
Chapter 4 

TOTAL OPTIMAL SYNTHESIS METHOD FOR TRUSS 
STRUCTURES CONSIDERING SHAPE, SIZING AND 

MATERIAL VARIABLES SUBJECTED TO STATIC LOADS 

4-1. INTRODUCTION 

In problems of optimal synthesis of structures, the most fundamental and 

significant design variables are the geometry of structures, mechanical and 

economical properties of materials and cross-sectional dimensions that are available 

for each member element. Therefore, the establishment of a structural optimization 

method which can optimize the design problem considering all tluee types of design 

variables simultaneously, is a significant task. 

During the past decades, a number of contributions have been made exclusively 

to the sizing optimization since the earliest study by Schmit[l) in 1960 and, in the 

last two decades, the shape optimization and topology opt imization have been 

studied considerably[2-5). However, only a bit of focus has been on optimization 

with material selection which requires a discrete/continuous formulation of the 

problem [6-13]. 

!n this study an optimal structural synthesis method is presented to determine 

the optimum so lutions for the design problems of truss structures considering the 

coo rdinates of the panel points, cross-sectio nal areas and discrete material kinds of 

member e lements simultan.eous ly as design variables. The stress and displacement 

constraints due to static loads are taken into acco unt in the optimizatio n process. 

The primary design problem is transformed into an app roximate subproblem of 

convex and separable fo rm by using mixed direct/reciproca l design va ri ables, shape, 

material and sizing sensit ivities. The approximate subprob lem is solved by a dual 

method, where the separable Lagrangian function for each element is introduced. In 

this study, shape and sizing variab les are dealt with as continuous variables and 

material variab les as discrete variables . Therefore, the following two-stage 

minimization process of the Lagrangian function is proposed to solve the design 

problem including the cont inuous and discrete va riables. At the first stage 

minimization process, tbe product of modulus of elasticity E and cross-sect ional 

area A, EA, is treated as one continuous design variable and the optimum values of 
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EA and shape variable are determined by minimizing the Lagrangian function with 

respect to EA and shape variable. Then, at next stage the shape variable is 

maintained constant, and the better combination of cross-sectional area and material 

kind for each member element is searched independently to reduce the Lagrangian 

function by comparing the val ues of discretized Lagrangian function while keeping 

the activeness of the constraints which are determined by the first minimization 

process. This separable minimization of the element Lagrangian function with 

respect to material and sizing variables simplifies the inherent combinatorial 

complexity associated with the discrete material-selection problems. 

The generality, rigorousness and reliability of the proposed optimal structural 

syn thesis method are illustrated by applying the method to various minimum cost 

design problems of 31-bar trusses subject to stress and displacement constraints and 

investigations of the optimum solutions at various design conditions. It is also 

demonstrated that the optimum solutions can be obtained after 15-25 iterations 

efficiently even when the algorithm is initialized with the worst possible material 

distribution. 

4-2. FORMULATION OF PRIMARY OPTIMUM DESIGN PROBLEM 

( 1) Design variables 

[n the design problems of truss structu res, the vertical coordinates of panel 

points Y, material kinds M and cross-sectional areas A of member elements are 

considered as design variables. 

A=[A,. ·,AJ 
y = [.r;.- ··.Yp r 
M=[ JI.-!1,-··,M..]' 

(4-1) 

(4-2) 

(4-3) 

where n is the number of member elements , P denotes the number of coordinates of 

panel points considered as the design variables Y. 

Depending on the characterist ics of these design variables, Y and A are dea lt 

with as continuous variab les and M, which represent the physical and economical 

properties of the material, are dealt with as discrete var iables. 
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(2) Stress and displacement constraints 

The stress constraints on a ll member elements in truss structures are given as 

(J=l,- ··, n) (4-4) 

where u.,( MJ and N,(A, Y,M) are, respectively, the maximum allowable stress and 

axial force in thejth member element. 

The displacement cons traints are expressed as 

(d = 1,- ··,u) (4-5) 

where ood and od(A, Y,M) are the maximum allowab le displacement and actual 

displacement at the dth panel point. respective ly. u is the number of displacement 

constraints to be taken into account. 

(3) Primary optimum design problem 

In this study, the total cost of a structure is considered as the objective function 

W and it is expressed as the summation of the costs of member elements. The 

behavior constraints are stress and displacement constraints gu and g
8

, and the 

upper and lower limits of the design variables are imposed as their side constraints. 

The behaviors of trusses , such as member forces and displacements of panel points , 

are expressed as functions of the lengths, cross-sectional areas and moduli of 

elasticity of materials of member e lements. The upper or lower limitations in the 

design co nstrain ts, such as allowable stresses u . and minimum rigidity 

requirements fo r stability of the member elements, also depend on the mechanical 

properties and element sizes. Furthermore, the objective function, such as cos! or 

weight of structure, is also a function of the element sizes and material costs or unit 

weights. Therefore, the objective funct ion W, behavior constra ints g and upper or 

lower limit constraints on the design variab les can be expressed as functions of A, Y 

and M . The primary design problem can be then formulated as 

Find A, Y , M, which 

minimize W(A , Y,M)= i>"(M, )t,(f,)A, (4-6) ,., 
subject to (J = I, · ,m) (4-7) 
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where 

AJsA, sA;' 

r: SJ;, Sf," 

M, eMS 

Y. =[r. •. r._r 

(i = 1,-· ,n) l 
(k=l,- ··,p) 

(i = l, .. ·,n) 

g=(g,, .. ,gmf =[gul> .. ,g,.,_gol> ... ,g,.J" 

(4-8) 

In the above expressions, Pco (M,), M, and l,(Y,) are, respective ly, the unit cost, 

materi al kind and member length of the ith member e lement. Y,. and r,_ are the 

coordinates of panel points to which the itb member element is connected. MS is 

the set of available candidate materials. m is the number of behavior constrai nts. 

Superscripts I and u represent the lower and upper limits of the design variables . 

In the material set MS , the mate ri al components need to be arranged and 

numbered in order of the rat io between a ll owab le stress CY
0 

and p"(M,) or the ratio 

between modulus of elasticity E and p"( M,) to ensure a smooth convergence to the 

opt imum materials through iterative improvements. 

4-3 . OPTIMAL STRUCTURAL SYNTHESIS .METHOD FOR TRUSS 

STRUCTURES SUBJECTED TO STATIC LOADSP 9
·
20l 

(l) Co nvex and separable approximate subproblem 

An opt imal structural synthesis method co mbining the concept of convex and 

linear approximation(l4-20], dual method, multil evel optimization concept[21 ] and 

discrete sens itivity analysis is developed to determine the optimum solut ion for 

structu ral des ign problem descr ibed in section 4-2. 

Utilizing the convex and linear approximation concept. shape, material and 

s iz ing sensitivi ti es, the objective fun ction in eq.(4-6) and the beha vior constraints in 

eq.(4-7) are approximated by using the firs t-order terms of the Taylor series 

ex pansions with respect to the direct variables of A,Y, M and the reciprocal 

va ri ab les of Y andA. In the objective function the constant term can be neglected in 

the opt imi za tion process and only the change in the objecti ve function i'>.W is dealt 

with in pl ace of the objective function , W(A, Y,M). Then, the following convex and 

separable approximate subproblem can be derived. 
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Find 

minimize 

subject to 

where 

A, v, ru'\1, which 

t.W(A,Y,J\11° + 11M)= r,(t)_, (M,0 +IW,)A, 
I: I 

+ t.[ (t)rKH(M 0 +t.M)YK -(t)rK
1
_JM0 +ilM)(J1)' ;J. (4-9) 

g)A, Y.M0 +t.M)=I [al' A, -al' (A," )'J_+m LWJ 
,.J (.-) (-) A, Jf ' 

M, EMS 

a g) 
a=-

1' oA, • 

(J=l,-··,m) 

(i = 1, ··,n) l 
(k= 1,- ··,P) 

(i = 1,-··,n) 

ag} 
m =--

1' aM,' 

(4-10) 

(4 -1 I ) 

In the above expressions, the symbols(+) and(-) express the signs of the first­

order partial derivatives and Sk is the set of elements co nnected to the kth panel 

point. In the above approximate formulation the changes t.M in material kinds are 

dealt with as material variables. 

(2) Calculation or'behavior sensitivities 

Utilizing the concept of convex linearization, the stress and displacement 

constraints (eqs.(4-4) and (4-5)) are transformed into their approximated forms as 

shown in eq .(4-7) , in wh.ich the sens itivities with respect to design variables are 

calculated by the follow ing expressions: 
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if j indicates the stress constraint: g
1
(j = 1,-··,n) 

a =-IN 1-~-+ ~Nl_!__ (i-;") 
Jl 

1 
( " )

2 aA A0 
- ' A, ) I 

(i "¢ j), 

(i = j), 

if j indicates the displacement constraint : g
1 
(j = n + I, · · ,n + u) 

(d=j-n) 

(d = j -n) 

ajodl A,
0 

[ ( ) ( • )] m"=--( ") E, M, -E, M, 
aA, E, M, 

where 

~N,i =aN, ~N,i =aN, 
aA, aA,' ar. ar. 
~N,i aN, ajN,i =_aN, 
aA, =-BA,, ar; ar, 

ajodl aou aj,S:,I = aoSd 
~= aA

1
' ar, ar~ 

ajodl = _ aoSd 
' 

ajodl = _ aoSd 
a A, a A, ar. aJ~ 

(d=j-n) 

if b~ < 0 

(4-12) 

(4-13) 

(4-14) 

( 4-15) 

(4-16) 

(4-17) 

aN, aN aoSd aoSd 
In the above express ions, -, - 1

, - and - are calculated anal ytically aA, ar. aA, ar, 
by the following expressions: 

aN_ aKm Q"D Q aDs --- s+ K -aA, aA, m aA, ( 4-18) 
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oN =aK mQD + K oQ 0 + K oD5 
ay oY s m oY s mQ "Y 

It k k v ;: 
(4- 19) 

( 4-20) 

(4-2 1) 

where K 5 and Km are, respectively, the system stiffness matrices exp ressed in 

terms of the structure-oriented coordinate system and the member-oriented 

coordinate system. D5 is the displacement expressed in terms of the structure­

oriented coordinate sys tem and Q is the angular transformation matrix of the tota l 

system. 

(3) Improvements of A, Y and M by a two -stage minimization process of the 

Lagrangian function 

(a) Two-stage minimization process of the Lagrangian function 

The stresses of member elements and displacements at the f ree nodes of truss 

structure are expressed as the functions of Y and the product of modulu s of 

elastic ity E and A, EA , and the object ive function is also expressed as the fu nctio n 

of A, Y and M . As stated previously, in this study A and Y are dealt with as 

conti nuous variables and D.M as a discrete variable. Therefore, the design variables 

A. Y and D.M are improved by a two-stage minimization process of the Lagrangian 

function whi ch uses a dual method and incorporate discrete sens itivity analys is. At 

the fi rst stage minimization process, EA is treated as one co ntinuous design 

va riable and the optimum va lues of EA andY are determined by minimizing the 

Lagrangian func tion with respect to EA and Y. Tn the optimi zatio n algorithm of 

first stage minirni za tion process , E is consta nt and A is improved for improveme nt 

of EA . Thereafter, the better combination of A and t.M fo r each member e lement is 

searched i.ndependently to reduce the Lagrangian funct ion by com paring the val ues 

of discretized Lagrangian functio.n while keeping the activeness of the constrainrs 

which are determined by the first minimiza tion process. 
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(b) Lagrangian function L 

The design variables A, Y and L\.l\11 are improved by solving the convex and 

separab le approximate subproblem (eqs.( 4-9)-( 4-ll )). A separable Lagrangian 

function can be introduced for the subproblem as 

n P nr 

L(A, Y,M" + L\.M ,A.) = L;L,(A, L\..M,,A)+ I L,(J;,ru\1,A.) + LAP~ ( 4-22) 
1=! k=l }"' I 

wb.ere (J = l, .. ·,m) 

where L, and L, are, respectively , the element Lagrangian functions with. respect to 

the A,,L\..M, and r;, L\.l\11. A
1 

is the Lagrange multiplier(dual variable) for the jth 

behavior constraint. L, and Lk are in turn given by 

L,(A,L\..lvf" A.) = wA,( M,
0 + t..M,)A, + :tA1[aJi

1
_,A, -a",_. ( A:)' ~ +m1,L\..M,] 

j•l l 

(4-23) 

(4-24) 

The solutions of the subproblem, A· , y· ,M · and A· , can be obtained by maximizing 

L(A, Y, l\11° + L\.M,A.) with respect to A and minimizing it with respect to A, Y and 

L\.M. 

(c) First stage mLn.-max. process ofL with respect toEA , Y and A. 

At t he first stage of the minimization process, L,(A, L\..M,,A.) and L,(J;,L\.M,A.) 

are, respectively, minimized with respect to A, and r;. At this stage, L\.l\11 is 

maimained constant, namely, E is constant, and A is improved for improvement of 

EA . A,, which minimizes L,(A,,L\..M,,A.), is given by the simple express ion in eq. 

(4-25) which is derived from the necessary condition for the minimum of 

L,(A,,L\..M,A.), namel y, 8LJ 8A, =0 , and the side constraint. 

if [A,'(M_o)j' <Z.,(M,0 )< [A,"(M_o)J'. A,· = ~ZA,( M,0 ) 

if z,( M,0 ) s [ A,'( M,")]', A' = A'(M0
) 

' ' ' 
( 4-25) 

if z.,( M,")?. [A,"( M,")J', A' = A"( M0
) ' ' ' 
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where 

Y., which minimizes L,, is al so calculated by similar express ion shown belo w: 

if [lkT < Zr,(M') <[lk" f, r.· = ~z,, (M0 ) 

if z,, (M')$[r: t, r.· = lk' (4-26) 

if z,, (M' ) ~ [r; f , r.· = Y." 

where 

The minimized Lagrangian function with respect to A and Y by the abo ve 

expressions is denoted as !(/..): 

I( A.) =minL(A, Y, lVf +~A.) 
A.V 

( 4-2 7) 

Fo ll owing the minimization process with respect to A, and Y, , the Lagrangian 

f1mction !(A.) is maximized with respect to the dual variables A. by using a 

Newton-type algorithm. ln the Newton-type algorithm , the dual variables 5:: 

corresponding to the active behavior constraints at the current stage are modified 

iteratively as 

( 4-28) 

or in a scalar form 
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(4-29) 

where st'l denotes the search direction of A. for active constraints, SAG is the set of 

active behavior constraints and a represents the step length parameter. The search 

direction s tl) is given by 

(4-30) 

where w();:) is the vector of first derivatives of !(A.) with respect to ");: and the 

components of the vector are simp ly given by the approximate active constrains, 

namely, 

( 4-3 l) 

H in eq.(4-30) is the Hessian matrix of 1();:) with respect to ");: and its jkrh 

element i.s given by 

(4-32) 

The expressions used in the calculations of f! and Q in eq.(4-32) are given in the 

Appendix 4-l. 

The search direction s tl) is calculated by using Cholesky decomposition 

described in sect ion 4-3 .(J).(d). 

The step length a is first set as 1.0; however. its maximum allowable value is 

restricted by 

1) • ] 

1

2\'ll ~=-~ S;'l (4-33 ) 

to ensme the non-negati vity of A. when S (ll includes negative components. 

Based on the modifications of dual variables A. through tbe above search 

procedure, the primary design variables A and Y are improved by eqs.(4-25) and 

(4-26). The set of active constraints SAG in the currently approximated design space 

also has to be updated . The min.-mix. process described above is iterated until A, Y 

and A. converge to constant values. 
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In the above optimization algorithm, it should be noted that if the changing rates 

m Y calculated as per eq.(4-26) are too large in any one iteration of the 

improvement process, the successive solutions oscillate and in some cases smooth 

convergence may not be obtained. For this reason, the adaptive move limit 

constraints are restricted such that the maximum rate of change in Y is limited to 

less than 5%. 

(d) Calculation of search direction 81' ) by using Cholesky decomposition 

In this study , the search direction 8111 for improvement of ):: is calculated by 

using Cholesky decomposition[22]. In the process, eq. (4-30) is transformed into 

eq.(4-34). 

( 4-34) 

If His a symmetrica l matrix and positive definire, then His factorized as eq.(4-35) 

by using lower triangular matrix Lc and upper triangular matrix L~ . 

( 4-3 5) 

The elements of Lc and L~ can be calculated by the followings. 

(4-36) 

(4-37) 

•- I 

L,= h,- l:L!, (i = 2, . ,ii) (4-38) 
k• \ 

(i < j) ( 4-39) 

where L" and h" are, respectively, the !i th element of Lc and H. if denotes the 

number of active cons traints. 

We can use the decomposition in eq.(4-35) to solve the linear set in eq.(4-34), 

namely, 

(4-40) 

by first so lving for vector V such that 
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(4-41) 

and then solving 

( 4-42) 

Eq.(4-41) can be solved by forward substitution, while eq.(4-42) can then be solved 

by backsubstitution. 

[t is very important to note that, in the maximizing process of the Lagrangian 

function with respect to A., the Hessian matrix H can become singular and then the 

search direction S!t 1 can not be determined by eq.(4-30). H can become singular if 

one or more gradient vectors of the active constraints become linearly dependent on 

the others. In this case, in the process of factorization of H by Cholesky 

decomposition , the ith element of diagonal , L.,, in the lower triangular matrix can 

not be calculated by eq.(4-3 8) because of the complex number. To overcome the 

comp lication associate with this singularity, in this study, if L" can not be 

calculated by eq.(4-38), th.e ith active constraint is deleted from the set of active 

constraints SAG . Then, the Hess ian matrix H is re-calculated and the calculation of 

search directionS is tried again. 

(e) Second stage rninimizaition of L with respect to M and A 

In the second stage minimi zation process of the Lagrangian function. the values 

of S and A. improved by the first stage minimization process are maintained 

constant, and the Lagrangian £unction L(A, Y, M 0 +b.M, A.) given by eq.(4-22) is 

minimized with respect to A and L'.M while keeping the activeness of the 

constraints which are determined by the first stage minimization process , namely, 

Find 

minimize 

subject to 

A, il.M, which 

L(A, Y,M0 +ilM,I) 

A/ $ A,' .S A," 

M, e MS 

(i = [, ... , n) 

(i=l, .. · ,n) 

(4-43) 

(4-44) 

} (4-45) 

In the above expression, A. and Y are the so lutions obtai.ned by the first stage 
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minimization process and these values are maintained constant during the second 

stage minimization process. 

After the first stage improvement of A, Y and A., the approx·imate constraint 

g1 (A, Y, M
0 
+ru'VI) in the set of active constraints S Ao, namely, j e s ,a, becomes 

zero , and A., for the inactive constraint g1, namely, j ~SAo• becomes ze ro. By 

substituting these relations into L(A, Y , M 0 +tiM, i) in eq.(4-22 ), the minimization 

problem in eqs.(4-43)-(4-45) is solved by minimizing only the term of objective 

function for each member element in L(A,Y , M 0 +tiM i) independently, namely , 

[,(A, ,tiM,) (i= l.··· , n) given by eq.(4-46) subject to the constraints in eqs.(4-44) 

and (4-45). 

(i = 1,-· ·,n) ( 4-46) 

1[, and tiM, which minimize I ,(li,,D.M,) are determined by comparing the 

discrete value of I,(A, ,t~M,) calculated by using the new material kind (.N£?+ c,. M,) 

and A,(M,0 +t~M, ) improved so as to satisfy the constraints in eqs.(4-44) and (4-45). 

The calculation of A;( M,0 + C..A1,) is made in the manner described below in order 

to sat isfy the active constraints. 

(i) For the case that only stress constraints are ac tive 

For the case that only stress constraints are active after the first stage 

minimization process, the necessary condition which maintains the stress 

constra ints active for a discrete change tiM, in material kind M, is given as 

(-" ) a,· A,'(M,") ( ") 
g., A, ,tiM, = " ( 0 ) am M, +m, =0 

A, lvl, + c..M, 
(i = l, ···,n) (4-47) 

where a, and aa, (M,0 ) are, respectively, the working stress and allowable stress of 

the ith member element with material kind M,0
• m,. given by eq .(4 - 14) is the 

se nsitivity of stress constraint of the ith member element with respect to a discrete 

change in material ki11d M, . Considering the lower and upper lin1its on A, in 

eq.(4-8) , the improved A, for M,0 +c..M,, A,•(M,0 +.c.M,), is calculated by the 

fo ll owing expressions. 
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if A,
1 

( t\1,0 + t::.A1,) < A,-, < A," ( M,0 + ru\11, ), 

if A,, ~ A,' ( M,0 + t::.J\11, ), 

A, a ( M,0 + t::.J\11, ) = A,1 
( M," + t::.J\11, ) 

(4-48) 

A, a( M,0 + Nvi,) =A;( A;f,0 +Nvi,) 

where 

A5, =A;· a-( M.") I [a-.,( M,")-m,.] 

(i.i) For the case that only displacement constraints are active 

For the case that displacement constraint(s) is(a re) active afte r the first stage 

minimization process , the necessary condition required to maintain the 

displacement constraint(s) to be active for a discrete change t::..M, is to keep the 

va lue of E1A1 constant, namely 

(i = 1,-·· ,n) ( 4-49) 

Consider ing the lower and upper I imits on A,, the improved A, for i\11,0 + t::.J\11,, 

A,a(M," +ruvi,), is ca lculated as 

if A,' ( M,0 + Nvi,) < A, < A," ( M,0 + MJ., ), 

-.( 0 ) A, 1\1, + t::.J\11, = A"' 

if A,. ~ A: ( M,0 + t::.J\11, ), 
( 4-50) 

A,6 
( M,0 + ru\11,) = A,' ( M,' + ru\1,) 

if A,. ~ A,"( M,0 + t::.J\111 ), 

A,'(M," + ru\1,) =A,"( M," +t::.M,) 
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where 

(iii) For the case that both stress and displacement constraints are active 

For the case that both stress and displacement constraints are active after the 

first stage minimization process, the improved A, for M,0 + ili'vf,, "A;·•(M,0 + ~. ) , 

chooses a larger value of -;{a and A/_ Namely, 

if 

if 

"A;(M,0 +~1 )::?: "A;(M,0 +ili\.1,), 

f\B(Mo +~)> Au(Mo +~) 
/ I I I I I J 

1\;·• (M,o +~,)=A,u(M,o +~, )} 

A_u.o(Mo + ~) = f\•(Mo + 6Jvf) 
I I r I I I 

( 4-51) 

The discrete changes in the mechanical and economical properties of materials 

considerably affect the design space and, therefore, the range of ili\.1, for the 

minimizaition of I,(/f, !J.M,) in one iterative improvement is restricted to the 

nearest discrete values , namely stronger (ru\.1, = +l) and weaker (!J.M, = -1) materials , 

only. 

The reformulation of approximate subproblem and improvements of A, Y, M 

and A. by the above two-stage minimization process are repeated unti I the 

convergence criteria are satisfied. Thus, the final optimum so lutions, A·, Y , lVf and 

).: , can be obtained. 

(f) Scaling of initial design variab les 

In the Newton-type algorithm for the first stage min.-max. process of the 

Lagrangian function, at least one of the behavior constraints must be active, that is, 

at least one component of A. must have a non-trivial positive value for the formation 

of the Hessian matrix. For this purpose, a simple scaling technique given by eq.(4-

S2) can be devised for modifying the initial cross-sectional areas A0 so that at least 

one of the behavior constraints is active_ 

(i = 1,- ·· ,n) } 

(i =1,---,n) 
(4-52) 

[n the above expressions, (a-!a'a)m., is the maximum ratio between actual stress 

and allowable stress in all member elements and (8 //i.)m.x is the maximum ratio 
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between actual displacement and al lowable d isplacement at th e a imed points of 

di splacement constra ints. 

The macro flow diagram of the optimal structural synthes is method proposed in 

this study is shown in Fig. 4-1 . 

I ASS U ME A0, Y0,M0, .l. 0 J 
~ 

I SCALING OF A
0 l 

t 
I CONVEX AN D SEPARABLE 

APPROXIMATE SUBPROBLEM 

t 
I LAGRAN GIAN FUNCTION I 

L( .l. ,A,Y,M 0+L1M) 

~ 
IMPROV E .l. BY MAXIMI Z ING !(.l.) 

IMPROVE A,Y BY M!NlM! Z ING 
L1(A" L1 M,) AND L1 ( Y1 , L1 M) 

(M is maintained constant.) 

t 
[IMPROVE A,M BY MINIMIZING L,(A;, LIM,) I 

( .l. , Y arc maintained constant.) 

t 
NO 

CONVERGENCE 

I YES 

I OPTIMUM A,Y,M,.l.l 

Fig.4-1 Macro flow diagram of proposed optimal structural synthesis meth od 
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4-4. NUMERICAL DESIGN EXAMPLES 

The optimal structural synthesis method described in section 4-3 has been 

applied to the minimum-cost designs of statically indeterminate trusses subjected to 

stress and displacement constraints. In this section, the detail s of problems and 

resuJts are discussed. In the design problems, the lower limits of cross-sectional 

areas are set as 0.10 cm1 and the objective is to find the optimum topological 

member arrangements of truss structures for various design cond iti ons. 

( l) Material se ts 

[n structural design, several types of material sets may be avai lable, such as a set 

of stee l kinds in which the moduli of e lasticity E are the same, and another set 

could have materials with different E. The optimum structural syntl'tesis method 

developed in this study can select the optimum material kind for each member 

element from either types of material sets. 

The properties of material which affect the optimum so lution of the minimum­

cost designs of trusses are the allowable stress u., modulus of elas ticity E and cost 

per unit vo lume p,. [n general. the ratios of u. I p, and E I p, represent the 

effectivenesses of the stress and displacement constraints , respectively. Materials 

with high va lues of u. I p, are more advantageous in situations in which the stress 

constraints are dominant, while those with high E I p, are more advantageous when 

the displacement constraints are dominant. For this reason, the components of 

material set must be arranged and numbered in ascending order of u. I p, or 

descending order of E I p, for the simplification of algorithm for material 

improvement and smooth convergence to the optimum solution. Table 4-1 shows 

two types of material sets (A) and (B) which are used for the numerical examples. 

Material set (A) consists of five components with the same moduli of elasticity and 

set (B) consists of seven components with different moduli of elasticity. The 

allowab le tensile and compressive stresses of the materials are assumed to be the 

same. Fig.4-2 shows the properties of u. I p, and E I p, for material sets (A) and 

(B). 

ln the material sets, 0'
0 

I p, increases with material number; therefore, the larger 

numbered material is more economical than the smaller for problems in which on ly 

stress coostraints are active. On the contrary, E I p, decreases with material number 
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Table 4-1 

Materi al a a 

number (kgf/cm2
) 

1500 
2 2000 

Set (A) 3 2500 
4 3000 
5 3500 

140 
2 200 
3 400 

Set (B) 4 850 
5 l3UO 
6 1700 
7 2400 

E 
Pc 

,--------, 
( x 102) SET (A) (X 1Q5) 

8 _ ~ E is constant. 8 _ 
, E 

' \,; Pc 

·~. 
7. 

7. 6. 

5. 

4. 

1 2 3 4 5 

MATERIAL NUMBER 

Material sets (A) and (B) 

E P, a a 

(kgf/cm 2
) ( l / cm 3

) P, 
2.0x i Ofi 2.50 (j()() 

2.0x 106 3.00 667 
2.1Jx 10' 3.50 714 
2 .0xl0° 4.1JU 750 
2.0x 104 4.50 778 

0.4x 106 0 .75 1!:!6 
0.5xl 06 100 :zoo 
0.7x 106 L.45 275 
l.Ix 106 2.50 34() 
1.4x 106 3.20 406 
l.7xl06 4.00 425 
2.lxlO' 5.10 470 

1. P, • 

2 3 4 5 6 7 

MATERIAL NUMBER 

E 

P, 

HOO 000 
(i(i6 667 
571 42X 
500 ()()() 
444 444 

533 333 
500 ()00 
4R2 759 
44() 000 
437 500 
425 ()()() 

411 765 

E 

5.0 

4.5 

4.0 

Fi g.4-2 Properties of u.l p, and E I p, fo r material se ts (A) and (B) 
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and the smaller numbered materials are more economical when only displacement 

constraints are active. In problems where both stress and displacement constraints 

are active, the optimum materials are selected such that a balance is maintained 

between the values of a. I Pc and E I Pc. 

(2) Effect of the initial material kinds on the optimum solution 

The rigorousness, reliability and efficiency of the proposed design method are 

investigated by comparing the optimum solutions which are optimized from 

extremely different material kinds . 

The iteration histories for 31-bar truss with 4 fixed-ends , truss A shown in 

Fig.4-3, are summarized in Table 4-2 , where three different initial material kinds 

are assumed , namely, the initial material kinds for all member elements are , 

respectively, assumed as 7, 5 and 1 in material set (B). In this problem , the 

maximum vertical displacement limit, """'"' ' is set as 2.0cm and both stress and 

displacement constraints are active at the optimum solutions. 

As seen from Table 4-2 , the optimum solutions for initial material kinds 7, 5 and 

are. respectively , obtained after 19, 19 and 24 iterations efficiently even if the 

adaptive move limit constraints, maximum 5%, are imposed on Y. The optimum A, 

Y, M and total cost are converged to the quite si milar values in each case. Therefore, 

it can be said that the global optimum solution can be obtained by the proposed 

design method even when any material kinds are assumed as the initial material 

kinds. This result emphasizes the reliability, rigorousness and efficiency of the 

proposed design method. 

Fig.4-3 shows the iteration history for initial material 7, in which the thickness 

of member element indicates the size of cross-sectional area and the number 

associated with the member element represents the material kind. Y, MandA are 

improved qu ite reasonably and the material kinds for almost all member elements 

are improved from 7 to 4 in 5 iterations . Thereafter, the material kinds for redundant 

member elements are improved and converged to l , while the material kinds for all 

no r1-trivial member e.lements remain at 4. After 11 iterations the move limit on Y is 

reduced adaptively and the opt imum solution is obtained at 19 iterations at which 

stage the optimum shape of the truss , namely the optimum values of Y, and the 

optim um topological member arrangeme nt are quite reasonable. The cross-sectional 

areas of redundant member elements converged to 0.1 em' which is the lower limit of A. 
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Truss A 
200 11 (llf,.. 9.81 KN} 

I 
S m 

-'"'----'¥-____,.,_------'*'----"'--~ 1 

ITE. 3 

ITE. 8 

OPT. 
ITE. 19 

<5.s .:: 2.0cm 
Material set (B) 

All of initial material kinds : 7 

Fig.4-3 Iteration history for truss A with initial material kinds 7 

(3) Optimum so lutions for three types of 31-bar simple span trusses 

The design examp les for three types of 3 J -bar trusses , trusses A, B and C, are 

shown in Fig.4-4 and Table 4-3 , where the iteration histories and the final optimum 

solutions are given. 

In the problem for truss A shown in Fig.4-4 , the maximum vertical displacement 

limit, om,.,, is set as 0. 7cm, and the material set (B) is used for the candidate 
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material s. In this problem, the active constraints at the optimum sol ution are 

di splacement constraints only. Even when the design process is initialized with the 

worst material distribution for displacement constra ints, namely, M, = 7(i = 1,-· ·,31), 

Y, MandA are improved quite reasonabl y. After 6 iterations the material kinds of 

almost all member elements converged to 1, which is the most economical material 

in situations when only the displacemenr constraints are active. Y and A begin to 

oscillate around the optimum solution at iteration 8, after which the move limit on Y 

is reduced adaprively. The optimum solution is obtained at iteration 15 at which 

s tage the optim um shape of truss and the optimum topological member arrangement 

are quite reasonable. The cross-sectional areas of redundant member elements at the 

optimum solution are reduced to 0.1 em'. The final optimum solution is determmed 

as shown in Table 4-3 and Fig.4-4. 

In the problem for truss B, the maximum vertical displacement limit is set as 

l5.0cm and the material set (B) is used. The active constraints at the optimum 

solution are stress constraints only in this problem. In contrast with truss A, the 

initial material kinds are assumed as I for all member elements. which is the worst 

material distribution when stress constrain ts are active. Y, M and A are improved 

quite reasonably and steadily, and the material kinds for almost all member 

elements are imposed from I to 7 in 7 iterations. Thereafter, the material kinds for 

almost all non-trivial member elements remain at 7, which is the most economical 

material in this situation. After 7 iterations M for the redundant member elements , 

Y and A are improved steadily and oscil lations are absent in successive solutions. 

The final opti mum so lution is reached after 19 iterations and the cross-sectional 

areas of redundant member elements at the optimum so lution are reduced to O.lcm'. 

In the problem for truss C, the maximum vertical displacement limit is set as 

lO.Ocm and material set (A) is used for the candidate materials. Both stress and 

di splacement constraints are active at the optimum solution. The material kinds for 

almost all member elements are improved from 1 to 3 in 3 iterations, after which M 

for all non-trivial member elements remain at 3. After 3 iterations M for the 

redundant member elements, Y and A are improved steadily and the optimum 

solution is reached at 25 iterations without oscillations on Y. The cross-sectional 

areas of redundant member elements at the optimum so lution are reduced to 0.1 cm2 

as the same as the problems for trusses A and B. 
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(4) Effect of displacement constraints at arbitrary panel points on optimum solution 

In the previous design examples, the maximum vertical displacements in 31-bar 

trusses are restricted. In thi s example, the effect of displacement constraints at 

arbitrary panel points in truss A on the optimum so lution is investigated by 

comparing the optimum so lutions given in Figs.4 -3, 4-4 and 4-5. 

Fig.4-5 shows the iteration history for truss A in which the displacements at 

panel points A and Bare limited to O.Scm. Material set (B) is used for the candidate 

materials and the active constraints at the optimum sol ution are both stress and 

di splacement constraints. Y, M and A are also improved quite reasonably and 

stead ily in this problem, and the optimum solution is reached after 12 iterations 

without oscillations on Y. As seen in Fig.4-5 , in the optimum solution, the final 

topological member arrangement is different from those in truss A shown in 

Figs.4-3 and 4-4 . The cross-sectional areas for only four member elements are fo und 

to be 0.1 cm2 and these member elements are deleted . Almost all member elements 

fo r mate rial kind 4 are fully stressed and all member elements for material kind 3 

are distributed for the displacement const ra ints at panel points A and B. Some 

member elements whose material kind are I , also require considerable cross­

sectional areas in order to satisfy the displacement constraints . The maximum 

vertical displacement at the optimum solution is 1.99cm. From tl1i s investigation, it 

is confirmed that the optim um topological member arrangement and distribution of 

optimum material kinds are considerably affected by the ai med points of 

displacements constraints. 

(5) Optimum so lutions for 31-bar 2-span co ntinuou~ trusses 

The iteratio n histories and fina l optimum solutions for 31-bar 2-span continuous 

trusses with different design conditions are given in Fig.4-6 and Table 4-4, where 

the maximum vertical displacements are , respectively, limited to l.Ocm, 3.0cm and 

1 O.Ocm. The material set (A) is used for the candidate material. 

For case in which the disp lacement limit is set as l.Ocm, the displacement 

constra int is active at the optimum solution. Even when the design process is started 

from the worst materi a l distribution for displacement constraints, namely M, = 5 

(i = !,.·· ,3 1), Y , MandA are improved quite reasonabl y, and after 5 iterations the 

mate rial kinds for all member elements converged to 1. After 7 iterations the move 

limit on Y is red uced adaptively and the final optimum so lution is obtained at 21 
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Truss A 

6., = 0.5cm 
M::Hcriol set (B) 

All of in itial material kind~ = I 

ITE . 3 

1'1' 8. 8 

OPT. 
!T8. 12 

Fig.4-5 Iteration history for truss A in which the displacements at panel 
points A and B are limited to O.Scm 

iterations. Although the truss is optimized fro m a 2-span continuous truss, the 

cross-sectional areas of a ll redundant member elements are reduced w 0. l cm2 by 

the proposed optimization process, and the f inal topological member arrangement 

indicates a simp le span staticall y determinate truss. The total cost converged 

to 1.544x l08
. 

For case in which the displacement limit is set as I O.Ocm, the active constraints 

at the optimum so lution are stress constraints only. The initial material kinds for a.ll 

member e lements are se t at l and after 5 iterations the material kind s of all non-
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trivial member elements selected the most economical kind 5. The final optimum 

so lution is obtained at iteration 25 without oscillations on Y. The final topo logical 

member arrangement is also a simple span truss. In this case the total cost decreases 

by 49.2% compared with the case in which the displacement limi t is set as J.Ocm. 

For case in which the displacement limit is set as 3 .0cm, the active constraints at 

the optimum so lution are both stress and displacement constraints. The material 

kinds for almost a ll member e lements are improved from I to 4 in 4 iterations . 

Thereafter, M for the redundant member elements, A and Y are improved steadi ly 

and oscillations are also absen.t in successive solu tions. The final optimum so lut ion 

is determined at iteration 17 at which stage the optimum shape of the truss and the 

optimum topological member arrangement are reasonable, and the final optimum 

so lution al so indicates a s imple span truss. In this case the total cost decreases by 

47 .I% compared with the case in which the di splacement limit is set as I.Ocm. 

From the inves tigations of the optimum solutions fo r various design condi tions, 

it is clear that the proposed optimal synthesis method can determine the optimum 

coordinates of panel points , optimum distributions of material kinds and cross­

sectional areas of member elements of truss structures efficiently. At the optimum 

so lution the cross-sectional areas of redundant member elements are found to be the 

imposed lower limit automatically by the proposed optimum design method . 

Therefore, the optimum topol ogical arrangement of member elements can also be 

determined by the proposed synthesis method with setting the lower limit of cross­

sectional areas of member elements to an extremely sma ll va lue. 

4-5. CONCLUSIONS 

Tn this study an optimal structural synthesis method is presented to determine 

the optimum so luti ons for des ign problems of truss structures considering the 

coordinates of panel points , cross-sectional areas and discrete material kinds of all 

member elemen ts simultaneously as design variables. The stress and displacement 

constraints due to static loads are taken into account in the optimization process. 

The optimal structural synthesis method has been developed by using the concept of 

convex and linear approximation, dual method, two-stage minimization process of 

the Lagrangian function and discrete sensitivity analysis. The generality, 

rigorousness , reliability and efficiency of the proposed optimal structural synthes is 
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method are illustrated by applying the method to various minimum-cost design 

problems of 31-bar trusses subjected to stress and displacement constraints and 

investigating the optim um solutions at various design conditions. 

The conclusions that can be drawn from this study are: 

( l) The design method can deal with any combinations of design variables such as 

shape of the structure, discrete material kinds and cross-sectional areas of 

member elements, and can optimize the design variables as well as the 

topologica l member arrangeme nt simultaneously. 

(2) The two-stage minimization process of the Lagrangian function can solve the 

mixed discrete/continuous variable problems quite systematically and 

efficiently. 

(3) The rigorousness and reliability of the proposed design method have been 

confi rmed by various numerical experiments of 3 1-bar trusses . The convergence 

to the optimum so luti ons is quite excellent and the optimum so lutions can be 

obtained after 15-25 iterations quite efficiently even when the algorithm is 

ini tialized with the worst possible material distribution. 

(4) Adaptive move limit constraint on Y is required to ensure the successive 

solutions converge to the opt imum solution when the displacement constraints 

are active in the design problem. 

APPENDIX 4-1 Calculation of the jkth element of Hessian matrix 

The jkth element of the Hessian matrix (eq.(4-33)) is given by the following 

express ions: 

where 

P, = -~aJ,1 _ 1 ak,j A,0 )' {A,'( WA,( M,0)+ t A1a,,J] 

P, = -~aP,., a.,H (A,
0
)
2 1[ A, ( wA,( M,

0)+ t A1a1,,,,)] 

-118-
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Q = q,(~)' IY,' 

Q =q,(~)l! Y, 

Q, =q,Y, 

q, =-~yJiy, I (wr, (M0)+ i;A-,y1,H) 
l·i 
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Chapter 5 

TOTAL OPTIMAL SYNTHESIS METHOD FOR TRUSS 
STRUCTURES SUBJECT TO STATIC AND 

FREQUENCY CONSTRAINTS 

5-1. INTRODUCTION 

The significant variables in the optimal synthesis of structures are the geometry 

of structures, distribution of mechanical and economical properties of materials and 

cross-sectional dimensions of member elements. As noted in Chapter 4 , in the past 

decades, a large number of contributions have been made exclusively to sizing and 

shape optim izatio n, and in the recent years the sensitivity analysis has been studied 

considerably. However, very little attention has yet been paid to the optimization 

problems with material selection which requires a discrete/continuous formulation. 

In Chapter 4, a hybrid optimal synthesis method for truss structures is presented 

in which the coordinates of panel points, cross-sectional areas and discrete material 

kinds of member elements are optimized simultaneously subject to stress and 

displacement constraints due to static loads[l ,2]. In this Chapter the hybrid optimal 

synthesis method is app lied to solve the optimum design problem of truss structures 

subject to both static and dynamic constraints. 

Optimum design methods with frequency constraints have been studied by many 

researchers since the ear liest study by Turner[3] in 1967. Most of these design 

methods are developed based on tbe optimality criteria methods using cross­

sectional areas of member elements as the design variable[ 4- 7]. Felix and 

Vanderp1aats[8] stud ied the optimum configuration desig·n of truss structures 

subject to stress, Eu ler bucklin g, displacement and natural frequency constraints 

using a multilevel optimization technique. The methods for computing the 

derivatives of eigenvalues and eigenvectors have also been studied by many 

researchers[9-15]. 

In the optimum design method of this study, the primary design problem is 

transformed into an approximate subprob lem of convex and separable form by using 

mixed direct/reciprocal design variab les and the sensitivities of shape, material and 

s iz ing variables. The sensitivities of static and frequency constraints with respect to 

design variab les are calculated analytically by using the differentials of the st iffness 

- 121-



and mass matrices. The approximate subproblem is so lved by utilizing the two-stage 

minimizat ion process of the Lagrangian function, concepts of convex and linear 

approximatio n, dual method and discrete sensitivity analysis proposed in Chapter 4. 

The rigorousness, reliability and efficiency of the proposed optimal structural 

synthesis method are illustrated by app lying the method to various minimum cost 

design problems of 15-bar truss subject to stress, displacement and natural 

frequency constraints. It is also emphasized that the vibration mode and frequency 

of truss st ructure are very se nsitive to the distrib ution of cross sections and shape of 

structure, and the vibration mode might be changed by improvements of cross 

sec tions and shape of structure at the first stage of the minimization process. 

Therefore , it is necessary to calculate the exact vibration mode and frequency and to 

examine the activeness of frequency constraint at the end of the first stage 

millimization process to ens ure the smooth convergence to the optimum solution. 

5-2. FORMULATION OF PRIMARY OPTIMUM DESIGN PROBLEM 

( l) Design variables 

In this study, the design variables for the design of truss structures are assumed 

as the horizontal and vertical coordinates of panel points , denoted as X and Y, 

material kinds M representing the physical and economica l properties of material 

and cross-sectional areas A of member elements. 

A=[A ... A]r 1' • n 
(5-1) 

(5-2) 

(5-3) 

(5 -4) 

where n is the number of member e lements, P denotes the number of coordinates of 

panel points considered as the shape design variables , X and Y. ln order to 

s implify the expressions of equations the shape design variab les, X and Y, are 

denoted by S, hereafter. 

(5-5) 

- 122-



Depending on the characteristics of these design variab les, S and A are treated 

as cont inuous design variab les and M as a discrete design variable. 

(2) Stress, displacement and frequency constraints 

In the present s tudy, s tress on all member elements, displacements at free nodal 

points and natural frequency are considered as the behavior constraints. The stress 

cons traints on a ll member elements are expressed as 

(5-6) 

where £T.1 ( MJ and N1(A,S,M) are, respectively, the maximum a.ll owab le stress and 

axia l fo rce in the j th member e lement. 

The displacement const raints are expressed as 

(d = 1,. ·,u) (5 -7) 

where Ow and 5-(A,S,M) are. respectively, the maximum a ll owab le displacement 

and actual displacement at th e dth panel point. u denotes the number of 

displacement co nstraints to be taken into acco un t. 

The co nstrai nts on the natural frequency are specified as 

(k = [, ... , v) (5-8 ) 

where .u. (A,S,M) a nd fkmm are, respectively, the circ ular frequency and the 

specified minimum frequency limit of the kth vibration mode. v is the number of 

vibra ti on mod e to be taken into account. 

(3)Primary optimum design problem 

The behavio rs of truss, such as member forces, di sp lacements of panel points 

and natural frequency , a re ex pressed as functions of the lengths, cross-sectional 

areas and the moduli of e last ic ity E of materials of member elements . The total cost 

is the objective function W and it is expressed as the s ummation of the costs of 

member elements. The primary desi gn problem can then be formu lated as 

Find A, S, M, which 

minimi ze W(A,S,M)= i:Pc. (M,)l,(S,)A, (5-9) ,_, 

subject to (;'=1,- ·,m) (5-1 0) 
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where 

s; :;;s, ss; 

M, EMS 

s, = [S,+,s,_f 

(i=l,··· ,n) ) 

(k=l , .. ,2P) 

(i = [, .. ·,n) 

g=[g,, .. ·,gmf =(gv,, .. ·,g~ ,g"'' .. ,g..,,gi,, ... ,g,v]' 

(5 -11) 

pc.(M,) and 1,(8,) are , respectively , the unit cost and member length of the ith 

member element. S,. and S,_ are the horizontal and vertical coordinates of panel 

points to which the ith member element is connected . MS is the set of ava ilabl e 

candidate materials. m denotes the number of behavior constraints. Superscripts 

and u represent the lower and upper limits of the design variables. 

5-3. OPTIMAL STRUCTURAL SYNTHESIS METHOD FOR TRUSS 

STRUCTURES SUBJECT TO STATIC AND FREQUE CY 
CONSTRAINTSl1

•
2

·
19

•
201 

(1) Convex and separable approximate subproblem 

Applying the concept of convex and linear approximation[l ,2, 16-20] the 

primary optimum design problem defined in eqs.(5-9) to (5 -11 ) can be approximated 

as the convex and separable optim ization subproblem by utilizing the ftrst-order 

partial derivatives with respect to shape, material and sizing variables and the direct 

and reciprocal design variables. [n the optimization process, the constant term in the 

objective function will be ignored and only tbe change in the objective function t:.W 

will be taken into account instead of the total objective function W(A,S,M). The 

changes in material kinds, t:.M = (t:.Mt>· .. ,fullf. )". are also treated as new material 

variables. Please see eqs.(4-9)-(4-ll) in section 4-3.(1) for the detailed expressions 

of the convex and separable approximate subproblem. 

(2)Calculation of the sensitivities of frequency constraints with respect to design 

variables 

Tbe first-order partial derivatives of the frequency constraint g
1
(A,S,M) 

(i = n + u + 1, .. ·, n + u + v) with respect to A , S and M, expressed as the eigenvalue 

derivatives with respect to A. Sand .M , are obtained by differentiating the following 

eigenvalue equation of structural dynamics. 

- 124-



(K,-,u;'M., j(<I>),=O (k=l ,··,v) (5- 12) 

where K s is the system stiffness matrix and [~]; is the eigenvector of truss structure 

in the ktb vibration mode . ,uJ and MM are, respectively, the eigenvalue in the kth 

vibra tion mode and the total system mass matrix. 

The total system mass matrix M, consists of the contributions from structural 

mass matrix Mx(A ,S, M) and nonstructural mass matrix Me. 

(5 -1 3) 

The structural mass matrix is calculated as the lumped masses. 

Eq. (5-12) is solved by using an algorithm based on subspace iterati e technique 

given by ref. [21]. 

Based on the Nelson's technique[9], the sensitivities of eigenvalue and 

eigenvector with respect to design variables are calculated by differentiating the 

eigenvalue equation of structural dynamics in eq.(5-12). Namely, the sensitivity of 

eigenvalue ,uJ in the kth vibration mode with respect to design variable B,E B = 

[A,, ... ,A •• S,, .. , S2P, fvfi, · .. ,M.J" is given by 

a.uf = [.!.]r[i3K _ 2 oM, ][.!.] 
i3B, '+' ' i3B, ,u, i3B, '+' ' 

(5 -14) 

In the case that B, corresponds to M, in eq.(S-14), i3K5!i3J\I[, is calculated by the 

following expression using i3K 5/i3A, . 

(5-15) 

The sensitivities of frequency constraint g;(A,S,M) (j = n+ u+ 1, .. ·, n + u + v) with 

respect to A, Sand Min eq.(4-l0), al', y
1
, and ml', can be expressed as 

(q=j-n-u) (5-16) 

(5-17) 

(q=j-n-u) (5-18) 

Note that in the above expressions, the eigenvector is normalized such that 

-125-



(~J[M.,[H=LO (k=J, .. ·,v) (5-19) 

In the calcu.lation of sensitivity of eigenvector ( ~ ], in the kth vibration mode 

with respect to s,, it needs to calculate the inverse matrix of [K
5
-,ui M,. ]. However, 

the calculation of inverse matrix will not be able to execute because the determinant 

of [K5 -,LLiM,.] becomes zero from eq.(S-1'2) . For this reason, the normalization 

condition in eq.(S-19) is replaced such that the arbitrary element of eigenvector is 

equal to 1.0. Hereafter, the arbitrary element of eigenvector is denoted as the jth 

e lement. For this normalization condition, all elements of [~]1 are divided by the j th 

e lemenr ¢i(>" 0). Namely, denoting this re-normalized eigenvector (~],, (~], is 

given by 

(5 -20) 

Denoting the reduced matrices by deleting the jth row and the jth column of K
5

, 

MM , Mx and deleting the jth element of [~], as K~ , M~, , M~ and (~],, the 

inverse matrix of reduced matrix of [K5 -,u; M"'], [K~- ,11i M~, ]'' , can be calculated 

and the sensitivity of [~h with. respect to S, is obtained by 

a($' ], = [Ks _ ,11'Ms J·'{- (BK~ _ ,111 BMx \~] + a.ui Ms [~] } 
as, s ' "' aB, • as, ) ' as, " ' (5-21) 

Thejth element ¢~ of[~], is set at 1.0 and its sensitivity with respect to S, becomes 

zero. The sensitivities of other elements of [~]. are calculated by eq.(S-2 1 ). 

Therefore, the sensitivities of all elements of(~], with respect to S, are obtained in 

the preceding process. Fina ll y, by differentiating eq.(S-20) with respect to S,, the 

sensitivities of [~], with the original normalization are ca.lcu lated by 

a(~], 

BB, 
(5-22) 

By differentiating eq.(S- 19) with respect to S, and considering eq.(S -22), a{l!i laB, 

in eq .(S-22) is given by 

-("'I )'[~]TM arh _ ¢i [,~,]rBMx [~] 
'~'• • "' aB, 2 '!' ' aB, • 

(5-23) 
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(3) Improvements of A. S and M by a two-stage minimization process of the 

Lagrangian function 

(a) Two-stage minimization process of the Lagrangian function 

The stresses of member e lements, displacements at the free nodes and frequency 

of truss s tructure are expressed as the functions of S and the product of modu lus of 

e lastic ity E and A, EA , and the objective function is a lso expressed as the function 

of A, S and M. As stated prev iously. in this study A and S are dealt with as 

continuous variables and illW as a discrete variable. Therefore , the design variables 

A, Sand t.M are improved by a two-stage minimization process of the Lagrangian 

fun ction which uses a dual method and incorporates discrete sensitivity analysis . At 

the first stage minimization process , EA is treated as one continuous design 

variab le and the optimum values of EA and S are determined by minimizing the 

Lagrangian function wi th respect to EA and S. In the optimization algo ri thm of first 

stage minimization process, E is constant and A is improved for improvement of EA. 

Thereafter, the better combination of A and t.M fo r each member element is 

searched independentl y to reduce the Lagrangian function by comparing the val ues 

of discret ized Lagrangian fu nction while keeping the activeness of the constraints 

which are determined by the first minimization process. 

(b) Lagrangian Function 

The following separable Lagrangian function i.s introduced for the approximate 

subproblem. 

n ?.P m 

L(A,S, M 0 +t.M) .. ) = L L,(A, ,Mf,, A.)+ L; L.(s, ,t.M,t..)+ L A./!
1 

I'<') k=J J- 1 
(5-24) 

where (J= I, · ,m) 

L, and L, are, respecti ve ly, the element Lagrangian functions with respect to A, and 

D.M,, S, and t.M. A-
1 

is the Lagrange multipli er for the jth behavior constraint. L, 

and L, are , respecti ve ly, given by 

L,( A,, LW, A.) = a~j M,0 + t.M, )A, +I A.
1
[aj,,_, A, - a

1
,,_, ( A.o)' ++ m"D.M,J 

j& l ' 

(5 -25) 
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(5-26) 

The solutions A' , S' , M' and A.' can be obtained by maximizing L(A.S.M0 +L'.M,A.) 

with respect to A. and minimizing it with respect to A, Sand L'.M. Since eq.(S-24) 

has a simple form of a summation of the separable element Lagrangian functions , L, 

and L,, the minimization of L(A,S,M0 + L'.M, A.) with respect to A, Sand L'.M can be 

accomplished by minimizing L, and L, , separately. 

(c) First stage minimization process of the Lagrangian function 

[n the first stage minimization process of the Lagrangian function in eq. (S-24), 

the material kinds of member elements M are maintained constant, namely modulus 

of elasticity E of each member element is assumed as a constant value during the 

first stage minimization process and A is improved for improvement of EA. Then, 

L,(A,, L\M,,!..) and L,(S, ,L'.M, A.) are, respectively, minimized with respect to A, an.d 

S,, independently. A,' which minimizes L,(A, LU!, A.) is given by the simple 

expression which is derived from the necessary condition of the minimization of 

L,(A, L'.!vl., A.) , namely, 8L,I8A, =O , and the side constraint on A, . s; which 

minimizes L,(s,, L'.M,A.) is also given in the same manner. The detailed expressions 

for improvements of A; and s; are described in Chapter 4. The expressions for 

calculation of A; and s; include A. Therefore, after A. ' is obtained in the following 

process, A; and s; should be modified by using A.·. 

The minimized Lagrangian function with respect to A and S is denoted as 1(1..): 

namely, 

!(!..)=min L( A,S,M0 +L'.M,A.) 
A ,S 

(5 -27) 

Following the minimization process with respect to A, and S,, the Lagrangian 

funct ion /(!..) is maximized with respect to the dual variables A. by using a Newton­

type algo rithm. In the Newton-type algorithm , the search direction of A. for active 

constraints S AG can be calculated by a simp le expression in terms of the vector of 

first der ivatives of I( A.) and the Hessian matrix of !(!..) with respect to A. The 

detai ls of the expressions of search di rection and maximization algorithm of 1(1..) 

with respect to A. are also described in Chapter 4. 

After the improvements of dual variables A. as A. · by the Newton-type algorithm 

and A and S as A· and s· using A.·, the set of active constraints S AG in the currently 
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approximated primary design space also has .to be updated. The min-max process 

described above is iterated until A, S and A. converge to co nstant values. 

In this first minimization process, it should be noted that if the rate of change inS 

is too large in any iteration, the successive solutions oscillate and in so me cases 

smooth convergence may not be obtained. For this reason, the adaptive move limit 

constraints are restricted such that the maximum rate of change in S is limited to 

less than 20%. It is , also, important to note that in UJe maximizing process of the 

Lagrangian function , the He ·sian matrix can be singular when one or more gradient 

vectors of the active constraints become linearly dependent. In this case, the 

maximization process is carried out by deleting one constraint from the set of active 

constraints S AG . Please see section 4-3 .(3).(d) for the detailed algorithm in case of 

singularity of Hessian matrix. Following this , A. should be improved according to 

the above process. 

In the Newton-type algorithm , at least one of the behavior constraints must be 

active. For this purpose, a simple scaling technique given by eq.(S-28) is used to 

modify the initial cross-sectional areas A0
. 

(i =I, · ,n) (5-28) 

R=max(.S.., 
cr. 

where 

(d) Second stage minimization process of the Lagrangian function 

After the first stage improvements of EA , S and A. by the above min.-max. 

process, the values of s· and A.' are maintained constant and the Lagrangian 

function L(A, s· ,M0 +L'..M,A. ') given by eq.(5-24) is minimized with respect to 1\.M 

and A. In this stage, the values of "-r for the inactive constraints, namely, P "'S•G• 

become zero and the active constraints g • . namely, a eS,a, also become zero. 

Therefore, from eq.(S-24), the minimization of L(A, s· ,M0 + 1\.M,A. ' ) with respect to 

A, and 1\.M, is achieved by comparing the discrete values of I;(A,,il..lv.f,) at the 

neighbo ring mate rial kinds. The discretized I;(A,,II.M,) is given by 

L.(A.. II.M,) =(()AI ( M," + 1\.M,). A.( M,0 + 1\.M,) (5-29) 

The improved A, for M,0 + 1\.M,, A;( M1° + 1\..M,), is made in the manner described 

below in order to satisfy the act ive constraints. 

for the case whe n only stress constraints are active, the necessary condition 
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which maintains the stress constraints active for a discrete change t!.M, in material 

kind M, is given as 

At( M,0 + t!.M,) 
cr., ( i\1!,0 ) + m11 = 0 (i = 1,-··,n) (5 -3 0) 

where cr, and cr", (M,) are, respectively, the working stress and allowable stress of 

the ith member element with material kind M,. m., is the sensitivi ty of stress 

constraint of the ith member element with respect to a discrete change in material 

kind M,. A,' is the cross-sec tional area of the ith member element which is obtained 

by the first stage minimization process of the Lagrangian function. 

By so lving eq.(5-30) with respect to A;•(M1°+6.M,) and considering the lower 

and upper limits on M,, the impro ved A, for M'! +D.lvf,, li;"(M,0 +t!.M,), is 

calculated. 

For the case when displacement or, and frequency constraint(s) is(are) active, 

the necessary condi tion required to maintain the displacement or, and frequency 

constraint(s) to be active for a discrete change t:J.lvf, is to keep the value of E,A, 

constant, namely 

E ( M0 )A'(M0
) = E (M0 + t.J\11 )l[•.f(M0 + t:JJvf ) I 1 J I j -, I l I 1 (i = l , .. ·, n) (5 -31 ) 

The improved A, for M,0 + t.J\If,, _Ji,6.!(M,0 +t.J\If,), is calculated by so lv ing 

eq.(S-31) with respect to :1;•.1 ( M,0 +liM,) and considering the lower and upper limi ts 

on A,. 

[n the case when all three constrai nts, stress, displacement and frequency. are 

active, a larger va lue of A;" and :4;5./ is chosen. 

The discrete changes in the mechanical and economical properties of materials 

considerably affect the design space and, therefQ(e, in the minimization of 

L,(A;,6A,), the range of t!.M, in one iteration is restricted to the neares t stronger 

(6.M, =+1) or weaker (t!.M, =- l) material only. 

There is an important issue that needs to be taken into account when the 

frequency constraint is active. The vibration mode and frequency of truss structure 

are very sensiti ve to the distribution of EA and S, and the vibration mode might be 

changed as a result of the improvements of EA and S in the first stage minimization 

process. lf the vibration mode has indeed changed, the sensiti vi ties of frequency 

constraint calculated using the initial EA and S become ineffective and may not 

sa tisfy the frequency constraint on the new vibration mode. For thi s reason, it is 
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necessary to calculate the exact vibration mode and frequency, and examine the 

activeness of frequency constraint after the first stage minimization process. If the 

activeness of frequency constraint is changed, namely the frequency constraint 

becomes active or inactive, the se t of active constraints S w must be modified 

before performing the second stage minimization process. 

In the two-stage minimization process of the Lagrangian function, the iterative 

improvements of A, S, M and /.. are repeated until the convergence criteria are 

satisfied. Thus, the solution to the optimum design of truss structures subject to 

stress, displacement and frequency constraints are obtained. 

5-4. NUMERICAL DESIGN EXAMPLES 

The proposed optimal structural synthesis method is applied to vario us 

minimum-cost designs of stat ically indeterminate trusses subject to stress, 

displacement and natural frequency constraints. 

In this section numerical results for 15-bar truss are discussed. In the design 

problem, the configuration of structure is assumed to be symmetrical about a 

vertical centerline and the horizontal distances X from the vertical center line to 

each panel points are treated as the shape design variables S. The lower limits of 

cross-sectional areas, A', and shape variables, X', are, respectively, set at 0.1 cm2 

and l O.Ocm. The structures have nonstructural lumped masses Me and structural 

lumped masses M,l'i (i = 1,. ··,/) and are subjected to static ve rtical and horizontal 

loads. The objective here is to determine the optimum shapes and member topology 

for various design conditions. 

( 1) Material set 

The allowable s tress cr., modulus of elasticity E and unit cost p, are the 

properties of material which affect the optimum solutions of minimum-cost designs 

of trusses. In general, the ratios of cr. I Pc and E I p, represent the effectiveness of 

stress, displacemell! and frequency constraints. Materials with high values of cr. I Pc 

are more advantageous fo r the prob lems in which the stress constraints are dominant, 

whereas those with high E I Pc are more advantageous when the displacement or 

frequency constraints are dominant. In th is study, material set (A) shown in Table 

4-1 is used. The material set (A) consists of five components with identical modulus 
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200tf 

Me : non-structural lumped mass ( 102.04kgf 1 em / s') 

Mx1 ~Mx6 : structural lumped masses 

Fig.5-l Initial 15-bar truss 

of elasticity E and weight density Pw. Pw (kgf/c m3
) is se t at 0.00785. The material set 

is arranged in ascending order of cr. I p, or descending order of E I p, for the sake of 

simp li fication of the algorithm and smooth convergence ro the optimum solution. 

The allowable tensile and compressive stresses of materials are assumed to be the 

same. 

[n the material set , CJ
0 

I p, increases with material number , and therefore , in 

cases where only stress constraints are active, the larger numbered materials are 

more econom ica l than the smaller ones. On the contrary, E I p, decreases with 

material number, and as a result, the smaller numbered materials are more 

economica l when displacement or frequency constraints are active. In the problems 

where the combinations of the stress, displacement and frequency constraints are 

active, the optimum materials are selected in such a way that a balance is maintained 

between the values of cr. I p, and E I p, . 
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(2) 15-bar truss examples 

The 15-bar truss shown in Fig.5-l is designed for various design conditions. In 

the problems, the horizontal distances from the vertical center line to each panel 

point, X=[X1,X1 ,X3 ,X, f, are treated as the shape design variables S. The 

nonstructural lumped mass Me =102.04kgf/cm/s' is attached to the top two panel 

points l and 2. The structural lumped masses Mx1 to Mx6 which are ca lculated 

us ing the weight density of material , cross-sectional areas and lengths of member 

elements, are distributed as shown in Fig.5-l . In the design examples, the 

fundamental natural frequency constraint gr 1 is taken into account. The iteration 

histories and final optimum solutions for various design conditions are presented in 

Table 5-1 and Fig.S-2. In Fig.5-2, the thickness of a member indicates the cross­

sectional area and the number associated with member element represents its 

material kind. The dotted lines show member elements that are deleted when their 

cross-sectional areas are equal to or smaller than the lower limit O.lcm2 . 

In case A as shown in Fig.S-2 and Table 5-l, where f..mm and b'"'""" are set at 

0.1Hz and 10.0cm, respectively , the stress constraints are the only ones active at the 

optimum solutiorr. Noted that the maximum move limit of X is set at 20 percent. 

Even when starting with the worst initial material distribution for stress constraints. 

namely M,0 
= l(i = 1, .. ·,15), X , M and A show a steady improvement. After 13 

iterations, the material kinds of main member elements are converged to material 

kind number 5, which is the most economical material kind when only the stress 

constraints are active. Thereafter , the move limit of X is reduced adaptive ly, wl1ich 

in turn leads to steady improvements of X and A. After 10 iterations, the optimum 

solution is obtained. The cross-sectional areas of main member elements, A, and 

A12 , are 20 times larger than those of Ag and All. The cross-sectional areas of 

redundant member elements at the optimum solution are reduced to O.lcm2 and their 

materia l kinds are selected almost as number 1, which is the lowest cost material. 

The optimum shape of truss is similar to a two-bar truss and the main members 

A2 , A3 , A4 , A,, A8 , A, and An are fully stressed. The cross-sectional areas of 

A1, A8 , An at the optimum so lu tion are a lmos t identical and A, and A., are each 

approximately equal to the sum of the areas of A, and A, for the balance of axial 

forces. The max im um hor izontal disp lacement at panel po int 2 is 5.9cm. 

In case Bas shown in Fig. 5-2 and Tab le 5-l, f..m'" and b'"'"~' are set at 0 .1 Hz and 

3.8cm, respective ly. In this case , both stress and disp lacement constraints are active 
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at the optimum so luti on, The initial material kinds are assumed to be 5 for all 

member elements. After 30 iterations, the material distribution converge to the 

optimum and the optimum X and A are obtained at iteration number 35. In thi s 

problem, the maximum horizontal displacement occurred normally at panel point 2, 

but occasionally at 4. For this reaso n, the number of iterations required to obtain the 

optimum so luti on is larger as compared with other cases. At the optimum so lution, 

the material kinds 4 and 3 are selected, respectively, for the main member elements 

2 and 4, and 7 and 12. All of these member elements are fully stressed. For all other 

member elements, material kind 1 is selected and these member e lements are not 

fully stressed except for member element 8. Material kind I is most economical 

when the displacement constraints are active. The cross, sectional areas of the 

optimum A7 and A12 are almost the same and are almost 50 times larger than these 

of member e lements 8 and 13. The optimum shape of the truss is similar to a two, bar 

truss and its X, is slightly larger than that for case A. The total cost for case B is 

7.3% higher than that for case A. 

In case C, shown in Fig.5,2 and Table 5-1. J;mm and Dam"' are set at 2.0Hz and 

lO.Ocm, respectively. In this case, both stress and frequency constraints are active at 

the optimum solution. The optimization algorithm is initialized by the mate rial kind 

distribution M,0 =5 (i= 1, .. ·,15). In this design problem, the vibrat ion mode of 

structure in successive solutions is changed acco rding to the improvements of EA 

and S at the first stage minimi zation process , and then , the sensitivit ies of frequency 

cons traint calculated with the initial EA and S at that iteration become ineffective to 

satisfy the freq uency constraint on new vibration mode. In this kind of s ituation , the 

exact vibration mode and frequency of structure must be calculated at each time at 

the end of first stage minimization process , and the act iveness of frequency 

constraint should be examined. The optimum distribution of material kind is 

obtained after 18 iterations. The optimum solution is obtained at iteration number 

32. At the optimum so lution , all non-trivial member elements are fu lly stressed 

except member element 3. The optimum cross-sectional areas of A3 , A,, A, , and A13 

are about 12-25 times larger than those chosen in cases A and B, but their optimum 

material kinds are determined as l. This optimum so.lution is quite reasonable .in the 

case where both stress and frequency constraints are active. The total cost in case C 

is 21.5 percent higher than that in case A. 

In caseD, shown in Fig. 5-2 and Table 5-l , /,m., and b'.,n, are set at 2.0Hz and 
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3.8cm, respectively. In this problem, all these constraints on stress, displacement 

and frequency are active, and the changes in vibration mode are also observed 

according to the improvements of A and S in the first stage minimization process. 

However. rhe opt imum material kind distribution is determined at iteration 13 . and 

the optimum so lution is obta ined at iteration 24. At the optimum solution , 

A2 , A, , A, and A12 are fully stressed and their material kinds are selected as 1, I , 3 

and 3, respectively. On the contrary, A3 , A, , A8 and A13 are not fully stressed and 

their optimum material kinds are selected as I , which is the most economical 

material when displacement and frequency constraints are active. As in case C, the 

cross-sectional areas of A3 , A,, A8 and A13 are about 8-20 times larger values than 

those determined in cases A and B. The optim um shape, distribution of material 

kinds and cross-sectional areas of member elements seem to be quite reasonable for 

the case in which stress, displacement and frequency constraints are active. The 

total cost for case D is 29.7 percent hi gher than that for case A. 

In all four cases the quite simi lar sol utions are obtained starting with different 

initial material distributions. The maximum CPU time in the des ign examples was 

23 seconds on a DEC 3000/300. 

From the investigations of the optimum so lutions for various number of member 

trusses subject to different design conditions , it is clear that the proposed optimal 

synthesis method can efficiently determine the optimum coordinates of the panel 

points S , arrangements of material kinds M and cross -sectional areas of member 

elements A of truss structures for optimum design synthesis problems in which both 

static and frequency constraints are subjected. At the optimum solution the cross­

sectional areas of trivial member elements are equal to or less than the imposed 

lower limit. Therefore, the optimum member topology can, also. be determined by 

the proposed synthesis method by set ting the lower limit of cross-sectional areas of 

member elements to an extreme ly smal l val ue. 

5-5. CONCLUSIONS 

In thi s Chapter the systematic synthesis method proposed in Chapter 4 is applied 

to the optimization of shape, material and sizi.ng arrangements of truss structures 

subject to not only stress and displacement constraints due to static loads but also 

frequency constraints. The design method is developed by utilizing the two-stage 
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minimization process of the Lagrangian function. the concept of convex and linear 

approximation, dual method and discrete sensi tivity analysis. The rigorousness , 

reliability and efficiency of the proposed design method have been confirmed by 

various numerical experiments on statica lly indeterminate trusses . 

The fo llowing conclusions can be drawn from this study: 

( I) The proposed optimal synthesis method can deal with any combinations of 

design variabl es such as shape of structure, discrete material kinds and cross­

sectional areas of member elements of truss structure subject to both static and 

frequency constraints. The application of this method, also, leads to an optimum 

member topology. 

(2) The proposed two-stage optimization process for minimizing the Lagrangian 

function can also solve the mixed discrete/continuous variable problem subject 

to stress, displacement and frequency constraints in a systematic and efficient 

manner. 

(3) Adaptive move limit constraint on S is necessary to ensure that successive 

so lutions converge to the optimum soluti on when displacement or freq uency 

constraints are active in the design problem. 

(4) The vibration mode and frequency of truss structure are very sensit ive to the 

distribution of EA and S, and the vibration mode might be changed by 

impro vements of EA and S at the first stage of the minimization process. 

Therefore, it is necessary to calculate the exact vib ratio n mode and frequency 

and to examine the activeness of frequency co nstraint at the end of first stage 

minimization process to ensure the smooth convergence to the optimum so luti on. 
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Chapter 6 

TOTAL OPTIMAL SYNTHESIS l\1ETHOD FOR TRUSS 
STRUCTURES SUBJECTED TO STATIC AND SEISMIC LOADS 

6-l. INTRODUCTION 

In the past decades , a number of contributions to the optimum design of 

structures subj ected to static and seismic loads have been made s ince the earliest 

study by Pierson[!], but most of the wo rks have focused to determine the optim um 

member element s ize distributions in many types of structures[2-1 1) . However, 

from the optimum design viewpoint of structures subjected to static and seismic 

loads, it is also very important to determine the optim um configuration and discrete 

materi al kind distribution of structure as well as the optimum distribution of 

member elemen t sizes. 

In Chapter 4, a total optimal synthes is method fo r truss structures is presented to 

determine the optim um values to be used for the coordinates of all panel points , 

cross-sectional areas and discrete materi al kinds of all member elements 

simultaneous ly satisfying stress and displacement constraints due to static loads 

[12, 13]. In Chapter 5, the synthesis method is appl ied to so lve design problems 

subj ect to not only stress and disp lacement const rain ts due to static loads but a lso 

frequency constraints[l4]. 

ln this Chapter, the optimal synthesis method is extended to so lve problems of 

truss s tructures subjected to static and seismic loads. The structural optimi za ti on 

dealing with shap e, sizing and material va riabl es subjected to sta tic and seismic 

loads is the first challenge in the world. In the optimum design process, all member 

elements are assumed to be made of circular steel pipes. By applying the concept of 

s uboptimiza tion, the cross-sectional areas of all member e lements are dealt with as 

siz ing variables instead of the diameters and plate thicknesses of circular steel pipes. 

The obj ective function is the tota l construction cost of truss structures considering 

not onl y the cost of truss structures but also the cost of land of construction si te. The 

stress, di splacem ent and s lenderness ratio constraints are considered as behavior 

and side constraints. From the practical design viewpoint, the allowab le stresses of 

member e lements are taken from the Japanese Specifications fo r Highway Bridges 

[JSHB](15) . The stresses of all member elements due to seismic loads are calculated 
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by a response spectrum method using the acce lerati on response spectrum which is 

specified in the JSHB[l6]. 

In the optimum design method, the primary optimum design problem expressed 

in terms of primary design variables, namely, shape, material and sizing variab les, is 

transformed into an approximate subproblem of convex and separable fo rm by using 

mix ed direct/reciprocal design variables and the sens itivities of behavior constraints 

wi th respect to the primary design v;riab les. The sensiti viti es of stress and 

displacement constraints due to seismic loads with respect to design variables are 

calcu lated analytically by using the se nsiti vi ties of eigenval ues, eigenvectors. 

participation factor and acceleration response spectrum. The se parable Lagrangian 

function is introduced for the approximate subproblem and the Lagrangian function 

is minimized by the algorithm proposed in Chapters 4 and 5 incorporating 

suboptimization technique. 

In the numerical design examples, the numerical results of minimum-cost design 

problems of 193-bar transmission tower truss are shown for the three design 

conditions with differen t unit costs of land of construction sites. By comparing the 

optimum solutions, the rigorousness, reliability and effic iency of the optimum 

design method are demonstrated. It is a lso emphasized that the optimal 

configuration, distribution of material kinds and cross-sectional areas of all member 

elements are significantly influenced by the value of unit cost of land of 

construction s ite. 

6-2 . FORMULATION OF PRIMARY OPTIMUM DESIGN PROBLEM 

(l ) Design variab les 

In this study, all member elements are assumed to be made of circular steel pipes 

with diameter D and plate thickness t as shown in Fig.6-l. For the reason that the 

allowab le compress ive stress of a member element with cross-sectional area A is 

significantly influenced by the va lues of slenderness ratio and D/t as specified in the 

JSHB[I5]. Therefore, the design variables with respect to the member size should 

be primarily D and t. However, by app lying the optimum design concept of sub­

optimization of structural element presented by Ohkubo et al.[l? -20], D and t 

corresponding to the va lue of A can be determined quite s imply, and thi s 

suboptimizatio n concept can sim plify the probl em formulation of the primary 
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Material 
number 

1 (SS400) 
2 (Si\11490) 

3 (SM490YJ 
4 (Si\11570) 

rJ;a 

E 

t : Plate thickness ( mm ) 

D : Diameter ( cm ) 

Fig.6-l Cross section of a member element 

Table 6-l Material set (MS) 

O"ta E Pc Pw 
(kgf/ cm') (kgf/cm') (yen/ em') (kgf/ cm') 

1400 2.lxl0' 1.6 0.00785 
1900 2.lx10' 2.0 0.00785 
2100 2.lxl06 2.1 0.00785 
2600 2.1x1o• 2.5 0.00785 

allowable tensile stress Pc unit cost 

: modulus of elasticity Pw : weight density 

(Jw / Pc 

875. 

950. 
1000. 

1040. 

optimum design problem greatl y. For this reason, the cro ss-sectional areas A of a ll 

member elements are dealt with as the siz ing variables instead of D and t. 

A = [A,,· ·· ,A.t (6-1) 

where n is the number of member elements. 

The detailed determination method for t and D fo r each member e lement is 

stated in section 6-2 .(2). Furthermore, the hori zo ntal and vert ical coo rdinates of 

pan el points S(=X, Y) and material kinds M representing the physica l and 

economical properties of material are considered as des ign variables. 

(6-2) 
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M=[M,,···,MJ (6-3) 

where P is the number of coordinates of panel points to be taken in to account. 

Depending on the characteristics of these design variables, A and S are dealt 

with as continuous design variab les , while M whic h represent the physical and 

economi cal properties of material are dealt with as discrete va riables. As the set of 

available ca ndida te material MS used in the design , four steel materials which are 

usually used for the practical design of steel structures, namely 88400 (material 

kind l ), SM490 (material kind 2). SM490Y (material kind 3) and SM570 (material 

kind 4) , are taken into account. The allowable tensile stress a-,a , mod ulus of 

e lasticity E, weight density P. and unit cost p, fo r each material kind are assumed 

as Table 6-1 referring to the J8HB[l5]- [n general, the ratios of a-wl p, and E/ p, 

represent the effect iveness of the stress and displacement constraints. The material 

kind 4 wh.ich has the largest value of a-,aJ P, is the most advantageous material when 

the stress constraints are dominant, whi le the material kind l wllich has the largest 

va lue of E/ p, is the most advantageous material when the displacement constraints 

are dominant. The allowable ax ial compressive stress a-~aCivif.t, D,. /,) of the ith 

member e lement is given by 

a-'ca(M, .r,.D,. f,)= cl,.,8 ( M, t,, D,l,) ·cl<a,(lvf ,, t,, D,, !,) I clroaUvf,i , D,. /,) 

(i=l, ,n) (6-4) 

where d,.(M,. t1, 0 1, /,) is the allowab le axial compressive stress not concerning 

local buckling and it is give as the function of s lenderness ratio 1.1 r, (t .. A,) fo r eac h 

material kind. a-:~1 (M, t, D, /1) is the a llowable axial compressive stress aga inst 

local bu.cklin g and it is expressed as the function of D,/ 2t , for each material kind. 

Please refer to the JSHB[ IS] for the detailed calculation of the a llowable axial 

co mpress ive stress. 

(2) Determinations oft and D by subo ptimi zationl22"251 

As stated in 6-2(1 ), the plate thickness 1, and diameter D, corresponding to A, 

in the ith member element are determined so as to maximize the allowable 

compressive st ress clca(t 1) for the compressive member element or to minimize the 

slenderness ratio z/ rlt, , A1) for th e tens ile member element by applying the co ncept 

of suboptimi za tion [ 17-20]. Supposing A, is a constant value, then the diameter D, 

is calculated by us ing t, . Therefore, the maximiza tion problem of the allowable 
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compressive stress a-'ca(r,) for the compressive member element can be stated as 

follows by considering 1, only as the design variable. 

Fi nd I , which, 

maximize (6-5) 

subject to A.Ct,) = constant (6-6) 

From the practical design viewpoint, it is assumed that t for each member e lement 

should be se lected from the following discrete plate thickness set considerin g the 

market sizes of steel plate thickness. 

I,E {2.0,3 .0,4.0,5.0 ,6.0, 7 .0,8.0 ,9.0 , 1 O.O(mm)} 

Figs.6-2 and 6-3 show the relationships between plate thickness t and allowable 

axial compressive stress o-"' for material kinds I and 2 obtained by changing t 

discretely from 2.0mm to I Omm, and also show the process to determine t which 

maximizes O"co . In these figures , the member length l and cross-sectional areas A 

are, respectively, assumed as 4m, 50.0cm2
, I OO.Ocm1

, 150.0cm2
, 200.0cm2, and 

250.0cm2
• As clearly seen from Figs.6-2 and 6-3, t which maximize o-"' under the 

condit ion of the given cross-sectional areas can be simply determined by comparing 

the values of O"ca with respect to each plate thickness. 

(3) Design constraints 

The stress, displacement and slenderness ratio constraints are taken into account 

as the behavior and side constraints and these constraints are taken from the JSHB 

[15] . 

The critical stress constraint g
1
(A,S,M) for thejt.h member element is selected 

by comparing the values of stress co11Straints due to static loads, and static and 

seis mic loads, g~(A,S,M) , g~(A,S,M) and g: (A,S,M) 

where N,/A,S, M) and N,iA,S,M) are , respectivel y, the axial forces in the jth 
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'E 15oo 
u 

" 't, 
:::. 
~ 1000 

500 

[ M = l (SS400), I= 4.0m I 

CDA= 50.0cm2 
<Z) A = 100.0cm2 
CD A= l50.0cm2 
GD A=200.0cm2 
® A= 250.0cm 2 

0.9 l. O 

t(cm) 

Fig.6-2 Relationships between plate thickness r and 

a llowable compress ive stress 0'., 

(material kind M=l (S S400), member length I =4.0 rn) 

'E 2ooo 
/ M=2 (SM490), 1= 4.0m I 

u 

~ 
~ 

" 15 1500 

1000 

<D c:.D CD A= 50.0~m 2 ; 
<Z)A= l00.0cm 2 : 
CD A= 150.0cm2 i 

500 @ A=200.0cm2 i 
aC ® A=250.0cm2 ' 

I I I I I I I I I 

<D 

I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

t(cm) 

Fig.6-3 Relationships between plate thickness t and 
allowable compressive stress 0',~ 

(material kind M=2 (SM490), member length I =4.0rn) 
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member element due to static loads and seismic loads. a./M) is the maximum 

allowable axial tens ile or compressive stress . 

The displacement constraints g""(A,S, M) (d = 1,-··, u) are given as 

(d = l ,·· · , u) (6-l 0) 

where 8.;(A.S,M) and 8,d(A.S,M) are, respectivel y. the di spl acements at the dth 

panel point due to static loads and seismic load s. 8ad is the maximum allowabl e 

displacement at the dtb panel point. u denotes the number of displacement 

constraints to be taken into account. 

Furthermore, the following constraints on slenderness ratio of the ith member 

element are considered to hold the minimum member rigidity. 

For compressive member 1/ r ,(I ,. A.)~ 120 (i = l. .. . n) (6-l 1) 

For tensile member i/ r.C1 .. A. )~ 200 (i = l, .. ·, n) (6-12) 

In the optimum design process, the abov e constraints on slenderness ratio are 

considered as the constraints to determine the lower limit of cross-sectional area of 

the ith member element A~ . 

(4) Calculation of displacements and axial force s due to seismic loads 

The structural behaviors due to seismic loads, N,1(A,S, M) and 8,d(A,S,M), are 

calculated by the response spectrum method in which the standard acceleration 

spectrum specified by the JSHB [16] is used . The eigenvalues p 1 and eigenvectors 

[~] of structure which are necessary for the analysis of structural behaviors are 

obtained by solving the eigenvalue equation of structural dynamics given by eq.(S-

12). The total system mass mauix MM consists of the contributions from structural 

mass matrix Mx (A.S ,M) and nonstructural mass matrix Me . 

(6-13) 

In this study, the acceleration response spectrum in the kth vibration mode, S,u , 

is calculated by eq.(6- l4) considering the dumping ratio of structure and ground 

condition. 

(6-14) 

where s~ is the standard acceleration response spectrum shown in Fig.6-4 and is 
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I I 
I I I 1 '\: 

I I I I I 1\. 
I I I II I I I 
I ITII I 

0.2 0 .3 0.5 0.7 1.0 -2.0 3.0 o.O 

Penod of natural vibration T> (sl 

Fig.6-4 Standard acceleration response spectrum 

specified in JSHB (1990) 

taken from the JSHB [16]. The relationship between the period of natura l vibration 

T, and the standard acceleration response spectrum s?u is expressed as fo ll ows. 

I 

if T, < 0.1 ; s ~\k = 431Tf(gal) and s~ > 160(gal) 

if 0.1 < T, < l.l; s~ = 200(gal) (6 -1 5) 

if .1 < T,; S~, =220 / T,(ga/) 

The di spl acements o ,., (A, S,M) in the kth vibration mode are calculated by the 

fo ll owing ex pression by using the eigenvalue ,u~, norma li zed eigenvecto r [~ ], by 

eq.(S -1 9), principal coo rd inate q, and participation fac tor /3
1

. 

b',,, (A,S, M) = [~ ],q, (6- 16) 

where 

/3, SAk 
--1- (6-1 7) 

f-1. , 

The ax ia l force of the kth vibration mode in the jth member 

element , N 'f., (A,S,M) , is g iven by 

(6-18) 
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where km; and Q1 are, respectively, the member stiffness matrix and rotation matrix 

for thejth member element. 8 ,1,,(A,S,M) indicates the displacements at both ends of 

the jth member element . 

Finall y, the displacement at the dth panel point, ,5,d (A,S,M) , and ax ial force in 

the jth member e le nlent due to seismic loads, N,
1
(A,S , M) , are obtained by taking 

the square roots of the su=ations of squares of 8""" (A,S,M) and N,
1
,, (A ,S,M) 

(k = l. ... v) . Namely , 

b"w(A,S,M) i:: {8,J.; (A,S, M)} 
2 

(6-19) ,_, 

N ,1 (A,S,M) = i:: {N,1,, (A,S,M)} ' (6-20) ,_, 

where v indicates the number of eigenvalue taken into account for the response 

spectrum ana lysis . 

(5) Formulation of primary optimum design problem 

The total construction cost is the objective funct ion W (A, S,M) and it ts 

expressed as the summation of costs of member elements and cost of land of 

construction si te. By considering the design var iables, design con strai nts and 

object ive function stated above, the primary optim um design problem can then be 

formulated as 

Find 

minimize 

subj ect to 

where 

A, S , M , which 

" 
W(A,S, M) = LPJivf,)l,(S,) At+PLAL(SL) ,., 
go; (A,S,M) ~ 0 

g..,(A, S, M) s; 0 

M, e MS 

s, = [s, •. s,_J' 

(j=J, .. ·,n) 

(d= l, · , u) 

(i = J, .. ·,n) l 
(k=l, · ,2P) 
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Pc.(M,) is the unit cost of the ith member element with material kind i\1/1 . p L and 

A1.(S1) are, respectively , the unit cost and area of land of construction site. SL is the 

coordinates of panel points which directly influence the area of land of construction 

site. S,. and S,. are the horizontal and vertical coordinates of the panel points to 

which the ith member element is connected. As stated in section 6-2.(3) , the lower 

limit of cross-sectional area A~ is determined so as to satisfy the constraints on 

slenderness ratio in eqs.(6-ll) and (6-12) to ensure the minimum member rigidities. 

6-3. OPTIMAL STRUCTURAL SYNTHESIS METHOD FOR TRUSS 

STRUCTURES SUBJECTED TO STATIC AND SEISMIC LOADS[24•25l 

( l) Convex and separable approximate subproblem 

The objective function and design constraints in eqs. (6-21) to (6-24) are 

approximated by using the first-order partial derivatives of the objective function 

and design constraints with respect to design variables. The primary optimum 

design problem is transformed into the convex and separable approximate 

subprob lem by using the direct and reciprocal design variables considering the signs 

of partial derivatives. In the approximate optimal design formulation, the change of 

objective function t;. W is taken into account instead of the total objective function, 

W(A ,S,M), and the changes in material kinds, L'.M=[Mfl> .. ·,L'.M,f, are treated as 

new material variables. Then, the following convex and separable approximate 

subprob lem can be derived. 

Find A, S, ill'\1, which 

n 

minimize t.W(A,S,M
0
+D.M)= l:m.,(M?+ t;.M,)A, ,_, 

(6-25) 

subject to 

(j=l, ·· , n) (6-26) 
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where 

J'v!, EMS 

(i =l ,- ·· ,n) 1 
(k=l ,- ·· ,2P) 

(d = 1.--· ,u) 

n ?.P 

U,1 = g,iA0,S0 ,M 0
)-L A,0[a,.1,l - a,,1.,]- :Ls~ [s,,.., -s,,H] 

1=1 k-- 1 
n -,p 

U.s; = g.s; (A0,S
0 
,M 0

) - L A,0[ad<(+l - a d< (·l ]- :ts2[ Sdk(+l - sdH·>] 
1=\ k- 1 

(J) A; (Ivf.+t:,M,) = P" (/vf?+t:,M,)l, (S ,) 

(J) . (M" +t:,M) = LP (lv!? +t:,M)A ol,(S,) + p ilAL(S J 
s• l eX, " , I I as, I. as, 

ag,, 
G;i = 8 A, 

M =M0+t:,M 

S1~t. = 

(6-2 7) 

(6-28) 

In the preceding express ions, the symbols (+) and (- ) denote the signs of the 

fir st-order partial derivatives , and kp stands for the set of member elements 

connected to the kth panel point. 

(2) Calcu lation of sensitivities of displacements and axial forces due to seismic 

loads 

Tlte sensitivities of displacement 0,d(A ,S,.M) at the dth panel point and axial 

fo rce N ey (A,S,M) in the jth member element due to seismic loads wltich are 

necessary for the calculations of sensitivities ap, s1,, mp , ad,, Sdk , m., are obtained 

ana lyt icall y by using the sensitivities of eigenvalue and eigenvector. On the basis of 

the Nelson's technique[21], the sensitivities of eigenvalue and eigenvector with 

respect to design variables are calcu lated by differentiating the eigenvalue equation 

of structural dynamics in eq.(S-12) . Namely, the sensitivities of eigenvalue, 11i, and 

e igenvector in the kth vibration mode , [$], , with respect to design variabl e 
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B,E B =[A,,··,An,Sp"·, S 2p, Ml'··· ,M.( are given by eqs.(S-14) and (5-2 1) to (5-23). 

The sensitivities of displacements 5, .• (A,S,M) in the kth vibration mode are 

calculated as the following expression by differentiating the eqs.(6-l6) and (6-1 7). 

where 

oo,..(A,S, M) 

as, 

aq, 
oB, 

a(nq . +["'l aq. 
a B. ' 'f' 'o B, (6 -29) 

(6-30) 

By differentiating the eq.(6-18), the sensitivities of axial force of the kth 

vibration mode in thejth member element, N,,.,(A,S, M), with respect to A, s., M , 

are , respectivel y, given by 

oN,1_.. (A,S,M) 

oA, 

o N,1.(A,S,M) 

as, 

aN,1_, (A ,S,M) 

aM, 

(6-3 1) 

(6-32) 

(6-33) 

Finally, the sensitivities of displacement 0,iA,S,M) at the dth panel point and 

axial force N,;(A,S,M) in thejth member element due to seismic loads are obtained 

by taking the first-order partial derivatives of the responses expressed as square 

roots of the summations of squares of 0,d_. (A,S,M) and N,
1
_..(A,S,M) (k = [ , .. . , v). 

Name ly, 

ao,AA,S,M) 
as, 

1 ~ -~ (A S M) ao,J_,(A,S,M) (6_34) 

~ 
,. 'L.,.Uw,k , , · aB 
L {O.Jk (A,S,M)} 2 , _ , I ,_, 

l . ~ >.f (AS M).aN,; ,(A,S,M) (6-35) 
II .., tt l ~).k ' ' 8 Bt 
L {N'J,, (A,S,M)}' ,_, 
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(3) Improvements of A, S and M by a two-stage minimization process of the 

Lagrangian function 

(a) Two-stage minimization process of the Lagrangian function 

The behaviors of truss structures subjected to static and seismic loads, such as 

stresses of member elements and displacements at free nodes, are expressed as the 

functions of S and the product of modulus of elas ticity E and A , EA , and the 

objective function is also expressed as the function of A, S and M. As stated in 

Chapters 4 and 5, in thi s study A and S are dealt with as continuous variab les and 

£'.M as discrete variables selected from the material set MS . Therefore, the des ign 

variables A, S and !'!. M are improved by a two-stage minimization process that 

uses a dual method and incorporate discrete sensitivity analysis. At the firs t stage of 

the minimization process, EA is treated as one design va ri able, but M is 

maintained constant, and the optimal EA and S are determined by using a dual 

method. In the optimization algorithm of first stage minimization process, E is 

constant and A is improved for improvement of EA. Thereafter , at the seco nd stage 

of the minimization process, S is maintained constant and the better combination of 

A and !'J.M for each member element is searched independently to red uce the cost of 

each member element by comparing the value of cost whi le keeping the activeness 

of the constraints which are determined by the first stage minimization process. 

(b) Lagrangian function 

To so lve the convex and separable approximate subproblem defined in eqs . (6-

25)-(6-28) by using the two-stage minimization process, the following Lagrangian 

function whi.ch is expressed as the separable forms of A and S is introduced for the 

su bproblem. 

n 2P " u 

L(A,S,M
0 

+!'J..M,A.) =I L,(A, !'!.M,,t..) + I L, cs,, !'J.M,A.) + I A.ru"' +I A.~u., C6-36) 
t=l k= l j-1 d- 1 

where A.;<:o(j=l, .. . n), A.~;::O(d= l ... ·.u) 

)..; and )..~ are, respectively, the Langrange multipliers (dual variables) for g"J and 

g&1 • L, and L, are, respectively, the element Lagrangian functions with respect to 

A, and !'J.lvf,, s , and !'J.M , and these are given by 
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L, (A, ,t,..M, ,A.)= iliA,(lv~ +D. M,) A, 

(6-3 7) 

L,(S, ,D.M,A.) = ill s.t<+J (M
0 

+ D.M)s, -llls.tc-/M0 +D.M)(S:)'; 
k 

(6-3 8) 

(c) Improvements of EA and S by the first stage minimi za ti on process 

In the first stage minimization process of the Lagrangian function , the material 

kinds of member e lements M are maintained constant, and EA and S are impro ved 

by maximizing L( A, S, M
0 

+t.M,A.) with respect to A. and minim.izing it with 

respect to EA and S. In the minimization algorithm, E fo r each member element is 

constant and A is improved for Improvement of EA . Since eq.(6-36) has a simple 

form of a summatio n of the separable element Lagrangian functions L, (A .. t.. M,. A.) 

and L,(S.,t..M, A.), the minimization L ( A, S, M 0 +L\.M, A.) with respect to A , S and 

D.M can be accompl is hed by m.inimizing L, and Lx with respect to A, and S, 

independently .. { , which minimi zes L,(A., D..M,A.), is given by the following 

ex pression derived from the necessary condition of L, (A, D. .M.,A.), namely, 

a L, 1 a A, = 0 , and the side constraint on A,. 

if 

if 

if 

where 

[A,
1
(M,")f < ZA,(M,0 ) <[A,"( M," )]', 

z A• ( M,0 ) 5, [A: ( M,0)]'' 

z.,(M,0 );e: [A,'(M,0) ]
2

, 

A: =.JZ,,( M,")) 

A: = A,' (l'v!,0 ) 

A;= A,"(M,") 

ZA,(~) 
n ' 

iliA,(M?)+ 2).; a ji(+1+ L A~a••<•·J 
; - 1 d•l 

(6-3 9) 

(6-40) 

s;, which minimizes L, (S, ,t,.M, A.) , is also given by the following expression 

derived from the necessary condition a Ld as,= 0 and the side constraint on s,. 
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if [s: ]' < Z5, (M0
) < [S;'] ' , s; = .JzSk CM "J 

) if Z.~> (M 0)~ [S; ]2
, s; =S~ 

if ZSJ<(M 0 )~[S:J 2 , s; =s: 
(6-41 ) 

where 

if a.>s,(M0
) ~ 0, 

ZSJ< (M0
) 

a.>st t•) (M
0

) + t ).; S 1k(•) + i:-l.~ Sdk (•) 

(6-42) 

J-1 d•l 

if a.>SJ< (M0
) < 0, 

ZSJ< (M0
) (6-43) 

The minimized Lagrangian function with respect to A and S is denoted as /("A) : 

!(A.)= min.L(A,S, M 0 + i'.M, A.) 
A.S (6-44) 

Following the minimization process with respect to A, and S, , the Lagrangian 

function I(A.) is maximized with respect to the dual variables A. related to the active 

constraints by using a Newton-type algorithm. The details of the maximization 

algorithm of /(A.) with respect to ).. are described in section 4-3.(3).(c). 

After the improvements of the dual variable A. as 1..· by the Newton-type 

algorithm and A and S as A. and s· using A.', the set of active constraints S Aa 

in the currently approximated design space also has to be updated. The min.-max. 

process described above is iterated until A, S and A. converge to constant values. 

In the first minimization process, it should be noted that if the rate of change in 

S is too large in any iteration, the successive solutions oscillate, and in some cases 

smoo th convergence may not be obtained. For this reason, the adaptive move limit 

constraints are restricted such that the maximum rate of change in S is limited to 

less than 15 percent. 
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(d) Improvements of A and M by the second stage minimization process 

ln the second stage minimization process of the Lagrangian function, the va lues 

of S and A improved by the first stage minimization process are maintained 

constant , and the Lagrangian function L(A,S, M0 +L'>M, A) given by eq .(6-36) is 

minimized with respect to A and 6M while keeping the activeness of the 

cons traints which are determined by the first stage minimization process, namely, 

Find A, t>M, which 

minimize (6-4 5) 

subject to g,. (A,S,M0ti'>M) $ 0 (6-46) 

g61 (A,S,M0t 6M) $ 0 (6-4 7) 

(i = [ , ... ,n) 

(i = [ , .. . ,n) } M, EMS 
(6-48) 

In the above expressions, A and S are the solutions obtained by the first stage 

minimization process and these values are maintained constant during the 

minimization process . 

After the first stage improvements of A, S and A., the approximate constrains 

g ,.(A,S , M
0 

+L'>M) and l?.,lA,S, M 0+6M) in the set of active constrains S "G, 

namely , j ES.4c and d ES Ac. become zero , and ,1,; and A.~ for the inactive 

constrains g'01 and g& , namely, j '£S Ac and d eS.<c, become zero. By substituting 

these relations into L(A,S, M 0 + i'>M,5:) in eq. (6-36) , the minimization problem in 

eqs. (6-45)-(6-48) is solved by minimizing only the term of objective function for 

each member element in L(A,S, M 0 + 6M,5:) independently, namely , l ,(A,( M?+ 

!Wf,) , M?+t>M,) (i = l, .. ·, n) given by eq. (6-49), subject to the constraints in 

eqs. (6-46)-( 6-48). 

[, (A,(M?+ !Wl,),Jv!? + t>M,) = w.<,(M,0 + 1'1 M,)A,(M,0 + 1'1 M,) (i = l, .. ·, n) (6-49) 

A, and 1'1 M, which minimize l ,(/f,(M?+Mvf, ),M?+t>M,) are determined by 

comparing the discrete values of l,(A,(M?+!Wl,),Af/+I'>M,) calcu lated by using the 

new material kind (tvf.+t:.id,) and A,(M?+t:.M,) improved so as to satisfy the 

constraints in eqs . (6-46)-(6-48). 

- 157-



For the case where only stress const raints are active, the necessary condi ti on 

which maintains the stress constraints active for a discrete change MJ, in mate ri al 

kind M, is given by the following expression. 

- O"am.,,( M~ + I'>M, , A~(~ +I'>.M)./,) = 0 (i = J, .. ,n) (6-50) 

By solv in g eq. (6-50) for A~(lvf?+D. M,), the improved A, for M~ +6.M,, 

A, ( M~ +D.M,), is given by 

(i = J, .. ·,n) (6-51 ) 

where 

u , and Uarnax;(M'; + 6. M,, JI~(M~ + 6. M,),/,) indicate respect ively, the working stress 

in the first stage minimization process and the maximum allowable compressive 

stress or allowable tensile stress for ~ + D.M, . 

Tn the case that the ith member element is a compressive member, 

u,.,"',(l\IJ?+t, M,, A~(M?+t, M,),T,) in eq.(6 -5l) is expressed as the function of 

A~ (lv!? +6.111,). Therefore, the determinations of accurate values of A~ (M~ +tJ.M,) 

and 1 1 which sati sfy eq.(6-50) requires to repeat the calculation of 

u am.,1(i\IJ?+t, M, A~(M~+tJ. M,),/,) due to change in A~(M~+D.M,) by using the 

suboptimization stated in 6-2 .(2). For this reaso n, in thi s study, eq.(6-50) is linear ly 

approximated with respect to A~ (M? +tJ.M,) as 

ga>(A~(M?+ 6. M,), M?+ D.lv!,) = g01 (A~(M?+ 6. M,),M?+D.M,) 

+ 
8!'.: {A~(M?+I'>M,)-A~(M?+I'>M,)}= o (i = l, .. ·,n) (6-52) 
ilA, 

By solving eq. (6-52) for A~Uv1?+6..A1, ) , A~(M?+Mf,) is improved by 

(i = J, .. ·,n) (6-53) 

where 
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ag., = la-.IA.(U') a a-""'""' (M?+t>Jvf., ii~ (M? +6M,),/, ) 
ali~ {ii~(M~ +t,M,)J' a il~ 

(6-54) 

By iterating the improvement of ii~(i\1/.'+t, M,) in eq.(6-53), if~(M?+t,M,) and ~ 

which satisfy eq.(6-50) are determined. 

For the case when displacement constraints are active , the necessary condition 

required to maintain the displacement constraints active for a discrete change t, iv/, 

is to keep the value of £ , A, constants, namely, 

(i = l , .. ,n) (6-55) 

Conside ring eq.(6-55) and the lower and upper limits on A,, the improved A, for 

ivf. +6M, , A~ (M~ +6M1), is calculated as follows: 

if A{CM,• +6 M,) < A, < A." CM," +/', M,); ii; uv~.• +6 M,) I 
if A, 5; A,' (M,0 + t, lv~); A: (M,0 + t, M,) =A: (M,0 + t, M,) 

if A, 5; A,' ( M,0 + t, lv!,); A,6 ( M,0 + t, M,) =A,"( M,0 + t, M,) 

(6-56) 

where As = .Jz ,., (JI,;f~) E,(;\4~) 1 E,(M?+t,M,) (6-5 7) 

Z",(M?) in eq.(6-57) is given by eq.(6-40). 

In the case where both stress and displacement constraints are active, a larger 

va lue of A~(M?+t,M,) and A~(M?+Mvf.) obtained by eqs.(6-53) and (6-56) is 

chosen. 

The discrete changes in the mechanical and eco nomic properties of materials 

considerab ly affect the design space. Therefore, in the minimization of I,(ii.,(M?+ 

t,M,),Mt'+t,M,) the range of t,M, in one iteration is restr icted to the nearest 

s tronger(/', M 1 = +l) and weaker( t, M , = -1) material only and t, M , wbich. 

minimizes I , is determined by comparing the discrete val ues of I , for 

6M, = +1, 0,- l. 

[n the optimization process, the followings ar e noteworthy when the structural 

behaviors due to not only static loads but also seismic loads are taken into account 

in the optimum design problem considering shape, material and sizing variables. As 

described in Chapter 5, the vibration mode and period of natural vibration of truss 
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Fig.6-5 Flowchart of the proposed optimal structural synthes is method 

for truss structures subjected to static and sei smic loads 
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structures are very sensitive to the distribution of EA and S, and the stress for each 

member e lement and displacement at each panel point due to seismic loads might be 

changed considerably as a result of the improvements of EA and S in the first stage 

minimization process. If the vibration mode and period of natural vibration are 

indeed changed after the first stage minimization process, the sensitivities of stress 

and displacement constraints due to seism ic loads calculated using the initial EA 

and S in the first stage minimization process become ineffective to sa ti sfy the stress 

and disp lacement constraints with the imp roved EA and S. For this reason. i.t is 

necessary 10 ca lculate the accurate vibration mode and struc tural behaviors due to 

seismic loads by using the response spectrum method and to examine the activeness 

of stress and displacement constraints after the first stage minimization process. If 

the activeness of the constraints is changed, the set of active constraints S Ao must 

be modified before performing the second stage minimization process. 

ln the two-stage minimization process, the iterative improvements of A,S ,M and 

A. described in this section are repeated un til the co nvergence criteria are satisfied. 

T hus the optimal solution A' ,s' ,M' and A· to the optim um design problem are 

obtained. The flowchart of the propose optimal structural synthesis method for truss 

structures subjected to static and seismic loads is depicted in Fig. 6-5. 

6-4 . NUMERICAL DESIGN EXAMPLES 

The proposed optimal structural synthesis method is appl ied to various 

minimum-cost designs of truss structures subjected to static and seismic loads to 

demonstrate the rigorousness , efficiency and reliab ility of tbe optimal design 

method. In this section, the numerical results for a 193-bar transmission tower truss 

shown in Fig .6-6 are discussed. 

T he nonstructural lumped masses Mc1 to MC7 and st ru ctural lumped masses 

Mx, (i = J, .. ·,86) as shown in Fig.6-6 are taken into acco unt for the re s ponse 

spectrum analysis. The structural co nfiguratio n and c ro ss-sect ional area for each 

member e lement a re assumed to be symmetri cal abo ut the vertical center li ne. The 

hori zonta l di sta nces from the center lin e, X 1 and X2, and the heights in the 

cantileve r trusses, Y1 -Y9, are co nsidered as the shape design variab les . T he cross ­

sec tional areas and material kinds for I 00 member elements whi ch locate on the one 
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side of the structure to the centerline are considered as the sizing and material 

design variables. The critical stress constraint for a member element is determined 

by comparing the stresses of two member elements which are symmetrical about the 

center line each other. Therefore, the numbers of design variables and design 

constraints considered in the optimization process are. respectively, 211 and 201. 

The vibration modes from 1st to 8th modes, in which the summation of effective 

masses of these vibration modes becomes 95 percent lager than the total mass of 

structural, are taken into account for the response spectrum analysis to obtain the 

accurate behaviors. The area of land of construction site AL (SL) is assumed as a 

square in which the length of one side is 2(X, + 200)cm. By comparing the optimum 

solutions in which the ratio of the unit cost of construction s ite to the unit cost of 

steel materia l SS400 (material kind 1) , PL I Pc(SS400) , are, respectively, assumed as 

0.00, 0.06 and 0.12. the effects of the unit cost of land of construction site p L on the 

optimal configuration and distribution of cross-sectional areas and material kinds 

are investigated in addition to the rigorousness, efficiency and reliability of the 

optimal synthesis method . 

The comparison of optimum sol utions for p L I Pc(SS400) =0.00, 0.06 and 0.12 are 

summarized in Table 6-2 in which the initial A and Mare, respectively, assumed as 

50cm
2 

and materia l kind 4 and the maximum allowable horizontal displacement at 

panel point 2, o,, is set at 45cm. In thi table, T.COST of Truss indicates the cost of 

truss not includ ing the cost of land of construction site . The optimal configurations. 

distribut ions of cross-sectional areas and materia l kinds for three cases are. 

respectively, shown in Figs.6 -7 (a), (b) and (c). In these figures, the thickness of a 

member element indicates the cross-sectional area, and the values with { }, []and 

() indicate, respectively, the cross-sectional area, plate thickness and material kind 

at the optimal solutions. 

For the case where Pt. I p , (SS400) is set at 0.00, name ly, the cost of land of 

constructio n site is not considered , the optimum solution is obtained after 15 

iterations efficient ly. At the optim um so lution, both stress and displacement 

constraints due to static and seismic loads are active. Since the cost of land of 

construction s ite does not need to take into account in this problem, X, and X2 can 

take the most economical va lues for the stress and displacement constraints due to 

static and seismic loads. The opt imum material kinds fo r main member e lements are 

selected as mate.rial ki nds 3 and 4 wh ich are more advantageous for problem in 
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Table 6-2 Comparison of optimum solu tions of I 93-bar transmiss ion tower truss for 
PLI P, (SS400)=0.00, 0.06. 0.12 (A 0 =50cm.l, M0 =4, o.=45cm) 

Design Variables PLI P, (SS400)=0.00 P L/ P, {S 400)=1).06 P) P, (S$400)=0.12 

x, l097.5(ern) 17.0 (ern ) 751.2 (<-m) x, 279.8 371.2 429.6 
y 

I 399.5 413.0 413.4 
Y, ~77.5 275.5 275 .9 
y 6~.0 117.9 115.7 ' {A10}

11,[t10 j21,(M10)" (7.6},[20],(4) [7.4},[:!.0 ],(4) (7.4}.[c.OJ,(4J 
(A13 }.(t13J,(M,J {l l.9} .[2.0J,(l) (12.0} .]2.0],(1) ( 12.0}.[2.0],(1) 
(A,.},[t.,,],(M14) ( 19.2},(2.0],(3) (J 7.2},(2.0],(3) ( 16.9),[2.0],(3) 
{A,,),(t,J,(M,,) (47.1 }.[4.0],(1) {42.5},[4.0],(1.) [ 41.2},{4.0].(1) 
(A,.},[t,,),(M,.J [65},[2.0],(4) [6.3},(2.0],(4) (6.6}.[2.0],(4) 
(A .. },[t"],(M") {12.8},[2.0],(3 ) { 12.9 },[2.0],(31 {13.1 }.[2.0],(3) 
{A,},[t70 J,(M16) ( 50.0 },[ 4.0].( 4) {455} ,[4 .0],(3) {44.3},(4.0],(3) 
(A.,,} ,[t,,J,(M,,) (5 1.9 },[4.0],(3) (56. 1 }.[5.0],(3) (57.6},[5 .0],(3) 
(A,.. }.[ ,,.],(M.,) (53.3} .[4 .0],(3) {61.3 },[5.0],(2) [62.8} .(5.0],(2) 
(A,},[t,9],( M,J (53.9},[4.0),(3) [77.7},[5.0] ,(1) (8 1.9}.[5.0],{1) 

(A100} .(t100],(M1oo) (10. },(2.0] ,( 1) { .S}.[c .OJ,(! J ( 13 4}-.[2.0],(1) 

ft eratilln 15 10 10 

Active constr.tints a,O u,o a.o 
T. OST of tmss(yon) 7.3!0x!06 7.524xl0' 7.8 15x iO' 

T.C.CO T r (yen)" 7.3 10xl 0° 8.765x 106 9.986x LO' 

T.C.COST 0 (yen)" 
9.330x10' S.765x 106 8.90 1x 106 ( Pol P,(SS400)=0.06) 

T.C.COST ill(yen)" 
ll350xl0' ( PL/ P,(SS400)=0.! 2) 10.006xl06 9.986x1 06 

I)( }: Cro" secuon (em") 2)[ J: Piale lluckncss (mm) 3)( ): Malena! kmd 
-1) Costs of li1JSS + ctlsts of land of constmction site for PLI P, (SS -100)=0.00. 0.06, 0.1 2 
5) Costs of truss + CtlSIS of land or consl11Jclion site for PdP, (SS-1001=0.06 
6) Costs or truss + costs of land of cons! ruction site for PLI P, (S$400)=0.12 

which the stres s constraints are dominant. For examples, the acbve constraint for 

the member element 99 which has a largest cross-sectional area is the s tress 

constraint g~99 due to static loads and its optimum material kind is selected as 

material kind J . F urthermore, the optimum material kinds for the upper chords i.n 

the cantilever trusses are se lected as material kind 4 . On the contrary , the cro ss­

sect ional a reas of diagonal member elements which are not fully stressed are 

determined by the lower limits of cross-sectional areas to satisfy the constraint on 

s lendern ess ratio. The plate thicknesses and material kinds of diagonal member 

elements are, respectively, 2mm and I wh ich are the minimum plate th ickness and 

the most economica l material kind. X 1, X 2 and T .COST of Truss at the optimum 
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Table 6-3 Active constraints of main member elements numbcrcJ 
in Fig 6-6 and active constra ints as whole structual 
system for PJP,(SS400)= 0.00, 0.06. O.l2 

No. of 
mt:mbcr pJp,($S400J=0.00 p J p, (SS400)=0.06 pJp,(SS400)=0.1:! 
element 

10 g~, (4) g~. (4) g~. (4) 

13 g;. (I l g;, (lJ g~. (I) 

14 g~ . (3) g~.g!. (3) g~. (3) 

48 g; . (I) 8;. g; . (lJ 8;' (IJ 

ss 8!· (4) g~ . (4) g;. (4) 

61 8;, (3) g~' (3) g; , (3) 

76 8~' (4) g;, (3) 8!. (3) 

91 g~. (3) g;.8: . (3) 8;. (3) 

94 8;. (3) g;. s!. (2l 8~. (2) 

99 8~ · (3) g; ,g:. (ll 8! ' (LJ 

100 8sL• (1) 8sL· (I) 8sL • (l) 

syst~m n 8, 8, g, 

1) Act1 ve constrauus a:; whole structual system 
g~ : stress t·onstraint due to static dnd seiamk load<; 

g; : compre:;sive strc.ss conStraint Liue tu stuti~.: and .soi~1nic loads 
8st : constraint on sl~ndemess ratio 
g 41 : displacement \.·on::;Lraint Uut to ~natic and sci ·mil· toads 

solution are, respecti vel y, l097 .5c m, 279.8cm and 7.310xl06yen. 

For the case where PL I p,(SS400) is set at 0.06, the optimum solut ion is obtai ned 

after 10 iterations quite efficiently. As the same as the case of PL I p,(SS400) =0.00 , 

both stress and displacement constrai nts are active at the optim um so lution. [n thi s 

prob lem, the cost of land of construct ion site infl uences the total construction cost. 

Therefore, the optimum value of X, is 817.0cm and it is 280.5cm smaller than that 

fo r the case of PL I Pt (SS400) =0.00 , on the co ntrary , the optimum va lue of X2 is 

371.2cm and it is 91.4cm larger than that fo r the case of PL I p, (SS400) =0.00. With 

regard to member element 99, by the changes of X 1 and X2 , the two stress constraints 

due to not only static loads but also static and se ism ic loads, g~99 and g!99 , become 

active . T he opti mum p late thickness and material kind for the case of PL I p, (SS400) 

=0.00 were 4mm and 3, but the optimum plate th ickness for the case of 

PL I p , (SS400) =0.06 is 5mm and the optimum mate ria l kind is selected as 1. The 

cross-sectional area of member element 99 is 44.2% larger than that for the case of 

PL I p, (SS400) =0.00. In the comparison of the cost of truss not including the cost of 
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PL I p, (SS400) =0.00. In the comparison of the cost of truss not including the cost of 

land of construction site, T.COST of Truss for the case of PL I p, (SS400) =0.06 is 

2.93% higher than that for the case of PL I p. (SS400) =0.00. 

For the case where PL I p, (SS400) is set at 0.12 , the optimum solution is also 

obtained after I 0 iterations quite efficiently. As the same as two cases mentioned 

previously, both stress and displacement constraints are also active at the optimum 

solution. The optimum value of X 1 is 75 1.2cm and 65.8cm reduction of X1 is 

observed compared with that for the case of p,_ I p, (SS400) =0.06, while the optimum 

val ue of X1 is 4_9.6cm and 58.4cm increase of X2 is ·observed. The active 

constraints of member e lemen t 99 is the stress constraint due to seismic loads. 

g~99 • The optimum cross-sectional area of member element 99 for the case of 

PL I p, (SS400) =0 .1 2 is 81.9cm2 and it is 5.4% larger than that for the case of 

p 1_ I p, (SS400) =0.06. However, the optimum plate thickness and material kind for 

member element 99 are identical to those for the case of p, I p, (SS400) =0.06. As the 

result, T.COST of Truss for the case of PL I p , (SS400) =0.12 is 3.87% higher than 

that for the case of p L I p, (SS400)=0.06. 

Table 6-3 summarizes the active constraints of main member elements numbered 

in Fig.6-6 and the ac tive constraints as who le structural systems for p, I p, (SS400) = 

0.00, 0.06 and 0.12 at the optimum solutions. As clearly seen (rom Table 6-3, 

according to the values of p1_ I p, (SS400) the active constraints of main member 

elements become g~ or g~ or both g~ and g! except the member element I 00 whose 

cross-sectional area is determined in order to satisfy the constraint on slenderness 

ratio. The combination of stress constraints, g~ or g! o r both g~ and g! , are also 

active for the other member elements of transmission tower truss shown in Fig.6-6 . 

As the whole str uctural system, the displacement constraint due to static and seismic 

loads is also active for three cases. From these results, the optimum configura ti ons, 

optimum arrangements of cross-sectional areas and material kinds are determined 

such that the working stresses for main member elements are equal to the a llowable 

stresses of corresponding material kinds and the maximum horizontal displacement 

in whole structural sys tem due to static and seism ic loads is equal to the maximum 

allowable displacement. 

To investigate the reliability of optimum so lution stated above, the total 

construction costs which are ex pressed as the summations of the costs of land of 

construction site and the costs of truss are depicted in the column of T.C.COST l 
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in Table 6-2 for PL I p, (SS400) = 0.00, 0.06 and 0.12. The column ofT.C .COST !I in 

Table 6-2 indicates the summation of the costs of truss for PL I p, (SS400) = 0.00 , 

0.06 and 0.12 and the costs of land of construction site for PL I pJSS400)=0.06. 

Namely, in the calculation of the costs of land of construction site, the va lue of 

PL I pJSS400) is assumed as 0.06 and the areas of land of construction site are 

calculated by using the optimum values of X, for PL I p, (SS400) = 0.00, 0.06 and 

0.1 2. The column ofT.C.COSTII! in Table 6-2 indicates the summation of the costs 

of truss for PL I p, (SS400) = 0.00, 0.06 and 0.12 and the costs of land of construction 

site for PL I p,. (SS400) = 0.12. In the calculation of the costs of land of construction 

si te , the value of pL I p, (SS400) is assumed as 0.12 and the areas of land of 

construction site are calculated by using the optimum val ues of X, for 

P1• I P. (SS400) = 0.00 , 0.06 and 0.12. As clearly seen from Table 6-2 , the most 

economica l total construction costs for p L I p, (SS400) = 0.00. 0.06 and 0.12 indicate, 

respective ly, 7.310x 106 in T.C.COST 1, 8.765x 106 in T.C.COSTU and 9.986x 106 

in T.C.COSTIIl. This results emphasize the reliability of the proposed method. As 

stated previously, the optimum configuration of transmission tower truss and 

optimum arrangements of material kinds and cross-sectional areas for each 

PL I p, (SS400) are quite reasonable. Therefore, it is clarified that the proposed 

optimum design method can determine the optimum configuration and optimum 

arrangements of material kind s and cross-sectional areas of truss structures 

subjected to static and seismic loads quite efficiently and rationally. 

6-5. CONCLUSIONS 

Thi.s Chapter presents an efficient optimal synthesis method for truss structures 

subjected to sta tic and se ismic loads. The optimum design method is developed by 

utilizing the algorithm developed in Chapters 4 and 5 and suboptimization 

techniques. The coo rdin ates of panel points , cross-sectional dimensions and discrete 

material kinds of all member e lements are dealt with as the design variables. 

Constraints on stresses and displacements caused by static and seismic loads and 

constraints on slenderness ratio are considered, respectively, as behavior and side 

constraints. The behaviors and their sensitivities due to earthquake motions are 

ca lcu lated, respectively, by the response spectrum analysis and Nelson's method. As 

the design examples the cost-minimizat ion problems of 193-bar transmission tower 
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truss are shown for the three design conditions with different unit costs of land of 

construction sites to demonstrate the rigorousness , efficiency and reliability of the 

proposed optimum design method. 

The following conclusions can be drawn from this study : 

( l) The proposed optimal synthesis method can obtain the optimum shape of 

structure, discrete material tinds and cross-sectional dimensions of member 

elements of large scale truss structures subject to stress and displacement 

constraints due to static and seismic loads within 15 iterations quite efficiently . 

(2) By investigating and comparing the optimum solutions for various unit prices of 

land of construction site, it has been confirmed that the optimal shape and 

distributi on of material kinds and sizing variables in the whole structure are 

considerably affected by the unit price of land of construction site. 

(3) The proposed two-stage optimization process for minimizing the Lagrangian 

function can determine the optimum material kinds of all member elements of 

truss structures subjected to static and seismic loads in a systematic and 

efficient manner even when the algorithm is initialized with the worst material 

distribution . 

(4) The suboptimization concept on cross-sectional dimensions can simplify the 

formu lation of optimum design problem greatly. The optimum cross-sectional 

dimensio ns of each member elements can be determined simply by using the 

optimum cross-sect ional areas and suboptimization process . 

(5) In the optimization process, the vibration mode and period of natural vibration 

of truss structures are ve ry sensitive to the distribution of EA and S, and the 

stress for each member element and displacement at each panel point due to 

seismic loads might be changed considerab ly as a result of the improvements of 

EA and S in the first stage minimization process. Therefore, it is necessary to 

calculate the accurate vibration mode and structura l behaviors due to seismic 

loads by using the response spectrum method and to examine the activeness of 

stress and disp lacement constraints after the first stage minimization process. If 

the act iveness of the constraints is changed, the set of active constraints must be 

modified before performing the second stage minimization process. 
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Chapter 7 CONCLUSIONS 

In Chapter 2, a rigorous and efficient optimum design method for steel cable­

stayed bridges is presented. [n this design method. not only the cross-sectional 

dimensions of cables, main gLrder and pylon elements but also the cab le anchor 

positions on the main girder and the heights of pyloDs are dealt with as the design 

var iables. The proposed optimum design method has been applied to the minimum­

cost design problem of stee l cable-stayed bridge with 48 cable stays and the 

practical design problem of the Swan Bridge at the Tokiwa Park. The theoretical 

rigo rousness, efficiency and practical usefulness of the proposed opt imum design 

method are demonstrated by investigating the optimum solutions at various design 

conditio ns. 

The followi ng conclusions can be drawn from this study: 

( I) T he global optimum solutions can be determined in 9-15 iterations quite 

efficiently by the proposed optimum design method. 

(2) The optimum values of pylon height, cable anchor positions 011 the main girder, 

steel plate thicknesses of each main gi rder and pylon e lements, and cross­

sectio nal area of eac h cable appear to be reasonable and well balanced. 

(3) In the numerical examples of stee l cable-stayed bridge with 48 cab le stays. the 

reduction of to ta l cost from 2. 7%-8.6% can be observed by dealing with the 

cable ancho r positions on the main girder and the height of pylon as the design 

variables. Therefore, the trea tment of cab le arrangement as the design variab les 

is extremely significant in the optimum design prob lem of steel cable-stayed 

bridges. 

(4) From structural mechanics consideration, with regard to the opti mum cable 

arrangement in the numerical examp le of steel cable-stayed bridge with 48 cab le 

stays. the top two cables are parallel and are anchored at the end support in the 

side span, on the other hand , the cables are distributed as the geometr ic ser ies in 

the center span. The cross-sectional areas of top two cables in the side and center 

spans are determined to be 3.6- 1.4 times larger than those of the middle cab les. 

The cross-sectional areas of unnecessary cables at the optimum solutions are 

found to be the imposed lower limit automatically by the proposed optimum 

des ign method . 
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(5) By applying the proposed method to the practical design of the Swan Bridge at 

the Tokiwa Park, the final decision-making could be accomplished quite eas il y 

and efficiently from the standpoint of total optimizalion considering not only the 

cost minimization but also the aesthetic feeling. Therefore, we can conc lude that 

the proposed design method is quite useful in the practical design of steel 

cable-stayed bridges. 

In Chapter 3, a general purpose. rigorous and effi cient optimum des ign system 

for steel cable-stayed bridges is developed. ln this design sys tem, not only can the 

cable anchor positions on the main girder X c and the height of pylon Yc, and the 

cross-sectional dimensions Z of cables , main girder and pylon elements be dealt 

with as design variables, but also the pseudo-loads Pp applied to the cables which 

induce the prestresses into the cables . The cost-minimization problem is solved by a 

powerful two-stage optimum design process. The proposed optimum design method 

has been applied to the minimum-cost design problems of practical-scale steel 

cable -stayed bridge with 64 cable stays. The theoretical rigorousness , efficiency and 

practical usefulness of the proposed optimum design system are demonstrated by 

giving several numerical design examples and investigating the optimum so lutions 

at various design conditio ns. 

The conclusions that can be drawn from this study are: 

(1) The global optimum so luti ons of steel cable-stayed bridges fo r various design 

conditions and combinations of the design variab les Z, Xc, Yc and Pr can be 

determined quite rigorously and efficiently by the proposed two-stage optimum 

design method. 

(2) The significance of dealing with cable anchor positions on the main girder Xc 

and the height of pylon Yc as the design variables in the optimum design of 

steel cable-stayed bridges is a lso confirmed fro m the design examples in this 

Chapter. 

(3) The optimum solutions of Z only or Z, Xc and Yc can be obtained in 6-19 

iterations of the first stage optimization process theoretically and efficient ly. 

Fo llo wing the optimum solutions in the first stage optimization process, after 

10-14 iterations of the second stage optimization process the theoretical 

optimum solutions of Z and Pr can be obtained quite efficiently. 
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(4) The optimum cable anchor positions on the main girder Xc and the height of 

pylon Yc determined during the first stage optimization process by considering 

only the design loads are found to be scarcely affected by the optimum pseudo­

loads from the design example . Therefore, we can obtain the fLnal optimum 

so lutions of Z , Xc, Yc and Pp after only one repetition of two-stage 

optimizat ion process, namely determination of the optimum solutions of Z, Xc, 

Yc subjected to only the design loads by the fir st stage optimization process and 

determination of the optimum solutions of Z and Pp subjected to design loads 

and pseudo-loads by the second stage optimization process. 

(5) By giving the optimum prestresses to the cables, the local peaks of min. and max. 

bending moments at the middle support in the main girder are reduced to 53.6 

-40.5% and the cross-sectional areas of cables change to the range from 

+42. 7% to -84 .5%, and a ll nontrivial cables are fully stressed. As a result , 2. 9% 

reduction in the total cost of the bridge is observed by giving the optimum cable 

prestresses in the design examples. From various design examples, it can be said 

that we can save 2.6%-4.1% of the total cost of the bridge by giving the 

optimum prestress in the cables. 

(6) The proposed optimum design system is quite useful for practical design of the 

steel cab le-stayed bridge at all design stages , from the planning stage to the 

detailed design stage. 

In Chapter 4, an optima l structural synthesis method is presented to determine 

the optimum so lutions for design problems of truss structures consi dering the 

coordinates of panel points, cross-sectional areas and discrete material kinds of all 

member elements simultaneous ly as design variab les. The stress and displacement 

co nst raints due to static loads are taken into account in the optimization process. 

The opt imal st ructural synthesis method has been developed by using the concept of 

convex and linear approximation, dual method, two-stage minimization process of 

the Lagrangian functio n and di screte sens itivity analysis. The generality, 

rigorous ness, re liability and effic iency of the proposed optimal structural synthesis 

method are ill ustrated by app lying the method to various minimum-cost design 

problems of 3 1-bar truss subjected to stress and disp lacement constraints and 

investigating the optimum solu tions at vario us design conditions. 

The conc lusions that can be drawn from this study are: 
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(I) The design method can deal with any combinations of design variables such as 

shape of the structure, discrete material kinds and cross-sectional areas of 

member e lements, and can optimize the design variables as well as the 

topological member arrangement simultaneously. 

(2) The two-stage minimization process of the Lagrangian function can solve the 

mixed discrete/con ti nuous variable problems quite systematically and 

efficien tl y. 

(3) The rigorousness and reliability of the proposed design method have been 

confi rmed by various numerical experiments of 31 -bar trusses. The co nvergence 

to the optimum solutions is quite excellent and the optimum solutions can be 

obtained after 15-25 iterations quite effic ient ly even when the algorithm is 

initia lized with the worst possible material distribution. 

(4) Adaptive move limit constraint on Y is required to ensure the success ive 

so lutions converge to the opt imum solutio n when the disp lacement constraints 

are active in the des ign problem. 

In Chapter 5, the systematic synthesis method proposed in Chapter 4 is applied 

ro determine the opt imum solutions of shape, material and sizing variab les, S, M, A, 

of truss structures subject to not on ly stress and displacement constrai nts due to 

static loads but also freq uency constra ints. The design method is developed by 

utilizing the two-stage minimization process of the Lagrangian function, the 

concept of convex and linear approximation, dual method and discrete sens itivity 

analysis. The rigorousness, reliability and efficiency of the proposed design met ilod 

have been co nftrmed by various numerical experiments on stati cally indeterminate 

trusses. 

The following conclusions can be drawn from this study: 

(!)The proposed optimal synthesis method can deal with any combinations of 

design variables such as shape of structure, discrete materia l kinds and cross­

sectiona l areas of member elements of truss structure subject to both static and 

frequency co nstraints. The application of thi s method, also, leads to an optimum 

member topology. 

(2) The proposed two-stage optimization process for minimizing the Lagrangian 

function can also so lve the mixed discrete/co ntinuous var iab le problem subj ect 
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to stress, displacement and frequency constraints in a systematic and efficient 

manner. 

(3) Adaptive move limit constraint on S is necessary to ensure that successive 

solut ions converge to the optimum solution when displacement or frequency 

constraints are active in the design problem. 

(4) The vibration mode and frequency of truss structure are very sensitive to the 

distribution of EA (the product of modulus of elasticity E and cross-sectional are 

A) and S, and the vibration mode might be changed by improvements of EA and 

S at the first stage of the minimization process. Therefore, it is necessary to 

ca lculate the exact vibration mode and frequency and to examine the activeness 

of frequency constraint at the end of first stage minimization process to ensure 

the smooth convergence to the optimum solution. 

Chapter 6 presents an efficient optimal synthesis method for truss structures 

subjected to static and seismic loads. The optimum design method is developed by 

utilizing the algorithm developed in Chapters 4 and 5 and suboptimization 

techniques. The coordinates of panel points , cross-sectional dimensions and discrete 

material kinds of all member elements are dealt with as the design variables . 

Constraints on stresses and displacements caused by static and seismic loads and 

constraints on slenderness ratio are consi.dered, respectively, as behavior and side 

constraints. The behaviors and their sensitivities due to earthquake motions are 

calculated, respectively, by the response spectrum analysis and Nelson's method. As 

the design examp les the cost-mi nimization problems of 193-bar transmission tower 

truss are shown for tbe three design conditions with different unit costs of land of 

construct ion s ites to demonstrate the rigorousness , efficiency and reliability of the 

proposed optimum design method. 

Tbe follow ing conclusions can be drawn from this study: 

( I) The proposed optimal synthesis method can obtain the optimum shape of 

structure, discrete material kinds and cross-sectional dimensions of member 

elements of large sca le truss structures subj ect to stress and displacement 

constraints due to static and seismic loads within 15 iterations quite efficiently. 

(2) By investigating and comparing the optimum solutions for various unit prices of 

land of constructio n site, it has been confirmed !bat the optimal shape and 
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distribution of material kinds and sizing variables in the whole structure are 

considerably affected by the unit price of land of construction site. 

(3) The proposed two-stage optimization process for minimizing the Lagrangian 

function can determine the optimum material kinds of all member elements of 

truss structures subjected to static and seismic loads in a systematic and 

efficient manner even when the algorithm is initialized with the worst material 

distribution. 

(4) The suboptimization concept on cross-sectional dimensions can simplify the 

formulation of optimum design problem greatly. The optimum cross-sectional 

dimensions of each member elements can be determined simply by using the 

optimum cross-sectional areas and suboptimization process. 

(5) In the optimization process, the vibration mode and period of natural vibration 

of truss structures are very sensitive to the d istribution of EA and S, and the 

stress fo r each member element and displacement at each panel point due to 

seismic loads might be changed considerably as a result of the improvements of 

EA and S in the first stage minimization process. Therefore, it is necessary to 

calculate the accurate vibration mode and ·Structural behaviors due to seismic 

loads by using the response spectrum method and to examine the activeness of 

stress and displacement constraints after the first stage minimization process. If 

the activeness of the constraints is changed, the set of active constraints must be 

modified before perfo rming the second stage minimization process. 
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