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Figure 2. Dealing with degeneracies. The awkward choice between keeping more extended emission or paying the price of
higher map noise: an example of a simulated 100 mJy point source implanted in a single 8-minute blank-field LABOCA
scan and reduced three different ways. Shown are a direct map (top left), produced with signal centering only, a map
with correlated sky removal (top center), and with additional band-cable decorrelation (top right) taking place before
the mapping step. The corresponding effective map rms values are 4.4, 0.012, and 0.011 Jy/beam respectively. Below
the maps are the normalized (see Sec. 5.9) residual pixel-to-pixel covariances after the reduction, for the 234 working
channels in the array, here with the diagonal 1 values zeroed. The left map preserves source structures on all scales, but
these would only be seen if are well in excess of the whopping ∼4 Jy/beam apparent noise level. As the covariance matrix
below it demonstrates the data has strong correlated signals across the full array (consistent with atmospheric noise),
at levels thousands of times above the detector white noise level. Note, that the larger scales are more severely affected
in the map. After removal of the atmospheric noise, the image (top center) no longer contains scales >FoV (∼11’), but
the noise level drops over two orders of magnitude and the faint inserted source becomes visible. However, the noise
is clearly structured and the block-diagonal patterns seen in the covariance matrix below reveal a significant (20–30%
over white noise) correlations within each of the 12 flexible band cables. When these are also modeled prior to the
map-making step, one is rewarded with an even cleaner image. At this point, the covariances outside of the decorrelated
cable blocks (bottom right) reveal no more correlated signals down to a few percent of the detector white noise levels.
However, with the decorrelation of the cables go the scales above the typical footprint of detectors sharing a cable (i.e.
>0.3–0.5 FoV). The missing row and column in the covariance matrix is due to a flagged channel in that reduction. The
negative covariances left behind by the estimation of correlated cable signals is a visual reminder of the degrees of freedom
lost in the modeling step.
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determined is one of the most important issues in astronomy.
Recent studies have suggested that the stellar IMF is well
related to the mass function (MF) of dense molecular cloud
cores (e.g., Ikeda et al. 2007), which are sites of star formation.
Therefore, detecting a number of cores in various star-forming
regions is needed in order to study the relation between the star-
forming activity and the MF or physical/dynamical conditions
of the cores. In this case, sensitive unbiased mapping observa-
tions of wide fields are required. In addition, OTF data are ideal
to be combined with interferometric data, since they preserve
spatial information in the (spatially) low-frequency regime,
which is lost via interferometric observations. Thus, the fidelity
of high-resolution images of, e.g., molecular cloud cores or
external galaxies, taken with interferometers are significantly
improved by being combined with OTF data. The fidelity
(preserving the total flux) is essential to various kinds of
studies. For instance, in order to investigate the evolution of the
interstellar medium [formation and destruction of giant molec-
ular cloud associations (GMAs)] across spiral arms in external
galaxies, it is required to detect not only GMAs, which are
spatially confined to spiral arms, but also diffuse emission in
interarm regions.

In order to make spectral line OTF observations avail-
able with the NRO 45-m and the ASTE 10-m telescopes,
various improvements have been applied to the control soft-
ware system, COSMOS-3 (Morita et al. 2003; Kamazaki et al.
2005), and related instruments. In particular, fast and synchro-
nized control of instruments and the handling of a huge amount
of data are difficulties, as discussed later. The way to determine
the optimal observing parameters is also complicated.

In this paper we report practical information and imple-
mentation of the OTF observing mode for the telescopes.
Basic concepts and parameters of OTF observations are intro-
duced in section 2, followed by a brief description on controls
of related instruments in section 3. Requirements on the
observing parameters, procedures to estimate sensitivity, and
how to maximize the observing efficiency are explained in
section 4. We describe the data-reduction process in section 5.
The desired characteristics of convolution functions to regrid
the data onto a map are discussed, and some appropriate func-
tions are shown. In section 6 we describe measurements of
the driving performance of the antennas, a comparison with a
PSW map, and a verification of the frequency-switch observing
mode.

2. Basic Observing Process and Parameters

An OTF scan pattern is schematically illustrated in figure 1.
A constant-speed raster scan with a single-beam receiver is
assumed. Like the usual PSW observations, the standard
“chopper-wheel” technique (Penzias & Burrus 1973; Ulich
& Haas 1976) is employed to calibrate the antenna temper-
ature, T !

A, in which the atmospheric and antenna losses are
corrected. For the chopper-wheel calibration, a hot load (R)
at the ambient temperature and blank sky (SKY) are observed
during an observation at an appropriate interval. Data at an
emission-free reference position (OFF) are taken before every
on-source scan (ON, hereafter simply “scan”) or set of several
scans. The OFF is usually taken by pointing the antenna

Fig. 1. Example of a scan pattern of OTF observations. The gray rect-
angle is a region to be mapped with a set of horizontal scans. The case
of N SEQ

scan = 2 (an OFF is inserted before every 2 ON scans) is shown.

outside the source. However, it can also be taken by shifting
the observing frequency (see subsubsection 3.4.2).

During a scan, the antenna is driven at a constant speed
(vscan) on the sky, and the data are “dumped” from the spec-
trometer at an interval of tdump. The “approach-run” at a speed
vscan is inserted before every scan so as to let the antenna move
stably during the scan. If there is no OFF between two scans,
a “transit-run” (from the end point of the scan to the start point
of the next approach-run) is inserted.

We set the fundamental parameters as follows (see figure 1).
In section 4 we discuss how to determine them. The dimen-
sions of the mapping area are l1 " l2 (l1 along the scan, l2 across
the scan). The scan speed of the antenna on the sky is vscan.
The times to be taken in an approach-run, a main (on-source)
scan, and a transit-run are tapp, tscan = l1=vscan, and ttran,
respectively. The separation between the scan rows is !l , the
number of scans taken between a pair of OFFs is N SEQ

scan , and
the grid spacing of a map to be made is d . The time to be taken
to slew the antenna between the mapped region and the OFF
position is tOFF

tran . The parameters tapp, ttran, and tOFF
tran depend

on the performance of the antenna, the scan speed vscan, the
position on the sky, etc., and are typically in the range of a few
to 10 s. Measurements of the performance of the antenna are
described in subsection 6.1. The time interval between each
dump from the spectrometer is tdump.

3. Control of Related Instruments

In OTF, spectral data are dumped in a short interval
(# 0:1 s), while the antenna is continuously driven across the
sky. Consequently, the following difficulties arise:

Antenna. The antenna should be smoothly driven on a scan
path. The sky coordinates, toward which the antenna is
pointed, have to be recorded for each data dump.

Spectrometer. Data dump is done at short intervals, and must
be synchronized with the antenna driving.

Local oscillator. Doppler corrections of the telescope with
respect to a rest frame and the frequency switch (FSW)
are difficult to be implemented in a conventional way,
since exceedingly rapid control of the frequency is
required.

Data production and storage. A high data production rate,
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data are not correctly ignored by the algorithm, they will have a
large effect on the extracted eigenvectors.

Figure 4 shows the results of applying classic PCA and
weighted EMPCA to these data. Upper left: Classic PCA ap-
plied to the noiseless data recovers the input eigenvectors,
slightly rotated to form the best ranked eigenvectors for describ-
ing the data variance. Upper right: EMPCA applied to the same
noiseless data recovers the same input eigenvectors.Middle left:
When classic PCA is applied to the noisy data, the highest order
eigenvector is dominated by the noise, and the effects of the
non-uniform noise are clearly evident as increased noise from
½0; π=2". Middle right: Weighted EMPCA is much more robust
to the noisy data, extracting results close to the original eigen-
vectors. The highest order eigenvector is still affected by the
noise, which is a reflection that the noise does contribute power
to the data variance. However, the extra-noisy region from
½0; π=2" is not affected more than the region from ½π=2; 2π"

due to the proper deweighting of the noisy data. Lower left:
Smoothed, weighted EMPCA is almost completely effective
at extracting the original eigenvectors with minimal impact from
the noise. Lower right: Even when 10% of every observation is
missing, smoothed, weighted EMPCA is effective at extracting
the underlying eigenvectors. All eigenvectors for all methods
are orthogonal at the level of Oð10$17Þ.

7.2. QSO Data

Figure 5 shows the results of applying classic PCA and
weighted EMPCA to QSO spectra from the SDSS Data Release
7 (Abazajian et al. 2009), using the QSO redshift catalog of
Hewett & Wild (2010). Five hundred spectra of QSOs with
redshift 2:0 < z < 2:1 were randomly selected and trimmed
to 1340 < λ < 1620 Å to show the Si IV and C IV emission
features. Spectra with more than half of the pixels masked
were discarded. Each spectrum was normalized to median
[fluxð1440 < λ < 1500 ÅÞ" ¼ 1 and the weighted mean of
all normalized spectra was subtracted. The left panel of Figure 5
plots examples of high, median, and low signal-to-noise spectra
and a broad absorption line (BAL) QSO from this sample.
Approximately 2% of the spectral bins have been flagged with
a bad-data mask, e.g., due to cosmic rays, poor sky subtraction,
or the presence of non-QSO narrow absorption features from the
intergalactic medium. These are treated as missing data with
weight ¼ 0. The goal of weighted EMPCA is to deweight prop-
erly the noisy spectra such that the resulting eigenvectors are pre-
dominantly describing the underlying signal variations and not
just measurement noise. Weights are 1=σ2

ij where σij is the SDSS
pipeline estimated measurement noise for wavelength bin i of

FIG. 3.—Example of noisy data used to test weighted EMPCA. See the elec-
tronic edition of the PASP for a color version of this figure.

FIG. 4.—Examples of classic PCA and EMPCA applied to noiseless, noisy,
and missing data. See the electronic edition of the PASP for a color version of
this figure.

FIG. 5.—Example of high-, median-, and low signal-to-noise (S/N) input QSO
spectra and a BAL QSO (left). The first three classic PCA eigenvectors are
shown at top right; the first three weighted EMPCA eigenvectors are shown
at bottom right. See the electronic edition of the PASP for a color version of
this figure.
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