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Chapter 1 INTRODUCTION
1-1. STATEMENT OF THE PROBLEM AND OBJECTIVES

In the designs of structures, the most fundamental and significant design
variables are the geometry of the structures. mechanical and economical properties
of the materials and cross-sectional dimensions that are available for each member
clement. Furthermore, in the designs of cable-stayed bridges and prestressed
concrete bridges the distribution of member forces, such as maximum and minimum
bending moments and axial forces in the member elements, can be controlled
considerably by introducing prestresses into cables. Therefore, the cable prestresses
have also been treated as one of significant design parameters in the practical design.
Depending on the characteristics of these design variables, shape and sizing
variables (geometry of the structures and cross-sectional dimensions) are dealt with
as continuous variables and material variables as discrete variables. The design
variables on cable prestresses are dealt with as external loads.

During the past decades, in the field of structural optimization a large number of
contributions have been made exclusively to the sizing optimization and, in the last
two decades, the shape optimization and topology optimization have been studied
considerably. In recent years, some design sensitivity analysis methods which can
calculate the sensitivities of structural behaviors with respect to design variables in
the optimization process efficiently have also been presented. The evolutional
computer technologies such as artificial neural network and genetic algorithm have
also been studied and attempted to apply to the field of structural optimization.
However, very little attention has been yet paid to total optimization of structures
including material variables and cable prestresses in addition to shape and sizing
variables for the reason of complexity of design methodology. Therefore, the
establishment of total optimal synthesis method for structures, which can optimize
the design problem considering above design variables simultaneously, is a
significant and challenging task. From these standpoints, this study has two
objectives.

The first objective in this study is to propose a total optimal synthesis method
for steel cable-stayed bridges which can determine the most economical values of

cable anchor positions on the main girder, heights of pylons, cross-sectional













formulation of the problem. In earlier studies on this topic, the efforts to solve such
a problem were made by applying the discrete or integer programming
algorithms[45-48]. Okumura and Ohkubo treated the discrete variables as quasi-
continuous variables and solved the problem by using SLP algorithm[49]. In 1980°s
some extensions of the optimization algorithms were attempted to solve the
discrete/continuous formulation problems[50-52]. In 1992 and 1993, Ohkubo et al.
presented a hybrid optimal synthesis method in which shape, material and sizing
variables of truss structures were optimized simultaneously [53.54].

In the field of the optimum design of cable-stayed bridges, the study was begun
in the late 1970’s and the research on this topic has been done mainly in Japan.
Yamada and Daiguji studied an optimum design method based on the optimality
criteria[55]. Kobayashi et al. presented a multilevel optimal design method by using
the SLP algorithm and applied it to three types of cable-stayed bridges with different
supporting systems[56]. Gimsing[57] investigated the rational cable arrangement of
cable-stayed bridges from the structural system analysis viewpoint. All of these
works have focused to determine the optimum element sizes in the main girder,
pylons and cables.

In the earlier studies of determination method for cable prestresses in steel
cable-stayed bridges, Yamada and Daiguji[55] studied a method to determine the
optimal cable prestresses on the basis of the element optimization in the main girder.
Maeda et al.[58] and Nagai et al.[59] determined the cable prestresses by calculating
the support reactions of multispan continuous beam in which the main girder in
cable-stayed bridge is considered as the multispan continuous beam with supports at
the cable anchor positions. Yamada et al. studied the method for determination of
cable prestresses based on the minimum strain energy criterion[60]. Hoshino
studied a practical method to determine the cable prestresses on the basis of a
structural analysis method using modified cross-sectional properties under the
minimum cost criterion[61]. Torii et al.[62] studied a method to determine the cable
prestresses without recursive calculation by introducing the relation between the
redundant forces in statically indeterminate structures and objective function.
Nakamura and Wyatt determined the cable prestresses on the basis of the limit states
design code by using a linear programming algorithm[63]. In most of these
researches, the cable prestresses are determined so as to reduce the peaks of positive

and negative bending moments in the main girder and to average out the bending




moment distributions in the main girder.

In the field of optimal structural control and seismic resistant design, optimum
design methods with frequency constraints have been studied by many researchers
since the earliest study by Turner[64] in 1967. Most of these design methods have
been developed on the basis of the optimality criteria methods using cross-sectional
areas of member elements as the design variable[65-68]. Felix and Vanderplaats[69]
studied the optimum configuration design of truss structures subject to stress, Euler
buckling, displacement and natural frequency constraints using a multilevel
optimization technique. The methods for computing the derivatives of eigenvalues
and eigenvectors have also been studied by many researchers[23,70-75].

With regard to the optimum design of structures subjected to static and seismic
loads, a number of contributions have also been made since the earliest study by
Pierson[76], but most of the works have focused to determine the optimum member

element size distributions in many types of structures [77-86].
1-3. OUTLINE OF THESIS

In this thesis, the structural optimization method based on dual algorithm using
direct and reciprocal variables[15] described in Appendix 1-1 is successfully
extended to propose total optimal synthesis method for frame structures. The outline

of this thesis and summary of each Chapter are follows.

In Chapter 2, a rigorous and efficient optimum design method for steel cable-
stayed bridges is presented. In this design method, not only the cross-sectional
dimensions of the cables, main girder and pylon elements but also the cable anchor
positions on the main girder and the heights of pylons are dealt with as the design
variables, The optimization dealing with cable anchor positions on the main girder
and the heights of pylons is the first challenge in field of optimization of cable-
stayed bridges. The design problem is formulated as a minimum-cost design
problem subject to the stress constraints taken from the Japanese Specifications for
Highway Bridges[JSHB]. The magnitudes of the dead loads and traffic loads, impact
factor, effective widths of the flange plates in the main girder and effective lengths
of the pylon elements for bucklings are also taken from the JSHB. The working
stress at a structural element is calculated as the sum of the stresses due to dead

loads in the cantilever system at the erection closing stage and the stresses due to the




traffic loads and a part of the dead loads in the continuous girder system at the
service stage. The maximum and minimum values of axial force, shearing force and
bending moment at the stress inspection points due to traffic and impact loads are
calculated by using the corresponding influence lines.

The cost-minimization problem is approximated by using the first-order partial
derivatives of objective function and behavior constraints, and mixed direct/
reciprocal design variables. The approximate subproblem is solved by dual method.

The proposed optimum design method has been applied to the minimum-cost
design problems of practical-scale steel cable-stayed bridge with 48 cable stays. The
theoretical rigorousness and efficiency of the proposed optimum design method are
demonstrated by investigating the optimum solutions at different design conditions.
The significance of dealing with the cable anchor positions on the main girder and
the heights of pylons is also emphasized for the minimum-cost designs of cable-
stayed bridges. Furthermore, the practical usefulness of the proposed optimum
design method is also demonstrated by giving the practical design example of the
Swan Bridge (Ube city, Yamaguchi) which was designed by using this proposed

design method.

In Chapter 3, the optimum design method stated in Chapter 2 is extended to be
able to deal with cable prestresses as the design variables, and a general purpose,
rigorous and efficient optimum design system for steel cable-stayed bridges is
developed. In this design system the pseudo-loads applied to the cables are selected
as the design variables with respect to cable prestresses and the optimum cable
prestresses are determined from the economical viewpoint. The design problem is
formulated as a minimum-cost design problem subject to the stress constraints taken
from the JSHB. By investigating a simple design example in which a pseudo-load is
dealt with as design variables in addition to cross-sectional dimensions, it is
illustrated that the computational effort to obtain the optimum solution of the design
problem in which the pseudo-load is dealt with as design variables in addition to
cross-sectional dimensions is remarkably increased compared with that of the
design problem with only cross-sectional dimensions. This result indicates that the
problems of convergency and reliability of the result obtained will arise when the
number of pseudo-loads is increased and, furthermore, the cable arrangement is also
taken into account as design variables. For this reason, the following powerful

two-stage optimum design process is proposed to solve the cost-minimization
















minimize AW(X) = ZL{)‘, X —wy (X )y \— (A1-4)

subject to g,(X)= :[ € s = | 25 ) _\1/ ““F <0 (J=1:m) (Al-5)
XSS X (i=1,m) (4d<6)
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In the above expressions, the symbols (+) and (-) express the signs of the first-
order partial derivatives.

A separable Lagrangian function can be introduced for the subproblem as

L(X,A) =Y L(X,0)+ > 4T, (A1-7)
=l j=1
where 4,20 (j=1---,m)

where I, is the element Lagrangian function given by (A1-8). A, is the Lagrange
multiplier(dual variable) for the jth behavior constraint.

- i 0 I [ gt 02

L‘_(.\',.A)i[m,ﬂh_\:ﬂun (X0 oz +YA‘LL, Xi=e (X r— (A1-8)

‘ X, | = 5 %

The solutions of the dual problem X" and A° can be obtained by maximizing

L(X,A) with respect to A and minimizing it with respect to X. X,, which minimizes

L(X,,)), is given by the simple expression in eq. (A1-9) which is derived from the

necessary condition for the minimum of L(X,,X), namely, 8L /X, =0, and the side

constraint.
if B ]" <Zg<[X; ] X =z,
i wZes T X=X/ (A1-9)
it Z,2[xT, T |

where
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By introducing the convex and separable approximate subproblem(eqs.(A1-4)-(Al-
6)) using the direct and reciprocal design variables, X are improved analytically in
eq.(A1-9) which is expressed explicitly in terms of A. This is one of advantages of
this optimization algorithm.

The minimized Lagrangian function with respect to X is denoted as /(A):

() =min L(X, 1) (A1-10)

Following the minimization process with respect to X, the Lagrangian function
(%) is maximized with respect to the dual variables A by using a Newton-type
algorithm. In the Newton-type algorithm, the dual variables A corresponding to the

active behavior constraints at the current stage are modified iteratively as

k{:«r\ =}’\m+dnvsm (/\1-11)
or in a scalar form

A =710 1 ol g 1) (jeSe) (Al1-12)

f

where S denotes the search direction of A for active constraints, S,; is the set of
active behavior constraints and « represents the step length parameter. The search

direction S" is given by
8 =[] -vi(2?) (Al1-13)

where VI(X) is the vector of first derivatives of /() with respect to A and the
components of the vector are simply given by the approximate primary active

constrains, namely,







P=50000kgf

Cross section A-A

2B=400cnm

Fig.A1-1 2-bar truss and cross section of member elements

(2) 2-bar truss e.\'ample[m

The above structural optimization method is applied to the minimum weight
design of 2-bar truss shown in Fig.A1-1. The cross sections of member elements are
assumed to be made of circular steel pipes shown in Fig.A1-1. The plate thickness
of cross section of a member element, 7, and width of truss, 2B, are preassigned as
0.5cm and 400cm. The design variables are the height of truss, H, and averaged
diameter of cross section, d. As the behavior constraints, the stress limitations on
Euler buckling stress and yield stress, g(H,d) and g,(H.d), are taken into account.
The side constraints on H and d are imposed. Considering the above design
variables, behavior constraints and side constraints, the minimum weight design of

the truss is formulated as

Find H, d, which
minimize W(H.d) = p-2mdt+/(B* + H) (A1-18)
: P JB*+H?) #°E d*+f
subject 7 (H,d) =—— = ——<0 Al-19
subjectte &M d) = T h 8§ Bl +H ¢ )
P V/(BZ -FH:')
L (Hd)y=—1———2_ 5 <0 A1-20
Bte=s 4 B o Gad-20)
H'<H<H'|
(A1-21)

d'<d<d* f
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In the numerical example, weight density p, modulus of elasticity E, yield stress o, ,

the lower limits H' and d', and the upper limits H* and d* are. respectively,

assumed as 0.00785 kgf/em’, 2100000kgf/em®, 3000kgf/cm®, 30.0cm and 3.0cm,

and 600.0cm and 30.0cm. Considering these assumed values and preassigned values

the primary optimum design problem can be written as

Find H, d;

which

minimize  W(H.d) = 0.024661.d+/(40000 + H?)

subject to g,(H,d)=159158 —2590645- -

d-H

_ /(40000 + H?)

g, (H,d) = 15915885- ~30000<0
ke

30.0sH< 600.0]

30<d <300 |

o5 /(40000 +H?) % +025
B N — = s
40000+ H?

(Al1-22)

<0 (Al1-23)

(Al1-24)

(A1-25)

The above optimum design problem is solved by the dual method in which the

initial values of H, &, 4, and A, are, respectively, assumed as 500.0cm, 15.0cm,

0.01 and 0.01. The design space of the optimum design problem and iteration

history to the optimum solution are depicted in Fig.Al1-2. At the initial point

(H®,d")=(500.0,15.0), sensitivities of W(H,d), g,(H,d) and g,(H,d) with respect

to H and d are calculated as

OW(H.d)
@y = = 03435
oW (H.d)
@, = 2 213280
(8
o, (H, d)
= C—g’;H— = 66154
og,(H.d
Cu = %{1‘) = 34424
=
0g,(H.d
e %—) = 03148

=

(A1-26)

(A1-27)

(A1-28)

(A1-29)

(A1-30)







(A1-31)

Applying the concept of convex and separable approximation stated in eqs.(Al-4)-
(Al-6) and using the sensitivities obtained above. the primary optimum design
problem defined in eqs.(A1-22)-(A1-25) can be transformed into the following

approximate subproblem at the initial point (H®,d")=( 500.0,15.0).

Find H, d, which
minimize AW(H,d) = 0.3435H +13.280d (Al-32)
1
subject to E‘(H.d):6.6]539[*Iv77454.457—9340.74550 (A1-33)
[
B 1 1 .
g, (H,d) =78700.83 = +1712481—-315626 <0 (A1-34)

30.0 < H < 600.0]

[ (A1-35)

30<d <300

Solving the above subproblem through the optimization process in eqs.(A1-7)-(Al-
17). we can obtain the solutions (H' d')=(66.25,8.70),4 =0.00808 and
A4, =0022137. The design space for the currently approximate subproblem and
improvement history in the approximate design space are shown in Fig.A1-3. Then,
(H',d') are assumed as new initial values (H’,d") and a new approximate
subproblem is derived. This optimization process is iterated until H, 4, A and 4,
converge to constant values. As shown in Fig.A1-2, we can obtain the optimum
solutions (H™,d™)= (156.16,8.62), A™ =0002181 and A™ =0.011463 after 5

iterations.
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(a) main girder (b) pylon

Fig.2-1 Cross sections and sizing variables t_ .t

gus gl

, and A, in the
main girder, pylon and cable elements

anchor positions, and if the lowest cable anchor positions in the pylon, ¥., and ¥,

C1
in Fig.2-2, are larger than 20m, the cross sections c¢an vary at the middle of the ¥
andalzs

Cl

The design variables corresponding to the sizes of cross sections of all member
elements are the cross-sectional area of each cable, A, and the thicknesses of
upper and lower flange plates of each main girder element, t_ and t,, and pylon
element, t, and t,, as shown in Fig.2-1, where t, and t, in the pylon are assumed
to be the same. The thicknesses of these flange plates are dealt with as the converted
thicknesses which include the contributions of the longitudinal stiffeners. These

sizing variables are termed by the vector Z:

Z= [zi I P ] (2-1)
where
2, =[Zy 22|
if i denotes the element of main girder: 7 =[IW by ]-
if i denotes the element of pylon: Z, :[tm,l,,‘][‘ where 1, =1,
if i denotes the element of cable: Z, =

n=ng+nt+nc,

ng : the total number of elements of main girder,




main girder

Fig.2-2 Design variables X.,Y. and element lengths /, and /, for the

main girder and pylon elements

nt : the total number of elements of pylon,

nc : the total number of cables,

q, : the total number of design variables in Z,.

The distance from the pylon to each cable anchor position in the main girder,
X - and the height of the lowest cable in the pylon from the axis of main girder, Y.,
in Fig.2-2 are dealt with as the design variables corresponding to the cable anchor
positions on the main girder and the height of pylon. The distances of each cable in
the pylon, /, and [, are assumed as the preassigned constant values. These design

variables are termed by the vectors X. and Y., respectively:

(2) Design constraints

In this design method, the constraints on stresses are considered as behavioral
constraints. The working stresses at cables, elements of the main girder and pylon
are summarized as the stresses due to dead loads acting in the cantilever system at

the erection closing stage as shown in Fig.2-3 (a), and the stresses due to traffic




loads and a part of dead loads acting in the continuous girder system at the service
stage as shown in Fig.2-3 (b), The magnitudes of dead loads and traffic loads,
impact factor, effective widths of flange plates in the main girder and effective
lengths of the pylon elements for bucklings are taken from the JSHB[4].

[he following constraints related to the stresses at each cable and elements of
main girder and pylon, the slenderness ratios of pylon elements, and upper and
lower limits of the design variables are considered in the optimization process.

(a) The stress at the main girder element:

8, (L, X, YY) = 0(Z, X, Y )—0,(Z) <0 (#= 1e, 1) (2-4)

where
o,(Z,X.,Y.) : the stress due to design loads,
0,(Z): the allowable compressive stress against local buckling or allowable
tensile stress,
m, : the number of stress constraints at the main girder element.

(b) The stress at the pylon element:

0., (Z,X:,Y:) (0, X, Vo) =~

g (Z,X;,Yp)=— — - - oy LR0= gy ) L(2=5)
: G (8, Y (o o (2, X Yr)
- GWA"V/ l_* o
£\ Tt (LX) =

Ty s X o, X ) . N v
(Z.X,,Y,)=J,(Z.X.-.Y-)-“,—‘—‘(_,'*.*ﬂ.mu(l)SO (j=1,--,m) (2-6)
. , [1 o Z, ,

where

8, (Z,X.,Y-): the design constraints on the working stresses,
g, (Z,X.,Y.): the constraints on the buckling stability,
0,(Z,X.,Y.): the axial compressive stress due to design loads,
Ty (Z, X, Y ) : the compressive bending stress due to design loads,
0,4 (Z,Y,;) : the allowable axial compressive stress,
gy - the allowable compressive bending stress not concerning local buckling,
0., (Z,Y.): the allowable stress for Euler's buckling,

0., (Z): the allowable compressive bending stress against local buckling in the
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( b) continuous girder system at service stage
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Fig.2-3 Structure-load systems at erection closing and service stages
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Fig.2-4 Stress inspection points in the elements of main girder and pylon




moment M, axial force N and shearing force S, the most critical composite stress
condition for the determination of plate thickness at each stress inspection point
must be determined by comparing the resultant stresses at six loading conditions in
which N, §, and M are given as maximum and minimum values. The maximum and
minimum values of N, S, and M at the stress inspection points due to traffic and

impact loads are calculated by using the corresponding influence lines.

(4) Formulation of optimum design problem

By taking into account of the design variables and design constraints,

respectively, described in sections 2-2.(1) and (2).

the minimum cost design

problem of the steel cable-stayed bridge can be formulated as follows:

Find Z, X, Y., which
minimize TC()ST'(Z.X(~.Y,-1=ZW(XI , Ye): A(Z,) (2-10)
subject to 8, (Z,X.,¥:)<0 (=L zemms) (2-11)
gG’(Z.X,.Y‘ )<0 (F=1s5me) (2-12)
8, (Z,X:,Y:)<0 =1 m, ) (2-13)
g(Z,Y:)=0 =1 nt) (2-14)
8o, (2, X, Y ) <0 (k=1,--,nc) (2-15)
ZO<Z<ZY; X P <X, Y. <y <¥. (2-16)
where
if i=1~ng:
WX, Ye) =12, 1,(Xe), A(Z)=A4,(Z);
if i=ng+ 1~ng+nr:
W (X, Ye) = Biiiongy * liney (Y » A(Z))= Ay (Z) 5
if i=ng+nt+1~ng+ nt+ nc:
W’v(xl"YK’)=p¢'11-ng—m) 'Iullf»!yfnll(X("Y.L')‘ ’41(»21): :H—m:fnu(Z:);

Pt Pris P price per unit volume of the ith member element at main girder,




pylon and cable, respectively,

loslysl: length of the ith member element at main girder, pylon and cable,
respectively,

A4,(Z),A,(Z),4,(Z,): cross-sectional area of the ith member element at

main girder, pylon and cable, respectively,

2-3. OPTIMIZATION ALGORITHM*!

(1) Convex and separable approximation

Several types of optimization algorithms can be applied to solve the optimum
design problem. In this study, the optimization algorithm developed by Fleury et
al.[7-10] is used for the optimization algorithm. Utilizing the convex and linear
approximation concepts, the objective function, eq.(2-10), and the behavior
constraints, eqs.(2-11)-(2-16), are approximated by using the first-order partial
derivatives of behavior constraints, the primary design variables Z, X,.,Y. and, or
their reciprocal design variables. In the objective function, the constant term can be
neglected in the optimization process and only the change in the objective function,
ATCOST(Z,X.,Y,.), need to be considered. The following approximate subproblem

can then be derived:

Find Z, X Yo which
( 5‘ K v’ r: \
minimize ATCOST(Z,X,Y, )_Z“’\ v’ -Z, ] +Z (Z_")J KX
=1 r=1 04, k=1 Ni=l R
-z(inf\.w,y,('zj’)} ~(\"‘ \L 4 [ Wy Az ”')j ¥,
k=t N 1=1 i N ek 1= /

i= &

-S(Sm, 4lz) (af o

subject to




L P 2 ] \
+Z\L‘H =g, ‘,~()_) }— +U <0 (=1,»++m) (2-18)
1=t \
ZV =727 X X, 2 X Y. '£Ye: SY, (2-19)
where
(2-20)
(,“L’
l"l‘:
:[6 o [ o o o o o o .
B & & e L a5 g 8 e

In the above expressions the symbols (+) and (-) express the signs of the first-
order partial derivatives. A represents the vector of cross section of each member

element.

(2) Optimization algorithm based on dual method
The above approximate subproblem is solved by the dual method. The

optimization algorithm is as follows :

(D Derive a separable Lagrangian function for the approximate subproblem as

shown below:

M

L(Z.X,,Y.,A) = ATCOST(Z,X,..Y,) + 2. 4,-8,(Z, X, Y,)

=1

=S L(ZM Y LX)+ Y LK W)+ D4, -T, (2-21)
=1 k=1 =1 j=1
where 4,20 (j=1,+,m)

A, is the Lagrange multiplier for the jth behavior constraint and U, is a constant

term. L, L, and L, are, in turn, given by the following expressions:




“Z 7-iX -‘Zu‘_”_”vzw~ia_ . (Z' \J " (2-22)
r j=1 Nor=1 r=1

4z} x| in{‘.m .,1_[2"); e Yoms

BT b o (2-23)

L . o2 1)
-‘-Z,A__-[L-,w.)”q-, 8 -—]| (2-24)
2 The solutions of dual problem, Z', X’ Y. and A", can be obtained by
minimizing L(Z,X.,Y..X) with respect to Z, X, and Y., and maximizing it
with respect to A .

Eq.(2-21) has a simple form of a summation of the element Lagrangian functions
L, L, and [, and these functions are formulated in terms of Z or X_. or Y, and
their reciprocals. Therefore, D" =(Z'", \\} which minimize L(Z,X.,Y.,A)
can be obtained analytically from the necessary conditions for the minimums of

L,L, and L, namely, 0L /0Z =0, 8L, /dX, =0, oL /0¥, =0 and the side

constraints:
(a) if @ =a8TCOST/aD, > 0:

D =DY if" R=0or D<DY 1

D' =D if (o ”’[‘;)= 0 or "D =DM ¢ (2-25)

D=0 HE DY D D

s
i o +V

(b) if @, =0TCOST/éD, <0:




D'=D" if (R-w)=0 or D<D" |
D =D® if ¥V,=0 or D,=D" r (2-26)

D'=D if D"<D <D

D (& -
Vo
where
R=-Y 4 -T,-(D) (2-27)
V=D A Ly (2-28)
=]

T, and o, in the above expressions take the following values with respect to

Z, X and Y,

(1) i D, =Z
= ‘
(2-29)
®, =W,-84,10Z \
(ii) it D=X
|
T =ih
[ e : (2-30)
o, = | YW - A(Z0)| - (X&) if @, <0
i \
e o )| if @ >0
& |
(iii) if D=F,
r,=e, |
- \ (2-31)
o=\ W, -4(z°) - () i <0 |
N j=1 v ) .’ |
n ‘
@, ::|ZH', A‘,(Z”)‘ if ;20 |
\ j=1 J A ‘




The minimized Lagrangian function with respect to Z, X, and Y, by the above

expressions is denoted as /(A):

I(A)= min L(Z,X.,Y-.A)
Z.X:.Y L

Following the minimization with respect to Z, X. and Y., the minimized
Lagrangian function /() is then maximized with respect to A by using a Newton-
type algorithm. In the algorithm, the Lagrange multipliers A corresponding to the

active behavior constraints at the current stage are modified iteratively as:

AN =3 gl 80 (2-33)
or in a scalar form

— =) o v X -

A=A %a -8 10 e85 (2-34)

where S" is the search direction of

for active constraints. S, is the set of

active behavior constraints and ¢, is the step length parameter. S" is given by

2x

Sm:A[H(Zm)]"ﬁ[(z‘”) @

'
(2%
wy

where VI(A") is the vector of first derivatives of (1) with respect to A and the
components of the vector are simply given by the values of approximate primary
constraints which are active at the current stage.

H()) is the Hessian matrix of [(A) with respect to A,(j<S,;) and the jkth

component of the matrix is :

B (2-36)

a4

K+l
]{rﬂ = Zf

t

where
B =0 (DY /D' if T,<0, T, <0

[f

>>]

=@, -(B))*/D;  if T,20, T,<0

B=0-(D’V/D, if T,<0, T,20

B=0-D if 7,20, T,>0

O, is given by:

|
w
e




Q== if @20
= 2w, +V) : “
r (2-37)
LT, "
O="r if w, <0

The step length . is first set as 1.0, and at later stages its value is taken as

| 37ty ]

(0 R |
o, = mm‘ 5o

(JeS) (2-38)

with the additional restriction that @, <10 to ensure the non-negativity of A when

S include negative components.

When /(},”"") exceeds the maximum point, «.

max

is reduced and the search is
continued until /(X”'”) is maximized. Based on the modification of A, the primary
variables Z, X. and Y, are improved by eqgs.(2-25)-(2-31) and the set of active
constraints S is also updated. The min.-max. process described above is iterated

until Z, X, Y. and A converge to constant values Z", X{., Y. and 1°.

3 By using Z, X, Y., the minimum web thicknesses of main girder and pylon
elements, t,, are improved so as to satisfy the corresponding stress constraints
on t,.

@ Z°, X7, Y. are assumed as new initial values of the design variables and a new

approximate subproblem is derived. The final optimum solutions can be

determined by iterating steps until Z, X, Y. and A converge to constant

values.

In the above optimization algorithm, it should be noted that if the changing rates
in X, and Y, calculated as per eqs.(2-25)-(2-31) are too large in any one iteration
of the improvement process, the successive solutions may oscillate and in some
cases smooth convergence may not be obtained. For this reason, the adaptive move
limit constraints are restricted such that the maximum rates of change in X, and Y,
are limited to 10 %. It is, also, important to note that if two or more stress
constraints given by eq.(2-18) become active with respect to one flange plate in a
main girder element and a,,, b, and ¢, in the constraints have almost the same

values, the constraints become linearly dependent on each other and consequently

the Hessian matrix H(X) becomes singular. If this is the case, A can be successfully

=18 =
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Fig.2-5 Three span steel cable-stayed bridge with 48 cable stays

Table 2-1 Material properties and minimum plate thicknesses used
for the elements of main girder, pylon and cables

4 9) 10)

No. of {1 2 ) ] 5 6 7 . A th
member | Fy(jco/em?)| o YEN m’)‘ ot 72 | Beu, 21(m)| Ber, £2(m) |ty (mm) t?lmml‘t.ilmml
2225 ‘ | y 3 15.00
g | 14.94
By 2.1X 108 | 500X10% | 1400 800 14.81 18.5 15.3 12.0
25 | | 14.94
Z10-L1s I 30.00 15.00
T:-Ts [ 1900 | 1100 | 30 @ 30 »| 260 | 260 | 280
| r ~ ;
Tes-Ts 21X105 | 700x10% | 2600 | 1500 (Yer1) 26.0 26.0 | 28.0
Ts~-Tho 2600 | 1500 38.0 26.0 26.0 | 28.0
Ci-Ciz | 20X108 [ 900x10* | 5100 | — | ~— = A¢ =0.00001 (m?)
1) Modulus of elasticity 2) Price per unit volume 3) Allowable tensile stress (kg/cm?*)
4) Allowable shearing stress (kg/cm?) ective width of the upper flange plates
6) Effective length for buckling in longitudinal direction 7) Effective width of the lower flange plates

8) Effective length for buckling in trans on

9) Converted minimum upper flange plate t neluding longitudinal stiff
10) Converted minimum lower flange plate thickness including longitudinal stiffeners
11) Converted minimum web plate kness Including longitudinal stiffeners

eners
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Design variables

———————— Design variables

7 only
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M min
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Comparisons of optimum cable arrangement, Mmaxs Mmins Nmaxs

and 7,, in the main girder for the cases in which Z only

and Z, X and Y, are dealt with as design variables ( Y. =75m)







magnitudes of the maximum and minimum bending moments in the pylon are

-

reduced drastically as shown in Fig.2-7,

with 28% reduction in the maximum
bending moment at the main girder position, and are well averaged throughout the
pylon compared with the optimum bending moment distributions in which Z only is
dealt with as the design variable.

As the consequence of the improvements mentioned above due to the changes in
X, and Y., the total cost of the bridge decreases by 8.6% compared with that for the
case in which Z only is dealt with as the design variable.

Similar comparisons can be made for the two optimum solutions obtained from
Y. = 45m which are given in Table 2-3. In this case, 2.7% reduction in the total cost

of the bridge is observed when Z, X, and Y, are dealt with as the design variables.

Design variables © Z, Xc, Yo
==-===== Design variables : Z only
o Bt
5 i A
! _id
! i
i i
Mmin \ M min i
= 1017 H
H
N i
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A & 2048 i
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1
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1 v \
! | H Y, M max
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: / Nmin § | N max
i / ~6073
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-7 Comparisons of Ay, Mmax. Mmins Nmax, Nmin in the pylon for the
cases in which Z only and Z, X, and Y, are dealt with as design

variables (Y2 = 75m)







Table 2-4 Material kind, modulus of elasticity and minimum plate thickness (cross-
3 I
sectional area) for the elements of main girder, pylon and cables

Member Material sy s Minimum plate thickness,
E(Kgf/em")
element Kind Minimum cross-sectional area
Main girder SS400 2% 10° 12.7,12.8,9.0"Y (mm)
Pylon SS400 2.1x%10° 10.0, 9.0% (mm)
Cable SWPR7A 1.95x 10° 970.1° (mm?)

1) Minimum plate thicknesses of tgu.ter.and tge inthe main girder
2) Minimum plate thicknesses of tu and ts in the pylon.
3) Minimum cross-sectional area in the cable

A
7

CASE A /
Ay e " p A /./ "/
[ amssoo | | 4eeso0 | | aesso0 | | 48es00 |
=27200 =27200 =27200 =27200

CASE B N N
=0 W, W
“ﬂoﬂ(ﬂ 485000 485000 | 485000]

=20000 =20000 =20000 =20000

SN
7
)

483000 487000 487000 463000
-12000 28000 ~28000 212000

Fig.2-9 Initial cable arrangements and pylon heights for cases A, B and C
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—— CASE A
—— CASE B
—-— CASE C

& 1
Fig.2-10 Comparisons of the optimum cable arrangements and pylon
heights for cases A, B and C
Table 2-5 Comparisons of the optimum solutions for cases A, B and C
Design CASE A CASE B CASE C
variables init"” opt? | init" opt.”! init."” opt.”
Xeo | 3400m | 31.24m | 3400m | 3230m | 34.00m | 34.00m
Xca 27.20 26.60 29.00 26.94 31.00 24 30
Xcs 20.40 19.11 24.00 | 1772 28.00 19.40
Xcs 13.60 10.00 19.00 10.00 25.00 11.90
Xes 6.80 8.00 14.00 8.00 22.00 8.00
Xcs 6.80 8.00 14.00 8.00 7.00 8.00
Xer 13.60 10.89 19.00 11.04 14.00 10:92
Xes 20.40 14.02 24,00 14.64 21.00 14.39
Xes 27.20 26.71 29.00 27.22 28.00 2723
Xew 34.00 33.00 34.00 33.59 35.00 33.33
Ye 19.00 6.95 10.00 6.85 15.00 125
TCOST 180,758 x 10°(YEN) | 180,755x 10°(YEN) | 180,967x 10°(YEN)

1) Initial values of cable arrangement and pylon height.
2) Optimum solutions of cable arrangement and pylon height
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The distance between adjacent cable anchor positions is set at 6m by taking
into account the restriction related to the design of diaphragm specified in
JSHB[4]. Then, the bridge is re-optimized in which the design variables are
Z and Y. The optimum solution is summarized in Table 2-6 (Step2). The
optimum Y, for Stepl and Step2 are, respectively, 6.85m and 6.89m. The

total cost for Step2 increases 1.2% larger than that for Stepl.

: From the optimum solution in Step2 it is clear that the most economical

height of pylon(Y.+9m) is around 16m. However, in Step3 the height of
pylon is modified as 23m to emphasize the aesthetic feeling for
symbolization in the Tokiwa Park and then, the bridge is optimized again in
which the design variables are Z only. The optimum solution is summarized
in Table 2-6(Step3). At the optimum solution, all cross-sectional dimensions,

il Y I

ers tas Ly A, are determined by the minimum plate thicknesses and
minimum cross-sectional area. The total cost for Step3 increases 4.9% and

3.6% larger than those for Stepsl and 2, respectively.

J00

Front View of Pylon Cross Section of Main Girder

Fig.2-12 General view of the Swan Bridge













[ EN] 1 [N, a4,)
A, = t—|——"—5.—=
\ 8z,/) 4, 4 oz,

M| a1, M| ey, oy, i AN
=iyl ey il L z f— =
0% 11 82, | G BTy |4 0z, )
(A2-3)
(b) For constraint 8.5
(N1 [N|a4] 1 J’( C*Mj_\',
a,, = Lt“ ’J.———,.—" F—ugl =
*~ ez, )4, £ ez, [ P Uz, ),
M| e, M|ey,] e, { 1 l oN
-y =k Ly sl ||} el
LS eZy Bz || P g, | 4y N OZ, )
IN| 64, o, @0, 6o,
—— +— L (A2-4)
4282, o 07, ). ©OZ
\ N M|
where B, ={l1-(0y/0.)} s o, =—2, T =Yy

I, .y, are, respectively, the moment of inertia of the ith member element and the
distance from the neutral axis to top fiber of cross section in the pylon. The sign +

in () indicates that the identical sign (+ or -) to N, or M, should be chosen.

(3) Sensitivities of g, in the cable with respect to Z,

Q)
Z

D
N
5

In the above expressions, the positive directions of member forces are defined in

Fig. 2-4. The calculations of sensitivities of stress constraints with respect to X,

and Y, can be carried out in the same manner by replacing Z, into X and Y, in

the above expressions.













3-2. FORMULATION OF OPTIMUM DESIGN PROBLEM

(1) Design variables

In this optimum design system, the pseudo-loads Pp applied to each cable as
seen in Fig.3-1 are taken into account as the design variables with respect to the
cable prestresses in addition to the design variables described in Chapter 2. Namely,
the shapes of cross sections of main girder and pylon are assumed as the box types
depicted in Figs.2-1 (a) and (b), respectively. The span lengths, number of cables,
height and width of cross sections of main girder and pylon, and material types to be
used for each structural element are assumed as the preassigned constant design
parameters. The cross sections in the main girder and pylon can be varied at the
same positions described in section 2-2.(1). The design variables related to the
cross-sectional dimensions of all member elements are the cross-sectional area of
each cable, Ac, and the thicknesses of upper and lower flange plates of each main

girder element, t,

« and t . and pylon element, t, and t,. as shown in Fig 2-1, where
t, and t, in the pylon are assumed to be the same. The thicknesses of these flange
plates are dealt with as the converted thicknesses which include the contributions of

the longitudinal stiffeners. These sizing variables are denoted as Z, hereafter.

T

The distance from the pylon to each cable anchor position on the main girder,

L=\ Z i 2 (3-1)

X, . and the height of the lowest cable in the pylon from the axis of main girder, Y.,

in Fig.2-2 are dealt with as the design variables with respect to the cable anchor

Ltk

57,/( Pr-/ ‘\F:" ;>
S led| [ x e =

Fig.3-1 Design variables X,., Y. and Pp




Fig.3-2 Determination of cable prestresses

positions on the main girder and the height of pylon, and these design variables are
termed by the vectors X. and Y., respectively.

X =[Xen XmotiZ] (3-2)
A 29 AN 7 (3-3)

where K and L are, respectively, the numbers of design variables with respect to X,
and Y,..

As the design variables with respect to the cable prestresses. we select the
pseudo-loads applied to each cable, Pp, as seen in Fig.3-1.

Pp:[P‘,.,].[’;,:,---,}"h“]' (3-4)

where ne denotes the total number of cables.
The optimum prestresses to be given to the cables, Ps, can be determined as the

resultant forces of P; and the axial forces in the cables, N¢, which are obtained by

analyzing the bridge subjected to P; only as shown in Fig.3-2
P =P; + N (3-3)
(2) Design constraints
In this design system, the following constraints related to the stresses at each

cable and elements of main girder and pylon, slenderness ratios of the pylon
elements, and upper and lower limits of the design variables, which are specified in

the JSHB([8], are considered in the optimization process.

— 80—




(a) The stress at the main girder element;

gﬂ‘_(Z.X,.Y‘.PP):G‘('Z.X,,Y‘.Pp)fard(Z)SO (B= 172 ) (3-6)

(b) The stress at the pylon element:

G2, X, Y, Py) G (L X, Y )

g, (Z.X.,Y..P,)

¢ —-1<0
(3-7)
g, (Z,X:, Yo P)=0(Z. X, Y, Py) +- Oy (L. X, 'Y"P"’\ —o., (Z)<0
L L2 X NP i
M
(j =, -5, m0) (3-8)
(¢) The slenderness ratio of the pylon element:
2,(Z,Y-)=1,(Ye) /7 (Z)=120<0 (j=1.2-,nt) (3-9)
(d) The stress at the cable element:
80y (Z. X Yei Bp) =0 (2, X, Y, Bp) ~ 0, €0 (k=1,:+,mc) (3-10)
(e) The upper and lower limits of the design variables:
Zi = Tzl UX I = XL Bevaliesys o M0 Sp it pl <Pt (3-11)

The indexes in the above expressions are explained in section 2-2.(2).

The minimum web plate thicknesses of each elements of main girder and pylon
are determined so as to satisfy the composite stress criteria on the web plates.

The working stress at a structural element is calculated as the sum of the stresses
due to dead loads in the cantilever system at the erection closing stage and the
stresses due to traffic loads and a part of dead loads in the continuous girder system
at the service stage. The two structure-load systems at erection closing stage and
service stage (see Figs.2-3 (a) and (b)) are analyzed by the finite element method as
a 2-dimensional plane frame structure.

The maximum and minimum values of N, S, and M at the stress inspection

points shown in Figs. 2-4 (a) and (b) due to traffic and impact loads are calculated




by using the corresponding influence lines.

(3) Formulation of optimum design problem
By taking into account of the design variables and design constraints described
in sections 3-2.(1) and 3-2.(2), the minimum cost design problem of steel cable-

stayed bridge can be formulated as follows:

Find A, P ] which

minimize TCOST(Z, X, Y, ‘P;,):i\&]{x( : Yo ) A(Z )'—i 558, (3E12)

subject to 8, (Z,X.,Y..P;) <0 (= egme) (3-13)
8o (2K Y, Be) 20 (j=1,---,m,) (3-14)
gﬂ‘:(Z.XHY‘.P?)SO (=1, ) (3-15)
g,(Z,Y.)<0 (j=1,--,nt) (3-16)
g, (Z.X..Y..P,)<0 (k=1,"+.nc) (3-17)

Vet S G, S5 e DR A D T (3-18)

where T, is the cost for unit loading of P, and as it is reasonable to assume

T,, =0.0. In practice its value is taken as 0.0 in our design system.

3-3. OPTIMUM DESIGN METHOD BY TWO-STAGE OPTIMIZATION
PROCESS
(1) Two-stage optimization process!®'"!

When we attempt to solve the optimum design problem defined in egs.(3-12)-
(3-18), it will be found that the computational effort to obtain the optimum solution
is remarkably increased compared with the design problem with only cross-sectional
dimensions. This matter is illustrated with a simple design example of cable-stayed
system shown in Fig.3-3.

In this problem, the width of cross section in the beam, B, a cross section of




[}

t=2.5em

= o Cross Section C

Fig.3-3 A cable-stayed system

cable, Ac, and a pseudo-load applied to the cable, P;, are dealt with as the design
variables. The stress due to positive bending moment at point (a), stresses due to
positive and negative bending moments at point (b) in the beam, and stress in the
cable are taken into account as the behavior constraints, g,(B.P.). g/~ (B,P,),
g, '(B.P,) and g.(A.,P,). The objective is to minimize the volume of the structure.
Then, the optimum design problem for the structure shown in Fig.3-3 can be

formulated as:

Find B, A, Py, which

minimize V(B,A.) = p,(20000B-50000) + p, -500-A . (3-19)

bi ' o (B.P.)= 600000-M _(P.
et e e e S

600000 M, (P,)
== L brp

g - D - 1) ’—:I
87 (B.P) =~ o oy, (3-21)

600000-M, (P,) ) 3
g;"([ﬂ’,,)=—%5‘ﬁ-h <0 (322
: B" —(B-5) )

TP . 3-23
go(AcP)="5"2 o <0 e

A ;

where the bending moments at points (a) and (b), M, (P,). M, (P,), and cable tension

T.(P,) are, respectively, given by

M, (P,) =1875—25-T.(P,) (3-24)




M, (P,) =250.0—5-T,.(P,) (3-25)
swit B
384F1  48FI
1 &
E.A. 48EI

T(Ps)= B (3-26)

In the problem, the following values are assumed, namely, E=2100000kgf/em?,

E.=2000000kgf/cm?, [=20m, /.=5m, o, =1900kgf/cm®, o,=5000kgf/cm?, p,=1.0,
p.=2.0. The sensitivity of objective function with respect to P, is zero, namely, the

contribution of P, to the objective function is not considered. By solving this

16000000 4000
14000000 4 3500
V,: Design variables=B A T
V;: Design variables=B A P: ]
12000000 4 3000
4
10000000 41 2500
< ] )
o 8000000 1 2000
= - o
6000000 4 1500
4000000 P+ 4 1000
: A ]
L S ]
AL 4
2000000 A Al 1 500
k -A-A--4
r‘ Pp 4
L 4
0 DU S W S T U ST YA S U S S T 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of iteration

Fig.3-4 Iteration histories for the problems in which design variables
are B and A.. and B, A; and P,
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problem with the aid of dual method, we can obtain the optimum solutions as
B=29.2cm, Ac=11.67cm?, P,=423.55tf and T.(P,)=58.33tf. To investigate the effect
of treatment of design variable P, on the computational effort to obtain the optimum
solution the design problem with only cross-sectional dimensions, B and A, are
also solved. For this problem the optimum solutions obtained are B=33.95¢cm. A=
12.34cm?, T.(P,)=61.68tf. The iteration histories for the problems in which design
variables are B and A, and B, Ac and P, are compared in Fig.3-4. As clearly seen
from Fig.3-4, the optimum solution for the problem in which design variables are B
and A. can be obtained after 5 iterations quite efficiently, while, for the problem
with B. A¢ and Py, 15 iterations are required until P, converges to the constant value.
This result indicates that the problems of convergency and reliability of the result
obtained will arise when the number of pseudo-loads is increased and, furthermore,
the cable arrangement is also dealt with as design variables. For this reason, the
following two-stage optimization process is proposed in this study to solve the
optimum design problem in eqs.(3-12)-(3-18).

At the first stage optimization process, Z,X., Y. or the selected design
variables among Z, X, Y. by the designer are dealt with as the design variables and
the optimum solutions of those design variables are determined by the optimization
algorithm developed in Chapter 2. Namely, applying the convex and linear
approximation concept the objective function and the behavior constraints are
approximated by using the first-order partial derivatives and the primary design
variables, Z,X., Y.. and their reciprocal design variables. The approximate
subproblem is solved by dual method. The optimized TCOST, Z, X, and Y, under
the design loads P, at this stage are denoted as TCOST‘(PR). Z'(Py), Xi(P;) and
Yr.(P;r)'

As it will be described in the design examples, the effects of the optimum
pseudo-loads on the optimum cable anchor positions X[ and Y. are negligibly
small. Therefore, after the first stage optimization process, X:(Py) and Y;(P,) are
fixed, and a finite value of pseudo-load AP is applied to the ith cable in addition
to the design loads P, and the pseudo-loads P, at the current stage. The cable-
stayed bridge is optimized again dealing with Z only by utilizing the first stage
optimization algorithm described in Chapter 2. The optimized TCOST, g and Z by
this process are denoted as TCOST“(PR +P, +§/-;). gO(PR +P, +E_»,.) and Z°(P, +

) 123 +§p,)‘ The approximate sensitivities of TCOST, g and Z with respect to 7, are,




then, calculated by a finite difference formula using the two optimum solutions
obtained under the loads P, +P, and P, ?I’?«T[’,s-,. Then, a linear programming
problem in terms of the finite increments or decrements of pseudo-loads, +AP, or
-APi;"" (where K denotes the iteration number) is formulated utilizing the
sensitivities obtained above and the move limit constraints on + APy and - AP . The
inerements or decrements of pseudo-loads, +APS or -AP,, to be applied to the
cables for minimizing the objective function are determined with the aid of a
modified LP algorithm, and the changes in Z due to +APS or -APS, AZ®. are
calculated from the sensitivities of Z with respect to P,,. The cable-stayed bridge
with Z*(=Z*"'+AZ") is re-optimized for the combined effect of the design loads
P, and the improved pseudo-loads P (=P " +'_\P;'). The improvements of P, are
iterated until TCOST converges to the minimum value.

(2) First stage optimization process!'>'?!

At the first stage optimization process. Z, X, Y., or the selected design
variables among Z, X, Y, by the designer are dealt with as the design variables.
Utilizing the convex and linear approximation concept, the primary design problem
(egs.(2-10)-(2-16)) is transformed into the approximate subproblem with the
objective function and behavior constraints, the primary design variables X,., Y,
and their reciprocal design variables. In the objective function, the constant term
can be neglected in the optimization process and only the change in the objective
function, ATCOST (Z.X,..\" ) need to be considered. The approximate subproblem
is solved by dual method. In the optimization algorithm based on dual method, a
separable Lagrangian function L(Z,X.,Y.,A)(eq.2-21) is introduced and the
optimum solutions of Z,X.,Y. and A can be obtained by minimizing
L(ZAX(\Y‘..,A) with respect to Z, X, Y. and maximizing it with respect to A. The
values of Z, X,., Y, which minimize the L(Z.X[ ,Y,.l) are given by the simple
expressions (eqs.(2-25)-(2-31)) analytically. The maximization of L(Z.X{.Y,V.X) is
carried out by the Newton-type algorithm (egs.(2-33)-(2-38)). In this optimization
process, the adaptive move limit constraints, maximum 10%, are imposed on the
changing rates of X. and Y. to ensure smooth convergence to the optimum
solutions. The detailed algorithm of first stage optimization process is explained in

Chapter 2.
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Fig.3-5 A finite pseudo-load AP,
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(3) Second stage optimization process' )

(a) Calculation of sensitivities with respect to pseudo-loads P,

As described in section 3-3.(1), the optimum pseudo-loads P, are determined by
using a modified LP algorithm. For the formulation of linear programming problem,
the sensitivities of total cost, stress constraints and cross-sectional dimensions with
respect to the pseudo-loads P, need to be calculated.

The optimum cable anchor positions X; (Py) and Y.(P;) determined during
the first stage optimization process by considering only the design loads P, are
found to be scarcely affected by the optimum pseudo-loads as seen in the design
examples. Therefore, X{(P,) and Yi(P;) are fixed in the second stage
optimization process. In the calculation of the sensitivities with respect to the ith
pseudo-load P, , a finite value of pseudo-load APy, is applied to the ith cable, as

shown in Fig.3-5

in addition to the design loads P, and the current pseudo-loads P,.

The cost minimization problem of the cable-stayed bridge subjected to P,, P, and

APp; can then be formulated as:

Find Z(P, +P, +APp), which
minimize TCOST(P, + P, + APr) = Y. W, - 4, (Z,(Py + Py + AP))
=1
+ T, (P, +APp) (3-27)
subject to g +P, +§,.‘) <0 G=1 50 - m) (3-28)




ZD < Z(P, +P, + APp) < 2 (3-29)

[n the above formulation, Z is the only design variable. g is the jth constraint in
the set of design constraints in €qs.(3-13)-(3-17). As described in section 3-2.(3),
the value of 7, is taken as 0.0 in our design system.

The optimum design problem formulated in eqs.(3-12)-(3-18) can be solved
quite readily by using the first stage optimization algorithm. The cost of computing
the final optimum pseudo-load P, is affected considerably by the magnitude of
APp,. After an initial investigation of the convergence to the optimum P,, we
determined the upper limit of the magnitude of APy as 5% of the maximum cable
tension produced by the design loads in the ith cable. The optimum values of
TCOST, g and Z obtained by solving the optimum design problem in eqs.(3-27)-
(3-29) are denoted, respectively, as TCOST’(P, +P, +APx), g’ (P, + P, + APp) and
Z°(P, +P, +APp).

The approximate sensitivities of TCOST, g, and Z, with respect to P, ,
denoted as 7, d, and ¢, , are calculated using the following finite difference

formula :

7 _ OTCOST(AP+)
| 2P,

_ TCOST’(P, +P, + AP)~TCOST’(P, +P,)

(3-30)
APp )
3g,(APn)  g'(Py +P, +APn)— g’ (P, +P,) s
d,= = - (3-31)
ap, AP
= @Zw(ﬁ"-‘) = er(l)k +P + AP = Zijr(P'{ +Py) (3-32)
Crri a‘nm M);n \ ™

where TCOST’(P, +P,), g?(l’R +P,) and Z, (P, +P,) are, respectively, the optimum
values of TCOST, g, and Z,, of the bridge subjected to the design loads P, and

pseudo-loads P .

(b) Formulation of linear programming problem
Utilizing the above sensitivities, the objective function and the design

constraints, TCOST and g, are approximated to the linear expressions on AP,.
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Consequently, a linear programming problem is derived for the determination of the
improvements of P,, AP,, 5o as to reduce the total cost of the bridge. This can be

stated as:

Find AP, which

minimize ATCOST(AP,) = Y. T-AP, (3-33)

subject to 8 (APy)= > d, AP, +g (P +P,)<0  (=1,---.m) (3-34)
AP, | < &-APy (=1, .nc) (3-35)

where ¢ is the adaptive move limit parameter on AP,. Based on our investigations
of the convergence of P, to the final optimum solutions, its value is assumed as 4.0

in our design system.

(¢) Determination of the best AP, by modified LP algorithm

In the design of cable-stayed bridge, the cables are prestressed by not only the
tensile force but also the force to reduce the tensile stress if it is found to be
effective in lowering the total cost of the bridge.

Consequently, in the linear programming problem, eqs.(3-33)-(3-35). we

introduce new variables AP} and AP} in place of AP, . AP, is defined as
AP, = AP;, — AP} (i=1,---,nc) (3-36)
where AP 20, AP} =20

and the linear programming problem is re-formulated as follows:

Find AR, ARy, which
minimize ATCOST(AP;, APy)=>"T,-AP;, — Y T - AP} (3-37)
1=] =]
subject to g (APL,AP)=>"d, AP, —> d,- AP
=t 5
+g, Py +P,)<0 (=1:,mp) (3-38)
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Fig.3-6 Simplex tableau for determination of AP,
|aP;, — APy| < £ AP, (i =1,++,nc) (3-39)

where mp is the total number of active constraints during the first stage optimization

process and the calculation of the sensitivities with respect to P, in section 3-
3.(3).(a).

The best improvements of P,, AP;” and AP./°, which result in the highest
reduction of the total cost of the bridge can be obtained by continuously pivoting the
rows and columns of the pivot elements in the simplex tableau depicted in Fig.3-6.
These elements are selected based on the following decision criteria:

Determine column r. such that

E

=1,---,nc+nc}

=min{E| E <0, i

if i is odd \ e
( (3-41)

where e
if i is even|

Determine row s, such as




if » is odd ‘
where & =

—~id s if ris 6\\3[1‘

We can determine AP; and AP} as the best improvements of P, when the total cost
does not reduce any more from further pivoting. The best AP; and AP/ obtained in
this manner are denoted as AP;” and AP’ respectively.

Once AP;” and AP;" are known, the feasibility with AP,” and AP.° for the
remaining approximate constraints in eq.(3-34) which were not considered in the
linear programming problem in eqs.(3-37)-(3-39) needs to be investigated. If some

of these constraints are not satisfied. they will have to be added to the linear

programming problem in egs.(3-37)-(3-39), and AP;” and AP}’ need modification
so as to satisfy all approximate constraints g. In the modified linear programming
problem the decision criteria used in the selection is:

Determine row s, such that

-g, =mini—g,| - g, <0, J

5

Yo (3-44)
Determine column r, such as

L:maxﬂ&—p“— Gy <0 i=1,nc+ncy (3-45)
o @ J

where S, is the set of the constraints which are not satisfied with AP;" and AP/°.

S(i=1)/2

Id if 7 is odd }
' f (3-46)

(G = o I \
]“LIH - if i is even

E, is given by eq.(3-41).
By using AP;” and AP/°, AP; is calculated from eq.(3-36) and the pseudo-loads

P} are improved by

P. =P; + AP, (3-47)

P

The approximate improvements Z for AP, can be carried out using the

sensitivities of Z with respect to P,, e, ., as shown below:







using the optimization procedure described in Chapter 2. The design variables at

this step is Z only.

The cable-stayed bridge subjected to the design loads P, and pseudo-loads P, (at
the first iteration P,=0) is optimized by applying the optimization routine
described in Chapter 2. During this stage, X. and Y. are fixed and the design
variable is Z only. The optimized values at this step are denoted as
TCOST’(P, +P;), g'(Py+P;) and Z°(P, +PY).

5 Apply a finite pseudo-load AP to the ith cable on top of P, and P,, and carry

out an optimization with respect to Z only. The optimum values at this step are
TCOST® (Py + Py +APr ), g'(Py+Pl+APr) and Z°(P, +PY+AP,).

© Caleulate the sensitivities of TCOST, g and Z with respect to P, using eqgs.(3-
30)-(3-32) and the known values of TCOST'(P, +P;), g’(P,+P;), Z°(P, +P?)

and TCOST’(P, + Py +APy), g'(P+PL+APx), Z'(Py +PS+4P),).

Utilizing the sensitivities T, d, e calculated in step ®. formulate the linear
programming problem as per eqs.(3-33)-(3-35) and solve it for the determining
the best improvements AP; by using the procedure described in 3-3.(3).(c). P!

and Z' are improved by eqs.(3-47) and (3-48), respectively.

o)

If TCOST® does not converge to its minimum value, repeat steps @ —@ to
minimize TCOST". The final optimum values of TCOST, P, and Z under design
loads and optimum pseudo-loads are denoted as TCOST'(P, +P;), P;, and
Z'(P, +P;).

()]

The optimum cable prestress for the ith cable, P,, can be determined as the
resultant force of P; and the axial force N, which is obtained by analyzing the

bridge subjected to P, only.

3-5. NUMERICAL DESIGN EXAMPLES

Various minimum-cost design problems of practical-scale steel cable-stayed
bridges have been solved by the proposed design system. In this section, the
numerical results for a three-span steel cable-stayed bridge with 64 cable stays
shown in Fig.3-7 under various design conditions are presented to demonstrate the
general purpose, rigorousness, reliability and efficiency of the proposed optimum
design system. The significance of dealing with X_..Y. and P, as the design

variables is, also, clarified.
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Table 3-1 Material properties and minimum plate thicknesses used

for the elements of main girder, pylon and cables

No. of |1 2) il | ] ) 6) | 71 81 ] | 10) 1)
”1":'3:;‘1' :F,(kg em?)|p(YEN/'MY)| o zn | Bew, €1(m)| Ber, £2(m) ‘ifnnnﬂ'tilmm) t (mm)
2-8s ‘ 30.00 ¥ 15.00 * ‘
ga ‘ | 29.60 15.00 | |
£ | 2.1X10° | 50010 | 1400 800 28.80 14.90 185 | 155 12.0
gu 29.60 15.00
CirZan ‘ 3000 | 1500 |
T To 1 1900 | 1100 [ 30 ®| 38 | 260 | 260 | 260
Ts=Tw | 2.1X10% | 700X 10* | 2600 | 1500 | (Ye'D) | (Ye+D) 28.0 | 280 | 320
Ti-Tn 2600 | 1500 98.0 ; 39.2 28.0 | 28.0 | 32.0
Ci-Cis | 2.0X108 | 900X 10" | 5100 ‘ — | = AE=0.00001 (m?)

1) Modulus of elasticity
1) Allowable shearing stress (kg/cm?)

8) Ef

9) Converted minimum upper flange plate thickr

2) Price per unit volume

3) Allowable tensile stress (kg cm?)

5)Effective width of the upper flange plates
) Effective length for buckling in longitudinal direction
sctive length for buckling in transverse direction

7) Effective width of the lower flange plates

ess including longitudinal stiffer

10) Converted minimum lower flange plate thickness including longitudinal stiffeners
11) Converted minimum web plate thickness including longitudinal stiffeners
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Fable 3-2 Dead load and traffic load at erection closing and service stages

Erection main girder” 4.0 tf/m
closing ‘ D. load " pvlon” 2.0 tf/m
stage | | steel weight 7.85 tf/m’

| D.load? | main girder" 34 tf/m

Service ‘ uniform 2.25 tf/m
stage T. load® | line 04.1 tf

‘ impact 0.10

1) Dead load
3) Dead load due to
4) Dead load due to

(1) Design conditions for the elements of main girder, pylon and cables

The design constants used in the numerical examples, such as the moduli of
elasticity of steel plate and cable, E, the unit prices of materials, p, the allowable
tensile and shearing stresses. o, and 7,, the effective widths of upper and lower
flange plates in the main girder, B, and B,, the effective lengths of the pylon
elements for buckling in longitudinal and transverse directions, / and L, the

minimum plate thicknesses, .1

- are tabulated in Table 3-1. The dead loads at

the cantilever erection closing stage and traffic loads at service stage on one half of
the cross section of the bridge are given in Table 3-2.

Since the structure is symmetrical about the center line, the numbers of
independent design variables, Z, X.,Y. and P, in the optimization process are
69,16,1 and 16. respectively, and the number of constraints is 201. In the design

S 3 e . 2
problem, the lower limit on the cross-section areas of cables is set at 0.1cm” and the

objective is to determine the optimum cable arrangement.

(2) Design example in which Z is the only design variable

The significance of design variables X. and Y, is investigated by comparing the
optimum solutions for the cases in which the design variables are Z, X..Y. and Z
only.

The optimum solution for the case in which Z is the only design variable is
summarized as case A in Table 3-3, in this design example X. and Y, are fixed as

shown in case A. At the optimum solution, the maximum and minimum bending

~
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Fig.3-8 Comparisons of optimum cable arrangement, Mmaxs Mmin, Nmax,

Numin, 1, and Ly in the main girder for cases A, B and E
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Fig.3-9 Comparisons of A;, Mmax. Mmin., Nmax and Npin in the pylon for
cases A, B and E

local peaks of the max. and min. bending moments in the main girder and pylon. The
local peak of the min. bending moment near the end support in the main girder for
case A is totally absent and the local peaks of the min. bending moment at the
middle support and near the center point are reduced to 82% and 68%, respectively,
compared with their corresponding values for case A. At the center of the main
girder, a large max. bending moment acts on the cross section, however, the upper
and lower flange plate thicknesses are determined as the same as the lower limit
plate thicknesses. This means that it is not necessary to reduce the max. bending

moment at this point and this result emphasizes the reliability and rigorousness of
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the proposed design method.

In the pylon, the max. and min. bending moments are reduced to 86% and 70%.
respectively, compared with the ones for case A.

The cross-sectional areas of cables are generally higher than those for case A. In
one special case, the cross-sectional area of C, is 3.6 times larger than its
corresponding value in case A.

As a consequence of the changes in X, and Y, the total cost of the bridge is
7.8% less than that for case A.

This investigation of the optimum solutions establishes the significance of the
cable anchor positions on the main girder and the height of pylon in the minimum

cost design of steel cable-stayed bridges.

(4) Design example with Z and P, as design variables

In this design example X and Y. are fixed at the optimum values obtained for
case B, and P, and Z are dealt with as design variables for investigating the
significance of prestresses in cables. After 10 iterations of the sensitivity
calculations and improvements of P, by the second stage optimization process
described in 3-3.(2).(c), the optimum values P, and Z are obtained. These are
summarized as case C in Table 3-3. The total number of the active constraints, mp,
in the linear programming problem in eqs.(3-37)-(3-39) is 45. All the cables are
fully stressed by providing the optimum pseudo-loads. The total cost of the bridge
decreases by 2.6% compared with case B. This means that 16800x10* yen can be

saved by giving the optimum prestresses in the cables.

(5) Effect of P, on the optimum X and Y.

In this design example, the effect of P, on the optimum values of X, and Y, are
investigated. The bridge is optimized treating Z, X, and Y. as design variables
under the design loads P; and optimum pseudo-loads P, which are obtained for
case C. The optimum Z, X and Y, tabulated as case D in Table 3-3 are obtained
after 7 iterations by using the first stage optimization process.

By comparing the optimum X, for cases B and D, the relative differences of
7.31m and 6.58m are observed at the lower cables C,, and C,, respectively.
However, X. for the upper and middle cables in the both cases are almost similar to

differences limited to 0.00m-5.42m. Furthermore, the difference in Y. is only
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support are 53.6% and 40.5% of their corresponding values in case B. The smaller
bending moments lead to lower flange plate thicknesses with reductions of 17.4-
11.7mm. The bending moment distributions and flange plate thicknesses
distributions also appear to be averaged out and as a result the magnitudes are
minimized throughout the bridge. The bending moment distributions in the pylon
are depicted by the solid line in Fig.3-9. Near the top of pylon and at the main girder
position, Mpax are reduced to 65.0% and 57.1%, respectively, of their corresponding
values in case B. A similar reduction is seen in the cross-sectional areas of pylon.
In the cables, the prestresses of -49.9 to +182.7tf are given and the cross-
sectional areas of cables change to the range from +42.7% to -84.5% of the values
for case B. Furthermore, all the cables are fully stressed. On the other hand, stress

margins of more than 50% exist in some cables for case B.

(7) Design example in which X and Y. are modified from aesthetic considerations
In the design examples C, D and E, the design variables are Z, X, Y. and P,, and
theoretically exact optimum values of the design variables are determined totally
from structural mechanics considerations.

In this design example, the number of cables, X. and Y., of the bridge are
slightly modified, as shown in terms of C, -C,, X¢ and Y¢ in Table 3-4 and
Fig.3-10, from aesthetic considerations.

The number of cables is reduced from 64 to 48 and the cable anchor positions
X, are fixed as X shown in Table 3-4. The anchor positions expand in a geometric
ratio of 1:1.14 in the side span and 1:1.18 in the center span. Y, is assumed as
62.00m. The height of top cables at the pylon is the same as for cases D and E. The
design of the bridge is optimized for two cases, one in which only Z and the other in
which Z and P, are treated as design variables. The optimized values of the design
variables for both cases are tabulated as cases F and G in Table 3-4. The optimum

distributions of Mmax. Mmin, Nmax, Nmin, t,, and t, in the main girder for cases F

g
and G are depicted in Fig.3-10 by dotted lines and solid lines, respectively.

The optimized values of P, and Z for case G are obtained after 13 iterations of
the sensitivity calculations and improvements of P, by LP algorithm. Similar to the
comparisons of the optimum A for cases B and C, the optimum A, for cases F and
G changed considerably by prestressing the cables. All cables are fully stressed with

the exception of the C, cable whose cross-sectional area 4., is smallest as 9cm”
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described. From the investigations of their optimum solutions, it is clear that the

proposed optimum design algorithm can determine the cable prestresses besides the

cross-sectional dimensions, such as upper and lower flange plate thicknesses of each

member element in the main girder and pylon, cross-sectional areas of cables, and

able arrangement etc., quite rigorously and efficiently. We can, therefore, conclude

that the proposed optimum design system is quite useful for practical design of the
steel cable-stayed bridge at all design stages, from the planning stage to the detailed

design stage.
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