


£4 and shape variable are determined by minimizing the Lagrangian function with
respect to EA and shape variable. Then, at next stage the shape variable is
maintained constant, and the better combination of cross-sectional area and material
kind for each member element is searched independently to reduce the Lagrangian
function by comparing the values of discretized Lagrangian function while keeping
the activeness of the constraints which are determined by the first minimization
process. This separable minimization of the element Lagrangian function with
respect to material and sizing variables simplifies the inherent combinatorial
complexity associated with the discrete material-selection problems.

The generality, rigorousness and reliability of the proposed optimal structural
synthesis method are illustrated by applying the method to various minimum cost
design problems of 31-bar trusses subject to stress and displacement constraints and
investigations of the optimum solutions at various design conditions. It is also
demonstrated that the optimum solutions can be obtained after 15-25 iterations
efficiently even when the algorithm is initialized with the worst possible material

distribution.
4-2. FORMULATION OF PRIMARY OPTIMUM DESIGN PROBLEM

(1) Design variables
In the design problems of truss structures, the vertical coordinates of panel
points Y, material kinds M and cross-sectional areas A of member elements are

considered as design variables.

A=[d4,,4,] (4-1)
Y=[§,%] (4-2)
M=[M,, -, M,]" (4-3)

where » is the number of member elements, P denotes the number of coordinates of
panel points considered as the design variables Y.

Depending on the characteristics of these design variables, Y and A are dealt
with as continuous variables and M, which represent the physical and economical

properties of the material, are dealt with as discrete variables.
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where Y

Il

[£.5 ]

(215 80] =[8o1r s 8m 8512284

o
=3

In the above expressions, pﬂ,(stl")A M, and 1(;) are, respectively, the unit cost,
material kind and member length of the /th member element. ¥ and ¥_ are the
coordinates of panel points to which the ith member element is connected. MS is
the set of available candidate materials. m is the number of behavior constraints.
Superscripts / and u represent the lower and upper limits of the design variables.

In the material set MS, the material components need to be arranged and
numbered in order of the ratio between allowable stress o, and p,( .\I_) or the ratio
between modulus of elasticity £ and p, (M, ) to ensure a smooth convergence to the

optimum materials through iterative improvements.

4-3. OPTIMAL STRUCTURAL SYNTHESIS METHOD FOR TRUSS
STRUCTURES SUBJECTED TO STATIC LOADS!?2%

(1) Convex and separable approximate subproblem

An optimal structural synthesis method combining the concept of convex and
linear approximation[14-20], dual method, multilevel optimization concept[21] and
discrete sensitivity analysis is developed to determine the optimum solution for
structural design problem described in section 4-2.

Utilizing the convex and linear approximation concept, shape. material and
sizing sensitivities, the objective function in eq.(4-6) and the behavior constraints in
¢q.(4-7) are approximated by using the first-order terms of the Taylor series
expansions with respect to the direct variables of A,Y.M and the reciprocal
variables of Y and A. In the objective function the constant term can be neglected in
the optimization process and only the change in the objective function AW is dealt
with in place of the objective function, W(A,Y,M). Then, the following convex and

separable approximate subproblem can be derived.




Find A, Y, AM, which

minimize AW(A,Y,M°+AM) =Y o, (M’ +AM)4,
+ ZL(:).,,_M(":\‘I“ +AM)Y, ~ @, (M®+AM) ) )il (4-9)

g, (A Y. M +AaM) =)

(=1

subject to

Q

i
a, A-a, (4°) —‘m“,w}

p — e L
'“ZJV_XM_‘),ﬁ\MM (1) ?;"‘-( <0 (7=1-+,m) (4-10)
4, <4, <4 (i=1,-,n) (
7 - (k=1,--,P) (4-11)
M, eMS oy [
where = g“(l;\‘r'.Y”,‘\I")~2rl.-’[a, —-a ]—2);()[1 — }
=1 k=1

og, og, dg
a,=——, Yp=—=, my=—=—-, M=M"+AM
T 04 oY oM,

In the above expressions, the symbols (+) and (-) express the signs of the first-

order partial derivatives and S,

« is the set of elements connected to the kth panel
point. In the above approximate formulation the changes AM in material kinds are

dealt with as material variables.

(2) Calculation of behavior sensitivities

Utilizing the concept of convex linearization, the stress and displacement
constraints (eqs.(4-4) and (4-5)) are transformed into their approximated forms as
shown in eq.(4-7), in which the sensitivities with respect to design variables are

calculated by the following expressions:




if j indicates the stress constraint : g (j =1,---,n)

1 N1 : AN | 1
a,=—N |- ‘):1'7."177 (}1’:‘;”), u_‘:—_-—[ 71—‘ (i=)), (4-12)
(_.1 'l cA, A OF £
IQIA\‘" 1
Ve = . b (4-13)
el AN A% oo ,
m,=-o (M)-0o,( M)+ ———L—=__[E(M)=E(M)] (i= 7).
o= en(M) =, (M])]+— = ,;.‘_U‘w)[ (M) E(M))] (=)
0
E("‘w)[}:‘(j«zyfi,\/"\] (i+)) (4-14)

if j indicates the displacement constraint : g (j=n+1.n+u)

as , )
a, = ’l,‘ (d=j—n) (4-15)
20 i
v :L_(—‘ (d=j-n) (4-16)
r’)‘
(d=j—n) (4-17)
if N 20
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(4-19)

(4-20)

where Ky and K are, respectively, the system stiffness matrices expressed in
terms of the structure-oriented coordinate system and the member-oriented
coordinate system. D is the displacement expressed in terms of the structure-
oriented coordinate system and Q is the angular transformation matrix of the total

system.

(3) Improvements of A, Y and M by a two-stage minimization process of the

Lagrangian function

(a) Two-stage minimization process of the Lagrangian function

The stresses of member elements and displacements at the free nodes of truss
structure are expressed as the functions of Y and the product of modulus of
elasticity E and A, EA, and the objective function is also expressed as the function
of A, Y and M. As stated previously, in this study A and Y are dealt with as
continuous variables and AM as a discrete variable. Therefore, the design variables
A.Y and AM are improved by a two-stage minimization process of the Lagrangian
function which uses a dual method and incorporate discrete sensitivity analysis. At
the first stage minimization process, EA is treated as one continuous design
variable and the optimum values of EA and Y are determined by minimizing the
Lagrangian function with respect to EA and Y. In the optimization algorithm of
first stage minimization process, E is constant and A is improved for improvement
of EA. Thereafter, the better combination of A and AM for each member element is
searched independently to reduce the Lagrangian function by comparing the values
of discretized Lagrangian function while keeping the activeness of the constraints

which are determined by the first minimization process.

e




(b) Lagrangian function L

The design variables A, Y and AM are improved by solving the convex and
separable approximate subproblem (eqs.(4-9)-(4-11)). A separable Lagrangian
function can be introduced for the subproblem as

L(A,Y, M’ +AM.A)=>" L (4,AM, L)+ Z L(G.AMA)+ > AT, (4-22)
=1 r=1 =l

where A,20 (j=1,-,m)

where , and L, are, respectively, the element Lagrangian functions with respect to
the 4,AM, and Y,,AM. A, is the Lagrange multiplier(dual variable) for the jth

behavior constraint. L, and L, are in turn given by

L(A4,MM,\) =0, (M +AM,)4, + D4 {a:m A—a, (4 ] Llwnﬁ,_wi (4-23)

k

TZ/:“P.\,"_); — ¥ () H (4-24)
J=1 k

LY. AM, L) = @y, (M° +AM)Y, -, (M°+AM)(Y ]:}l_

The solutions of the subproblem, A", Y",M and A", can be obtained by maximizing
L(A,Y,M’ +AM,A) with respect to A and minimizing it with respect to A, Y and

AM..

(c) First stage min.-max. process of L with respect to E4, Y and A

At the first stage of the minimization process, L(4,,AM,,A) and L, (¥ ,AM,%)
are, respectively, minimized with respect to 4, and Y, . At this stage, AM is
maintained constant, namely. E is constant, and A is improved for improvement of
EA. A, which minimizes L (4,,AM 1), is given by the simple expression in eq.
(4-25) which is derived from the necessary condition for the minimum of

L(A,AM,,}), namely, 0L /24, =0, and the side constraint.

it [4/(MO)] <z, (8) <[42(MO)], 4 =\z,(M)

if Z,(M)<[4/(M)], 47 =4/(M)) (4-25)

it Z, (M) 2[4 (M), A =4 (MP)

i
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where
> ia, (4)
Z,\M)=———F——
o, (M ]»Z/ a,.

Y., which minimizes L, is also calculated by similar expression shown below:

it K] <z, (M) <[%T, % =2, (M°) ’

if Z,(M°)<[K] L =Y (4-26)
i _ 2., A

where
if @, (M°)20, !
~l g (M")+X 2,0 |(5)
if  @,(M")<0, Zy(M?) = — =]
DAY

The minimized Lagrangian function with respect to A and Y by the above

expressions is denoted as /(A):

An) = min. L(A Y. M'+AM. 1)

Following the minimization process with respect to

(4-27)

4 and Y, the Lagrangian

function /(A) is maximized with respect to the dual variables

A by using a

Newton-type algorithm. In the Newton-type algorithm, the dual variables A
corresponding to the active behavior constraints at the current stage are modified

iteratively as
'/‘\JM]:?V\N%‘(,X“S”] (4-28:)

or in a scalar form







In the above optimization algorithm, it should be noted that if the changing rates
in Y calculated as per eq.(4-26) are too large in any one iteration of the
improvement process, the successive solutions oscillate and in some cases smooth
convergence may not be obtained. For this reason, the adaptive move limit
constraints are restricted such that the maximum rate of change in Y is limited to

less than 5%.

(d) Calculation of search direction S'” by using Cholesky decomposition

In this study, the search direction §'' for improvement of A is calculated by
using Cholesky decomposition[22]. In the process, eq.(4-30) is transformed into
eq.(4-34).

[H(’Z“‘)}-s"' =-vi(x) (4-34)

If H is a symmetrical matrix and positive definite, then H is factorized as eq.(4-35)

by using lower triangular matrix L. and upper triangular matrix L.
[H‘}x"’)]:L‘ AL (4-35)

The elements of L. and L. can be calculated by the followings.

L :\/‘;E (4-36)
;
oLl (-37)
TL
L=lh-SE (=27 (4-38)

where L, and A, are, respectively, the jjth element of L. and H. g denotes the

number of active constraints.
We can use the decomposition in eq.(4-35) to solve the linear set in eq.(4-34),

namely,
[H(X"’)]-s“’ =(L¢LL) 80 =L (LE-8%) = -wi(x") (4-40)

by first solving for vector V such that
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L¢-V=-vi(3") (4-41)

and then solving

LEa8Y =V (4-42)
Eq.(4-41) can be solved by forward substitution, while eq.(4-42) can then be solved
by backsubstitution.

[t is very important to note that, in the maximizing process of the Lagrangian
function with respect to A, the Hessian matrix H can become singular and then the
search direction S'’ can not be determined by eq.(4-30). H can become singular if
one or more gradient vectors of the active constraints become linearly dependent on
the others. In this case, in the process of factorization of H by Cholesky
decomposition, the ith element of diagonal, L,, in the lower triangular matrix can
not be calculated by eq.(4-38) because of the complex number. To overcome the
complication associate with this singularity, in this study, if L, can not be
calculated by eq.(4-38), the ith active constraint is deleted from the set of active
constraints S,;. Then, the Hessian matrix H is re-calculated and the calculation of

search direction S is tried again.

(e) Second stage minimizaition of L with respect to M and A

In the second stage minimization process of the Lagrangian function. the values
of 8§ and X improved by the first stage minimization process are maintained
constant, and the Lagrangian function L(A, Y, M"+AM, 1) given by eq.(4-22) is
minimized with respect to A and AM while keeping the activeness of the

constraints which are determined by the first stage minimization process, namely,

Find A, AM, which
minimize L(A,Y,M’+AM, %) (4-43)
subject to g,(A, Y, M>+AM) <0 e Sa) (4-44)
Al <4l < 4 (i=1,:-+,n)
(4-45)
M, eMS (i=1,--,n)

In the above expression, A and Y are the solutions obtained by the first stage
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minimization process and these values are maintained constant during the second
stage minimization process.

After the first stage improvement of A, Y and A, the approximate constraint
7 (A Y, M%AM) in the set of active constraints §,;, namely , je€§,;, becomes
zero, and A, for the inactive constraint g,, namely, j#§., becomes zero. By
substituting these relations into L(A,Y., M’ + AM, %) in €q.(4-22), the minimization
problem in eqs.(4-43)-(4-45) is solved by minimizing only the term of objective
function for each member element in L(A,Y, M’ + AM. %) independently, namely,
L4, ,AM,) (i=1--,n) given by eq.(4-46) subject to the constraints in eqs.(4-44)
and (4-45).

Li(4AM)= 0,(M +AM)- (M} +A M)  (i=1--n)  (4-46)
A i i i

4, and A M: which minimize I,(4,.,AM,) are determined by comparing the
discrete value of I,(4.AM,) calculated by using the new material kind (A/"+ A A1,
and T,( M} +AM,) improved so as to satisfy the constraints in eqs.(4-44) and (4-45).

The calculation of I(xb[” +AM,) is made in the manner described below in order
to satisfy the active constraints.

(1) For the case that only stress constraints are active

For the case that only stress constraints are active after the first stage
minimization process, the necessary condition which maintains the stress
constraints active for a discrete change AM, in material kind M, is given as
o, 4 (M)

A7 AM)) = ———L
£\ 4 ) A7( M +AM,)

—a, (M) +m, =0 (i=1---,n) (4-47)
where o, and O'_v,‘_(;\'/‘“) are, respectively, the working stress and allowable stress of
the ith member element with material kind M°. m, given by eq.(4-14) is the
sensitivity of stress constraint of the ith member element with respect to a discrete
change in material kind M,. Considering the lower and upper limits on 4, in
eq.(4-8), the improved 4, for M+AM, A°(M+AM,), is calculated by the

following expressions.
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if A4 M +AM) <A, < A ( M +AM),

A7( M+ AM)) = 4,

-
A

oS4 (M +AM,), \
_ « ¢ (4-48)
A7( M) +AM,)= 4'(M" +AM,)

if A4y >4 (M +AM),

A7 (M +AM, )= AY( M + AM)

where
Ay =4 o(M}) I [0, (M)~ m, |

Si

[ g =
“ =yl a, li)
|

A= -

(ii) For the case that only displacement constraints are active

For the case that displacement constraint(s) is(are) active after the first stage
minimization process, the necessary condition required to maintain the
displacement constraint(s) to be active for a discrete change AM, is to keep the

value of E A4, constant, namely
E(M)A (M) =E,(M +AM, )42 (M +AM, ) (i=1,--,n) (4-49)
Considering the lower and upper limits on 4, the improved A4 for M’+AM .

A°(M"+AM,), is calculated as

if A M+ AM) < 4y < 41( M +AM),
AP (M +AM,) = 4,
if Ay < A/(M)+AM,),

AP(M +AM,) = A/( M} +AM,)

Vv

> AN (M +AM,),

A7 (M +AM,) = A (M) + AM,)
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where

(iii) For the case that both stress and displacement constraints are active
For the case that both stress and displacement constraints are active after the
first stage minimization process, the improved 4, for M, +AM,, A%( M’ +AM,),

chooses a larger value of 47 and 4°. Namely,

if  A7(M)+AM)>A% (M +AM,),

(M +AM, ) =A7(M° +AM,) y
(4-31)

if  AP(M+AM,)>A7 (M +AM,), A7°(MP+AM,)=A7 (M +AM,) \

The discrete changes in the mechanical and economical properties of materials
considerably affect the design space and, therefore, the range of AM, for the
minimizaition of I,(4,, AM,) in one iterative improvement is restricted to the
nearest discrete values, namely stronger (AM, = +1) and weaker (AM, = —1) materials,
only.

The reformulation of approximate subproblem and improvements of A, Y, M
and A by the above two-stage minimization process are repeated until the
convergence criteria are satisfied. Thus, the final optimum solutions, A", Y,M and

A", can be obtained.

(f) Scaling of initial design variables

In the Newton-type algorithm for the first stage min.-max. process of the
Lagrangian function, at least one of the behavior constraints must be active, that is,
at least one component of A must have a non-trivial positive value for the formation
of the Hessian matrix. For this purpose, a simple scaling technique given by eq.(4-
52) can be devised for modifying the initial cross-sectional areas A’ so that at least

one of the behavior constraints is active.

if (0/0,),. 2(5/8,), 0 A4=4(ala,),, (=L-n) [
' (4-52)
it (0/0,) <(6/8,)0nr  A=A(618).. (i=1--n)]

In the above expressions, (o/c,) _ is the maximum ratio between actual stress

max

and allowable stress in all member elements and (&5/5,)  is the maximum ratio

max
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between actual displacement and allowable displacement at the aimed points of
displacement constraints.
The macro flow diagram of the optimal structural synthesis method proposed in

this study is shown in Fig. 4-1.

ASSUME A% Y°M° A°

SCALING OF

CONVEX AND SEPARABLE
APPROXIMATE SUBPROBLEM

|

LAGRANGIAN FUNCTION
L(A,A Y, M+ AM)

f

IMPROVE A BY MAXIMIZING I(})
IMPROVE A,Y BY MINIMIZING
L,(A,,AM)) AND L,(Y,, AM)

i

(M is maintained constant.)

¢

IMPROVE A,M BY MINIMIZING L (4, AM,)

(A, Y are maintained constant.)

YES

OPTIMUM A,Y,M, A

Fig.4-1 Macro flow diagram of proposed optimal structural synthesis method
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4-4. NUMERICAL DESIGN EXAMPLES

The optimal structural synthesis method described in section 4-3 has been
applied to the minimum-cost designs of statically indeterminate trusses subjected to
stress and displacement constraints. In this section, the details of problems and
results are discussed. In the design problems, the lower limits of cross-sectional
areas are set as 0.10cm’ and the objective is to find the optimum topological

member arrangements of truss structures for various design conditions.

(1) Material sets

In structural design, several types of material sets may be available, such as a set
of steel kinds in which the moduli of elasticity E are the same, and another set
could have materials with different E. The optimum structural synthesis method
developed in this study can select the optimum material kind for each member
element from either types of material sets.

The properties of material which affect the optimum solution of the minimum-
cost designs of trusses are the allowable stress o,, modulus of elasticity £ and cost
per unit volume p,. In general, the ratios of o,/p, and E/p. represent the
effectivenesses of the stress and displacement constraints, respectively. Materials
with high values of o,/ p, are more advantageous in situations in which the stress
constraints are dominant, while those with high E/p, are more advantageous when
the displacement constraints are dominant. For this reason, the components of
material set must be arranged and numbered in ascending order of a,/p, or
descending order of E/p. for the simplification of algorithm for material
improvement and smooth convergence to the optimum solution. Table 4-1 shows
two types of material sets (A) and (B) which are used for the numerical examples.
Material set (A) consists of five components with the same moduli of elasticity and
set (B) consists of seven components with different moduli of elasticity. The
allowable tensile and compressive stresses of the materials are assumed to be the
same. Fig.4-2 shows the properties of o,/p, and E/p, for material sets (A) and
(B).

In the material sets, &,/ p, increases with material number; therefore, the larger
numbered material is more economical than the smaller for problems in which only

stress constraints are active. On the contrary, E/p, decreases with material number
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Set (B)

Fig.4-2 Properties of o,/ p, and

Material o

s /
G

7. /\

12345

7
6.

4.

MATERIAL NUMBER

a E
_number  (kgf/em®)  (kgf/em?)
1 1500 2.0x10°
2 2000 2.0x10°
3 2500 2.0x10°
4 3000 2.0x10"
5 3500 2.0%x10°
1 140 0.4x10°
2 200 0.5x10°
3 400 0.7x10°
4 850 o SN0
5 1300 1.4x1.0°
6 1700 1.7x10°
Ji 2400 2.1x10"
9, E o,
;7_.‘ ‘77'— ,L7_, ,QP
X 102) SET (A) (% uz)‘
| et locos y
Y 1S constant.
8' § constant | 8 \
| E N ‘
A T 4.r

Table 4-1 Material scts (A) and (B)

y /
o

P, ,?I“ },:
(Vem') Pe Pe
2.50 600 800 000
3.00 667 666 667
3.50 714 571428
4.00 750 500000
4.50 778 444 444
0.75 186 533 333
1.00 200 500 000
1.45 275 482 759
2.50 340 440 000
3.20 406 437 500
4.00 425 425 000
5.10 470 411 765
B
P,
SET (B) (x109)
E is not constant.
E .
0y P // 15.0

14.0

|
1234567
MATERIAL NUMBER
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materials. In this problem, the active constraints at the optimum solution are
displacement constraints only. Even when the design process is initialized with the
worst material distribution for displacement constraints, namely , M, =73 =1,--,31),
Y. M and A are improved quite reasonably. After 6 iterations the material kinds of
almost all member elements converged to 1, which is the most economical material
in situations when only the displacement constraints are active. Y and A begin to
oscillate around the optimum solution at iteration 8, after which the move limit on Y
is reduced adaptively. The optimum solution is obtained at iteration 15 at which
stage the optimum shape of truss and the optimum topological member arrangement
are quite reasonable. The cross-sectional areas of redundant member elements at the
optimum solution are reduced to 0.1 cm®. The final optimum solution is determined
as shown in Table 4-3 and Fig.4-4.

In the problem for truss B, the maximum vertical displacement limit is set as
15.0cm and the material set (B) is used. The active constraints at the optimum
solution are stress constraints only in this problem. In contrast with truss A, the
initial material kinds are assumed as 1 for all member elements, which is the worst
material distribution when stress constraints are active. Y, M and A are improved
quite reasonably and steadily, and the material kinds for almost all member
elements are imposed from 1 to 7 in 7 iterations. Thereafter, the material kinds for
almost all non-trivial member elements remain at 7, which is the most economical
material in this situation. After 7 iterations M for the redundant member elements,
Y and A are improved steadily and oscillations are absent in successive solutions.
The final optimum solution is reached after 19 iterations and the cross-sectional
areas of redundant member elements at the optimum solution are reduced to 0.lcm?*.

In the problem for truss C, the maximum vertical displacement limit is set as
10.0cm and material set (A) is used for the candidate materials. Both stress and
displacement constraints are active at the optimum solution. The material kinds for
almost all member elements are improved from 1 to 3 in 3 iterations, after which M
for all non-trivial member elements remain at 3. After 3 iterations M for the
redundant member elements, Y and A are improved steadily and the optimum
solution is reached at 25 iterations without oscillations on Y. The cross-sectional
areas of redundant member elements at the optimum solution are reduced to 0.1 cm?

as the same as the problems for trusses A and B.
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(4) Effect of displacement constraints at arbitrary panel points on optimum solution

In the previous design examples, the maximum vertical displacements in 31-bar
trusses are restricted. In this example, the effect of displacement constraints at
arbitrary panel points in truss A on the optimum solution is investigated by
comparing the optimum solutions given in Figs.4-3, 4-4 and 4-5.

Fig.4-5 shows the iteration history for truss A in which the displacements at
panel points A and B are limited to 0.5cm. Material set (B) is used for the candidate
materials and the active constraints at the optimum solution are both stress and
displacement constraints. Y, M and A are also improved quite reasonably and
steadily in this problem, and the optimum solution is reached after 12 iterations
without oscillations on Y. As seen in Fig.4-3, in the optimum solution, the final
topological member arrangement is different from those in truss A shown in
Figs.4-3 and 4-4. The cross-sectional areas for only four member elements are found
to be 0.1cm? and these member elements are deleted. Almost all member elements
for material kind 4 are fully stressed and all member elements for material kind 3
are distributed for the displacement constraints at panel points A and B. Some
member elements whose material kind are 1, also require considerable cross-
sectional areas in order to satisfy the displacement constraints. The maximum
vertical displacement at the optimum solution is 1.99cm. From this investigation, it
is confirmed that the optimum topological member arrangement and distribution of
optimum material kinds are considerably affected by the aimed points of

displacements constraints.

(5) Optimum solutions for 31-bar 2-span continuous trusses

The iteration histories and final optimum solutions for 31-bar 2-span continuous
trusses with different design conditions are given in Fig.4-6 and Table 4-4, where
the maximum vertical displacements are, respectively, limited to 1.0cm, 3.0cm and
10.0cm. The material set (A) is used for the candidate material.

For case in which the displacement limit is set as 1.0cm, the displacement
constraint is active at the optimum solution. Even when the design process is started
from the worst material distribution for displacement constraints, namely M, =35
(i=1,--31), Y, M and A are improved quite reasonably, and after 5 iterations the
material kinds for all member elements converged to 1. After 7 iterations the move

limit on Y is reduced adaptively and the final optimum solution is obtained at 21
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8, = 0.5em
Material set (B)

All of initial material kinds = 1

OPT.
ITE. 12

Fig.4-5 Iteration history for truss A in which the displacements at panel
points A and B are limited to 0.5cm

iterations. Although the truss is optimized from a 2-span continuous truss, the
cross-sectional areas of all redundant member elements are reduced to 0.1 cm” by
the proposed optimization process, and the final topological member arrangement
indicates a simple span statically determinate truss. The total cost converged
to 1.544x10°%,

For case in which the displacement limit is set as 10.0cm, the active constraints
at the optimum solution are stress constraints only. The initial material kinds for all

member elements are set at 1 and after 5 iterations the material kinds of all non-
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method are illustrated by applying the method to various minimum-cost design
problems of 31-bar trusses subjected to stress and displacement constraints and
investigating the optimum solutions at various design conditions.

The conclusions that can be drawn from this study are:

(1) The design method can deal with any combinations of design variables such as
shape of the structure, discrete material kinds and cross-sectional areas of
member elements, and can optimize the design variables as well as the
topological member arrangement simultaneously.

(2) The two-stage minimization process of the Lagrangian function can solve the
mixed discrete/continuous variable problems quite systematically and
efficiently.

(3) The rigorousness and reliability of the proposed design method have been
confirmed by various numerical experiments of 3 1-bar trusses. The convergence
to the optimum solutions is quite excellent and the optimum solutions can be
obtained after 15-25 iterations quite efficiently even when the algorithm is
initialized with the worst possible material distribution.

(4) Adaptive move limit constraint on Y is required to ensure the successive
solutions converge to the optimum solution when the displacement constraints

are active in the design problem.

APPENDIX 4-1 Calculation of the jkth element of Hessian matrix

The jkth element of the Hessian matrix (eq.(4-33)) is given by the following

expressions:
Fir) & i
H=—"1=%pP+Y 0 (Ad-1)
OA04 = i=1
where
| . - o )
P= —Eaﬂ(_lak,”(:ﬁ) / A;(a)__(,(.-\/[f’)ﬂ- 2 ,u,,mj if a,<0,a,<0
1 2 N ‘
P= _5“’;«..“1«1,»(‘{0) /] 4, (m_{,(;’V[{’)%-;/l,u,“_,] if a,20,aq,<0,

— 8=




1 %9 f \
P=-sap, (401 4 (0,00)+ S0, ) it a,<0,0,20
1 m 3\

B= 7551 s Ty A s‘(\(uq;(l](n)a— Zl‘,a:__’_‘/] if a,20,a,20
if y;<0,y,<0
if y,20,¥,<0
i p. 0,920
if »,20,9,20

ZA v, } it @,(M°)20
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where K is the system stiffness matrix and [¢], is the eigenvector of truss structure
in the kth vibration mode. ! and M,, are, respectively, the eigenvalue in the kth
vibration mode and the total system mass matrix.

The total system mass matrix M,, consists of the contributions from structural
mass matrix My(A,S,M) and nonstructural mass matrix M..

M,, = M(A.S$,M)+M. (5-13)

The structural mass matrix is calculated as the lumped masses.

Eq. (5-12) is solved by using an algorithm based on subspace iterative technique
given by ref.[21].

Based on the Nelson's technique[9], the sensitivities of eigenvalue and
eigenvector with respect to design variables are calculated by differentiating the
eigenvalue equation of structural dynamics in eq.(5-12). Namely, the sensitivity of
eigenvalue 4 in the kth vibration mode with respect to design variable BeB=

= s S S:;u.\/:.”‘»_‘\[,,]f is given by

oM

- N’ ]g- ’: CB Hy

(5-14)
0B,

In the case that B, corresponds to M, in eq.(5-14), 8K¢/0M. is calculated by the
following expression using 8Ky/84. .

(?KSA _ K¢ . AL
oM., o4 E(MD)

tn

)

&) - E(m))] (5-1

The sensitivities of frequency constraint g (A,S,M) (j=n+u+1,-:, n+u+v) with

respect to A, S and M in eq.(4-10), a,,

ji

Y, and m,, can be expressed as

K. s OM, , i
a, =01 Zs (9], + 210 DX (9], (g =j-n-u) (5-16)
04, o4
K N , .
yp =L G0+ ML ZEW),  g=smnmw) (5-17)
=100 s 1, A (M) B (M) 16T, e fo
Jt " o4 q E‘(.’W,O) Sl A\ (e Py 1/
(g=j—n-u) (5-18)

Note that in the above expressions, the eigenvector is normalized such that










va Il
*Zfl.[iy,;,,ﬁk *-"m,‘(sx“) — (5-26)

The solutions A",S",M" and A" can be obtained by maximizing L(A.S.M" +AM, L)
with respect to. A and minimizing it with respect to A, S and AM . Since eq.(5-24)
has a simple form of a summation of the separable element Lagrangian functions, L,
and I, the minimization of L(A,S.M’ +AM, L) with respect to A, S and AM can be

accomplished by minimizing L, and L,, separately.

(¢) First stage minimization process of the Lagrangian function

In the first stage minimization process of the Lagrangian function in eq.(5-24),
the material kinds of member elements M are maintained constant. namely modulus
of elasticity E of each member element is assumed as a constant value during the
first stage minimization process and A is improved for improvement of EA. Then,
[,‘(A,.Lx\ﬂll,).) and L, (S'N.AM.}\) are, respectively, minimized with respect to 4, and
S,, independently. A= which minimizes L_,(:!_'_\_\r[;.}x) is given by the simple
expression which is derived from the necessary condition of the minimization of
L((:L.A;\/,.l). namely, 0L /84, =0, and the side constraint on 4. S; which
minimizes Lk(S%,AM«Q\‘) is also given in the same manner. The detailed expressions
for improvements of 4; and S; are described in Chapter 4. The expressions for
calculation of 4; and S; include . Therefore, after A" is obtained in the following
process, A; and S; should be modified by using A°.

The minimized Lagrangian function with respect to A and S is denoted as /(X) :

namely,
/(A)=minL(A,S.M" + AM,1) (5-27)

Following the minimization process with respect to 4, and S,, the Lagrangian
function /(L) is maximized with respect to the dual variables A by using a Newton-
type algorithm. In the Newton-type algorithm, the search direction of A for active
constraints S,; can be calculated by a simple expression in terms of the vector of
first derivatives of /(A) and the Hessian matrix of /(A) with respect to A. The
details of the expressions of search direction and maximization algorithm of (%)
with respect to A are also described in Chapter 4.

After the improvements of dual variables L as A" by the Newton-type algorithm

and A and Sas A" and §” using A", the set of active constraints §,, in the currently




approximated primary design space also has to be updated. The min-max process
described above is iterated until A, S and A converge to constant values.

In this first minimization process, it should be noted that if the rate of change in S
is too large in any iteration, the successive solutions oscillate and in some cases
smooth convergence may not be obtained. For this reason, the adaptive move limit
constraints are restricted such that the maximum rate of change in S is limited to
less than 20%. It is, also, important to note that in the maximizing process of the
Lagrangian function, the Hessian matrix can be singular when one or more gradient
vectors of the active constraints become linearly dependent. In this case, the
maximization process is carried out by deleting one constraint from the set of active
constraints S, . Please see section 4-3.(3).(d) for the detailed algorithm in case of
singularity of Hessian matrix. Following this, A should be improved according to
the above process.

In the Newton-type algorithm. at least one of the behavior constraints must be
active. For this purpose, a simple scaling technique given by eq.(5-28) is used to

modify the initial cross-sectional areas A".

(=L:n) (5-28)
y S Daf I
where L9 O 0 2 2% i
e 5 et i i
o, o, &, B/ 4, J

(d) Second stage minimization process of the Lagrangian function

After the first stage improvements of £4, S and A by the above min.-max.
process, the values of S§° and A° are maintained constant and the Lagrangian
function L(A,S’,M’+AM,L") given by eq.(5-24) is minimized with respect to AM
and A. In this stage, the values of X, for the inactive constraints, namely, P &S,
become zero and the active constraints g, , namely, aeS,;, also become zero.
Therefore, from eq.(5-24), the minimization of L(A, S*,M’+AM, ") with respect to
4, and AM, is achieved by comparing the discrete values of Z(4,AM,) at the

neighboring material kinds. The discretized I (4,AM,) is given by

L(4.8M,)= 0, (M° +aM,)- Z(M° +aM,) (5-29)

The improved 4, for M!+AM,, 4(M;+AM,), is made in the manner described
below in order to satisfy the active constraints.

For the case when only stress constraints are active, the necessary condition
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which maintains the stress constraints active for a discrete change AM, in material
kind M, is given as
- I o, 4 (M) o m
8ol 47, AM )= == g (M)+m,=0 (i=1,-,n) (5-30)
TOAT (M) +AM,) -
where o, and o©,(M,) are, respectively, the working stress and allowable stress of
the ith member element with material kind M,. m, is the sensitivity of stress
constraint of the ith member element with respect to a discrete change in material
kind M,. 4 isthe cross-sectional area of the ith member element which is obtained
by the first stage minimization process of the Lagrangian function.

By solving eq.(5-30) with respect to I”‘(:\[“’ +AM,) and considering the lower
and upper limits on M, the improved 4 for M'+AM,, A°(M° +AM,), is
calculated.

For the case when displacement or, and frequency constraint(s) is(are) active.
the necessary condition required to maintain the displacement or, and frequency
constraint(s) to be active for a discrete change AM, is to keep the value of E. 4,

constant, namely
E (M)A (M?)= E(M +AM, ) 4> (M +AM, ) (i=lom) (53D

The improved 4, for M’+AM,, AM(M?+AM,), is calculated by solving

€q.(5-31) with respect to . (_.\lf] +AM, ) and considering the lower and upper limits

OTi 20

In the case when all three constraints, stress, displacement and frequency, are
active, a larger value of 4° and 4" is chosen.

The discrete changes in the mechanical and economical properties of materials
considerably affect the design space and, therefore, in the minimization of
L(4,A4), the range of AM, in one iteration is restricted to the nearest stronger
(AM, =+1) or weaker (AM, =-1) material only.

There is an important issue that needs to be taken into account when the
frequency constraint is active. The vibration mode and frequency of truss structure
are very sensitive to the distribution of E4 and S, and the vibration mode might be
changed as a result of the improvements of E4 and S in the first stage minimization
process. If the vibration mode has indeed changed, the sensitivities of frequency
constraint calculated using the initial E4 and S become ineffective and may not

satisfy the frequency constraint on the new vibration mode. For this reason, it is




necessary to calculate the exact vibration mode and frequency, and examine the
activeness of frequency constraint after the first stage minimization process. If the
activeness of frequency constraint is changed, namely the frequency constraint
becomes active or inactive, the set of active constraints §; must be modified
before performing the second stage minimization process.

In the two-stage minimization process of the Lagrangian function. the iterative
improvements of A, S, M and i are repeated until the convergence criteria are
satisfied. Thus, the solution to the optimum design of truss structures subject to

stress, displacement and frequency constraints are obtained.
5-4. NUMERICAL DESIGN EXAMPLES

The proposed optimal structural synthesis method is applied to various
minimum-cost designs of statically indeterminate trusses subject to stress,
displacement and natural frequency constraints.

In this section numerical results for 15-bar truss are discussed. In the design
problem, the configuration of structure is assumed to be symmetrical about a
vertical centerline and the horizontal distances X from the vertical center line to
each panel points are treated as the shape design variables S. The lower limits of
cross-sectional areas, A', and shape variables, X', are, respectively, set at 0.1cm’
and 10.0cm. The structures have nonstructural lumped masses M, and structural
lumped masses M, (i=1,--,¢) and are subjected to static vertical and horizontal
loads. The objective here is to determine the optimum shapes and member topology

for various design conditions.

(1) Material set

The allowable stress o,, modulus of elasticity E and unit cost p, are the
properties of material which affect the optimum solutions of minimum-cost designs
of trusses. In general, the ratios of o,/p. and E/p, represent the effectiveness of
stress, displacement and frequency constraints. Materials with high values of o,/ p,
are more advantageous for the problems in which the stress constraints are dominant,
whereas those with high E/p, are more advantageous when the displacement or
frequency constraints are dominant. In this study, material set (A) shown in Table

4-1 is used. The material set (A) consists of five components with identical modulus




100t @ 100tf
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M : non-structural lumped mass (102.04kgf /cm/s?)

My ~My, © structural lumped masses

X

Fig.5-1 Initial 15-bar truss

of elasticity £ and weight density p, . p, (kgf/cm’®) is set at 0.00785. The material set
is arranged in ascending order of o,/p, or descending order of E/p, for the sake of
simplification of the algorithm and smooth convergence to the optimum solution.
The allowable tensile and compressive stresses of materials are assumed to be the
same.

In the material set, o,/p. increases with material number, and therefore, in
cases where only stress constraints are active, the larger numbered materials are
more economical than the smaller ones. On the contrary, E/p. decreases with
material number, and as a result, the smaller numbered materials are more
economical when displacement or frequency constraints are active. In the problems
where the combinations of the stress, displacement and frequency constraints are
active, the optimum materials are selected in such a way that a balance is maintained

between the values of o,/p, and £/p,.
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Fig.5-2 Iteration histories and optimum solutions for cases A, B, C and D (1/2)
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minimization process of the Lagrangian function, the concept of convex and linear
approximation, dual method and discrete sensitivity analysis. The rigorousness,
reliability and efficiency of the proposed design method have been confirmed by
various numerical experiments on statically indeterminate trusses.

The following conclusions can be drawn from this study:

(1) The proposed optimal synthesis method can deal with any combinations of
design variables such as shape of structure, discrete material kinds and cross-
sectional areas of member elements of truss structure subject to both static and
frequency constraints. The application of this method, also, leads to an optimum
member topology.

(2) The proposed two-stage optimization process for minimizing the Lagrangian
function can also solve the mixed discrete/continuous variable problem subject
to stress, displacement and frequency constraints in a systematic and efficient
manner.

(3) Adaptive move limit constraint on S is necessary to ensure that successive
solutions converge to the optimum solution when displacement or frequency
constraints are active in the design problem.

(4) The vibration mode and frequency of truss structure are very sensitive to the
distribution of EA and S, and the vibration mode might be changed by
improvements of E4 and S at the first stage of the minimization process.
Therefore, it is necessary to calculate the exact vibration mode and frequency
and to examine the activeness of frequency constraint at the end of first stage

minimization process to ensure the smooth convergence to the optimum solution.
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by a response spectrum method using the acceleration response spectrum which is
specified in the JISHB[16].

In the optimum design method, the primary optimum design problem expressed
in terms of primary design variables, namely, shape, material and sizing variables, is
transformed into an approximate subproblem of convex and separable form by using
mixed direct/reciprocal design variables and the sensitivities of behavior constraints
with respect to the primary design variables. The sensitivities of stress and
displacement constraints due to seismic loads with respect to design variables are
calculated analytically by using the sensitivities of eigenvalues, eigenvectors.
participation factor and acceleration response spectrum. The separable Lagrangian
function is introduced for the approximate subproblem and the Lagrangian function
is minimized by the algorithm proposed in Chapters 4 and 5 incorporating
suboptimization technique.

[n the numerical design examples, the numerical results of minimum-cost design
problems of 193-bar transmission tower truss are shown for the three design
conditions with different unit costs of land of construction sites. By comparing the
optimum solutions. the rigorousness, reliability and efficiency of the optimum
design method are demonstrated. It is also emphasized that the optimal
configuration, distribution of material kinds and cross-sectional areas of all member
elements are significantly influenced by the value of unit cost of land of

construction site.
6-2. FORMULATION OF PRIMARY OPTIMUM DESIGN PROBLEM

(1) Design variables

[n this study, all member elements are assumed to be made of circular steel pipes
with diameter D and plate thickness t as shown in Fig.6-1. For the reason that the
allowable compressive stress of a member element with cross-sectional area A is
significantly influenced by the values of slenderness ratio and D/t as specified in the
JSHB[15]. Therefore, the design variables with respect to the member size should
be primarily D and t. However, by applying the optimum design concept of sub-
optimization of structural element presented by Ohkubo et al.[17-20], D and t
corresponding to the value of A can be determined quite simply, and this

suboptimization concept can simplify the problem formulation of the primary
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D:Diameter{cm)

Fig.6-1 Cross section of a member element

Table 6-1 Material set (MS)

Material Ota E Oc

Ow Ota/Pc
number (kgf/ecm?® (kgf/cm?® (yen/cm® (kgf/cm?)
1 (S5400) 1400 2.1x10° 1.6 0.00785 875.
2 (SM490) 1900 2.1x108 2.0 0.00785 950.
3 (SM490Y) 2100 Z.0x10% 2.1 0.00785 1000.
4 (SM570) 2600 2.1x10° 2.5 0.00785 1040.
o . allowable tensile stress o : unit cost
E . modulus of elasticity pw . weight density

optimum design problem greatly. For this reason, the cross-sectional areas A of all

member elements are dealt with as the sizing variables instead of D and t.
A=[di, e, A (6-1)

where » is the number of member elements.

The detailed determination method for t and D for each member element is
stated in section 6-2.(2). Furthermore, the horizontal and vertical coordinates of
panel points S(=X,Y) and material kinds M representing the physical and

economical properties of material are considered as design variables.
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compressive stress o.(r,) for the compressive member element can be stated as

follows by considering ¢, only as the design variable.

Find t which,
maximize Oealt) = Olag(t:) oeat(t:)/ Oaot1) (6-5)
subject to A(t;)) = constant (6-6)

From the practical design viewpoint, it is assumed that t for each member element
should be selected from the following discrete plate thickness set considering the

market sizes of steel plate thickness.
1,€{2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0(mm)}

Figs.6-2 and 6-3 show the relationships between plate thickness t and allowable
axial compressive stress o, for material kinds 1 and 2 obtained by changing t
discretely from 2.0mm to 10mm, and also show the process to determine t which
maximizes g, . In these figures, the member length ! and cross-sectional areas A
are, respectively, assumed as 4m, 50.0cm?® 100.0cm?, 150.0cm? 200.0cm?, and
250.0cm’. As clearly seen from Figs.6-2 and 6-3, t which maximize o, under the
condition of the given cross-sectional areas can be simply determined by comparing

the values of o, with respect to each plate thickness.

(3) Design constraints
- The stress, displacement and slenderness ratio constraints are taken into account
as the behavior and side constraints and these constraints are taken from the JSHB
[15].
The critical stress constraint g (A,S,M) for the jth member element is selected
by comparing the values of stress constraints due to static loads, and static and

seismic loads, g, (A,S,M), ¢’ (A,8,M) and g (A,S,M).

2. (AS,M) =N, (AS.M) /4, Hoy (MO0 (6-7)
F g (A8 M) =N, (A8, M) /4, +N,(ASM)/4, [—1.5| oy (M)|<0 (6-8)
2. (AS.M) =N, (AS.M) /4, - N,(A,SM)/4, | —1.5c,(M,)|<0 (6-9)

where N,(A,S,M) and N,(A,S,M) are, respectively, the axial forces in the jth
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Fig.6-3 Relationships between plate thickness t and
allowable compressive stress o,
(material kind M=2 (SM490), member length / =4.0m)
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member element due to static loads and seismic loads. o, (jf,) is the maximum
allowable axial tensile or compressive stress.

The displacement constraints g, (A,S,M) (d =1,---,u) are given as

25:(AS M) =5, (A, S, M) H5.4 (A S. M) —|54|£0 (d=1,---,u) (6-10)

where &4(A.S,M) and 5.,(A.S,M) are, respectively, the displacements at the dth
panel point due to static loads and seismic loads. §,; is the maximum allowable
displacement at the dth panel point. u denotes the number of displacement
constraints to be taken into account.

Furthermore, the following constraints on slenderness ratio of the ith member

element are considered to hold the minimum member rigidity.
For compressive member  [/p(t;, 4)< 120 @ =Len) (6-11)

For tensile member 1L/ rti, A4)< 200 (f=1-,n) (6-12)

In the optimum design process, the above constraints on slenderness ratio are
considered as the constraints to determine the lower limit of cross-sectional area of

the ith member element A, .

(4) Calculation of displacements and axial forces due to seismic loads

The structural behaviors due to seismic loads, N,(A.S,M) and §,,(A,S,M), are
calculated by the response spectrum method in which the standard acceleration
spectrum specified by the JSHB [16] is used. The eigenvalues g* and eigenvectors
[¢] of structure which are necessary for the analysis of structural behaviors are
obtained by solving the eigenvalue equation of structural dynamics given by eq.(5-
12). The total system mass matrix M, consists of the contributions from structural

mass matrix My (A.S,M) and nonstructural mass matrix M,..
M, =M, (A,S.M) +M, (6-13)

In this study, the acceleration response spectrum in the kth vibration mode, Sax,
is calculated by eq.(6-14) considering the dumping ratio of structure and ground

condition.
S, =15:85, (6-14)

where S} is the standard acceleration response spectrum shown in Fig.6-4 and is
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vibration Tk (s)

Fig.6-4 Standard acceleration response spectrum
specified in JSHB (1990)

taken from the JSHB [16]. The relationship between the period of natural vibration
T, and the standard acceleration response spectrum §%, is expressed as follows.

i

if T, <0 , =43 l'llE (gal) and S\A >160( gal)
if 0.1<T, <Ll S% =200(gal) (6-15)
if =T, ; 8%, =220/T, (gal)

The displacements §,4(A,S,M) in the kth vibration mode are calculated by the

following expression by using the eigenvalue
g y 2 e

, normalized eigenvector [¢], by

€q.(5-19). principal coordinate g, and participation factor f,.

5ex (A8, M) =[b1,4, (&-15)
where
(/« .- ﬁkS’,\k (6'17)
Hi

The axial force of the kth vibration mode in the jth member

element, ¥,,(A,S,M), is given by

Nox(ASM) = £,0,65,:(A.S,M) (6-18)
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where k,; and @, are, respectively, the member stiffness matrix and rotation matrix
for the jth member element. S55:(A,S;M) indicates the displacements at both ends of
the jth member element.

Finally, the displacement at the dth panel point, §,,(A,S,M), and axial force in

the jth member element due to seismic loads, Ny (A,S,M), are obtained by taking
the square roots of the summations of squares of Oeax(A,S;M) and N, . (A,S.M)

(k=1,-+-,v). Namely,

[ .
3.a(A,SM) = 13 {5,,.(A,S,M)} (6-19)

\” k=1

i ,
Ng(ASM) =13 (N, (A,S,M)} (6-20)

=

where v indicates the number of eigenvalue taken into account for the response

spectrum analysis.

(5) Formulation of primary optimum design problem

The total construction cost is the objective function W(A.S,M) and it is
expressed as the summation of costs of member elements and cost of land of
construction site. By considering the design variables, design constraints and
objective function stated above, the primary optimum design problem can then be

formulated as

Find A, S.M, which

minimize W(_A.S.M)IEp‘_‘(j{_)/,(j:)_.{_‘ +p, A (S2) (6-21)

subject to g, (AS.M)<0 (j=1-:-,n) (6-22)
g (ASM)<0 (d=1-,u) (6-23)
A =l (i=1,-,n) {
Sh=iSe< 5 (k=1,--2P) (6-24)
M, eMS l

where

=158




P..(M,)is the unit cost of the ith member element with material kind M,. p; and
A;(S;) are, respectively, the unit cost and area of land of construction site. S, is the
coordinates of panel points which directly influence the area of land of construction
site. S, and S, are the horizontal and vertical coordinates of the panel points to
which the ith member element is connected. As stated in section 6-2.(3), the lower
limit of cross-sectional area A! is determined so as to satisfy the constraints on

slenderness ratio in eqgs.(6-11) and (6-12) to ensure the minimum member rigidities.

6-3. OPTIMAL STRUCTURAL SYNTHESIS METHOD FOR TRUSS
STRUCTURES SUBJECTED TO STATIC AND SEISMIC LOADS2+%!

(1) Convex and separable approximate subproblem

The objective function and design constraints in egs. (6-21) to (6-24) are
approximated by using the first-order partial derivatives of the objective function
and design constraints with respect to design variables. The primary optimum
design problem is transformed into the convex and separable approximate
subproblem by using the direct and reciprocal design variables considering the signs
of partial derivatives. In the approximate optimal design formulation, the change of
objective function AW is taken into account instead of the total objective function,
W(A,S.M), and the changes in material kinds, AM :I:A‘\IL,W,"_\'\/”];. are treated as
new material variables. Then, the following convex and separable approximate

subproblem can be derived.

Find A, S, AM, which
minimize AW(A,S. M’ +AM)=Y @, (M?+A M) 4
=1
L o |l 2
+ 3 [@g, (M + AM)S, — g, (M°+ AM)(SE)'?] (6-25)
&=l Dk

subject to

z ll
g, (A,S.M°+AM) = Z[u,,. o Ai— a5 (4] )*7 +m, A\/[‘}
i=1

i

2p 1 o _ )
+Z{S’;k¢->$k—S,k‘,,(S?»)"g—jI*UmSO (7= Li=m) (6-26)
1 Sk

n , 1
Zu (AS.M’+AM)=) {a.m., Ay =aao (A7)~ + ma AM, }

=1
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BiEB=[An""sAns Sh57%. Sap, ,\»/‘w“‘,\/v,]{ are given by eqs.(5-14) and (5-21) to (5-23).
The sensitivities of displacements §,,(A,S,M) in the kth vibration mode are

calculated as the following expression by differentiating the eqs.(6-16) and (6-17).

08..(A,S,M) 1], 0
M o @L‘/; A'N’ J'\ ;L (6-29)
o8, 8B " 0B,
where
':L[k = +/}7:f‘5u _,H;-S‘.\k {Z.U;_ (6-30)
0B, : 0B u, OB

By differentiating the eq.(6-18), the sensitivities of axial force of the kth
vibration mode in the jth member element, Nex(A,S,M), with respect to 4,, Si. M

are, respectively, given by

ONg(ASM) Bk, 25, (A,S,M)

= = 0,654 (AS,M)+k,, 0 (6-31)
oA ad; 0 A
ONw(ASM) 0k, ! 00 -
L = TEn o 5 (AS MY+ eyt 5, 1 (A5 M)
a8, as; asy
05, (A,S,M
ey Qe T ( = ) 6-32)
/ S
3] A.S,M O ke 5 A ' 0
O Nl L = Gk 5 (ASM)—A_(p (31— B (%)
oM, a4~ E(M)
05, (A,S,M
&y @ 20 A5 M) (6-33)
L = M

Finally, the sensitivities of displacement 5,,(A,S,M) at the dth panel point and
axial force N, (A,S,M) in the jth member element due to seismic loads are obtained
by taking the first-order partial derivatives of the responses expressed as square

roots of the summations of squares of §,,(A,S,M) and N, (A,S,M) (k=1--,v).

Namely,

98.4(A,S,M) | . A s ,

~ i . e ,\(Ausivl)% (6_)4)

= 3B, / m 4 - :Zl:l)J. ¢ 4
> {5k (A,S, M)}
\b=

AN (ALS v AN . (AS.M )
ON,(ASM) _ 1 > Va8, M) NerASMD - o)

3B D e aB
\/Z{;\"W(A,S,M)}“ -

k=1




(3) Improvements of A, S and M by a two-stage minimization process of the

Lagrangian function

(a) Two-stage minimization process of the Lagrangian function

The behaviors of truss structures subjected to static and seismic loads. such as
stresses of member elements and displacements at free nodes, are expressed as the
functions of S and the product of modulus of elasticity E and 4, EA, and the
objective function is also expressed as the function of A, S and M. As stated in
Chapters 4 and 3, in this study A and S are dealt with as continuous variables and
AM as discrete variables selected from the material set MS . Therefore, the design
variables A, S and AM are improved by a two-stage minimization process that
uses a dual method and incorporate discrete sensitivity analysis. At the first stage of
the minimization process, EA is treated as one design variable, but M is
maintained constant, and the optimal EA4 and S are determined by using a dual
method. In the optimization algorithm of first stage minimization process, E is
constant and A is improved for improvement of EA. Thereafter, at the second stage
of the minimization process, S is maintained constant and the better combination of
A and AM for each member element is searched independently to reduce the cost of
each member element by comparing the value of cost while keeping the activeness

of the constraints which are determined by the first stage minimization process.

(b) Lagrangian function

To solve the convex and separable approximate subproblem defined in eqs. (6-
25)-(6-28) by using the two-stage minimization process, the following Lagrangian
function which is expressed as the separable forms of A and S is introduced for the

subproblem.

n 2P n 1
L(AS,M°+AMA) = D L (4,AM.A)+ )" L (S, AM A + X 2T, + D ATs  (6-36)
=1 k=l

= d-=i

u

where  A720(j=L-n), A20(d=1-u)

A7 and 1) are, respectively, the Langrange multipliers (dual variables) for g,, and
8- Liand [, are, respectively, the element Lagrangian functions with respect to

4, and AM,, Sk and AM, and these are given by




Li(A,AM; \)= @ (M +AM,) 4

n

a1 u
+2 ”1'7[“”“’"l’*"f”*( ALY -+ ,\/J +)
' i’ d=1

&

(6-37)

i
_{u,m.,.»’L-u”,_‘(_»4"']’ r +muA M,
1 Ay

Li(Se, AMLA) = @y (M + AM) 5 — 0 (M® + AMIY(S?)2 %

4 goy2 L . < Lag
+Z},"[.Y,m-yS;—A\',\'--‘(S;) S :l +Z/{:;")‘u’h-xbk~Sax\-,('5;-)‘? ] (6-38)
-1 | FE Sk |

k

(c) Improvements of E4 and S by the first stage minimization process

In the first stage minimization process of the Lagrangian function, the material
kinds of member elements M are maintained constant, and E4 and S are improved
by maximizing L( A, S, M"+AM,A) with respect to A and minimizing it with
respect to E4 and S. In the minimization algorithm, E for each member element is
constant and A is improved for improvement of EA. Since €q.(6-36) has a simple
form of a summation of the separable element Lagrangian functions 7,(4,.A M,.3)
and [,(Sy,AM, A). the minimization L( A, S, M +AM, L) with respectto A, S and
AM can be accomplished by minimizing 7, and 7, with respect to 4 and S,
independently. A4, which minimizes L(A4.AM..%), is given by the following
expression derived from the necessary condition of L(A4-A M;,)), namely,

8L,/ 84 =0-and the side constraint on 4

ps

if [A (MO < Z, (M) <[4*(M))T, A =~Z (M) [
if Z (M) < [4'(MP, 4 = A4/(MD) (6-39)
if Z (M) >[4 (MO, A=A (MD) ‘

where

i Z/H a,u—)**zfij ll..lm](-‘w):
Zy(M) = ————— (6-40)
@4 (M) + z A7 ajen + Z A Qe
j=1 d=1

S,, which minimizes Li(Se,AM, L), is also given by the following expression

derived from the necessary condition 8L/ 8S,=0 and the side constraint on Sy -




if ISP <ZMO<[STE, S =yZeM)
1

Zg(M") < [SIT7, S, =S

e =S ‘ (6-41)
if Zo (MY 2 [SIT e [
where
if wg(M% = 0,
*l Z/‘-F S+ Z A5 Sy J(SV.,} )
T (VY] = ' — (6-42)
(ux;m(M")‘*Z/lf s‘”.,+Z/'fj S
=1 d=|
if g (M’ < 0,
{ n u h
= \-;_,‘.\L\/I”)-z/i”.x%-Z/{’,’}_v,.“,,h.,\"!_’)z
Ze (MY =— =ed% = (6-43)

The minimized Lagrangian function with respect to A and S is denoted as I(X):
(h)= n}ig L(A,S,M"+AM. 1) (6-44)

Following the minimization process with respect to 4, and S,, the Lagrangian
function /(X) is maximized with respect to the dual variables A related to the active
constraints by using a Newton-type algorithm. The details of the maximization
algorithm of /(X) with respect to A are described in section 4-3.(3).(c).

After the improvements of the dual variable A as A" by the Newton-type
algorithm and A and S as A" and S’ using A", the set of active constraints S.6
in the currently approximated design space also has to be updated. The min.-max.
process described above is iterated until A, S and A converge to constant values.

In the first minimization process, it should be noted that if the rate of change in
S is too large in any iteration, the successive solutions oscillate, and in some cases
smooth convergence may not be obtained. For this reason, the adaptive move limit
constraints are restricted such that the maximum rate of change in § is limited to

less than 15 percent.




(d) Improvements of A and M by the second stage minimization process

In the second stage minimization process of the Lagrangian function, the values
of S and A improved by the first stage minimization process are maintained
constant, and the Lagrangian function L(A,S,M°’+AM, L) given by eq.(6-36) is
minimized with respect to A and AM while keeping the activeness of the

constraints which are determined by the first stage minimization process, namely,

Find A, AM, which
minimize L(A,S,M°+AM, %) (6-45)
subject to 2, (A,SM’+AM) <0 (j e:Su5) (6-46)
2. (A SM’+AM) <0 (d € S.u5) (6-47)
dp < 4f A" (i=1,--,n)
| (6-48)
M, eMS (i=1,:-+,n) J

In the above expressions, A and S are the solutions obtained by the first stage
minimization process and these values are maintained constant during the
minimization process.

After the first stage improvements of A, S and A, the approximate constrains
E‘T(AS. M’+AM) and 24(A,S,M°+AM) in the set of active constrains Sac
namely , je€S84 and d&eS.. become zero, and A7 and /0/ for the inactive
constrains g, and g, namely, jeS.; and d ¢S ,;. become zero. By substituting
these relations into L(A,S, M’ + AM,2) in €q. (6-36), the minimization problem in
eqs. (6-45)-(6-48) is solved by minimizing only the term of objective function for
each member element in L(A,S, M’ + AM.X) independently, namely, I,(4,(M’+
AM), M{+AM)) (i=1--,n) given by eq.(6-49), subject to the constraints in
eqs.(6-46)-(6-48).

LA (M +AM) M+ AM) =0, (M" +A M)A (M’ +AM) (i=1-,n) (6-49)

4, and A M, which minimize T, (4,(M?+AM,),M?+AM,) are determined by
comparing the discrete values of [,(4,(M}+AM,),M;+AM,) calculated by using the
new material kind (M’+AM,) and F,(M’+AM,) improved so as to satisfy the

constraints in eqs. (6-46)-(6-48).




For the case where only stress constraints are active, the necessary condition
which maintains the stress constraints active for a discrete change AM, in material
kind M, is given by the following expression.

P | 4]
B (AT M2+ & M) MO+A M) = =T AMD)

AT (M +A M)

— Caman M + AM,, A7 (M) +AM),F)=0 (i=1-,n) (6-50)

By solving eq.(6-50) for J47(M{+AM)), the improved 4 for M°+AM,,
A (M?+AM,), is given by

lon] 4.(M.)
Camaa (ML + A Mis A7 (MP+ A M)ST)

A7 (Mi+A M)= (i=1n) (6-51)

where A (M+AAM) S Z7 (MY +A M) < A (MP+AM,)

01 and Gaaq (M + A M, 47 (M + A M).T,) indicate, respectively, the working stress
in the first stage minimization process and the maximum allowable compressive
stress or allowable tensile stress for M{+AM,.

In the case that the ith member element is a compressive member,
Ot (M +A Mis A7 (M) + A M)T) in eq.(6-51) is expressed as the function of
A7 (M} +AM,) . Therefore, the determinations of accurate values of A7 (M? +AM,)
and 7, which satisfy eq.(6-50) requires to repeat the calculation of
v (M7 + A Mi» Z7 (M +A M).T;) due to change in Z7(M°+AM,) by using the
suboptimization stated in 6-2.(2). For this reason, in this study, eq.(6-50) is linearly

approximated with respect to A7 (M +AM) as

S (AT (M +A M) M)+ AM)= 8, (A5 M+ A M) M+A M)

N T , I ; )
+:‘2: ‘l_]j'4';\1f'+A.r\r/‘,)—,1,“,)\M‘;‘+AM_,)';:O (i=1l,-,n) (6-52)
0 A; )

~a

By solving eq. (6-52) for A/(M/+AM,), A5(M+AM,) is improved by

e ‘ G e,
A7 (M +A M) =8, (A5 (M + A M), MI+A M)/ ( o ) + Ao MI+AM,)

N4
(i=1-n) (6-53)
where A(M?+AM,) < A7(M?+AM,) < ' (M +AM,)
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Fig.6-5 Flowchart of the proposed optimal structural synthesis method

for truss structures subjected to static and seismic loads
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structures are very sensitive to the distribution of EA and S, and the stress for each
member element and displacement at each panel point due to seismic loads might be
changed considerably as a result of the improvements of E4 and S in the first stage
minimization process. If the vibration mode and period of natural vibration are
indeed changed after the first stage minimization process, the sensitivities of stress
and displacement constraints due to seismic loads calculated using the initial EA
and 8 in the first stage minimization process become ineffective to satisfy the stress
and displacement constraints with the improved EA and S. For this reason. it is
necessary to calculate the accurate vibration mode and structural behaviors due to
seismic loads by using the response spectrum method and to examine the activeness
of stress and displacement constraints after the first stage minimization process. If
the activeness of the constraints is changed, the set of active constraints S i must
be modified before performing the second stage minimization process.

[n the two-stage minimization process, the iterative improvements of A,S.M and
L described in this section are repeated until the convergence criteria are satisfied.
Thus the optimal solution A*,S".M" and A" to the optimum design problem are
obtained. The flowchart of the propose optimal structural synthesis method for truss

structures subjected to static and seismic loads is depicted in Fig. 6-5.
6-4. NUMERICAL DESIGN EXAMPLES

The proposed optimal structural synthesis method is applied to various
minimum-cost designs of truss structures subjected to static and seismic loads to
demonstrate the rigorousness, efficiency and reliability of the optimal design
method. In this section, the numerical results for a 193-bar transmission tower truss
shown in Fig.6-6 are discussed.

The nonstructural lumped masses M., to M, and structural lumped masses
M,, (i=1,---,86) as shown in Fig.6-6 are taken into account for the response
spectrum analysis. The structural configuration and cross-sectional area for each
member element are assumed to be symmetrical about the vertical center line. The

horizontal distances from the center line, X; and X,

2>

and the heights in the
cantilever trusses, Y-Yo, are considered as the shape design variables. The cross-

sectional areas and material kinds for 100 member elements which locate on the one
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Table 6~3 Active constraints of main member elemerits numbered
in Fig 6-6 and active constraints as whole structual
system for p/p.(SS400)= 0.00, 0.06, 0,12

No. of
member P/p (55400)=0.00 [ p,/p, (§S400)=0.06 | p,/p. (SS200)=0.12
element
10 27 (=) g2, (&) g; ()
13 gl (1) gl (1) gl
- Tare L _3
24 B (3) 85: 84 (3)
48 g (1) 80:8a> (1)
38 g, (4) g; ()
61 24 (3) g; (3)
6 g, (@) 25, (%)
91 !, (3) 85800 (3) ]
94 2, 3) gh 82 (D 22, (@
99 g, (3) g“:_g:.nlv g,‘j (1)
100 sz (1) Zgps: (1) 85> (1)
system' 8s 8s 8

1) Active constraints as whole structual syst

8, : stress constraint due to static and seiamic loads

3 3 y .
8, ' compressive stress const due to static and seismic loads

&g - constraint on slenderness 10

8, * displacement constraint due to static and seismic loads

solution are, respectively, 1097.5¢m, 279.8cm and 7.310x10%yen.

For the case where p, /p.(SS400) is set at 0.06, the optimum solution is obtained
after 10 iterations quite efficiently. As the same as the case of p, /p,(S$400)=0.00,
both stress and displacement constraints are active at the optimum solution. In this
problem, the cost of land of construction site influences the total construction cost.
Therefore, the optimum value of X, is 817.0cm and it is 280.5¢cm smaller than that
for the case of p, /p,(SS400)=0.00, on the contrary, the optimum value of X, is
371.2cm and it is 91.4cm larger than that for the case of p, /p,(SS400)=0.00. With
regard to member element 99, by the changes of X and X5, the two stress constraints
due to not only static loads but also static and seismic loads, gl, and g, become
active. The optimum plate thickness and material kind for the case of p, /p.(SS400)
=0.00 were 4mm and 3, but the optimum plate thickness for the case of
P,/ p.(85400)=0.06 is Smm and the optimum material kind is selected as 1. The
cross-sectional area of member element 99 is 44.2% larger than that for the case of

P, [ p.(88400) =0.00. In the comparison of the cost of truss not including the cost of
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Chapter 7 CONCLUSIONS

In Chapter 2, a rigorous and efficient optimum design method for steel cable-
stayed bridges is presented. In this design method, not only the cross-sectional
dimensions of cables, main girder and pylon elements but also the cable anchor
positions on the main girder and the heights of pylons are dealt with as the design
variables. The proposed optimum design method has been applied to the minimum-
cost design problem of steel cable-stayed bridge with 48 cable stays and the
practical design problem of the Swan Bridge at the Tokiwa Park. The theoretical
rigorousness, efficiency and practical usefulness of the proposed optimum design
method are demonstrated by investigating the optimum solutions at various design
conditions.

The following conclusions can be drawn from this study:

(1) The global optimum solutions can be determined in 9-15 iterations quite
efficiently by the proposed optimum design method.

(2) The optimum values of pylon height, cable anchor positions on the main girder,
steel plate thicknesses of each main girder and pylon elements, and cross-
sectional area of each cable appear to be reasonable and well balanced.

(3) In the numerical examples of steel cable-stayed bridge with 48 cable stays, the
reduction of total cost from 2.7%-8.6% can be observed by dealing with the
cable anchor positions on the main girder and the height of pylon as the design
variables. Therefore, the treatment of cable arrangement as the design variables
is extremely significant in the optimum design problem of steel cable-stayed
bridges.

(4) From structural mechanics consideration, with regard to the optimum cable
arrangement in the numerical example of steel cable-stayed bridge with 48 cable
stays, the top two cables are parallel and are anchored at the end support in the
side span, on the other hand, the cables are distributed as the geometric series in
the center span. The cross-sectional areas of top two cables in the side and center
spans are determined to be 3.6-1.4 times larger than those of the middle cables.
The cross-sectional areas of unnecessary cables at the optimum solutions are
found to be the imposed lower limit automatically by the proposed optimum

design method.







(4) The optimum cable anchor positions on the main girder X, and the height of
pylon Y, determined during the first stage optimization process by considering
only the design loads are found to be scarcely affected by the optimum pseudo-
loads from the design example. Therefore, we can obtain the final optimum
solutions of Z, X., Y. and P, after only one repetition of two-stage
optimization process, namely determination of the optimum solutions of Z, X
Y. subjected to only the design loads by the first stage optimization process and
determination of the optimum solutions of Z and Pp subjected to design loads

and pseudo-loads by the second stage optimization process.

o)

5) By giving the optimum prestresses to the cables, the local peaks of min. and max.
bending moments at the middle support in the main girder are reduced to 53.6
—40.5% and the cross-sectional areas of cables change to the range from
+42.7% to -84.5%, and all nontrivial cables are fully stressed. As a result, 2.9%
reduction in the total cost of the bridge is observed by giving the optimum cable
prestresses in the design examples. From various design examples, it can be said
that we can save 2.6%-4.1% of the total cost of the bridge by giving the
optimum prestress in the cables.
(6) The proposed optimum design system is quite useful for practical design of the
steel cable-stayed bridge at all design stages, from the planning stage to the

detailed design stage.

In Chapter 4, an optimal structural synthesis method is presented to determine
the optimum solutions for design problems of truss structures considering the
coordinates of panel points. cross-sectional areas and discrete material kinds of all
member elements simultaneously as design variables. The stress and displacement
constraints due to static loads are taken into account in the optimization process.
The optimal structural synthesis method has been developed by using the concept of
convex and linear approximation, dual method, two-stage minimization process of
the Lagrangian function and discrete sensitivity analysis. The generality,
rigorousness, reliability and efficiency of the proposed optimal structural synthesis
method are illustrated by applying the method to various minimum-cost design
problems of 31-bar truss subjected to stress and displacement constraints and
investigating the optimum solutions at various design conditions.

The conclusions that can be drawn from this study are:
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(1) The design method can deal with any combinations of design variables such as
shape of the structure, discrete material kinds and cross-sectional areas of
member elements, and can optimize the design variables as well as the
topological member arrangement simultaneously.

(2) The two-stage minimization process of the Lagrangian function can solve the
mixed discrete/continuous variable problems quite systematically and
efficiently.

(3) The rigorousness and reliability of the proposed design method have been
confirmed by various numerical experiments of 31-bar trusses. The convergence
to the optimum solutions is quite excellent and the optimum solutions can be
obtained after 15-25 iterations quite efficiently even when the algorithm is
initialized with the worst possible material distribution.

(4) Adaptive move limit constraint on Y is required to ensure the successive
solutions converge to the optimum solution when the displacement constraints

are active in the design problem.

In Chapter 5, the systematic synthesis method proposed in Chapter 4 is applied
to determine the optimum solutions of shape, material and sizing variables, S, M, A,
of truss structures subject to not only stress and displacement constraints due to
static loads but also frequency constraints. The design method is developed by
utilizing the two-stage minimization process of the Lagrangian function, the
concept of convex and linear approximation, dual method and discrete sensitivity
analysis. The rigorousness, reliability and efficiency of the proposed design method
have been confirmed by various numerical experiments on statically indeterminate
trusses.

The following conclusions can be drawn from this study:

(1) The proposed optimal synthesis method can deal with any combinations of
design variables such as shape of structure, discrete material kinds and cross-
sectional areas of member elements of truss structure subject to both static and
frequency constraints. The application of this method, also, leads to an optimum
member topology.

(2) The proposed two-stage optimization process for minimizing the Lagrangian

function can also solve the mixed discrete/continuous variable problem subject
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(4

distribution of material kinds and sizing variables in the whole structure are
considerably affected by the unit price of land of construction site.

The proposed two-stage optimization process for minimizing the Lagrangian
function can determine the optimum material kinds of all member elements of
truss structures subjected to static and seismic loads in a systematic and
efficient manner even when the algorithm is initialized with the worst material
distribution.

The suboptimization concept on cross-sectional dimensions can simplify the
formulation of optimum design problem greatly. The optimum cross-sectional
dimensions of each member elements can be determined simply by using the
optimum cross-sectional areas and suboptimization process.

In the optimization process, the vibration mode and period of natural vibration
of truss structures are very sensitive to the distribution of EA and S, and the
stress for each member element and displacement at each panel point due to
seismic loads might be changed considerably as a result of the improvements of
EA and S in the first stage minimization process. Therefore, it is necessary to
calculate the accurate vibration mode and structural behaviors due to seismic
loads by using the response spectrum method and to examine the activeness of
stress and displacement constraints after the first stage minimization process. If
the activeness of the constraints is changed, the set of active constraints must be

modified before performing the second stage minimization process.
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