecule. The
bound state in this limit is composed of two atoms in the open channel.

One can confirm by direct calculations that the solutions found here constitute the
complete orthonormal basis of the Hilbert space representing the relative motion, as we
expect for physical Hamiltonian.

2.2.2 p-wave resonance in a spinless Fermi gas

Collisions of identical particles are subject to symmetry restriction. In particular, for
spinless fermions, where s-wave interactions are prohibited, the p-wave scattering gives
the dominant contribution. Here, the word “spinless” means that we prepare atoms in
a single hyperfine state, in which case we can formally drop the spin index from the
fermionic field operator because there is no remaining internal degree of freedom in
an atom. In ultracold collisions, effects of the p-wave scattering are usually negligible.
However, Feshbach resonances have been utilized to realize atomic gases with strong
p-wave interactions.
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The two-channel model of a p-wave resonance has at least three closed-channel
molecules corresponding to three different projections of the relative angularmomentum:

Ĥ �

∫
dr

[
1

2M
∇ψ̂† · ∇ψ̂ +

1∑
m�−1

(
1

4M
∇φ̂†m · ∇φ̂m + ν(m)0 φ̂†m φ̂m

)]
+

1
2

∫
dr dr′

1∑
m�−1

[
gm(r − r′)ψ̂†(r)ψ̂†(r′)φ̂m

(
r + r′

2

)
+H. c.

]
.

(2.38)

Here, we use the upper-case M for the mass of an atom and the lower-case m for the
projection of angular momentum. In the spherically symmetric system, the energies
of the closed-channel molecules are degenerate. However, in cold-atom experiments,
we apply a magnetic field to control a Feshbach resonance, which breaks the rotational
symmetry into the axisymmetry around the direction of the applied field. This is why
the detuning ν(m)0 has explicit dependence on m. We drop the off-resonant interaction
in the open channel because the p-wave interaction in the absence of the Feshbach
resonance is negligibly small. The coupling function gm(r) is proportional to Ym

1 (r̂) and
kept finite-ranged. This is necessary if we want the Hamiltonian to be a Hermitian,
all the states to have positive norms, and the inner product to be defined as a usual
Hermitian inner product [25, 98–100, 146–150]3. Instead of taking the zero-range limit,
we assume that gm(r) is sufficiently smooth so that its Fourier transform g̃m(k) is also
analytic and sufficiently smooth. This implies that g̃m(k) can be written as

g̃m(k) � g0kYm
1 (k̂)χ(k

2), χ(0) � 1, (2.39)

where χ(k2) is an analytic function of k2. If gm(r) has a radius R, outside of which the
coupling is negligible, a simple dimensional analysis suggests that χ(k2) also has a radius
of O(R−1) unless gm(r) has a short-range structure of the size R′ � R. Here, we assume
gm(r) is well-behaved in this sense. An important consequence of this assumption is
that at low momenta, gm(k) grows linearly with k before it is cut off at k ∼ R−1.

Similarly to the s-wave resonance, we can perform the renormalization of this p-wave
model. For this model, the two-body coupled Schrödinger equations are(

E − k2

M

)
Ψo(k) �

1∑
m�−1

g̃m(k)Ψm ≡
1∑

m�−1
4πkk0Ym

1 (k̂)Y
m∗
1 (k̂0)Tm(E + i0; k , k0), (2.40)

3An alternative approach is to make the range of the coupling function g(r) arbitrarily small at the
cost of the positivity of the norm. This is done in Refs. [98–100]. In that case, we can no longer interpret
the φ-field as the closed-channel molecule because it is an unphysical state. The φ-field is then called a
ghost field.
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(
E − ν(m)0

)
Ψm �

1
2

∫
dk
(2π)3 g̃∗m(k)Ψo(k). (2.41)

In contrast to the previous s-wave case, the T-matrix depends on both k and the incident
momentum k0, as well as the energy. Owing to the orthogonality of the spherical
harmonics, the decomposition of the T-matrix is unambiguous. From these equations,
we can derive the equation for the T-matrix element:

Tm(E + i0; k , k0) �
|g0 |2χ(k2)χ(k2

0)

8π(E − ν(m)0 )

+
|g0 |2χ(k2)
2(E − ν(m)0 )

∫ ∞

0

k
′2dk′

(2π)3
k
′2χ(k′2)Tm(E + i0; k′, k0)

E − k′2/M + i0
.

(2.42)

This is a linear integral equation for Tm(E; k , k0), but if we note that the k-dependence
of the right-hand side is given by χ(k2), T(E; k′, k)/χ(k′2) is in fact independent of k′

and can be taken out of the integral. This leads to the following form of the T-matrix
element,

Tm(E + i0; k , k0) �
1

4π
χ(k2)χ(k2

0)
2(E−ν(m)0 )
|g0 |2 −

∫ ∞
0

dk′
(2π)3

k′4χ(k′2)2
E−k′2/M+i0

, (2.43)

which contains a function χ(k2), which determines the momentum dependence. For
low-energy collisions, the integral in the denominator can be evaluated as a power series
in terms of E,∫ ∞

0

dk′

(2π)3
k
′4χ(k′2)2

E − k′2/M + i0
� − iM

16π2 (ME)3/2χ(ME)2

−M
∫ ∞

0

dk′

(2π)3 k
′2χ(k′2)2 −M2E

∫ ∞

0

dk′

(2π)3χ(k
′2)2 + O(E2).

(2.44)

We can substitute this into Eq. (2.43) and compare it with the low-energy expression of
the on-shell T-matrix element,

Tm(E + i0; k , k0)|k2�k′2�ME �
4π
M

1
v−1

m − km
2 ME + i(ME)3/2

, (2.45)

33



which yields the equations relating the bare quantities, ν(m)0 and g0, to the low-energy
scattering data, the p-wave scattering volume vm and the effective range4 km ,

v−1
m � −

32π2ν(m)0
M |g0 |2

+
2
π

∫ ∞

0
dk′ k

′2χ(k′2)2,

km � − 64π2

M2 |g0 |2
− 2
π

∫ ∞

0
dk′ χ(k′2)2 + 4v−1

m χ′(0).
(2.46)

This is a p-wave analog of Eqs. (2.25) and (2.34).

4Note that km has the dimension of momentum. However, it is customary to call it the effective “range”.
Therefore, we follow this convention here.
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Chapter 3

Universal relations
in an anisotropic p-wave Fermi gas

In the vicinity of a scattering resonance, the scattering length diverges and the system
becomes strongly correlated. There, controlled approximations based on perturbative
expansions break down, and calculations of physical quantities become difficult. In
such cases, it is of great use to have exact relations between observables that do not rely
on a perturbation theory because they allow us, for example, to relate one measurement
to other aspects of the system, or to test the validity of theoretical methods by imposing
constraints.

For an s-wave resonance in a spin-1/2 Fermi gas in three dimensions, there are
several universal relations that connect short-range and short-time correlations with
thermodynamic quantities [52–60]. There, a single quantity, Tan’s contact, bridges
both sides of physics. On one hand, it characterizes the strength of the short-range
and short-time correlations. Here, the “short” range means length scales smaller than
the interparticle spacing and the thermal de Broglie length but larger than the range
of interactions. For example, the momentum distribution for large momenta has a
power-law tail, whose coefficient is Tan’s contact:

np ∼
C
p4 . (3.1)

Other correlation functions, such as the radio-frequency spectrum [64–67], the static [52]
and dynamic [68–71] structure factors, and the viscosity spectral function [69, 72],
also show characteristic power laws with coefficients solely determined by the contact,
Plank’s constant, the mass of atoms, and a dimensionless factor. On the other hand,
Tan’s contact is directly related to the thermodynamics. A prominent example is the
adiabatic sweep theorem, which states that Tan’s contact is the derivative of the energy
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with respect to the scattering length:

C � 4πM
∂E

∂(−1/a) . (3.2)

Importantly, all these relations hold true very generally in the strongly correlated regime,
regardless of the number of particles, whether the system is in the ground state or
at finite temperatures. A crucial assumption is that the range of interactions is much
shorter than any other length scales so that there is the window of universality where
one can observe the power laws such as the one shown in Eq. (3.1). This is well satisfied
in ultracold atomic gases, and the experiments have tested the universal relations and
measured the contact [93–97].

Similar universal relations are also investigated for lower dimensions [58, 59, 76–78],
bosonic systems [73–75], and mixtures of atomic species [73], with s-wave scattering
resonances. Recently, they are also extended to p-wave [79–82] and d-wave [82, 83]
resonances, and the experimental measurement of the p-wave contact was also re-
ported [151]. The present author contributed to one of the first studies on the universal
relations in the p-wave interacting Fermi gas.

The p-wave is the first partial wave that is anisotropic. This statement has twofold
meanings. Firstly, the p-wave scattering amplitude has an angular dependence even
when the interaction potential is isotropic. Secondly, in the case of a p-wave or higher-
partial-wave Feshbach resonance, a microscopic interaction itself can be anisotropic
because of an external magnetic field. Such an effect has been observed as multiplet
structures of resonances [101, 102]. In the earlier studies of the universal relations in a
p-wave Fermi gas, however, the latter effects are not fully taken into account.

Here, we discuss the universal relations in a spinless Fermi gas with an anisotropic
p-wave resonance. In Section 3.1, we present the universal power laws in the high
momentum distribution and the short-range density-density correlation function. We
show that the contact in this case is not a single quantity, but a 3 × 3 component tensor,
which we call the p-wave contact tensor. In Section 3.2, we derive the adiabatic sweep
theorem, which relates the p-wave contact tensor to the derivative of the energy with
respect to the p-wave scattering volume. In the derivation, we need to extend the p-wave
scattering volume to anisotropic interactions. In Section 3.3, we discuss the p-wave
contact tensor in the p-wave superfluid. In Section 3.4, we describe an experimental
implementation to test the universal relations.
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3.1 p-wave contact tensor in correlation functions

In this section, we discuss the high-momentum tail of the momentum distribution and
the short-range behavior of the density-density correlation function, and introduce
the notion of the p-wave contact tensor. For this purpose, we employ the following
two-channel Hamiltonian:

Ĥ �

∑
p

[
p2

2M
â†p âp +

1∑
m�−1

(
p2

4M
+ ν(m)0

)
b̂†mp b̂mp

]
+

1
2

∑
p1 ,p2

1∑
m�−1

[
g0kYm

1 (p̂12)χ(p2
12)â†p1 â†p2 b̂mp1+p2 + H. c.

]
.

(3.3)

Here, p12 ≡ p1 − p2, â†p creates a fermionic atom with the momentum p in the open
channel, and b̂†mp creates a closed-channel molecule with the projection m of the angular
momentum and the momentum p. This is exactly the same Hamiltonian as that given
in Eq. (2.38), but in the momentum representation. The bare detuning ν(m)0 and the
coupling constant g0 are determined by Eq. (2.46) so that the low-energy scattering data,
the scattering volume and the effective range, are reproduced (see Sec. 2.2.2 for details
of this procedure).

To discuss the correlation functions, we start from the Schrödinger equation. By
noting that the Hamiltonian (3.3) conserves the total number of the atoms but not the
numbers of the open-channel atoms No and the closed-channel molecules Nc separately,
a state with the total number of atoms N � No + 2Nc can be expressed as a sum of the
states with different No and Nc:

|ΨN〉 �
∑

2No+Nc�N

∑
{pk}k

∑
{qk}k

∑
{mk}k

1
No!Nc!

Ψ(No ,Nc) ({pk}k , {qk}k , {mk}k)

× â†p1 . . . â
†
pNo

b̂†m1q1 . . . b̂
†
mNc qNc

|0〉 .
(3.4)

Here, {pk}k is the ordered set of the No momenta of the open-channel atoms, {qk}k and
{mk}k are the sets of the momenta and the projected angular momenta, respectively,
of the Nc closed-channel molecules. We can then write down the time-independent
Schrödinger equations in terms of the set of the wave functions:

(E − T̂)Ψ(No ,Nc) � Î1
[
Ψ(No−2,Nc+1)]

+ Î2
[
Ψ(No+2,Nc−1)] , (3.5)

where T̂ is the kinetic energy including the detuning, and Î1 and Î2 denote the terms
arising from â† â† b̂m and b̂†m â â in the Hamiltonian (3.3), respectively. The concrete forms
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of Î1 and Î2 are as follows:

Î1
[
Ψ(No−2,Nc+1)] ({pk}k , {qk}k , {mk}k) �

No∑
i�1

No∑
j�i+1

1∑
m�−1
(−1)i+ j+1 g0pi jYm

1 (p̂i j)

× χ(p2
i j)Ψ

(No−2,Nc+1) ({pk}k \ {pi , p j}, {qk}k + {pi + p j}, {mk}k + {m}
)
,

(3.6)

Î2
[
Ψ(No+2,Nc−1)] ({pk}k , {qk}k , {mk}k) �

∑
p′1 ,p

′
2

Nc∑
i�1

g0

2
p′12Ymi

1 (p̂
′
12)

× χ(p′12)Ψ(No+2,Nc−1) ({p′1, p′2} + {pk}k , {qk}k \ {qi}, {mk}k \ {mi}
)
.

(3.7)

Here, pi j ≡ pi − p j , p′12 ≡ p′1 − p′2, and \ and + denote the set operations of subtraction
and addition, respectively.

As we are interested in the high-momentum distribution, let us analyze Eq. (3.5) for
p1 that is larger than typical system’s momentum scales such as the Fermi momentum
pF and the thermal momentum pT, but smaller than the cutoff scale set by the range
of the interaction. On the right-hand side, the dominant contributions come from Î1,
where the terms with i � 1 in Eq. (3.6) grow linearly for a large p1 due to the factor of
p1 j . Therefore, the Schrödinger equation (3.5) reduces asymptotically to

(E − T̂)Ψ(No ,Nc) ({pk}k , {qk}k , {mk}k) '
No∑
j�2

1∑
m�−1
(−1) j g0p1 jYm

1 (p̂1 j)

×Ψ(No−2,Nc+1) ({pk}k \ {p1, p j}, {qk}k + {p1 + p j}, {mk}k + {m}
)
.

(3.8)

It should be noted that the amplitude of the right-hand side concentrates around
p j ∼ −p1 with the width of the order of pT, because it depends on the wave function
with p1 + p j in its momentum argument of a closed-channel molecule. With this in
mind, the momentum distribution in the (No,Nc) sector can be calculated by integrating
out the variables other than p1 from 1

No!Nc! |Ψ
(No ,Nc) |2. Retaining only the leading terms,

we find

n(No ,Nc)
p1 ≡ No

No!Nc!

∑
{pk}k\{p1}

∑
{qk}k

∑
{mk}k

��Ψ(No ,Nc) ({pk}k , {qk}k , {mk}k)
��2 (3.9)

∼
M2 |g0 |2

p2
1

1
(No − 2)!Nc!

∑
m ,m′

∑
{pk}k\{p1}

∑
{qk}k

∑
{mk}k

Ym∗
1 (p̂1)Ym′

1 (p̂1)

×Ψ(No−2,Nc+1)∗ ({pk}k \ {p1, p2}, {qk}k + {p2}, {mk}k + {m})
×Ψ(No−2,Nc+1) ({pk}k \ {p1, p2}, {qk}k + {p2}, {mk}k + {m′}) .

(3.10)
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The momentum distribution itself is obtained by summing up this for all the (No,Nc)
pairs with 2No + Nc � N. By inspection, we find that it has the following compact
expression:

np1 ∼
M2 |g0 |2

p2
1

∑
m ,m′

Ym∗
1 (p̂1)Ym′

1 (p̂1)
〈
ΨN

�����∑
q

b̂†mq b̂m′q

�����ΨN

〉
(3.11)

≡
∑
m ,m′

Cmm′
Ym∗

1 (p̂1)Ym′
1 (p̂1)

p2
1

, (3.12)

where we define the p-wave contact tensor Cmm′:

Cmm′ ≡ M2 |g0 |2
〈∑

q

b̂†mq b̂m′q

〉
. (3.13)

This result follows from the time-independent Schrödinger equation and is applicable
to pure states. The extension to thermal states is obvious; the power-law tail of Eq. (3.12)
has the same power, with the definition of the p-wave contact tensor in Eq. (3.13) still
applicable by regarding the average as the thermal average. Therefore, we conclude
that the momentum distribution np of a spinless Fermi gas with an anisotropic p-wave
resonance, whether it is in a pure state or a thermal mixture state, has a tail that is
proportional to p−2 and has an anisotropy as shown in Eq. (3.12), and that its coefficients
are given by the p-wave contact tensor, which is defined in Eq. (3.13).

By a similar argument, we can find the short-range behavior of the density-density
correlation function,

g(r) ≡ 〈n̂(r)n̂(0)〉 , (3.14)

where n̂(r) ≡ ψ̂†(r)ψ̂(r) is the density operator of open-channel atoms. In the above
discussion on the wave function in the momentum representation, one can see that the
wave function diminishes with 1/pi j when the relative momentum of the ith and jth
atoms becomes large. This high-momentum behavior translates into the short-range
singularity of 1/r2

i j in the real space, where ri j is the relative position of the same pair
of the atoms. By collecting the leading-order terms carefully, we find the following
asymptotic form of the density-density correlation function:

g(r) ≡ 〈n̂(r)n̂(0)〉 �
∑
m ,m′

Cmm′
Ym∗

1 (r̂)Y
m′
1 (r̂)

16π2Vr4 , (3.15)

where V is the volume of the gas.
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Some comments are in order. From its definition (3.13), we see that the p-wave
contact is directly related to the closed-channel molecules. In particular, its diagonal
components are the number of the closed-channel molecules with the projected angular
momentum m:

Cmm � M2 |g0 |2Nm . (3.16)

Generally, Cmm′ is a 3 × 3 Hermitian matrix, which can be diagonalized by a unitary
transformation. Once diagonalized, the diagonal components can again be interpreted
as the number of the closed-channel molecules in a superposition state of m � 0 and ±1.
If the p-wave interaction has anisotropy, as is the case for a Feshbach resonance, however,
such a superposition state does not have a well-defined energy. The projected angular
momentum is thus the most natural quantum number in the case of the magnetic
Feshbach resonance.

The definition of the p-wave contact tensor also implies that Cmm′ transforms under
spatial rotation in the same way as the product Ym

1 (r̂)Y
m′∗
1 (r̂). In particular, its trace is

invariant under any rotation and the diagonal components are invariant under rotation
around the quantization axis, which is defined by an external magnetic field in the case
of a Feshbach resonance. On the other hand, the off-diagonal components represent the
breaking of axisymmetry in the short-range correlations. We will later see a concrete
example where the axisymmetry breaking happens and the p-wave contact tensor
acquires nonzero off-diagonal components.

The same field theory as Eq. (3.3) is also used as an effective-field theory of the
halo nuclei [99]. Therefore, the results here hold true in such nuclear systems. In that
case, however, the field operator b̂p is just an auxiliary field and no longer represents
a physical entity. A physical interpretation that is also applicable to nuclear systems
is obtained from Eq. (3.15). The density-density correlation function measures the
number of the particles that are at a distance of r from another particle. Equation (3.15),
therefore, implies that the p-wave contact tensor is a measure of the number of the pairs
of atoms within a small distance.

3.2 Adiabatic sweep theorem

The p-wave contact tensor is directly related to the thermodynamics through the
adiabatic sweep theorem. To derive the theorem, we need to define a generalized p-wave
scattering volume vmm′. If a p-wave scattering process from an m state into an m′ state
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is allowed, the scattering amplitude takes the following form:

f (p̂ , p̂′, k) �
1∑

m ,m′�−1
4πk2[F (k)]m ,m′Ym

1 (p̂)Y
m′∗
1 (p̂

′), (3.17)

where k p̂′ is the incoming momentum and k p̂ is the outgoing momentum. The matrix
F (k) represents the transition amplitude, whose inverse has the low-energy expansion,

[F −1(k)]m ,m′ � −
1

vmm′
+

1
2

kmm′k2 − ik3δm ,m′ + O(k2), (3.18)

which defines the generalized scattering volume vmm′ and the effective range kmm′.
When a p-wave interaction preserves axisymmetry, F (k) is a diagonal matrix, with the
scattering volume vmm′ � vmδm ,m′ and the effective range kmm′ � kmδm ,m′. Similarly,
we define a matrix T (E + i0; k , k0) by the spherical harmonic expansion of the off-shell
T-matrix:

T(E + i0; k , k0) �
1∑

m ,m′�−1
4πkk0[T (E + i0; k , k0)]m ,m′Ym

1 (k̂)Y
m′∗
1 (k̂

′). (3.19)

The partial amplitude F (k) and the on-shell T-matrix T (k2/M; k , k) are proportional to
each other as in the scattering theory with spherical symmetry:

F (k) � −M
4π
T (k2/M; k , k). (3.20)

Within the axisymmetric two-channel model, the scattering volume is controlled by
the detuning parameters ν(m)0 . This can be naturally generalized by introducing the
“off-diagonal” detuning1 of the following form:

1∑
m ,m′�−1

ν(m ,m
′)

0 φ̂†m φ̂m′ ≡ φ̂†ν̃0φ̂, (3.21)

where we introduce the vector of the closed-channel operators φ̂ ≡
(
φ̂−1, φ̂0, φ̂1

)
and

the matrix ν̃0, whose elements are ν(m ,m
′)

0 . With this term, we can again solve the
two-body problem. The Lippmann-Schwinger equation for the T-matrix, which is now

1One can also generalize the inter-channel coupling in such a way that it converts a pair of atoms with
the projected relative angular momentum m into a closed-channel dimer with m′. However, such coupling
constants are determined solely by kmm′ , not by vmm′ , and thus irrelevant in the current argument.

41



a matrix T , reads

T (E + i0; k , k0) �
|g0 |2χ(k2)χ(k2

0)
8π(EI3 − ν̃0)

+
|g0 |2χ(k2)
2(EI3 − ν̃0)

∫ ∞

0

k
′2 dk′

(2π)3
k
′2χ(k′2)

E − k′2/M + i0
T (E + i0; k′, k0),

(3.22)

where I3 is the three-dimensional identity matrix. We can solve this in a similar manner
to the argument in Section 2.2.2, yielding

χ(k2)χ(k2
0)T −1(E + i0; k , k0) �

8π
|g0 |2
(EI3 − ν̃0) −

∫ ∞

0

dk′

2π2
k
′4χ(k′2)2

E − k′2/M + i0
. (3.23)

By comparing this with the low-energy expansion of F −1(k), we can relate the bare
parameters to the scattering data, namely, the generalized scattering volume

v−1
mm′ � −

32π2ν(m ,m
′)

0
M |g0 |2

+
2
π

∫ ∞

0
dk′ k

′2χ(k′2)2, (3.24)

and the effective range

kmm′ � −
64π2

M2 |g0 |2
− 2
π

∫ ∞

0
dk′ χ(k′2)2 + 4v−1

mm′χ
′(0) (3.25)

' − 64π2

M2 |g0 |2
− 2
π

∫ ∞

0
dk′ χ(k′2)2, (3.26)

where we assume the system is near resonance v−1
mm′ ' 0.

We are prepared to show the adiabatic sweep theorem for the p-wave contact tensor.
By using Eqs. (3.24) and (3.26), we obtain

∂Ĥ
∂(−1/v−1

mm′)
�

M |g0 |2
32π2

∫
dr φ̂†m(r)φ̂m′(r). (3.27)

On the other hand, the Hellmann-Feynman theorem reads

∂E
∂(−1/v−1

mm′)
�

〈
∂Ĥ

∂(−1/v−1
mm′)

〉
. (3.28)

These two equations, combined with Eq. (3.13), yield the adiabatic sweep theorem:

Cmm′ � 32π2M
∂E

∂(−1/vmm′)
. (3.29)
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After taking the derivative with respect to −1/vmm′, we can set its off-diagonal elements
to be zero as they should be in realistic Feshbach resonances. However, this does not
necessarily make the off-diagonal components of the p-wave contact tensor vanish. As
we shall see in the next section, the off-diagonal components of Cmm′ can be nonzero
even in the absence of the off-diagonal components of the generalized scattering volume.

3.3 Contact tensor in p-wave superfluids

A p-wave superfluid provides an example where the multicomponent nature of the
p-wave contact tensor plays a significant role. In particular, it exhibits the off-diagonal
components of the p-wave contact tensor due to the spontaneous breaking of axisymme-
try. To show this, we first derive the expression of the p-wave contact tensor within the
mean-field approximation to the Hamiltonian (3.3) [103–105]. To this end, a convenient
order parameter is the condensate wave function of the closed-channel molecules:

ϕm ≡ 〈φ̂m(r)〉 (m � 0,±1). (3.30)

In steady states, this is equivalent to the pair amplitude, or the gap function [152],
which are the usual order parameters of fermionic superfluids; the condensate of the
closed-channel molecules exists if and only if the condensate of the Cooper pairs exists.
By ignoring the terms that is quadratic in terms of fluctuations of φ̂m(r) around ϕm , we
find 〈

φ̂†m(r)φ̂m′(r)
〉
' ϕmϕm′ , (3.31)

when the system is deep in the superfluid state. Combined with Eq. (3.13), this yields

Cmm′ ' |g0 |2ϕmϕm′ , (3.32)

which relates the p-wave contact tensor and the order parameter of the p-wave superfluid.
We would like to emphasize that this does not mean that the p-wave contact tensor
vanishes in the normal phase; a normal p-wave Fermi gas is shown to have a finite
p-wave contact tensor, which is, however, diagonal [80]. This is natural because the
energy in the normal phase changes as the p-wave scattering volume is modulated,
and with this, the adiabatic sweep theorem implies a finite p-wave contact. Therefore,
Eq. (3.32) is a good approximation for lower temperatures, where the fluctuation is
small. Note, however, that the off-diagonal components in a uniform Fermi gas in a
normal phase are zero because the axisymmetry is preserved.
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Equation (3.32) makes it clear that the p-wave contact tensor is diagonal within
the mean-field approximation if and only if exactly one component of ϕm is nonzero.
There are two such possibilities: the px ± ipy superfluid and the pz superfluid. The
phase diagram of the spinless Fermi gas with a p-wave Feshbach resonance has been
investigated by other groups [103–105]. When the interaction is spherically symmetric,
the spinless Fermi gas is similar to the liquid 3He in a large magnetic field, where A1

phase is realized. Likewise, for the spinless Fermi gas, it is shown that the time-reversal
symmetry broken px + ipy phase is realized if the Feshbach resonance is spherically
symmetric. The p-wave Feshbach resonance, on the other hand, has a natural anisotropy
due to the magnetic dipole-dipole interaction, in such a way that the interaction in the
m � 0 channel is more attractive than that in the m � ±1 channels [101]. Therefore, if
the splitting of the p-wave Feshbach resonances is sufficiently large, the pz superfluid
has the lowest energy. For an intermediate splitting of the resonances, the competition
between the two opposite tendencies determines the phase. Indeed, it is shown that the
superfluid in this regime is in the pz + iβpy state, in which the order parameters satisfy

ϕ0 , 0, ϕ−1 � ϕ1. (3.33)

The time-reversal symmetry and the axisymmetry is broken in this phase. As a result,
the p-wave contact tensor exhibits the off-diagonal components. Therefore, one can
distinguish the different superfluid phases by measuring the p-wave contact tensor. In
particular, the presence of nonzero off-diagonal components unambiguously signals the
pz + iβpy superfluid.

3.4 Experimental implementation

A Feshbach resonance is the most common tool of controlling interatomic interactions
in ultracold atomic systems. However, since it is axisymmetric, it cannot tune 1/vmm′

for m , m′. Here, we propose an alternative path to control 1/vmm′, where we utilize a
two-photon Raman process (see Figure 3.1).

Let |e〉 be a diatomic molecular state that couples to two of the closed-channel states
|m1〉 and |m2〉 by lasers. The resonant frequencies for |m1〉 and |m2〉 are denoted by ω1

and ω2, and the Rabi frequencies by Ω1 and Ω2, respectively. With the rotational wave
approximation, the effective Hamiltonian representing these couplings is

ĤRaman �
(
φ̂†m1 , φ̂

†
m2 , φ̂

†
e
)

hRaman
©«
φ̂m1

φ̂m2

φ̂e

ª®®¬ , (3.34)

44



Figure 3.1: Λ-configuration to control vmm′ and measure the p-wave contact tensor. The
molecular states |m j〉 ( j � 1, 2) are two of the three closed-channel states, and |e〉 denotes
another excited molecular state, with the energy difference ω j . The two states |m j〉 and
|e〉 are coupled by the laser with the complex Rabi frequency Ω j and the detuning ∆.
[Figure reproduced from Yoshida and Ueda, Phys. Rev. A 94, 033611 (2016). © 2016
American Physical Society.]

hRaman ≡
©«

0 0 Ω∗1/2
0 0 Ω∗2/2
Ω1/2 Ω2/2 ∆

ª®®¬ (3.35)

where φ̂†e is the creation operator of a diatomic molecule in the state |e〉, and ∆ is the
detuning. For the moment, we omit the spatial argument from the bosonic operators of
the diatomic molecules. By diagonalizing hRaman, we find three eigenvalues,

0, 1
2

(
∆ ±

√
∆2 + |Ω1 |2 + |Ω2 |2

)
≡ ω±, (3.36)

with the corresponding eigenvectors,

|0〉 ∝
(
Ω2, −Ω1, 0

)T
, (3.37)

|±〉 ∝
(
Ω∗1, Ω

∗
2, 2ω±

)T
. (3.38)

In the weak-field limit, where Ω1→ 0 and Ω2→ 0, |+〉 is adiabatically connected to the
excited molecular state |e〉, while the subspace spanned by |0〉 and |−〉 reduces to the
subspace of the closed-channel molecules. Now, suppose that no molecules are in the
excited state |e〉 at the initial time and that the intensities of the lasers are adiabatically
ramped up. Then we can ignore the state |+〉 and approximate ĤRaman to

ĤRaman ' ω−φ̂†−φ̂−, (3.39)
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where φ̂†− creates a molecule in the |−〉 state. For the large detuning limit ∆ � |Ω1 | and
∆ � |Ω2 |, we obtain

ĤRaman '
1

4∆
(
|Ω1 |2φ̂†m1 φ̂m1 + |Ω2 |2φ̂†m2 φ̂m2 +Ω

∗
2Ω1φ̂

†
m1 φ̂m2 +Ω

∗
1Ω2φ̂

†
m2 φ̂m1

)
. (3.40)

This amounts to sweeping ν(m1 ,m2)
0 � ν(m2 ,m1)∗

0 as Ω∗2Ω1/4∆, and thus to tuning 1/vm1m2

for m1 , m2.
We can use a similar configuration to measure the p-wave contact tensor. This time,

the lasers are suddenly tuned on, and the frequencies are set close to the resonance so
that ∆ � |Ω1 |, |Ω2 |. We also assume that the lifetime of the excited state |e〉 is much
shorter than that of |m1〉 and |m2〉. In this case, immediately after one turns on the
lasers, all the eigenstates of hRaman are populated. After the lifetime of the excited state
|e〉, on the other hand, there remain only the molecules in |0〉, so called the dark state,
which does not involve |e〉. Therefore, by counting the number of the closed-channel
molecules, we obtain

Nm �
〈
φ̂†0φ̂0

〉
(3.41)

�
1

|Ω1 |2 + |Ω2 |2
〈
|Ω2 |2φ̂†m1 φ̂m1 + |Ω1 |2φ̂†m2 φ̂m2

−|Ω1Ω2 |e−iθφ̂†m1 φ̂m2 − |Ω1Ω2 |e iθφ̂†m2 φ̂m1

〉
,

(3.42)

where θ is the relativephase ofΩ1 andΩ2. Thismeans that by repeating themeasurement
of Nm with the different θ, we can determine 〈φ̂†m1 φ̂m2〉, which in turn determines the
(m1,m2)-component of the p-wave contact tensor with Eq. (3.13).
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Chapter 4

Few-body spectrum of
mass-balanced impurity-boson systems

This and the following two chapters concern universality in a single impurity immersed
in aweakly interacting Bose gas, where the impurity-boson interaction is near a Feshbach
resonance.

In this chapter, we consider a few bosons interacting with an impurity. This few-body
problem in the impurity-boson system is interesting not only on its own, but also from
the view point of the zero-density limit n → 0 of the Bose gas. On one hand, if we
consider an impurity in a dilute Bose gas, properties of the impurity are inevitably subject
to few-body correlations. In particular, if we take the dilute limit of the background
Bose gas, the energy spectrum of this many-body system reduces to that of the few-body
systems. On the other hand, it exhibits the Efimov effect. When one particle interacts
resonantly with two identical bosons, there is an infinite series of shallow bound states,
which are related to each other by discrete scale transformation with a scaling factor of
1986.1 [6]. This property is universal; regardless of details of a resonant interaction, the
scaling factor is fixed by the mass ratio of the impurity and the bosons.

Here, we explore stronger universality in the Efimov effect of the impurity-boson
systems. The universal scale invariance generally applies to excited, shallow Efimov
trimers, whose radii are much larger than microscopic length scales such as the range of
interactions. The ground state of three identical bosons, on the other hand, is known to
deviate from the universal scale invariance by 10-20% [9, 10]. Intuitively, this is because
the radius of the ground state is comparable to the microscopic scales, which results
in the significant probability that the particles are within the range of the interaction.
However, for the impurity-boson systems, the size of the ground-state trimer greatly
exceeds the range of interactions, which expectedly makes it possible that the ground
and lower excited states are almost insensitive to short-range details.
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To show this, we calculate the energies of the few-body bound states using the r0-
and Λ-models, whose precise definitions are given in Section 4.1. In Section 4.2, by
solving the Schrödinger equations for the mass-balanced impurity-boson systems, we
obtain the ground and the first-excited trimer spectra, and also two tetramer states
below the ground-state Efimov trimer. The energy scale of these states depends on the
microscopic details of the models. However, we show that various dimensionless ratios
formed by these low-lying spectra have universal values, and that the ground and the
first-excited states are already universal. As a consequence of this universality and for
later use, we derive the relation between the hard-core diameter of the bosons and the
three-body parameter. In Section 4.3, we argue that the scale separation between the
three-body parameter and the microscopic length scales is behind the universality of
the ground state of the mass-balanced impurity-boson systems. As a comparison, we
calculate the energies of the ground and first-excited states in mass-imbalanced systems,
and show how the universality is lost as the impurity particle is made lighter.

4.1 Models and Schrödinger equations

Consider one particle interacting with two identical bosons (the 2+1 system), where
the impurity-boson interaction is of the delta-function type with the infinite s-wave
scattering length and there is no interaction between bosons. It is known that the energy
spectrum of the 2+1 system is not bounded from below, as noted by Thomas [153] and
analyzed in more detail by Efimov [6]. To cure this situation, we need to introduce the so-
called three-body parameter a−, which is defined as the s-wave scattering length atwhich
the lowest-energy three-body bound state appears from the three-atom continuum (see
Fig. 4.1). In theoretical calculations, this can be done in various ways. One can, for
example, use some finite-range potentials, or introduce repulsive interactions between
the bosons. Here, we use two different approaches, based on the two-channel model
discussed in Section 2.2.1, to obtain a finite three-body parameter:

• r0-model — This is the two-channel model after the limit U → 0 is taken. The
effective range r0 is related to the three-body parameter by a− � 2467r0 [108].

• Λ-model — In this model, we impose an ultraviolet cutoff at the momentum Λ
on the atoms when one atom and the impurity form a closed-channel molecule.
We also take U → 0 and g →∞. This is equivalent to introducing a three-body
interaction in the contact-interaction model [154].
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In both cases, where we take U → 0, we start from the two-channel Hamiltonian of
the following form:

Ĥ �

∑
p

[
εp b̂†p b̂p + εp ĉ†p ĉp + (εd

p + ν0)d̂†p d̂p

]
+ g

∑
p ,q

(
d̂†p+q b̂q ĉp + ĉ†p b̂†q d̂p+q

)
. (4.1)

Here,
∑

p ≡
∫ dp
(2π)3 . The operators b̂†p and ĉ†p create a boson and the impurity, respectively,

with the momentum p and the energy εp � p2/2m, where we assume that the impurity
and the bosons have the equal mass. The operator d̂†p creates a closed-channel dimer
formed by the impurity and a boson, which has the momentum p and the energy
εd

p � p2/4m. The bare detuning ν0 and the inter-channel coupling1 g are determined
so as to reproduce the s-wave scattering length a and the effective range r0 of the
impurity-boson scattering. By imposing an ultraviolet cutoff k0 and carrying out the
renormalization procedure as described in Section 2.2.1, we obtain

a−1
�

4π
m g2

(
m g2

2π2 k0 − ν0

)
, r0 � − 8π

m2 g2 . (4.2)

In the following discussion, we always take k0→∞when it is possible, and therefore
ν0→∞ for a fixed a−1, in order for k0 to drop out of the problem.

The number of the impurities and the number of the bosons are both conserved
quantities, when we count one closed-channel dimer as one impurity plus one boson.
Therefore, we can write down the general wave functions for the systems with one
impurity and N bosons, where the state vectors for N � 1, 2, and 3, are written as
follows:

|Ψ2〉 �
(∑

p

αp ĉ†−p b̂†p + γ0d̂†0

)
|0〉 , (4.3)

|Ψ3〉 �
( ∑

p1 ,p2

1
2
αp1p2 ĉ†−p1−p2 b̂†p1 b̂†p2 +

∑
p

γp d̂†−p b̂†p

)
|0〉 , (4.4)

|Ψ4〉 �
( ∑

p1 ,p2 ,p3

1
6
αp1p2p3 ĉ†−p1−p2−p3 b̂†p1 b̂†p2 b̂†p3 +

∑
p1 ,p2

1
2
γp1p2 d̂†−p1−p2 b̂†p1 b̂†p2

)
|0〉 . (4.5)

Here, |0〉 represents the zero-particle vacuum, and α and γ are the wave functions
describing the states that have the impurity in the open- and closed-channels, respectively.
The bosonic symmetry implies that they are invariant under exchange of theirmomentum
arguments. In the r0-model, the domain of α and γ is not restricted. On the other hand,

1As shown in Section 2.2.1, g is not renormalized when U → 0. This is why we use g, instead of g0
here.
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the Λ-model is defined as the one that imposes the ultraviolet cutoff on γ, while the
open-channel functions α are defined in the entire momentum space as in the r0-model.

The Schrödinger equations (Ĥ − E) |ΨN+1〉 � 0 involve both α and γ. However, one
can remove the open-channel wave function α to obtain the equations of the closed-
channel wave function γ only. Here, we demonstrate this procedure in the four-body
case. The other cases can be treated in a similar manner. The Schrödinger equation
(Ĥ − E) |Ψ4〉 � 0 reads(

E − εp1+p2+p3 − εp1 − εp2 − εp3

)
αp1p2p3 � g

(
γp1p2 + γp2p3 + γp3p1

)
, (4.6)(

E − ν0 − εd
p1+p2 − εp1 − εp2

)
γp1p2 � g

∑
p′
αp′p1p2 . (4.7)

Here, the integral over p′ is cut off at the momentum k0 as the equations involves the
bare detuning ν0. By solving Eq. (4.6) for αp1p2p3 and substituting it into Eq. (4.7), one
finds(

E − ν0 − εd
p1+p2 − εp1 − εp2

)
γp1p2 � g2

∑
p′

γp1p2 + γp2p′ + γp′p1

E − εp1+p2+p′ − εp1 − εp2 − εp′
. (4.8)

Now by noting that the impurity-boson T-matrix in vacuum is given, as the special case
of Eq. (2.32), by

T0(E, p) �
g−2

(
E − ν0 − εd

p

)
−

∑
p′

1
E − εp+p′ − εp


−1

(4.9)

→ 4π
m

1
a−1 − r0mE/2 −

√
−mE − i0

(k0→∞), (4.10)

one can eliminate the bare parameters ν0 and g and write the equation in the form
explicitly independent of k0:

T−1
0 (E − εp1 − εp2 , p1 + p2)γp1p2 �

∑
p′

γp2p′ + γp′p1

E − εp1+p2+p′ − εp1 − εp2 − εp′
. (4.11)

For the three-body and two-body systems, the same procedure yields

T−1
0 (E − εp , p)γp �

∑
p′

γp′

E − εp+p′ − εp − εp′
, (4.12)

T−1
0 (E, 0) � 0. (4.13)
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Owing to the rotational symmetry, we can assume that the energy eigenstates are
simultaneously the eigenstates of the total angular momentum. Here, we focus on the
states with the zero angular momentum, which are relevant to the Efimov physics.
This implies that the wave functions are of the form γp1p2 � γ(|p1 |, |p2 |, cos θ) for the
four-body system, where θ is the angle between p1 and p2, and γp � γ(|p |) in the
three-body system. The resulting equations for these reduced wave functions are shown
in Appendix A.

The few-body equations for both the r0-model and the Λ-model are written in
the form of Eqs. (4.11–4.13). However, the microscopic mechanisms that ensure the
stability of this system are different in these models. In the r0-model, the effective range
r0 is finite and negative. This two-body quantity suppresses contributions from the
high-momentum particles above the momentum scale ∼ r−1

0 , which saves the system
from the collapse. That is, the structure of the two-body interaction leads to a finite
ground-state energy in the r0-model. By contrast, as the effective range in the Λ-model
is set zero, it does not have any two-body mechanism that regulates three-body physics.
Instead, the high-momentum cutoff Λ is imposed on the momentum arguments of the
wave function γ. The cutoff Λ only affects the closed-channel wave function γ, while
the open-channel wave function α remains cutoff-free. This implies that the integral
in Eq. (4.9) is taken without the cutoff. In other words, two-body processes involving
the impurity and one boson remain unaffected by Λ, and it only affects three-body
processes, where two bosons interact by exchanging the impurity particle. Note that
this three-body cutoff can be removed by introducing the three-body interaction whose
coupling constant depends on Λ and taking Λ→∞ [154]. The Λ-model is in this sense
equivalent to the model with the three-body interaction.

4.2 Universality of the spectrum

We solve Eqs. (4.11) and (4.12) numerically, while the solution of Eq. (4.13) is already
given in Eq. (2.35). In Figure 4.1, we show the spectrum of the four-body system
described by the r0-model.

If the s-wave scattering length is positive, Eq. (4.13) has a single solution E � −EB

corresponding to a two-body bound state as shown in Eq. (2.35):

EB �

(√
1 − 2r0/a − 1

)2

mr2
0

. (4.14)
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Figure 4.1: Energy spectrum of the 3+1 systemwithin the r0-model. We show the ground
(first-excited) Efimov trimer as the red solid curve, which starts at the critical scattering
length a− (a(1)− ), crosses a−1 � 0 at E � E− (E(1)− ), and continues until it dissociates into
the atom-dimer continuum (green region). Note that there is an infinite series of excited
Efimov states including those not shown in this plot, which converge to the point a−1 � 0
and E � 0 following the discrete scale invariance. We also find two tetramer states below
the lowest Efimov state, whose critical scattering lengths and the energies at unitarity is
denoted by a(i)4B,− and E(i)4B,− (i � 1, 2), respectively. The excited tetramer exists even at
unitarity a−1 � 0, and disappears at a ' 9 × 103 |r0 |.

52



It converges to the result of the contact interaction, 1/ma2, in the limit of r0→ −0. This
explains the fact that the dimer spectrum is an almost straight line in Fig. 4.1.

The three-body sector supports so-called Efimov trimers. Such three-body bound
states can exist even when there is no dimer, i.e., when a < 0. Right at unitarity, where
a−1 � 0, there is an infinite series of three-body bound states consisting of the impurity
and two bosons. The most remarkable feature of Efimov trimers is a discrete scale
symmetry. One Efimov statewith the s-wave scattering length a and the energyE implies
another Efimov state with λ0a and λ−2

0 E, where the scaling factor λ0 is determined
by the mass ratio and quantum statistics of the identical particles but independent of
details of interactions for sufficiently shallow trimers. In the present case, where two
non-interacting bosons interact resonantly with one impurity with the same mass, the
scaling factor is known λ0 � 1986.1 [6].

Our numerical results indicate that the two lowest states already obey the predicted
scaling law with high accuracy. The ratio of the s-wave scattering lengths, a− and a(1)− , at
which the ground and first-excited Efimov state merge with the three-atom continuum,
is a(1)− /a− ' 1991, very close to the universal scaling factor of 1986.1. Also, the ratio of
the energies of the ground and the first-excited states at unitarity is E−/E(1)− ' (1986.1)2,
which agrees to five significant digits. This is remarkable because generally the discrete
scale invariance is exact only asymptotically for excited Efimov states, and the ground
and the lower-excited states may not strictly follow the scaling law. For example, in
three-identical Bose systems, the scaling factor between the ground and the first-excited
states is known to deviate from its universal value 22.7 by 10-20% due to finite-range
corrections [9, 10].

Below the deepest Efimov trimer, we find two four-body bound states. For identical
bosons, it was predicted that there exist two tetramers associated with the ground-state
Efimov trimer, both theoretically [17, 18, 155, 156] and experimentally [38]. Four-body
bound states have also been studied in systems composed of one light particle and
three heavy indentical particles [22, 23, 109]. It was found that such mass-imbalanced
four-body systems also have two lower-lying bound state. However, when the mass
imbalance is small, the excited tetramer state in the four-body system at unitarity a−1 � 0
has eluded previous investigations.

Now we would like to argue that these features of few-body systems, consisting of
one particle interacting resonantly with a few identical bosons, are actually universal,
in the sense that dimensionless ratios in the few-body spectrum are independent of
specific models. To test the universality, we also calculate the energy spectrum within
the Λ-mode, as shown in Fig. 4.2. The length scales of few-body physics in this model is
set by Λ. For example, we find the three-body parameter a− ' 1354Λ−1. However, the
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Figure 4.2: Energy spectrum of the four-body system within the Λ-model. This shares
all the qualitative features with that of the r0-model shown in Fig. 4.1, while now the
quantities are scaled by Λ instead of r0. The critical scattering length of the ground
Efimov trimer a− is related to Λ by a− ' 1354Λ−1. The first-excited tetramer also exists
in the Λ-model at unitarity; this tetramer dissociates into the atom-trimer continuum at
a ' 2 × 103Λ−1.
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|a− | ma2
− |E− | a(1)− /a−

√
E−/E(1)−

r0-model 2467|r0 | [108] 9.913 1991 1986.126

Λ-model 1354Λ−1 9.950 1987 1986.127

a−/a(1)4B,− E(1)4B,−/E− a−/a(2)4B,− E(2)4B,−/E−
r0-model 2.810 9.35 1.060 1.0030(3)

Λ-model 2.814 9.43 1.061 1.0036(1)

Table 4.1: Comparison of few-body data for the r0- and the Λ-model. While the overall
length scale set by a− depends on the details of the models, the dimensionless ratios
characterizing the few-body spectra agree to an accuracy of 1% or less. These quantities
include the scattering lengths at which the few-body bound states enter the continuum,
as well as their energies at unitarity, as indicated in Figs. 4.1 and 4.2.

spectrum of the Λ-model shares all the qualitative features such as the number of the
tetramer states with that of the r0-model. Moreover, the spectra of the two models are
almost indistinguishable if the axes are appropriately scaled.

For more quantitative comparison, we summarize the dimensionless ratios in
Table 4.1. The overall length scale, which is set by a−, depends on specific models; it
is proportional to r0 in the r0-model and to Λ−1 in the Λ-model. It is natural because
besides the s-wave scattering length, each model has only one parameter, r0 or Λ,
which is the only length scale that can fix the critical scattering length a−. On the other
hand, the dimensionless quantities, such as the ratios of the bound-state energies at
unitarity and those of the critical scattering lengths, agree between the two models
within 1%. These results suggest that the spectrum of mass-balanced four-body systems,
including the ground state and the lower excited states, is highly universal, contrary to
the non-universality observed for indentical bosons.

The ratio of the energies of the deepest trimer and tetramer, E(1)4B,−/E−, also agrees
with a recent calculation based on yet another model of the impurity-boson system [110],
which further supports the universality. The model has a hard-core boson-boson
interaction with the diameter aB and an attractive square-well interaction between the
impurity and bosons. They found E(1)4B,−/E− ' 9.7 by using the diffusion Monte Carlo
method, while our calculations show E(1)4B,−/E− ' 9.4.

The observed model-independence at the four-body level indicates that we do not
need such things as a four-body parameter that controls the four-body bound states. This
is consistent with what have been found theoretically in identical particles [17, 18, 156]
and heteronuclear systems [22, 23, 109].
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As an implication of the universality and for later convenience, we derive the relation
between the three-body parameter a− and the radius of the hard-core interaction between
bosons in the model used in Ref. [110]. The model has three independent parameters:
the s-wave scattering length a of the impurity-boson interaction, the radius rw of the
square well, and the diameter aB of the hard-core boson-boson interaction. Note that the
depth of the square-well potential is determined in the way it reproduces the scattering
length a for a given rw. As rw is made much smaller than a and aB, it drops out of the
problem, and the model essentially reduces to the two-parameter model. Now, the
universality of the few-body spectrum implies that this model has a value of ma2

−

���E(1)4B

���
similar to that in the r0-model, which can be extracted from our calculation. On the
other hand, in Ref. [110] it is reported that maB

2
���E(1)4B

��� ' 4.7 × 10−4. Combining these
two results, we find2

a− � 2.1(4) × 104aB. (4.15)

The uncertainty arises predominantly from the statistical one in the QMC calculation.

4.3 Scale separation behind the universality

A universality is usually accompanied by separation of scales; a physical phenomenon
is insensitive to system’s properties whose characteristic size is too small or too large
compared with that of the phenomenon itself. Before ending this chapter, we point out
themodel-independence of the few-body spectrum is also backed by a large separation of
scales. In the present problem, systems’ characteristic length scale is r0, Λ, or aB. On the
other hand, the few-body bound states, which are the phenomena we are investigating,
are characterized by, for example, the critical scattering length, a−, of the ground Efimov
trimer. As we have already shown, a− is related to systems’ parameters by

|a− | � 2.5 × 103 |r0 | (r0-model), (4.16)

� 1.4 × 103Λ−1 (Λ-model), (4.17)

� 2.1 × 104aB (hard-core boson-boson interaction). (4.18)

This large separation between themicroscopic lengths and the scale of the three-body
physics is characteristic of mass-balanced impurity-boson systems. Let mi be the mass
of the impurity and mB that of the bosons. The proportionality constants quoted in
Eqs. (4.16-4.18) become smaller if mi/mB is made smaller. Indeed, it is known that for
a lighter impurity, the lower-lying states are sensitive to finite-range corrections. In

2Here, we used E(1)4B instead of E− because the statistical uncertainty of the tetramer energy is smaller
than that of the trimer energy [110].
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|a− | a(1)− /a− a(2)− /a(1)− a(3)− /a(2)− a(4)− /a(3)− a(5)− /a(4)−
r0-model 0.6101 |r0 | 8.706 6.040 5.463 5.308 5.267

Λ-model 4.992Λ−1 6.731 5.482 5.295 5.261 5.254

Table 4.2: Critical scattering length a− of the ground Efimov trimer and the ratios
between the adjacent critical scattering lengths for mi/mB �

1
20 . Here, a(i)− represents the

s-wave scattering length at which the ith-excited Efimov trimer enters the three-atom
continuum. For highly excited states, the ratios converge to their unviersal value 5.253.

Table 4.2, we show the ratios between the s-wave scattering lengths where two adjacent
Efimov trimers appear from the three-atom continuum when mi/mB �

1
20 ; this ratio of

the masses is relevant to a mixture of 6Li and 133Cs. In this case, a− is of the same order
of magnitude as r0 and Λ−1. While the ratios of highly excited states show convergence
to its universal value 5.253, a−/a(1)− deviates by 30–70% from the universal value, which
depends heavily on the choice of the model. Therefore, for the study of the universal
nature of resonantly interacting impurity-boson systems, the mass-balanced case offers
unique possibilities that even the lower-lying states are insensitive to details of the
system.
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Chapter 5

Infinite-mass impurity with a few bosons

In the last section, we discuss the importance of the separation of the scales, which
leads to the universal few-body spectrum in the mass-balanced impurity-boson systems.
We also mention that the deviation from the universality becomes significant when
the mass of the impurity becomes small. It is then natural to ask what happens in the
opposite limit of the infinite-mass impurity.

One may argue that this limit is trivial if there is no boson-boson interaction, because
the problem then reduces to a non-interacting Bose gas in an external field produced by
the impurity. This is true, if an interaction between the impurity and bosons is described
by a potential energy. The situation is not that simple, however, in the presence of a
Feshbach resonance because it accompanies an effective three-body repulsion.

Mathematically, Eq. (4.12) is ill-posed for the mass-balanced case if r0 � 0 and no
cutoff is imposed on the integral on the right-hand side. On the other hand, when
r0 < 0, T−1

0 (E − εp , p) contains a term proportional to r0p2, which suppresses γp for
p � r−1

0 and hinders the collapse. By noting that γp represents the relative motion of
the closed-channel dimer and a boson, this effect can be seen as an effective three-body
repulsion induced by the effective range.

This explanation is also supported by a physical intuition based on a Feshbach
resonance. One boson can strongly interact with the impurity because there is a closed-
channel molecular level on resonance with the open channel. When the two particles
interact and form a closed-channel dimer, on the other hand, a second boson coming
close to the impurity cannot undergo a Feshbach resonance because generically there is
no “closed-channel trimer” that is resonant with a collision of the closed-channel dimer
and a boson. This is reflected in the r0-model as the absence of the terms like t̂†d̂ b̂, where
t̂† is the creation operator of a closed-channel trimer formed by one closed-channel
dimer and one boson. Therefore, the impurity can be screened by the interaction with a
boson, which causes the effective three-body repulsion in the r0-model.
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To reveal physical consequences of this effective three-body force, we consider an
infinitely heavy particle interacting with two identical bosons. Here again, we ignore
interactions between bosons. In Section 5.1, we show that this three-body problem
within the r0-model is analytically solvable by mapping the Hamiltonian into that of a
bosonic extension of Anderson’s single impurity model. For a two-body system, the
equivalence of the two models was pointed out in Ref. [105]. Here, we extend it to the
many-body impurity-boson system, where we find that an infinite on-site repulsion is
necessary. We show that a three-body bound state exists when the s-wave scattering
length is positive and larger than a critical scattering length a∗. When a � a∗, the trimer
state dissociates into the atom-dimer continuum. The binding energy of the trimer state
is always smaller than twice that of the dimer state. These results are drastically different
from what is expected from the single-channel picture; when an interaction between the
impurity and a boson can be written as a potential energy, it just reduces to the problem
of non-interacting bosons in an external field, and the ground-state energy of the N+1
system is just N times as large as that of the 1+1 system. On the other hand, our results
implies that the effective three-body repulsion makes the trimer state much shallower.
In the limit of r0→ −0, we recover the single-channel result, where the trimer energy
is twice as large as the dimer energy. However, we show that the convergence is only
logarithmic. In Section 5.2, we numerically calculate the three-body spectrum of the
Λ-model in the limit of the heavy impurity. We find that the Λ-model is equipped with
all the features of the three-body problem described above, including the logarithmic
approach to the potential interaction. This suggests that they are universal properties of
systems with the three-body forces.

5.1 Analytical results for an infinite-mass impurity

The analytical solution is obtained in three steps: First, we transform the r0-model
Hamiltonian into a bosonic version of Anderson’s single impurity model with an infinite
on-site repulsion. Next, we diagonalize the bilinear part of the Hamiltonian by solving
the Schrödinger equation for the two-body problem. Finally, the three-body problem is
solved by writing down the Schrödinger equation with the basis that diagonalizes the
bilinear part and imposes the condition of no double occupancy of the closed-channel
state, which derives from the on-site repulsion in the model.
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5.1.1 Bosonic Anderson’s single impurity model

When the impurity has an infinite mass, the r0-model reads

Ĥ �

∑
p

(
p2 b̂†p b̂p + ν0d̂†p d̂p

)
+ g

∑
p ,q

(
d̂†p+q b̂q ĉp + ĉ†p b̂†q d̂p+q

)
, (5.1)

where b̂†p , ĉ†p , and d̂†p are the creation operators of the bosons, the impurity, and the
closed-channel dimer, respectively, andwe set themass of the bosons as 1/2 for simplicity.
As a special case of Eq. (2.34), the bare parameters ν0 and g are related to the lower-energy
scattering data by

a−1
�

4π
g2

(
g2

2π2 k0 − ν0

)
, r0 � −8π

g2 , (5.2)

where k0 is the ultraviolet cutoff, which will be taken to be infinite with fixed a−1 and r0.
The absence of the kinetic terms of the impurity and the closed-channel dimer means
that an impurity is localized and does not propagate under the time evolution generated
by Ĥ. Therefore, we can simply assume that the impurity is localized at the origin, and
retain only the localized modes of the impurity and the closed-channel molecule:

Ĥ �

∑
p

p2 b̂†p b̂p + ν0d̂†d̂ + g
∑

p

(
d̂† b̂p ĉ + ĉ† b̂†p d̂

)
. (5.3)

In this chapter, we refer to this expression as the r0-model. This is bilinear in terms of b̂p

and d̂, but the coupling with ĉ makes the problem nontrivial. Here, the role of ĉ is to
conserve the number of the impurities, Ni ≡ d̂†d̂ + ĉ† ĉ, which is one in the present case.

To see this point, let us consider the bilinear Hamiltonian

Ĥ0 �

∑
p

p2 b̂†p b̂p + ν0d̂†d̂ + g
∑

p

(
d̂† b̂p + b̂†p d̂

)
, (5.4)

and compare the Schrödinger equation with that of Eq. (5.3). This Hamiltonian no
longer contains the impurity degrees of freedom, and an N + 1-body system within
the r0-model corresponds to an N-boson problem for Eq (5.4). To be specific, we take a
three-body system consisting of two bosons and one impurity for example. The most
general wave function for the r0-model is

|Ψ〉 �
(
1
2

∑
p1 ,p2

ψcp1p2 ĉ† b̂†p1 b̂†p2 +

∑
p

ψdp d̂† b̂†p

)
|0〉 , (5.5)
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and the Schrödinger equation Ĥ |Ψ〉 � E |Ψ〉 reads

(E − p2
1 − p2

2)ψcp1p2 � g
(
ψdp1 + ψdp2

)
, (5.6)

(E − p2 − ν0)ψdp � g
∑

q

ψcpq . (5.7)

On the other hand, a two-boson state within the Hamiltonian (5.4) can be written as

|Φ〉 �
(
1
2

∑
p1 ,p2

φp1p2 b̂†p1 b̂†p2 +

∑
p

φdp d̂† b̂†p +
1
2
φdd d̂†d̂†

)
|0〉 , (5.8)

whose Schrödinger equation reads

(E − p2
1 − p2

2)φp1p2 � g
(
φdp1 + φdp2

)
, (5.9)

(E − p2 − ν0)φdp � g
∑

q

φpq + gφdd , (5.10)

(E − 2ν0)φdd � 2g
∑

q

φdq . (5.11)

The first two equations are equivalent to those for ψcp1p2 and ψdp if we set φp1p2 � ψcp1p2 ,
φdp � ψdp , and φdd � 0. In the r0-model, the impurity-number conservation implies
that 1 − d̂†d̂ � ĉ† ĉ ≥ 0, or d̂†d̂ ≤ 1, which prohibits the double occupancy of the
closed-channel state. A similar correspondence applies to systems with multiple bosons
with one impurity, where the Schrödinger equation for Eq. (5.4) reduces to that of the
r0-model when the amplitude for multi-dimer states is suppressed.

This observation implies that for systems with a single, infinite-mass impurity, the
Hamiltonian (5.4), with some additional mechanism to avoid the multiple occupancy of
the dimer state, leads to the same results as the r0-model. Here, we adopt the “on-site”
repulsive interaction,

Ĥ � Ĥ0 +
U
2

d̂†d̂†d̂ d̂ , (5.12)

which will be taken to be infinite at the end of calculations. This additional term
penalizes the states in which the d̂-state is multiply occupied, leading to φdd → 0 in
the above example. This results in exactly the same form of the Schrödinger equations
as those for the pair of ψcp1p2 and ψdp . Therefore, the two Hamiltonians give the same
results for the problem of two bosons (plus one impurity, in the case of the r0-model).

We can also extend the derivation to three or more bosons. It should be noted,
however, that the derivation of Eq. (5.12) relies on the fact that the number of the
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impurity is one. Therefore, the equivalence of the Hamiltonians (5.3) and (5.12) is
restricted to the single-impurity sector.

Themapping from the r0-model to Eq. (5.12) has transformed the N+1-body problem
with the conserved impurity number into the unconstrained N-body problem with
the on-site interaction. This interaction has an important property called separability.
A two-body potential is called separable if it can be written as a finite-dimensional
projector. Separability often simplifies analyses of few-body problems [157] and many-
body problems [158]. Here, the on-site repulsion term is the two-boson interaction,
which is proportional to the projection operator onto the two-dimer state. Its separability
can be exploited to derive the analytic solution as discussed below.

Note that the Hamiltonian (5.12), combined with Eq. (5.4), has exactly the same
structure as Anderson’s single impurity model [159], except that in the present case, the
particles are spinless bosons. This bosonic model has not attracted as much attention
as the fermionic one, but was recently studied by using the numerical renormalization
group method [160, 161]. We also note that the model can be mapped to a spin-boson
model as well [162, 163], where the open and closed channels are represented as the spin
up and down. Our study sheds light on the few-body aspects in the presence of resonant
interactions in these models. In particular, the mapping between the two-channel
model and the Anderson model has revealed that such physics is naturally realized in
mass-imbalanced mixtures of atomic gases with a Feshbach resonance.

5.1.2 Diagonalization of the bilinear part

In the following discussion, we assume that the s-wave scattering length is positive,
where we have one two-body bound state.

We can diagonalize the bilinear part Ĥ0 by solving the two-body problem. This is a
special case of Section 2.2.1. As the mass of the impurity is infinite, the reduced mass
mr is equal to the mass of the bosons, which is 1/2 in the present unit. The solutions of
this two-body problem include the scattering states |Bk〉 with the incoming momentum
k and the bound state |D〉. They can be expanded in terms of b̂†p and d̂† as

|Bk〉 �
(∑

p

b̂†pUpk + d̂†Vk

)
|0〉 ≡ B̂†k |0〉 , (5.13)

|D〉 �
(∑

p

b̂†pφp + d̂†Z1/2

)
|0〉 ≡ D̂† |0〉 , (5.14)
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where the operators B̂†k and D̂† create the scattering state and the bound state, respectively.
By using these operators, the bilinear part can be written as

Ĥ0 �

∑
k

k2B̂†k B̂k − EBD̂†D̂ , (5.15)

where EB is the binding energy of the dimer. The explicit expressions of the expansion
coefficients can be derived by solving the Schrödinger equation (see Section 2.2.1),

Upk � (2π)3δ(p − k) + T(k2)
k2 − p2 + i0

, Vk � g−1T(k2), (5.16)

φp � −
gZ1/2

EB + p2 , Z �

(
1 +

1
|r0 |E1/2

B

)−1

, (5.17)

where T(E) is again the T-matrix element given by

T(E) � 4π
a−1 − 1

2 r0E −
√
−E − i0

. (5.18)

It is independent of the center-of-mass momentum because the pair of the impurity
and one boson has the infinite total mass and therefore the zero kinetic energy. The
completeness and the orthonormality of the transformed basis can be checked by direct
calculations, and B̂k and D̂ satisfy the canonical commutation relations:

[B̂k1 , B̂
†
k2
] � (2π)3δ(k1 − k2), [D̂ , D̂†] � 1, . . . . (5.19)

The dimer binding energy is determined by solving the equation T(−EB)−1 � 0. For
later convenience1, we adopt the unit where EB � 1, and remove a−1 from Eq. (5.18) by
using T(−1)−1 � 0:

T(E) � 4π
1
2 |r0 |(E + 1) + 1 −

√
−E − i0

. (5.20)

With ~ � 2mB � EB � 1, we completely fix the scales of time, mass, and length. Therefore,
all the variables are now dimensionless.

1We use the residue theorem later to integrate certain functions. There, the operations will be slightly
simpler by using EB as the unit of energy. Also, we are interested in E/EB, and this is a natual choice of
the unit for this purpose.
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5.1.3 Three-body problem

Now we solve the 2+1 problem. This time, the “on-site repulsion” plays a role.
Importantly, this interaction term is separable, which has the form of the projector onto
the states where the closed-channel state is doubly occupied. This structure allows us to
obtain an analytical solution for the three-body problem.

The basis diagonalizing Ĥ0 is the most convenient for our purpose. Therefore, we
write down the wave function in the following form:

|Ψ2+1〉 �
( ∑

k1 ,k2

1
2
αk1k2 B̂†k1

B̂†k2
+

∑
k

βk B̂†kD̂† +
1
2
γD̂†D̂†

)
|0〉 . (5.21)

If we recall that we take the two-body binding energy EB as the unit of energy, the
Schrödinger equation (E − Ĥ) |Ψ2+1〉 � 0 reads

(E − k2
1 − k2

2)αk1k2 � V∗k1
V∗k2

τ, (5.22)

(E − k2
+ 1)βk � V∗kZ1/2τ, (5.23)

(E + 2)γ � Zτ, (5.24)

where τ ≡ U
〈
0
�� d̂ d̂

��Ψ2+1
〉
. The amplitude τ can be zero or non-zero. If τ � 0, the

above equations immediately give

E � k1
1 + k2

2, k2 − 1, or − 2. (5.25)

We can always construct the wave functions corresponding to the first two solutions.
For E � k2

1 + k2
2, the doubly occupied closed-channel state interferes destructively in the

superposition state (
B̂†k1

B̂†k2
− B̂†k′1

B̂†k′2

)
|0〉 , (5.26)

if |k1 | � |k′1 | � k1 and |k2 | � |k′2 | � k2. This is therefore one solution with that energy. A
wave function for E � k2 − 1 can also be constructed as a superposition state of B̂†kD̂† |0〉
and B̂†k′D̂

† |0〉 for |k | � |k′| � k. On the other hand, the solution with E � −2 does not
necessarily exist because at that energy, there is only one unperturbed solution D̂†D̂† |0〉.
This solution is consistent with

〈
0
�� d̂ d̂

��Ψ2+1
〉
� τ/U → 0 if and only if Z � 0, which is

also equivalent to r2
0EB � 0, or equivalently r0/a � 0, owing to Eq. (5.17). Therefore, a

three-body bound state having E < −1, if any, necessarily has τ , 0 for a generic set of
the parameters.
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To find a possible three-body bound state, we invert Eqs. (5.22–5.24),

αk1k2 �

V∗k1
V∗k2

τ

E − k2
1 − k2

2
, βk �

V∗kZ1/2τ

E − k2 + 1
, γ �

Zτ
E + 2

. (5.27)

A condition for the bound-state energy is then given by the condition of no double
occupancy of the closed-channel state in the limit of U →∞. By using the solution (5.27),
this condition reads〈

0
�� d̂ d̂

��Ψ2+1
〉
≡

∑
k1 ,k2

|Vk1Vk2 |2 τ
E − k2

1 − k2
2
+

∑
k

2 |Vk |2 Zτ
E − k2 + 1

+
Z2τ

E + 2
� 0. (5.28)

Since τ , 0, we can just remove it from the above equation. The resulting equation
determines one unknown quantity, the energy E, from the known quantities Vk and Z,
which depend on the single parameter r0. This nonlinear equation is more amenable
to analytic investigations than the integral equations as the one that we solved in the
previous chapter.

Note that the numerator of each term in Eq. (5.28) is positive, while for the presumed
three-body bound state with E < −1, the denominators of the first two terms are negative.
Therefore, Eq. (5.28) can be satisfied only if E > −2, which makes the third term positive.

With this restriction of the energy inmind, we can actually perform all the integration
in Eq. (5.28). By using Eqs. (5.16), (5.17) and (5.20), we can rewrite Eq. (5.28) as

1
E + 2

�

∑
k1 ,k2

1
k2

1 + k2
2 − E

2π(1 + |r0 |)
[ |r0 |

2 (k2
1 + 1) + 1]2 + k2

1

2π(1 + |r0 |)
[ |r0 |

2 (k2
2 + 1) + 1]2 + k2

2

+

∑
k

2
k2 − 1 − E

2π(1 + |r0 |)
[ |r0 |

2 (k2 + 1) + 1]2 + k2
.

(5.29)

As the integrands are the rational functions of the momentum variables, the integration
over k1 and k can be done with the help of the residue theorem, leading to

1
E + 2

�

∑
k

1
(1 +

√
k2 + |E |)(2 + |r0 | +

√
k2 + |E | |r0 |)

2π(1 + |r0 |)
[ |r0 |

2 (k2 + 1) + 1]2 + k2

+
2

(1 +
√
−1 + |E |)(2 + |r0 | +

√
−1 + |E | |r0 |)

.
(5.30)

By setting k �

√
|E |
2 (x−x−1), the square root

√
k2 + |E |, and therefore the entire integrand,

can be made a rational function of x. Remarkably, finding the poles of the resulting
integrand reduces to solving quadratic equations, which means that we can obtain the
expressions of all the poles. This allows us to perform the remaining integration by
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Figure 5.1: Spectrum of the three-body problem with the infinite-mass impurity as
a function of |r0 |. The three-body bound state (blue curve) exists in the interval
0 < |r0 |/a < 0.31821. At |r0 |/a � 0.31821, the trimer state crosses the atom-dimer
threshold energy (gray line). In the inset, we show the spectrum as a function of a−1,
taking |r0 | as the unit of length. The gray-dotted line corresponds to E � −2EB. In this
plot, the trimer state is almost degenerate with the dimer state, and these two states
merge at the tricritical point |r0 |/a � 0.

using the residue theorem again and obtain a closed-form result. In this way, we obtain
the equation determining the trimer energy in the form

0 � π(1 + |r0 |)
[
r2
0E2 − 4|E |(1 + |r0 |)2 + 4(2 + |r0 |)2

]
+ 4

√
|E | − 1

[
2(2 + |r0 |)2 − |E |r2

0
] (
π − arctan

√
|E | − 1

)
− 4(2 − |E |)(2 + |r0 |)

√
(2 + |r0 |)2 − |E |r2

0 arctanh

√
1 −

r2
0 |E |

(2 + |r0 |)2
,

(5.31)

which can be now solved numerically or analyzed by hand.
In Figure 5.1, we show the numerical solution of Eq. (5.31). We find that there is one

trimer state when 0 <
√

2mEB |r0 | < 0.279226, or equivalently 0 < a−1 < 0.31821|r0 |−1 ≡
(a∗)−1. At the critical scattering length a � a∗, the trimer state crosses the atom-dimer
threshold, dissolving into the continuum. As shown in the inset of Fig. 5.1, the opposite
limit of |r0 |/a → +0 is the “tricritical point”, at which both the trimer and the dimer
merge into the unbound continuum. This is consistent with Efimov’s prediction that
|a−/r0 | → ∞ in the limit of mi/mB → ∞. The energy approaches −2EB, which is
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expected because the limit r0 → −0 makes the two-channel model behave more like the
single-channel model, as discussed in Section 2.2.1. Also, this observation agrees with
the earlier one that E � −2EB is achieved if and only if Z � 0, because it vanishes as
Z ∝ |r0 |1/2. However, the approach to E � −2EB is very slow. We find that the trimer is
almost degenerate with the dimer except in the very close vicinity of |r0 |/a � 0.

We can discuss this limiting behavior more quantitatively. First, note that arctanh x ∼
−1

2 log(1 − x) as x → 1. This implies that the limit r0 → 0 accompanies a logarithmic
divergence of arctanh in the third line of Eq. (5.31). As the first and the second terms of
Eq. (5.31) remain finite in the limits of E→ −2 and r0→ −0, the divergence needs to be
compensated by the vanishing factor of (2 − |E |) in order for Eq. (5.31) to hold. We thus
find that

E
EB
∼ −2 +

2π
log(a/|r0 |)

(r0→ −0), (5.32)

up to the leading-logarithmic correction, where we have used EB→ 1/ma2 for r0→ 0.
This explains the slow convergence of E/EB to the single-channel value of 2. At the
level of the two-body physics, the finite-r0 corrections to the quantities such as the
bound-state energy and the scattering amplitude is given by powers of r0/a. Therefore
in many cases, it does not change the qualitative behavior of the system. On the other
hand, our results reveal that once we consider three-body systems, a finite effective range
drastically changes the spectrum, and that the correction from the zero-effective-range
limit vanishes only logarithmically.

5.2 Universality of the logarithmic correction

In this section, we argue that the logarithmic correction found in the previous section
is not peculiar to the r0-model, but is a universal feature associated with the three-
body repulsion. We also find that the four-body system exhibits a similar logarithmic
correction with a different coefficient.

For this purpose, we first solve the integral equation for the three-body problem
within the Λ-model. In the limit of the infinite-mass impurity, the equation reads

T−1(E − εp)γp �

∑
|p′ |<Λ

γp′

E − εp − εp′
, (5.33)

where T(E) ≡ 4π
a−1−
√
−E−i0

. Compared with Eq. (4.12), the T-matrix in Eq. (5.33) is
independent of the momentum, and the denominator of the integrand does not have
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the term corresponding to the kinetic energy of the impurity, both of which are the
consequences of the infinite mass of the impurity.

In Figure 5.2(a), we show the plot of EB/(E + 2EB) calculated within the r0-model
and the Λ-model, where E is the ground-state energy of the three-body system. The
result for the Λ-model has the same asymptotic slope for a → +∞ as the r0-model. This
suggests the following universal expression of the energy of the three-body bound state:

E
EB
∼ −2 +

2π
log a

(a → +∞). (5.34)

A similar logarithmic correction is found in the four-body problem. The bound-state
energy is found by solving the integral equation,

T−1(E − εp1 − εp2)γp1p2 �

∑
p′

γp1p′ + γp2p′

E − εp1 − εp2 − εp′
, (5.35)

where the cutoff Λ is imposed on the integral for the Λ-model, and the T-matrix has a
finite effective range for the r0-model. In Figure 5.2(b), we show the plots of EB/(E+3EB)
for the two models, where 3EB is the energy expected for the four-body system without
the three-body repulsion. They approach straight lines with the same slope, indicating
the following asymptotic expression:

E
EB
∼ −3 +

2πc
log a

, (5.36)

where c ' 3 is a universal constant.
Equations (5.34) and (5.36) involve only the s-wave scattering length. This suggests

that it is the only relevant parameter around the unitarity limit, and that the unitarity
limit, in particular, is scale-invariant, at least up to the four-body sector. Since there is no
logarithmic correction in interactions described by two-body potentials, we conclude that
the logarithmic correction is a universal feature of the effective three-body interaction.

69



Figure 5.2: Universal logarithmic correction for (a) the three-body bound state and (b)
the four-body bound state. Both the r0-model (blue) and the Λ-model (red) show the
logarithmic correction 2π/log a to the limiting energy E � −2EB. The unit of the length
is r0 in the r0-model and Λ−1 in the Λ-model. The gray-dashed lines are eyeguides,
which are parallel to (a) log a

2π and (b) log a
6π .
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Chapter 6

Ground-state properties of a Bose polaron

Now we turn to a many-body system, where a single impurity is immersed in a scalar
Bose gas. This system is called a Bose polaron [108, 110–125]. The concept of the polaron
was originally introduced to describe properties of an electron in polar crystals [164–166].
Coupling with phonons modifies electronic properties; for example, an electron acquires
an effective mass and the self-energy, which can be measured from the electronic and
magnetic response [167]. An impurity particle immersed in a Bose-Einstein condensate
was also pointed out to be polaronic, and its weak-coupling limit is described by a model
similar to the Fröhlichmodel [112, 115, 117], which is the paradigmatic theoretical model
of the polaron [168, 169].

Our focus here is on the strong-coupling regime, where the s-wave scattering length
a characterizing the impurity-boson interaction is larger than any other length scales of
the system such as the average inter-particle spacing. In particular, we seek for universal
properties in the ground state of the strongly coupled Bose polaron. A prime example of
such universality in strongly coupledmany-body systems is the unitary Fermi gas; at zero
temperature, the only length scale in the unitary Fermi gas is the inter-particle spacing l,
and thus physical quantities are completely determined by l, Planck’s constant ~, the
mass of the particles, and some universal dimensionless numbers [49, 50]. Motivated by
this fact, we examine whether a similar universality emerges in a strongly coupled Bose
system. Specifically, we investigate the ground-state properties of the Bose polaron and
identify the characteristic parameters that are necessary to describe the Bose polaron.

In the case of the Bose systems, there are additional complications, which are
irrelevant in the Fermi gas. First of all, scalar bosons can interact with each other, while
fermions in the same spin state are almost non-interacting at ultra-low temperatures
due to Pauli’s exclusion principle. This introduces additional length scale, aB, which
is the s-wave scattering length between bosons. We assume that aB is positive and
much smaller than l, and what is more, we take aB→ 0 whenever possible. One issue
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here is the stability of the Bose polaron when aB → 0; we will address this point in
this chapter. Another, more fundamental issue is the presence of the Efimov effect in
this system [5–7]. This gives rise to the three-body parameter a−, which controls the
three-body Efimov spectrum. Having these parameters in hand, we investigate in this
chapter which quantities are sensitive to which length scales in the ground-state Bose
polaron.

The outline of this chapter is as follows. In Section 6.1, we describe the model
Hamiltonian and our theoretical approach. Here, we employ a variational method,
which takes three Bogoliubov excitations into account. Variational wave functions with
one [114] and two [108] Bogoliubov excitations have been used to describe the Bose
polaron. We argue, however, that taking three excitations into account is minimal
to examine the universality. In Section 6.2, we discuss the ground-state energy. In
particular, we argue that the ground-state energy is a universal, model-independent
function of the three-body parameter when the density is not too large. The high-density
limit is weakly coupled, though highlymodel-dependent, and admits controlled analysis.
We therefore derive analytical expressions of the energies for this regime and compare
with the numerical results. In Section 6.3, we examine universality of other observables:
the quasi-particle residue, the effective mass, and Tan’s contact. We find that the residue
approaches zero by adding a Bogoliubov excitation and is significantly sensitive to aB. A
perturbation theory reveals that the orthogonality of the ground-state wavefunction to
the decoupled state for aB→ 0 is caused by the infrared divergence, which is suppressed
in the presence of a finite aB.

6.1 Model and variational approach

6.1.1 Model Hamiltonian

A description of an impurity immersed in a weakly interacting Bose-Einstein condensate
involves several length scales. The Bose medium is characterized by its density n and
the s-wave scattering length between the bosons aB. Since we focus on the weakly
interacting regime, we assume that naB

3 � 1 and treat the condensate and excitations
within the Bogoliubov theory. We also need the length scales describing the interactions
between the impurity and bosons. For a short-range, resonant interaction, the foremost
one is the s-wave scattering length a of the impurity-boson interaction. Here, we focus
on the unitary regime near a Feshbach resonance, where |a | is much larger than any other
length scales, and therefore we fix a−1 � 0. Another important length scale associated
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with the impurity-boson interaction is the three-body parameter a−, which fixes the
three-body spectrum of this system.

We model the interaction between the impurity and bosons by the r0-model and
the Λ-model, as defined in Chapter 4. We can also incorpolate a repulsive interaction
between bosons by adding an interaction term, which leads to the followingHamiltonian:

Ĥ � ĤB + Ĥi + ĤFR,

ĤB �

∫
dr

[
1

2m
∇ψ̂†B · ∇ψ̂B +

U
2
ψ̂†Bψ̂

†
Bψ̂Bψ̂B

]
, Ĥi �

∫
dr

1
2m
∇ψ̂†i · ∇ψ̂i,

ĤFR �

∫
dr

[
1

4m
∇φ̂† · ∇φ̂ + ν0φ̂

†φ̂ + g0
(
φ̂†ψ̂Bψ̂i + ψ̂

†
i ψ̂
†
Bφ̂

) ]
.

(6.1)

Here, ψ̂†B, ψ̂
†
i , and φ̂

† are the creation operators of a boson, the impurity, and a closed-
channelmolecule, respectively. The two-channel interaction is controlled by the detuning
ν0 and the inter-channel coupling g0. The inter-boson interaction is also introduced,
which is assumed to be a contact interaction with the strength U � 4πaB/m. As we
concentrate on the single-impurity properties, the quantum statistics of the impurity and
the closed-channel molecule is irrelevant, but for the sake of definiteness, we assume
that they are bosons1.

In the weakly interacting regime of the Bose gas, where naB
3 � 1, we can apply

the Bogoliubov approximation to the BEC [145], and consider interactions between the
impurity and the Bogoliubov excitations on the condensate. This allows us to replace ψ̂B

by
√

n0 +
∑

p,0 e ip·r β̂p , where β̂p is the annihilation operator of the Bogoliubov excitation
with momentum p, and to approximate ĤB as

ĤB �

∑
p

Ep β̂
†
p β̂p , (6.2)

where we have omitted a constant energy arising from the inter-boson interaction as it is
irrelevant for later discussions. Here, Ep is the Bogoliubov dispersion relation defined
as

Ep ≡
√
εp(εp + 8πn0aB/m) �

√
εp(εp + 1/mξ2), (6.3)

where εp ≡ p2/2m is the single-particle dispersion in vacuum, and ξ ≡ 1/
√

8πn0aB is
the coherence length of the condensate. The Bogoliubov operator β̂p is related to the

1This is a natural assumption in this mass-balanced case because an impurity particle with the same
mass as the bosons is created by transferring atoms in the Bose gas to another hyperfine state [107]. More
generally, however, impurity-boson systems with small mass imbalance can be realized by using fermions
as impurity particles (e.g. a mixture of 41K (boson) and 40K (fermion)); we expect that the small mass
imbalance does not affect our conclusion.
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bosonic field operator b̂p , which is the Fourier transform of ψ̂B(r), by the Bogoliubov
transformation

b̂p � up β̂p − vp β̂
†
−p , (6.4)

where

u2
p � [(εp + µ)/Ep + 1]/2, v2

p � [(εp + µ)/Ep − 1]/2, (6.5)

with the chemical potential of the bosons given by µ � 1/2mξ2.

We also apply the Bogoliubov approximation to the coupling term ĤFR. This leads
to the following model Hamiltonian of an impurity in the weakly interacting BEC [108]:

Ĥ �

∑
p

[
Ep β̂

†
p β̂p + εp ĉ†p ĉp + (εd

p + ν0)d̂†p d̂p

]
+ g0
√

n0
∑

p

(
d̂†p ĉp + ĉ†p d̂p

)
+ g0

∑
p ,q

(
d̂†p+q b̂q ĉp + ĉ†p b̂†q d̂p+q

)
,

(6.6)

where εd
p � p2/4m, and ĉp and d̂p are the Fourier transforms of the impurity field ψ̂i(r)

and the closed-channel field φ̂(r), respectively. Note that the bosonic operator in the
second line is the bare one b̂p , not the Bogoliubov operator β̂p . This is because the
resonance occurs between the impurity and a bare boson, not between the impurity and
a Bogoliubov excitation. We can of course write b̂p in terms of β̂p , but we choose this
form just for notational simplicity.

The Hamiltonian (6.6) depends on the inter-boson scattering length aB through the
Bogoliubov dispersion and the Bogoliubov transformation, where it appears only in the
combination n0aB, or equivalently the coherence length ξ � 1/

√
8πn0aB. Consequently,

the bosons are non-interacting in the dilute limit n0→ 0 within the present approxima-
tion, while the interaction between the impurity and bosons survives in the same limit.
This implies that the three-body parameter a− associated with the three-body Efimov
state is independent of aB; instead, it is determined by r0 or Λ−1, depending on the
model chosen, in exactly the same way as discussed in Chapter 4. This is a consequence
of the Bogoliubov approximation, which ignores higher-order contributions from the
boson-boson interaction. This approximation is reasonable when aB is much smaller
than |r0 | or Λ−1, in which case the latter lengths predominantly determine a−. One may
also consider the opposite situation, where a− is determined by aB. Such a setting was
investigated in Refs. [110, 119], where they considered an impurity interacting via a
single-channel contact interaction with a hard-core Bose gas with the diameter aB, as we
have pointed out in Chapter 4.
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6.1.2 Variational wavefunction

The interaction between the impurity and bosons, as modeled by the Hamiltonian (6.6),
excites bosons out of the condensate. This means that the ground state is a superposition
of states containing an arbitrary number of Bogoliubov excitations. Here, to evaluate
the ground-state energy of the Bose polaron, we truncate the highly excited states and
retain the states with at most three Bogoliubov excitations:

|Ψ〉 � |ψ1〉 + |ψ2〉 + |ψ3〉 + |ψ4〉 , (6.7)

|ψ1〉 � α0 ĉ†0 |0〉 , (6.8)

|ψ2〉 �
(∑

p

αp ĉ†−p β̂
†
p + γ0d̂†0

)
|0〉 , (6.9)

|ψ3〉 �
(
1
2

∑
p1 ,p2

αp1 ,p2 ĉ†−p1−p2 β̂
†
p1 β̂
†
p2 +

∑
p

γp d̂†−p β̂
†
p

)
|0〉 , (6.10)

|ψ4〉 �
(
1
6

∑
p1 ,p2 ,p3

αp1p2p3 ĉ†−p1−p2−p3 β̂
†
p1 β̂
†
p2 β̂
†
p3 +

1
2

∑
p1 ,p2

γp1p2 d̂†−p1−p2 β̂
†
p1 β̂
†
p2

)
|0〉 . (6.11)

Here, |0〉 is the ground state of the condensate without the impurity, which satisfies
β̂†p |0〉 � 0 for any p. Each component |ψi〉 has i − 1 bosons that are excited out of the
condensate.

The c-number coefficients, denoted by α and γ, are determined variationally by the
stationary condition, ∂(〈Ψ|(Ĥ − E)|Ψ〉)/∂(α∗, γ∗) � 0, where the Lagrange multiplier, E,
is introduced to ensure the normalization condition 〈Ψ|Ψ〉 � 1. This represents the
energy measured with respect to the ground state without the impurity. This leads to a
set of seven coupled equations, from which we can remove α and obtain the coupled
integral equations,[

T−1
BEC(E, 0) −

n0
E

]
γ0 �

√
n0

∑
p

(
upγp

E − εp − Ep
−

vpγp

E

)
−

∑
p ,q

up vqγpq

E − εp − Ep
, (6.12)[

T−1
BEC(E − Ep , p) −

n0
E − εp − Ep

]
γp �

√
n0

(
upγ0

E − εp − Ep
−

vpγ0

E

)
+

∑
q

(
up uqγq

E − Epq
+

vp vqγq

E

)
+
√

n0
∑

q

(
uqγpq

E − Epq
−

vqγpq

E − εp − Ep

)
,

(6.13)

[
T−1

BEC(E − Ep1 − Ep2 , p1 + p2) −
n0

E − Ep1p2

]
γp1p2 � −

up1 vp2γ0

E − εp1 − Ep1

(6.14)

+
√

n0

(
up1γp2

E − Ep1p2

−
vp1γp2

E − εp2 − Ep2

)
+

∑
q

(
up1 uqγp2q

E − Ep1p2q
+

vp1 vqγp2q

E − εp2 − Ep2

)
+ (p1↔ p2).
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Here, (p1 ↔ p2) denotes the terms that symmetrize the right-hand side of Eq. (6.14),
Epq ≡ Ep+q+εp+εq and Ekpq ≡ Ek+p+q+εk+εp+εq . Themedium T-matrix, TBEC(E, p),
is defined as

T−1
BEC(E, p) � T−1

0 (E, p) +
∑

q

[
1

E − εq − εp+q
−

u2
q

E − Eq − εp+q

]
, (6.15)

where T0(E, p) � 4π
m

[
a−1 − r0

2 m(E − εd
p) −

√
−m(E − εd

p)
]−1

is the two-body T-matrix in

vacuum. The procedure that yields these equations is similar to that used in Chapter 4
and is detailed in Appendix A. In the r0-model, we have a finite effective range r0 in
the vacuum T-matrix and take the integration in Eqs. (6.12–6.14) without an ultraviolet
cutoff. On the other hand, in the Λ-model, we set r0 � 0 and truncate the integration at
|q | � Λ. Note, however, that the integration in Eq. (6.15) is kept without the UV-cutoff so
that Λ leaves two-body physics unaffected. We solve the integral equations (6.12–6.14)
numerically to evaluate the energy and other properties of the Bose polaron in the
ground state.

It is essential for our purpose to keep the full three-excitation component |ψ4〉 in the
truncated ansatz. First of all, to see the effects of beyond-two-body physics, especially
the Efimov physics, we need at least two excitations that are correlated in a way that
supports the Efimov states involving the impurity and two bosons. Here, we take the
most general form of αp1p2 , αp1p2p3 , and so on, within the zero-angular-momentum
sector, and therefore have enough room to observe the Efimov physics in the Bose
polaron. Furthermore, to examine whether polaron properties are fully determined by
parameters characterizing two- and three-body physics such as a and a−, or controlled
by an additional “more-body” parameter, the three-excitation ansatz offers the minimal
starting point, which fully takes four-body correlations into account.

6.2 Ground-state energy

Wenowpresent the ground-state energy of the Bose polaron at unitarity. The discussions
here mainly deal with the non-interacting limit of the Bose gas, aB→ 0 and ξ→∞. In
this case, the Bogoliubov excitation is identical with the bare bosonic excitation, and
the Bogoliubov spectrum reduces to the single-particle kinetic energy p2/2m in free
space. In Fig 6.1(a), we compare the ground-state energy of the r0-model with that of
the Λ-model. In order to compare the results of two different models and reveal the
role of the Efimov physics in the Bose polaron, we convert the short-range parameter,
r0 or Λ−1, into the dimensionless three-body parameter n1/3 |a− |. We also calculate

76



(a)

(b)

Figure 6.1: Ground-state energy of the Bose polaron at unitarity as a function of n1/3
0 |a− |

for aB → 0. (a) We show the results for the r0-model (blue) and the Λ-model (red).
When the Bose gas is dilute (n1/3

0 |a− | � 1), the energies approach the energy of the
ground-state tetramer (gray dashed). The high-density regime displays highly model-
dependent behavior. The ground-state energy in the r0-model is consistent with the
perturbation theory up to O(g2

0) (gray dot-dashed). On the other hand, the ground-state
energy of the Λ-model saturates at −24/3π2/3n2/3

m ' −5.405n2/3
m , which corresponds to the

solution of the one-excitation ansatz within the Λ-model. (b) We show the results for
the r0-model, within the variational ansatz with one (dotted), two (dashed), and three
(solid) Bogoliubov excitations. The gray dotted and dashed lines denote the energy of
the ground-state Efimov trimer and that of the ground-state tetramer, respectively.
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the ground-state energy within the variational ansatz with one and two Bogoliubov
excitations, whose results for the r0-model are shown in Fig. 6.1(b). In the following
subsections, we discuss three different regimes of the density in detail.

6.2.1 Low-density limit

As we have already shown in Chapter 4, impurity-boson systems at unitarity have three-
and four-body bound states, whose energies are universal. Therefore, as the low-density
limit is taken, the Boes polaron at zero temerature should transform into the deepest
bound cluster, whether or not there is a phase transition along the way.

Equations (6.12–6.14) can capture the crossover to at least four-body cluster. There
is no obvious singularity in the equations, implying no phase transition within the
approximation. The low-density limit n0→ 0 leads to up → 1, vp → 0, andTBEC(E, p) →
T0(E, p). As a result, Eqs. (6.12–6.14) reduce to Eqs. (4.11-4.13), which describe the
few-body systems in vacuum. This implies that the approximate ground-state energy
converges to that of the deepest 3+1–body cluster, which indeed happens without a
phase transition within the present variational approach using the r0-model and the
Λ-model. The ground-state energy is independent of the density in this limit and can be
written as E � −η4/ma2

−, where η4 ' 93 is the universal, model-independent constant,
as discussed in Chapter 4.

Within the current variational ansatz, larger bound states with more bosons cannot
appear. However, theoretically, such states are not ruled out. In the case of identical
bosons, it has been theoretically predicted that there exist five- and more-body clus-
ters [19–21], and a five-body resonance in an ultracold Bose gas has been reported [40].
Similarly, a five-body bound state is predicted by a diffusion Monte Carlo calculation
in the mass-balanced impurity-boson system at unitarity, while the same calculation
suggests that there is no six- or more-body clusters [110].

Remarkably, the energy of the five-body cluster is estimated in Ref. [119] to be
E � −η5/ma2

− with η5 ' 300, indicating that the size of the cluster is O(|a− |/20). This is
still much larger than the microscopic length scale, which is aB in the QMC calculation
and r0 and Λ−1 in our study. We would like to emphasize that it is natural that there is
the largest cluster state having the maximal number of bosons. In the impurity-boson
system, the pairwise attraction acts between the impurity and bosons and scales only
linearly with the number of bosons. This is in contrast to identical boson systems, where
the pairwise interaction scales quadratically with the number of the particles. Moreover,
as argued in the previous chapters, the presence of r0 or Λ implies the presence of an
effective three-body repulsion. It is thus reasonable that the costs of kinetic energy
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and three-body repulsion exceed the gain from the attractive interaction at some point,
prohibiting formation of a larger bound cluster.

These considerations lead us to conclude that the dimensionless value η5 and the
absence of larger bound states than the five-body cluster are the universal features of
the impurity-boson system. In other words, the ground-state energy of the Bose polaron
is universal in the low-density limit of the background Bose gas even if we take the
arbitrary number of the Bogoliubov excitations into account. An important consequence
of this is that the Bose polaron can have a finite ground-state energy, even without
repulsive interactions between the bosons. It is indeed the three-body repulsion, not
necessarily the two-body repulsion between bosons, that saves this many-body system
from collapsing.

6.2.2 Many-body universal regime

As the density of the Bose gas is made higher such that n1/3
0 a− & 1, the ground-state

energy deviates from that of the few-body systems. This is because the size of the
few-body cluster becomes comparable to or larger than the interparticle spacing of
the Bose gas, and the few-body picture that is useful in the low-density limit is no
longer applicable. Notably, the ground-state energy significantly depends on the three-
body parameter in this regime of both models. This is in stark contrast to the unitary
Fermi gas, which does not depend on any interaction length scales and whose physical
quantities are determined by ~, the mass of the particles, the density, and the universal
dimensionless numbers such as the Bertsch parameter.

Although the Bose polaron at unitarity does not have a universal value of the
ground-state energy, we argue that it is a model-independent, universal function of
n1/3

0 |a− | when the density is not too large. We have already discussed the universality in
the dilute regime. Figure 6.1 further shows that even for n1/3

0 a− & 1, the curves of the
two models collapse when they are plotted as a function of n1/3

0 |a− |.
Since our calculation is based on the variationalmethod, it can be subject to a criticism

that the results are biased. In particular, one may argue that the observed universality is
a consequence of the bias. It should be pointed out, however, that the ansatz that we
adopt takes full four-body correlations, and that a bias, if any, would result from five-
or more-body correlations. If such an effect causes nonuniversality, there should be
a significant probability that four or more bosons gather around the impurity within
the microscopic length scales such as r0 and Λ−1. This is not likely to happen unless
particles form tight clusters, which, however, is not consistent with the discussion in the
previous section.
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Figure 6.2: Comparison with the quantum Monte Carlo calculation [119] based on the
hard-core model of the Bose polaron. The blue and red curves correspond to the results
of the variational calculations within the r0-model and the Λ-model, respectively, and
the gray dots show the results of the QMC calculation. The error bars attached to the
QMC results display the statistical uncertainty.

This argument is intuitive but not conclusive. A further evidence of the universality
is offered by the comparison of our results with the diffusion Monte Carlo calculation
based on the hard-core model of the Bose polaron [119]. This model incorporates the
hard-core interaction between bosons with the diameter aB and the contact interaction
between the impurity and bosons. In Figure 6.2, we show the ground-state energy of
the three different models of the Bose polaron. Here, we use Eq. (4.15) to convert the
boson-boson scattering length aB to the three-body parameter a−. Although the results
scatter within the range of 10-20% when n0 |a− | ∼ 103, they converge to a single curve as
n0 |a− | is lowered. This demonstrates that the ground-state energy of the Bose polaron is
universally determined by n1/3

0 |a− |, independent of the microscopic details.

Note that the effects of a finite aB are twofold in the hard-core model; it controls the
three-body Efimov physics and also the properties of the Bose gas such as the coherence
length of the condensate. On the other hand, in the r0-model and the Λ-model, the
three-body parameter and the coherence length are two independent parameter. The
agreement between the three models when aB is set zero in the latter two models reveals
that the ground-state energy is predominantly determined by the three-body parameter,
rather than the coherence length. We can also take a finite coherence length into account
in the variational calculation. In Figure 6.3, we show the ground-state energy within
the r0-model with aB set to be zero (solid) and finite (dashed). In the latter calculation,
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Figure 6.3: Ground-state energy of the Bose polaron within the r0-model for aB → 0
(solid) and aB � |a− |/(2.1 × 104) (dashed). The gray dots are the results of the QMC
calculation in Ref. [119]. The top horizontal axis shows n1/3aB corresponding to the
dashed curve and the gray dots.

we fix aB by aB � a−/(2.1 × 104), to be consistent with the hard-core interaction. We
again emphasize that aB in the current calculation does not affect a− while it controls the
cohence length ξ. The energy is almost insensitive to ξ in the low-density regime where
the few-body physics dominates. On the other hand, as we increase the density, there is
a visible shift in the ground-state energy. The change of this shift with ξ is, however,
much smaller than the variation caused by the three-body parameter alone. We also
show the data points of the hard-core model, which clarify that the shift caused by ξ is
too small to account for the energy variation in the hard-core model. Thus, we conclude
that the ground-state energy of the Bose polaron is a universal function of a−, and that
it is insensitive to other details including the coherence length of the condensate.

6.2.3 High-density limit

The properties of the Bose polaron are highly model-dependent in this regime. It is
a natural consequence of the fact that the interparticle spacing n−1/3 is comparable
to or smaller than the microscopic lengths such as the effective range. At the same
time, the Bose polaron in the r0-model and the Λ-model is weakly correlated in this
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limit, as discussed below2. We can exploit this property to calculate the ground-state
energy and compare the results with the variational calculation. Here, we present the
many-body perturbation theory in the r0-model and show that they are consistent with
the variational calculation in the high-density regime. Next, we calculate the limiting
energy within the Λ-model in the case of aB � 0 by using the truncated ansatz with the
arbitrary (but finite) number of excitations, and show that it is given as the solution of
T−1

0 (E, 0) � n0/E, which is

E � −24/3π2/3n2/3

m
' −5.405n2/3

m
. (6.16)

This is also consistent with the variational calculation. Note that this is same as the
variational equation based on the trial wave function truncated at one Bogoliubov
excitation, instead of three.

Note that Fig. 6.1(b) clearly shows that the variational approach for the r0-model
converges fast with the number of the Bogoliubov excitations in this regime. This is also
true for the Λ-model. The consistency of the analytical expressions and the variational
results is, therefore, indicative of the finite ground-state energies of this many-body
system even without the boson-boson repulsion for high densities. Combining this and
the discussion in the low-density limit, we conclude that the Bose polaron at unitarity is
stabilized by the three-body repulsion at any density.

The r0-model

In the r0-model, the dimensionless coupling constant of a Feshbach resonance is n−1/3 g2
0

in finite-density systems [105]3. This indicates that the high density is equivalent to
the small coupling constant, and that the perturbation theory in terms of this coupling
constant is applicable in this regime. Physically, a small g0 is of interest because it
corresponds to a narrow Feshbach resonance, whose weak-coupling nature has been
exploited mostly in a Fermi gas [105] and an impurity immersed in a Fermi sea (a Fermi
polaron) [170]. Here, we present the perturbation theory to the next-to-the-leading
order.

Figures 6.4(a, b) show the impurity self-energy up to O(g4
0), which reads

Σ(ω, p) � Σ(2)(ω, p) + Σ(4)(ω, p), (6.17)

2This statement itself is model-dependent. It should be clear if we consider the hard-core interaction
between bosons, which restricts the density of the Bose gas and does not have the high-density limit.

3Here we square the coupling constant g0. This is because in scattering processes the formation of a
closed-channel molecule always accompanies its dissociation, which is overall a second-order process in
terms of g0.
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�
(a) Σ(2)
�

(b) Σ(4)

�
(c) Σ(2)v

� �� +�
(d) Dressed impurity propagator

Figure 6.4: Self-energy diagrams that contribute to the ground-state energy up to the
next-to-the-leading order. When the boson-boson scattering length aB is zero, there
are only two diagrams (a, b) up to this order. Here, the dashed lines and the solid line
denote the condensate and excited bosons, respectively, while the double line represents
the closed-channel molecules and the wavy line shows the impurity propagator. The
impurity propagator in the next-to-the-leading order diagram (b) is dressed by the
leading-order self-energy and its definition is given in the Dyson equation (d). If there
is a finite boson-boson scattering length, the other O(g2

0) diagram (c) also gives rise to
the next-to-the-leading order correction.

Σ(2)(ω, p) �
g2

0n0

ω − εd
p
, (6.18)

Σ(4)(ω, p) �
g4

0n0

(ω − εd
p)2

∑
q


1

ω − εq − εp+q −
g2

0n0

ω−εq−εd
p+q

+
1

2εq

 . (6.19)

Here, we have used the assumption that aB � 0, which implies that uq � 1, vq � 0,
and that the Bogoliubov dispersion Eq reduces to the single-particle dispersion εq in
vacuum. In the momentum integral, the subtraction of 1/2εq is necessary to compensate
the ultraviolet divergence, which comes from the impurity-boson scattering in vacuum.
This is equivalent to the renormalization procedure described in Section 2.2.1.

The polaron energy is found from the equation E � Σ(E, 0). At the order of O(g2
0), this

reads E � g2
0n0/E, leading to E � E(2) ≡ −

√
8πn0/|r0 |/m. Here, we used g2

0 � 8π/m2 |r0 |.
This is consistent with the asymptotic behavior of the variational calculation with the
r0-model as shown in Fig. 6.1. Now, suppose that E � E(2) + δE. The energy equation
can be rewritten within the current approximation as follows:

E � Σ(E, 0), (6.20)

⇔ E(2) + δE ' Σ(2)(E, 0) + Σ(4)(E, 0) ' E(2) − δE + Σ(4)(E(2), 0), (6.21)

⇔ δE ' 1
2
Σ(4)(E(2), 0). (6.22)
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(a) aB � 0 (b) aB � 0.02 (gray), 0.05 (red), and 0.1 (blue)

Figure 6.5: Next-to-the-leading order correction of the ground-state energy within
the r0-model. We show δE � E − E(2) of the variational calculations (solid) and the
perturbation theory (dashed), where E(2) ≡ −

√
8πn0/|r0 |/m is the energy determined

from the self-energy of O(g2
0). (a) When the background Bose gas is non-interacting,

the O(g4
0) correction to the self-energy gives δE �

1
m

√
3
7

(
8πn0
|r0 |5

)1/4
, which is correctly

captured by the variational calculation. (b) If aB is small and positive, δE ∝
√

n0aB
|r0 | as

r0 → ∞ with a fixed aB. This scaling and the coefficient is also reproduced by the
variational calculation.

By noting that (E(2))2 � g2
0n0, Σ(4)(E(2), 0) is readily calculated:

Σ(4)(E(2), 0) � g2
0

∑
q

 1

E(2) − q2/m − (E(2))2
E(2)−3q2/4m

+
m
q2

 (6.23)

�
2
m

√
3
7

(
8πn0

|r0 |5

)1/4
. (6.24)

Figure 6.5(a) shows that this correction is also captured by the variational calculation.
The range of validity of this calculation, especially the validity of aB→ 0, becomes clear
when we consider a finite aB > 0. In this case, the additional diagram in Fig. 6.4(c)
contributes to the same order4. The O(g4

0)-correction Σ(4) is also modified, while Σ(2) is
unchanged. These finite-aB corrections read

Σ
(2)
v (ω, p) � g2

0

∑
q

v2
q

ω − Eq − εd
p+q

, (6.25)

4Although there are five other diagrams of the self-energy up to O(g4
0), they only give higher-order

corrections in the limit of |r0 | → ∞with a fixed aB. The detailed diagrammatic analysis on this is given in
Appendix B.
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Σ(4)(ω, p) �
g4

0n0

(ω − εd
p)2

∑
q


u2

q

ω − Eq − εp+q −
g2

0n0

ω−Eq−εd
p+q

+
1

2εq

 . (6.26)

In these integrals, the comparison between ω and 1/(2mξ2) defines two different regimes.
Let us focus onω � E(2) and p � 0. Whenω � 1/(2mξ2), or equivalently n0aB

3 � aB/|r0 |
(� 1)5, the momentum-dependence of the integrand becomes significant only when
|q | �

√
2m |ω | � ξ−1, and thus we can take uq → 1, vq → 0, and Eq → εq . In this

limit, the resulting expressions reduce to those of aB � 0 as given in Eq. (6.24). On the
other hand, when ω � 1/(2mξ2) (⇔ aB/|r0 | � n0aB

3 � 1), we can ignore ω from the
integrand except in a small fraction of the integration range. Also, the contribution to
the final results from such a small region only gives higher-order corrections. We thus
obtain

Σ
(2)
v (E(2), 0) + Σ(4)(E(2), 0) ' g2

0

∑
q

[
u2

q

−Eq − εq
+

v2
q

−Eq − εd
q
+

1
2εq

]
(6.27)

�
16
√

3π − 72
3
√
πm

√
n0aB

|r0 |
' 2.83268

m

√
n0aB

|r0 |
, (6.28)

which results in δE �
8
√

3π−36
3
√
πm

√
n0aB
|r0 | . Therefore, if aB/|r0 | � n0aB

3, the next-to-the-leading
correction to the ground-state energy scales as

√
aB/|r0 |, instead of |r0 |−5/4 as found in

Eq. (6.24) for aB→ 0. This is also consistent with the variational calculation with a finite
aB, as shown in Fig. 6.5(b).

Importantly, the next-to-the-leading order correction is positive, which implies that
the ground-state energy is bounded by E(2) from below. This reveals that the ground-
state energy has a well-defined limit even if we take aB→ 0. This is possible because of
the effective three-body repulsion, as discussed in the previous chapter. Although the
coupling in the r0-model is zero-ranged, it still has a non-zero effective range r0, which
stabilizes this many-body system.

The Λ-model

Here, the dimensionless cutoff is n−1/3Λ, which vanishes in the high-density limit, and
consequently, three-body processes are prohibited at any momentum. This leads to the
observed convergence of the energy to the value corresponding to the one-excitation
ansatz. We can show this when aB � 0 within the variational ansatz by taking into

5The latter inequality is implied when we use the Bogoliubov approximation. See the discussion on
the model Hamiltonian in the previous section.
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account an arbitrary (but finite) number of Bogoliubov excitations. For convenience, we
set n0 � 1 in this discussion.

Let N be the maximum number of excitations that we take into account. The
variational equations in this case constitute a set of the equations of the form[

T−1
BEC (E − Ek ,Pk) −

1
E − Ep1...pk

]
γp1...pk �

γp2p3...pk + · · · + γp1p2...pk−1

E − Ep1...pk

+

∑
q ,|q |<Λ

(
γqp2p3...pk + · · · + γqp1p2...pk−1

E − Eqp1...pk

+
γqp1p2...pk

E − Eqp1...pk

)
,

(6.29)

for k � 1, 2, . . . ,N − 2, and[
T−1

BEC(E, 0) −
1
E

]
γ0 �

∑
q ,|q |<Λ

γq

E − Eq − εq
, (6.30)[

T−1
BEC (E − EN−1,PN−1) −

1
E − Ep1...pN−1

]
γp1...pN−1 (6.31)

�
γp2p3...pN−1 + · · · + γp1p2...pN−2

E − Ep1...pN−1

+

∑
q ,|q |<Λ

(
γqp2p3...pN−1 + · · · + γqp1p2...pN−2

E − Eqp1...pN−1

)
.

Here, Ek ≡
∑k

i�1 Epi , Pk ≡
∑k

i�1 pi , and Ep1p2...pk ≡ E∑k
i�1 pi

+
∑k

i�1 εpi . The T-matrix is

given by T−1
BEC(E, p) � −

m
4π

√
−m(E − p2/4m) in the Λ-model with aB � 0.

When the limit Λ→ 0 is taken, the functions denoted by γ are defined only in the
close vicinity of the point at which all the momentum variables are zero. Around this
point, unless the energy exactly satisfies T−1

BEC(E, 0) −
1
E � 0, the equations above are

smooth. Therefore we can approximate γp1p2...pk by γ00...0 ≡ γk (k � 1, 2, . . . ,N − 1), and
set all the pi to 0. This enables us to derive the linear equations for the set of γk :

f (E)Γ �MΓ, (6.32)

where f (E) ≡ ET−1
BEC(E, 0) − 1, Γ ≡ (γ0, γ1, . . . , γN−1)T , and

M ≡

©«

0 Ω 0 0 . . . 0 0
1 Ω Ω 0 . . . 0 0
0 2 2Ω Ω . . . 0 0
0 0 3 3Ω . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . N − 1 (N − 1)Ω

ª®®®®®®®®®®¬

(
Ω ≡ Λ

3

6π2

)
. (6.33)
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For negative, real energies E, f (E) is real and d f (E)/dE < 0. This implies that the largest
eigenvalue of the matrixM, which is positive, corresponds to the ground state. We
cannot set Ω � 0 in the above equation because the diagonalizability ofM is lost at this
point and the limit Ω→ 0 is not continuous. To take this limit, we makeM Hermitian
and thus explicitly diagonalizable as follows:

PMP−1
�

©«

0 Ω1/2 0 0 . . .

Ω1/2 Ω
√

2Ω1/2 0 . . .

0
√

2Ω1/2 2Ω
√

3Ω1/2 . . .

0 0
√

3Ω1/2 3Ω . . .
...

...
...

...
. . .

ª®®®®®®®¬
(6.34)

� Ω1/2

©«

0 1 0 0 . . .

1 Ω1/2 √
2 0 . . .

0
√

2 2Ω1/2 √
3 . . .

0 0
√

3 3Ω1/2 . . .
...

...
...

...
. . .

ª®®®®®®®¬
, (6.35)

where

P ≡ diag

(
1,Ω1/2, . . . ,

Ωk/2
√

k!
, . . . ,

Ω(N−1)/2√
(N − 1)!

)
. (6.36)

This makes it clear that the largest eigenvalue scales asΩ1/2 ∝ Λ3/2 in the limit of Λ→ 0.
In particular, this implies that the limiting energy is determined by f (E) � 0, which

gives E � E0 ≡ −
24/3π2/3n2/3

0
m . Note that this is exactly the same equation as the one that

derives from the one-excitation ansatz. Therefore, we conclude that the Bose polaron
with aB � 0 has a finite ground-state energy within the Λ-model in the high-density
limit of the background Bose gas.

The above equation also indicates that the leading correction to the ground-state
energy vanishes as Λ3/2 in the limit of Λ→ 0. More precisely, suppose that the largest
eigenvalue ofM is α. Then the energy is determined by

α � f (E) ' δE · f ′(E0) � −
3

27/3π2/3 δE, (6.37)

where δE ≡ E − E0 and E0 is the solution of f (E) � 0. For example, when the maximum
number of excitations is N � 3, we obtain α '

√
3Ω1/2 � Λ3/2/

√
2π. We thus obtain

δE ' −211/6Λ3/2/3π1/2. This is consistent with the numerical solution of the variational
equation, as shown in Fig. 6.6.
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Figure 6.6: Correction to the dense limit in the Λ-model. We calculate δE ≡ E − E0
within the trial wavefunction with three excitations, by directly solving the variational
equations (solid) and from the largest eigenvalue ofM (dashed). Here, E0 ≡ −24/3π2/3n2/3

m
is the ground-state energy in the high-density limit.

6.2.4 Measurement of the ground-state energy

Before ending the discussion on the ground-state energy, we would like to point out that
it is experimentally accessible in ultracold atomic systems as demonstrated in the recent
experiments [106, 107]. Here, we summarize an experimental scheme to determine the
ground-state energy of the Bose polaron relative to the non-interacting system. We focus
on the homonuclear setting, where we use the same atomic species for the impurity and
the background Bose gas and they are distinguished by hyperfine states [107].

Let |↑〉 be the hyperfine state corresponding to the Bose gas and |↓〉 to the impurity.
Since they are two internal states of the same atomic species, there is a well-defined
energy difference ∆ ≡ E↓ − E↑, which is a single-atom property. This can be used as
an absolute energy reference to measure the ground-state energy of the Bose polaron.
Suppose that we prepare a gas of atoms in the |↑〉 state and shine on it a radio-frequency
pulse of ω to transfer atoms from |↑〉 to |↓〉. The transition rate then has a peak
at ω � ωpeak, which is generally different from ∆ due to the initial- and final-state
interactions, the latter of which leads to the polaron ground-state energy Epol. Therefore,
one can find

Epol � ωpeak − ∆, (6.38)

where we have retained the leading order in n0aB
3, assuming that the atoms in the |↑〉

state interact weakly with each other.
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The linear response theory allows us to make more quantitative discussion [107, 171].
The coupling of the two states is described by the Hamiltonian,

Ĥrf �
∑

p

(
b̂†p ĉ†p

) (
0 Ω∗e iωt

Ωe−iωt ∆

) (
b̂p

ĉp

)
(6.39)

where Ω is the Rabi frequency, and ω is the frequency of the pulse. Here, b̂p and
ĉp represent atoms of the same species in the different hyperfine states |↑〉 and |↓〉,
respectively. From the Kubo formula, the rate of transfer is

ÛN↓ � −2Ω2 ImD̃(ω), (6.40)

where D̃(ω) is the Fourier transform of

D(t − t′) � −iθ(t − t′)
〈
0

�����
[∑

p

b̂†p(t)ĉp(t),
∑

q

ĉ†q(t′)b̂q(t′)
] ����� 0

〉
, (6.41)

and |0〉 is the ground state of a gas composed of |↑〉 atoms. By noting that up to the
leading order in n0aB

3,

b̂p |0〉 �
√

n0δp ,0 |0〉 , ĉp |0〉 � 0, (6.42)

we can rewrite D(t − t′) as

D(t − t′) � −in0

〈
0
���Tĉp�0(t)ĉ†q�0(t

′)
��� 0〉 ≡ n0Gimp(p � 0, t − t′), (6.43)

where T is the time-ordering operator, and Gimp represents the impurity Green function.
This means that the measurement of the transfer rate gives the information on impurity’s
spectral function A(p , ω) ≡ −2ImG̃imp(p , ω):

ÛN↓ � Ω2A(p � 0, ω). (6.44)

Here, ω � 0 is not the interacting ground-state energy, but the ground-state energy
of the Bose gas without the impurity. If the |↓〉 state does not interact with the |↑〉
state, it has a peak at ω � ∆ because of the energy difference between |↑〉 and |↓〉. The
ground-state energy of the interacting Bose polaron with respect to the non-interacting
system can be found from the shift of the peak frequency from ∆.

A similar method has also been used for a heteronuclear setting, where the impurity
and bosons are different atomic species [106]. One needs two internal states of the
impurity atom, one of which resonantly interacts with bosons and the other does not or
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only weakly interact. If this is the case, one can extract the ground-state energy of the
Bose polaron from a shift of the peak frequency from its known value for a single atom.
Therefore, by using these methods, we can measure the ground-state energy of the Bose
polaron and test its universality experimentally.

6.3 Other observables

We now discuss the ground-state properties of the Bose polaron other than the energy.
Here, we calculate the quasi-particle residue, the effective mass, and the Tan’s contact.
We focus especially on how sensitive they are to the three-body parameter a− and the
boson-boson scattering length aB.

6.3.1 Quasi-particle residue

The quasi-particle residue Z is defined as the squared overlap between the true ground-
state wave function of the Bose polaron and that of the decoupled system. In terms of
the variational wave function, it is written as

Z � |α0 |2 (6.45)

�
g2

0
E2

(
√

n0γ0 −
∑

q

vqγq

)2

, (6.46)

where we have assumed that the wave function |Ψ〉 is normalized.
In Figure 6.7(a), we show the results for the quasi-particle residue at unitarity for

aB � 0. Over the entire range of n1/3
0 |a− |, Z is significantly smaller than unity. It is

natural to have Z → 0 in the dilute limit because the few-body cluster is orthogonal
to the decoupled impurity state. On the other hand, we find that Z does not show the
convergence to finite values with the increasing number of Bogoliubov excitations, even
in the intermediate-density regime. This suggests that the residue vanishes at unitarity
when aB � 0, and that the impurity loses the quasi-particle nature. We note that the
vanishing residue in the limit of aB→ 0 is not unique to the Bose polaron in the unitary
regime; it is known within a perturbation theory for weak impurity-boson interactions
that the residue approaches zero when aB→ 0.

Remarkably, the quasi-particle residue is highly sensitive to the scattering length
aB between bosons. In Figure 6.7(b), we plot the residue within the r0-model with
aB � |a− |/(2.1 × 104), which is compatible with the hard-core model. It demonstrates
that a finite aB significantly enhances Z. In addition, it makes the residue converge fast;
the trial wave functions with two and three Bogoliubov excitations give close results.
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(a) aB � 0

(b) aB � |a− |/(2.1 × 104)

Figure 6.7: Quasi-particle residue of the Bose polaron at unitarity. (a) We show the
results for the r0-model (blue) and the Λ-model (red) for aB→ 0. The different curves
(dotted, dashed, and solid) represent the number of Bogoliubov excitations in the trial
wave function (from one to three). (b) We calculate the residue with aB � |a− |/(2.1× 104),
in a way compatible with the hard-core model in Refs. [110, 119]. Here, we show the
results of the r0-model with zero (blue) and finite (gray) aB.
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These qualitative results, that the residue is zero for aB � 0 while it is nonzero for
aB , 0, are also reproduced by the next-to-the-leading order perturbation theory within
the r0-model, which is valid in the high-density regime. From Eq. (6.19), we find

∂ωΣ
(4)(ω, 0)

��
ω�E(2) � −

1
E(1)
Σ(4)(E(2), 0) + g2

0

∑
q

(E(2) − 3q2/4m)2 + (E(2))2

(−7E(2)q2/4m + 3q4/4m)2
, (6.47)

∼ 2
√

3
7

(
1

8πn0 |r0 |3

)1/4
+

L
|r0 |

, (6.48)

where L denotes a diverging length scale, indicating that the integral has a linear infrared
divergence. This implies that the wave function of the polaron is orthogonal to that of
the impurity decoupled from the Bose gas due to the large amplitude of the low-energy
excitations. Such excitations are, however, suppressed when the Bose gas has a finite
coherence length. A detailed diagrammatic analysis is given in Appendix B. In short, the
linear Bogoliubov dispersion and the cancellation of the particle and hole propagation
lead to a infrared-finite result. In particular, we find

Z − 1
2
∝

√
aB
|r0 |

(6.49)

when aB/|r0 | � n0aB
3 � 1.

Therefore, we conclude that the residue is suppressed when aB → 0 and is sensitive
to aB. Although the three-body repulsion can stabilize the Bose polaron even when
aB→ 0, it is not enough to prevent unbounded excitations of the low-energy modes.

6.3.2 Effective mass

The impurity acquires an effective mass m∗ due to the interaction with the bosonic bath.
To define the effective mass, suppose that E(p) is the energy of a Bose polaron with a
given momentum p, where the rotational symmetry is assumed. The effective mass m∗

is then given as the second derivative of E(p):

(m∗)−1
�
∂2E(p)
∂p2

����
p�0

. (6.50)

We can calculate it within the variational ansatz; however, due to the complexity of the
calculation, we here truncate the variational wave function at two Bogoliubov excitations.
We describe in Appendix C how to calculate m∗ within the variational approach.

In Figure 6.8(a), we plot the inverse effective mass of the Bose polaron at unitarity
for aB → 0. For the densities n0 |a− | . 100, the two models give almost the same
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(a) aB � 0

(b) aB � |a− |/(2.1 × 104)

Figure 6.8: The inverse effective mass of the Bose polaron as a function of the dimension-
less three-body parameter. (a) Results for the r0-model (blue) and the Λ-model (red)
for aB → 0. The solid line denotes the results obtained for the two-excitation ansatz,
and the dashed line for the one-excitation ansatz. (b) Comparison of the results for
the r0-model with the QMC calculation for the hard-core model (gray dots). For the
r0-model, we show the results for aB→ 0 (solid) and aB � |a− |/(2.1 × 104) (dashed).
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effective masses. In particular, they converge to 1/3m as n0 → 0. This is because we
truncate the wave function with two Bogoliubov excitations and the ground state for
n0→ 0 within the approximation is the lowest Efimov trimer, whose mass is 3m. If N
bosons can be bound to the impurity to form a cluster state, the effective mass should
converge to (N + 1)m in the dilute limit. In the high-density regime, the results become
model-dependent.

In Figure 6.8(b), we also compare our results with the QMC calculation based on
the hard-core model of the Bose polaron [119]. Here, we show the results within the
r0-model for aB � 0 and aB , 0; in the latter case we fix aB � a−/(2.1 × 104) again.
The variation of the effective mass within the plotted region is similar between the
two models when a finite aB is taken into account in the r0-model. However, we also
find a significant discrepancy between them. It is possible that we would have better
agreement by taking more excitations into account, but at this point, it is difficult to
reach any conclusion on the universality of the effective mass and the effect of a finite aB.

6.3.3 Tan’s contact

Tan’s contact C is defined from the energy as

C ≡ 4πm
∂E

∂(−1/a) , (6.51)

where a is the s-wave scattering length of the impurity-boson interaction [53]. Ex-
perimentally, the contact can be measured by using a Feshbach resonance to tune the
scattering length and applying the above definition [93]. It is also accessible from
the high momentum tail of the momentum distribution, the short-range singularity
of the density-density correlation function [52], and the high-frequency tail of the
radio-frequency spectroscopy [64–67]. Physically, it gives a measure of the number of
pairs at short distances [52].

For the two-channel Hamiltonian (6.1), it is shown that the contact can be written
in terms of the closed-channel dimers [172]. In particular, within the variational wave
function, it is given as

C � m2 g2
0

∑
q

〈
Ψ

��� d̂†q d̂q

���Ψ〉
(6.52)

� m2 g2
0

(
|γ0 |2 +

∑
q

|γq |2 +
1
2

∑
q1 ,q2

|γq1q2 |2
)
. (6.53)
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(a) aB � 0

(b) aB � |a− |/(2.1 × 104)

Figure 6.9: Tan’s contact for the Bose polaron at unitarity as a function of the dimension-
less three-body parameter. (a) Results for the r0-model (blue) and the Λ-model (red)
with one (dotted), two (dashed), and three (solid) Bogoliubov excitations for aB→ 0. (b)
Comparison of the results for the r0-model with those for the hard-core model (gray
dots). We show the results for the r0-model for aB→ 0 (solid) and aB � |a− |/(2.1 × 104)
(dashed).
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Note that this is well-defined in the limit of g0 → ∞ because the closed-channel
amplitude γ scales as O(g−1

0 ) (see the discussion in Section 2.2.1). Therefore, this
expression is also applicable to the Λ-model, where g0→∞ is implied.

We show the results for the contact in Fig. 6.9(a). In the dilute limit, n−1/3C is
proportional to (n1/3 |a− |)−1, indicating that the contact is constant in this limit and
proportional to |a− |−1. It is a natural consequence of the fact that the only length scale at
unitarity is a− when n0→ 0 and aB→ 0. The numerical results demonstrate that Tan’s
contact is a model-independent function of n1/3

0 |a− |. We also compare our results with
the QMC calculation of the hard-core model in Fig. 6.9(b). Note that some of the data
points of the QMC are given for relatively high densities, where n1/3

0 |r0 |, n1/3
0 Λ

−1 ∼ 1
and the model dependence is significant. For the points in the many-body universal
regime, they are consistent with our results, although the statistical uncertainty is large.
In the same plot, we also show the variational results with a finite aB, which indicates
that the contact has a relatively weak dependence on aB. Therefore, we conclude that
the contact in the ground-state Bose polaron is also a universal function of n1/3

0 |a− |.
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Chapter 7

Conclusions

In this thesis, we have investigated universal few-body phenomena and their conse-
quences inmany-body systems in an anisotropic p-waveFermi gas andan impurity-boson
system.

Chapter 2 is devoted to reviewing the physics of a Feshbach resonance and the
construction of the effective-field theory, which is called the two-channel model. Such an
effective-field theory is particularly suited for discussingwithout referring tomicroscopic
details the universal properties that emerge in resonantly interacting systems. Indeed,
although we have constructed the two-channel model to faithfully reproduce a Feshbach
resonance, the two-channel model is the same field theory as the ones that have been
used to describe low-energy nuclear systems. Thus, the results that follow are relevant
not only to ultracold atomic gases but also to nuclei and other systems with resonant
interactions.

In Chapter 3, we have discussed the universal relations in an anisotropic p-wave
Fermi gas. Firstly, we have shown the short-range singularity in correlation functions.
Specifically, we have found that the momentum distribution at large momenta p has
a characteristic p−2-decay, whose coefficients define the p-wave contact tensor Cmm′.
We have also found that the density-density correlation function has a short-range
r−4-divergence, whose coefficients are the p-wave contact tensor. Secondly, we have
proved the adiabatic sweep theorem, which states that the p-wave contact tensor is
the derivative of the energy with respect to the generalized p-wave scattering volume.
This gives the direct connection of the p-wave contact tensor and the thermodynamic
quantity. In the p-wave superfluids, where axisymmetry can be spontaneously broken,
we have derived the expression of the p-wave contact tensor within the mean-field
theory. The result indicates that the different superfluid phase can be distinguished
by measuring the p-wave contact tensor. One concern about these findings is that
the generalized p-wave scattering volume cannot be controlled by magnetic Feshbach
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resonances. Instead, we propose using the Λ-configuration of the Raman lasers to
control the generalized scattering volume and test our results.

In Chapter 4 and 5, we have addressed the universality of the few-body spectra
in the impurity-boson systems at unitarity. In Chapter 4, we have investigated the
mass-balanced case, where the mass of the impurity is equal to that of a boson. We have
calculated the three-body and four-body spectra within the r0-model and the Λ-model,
and shown that dimensionless ratios constructed from the energies at unitarity and
the critical values of the s-wave scattering length are independent of the models with
high accuracy. This universality is more than the one expected in the identical-boson
Efimov states, because in that case, the universality holds for excited states but not for
the ground state. We have argued that the separation of the scales of the two-body
physics and the Efimov effect is at the core of our results. We have demonstrated it
by the results for a lighter impurity, for which the two scales are of the same order of
magnitude and the lower Efimov states deviate from the discrete scaling relation. The
opposite limit of a heavy impurity has been studied in Chapter 5. In this limit, we
have shown that the r0-model can be mapped to a Hamiltonian similar to Anderson’s
single impurity model. By using this mapping, we have solved the three-body problem
analytically, and found the logarithmic correction to the binding energy for finite s-wave
scattering lengths. We have compared this result with the numerical solution of the
Λ-model, and argued that this logarithmic correction is, in fact, a universal consequence
of the effective three-body repulsion.

In Chapter 6, we have addressed the many-body problem of the Bose polaron. In
particular, we have discussed the ground-state properties of the Bose polaron. We have
employed the variational wave function that incorporates three Bogoliubov excitations
on top of the Bose-Einstein condensate formed by the background Bose gas. This
enables us to examine effects of four-body correlations. By comparing the ground-state
energies that we calculate within the r0-model and the Λ-model with the result for the
hard-coremodel [119], we have found that for sufficiently low densities, the ground-state
energy is a universal function of n1/3a− and is relatively insensitive to the boson-boson
interaction aB. The high-density regime is model-dependent but analytically tractable.
By comparing the numerical data with analytical results, we have argued that the
ground-state energy is indeed finite even in the absence of the repulsive interaction
between bosons. We have also discussed the quasi-particle residue, the effective mass,
and Tan’s contact of the Bose polaron at zero temperature. While Tan’s contact as
well as the ground-state energy is relatively insensitive to aB and thus universal, the
aB-dependence of the quasi-particle residue and the effective mass is comparable to or
greater than their a−-dependence. In particular, the quasi-particle residue is strongly
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suppressed in the limit of aB→ 0. This is consistent with the results of the perturbation
theory for a large n1/3 |r0 |, which suggests that the infrared divergence leads to the
vanishing quasi-particle residue. However, the residue converges to a finite value when
we take a finite aB into account; this is also consistent with the perturbation theory.

Our study raises several questions for future research. Regarding the universal
relations in an anisotropic p-wave Fermi gas, theoretical calculations of the p-wave
contact tensor are only done in the mean-field regime of the superfluid phase and
the high-temperature regime. The finite-temperature behavior of the p-wave contact
tensor, especially near the phase transition, is yet to be explored. The connection to
the lower dimensions is also an issue that should be investigated. Universal relations
in a p-wave Fermi gas in one [173] and two dimensions [174, 175] have already been
discussed. In ultracold atomic gases, a resonance in lower dimensions can be realized
by the confinement-induced resonance, where an external confinement introduces
additional anisotropy to the system. In this regard, what is a p-wave contact tensor in
such a confined gas, and how it is related to the contacts defined in lower dimensions,
are interesting questions.

There are also open issues related to the impurity-boson systems. Firstly, there is a
renormalization-group study on a Bose polaron near a Feshbach resonance [121], but, so
far, the three-body interaction has been omitted in their action and thus the three-body
parameter cannot be fixed. It is therefore desirable to have a renormalization group that
incorporates the Efimov effect correctly to characterize the universality that we have
found in this thesis. Such a study may be useful to gain an insight into the universality
of quantities other than the ground-state energy. Secondly, a finite density of impurities
may bring non-trivial many-body effects because two impurities and one boson can
form an Efimov trimer, depending on quantum statistics and the mass of an impurity.
So far, there is a study on two bosonic impurities in a Bose-Einstein condensate [176],
but otherwise, such many-body systems remain largely to be investigated. Another
issue concerns the case with the infinite-mass impurity. Since there is no Efimov effect
in this limit, the unitarity limit becomes scale-invariant. This may lead to a universal
equation of state of an infinite-mass Bose polaron that is parameter-free and resembles
the one in the unitary Fermi gas.
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Appendix A

Integral equations
for states with rotational symmetry

In this appendix, we present a detailed derivation of the integral equations for the Bose
polaron with rotational symmetry. We can also derive the equations for the rotationally
symmetric bound states in the vacuum in a similar way, and the resulting equations are
obtained as the zero-density limit of those for the Bose polaron.

From the Hamiltonian (6.6) and the variational ansatz (6.7–6.11), the stationary
condition ∂(〈Ψ|(Ĥ − E)|Ψ〉)/∂(α∗, γ∗) � 0 gives the seven coupled equations,

Eα0 � g0
√

n0γ0 − g0
∑

q

vqγq , (A.1)

(E − Ep − εp)αp � g0upγ0 + g0
√

n0γp − g0
∑

q

vqγqp , (A.2)

(E − Ep1p2)αp1p2 � g0(up1γp2 + up2γp1) + g0
√

n0γp1p2 , (A.3)

(E − Ep1p2p3)αp1p2p3 � g0(up1γp2p3 + up2γp3p1 + up3γp1p2), (A.4)

(E − ν0)γ0 � g0
√

n0α0 + g0
∑

q

uqαq , (A.5)

(E − ν0 − Ep − εd
p)γp � −g0vpα0 + g0

√
n0αp +

∑
q

uqαqp , (A.6)

(E − ν0 − Ed
p1p2)γp1p2 � −g0(vp1αp2 + vp2αp1)

+ g0
√

n0αp1p2 + g0
∑

q

uqαqp1p2 ,
(A.7)

where we have introduced the following notations:

Ep1p2 ≡ Ep1 + Ep2 + εp1+p2 , (A.8)

Ep1p2p3 ≡ Ep1 + Ep2 + Ep3 + εp1+p2+p3 , (A.9)
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Ed
p1p2 ≡ Ep1 + Ep2 + ε

d
p1+p2 . (A.10)

Note that for the Λ-model, the domains of the α functions are the entire momentum
space while those of the γ functions are restricted by Λ. For n0 → 0, the equations
for α0, the pairs (αp , γ0), (αp1p2 , γ0), and (αp1p2p3 , γp1p2) are decoupled from each other,
yielding the Schrödinger equations for the few-body systems in the vacuum, such as
Eqs. (4.6) and (4.7) for the four-body system. Substituting the first four equations into
the latter three to eliminate the α functions, we obtain[

g−2
0 (E − ν0) −

∑
q

u2
q

E − Eq − εq

]
γ0

�
n0γ0

E
+

∑
q

(
uqγq

E − Eq − εq
−

vqγq

E

)
−

∑
k ,q

uk vqγkq

E − Ek − εk
,

(A.11)

[
g−2

0 (E − εd
p − ν0 − Ep) −

∑
q

u2
q

E − Epq

]
γp �

√
n0

(
upγ0

E − Ep − εp
−

vpγ0

E

)
(A.12)

+
n0γp

E − Ep − εp
+

∑
q

(
upuqγq

E − Epq
−

vpvqγq

E

)
+
√

n0
∑

q

(
uqγpq

E − Epq
−

vqγpq

E − εp − Ep

)
,[

g−2
0 (E − ν0 − Ed

p1p2) −
∑

q

u2
q

E − Ep1p2q

]
γp1p2 �

n0γp1p2

E − Ep1p2

+

{[
−

up1 vp2γp1p2

E − Ep1 − εp1

+
√

n0
∑

q

(
up1γp2

E − Ep1p2

−
vp1γp2

E − Ep2 − εp2

)
(A.13)

+

∑
q

(
up1 uqγqp2

E − Eqp1p2

+
vp1 vqγqp2

E − Ep2 − εp2

)]
+ (p1↔ p2)

}
,

where (p1↔ p2) represents the terms that symmetrize the expression within {} with
respect to the exchange of p1 and p2. It is clear by inspection that the coefficients of
the γ functions on the left-hand side can be written in terms of the medium T-matrix
defined as

T−1
BEC(E, p) ≡ g−2

0

(
E − εd

p − ν0

)
−

∑
q

u2
q

E − Eq − εq+p
. (A.14)

The momentum integral in this definition is apparently ultraviolet divergent. This is also
the case for the Λ-model because the restriction on the domain of the γ functions does
not affect the range of the integration in the definition of TBEC. However, the restriction
can be removed by recalling the definition of the T-matrix of the vacuum two-body
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scattering,

T−1
0 (E, p) � g−2

0

(
E − εd

p − ν0

)
−

∑
q

1
E − εq − εq+p

(A.15)

≡ m
4π

[
a−1 − r0

2
m(E − εd

p) −
√
−m(E − εd

p)
]
, (A.16)

and subtracting this from T−1
BEC:

T−1
BEC(E, p) � T−1

0 (E, p) +
∑

q

[
1

E − εq − εq+p
−

u2
q

E − Eq − εq+p

]
. (A.17)

This is explicitly UV-finite because for a large q, the integrand is of O(q−4). By using
TBEC(E, p), we obtain the coupled integral equations:[

T−1
BEC(E, 0) −

n0
E

]
γ0 �

√
n0

∑
p

(
upγp

E − εp − Ep
−

vpγp

E

)
−

∑
p ,q

up vqγpq

E − εp − Ep
, (A.18)[

T−1
BEC(E − Ep , p) −

n0
E − εp − Ep

]
γp �

√
n0

(
upγ0

E − εp − Ep
−

vpγ0

E

)
+

∑
q

(
upuqγq

E − Epq
+

vp vqγq

E

)
+
√

n0
∑

q

(
uqγpq

E − Epq
−

vqγpq

E − εp − Ep

)
,

(A.19)

[
T−1

BEC(E − Ep1 − Ep2 , p1 + p2) −
n0

E − Ep1p2

]
γp1p2 � −

up1 vp2γ0

E − εp1 − Ep1

+
√

n0

(
up1γp2

E − Ep1p2

−
vp1γp2

E − εp2 − Ep2

)
+

∑
q

(
up1 uqγp2q

E − Ep1p2q
+

vp1 vqγp2q

E − εp2 − Ep2

)
+ (p1↔ p2).

(A.20)

For the Λ-model, all the integrations in Eqs. (A.18–A.20) are cut off at Λ.

For states with rotational symmetry, we can restrict our consideration to the γ
functions of the following form:

γp � γ1(|p |), γp1p2 � γ2

(
|p1 |, |p2 |,

p1 · p2

|p1 | |p2 |

)
, (A.21)

together with a single number γ0. This reduces the dimensions of the domain of γp1p2

from six to three, in particular, andmakes it viable to solve themdirectly by discretization.
Moreover, we can perform the integration over all the angular variables except for the
ones that are the arguments of the unknown functions. For Eqs. (A.18) and (A.19), we
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immediately obtain the following form:[
T−1

BEC(E, 0) −
n0
E

]
γ0 �

√
n0

∫
q2 dq
2π2

[
uqγ1(q)

E − Eq − εp
−

vqγ1(q)
E

]
−

∫
p2q2 dp dq dz

8π4

up vqγ2(p , q , z)
E − εp − Ep

,

(A.22)

[
T−1

BEC(E − Ep , p) −
n0

E − εp − Ep

]
γ1(p) �

√
n0

(
upγ0

E − Ep − εp
−

vpγ0

E

)
+

∫
q2 dq
2π2

{
mup uq

2pq
ln

[
1

2m (p − q)2 + Ep + Eq − E
1

2m (p + q)2 + Ep + Eq − E

]
+

vpvq

E

}
γ1(q)

+
√

n0

∫
q2 dq dz

4π2

[
uqγ2(p , q , z)

E − Ep − Eq − 1
2m (p2 + q2 + 2pqz)

−
vqγ2(p , q , z)
E − Ep − εp

]
.

(A.23)

For Eq. (A.20), care is necessary to perform the angular integral in∑
q

up1 uqγp2q

E − Ep1p2q
�

∑
q

up1 uqγ2(p2, q , zp2q)
E − Ep1 − Ep2 − Eq − εp1+p2+q

. (A.24)

Here, we introduce the notations

zp1p2 ≡ cos θp1p2 ≡
p1 · p2

|p1 | |p2 |
. (A.25)

In the integrand, we can simultaneously take p2 as the zenith direction and the polar
angle θp2q and the azimuth angle as the independent variables. Since zp2q is one of
the arguments of γ2 in the integrand, we cannot integrate over zp2q in advance. On the
other hand, in principle, the azimuthal integration can be done. To show the results
explicitly, first we note that zp1q appears in εp1p2q as

εp1p2q �
1

2m
(
p2

1 + p2
2 + q2

+ 2p1p2zp1p2 + 2p1qzp1q + 2p2qzp2q
)
. (A.26)

It can be written in terms of the independent angles as

zp1q � zp1p2 zp2q +

√
1 − (zp1p2)2

√
1 − (zp2q)2 cosφ, (A.27)

where φ is the relative azimuth angle of q from p1. By using this, we can rewrite the
integrand as

up1 uqγ2(p2, q , zp2q)
E − Ep1 − Ep2 − Eq − εp1+p2+q

� −
up1 uqγ2(p2, q , zp2q)

f + g cosφ
, (A.28)
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where

f (p1, p2, q , zp1p2 , zp2q) � Ep1 + Ep2 + Eq +
1

2m
(
p2

1 + p2
2 + q2)

1
m

(
+p1p2zp1p2 + p2qzp2q + p1qzp1p2 zp2q

)
− E,

(A.29)

g(p1, q , zp1p2 , zp2q) �
p1q
m

√
1 − (zp1p2)2

√
1 − (zp2q)2. (A.30)

This makes the φ-dependence of the integrand clear, and therefore we can use a formula∫ 2π

0

dφ
a + b cosφ

�
2π√

a2 − b2
(a > b > 0), (A.31)

and obtain the following expression:∑
q

up1 uqγp2q

E − Ep1p2q
� − 1

4π2

∫ q2up1 uqγ2(p2, q , zp2q) dq dzp2q√
f (p1, p2, q , zp1p2 , zp2q)2 − g(p1, q , zp1p2 , zp2q)2

. (A.32)

Substituting this into Eq. (A.20) and doing other angular integrals that can be done, we
obtain the third integral equation for states with rotational symmetry:[

T−1
BEC(E − Ep1 − Ep2 , |p1 + p2 |) −

n0
E − Ep1p2

]
γ2(p1, p2, zp1p2)

� −
up1 vp2γ0

E − Ep1 − εp1

+
√

n0

[
up1γ1(p2)
E − Ep1p2

−
vp1γ1(p2)

E − Ep2 − εp2

]
(A.33)

+

∫ q2 dq dzp2q

4π2

(
−

up1 uq√
f 2 − g2

+
vp1 vq

E − Ep2 − εp2

)
γ2(p2, q , zp2q) + (p1↔ p2).

This is the integral equation for a three-variable function, which can be numerically
solved by discretizing the continuous variables.
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Appendix B

Perturbative analysis of the r0-model

In this appendix, we present the details of the perturbation theory within the r0-model
of the Bose polaron. As the properties of the impurity are of our interest, we first discuss
the impurity self-energy diagrams up to the order of g4

0. We then proceed to other
quantities that we can derive from the self-energy.

Here is the dictionary of the diagrammatic representation [158]:� �
√

n0,� � G1(ω, p) ≡
u2

p

ω − Ep + i0
−

v2
p

ω + Ep − i0
,

	 �
 � G2(ω, p) ≡ −
upvp

ω − Ep + i0
+

upvp

ω + Ep − i0
,

� � D(ω, p) ≡ 1
ω − εd

p + i0
,

� � G(ω, p) ≡ 1
ω − εp + i0

, � g0.

(B.1)

For each loop integral, we attach a factor of i. Here, we assume the unitarity where the
dimer has zero detuning (no ν in D(ω, p)). Instead of introducing the bare detuning ν0

as we do in Sec. 2.2.1, we explicitly make the pair propagator finite by subtracting the
diverging part (see Sec. B.2). We also note that the impurity and a boson interact only
by forming a closed-channel dimer, and that one dimer line always has two vertices at
its edge. Thus the self-energy only has terms with the even power of g0.
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�
(a)

�
(b)

Figure B.1: Self-energy diagrams of O(g2
0). At this order, the impurity forms a closed-

channel dimer and dissociates back into the open channel. This process occurs either (a)
by binding a boson in the condensate, or (b) by creating a particle-hole pair, of which
the particle binds with the impurity into a closed-channel molecule. The processes
represented by (b) have a non-zero contribution only when ξ , 0 because otherwise the
only excitation of the Bose gas is the particle excitation. We denote the corresponding
terms by Σ(2)a and Σ(2)b .

B.1 Self-energy to O(g2
0)

For a general aB, there are two diagrams of the impurity self-energy to O(g2
0), which are

shown in Fig. B.1. From Eq. (B.1), they immediately read

Σ
(2)
a (ω, p) � g2

0n0D(ω, p) �
g2

0n0

ω − εd
p
, (B.2)

Σ
(2)
b (ω, p) � i g2

0

∫
d4q
(2π)4 D(ω + q0, p + q)G1(q0, q) (B.3)

� i g2
0

∫
d4q
(2π)4

1
ω + q0 − εd

p+q + i0

(
u2

q

q0 − Eq + i0
−

v2
q

q0 + Eq − i0

)
, (B.4)

where the 4-momentum q denotes the pair of the frequency q0 and the 3-momentum q.
In the frequency integration, one can take the integral contour that encloses the upper
half of the complex-q0 plain. This leads to

Σ
(2)
b (ω, p) � g2

0

∫
d3q
(2π)3

v2
q

ω − Eq − εd
p+q + i0

, (B.5)

which clearly vanishes for aB → 0. It is worthwhile to note that the integral does not
have a singularity for ω → 0 and p → 0, and that in this limit, the only scale in the
integrand is the coherence length ξ. This implies that for small ω and p, apart from a
numerical constant,

Σ
(2)
b (ω, p) ∼ −

1
|r0 |ξ

, (B.6)

where g2
0 � 8π/m2 |r0 | is used. In contrast, Σ(2)a is singular for ω → 0 and p → 0, and

therefore is dominant for g0→ 0.
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� �� +�
Figure B.2: Dyson equation for the impurity propagator at the lowest order.

The singularity of the leading self-energy Σ(2)a drastically alters the physical picture
of the weak-coupling limit from that of the decoupled impurity. This becomes clear
if we consider the dressed impurity propagator. It is defined by the Dyson equation
shown in Fig. B.2 and has the following analytic expression:

G(ω, p) � 1
ω − εp − g2

0n0/(ω − εd
p)
. (B.7)

For p � 0, the pole with the smallest real part, which corresponds to the ground state, is
ω � −

√
g2

0n0 � −
√

8πn0/|r0 |/m ≡ E(2). Around this point, G is approximated by

G(ω, p) ' 1
2

1
ω − E(2) + (εp + εd

p)/2
, (B.8)

which implies that the quasi-particle residue is Z � 1/2 and the effective mass is
m∗ � 4m/3. The ground state in this limit is in fact the equal-weight superposition state
of the decoupled impurity and a closed-channel dimer. For the current perturbative
analysis, an important consequence of this consideration is that we need to incorporate
this picture from the next order to obtain the correct results. In other word, the impurity
propagator in the O(g4

0) diagrams should be replaced by the dressed one G.

B.2 Self-energy to O(g4
0)

In Figure B.3, we show all the six diagrams to this order. Among them, only Σ(4)a

corresponding to Fig. B.3(a) remains finite for aB → 0. Moreover, we shall show that
all the others give smaller corrections, compared with Σ(4)a . On the other hand, the
quasi-particle residue is subtler because we need to take Σ(4)b to Σ(4)d into account to have
a finite result.

Now we can readily write down the self-energies of O(g4
0). After the frequency

integrals, we obtain the following expressions:

Σ
(4)
a (ω, p) �

g4
0n0

(ω − εd
p)2

∫
d3q
(2π)3

[
u2

qG(ω − Eq , p + q) + m
q2

]
, (B.9)
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(a)
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(b)
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(c)

�
(d)
�

(e)
�

(f)

Figure B.3: Self-energy diagrams of O(g4
0). We denote the diagrams (a-f) by Σ(4)x

(x � a , b , . . . , f ). We need to use the dressed impurity propagator in order to obtain
the correct results to the next-to-the-leading order. Among the six diagrams, only
Σ
(4)
a survives for aB → 0. For aB > 0, the diagrams (b-f) diminish faster than Σ(4)a in

the weak-coupling limit. However, when calculating the derivatives of them, e.g., the
residue, we need to take other diagrams into account in order to remove an infrared
divergence.

Σ
(4)
b (ω, p) � Σ

(4)
c (ω, p) � −

g4
0n0

ω − εd
p

∫
d3q
(2π)3

uq vqG(ω − Eq , p + q)
ω − Eq − εd

p+q
, (B.10)

Σ
(4)
d (ω, p) � g4

0n0

∫
d3q
(2π)3

v2
qG(ω − Eq , p + q)
(ω − Eq − εd

p+q)2
, (B.11)

Σ
(4)
e (ω, p) � g4

0

∫
d3q
(2π)3

d3k
(2π)3

v2
k[u

2
qG(ω − Eq − Ek , p + q + k) − m/q2]

(ω − Ek − εd
p+k)2

, (B.12)

Σ
(4)
f (ω, p) � g4

0

∫
d3q
(2π)3

d3k
(2π)3

uqvquk vkG(ω − Eq − Ek , p + q + k)
(ω − Eq − εd

p+q)(ω − Ek − εd
p+k)

. (B.13)

The subtraction of the ultraviolet divergence in Eqs. (B.9) and (B.12) is equivalent to
setting the bare detuning ν0 to

ν0(Λ) �
m g2

0
2π2 Λ � g2

0

∫
|q |<Λ

d3q
(2π)3

m
q2 , (B.14)

as we did in Sec. 2.2.1, and to retaining the terms up to O(g4
0).

Similarly to the discussion in the previous section, we can compare the different
diagrams with the help of the dimensional analysis. A naive dimensional analysis for
ω→ 0 and p → 0 leads to the following scaling relations:

Σ
(4)
a ∼

1
|r0 |ξ

, Σ
(4)
b � Σ

(4)
c ∼

n1/2
0 ξ

|r0 |3/2
, Σ

(4)
d ∼

n0ξ3

|r0 |2
, Σ

(4)
e � Σ

(4)
f ∼

1
|r0 |2

. (B.15)

110



This is too simplistic, however, for Σ(4)b � Σ
(4)
c and Σ(4)d have infrared divergence for

ω → 0 and p → 0. This results in a logarithmic correction to Σ(4)b and Σ(4)c and an
additional factor of |r0 |1/2/(ξ2n1/2

0 ) for Σ
(4)
d . With these corrections considered, we still

see that Σ(4)a is dominant in the weak-coupling limit. Indeed, it has the same scaling as
Σ
(2)
b . Therefore, the first correction to Σ(2)a is given by Σ(2)b and Σ(4)a for aB , 0 and only

by Σ(4)a for aB � 0. Note that this consideration is about the self-energy itself. When
we discuss the quasi-particle residue, for example, we consider the derivative of the
self-energy, in which more care must be taken to obtain meaningful results.

B.3 Ground-state energy

The energy can be found by solving E � Σ(E, 0). From the leading-order self-energy
Σ
(2)
a , we obtain the following ground-state energy:

E � E(2) � − 1
m

√
8πn0
|r0 |

. (B.16)

When Σ(ω, p) � Σ(2)(ω, p) + δΣ(ω, p), the equation for the energy reduces to

E � Σ
(2)
a (E(2) + δE, 0) + δΣ(E(2) + δE, 0) (B.17)

' E(2) − δE + δΣ(E(2), 0), (B.18)

where δE ≡ E − E(2) and we have dropped the higher-order corrections. Therefore, the
next-to-the-leading-order correction to the ground state energy is obtained by

δE �
1
2
δΣ(E(2), 0). (B.19)

Below, we consider the cases with aB � 0 and aB , 0 separately.

Case 1: aB � 0

In this case, only Σ(4)a alone gives the next-to-the-leading-order correction to the ground-
state energy. By noting that uq → 1, Eq → εq , and (E(2))2 � g2

0n0, it is straightforward
from Eq. (B.9) to obtain

Σ
(4)
a (E(2), 0) �

2
m

√
3
7

(
8πn0

|r0 |5

)1/4
. (B.20)
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Therefore, the ground-state energy is

E ' − 1
m

√
8πn0
|r0 |

+
1
m

√
3
7

(√
8πn0

|r0 |5

)1/4

. (B.21)

Case 2: aB > 0

As shown in the previous sections, the next-to-the-leading-order correction to the
self-energy comes from the following two terms:

δΣ(E(2), 0) � Σ(2)b (E
(2), 0) + Σ(4)a (E(2), 0). (B.22)

By using the expressions for them, we obtain

δΣ(E(2), 0) � g2
0

∫
d3q
(2π)3


v2

q

E(2) − Eq − εd
q
+

u2
q

E(2) − Eq − εq −
g2

0n0

E(2)−Eq−εd
q

+
m
q2

 . (B.23)

The integral is not singular in the limit of E(2)→ 0. Therefore, to obtain the next-to-the-
leading-order correction only, we can safely set E(2)→ 0,

δΣ(0, 0) � g2
0

∫
d3q
(2π)3

[
−

v2
q

Eq + εd
q
−

u2
q

Eq + εq
+

m
q2

]
(B.24)

�
8π

m |r0 |ξ

∫
dx
2π2

[
− x2 + 1 − x

√
x2 + 2

x2 + 2 + x
√

x2 + 2/2
− x2 + 1 + x

√
x2 + 2

x2 + 2 + x
√

x2 + 2
+ 1

]
(B.25)

�

(
16

√
π
3
− 24√

π

) √
n0aB

m |r0 |
(B.26)

'
2.83268

√
n0aB

m |r0 |
. (B.27)

Therefore, the ground-state energy to the next-to-the-leading-order correction is

E � − 1
m

√
8πn0
|r0 |

+

(
8
√
π
3
− 12√

π

) √
n0aB

m |r0 |
. (B.28)

B.4 Quasi-particle residue

In terms of the self-energy, the quasi-particle residue Z is given as

Z−1
� 1 − ∂ωΣ(ω, 0)|ω�E . (B.29)
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Considering the leading-order self-energy Σ(2)a first, we find that

∂ωΣ
(2)
a (ω, 0)

���
ω�E(2)+δE

' −1 +
2δE
E(2)

, (B.30)

where we retain the next-to-the-leading-order correction to the shift of the ground-state
energy. Combining this with the corrections to the self-energy, we obtain

Z−1 ' 2 − 2δE
E(2)
− ∂ωδΣ(ω, 0)|ω�E(2) , (B.31)

where δΣ ≡ Σ − Σ(2)a . Clearly, this is consistent with the comment at the end of Sec. B.1.
Equivalently, we obtain the leading correction to the quasi-particle residue as follows:

Z − 1
2
' δE

2E(2)
+

1
4
∂ωδΣ(ω, 0)|ω�E(2) . (B.32)

Case 1: aB � 0

In this case, we only need to consider Σ(4)a and set uq � 1, vq � 0, and Eq � εq . The
frequency derivative of this term is

∂ωΣ
(4)
a (ω, 0) �

(
∂ω

g4
0n0

ω2

) ∫
d3q
(2π)3

[
G(ω − εq , q) +

m
q2

]
+

g4
0n0

ω2

∫
d3q
(2π)3 ∂ωG(ω − εq , q),

(B.33)

and has two contributions, which are distinguished by the part on which the differentia-
tion acts. In the first term, ω outside the integral is differentiated; this leads to the term
in ∂ωΣ(4)a (E(2), 0) of the form

−2
E(2)
Σ
(4)
a (E(2), 0) � −

4δE
E(4)

, (B.34)

where we use δE �
1
2Σ
(4)
a (E(2), 0)which holds true for aB � 0. In the other term, ∂ω acts

on G in the integral, which, in fact, leads to an infrared divergence. For a small q and
aB→ 0, we can use Eq. (B.8) to obtain

∂ωG(ω − εq , q)
��
ω�E(2) ' −

1
2

1
[εq + (εq + εd

q)/2]2
(B.35)

∼ q−4, (B.36)

113



which makes it clear that the integral diverges linearly around q � 0. In total, the inverse
of the quasi-particle residue is

Z−1 ' 2 +
2δE
E(2)

+
L
|r0 |

(B.37)

� 2 − 2
√

3
7

1
(8πn0 |r0 |3)1/4

+
L
|r0 |

, (B.38)

where L represents the linear divergence. This result implies that the quasi-particle
residue is zero within the perturbation theory for aB→ 0.

We would like to emphasize that the infrared divergence persists even if we take
the higher-order self-energy in calculating the dressed propagator. Generally, the
low-momentum expansion of G has the form

G(ω, p) ' Z
ω − E∗ − p2/2m∗

, (B.39)

where E∗ and m∗ are the ground-state energy and the effective mass, respectively, which
are determined within the same order of approximation. Then the derivative of G at
low momenta is again

∂ωG(ω − εp , p)
��
ω�E∗ ∼ p−4. (B.40)

Therefore, as long as this expansion applies to G, the integral in Eq. (B.9) inevitably
diverges for aB→ 0.

Case 2: aB > 0

If we apply the naive counting of the power to each term of ∂ωΣ, we find that Σ(4)a gives
the next-to-the-leading-order correction. Similarly to the case with aB � 0, we can divide
∂ωΣ(4) into two parts:

∂ωΣ
(4)
a (ω, 0) �

(
∂ω

g4
0n0

ω2

) ∫
d3q
(2π)3

[
u2

qG(ω − Eq , q) +
m
q2

]
+

g4
0n0

ω2

∫
d3q
(2π)3 u2

q∂ωG(ω − Eq , q).

(B.41)

For the term in which ∂ω acts on ω−2 outside the integral, we obtain the following
expression:

− 2
E(2)
Σ
(4)
a (E(2), 0) ' −

2
E(2)
Σ
(4)
a (0, 0) (B.42)
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' 4
√

2
π

√
aB
|r0 |

. (B.43)

Note that for aB , 0, this is not simply −4δE/E(2) because δE has a contribution from
Σ
(2)
b .
A special care is needed when we consider the term involving the derivative of

G, which, for aB → 0, causes the linear infrared divergence. For a nonzero aB, the
Bogoliubov dispersion is linear in momentum, weakening the divergence of ∂ωG around
the pole to

∂ωG(ω − Eq , q)
��
ω�E(2) ∼ p−2. (B.44)

At the same time, a nonzero aB leads to a diverging u2
q ∼ q−1 for a small q, which,

together with the divergence of ∂ωG, results in a logarithmic divergence of the integral.
This, however, does not affect the final result because the same divergence occurs in

∂ωΣ
(4)
b , ∂ωΣ(4)c , and ∂ωΣ(4)d , which have been omitted so far, and they cancel out. To see

that this cancellation happens, it is sufficient to consider the terms involving ∂ωG. If
we look at Eqs. (B.10) and (B.11), we can approximate ω − Eq − εd

q by ω and take it out
of the integral for p → 0 and q → 0. Then each integral has the logarithmic infrared
divergence from the integrands of the form

−uqvq ∂ωG(ω − Eq , q)
��
ω�E(2) (B.45)

and

v2
q ∂ωG(ω − Eq , q)

��
ω�E(2) . (B.46)

Here, the sign in Eq. (B.45) is important. Also, Eq. (B.45) is to be doubled because both
Σ
(4)
b and Σ(4)c have the same contribution. Therefore, by summing up these terms, the

integrand at low momenta is

(uq − vq)2 ∂ωG(ω − Eq , q)
��
ω�E(2) . (B.47)

Since for a small q, uq−vq ∼
√

q, the resulting integral is infrared finite and can simply be
ignored, because after combined with the prefactor, the result scales as ξ/|r0 |, decaying
faster than

√
aB/|r0 | for g0→ 0.

From the discussion above, we conclude that the quasi-particle residue has a finite
value for aB , 0 within the perturbation theory up to O(g4

0). We thus find that

Z−1 ' 2 − 2δE
E(2)

+
2

E(2)
Σ
(4)
a (0, 0) (B.48)
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' 2 −
(
10
√

2
π
− 4
√

2√
3

) √
aB
|r0 |

, (B.49)

or equivalently

Z ' 1
2
+

(
5√
2π
−

√
2
3

) √
aB
|r0 |

, (B.50)

which is finite, in contrast to the case for aB � 0.
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Appendix C

Effective mass obtained
from the variational wave function

The inverse effective mass of the Bose polaron is defined as

1
m∗
δuv ≡

∂2E(p)
∂pu∂pv

����
p�0

(u , v � x , y , z), (C.1)

where E(p) is the energy dispersion of the Bose polaron and the rotational symmetry is
assumed. A straightforward way to calculate this quantity is to determine E(p) for a
small p and differentiate it numerically. However, it is numerically expensive to extend
the variational method to finite p states, and thus it is hard to obtain accurate results by
this method.

Here, we take an alternative approach based on a perturbative expansion of the
variational equation. By regarding the total momentum p as a small parameter, we
expand the variational equation in terms of p, and evaluate the second derivative of the
ground-state energy. A similar method was used to calculate the effective mass of a
Fermi polaron by Trefzger and Castin [127].

In the variational method, the integral equation has the following structure:

K̂0(E) |γ〉 � 0, (C.2)

where |γ〉 is the set of the γ functions to be determined, and K̂0(E) is a linear integral
operator. The ground-state energy is E � E0, where the smallest eigenvalue of K̂0(E)
crosses zero. We can generalize the variational equations for a finite p that implicitly
gives E(p):

K̂[E(p), p] |γ〉 � 0. (C.3)

117



Note that this is not a Schrödinger equation, as we have removed the α functions and K̂ is
no longer of the form Ĥ − E. However, the fact that K̂ is a Hermitian matrix allows us to
evaluate the eigenvalues perturbatively in a manner similar to the Rayleigh-Schrödinger
perturbation theory for Hamiltonians. Once we have a perturbative expression of the
lowest eigenvalue, the condition that it vanishes gives the energy E(p) for a small p, or
equivalently, the effective mass.

To this end, we first expand K̂[E(p), p] in terms of p:

K̂[E(p), p] ' K̂0 +
∑

u�x ,y ,z

puK̂u +

∑
u ,v�x ,y ,z

pupv

2

(
K̂uv +

∂2E(p)
∂pu∂pv

����
p�0

K̂E

)
(C.4)

� K̂0 +
∑

u�x ,y ,z

puK̂u +

∑
u ,v�x ,y ,z

pupv

2

(
K̂uv +

1
m∗
δuvK̂E

)
, (C.5)

where we use ∂E(p)/∂p � 0, the definition of the effective mass, K̂0 ≡ K̂0(E0), and the
following operators:

K̂u ≡
∂K̂[E, p]
∂pu

����
E�E0 ,p�0

, K̂uv ≡
∂2K̂[E, p]
∂pu∂pv

����
E�E0 ,p�0

, K̂E ≡
∂K̂[E, p]
∂E

����
E�E0 ,p�0

. (C.6)

Owing to rotational symmetry, we can focus on p � pez without loss of generality and
simplify the expansion as follows:

K̂[E(p), p] � K̂0(E0) + pK̂z +
p2

2

(
K̂zz +

1
m∗

K̂E

)
. (C.7)

We use this expansion to obtain the lowest eigenvalue of K̂[E(p), p] for a small p.
Suppose the lowest eigenvalue λ0[E(p), p] is expanded as

λ0[E(p), p] � λ(0)0 + λ(1)0 p + λ(2)0 p2
+ . . . . (C.8)

It should be noted that this is not only an expansion of λ0[E, p] in terms of p, but
also it contains the information about the expansion of E(p). The first coefficient λ(0)0
is the lowest eigenvalue of K̂0(E0), which is zero from the condition determining the
ground-state energy E0 for p � 0. The perturbation coefficients for the higher orders are
written as

λ(1)0 �
〈
γ0

�� K̂z
�� γ0

〉
, (C.9)

λ(2)0 �
1
2

〈
γ0

���� (K̂zz +
1

m∗
K̂E

) ���� γ0

〉
+

∑
i>0

��〈γi
�� K̂z

�� γ0
〉��2

λ(0)0 − λ
(0)
i

(C.10)
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�
1
2

〈
γ0

���� (K̂zz +
1

m∗
K̂E

) ���� γ0

〉
−

∑
i>0

��〈γi
�� K̂z

�� γ0
〉��2

λ(0)i

. (C.11)

Here, λ(0)i is the i-th lowest eigenvalue of K̂0(E0) and |γi〉 is the corresponding eigenvector;
we count i from zero, which corresponds to the ground state satisfying K̂0(E0) |γ0〉 � 0.
By noting that K̂z has odd parity while the ground state is an even-parity state, the
first-order coefficient λ(1)0 automatically vanishes.

Now we return to the condition that determines the ground-state energy, which is

λ0[E(p), p] � 0, (C.12)

for any given p. This means that all the perturbation coefficients in Eq. (C.8) are zero, and
that this set of the zero-coefficient conditions determines the low-momentum expansion
of E(p). In particular, λ(2)0 � 0 gives the following expression of the effective mass:

1
m∗

�
1〈

γ0
�� K̂E

�� γ0
〉 [

2
∑
i>0

��〈γi
�� K̂z

�� γ0
〉��2

λ(0)i

−
〈
γ0

�� K̂zz
�� γ0

〉]
. (C.13)

By introducing a projection operator P̂ ≡ ∑
i>0 |γi〉 〈γi |, we can rewrite the effective mass

in the following form:

1
m∗

�
1〈

γ0
�� K̂E

�� γ0
〉 〈
γ0

��� [2K̂zP̂
(
K̂0

)−1 P̂K̂z − K̂zz

] ��� γ0

〉
. (C.14)

This is a particularly convenient form, because we do not need to take the numerical
derivative of the ground-state energy or calculate the derivative of the γ functions. In
this method, we use the derivatives of the integral operator, whose expressions are
known, and take the expectation values within |γ0〉, which is numerically obtained in
the calculation of the ground-state energy.
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