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Abstract

The anomalous microwave emission (AME) still lacks a conclusive explanation. This excess of

emission, roughly between 10 and 50 GHz, tends to defy attempts to explain it as synchrotron

or free-free emission. The overlap with frequencies important for cosmic microwae background

explorations, combined with a strong correlation with interstellar dust, drive cross-disciplinary

collaboration between interstellar medium and obervational cosmology. The apparent relation-

ship with dust has prompted a “spinning dust” hypothesis: electric dipole emission by rapidly

rotating, small dust grains. Magnetic dipole emission by grains with magnetic inclusions (“mag-

netic dust”), while less suppported, has not been ruled out. Even assuming a spinning dust

scenario, we are far from concluding which category of dust contributes. The typical peak

frequency range of the AME profile implicates grains on the order of 1nm. This points to

polycyclic aromatic hydrocarbon molecules (PAHs). We use data from the AKARI/Infrared

Camera (IRC; Onaka et al. (2007)), due to its thorough PAH-band coverage, to compare AME

from the Planck Collaboration et al. (2016b). astrophysical component separation product)

with infrared dust emission. We look also at infrared dust emission from other mid IR and far-

IR bands. The results and discussion contained here apply to an angular scale of approximately

1◦. In general, our results support an AME-from-dust hypothesis. We look both at λ Orio-

nis, a region highlighted for strong AME, and find that certainly dust mass correlates with

AME, and that PAH-related emission in the AKARI/IRC 9 µm band may correlate slightly

more strongly. These results are compared to an all-sky analysis, where we find that potential

microwave emission component separation imperfections among other issues, make an all-sky,

delocalized comparsion very challenging. In any case the AME-to-dust correlation persists

even in the all-sky case, but tests of relative variations from different dust SED components

are largely inconclusive. We emphasize that future efforts to understand AME should focus

on individual regions, and a detailed comparsion of the PAH features with the variation of the

AME SED. Further all-sky analyses seem unlikely to help resolve this issue. Non-PAH carriers

vii
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of the AME, such as nanosilicates, cannot be ruled out either.
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Chapter 1

Introduction

“It is now plain that about 75% of the data we would like to have can be obtained from

good ground-based sites”

-H. Johnson, 1966

1.1 All-sky Astronomy

All-sky astronomy is not new. Indeed, the notion of capturing a particular “object” or “source”

with a camera and saving it for later investigation would be completely alien to the first as-

tronomers and astronavigators. Absence of telescopes forced us to describe the sky in terms

of its larger patterns, brightest characters. What is new however is the notion of preparing an

archive of the sky itself for not only the research whims of a single investigator, team, institute,

or even a single nation— rather, all-sky surveys tend to be international endeavors in their

production, and even more so in their utilization.

1.2 Infrared astronomy

Infrared astronomy was essentially non-existant as recently as the 1920s, if we judge by the first

IR observations (Pettit & Nicholson 1922, 1928). Mainstream IR astronomy is perhaps much

younger, only really taking off — literally — in the post-war era, via ballon and rocket borne

experiments (Johnson 1966). Compare this to visible wavelengths, a field so old we name it

after the bio-evolutionary advent of sight, itself. Even radio astronomy with its own logistical

and technological challenges, has been around since at least 1932.

Astronomers have not been content to be constrained by atmospheric IR windows, even

2
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Table 1.1 Timeline of all-sky surveys

1983 • IRAS Neugebauer et al. (1984)
1989 • COBE Boggess et al. (1992)
1990 • ROSAT Truemper (1982)
2001 • WMAP Bennett et al. (2003b)
2003 • 2MASS Skrutskie et al. (2006)
2003 • GALEX Martin et al. (2005)
2006 • AKARI Murakami et al. (2007)
2008 • Fermi Atwood et al. (2009)
2009 • Planck Planck Collaboration et al. (2011a)
2009 • WISE Wright et al. (2010)

from the best of ground-based sites. Or perhaps interests have shifted so dramatically since

1966, that all of the investigations enabled by rocket-based, space-based, even Boeing 747-based

IR astronomy (e.g. SOFIA, the Stratospheric Observatory for Inrared Astornomy,Young et al.

(2012)) would have bored 75% of astronomers in the ’60s. The meaning of “far infrared” has

even redshifted, so to speak, from the Johnson (1966) definition of “4 to 22 µm” — consider

the “Far Infrared Surveyor” instrument onboard the AKARI satellite (Murakami et al. 2007),

which observed from 50 to 180 µm (Kawada et al. 2007a)

For our purposes, we consider the far infrared (FIR) to cover 60 to 550 µm, partially out

of convenience- FIR bands, in this paper, means the Infrared Astronomical Satellite (IRAS) 60

and 100 µm (Neugebauer et al. 1984), all four FIS bands, and the Planck Observatory’s High

Frequency Instrument (HFI) 857 GHz and 545 GHz bands (Planck Collaboration et al. 2011a,

2014b). The two AKARI IRC (Onaka et al. 2007; Ishihara et al. 2010) bands and the IRAS 12

and 25 µm bands we will refer to collectively as the MIR bands.

1.3 Multi-wavelength investigations

The ability to map and archive the sky with satellites – not only in the optical and infrared,

but well into the microwave regime – has enabled interdisciplinary research of the interstellar

medium (ISM). The ISM pervades the galaxy and either surrounds or intervenes basically any

object one may wish to study. The ISM is enriched as matter is processed and flows back into

space. We can describe the ISM as a mixture of gas and dust. An early estimate by Knapp &
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Kerr (1974) puts the mass of dust in the galaxy at about 1% that of interstellar gas.

A wealth of data is now available not only in the IR, but on into the sub-millimeter range

and the interpretation of this data has become a serious priority. This is especially true for the

last ten years as new, much higher resolution surveys have been carried out such as the Spitzer

Space Telescope (SST) Werner et al. (2004), Herschel Space Observatory (Herschel) (Pilbratt

et al. 2010) by National Aeronautics and Space Administration (NASA) and the European

Space Agency (ESA) respectively, and the AKARI telescope (Murakami et al. 2007), by JAXA.

AKARI especially, produced a wealth of data spanning the entire sky. It was equipped with

IRC (Onaka et al. 2007) to study the MIR, and FIS (Kawada et al. 2007b) to study cooler dust

and gas, and conduct spectroscopy in the FIR via its Fourier Transform Spectrometer (FTS).

In this thesis we use these AKARI surveys in a comparison with other cutting edge all-sky

maps from the Planck Observatory in a multi-wavelength study of yet another part of the ISM

puzzle, the AME and its connection to interstellar dust.

The merits of multiwavelength based investigations arise from the simple fact that the ISM

is very complex— both in terms of the myriad forms of matter present, from plasmas to dust

grains — and in countless physical processes at play. Consider the complex case of a supernova

remnant influencing surrounding ISM: through a combined analysis of radio, mid-far infrared,

and X-ray data, Lau et al. (2015) were able to characterize the history of dust production,

heating, and destruction within the Sgr A East supernova remnant.

1.4 Interstellar Dust

The study of interstellar dust has been connected to mainstream astrophysics research, and

recognized as an integral player in the evolution of the interstellar medium. This has been

shown by early sounding rocket experiments (Wolstencroft & Rose 1967; Soifer et al. 1971),

and balloon experiments (Muehlner & Weiss 1970; Emerson et al. 1973), and dust has been

more profoundly exposed by the advent of all-sky infrared surveys like the Cosmic Background

Explorer (COBE)’s Diffuse Infrared Background Experiment (DIRBE) (Sodroski et al. 1994)

and IRAS (Neugebauer et al. 1984). With space-borne long-term IR mapping finally available

on an all-sky scale, we could move past the interplanetary medium and into the interstellar.

The role of dust in the interstellar medium has expanded beyond simply an intervening,
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stellar light obstructing material. Theoretical models and observations have shown that dust

grains act as a catalyst for the formation of molecular hydrogen and other molecules, providing

a substrate upon which hydrogen and other atoms can meet (Iglesias 1977; Burke & Hollenbach

1983). With infrared observations we are able to study dust directly via its vibrational emission,

rather than relying only on inference from visible reddening and polarization effects (Davis &

Greenstein 1951; Platt 1956; Carrasco et al. 1973). The question of the composition of dust

has grown from a single thread of investigation into a network of questions. Many pieces in

this dusty puzzle are missing. For example, the presence of dust grains containing silicates,

and amorphous carbon is very strongly supported by comparisons of infrared spectroscopy with

laboratory studies (Hagen et al. 1979; Joblin et al. 2009). But many questions remain about

which silicate and carbonaceous species may be present, and in what proportions, and in what

distribution of sizes. The question also remains, is there more to dust than simply carbonaceous

and silicate grains? The exact size distribution of dust grains is also an open question. The

composition of extremely small grains / large molecules is a particularly challenging mystery,

as well as the role of interstellar ices in the evolution dust and gas.

1.4.1 Silicate grains

One of the first materials proposed to exist as interstellar dust were silicates, with the first

evidence being UV absorption features (Knacke et al. 1969). More recently, specific species of

silicates are being identified via absorption spectroscopy (Olofsson et al. 2012). However some

doubt has been cast recently on the structure of the grains. For example, in Jones et al. (2013)

and Jones (2014) an updated model is proposed wherein dust grains may be composed of a

mixture of silicate and amorphous carbon material, such as a silicate core with an amorphous

carbon envelope, representing the first comprehensive model of continuous grain evolution. In

other words, the first model to consider dust grain morphology beyond the descrete categories

of silicate grains, carbonaceous grains, and PAH. An additional feature of this model is that

silicates having iron inclusions are expected, which would be similar to the Fe form of olivine.

This is an update from the conventional “astronomical silicates" assumed in earlier dust SED

models such as Li & Draine (2001) or Compiègne et al. (2011).
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1.4.2 Carbonaceous grains

As with silicates, the existance well-established that carbonaceous material, primarily amor-

phous carbon, exists in the ISM (Aitken 1981; Tielens & Allamandola 1987). This is material

commonly called “soot" or the fuel we know on earth as coal. Some non-amorphous carbona-

ceous material is also speculated to exist, such as graphite (Zhou et al. 2006) or “buckyonions"

(concentric-shell-graphite) (Li et al. 2008).

1.4.3 Polycyclic Aromatic Hydrocarbons and the Unidentified In-

frared Bands

From the mid-to-near IR however, spectroscopic observations enabled and required the simple

two-populations model of larger and smaller dust (e.g. Mathis et al. (1977)), to be expanded.

“Unidentified IR bands” from 3 to 11 µm (hereafter, UIR bands), demonstrate another diver-

gence from the canonical dust emission story. The UIR bands were first reported at 8 to 13 µm

in planetary nebulae and HII regions by Gillett et al. (1973, 1975) in ground-based observations.

Observations by Merrill et al. (1975) noted another unexplained feature at 3.27 µm, noting:

“there are [...] similarities in the 8-13 µm spectra of NGC 253, NGC 7027, and BD +30◦3639

Gillett et al. (1975)”. Features at 6.2 and 7.7 µm were reported by Russell et al. (1977) using

the first airplane-mounted IR telescope and predecessor to SOFIA, the Kuiper Airborne Ob-

servatory. Sellgren et al. (1983) reported features at 3.3 and 3.4 µm being detected in reflection

nebulae.

Moving into the 1990s, the UIR bands become much less of property of select objects in tar-

geted observations, are seen observed throughout the Milky Way. Balloon-based observation by

Giard et al. (1994) confirmed that the 3.3 µm feature pervades throughout the Galactic plane.

The first-ever airborne IR observatory, Kuiper Several years later, space-based spectroscopy

with the Infrared Telescope in Space (IRTS)(Murakami et al. 1996) and Infrared Space Obser-

vatory (ISO)(Kessler et al. 1996) enabled confirmation by Onaka et al. (1996) and Mattila et al.

(1996) that the mid-infrared UIR features are not limited to a few objects, but are present even

in the diffuse galactic ISM. Dwek et al. (1997) even reported that photometric excess in the

COBE/DIRBE 12 µm band may be caused by the UIR bands, in and suggested they may be

from these UIR features have come to be explained via PAH, a possibility which had been con-
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sidered earlier by Allamandola et al. (1985); Puget et al. (1985). PAHs are a class of molecules

composed primarily of fused carbon rings such as corranulene. PAHs and/or similar amalgems

containing aromatic structures (e.g. quenched carbonaceous composites (QCCs), Sakata et al.

(1984)) have been incorporated into dust mixture SED models over the last two decades (Draine

& Li 2001, 2007a; Hony et al. 2001; Compiègne et al. 2011; Galliano et al. 2011; Jones et al.

2013, 2017).

With the appearance of high powered computers with an ability to perform rigorous calcu-

lations, many attempts have been made to simulate the expected emission from PAHs. Density

functional theory (DFT) (Hohenberg & Kohn 1964) has become available as a tool for simu-

lating molecular emission features using a quantum approach. DFT calculations has become a

subfield of ISM astrophysics. Many attempts are being made to fit particular emission features

of PAHs, and other molecular and grain species, to observed ISM features (Hammonds et al.

2009; Hirata et al. 1999). While it is difficult to reproduce the exact interstellar conditions in

a laboratory setting, DFT simulations have yielded some evidence that the UIR bands can be

explained as PAH vibrational emission features (Pathak & Rastogi 2005; Ricca et al. 2011; Yu

& Nyman 2012).

“PAH” or “UIR”? We should note however that PAHs are not the only proposed expla-

nation for the UIR features, despite being the most widely accepted. Zhang & Kwok (2014)

propsed theoretically that mixtures of non-PAH carbonaceous and silicate spectra could also

fit theoretically calculated PAH emission features. However the PAH-UIR hypothesis is still

widely supported (Tielens 2008; Rastogi et al. 2013). The way that PAHs might be produced

or evolve from other species is not understood however. Though there are efforts underway to

model potential formation pathways. As far as the evolution of larger aromatics form smaller

PAHs, there is one proposed pathway wherein a benzene could grow into a larger aromatic

molecule such as naphthalene (Ghesquière et al. 2014). In any case, the terms “PAH features”

and “UIRs” are too often used interchangably in the literature. In the following sections, we

will define PAHs as the general class of aromatic-ring-containing molecules, and not explicitly

to “pure” PAH species such as benzene, corronene, or corranulene, etc. From this point we will

also abandon the term “UIRs”, and use “PAH features” instead. We do so while acknowledging

that interstellar PAHs is by no means a closed book.

7



CHAPTER 1. INTRODUCTION

1.4.4 Metrics of Interstellar Dust

Carefully describing or parameterizing the SED of interstellar dust emission can be somewhat

involved. Over the years a few conventions have arisen, when referring to dust SED properties.

Interstellar Radiation Field U Throughout this work we will discuss the ISRF in terms

of U , which is a conventional measure normalized to the ISRF of the solar neighborhood. In

otherwords, a U of 1 indicates a “Habing unit”, or 1.6 × 10−3ergs−1cm−2, a value given by

Habing (1968). More correctly, U is referring to the integration of the ISRF flux density from

the far-UV to the nearIR, or λ = 0.09 to λ = 0.8 . The ISRF is sometimes indicated in the

literature as G0, instead of U , when integrated only from ~0.09 µm to 0.2µm. As long as we are

assuming a spatially constant SED for the ISRF, it is not so important which one we use, and

does not affect the results or discusison in this thesis. U will be used in the following chapters,

except when referring to previous works which used G0.

Total dust abundance This is the total mass of all dust components contributing to the

observed SED. It is often indicated either as the dust massMdust, in units ofM�, as in Galliano

et al. (2008). The dust abundance can be determined when both the luminosity of the dust,

and the local interstellar radiation field heating the dust, U are known, as in the following

relation:

Mdust ∝ Ldust/U (1.4.1)

Some caution must be excercised, as Mdust may sometimes indicated only the mass of dust

which is emitting thermall, in the FIR, excluding VSGs or PAHs. Throughout this thesis

however, we consider that Mdust includes emisison from both the thermal equilibirum grains,

and small stochastically emitting dust and PAHs.

PAH Fraction qPAH qPAH, sometimes indicated as χPAH , is defined as the fraction of

the total dust mass which is in the form of PAHs, or:

qPAH = MPAH

Mdust

(1.4.2)
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This parameter can be especially difficult to fit, relative to the total dust mass, for the reason

that there a many more all-sky photometric data points in the far infrared, where thermal

emission from dust grains dominates. In the mid infrared, where PAH features are observed,

we have fewer observational constraints on an all-sky basis. This is discussed further in Ch. 2.

PAH Ionization Fraction fPAH fPAH tells us the fraction of the total PAH mass which

are ionized. Thus:

fPAH = MPAHion

MPAH

(1.4.3)

1.5 Microwave foregrounds

Moving on from the infrared dust SED, into the Rayleigh-Jeans regime of thermal dust emis-

sion, multi-wavelength observations have opened up a new discipline: the disentagnlement of

interstellar dust emission from non-dust emission components. Most notably, separating tem-

perature fluctuations in the cosmic microwae background (CMB) from the microwave extent of

thermal dust emission. Those studying the Milky Way itself, from the far IR into microwave

and radio frequencies, are now collaborating closely with those interested in the precise nature

of the CMB.

Much of the motivation between recent galactic microwave emission research has little to

do with galactic ISM astronomy itself. Rather, our galaxy presents an inconvenience to ob-

servational cosmology in that it ’contaminates’ observations of the CMB. The avereage SED

of the CMB is simple enough to model, with a 2.725 K blackbody function. This tempera-

ture however means that the peak occurs between several microwave foreground components,

from interstellar dust and gas, as displayed in Fig. 1.1. The difficulty of decomposing the mi-

crowave sky into galactic ISM, extragalactic, and CMB temperature fluctuation components

has brought the detailed decomposition of the microwave-radio regime of ISM to the forefront of

Planck Collaboration paper titles (Planck Collaboration et al. 2011a, 2014a, 2016a). Without

extragalactic research, there would be no need for the word “foreground” in describing galactic

microwave emission.

The ISM has intruded into cosmological studies perhaps most prominently with the first

claimed detection of B-mode polarization (Hanson et al. 2013; BICEP2 Collaboration et al.

2014; Flauger et al. 2014), and multiple response papers. The main consensus being that the
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validation of CMB-related claims require a careful estimate of the contribution, in intensity and

polarization, from interstellar dust and the subsequent counter-claim that this detection arose

from galactic dust(Planck Collaboration et al. 2017; Sheehy & Slosar 2017). More recently AMI

Consortium et al. (2012) had noted a peculiar Sunyaev-Zeldovich effect based galaxy cluster

detection, AMI-CL J0300+2613. Perrott et al. (2018) have since proposed that this may in

fact arise from high galactic latitude dust via AME.

1.6 Anomalous Microwave Emission

In our efforts to decompose and understand galactic microwave emission itself, there remains a

constant antagonist. Galactic foregrounds had been broken down into 3 dominant components:

free-free emission from ionized regions, synchrotron emission generated by relativistic electrons

moving around the Milky Way’s magnetic field, and the microwave extent of thermal dust

emission (Bennett et al. 2003a; Leach et al. 2008; Planck Collaboration et al. 2014c). Devia-

tions from this understanding began to appear in the early 1990s, with efforts by Kogut et al.

(1996); Leitch et al. (1997) to carefully investigate the CMB. They had found a component of

the microwave sky which implied unlikely spectral indices for free-free or synchrotron emission.

AME generally takes the form of an ’excess’ continnuum emission source, having a peak some-

where between 10 to 40 GHz (see Fig. 1.1). This excess defies predictions for known microwave

emission mechansisms. AME still lacks a concrete physical explanation. Also, the term itself

can be a bit confusing, as the word “anomalous” tends to imply localized outlier. The AME is

shown to be more than an isolated anomaly, but an added component of microwave emission

appearing throughout the galaxy (de Oliveira-Costa et al. 1997; Bennett et al. 2003a; Dickinson

et al. 2013). Fig 1.2 shows two prominent AME regions, ρ Ophiuchus and the Persues Molec-

ular Cloud investigated by Tibbs et al. (2011); Planck Collaboration et al. (2011b), as they

appear in AKARI/IRC 9µm all-sky map (Ishihara et al. 2010). In this section we will explain

that while there is indeed much mystery as to the exact mechanism(s) producing the AME,

what causes its spectral variations, and what might be its physical carrier(s) - it is by now,

perhaps less than anomalous. Following subsections will discuss the history of AME and the

produced physical explanations, as well comparisons between the AME and infarred emission

from interstellar dust.
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Figure 1.1: An example of a potential makeup of microwave emission components. Photometry
points are extracted from the Planck and WMAP all-sky maps (Planck Collaboration et al.
2014b), for a part of the region well-known for prominant AME, ρ Ophiuchus (Planck Col-
laboration et al. 2011b). The AME curve is produced from a warm neutral medium spinning
dust template (Ali-Haïmoud et al. 2009), with a frequency-shift applied to approximately fit
the microwave data in Planck Collaboration et al. (2016b)
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Figure 1.2: Two AME prominent regions investigated by Planck Collaboration et al. (2011b);
Tibbs et al. (2011), ρ Ophiuchus and Perseus, as they appear in the PAH-feature-tracing
AKARI/IRC 9µm all-sky data at native resolution (Ishihara et al. 2010). White contours show
AME at 1◦ resolution, extracted from the map by Planck Collaboration et al. (2016b). The IRC
data shown here is of a much finer resolution than the AME data, at around 10”, demonstrating
the critical gap in resolvability of all-sky AME-tracing data itself vs. the IR dust tracers we
hope to compare it to.
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1.6.1 Correlation with dust

Since its first detection in early microwave observations, AME has been found to be a widespread

feature of the microwave Milky Way (see the review Dickinson et al. (2013), and an updated

state-of-play of AME research by Dickinson et al. (2018). Kogut et al. (1996); de Oliveira-Costa

et al. (1997) showed that the AME correlates very well with infrared emission from dust, via

COBE/DIRBE and IRAS FIR. Finkbeiner et al. (2002) reported the first detection of a “rising

spectrum source at 8 to 10 GHz” in an observation targeting galactic ISM cloud. de Oliveira-

Costa et al. (2002) furher argued that this emission is in fact “ubiquitous”. The exact mechanism

and carrier/s remain mysterious however. More recent works, employing observations by the

Wilkinson Microwave Anisotropy Probe (WMAP), SST, the latest infrared (IR) to microwave

all-sky maps by Planck, and various ground based radio observations have strongly confirmed a

relationship between interstellar dust emission and AME (Ysard & Verstraete 2010; Tibbs et al.

2011; Hensley et al. 2016). Exactly which physical mechanisms produces the AME however is

still an open question, even if we assume a dusty AME origin. We equally puzzled as to the

chemical composition and morphology of the carrier(s). We also lack an all-sky constraint on

the emissivity of the AME spectrum at frequencies short of the WMAP cut-off, around 23 GHz.

The typical peak frequency of AME, in those cases where it is constrained, does give us a clue.

1.6.2 Proposed explanations

From the observed spatial correlation between AME and dust emerged two prevailing hypothe-

ses:

1) Electric dipole emission by spinning small dust grains, a mechanism proposed in Erickson

(1957) and Hoyle & Wickramasinghe (1970), with further discussion in Ferrara & Dettmar

(1994). Draine & Lazarian (1998b) give the earliest thorough theoretical prediction of a spinning

dust spectrum. A decade later Ali-Haïmoud et al. (2009) contributed substantial updates,

expanded modeling of grain excitation mechanisms and adoption of an updated grain size

distribution by Weingartner & Draine (2001). Ysard & Verstraete (2010) introduced the first

model of a spinning dust spectrum based on rotational emission from PAH, which are implicated

due to their size. Draine & Lazarian (1998b), gives the expected rotational frequency of spinning
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dust oscillators ω, as follows:

ωT
2π = 〈ν2〉1/2 ≈ 5.60× 109a

−5/2
−7 ξ−1/2T

1/2
2 Hz, (1.6.1)

where T is the gas temperature, a is the grain size, and ξ represents the deviation from a

spherical moment of intertia. For example, we can take a typical peak frequency of the AME

of ~20 GHz, a gas temperature of 100 K, roughly spherical grains, and a dipole moment on the

order of 1 debye, and get:

ωT
2π = 20 GHz( T

100K )1/2( ρ

3gcm03 )−1/2( a
5Å

)−5/2 (1.6.2)

implying an oscillator size of approximately 1 nm. Thus PAHs, as considered by Ysard &

Verstraete (2010), are a primary candidate spinning dust carrier, due to their expected size

range.

2) Magnetic dipole emission, caused by thermal fluctuations in grains with magnetic inclu-

sions, proposed by Draine & Lazarian (1999). More recently, modeled spectra for potential

candidate carriers have appeared in the literature: PAHs, grains with magnetic inclusions

(Draine & Hensley 2013; Ali-Haïmoud 2014; Hoang et al. 2016).

3) Though not widely accepted, another possible explanation for AME is discussed in Jones

(2009). They have suggested that the emissivity of dust, in the spectral range related to AME,

could contain features caused by low temperature solid-state structural transitions.

1.6.3 Spinning dust

Spinning dust need not be the only emission mechanism, a convention as arisen in AME obser-

vational works. The photometric signature of the AME is frequently interepreted via spinning

dust parameters (Ysard et al. 2011; Ali-Haimoud 2010). Archival all-sky AME data products

exclusively assume a spinning dust SED templates. Both WMAP and Planck used a base tem-

plate with 30 GHz peak frequency, and an assumed cold neutral medium environment. Using

the “spdust” spinning dust SED model code to fit excess microwave foreground emission has

become analagous fitting a modified blackbody function to the FIR.

We explore the case that the AME signature arises from spinning dust emission. If the

AME is carried by spinning dust, the carrier should be small enough that it can be rotationally
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excited to frequencies in the range of 10-40 GHz, and must have a permanent electric dipole.

Within contemporary dust SED models, only the PAH family of molecules, or nanoscale amor-

phous carbon dust fit these criteria. Those PAHs which have a permanent electric dipole (i.e.

coranulene, but not symmetric molecules like coronene), can emit rotationally. However the

carrier need not be carbon-based.

1.6.4 Spinning PAHs?

Assuming the rotational emission model of Draine & Lazarian (1998b), the AME signature

(consistent with peaked, continuum emission having a peak between 15 and 50 GHz ) implies

very small oscillators (~1 nm).

In any case, the PAH class of molecules are the only spinning dust candidate so far which

show both:

1) Evidence of abundance in the ISM at IR wavelengths, and

2) A predicted range of dipole moments (on order of 1 debye), to produce the observed AME

signature (Draine & Lazarian 1998b; Lovas et al. 2005; Thorwirth et al. 2007).

However, it should be noted that although nanosilicates have not yet been detected in the

ISM, Hensley & Draine (2017) propose that an upper bound on the abundance of nanosilicates

by Li & Draine (2001) (based on Infrared Telescope in Space (IRTS) observations by Onaka

et al. (1996)), allow such small spinning grains to be composed primarily of silicates. This

followed an earlier claim by Hensley et al. (2016) that the absence of a conclusive PAH-AME

link suggested the possibility of AME-from-nanosilicates.

While neither nanosilicates nor any particular species of PAHs have been conclusively iden-

tified in the ISM, there is far more empiracal evidence for PAH-like dust than for nanosilicates.

Mid-infrared features associated with PAH-like aromatic materials have been observed. In fact,

“the PAH features” are ubiquitous in the ISM (Giard et al. 1994; Onaka et al. 1996; Onaka

2000), such that the carriers must be abundant. Andrews et al. (2015) strongly argue for the

existence of a dominant “grandPAH” class, containing 20 to 30 PAH species.

1.6.5 Excitation factors

In the spinning dust model, there are several possible excitation factors for spinning dust.

For the grains to have rotational velocities high enough to create the observed AME, they
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must be subject to strong excitation mechansisms. The dominant factors that would be giving

grains their spin, are broken down by Draine (2011) into basically two categories: 1) Collisional

excitation. 2) Radiative excitation, the sum of which could lead to sufficient rotational velocities

for sufficiently small grains. However the extent of excitation will depend on environmental

conditions, i.e. there will be more frequent encounters with ions and atoms in denser regions

(so long as the density is not high enough to coagulate the small grains), and more excitation

due to photon emission with increasing ISRF strength (Ali-Haïmoud et al. 2009; Ali-Haïmoud

2014). One of the strongest potential excitation mechansims listed in Draine (2011) is that of

negatively charged grains interacting with ions. Thus not only must we consider environmental

factors, grain composition and size, but also the ionization state of the carriers. (For example,

ionized vs. neutral PAHs.) The dependence of the observed AME on ISM density is modeled

by Ali-Haimoud (2010).

1.6.6 AME vs. IR in the literature

The overall pattern among large-scale studies seems to show that all of the dust-tracing photo-

metric bands correlate with the AME (and each other) to first-order. On an all-sky, pixel-by-

pixel basis, at 1◦ angular resolution, Ysard et al. (2010) find that 12 µm emission, via IRAS,

correlates slightly more strongly with AME (via WMAP) than with 100 µm emission. They

also find that scaling the IR intensity by the ISRF improves both correlations. They interpret

this finding as evidence that AME is related to dust, and more closely related to the small

stochastically emitting dust — predominantly PAHs — that is traced by 12 µm emission. The

improvement of the correlations after scaling by U is expected, as long as the 12 µm band is

dominated by stochastic emisson from PAHs, in other words:

I12 µm ∝ UNPAH , (1.6.3)

where NPAH is the column density of emitting PAHs (Onaka 2000). Such a relationship is

expected, assuming that PAHs are small enough, and their heat capacities low enough, such

that their emission is indeed stochastic– a single UV photon is absorbed, immediately followed

by the emission of many IR photons. Under such conditions, a the radiation field would change

only the intensity of PAH features, and not affect the spectral shape. Thus Ysard et al. (2010)
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implies that I12 µm/U is giving us a measure of the column density of spinning dust.

In a similar work however Hensley et al. (2016) report a lack of support for the spinning

PAH hypothesis. Finding that fluctuations in the ratio of PAH-dominated 12 µm emission (via

Wide-field Infrared Survey Explorer (WISE)) to dust radiance, R, (via Planck) do not correlate

with the ratio of AME intensity to R, they conclude that the AME is not likely to come from

PAHs. In terms of emission intensity however, their findings are consistent with Ysard et al.

(2010) in that I12 µm correlates well with IAME. Thus there remains an open question as to

what the actual carrier of the AME is.

The story is no more clear when looking at the average properties of individual regions.

Planck Collaboration et al. (2014d) find that among 22 high-confidence “AME regions” (galactic

clouds such as the ρ Ophiuchus cloud and the Perseus molecular cloud complex) AME vs. 12 µm

shows a marginally weaker correlation than AME vs. 100 µm (via IRAS). Tibbs et al. (2011)

examined the AME-prominent Perseus Molecular Cloud complex, finding that while there is

no clear evidence of a PAH-AME correlation, they do find a slight correlation between AME

and U .

1.7 Statistical Methods

In the following chapters, various IR datasets and analysis comparing the AME to dust emission

will be described, along with a discussion of results testing the “AME from spinning PAHs”

hypothesis. Because this particular hypothesis is challenging to test, due to the first order cor-

relation of different constituents of interstellar matter, we apply variety of statistical techniques

to explore if PAHs show any better correlation with AME than other dust metrics. These meth-

ods range from standard correlation tests to less common techniques, like the bootstrap test,

and even relatively new approaches such as HB. It may be useful to go ahead and introduce

this methods from the outset.

1.7.1 Correlation tests

Pearson correlation coefficient rp is defined as follows:

ρX,Y = cov(X, Y )
σXσY

(1.7.1)
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where X and Y are the variables of interest, cov is the covariance between them. σX is the

standard deviation of X, and σY that of Y . To explain this conceptually, when we use rp, we

are essentially asking the question “How well can we represent these data as having a linear

trend?” This is important to remember, as rp is often confused as being simply a measure

of correlatedness. This is partly true, in that stronger rp scores indicate a better correlation.

However lower scores may simply be indicating that a trend is not linear, or even that a linear

trend is being overwheled by outliers or noise. For theses reasons, we will not use rp in the

following chapters. It is described here simply to aid in the understanding of its variant, the

Spearman’s rank correlation coefficient.

Spearman’s rank correlation coefficient rs can be thought of as a variation of rp, and in

fact depends on rp and can be written as follows:

rs = ρrgX ,rgY
= cov(rgX , rgY )

σrgX
σrgY

(1.7.2)

where we see that rp appears, but note that this is rp as it is applied to the “rank” of the

variables, indicated by rgY and rgX , and not the original values. Thus a sorting of the variables

is needed. cov is again the variance, and σ the standard deviation. The logic is similar to that

in rp, but the objective here is to test more generally for a monotonic relationship, not only

linear. As a simple example, a pure power-law relationship would return a perfect 1 score for rs,

but not for rp. Both tests would return 1 (or -1) for a purely linear relationship. Throughout

the following chapters, we will use rs.

Bootstrap analysis The “Bootstrap” test was first introduced by Efron (1979). The name

comes the notion of fact that, without using any external information, we estimate the variation

of a statistic directly from a population, “picking oneself up by one’s bootstraps”. Feigelson

& Babu (2013) gives an updated description of the Bootstrap test within an astronomical

context. The process involves creating N random re-samples of a population P0, where the

size of the re-samples nresamp equals the size norig of P0. This is carried out such that, when

a datapoint is selected from P0 and placed in the Nth re-sample Pi, it immediately becomes

eligible for re-slection. This is known as “resampling with replacement“. The effect is that,

within the re-sampled populations Pi, some of the original data may be omitted, while others
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may be over-represented. Ideally this process would be repeated for all of the re-sampling

permutations, or N = nPn. This quickly becomes computationally infeasible, and n ∗ log(n)

resamplings has become a conventional compromise, to sufficiently sample the distribution of

your statistic in a reasonable time. Bootstrap tests are often applied to the Spearman and

Pearson correlation tests, described above, to place an error estimate on correlation tests as

well as de-weight outliers. Such an approach is applied in Chs. 3 and 4 to assess the reliability

of Spearman scores between the AME and IR dust emission.

1.7.2 Optimization/Fitting Methods

Least-squares Method Ubiqutous throughout scientific and statistical literature, least-

squares method (LSM) is the conventional way by which dust SED models have been fit to

observational data, as in Tibbs et al. (2011). Essentially a minimization problem, the method

can be described mathematically as follows:

S =
i=n∑
i=1

r2
i (1.7.3)

where S, the quantity being minimized, is the sum of errors or “residuals” ri between the model

and the observational data.

Bayesian analysis Whearas in LSM we include no prior information regarding the likilihood

of various output parameters, there is a well established framework by which we can do so. The

implementation of Bayesian analysis, so far, has not been widespread in the study of interstellar

dust. The concept however is by no means new, first being described mathmatically in Bayes

& Price (1763). The central principle is known today as “Baye’s theorem”, given as:

P (A | B) = P (B | A)P (A)
P (B) (1.7.4)

where, in the context of event probabilities, P (A | B) is the chance that A will occur, given

B. Likewise, P (B | A), is the probability that B will occur, given A. P (A) and P (B) are

then the probability that either event would be observed, regardless of the other. In other

words, to compute the probability of two events being observed together, we must consider

the probability of them occuring independently. In practice, when we use Bayesian tecniques,
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what we are doing is building-in to our model some prior knowledge or expectation about

the distribution of our output parameters. In contrast, when we use LSM, we are implicitly

assuming that any output value is equally likely. In the Bayesian framework, we consider that

we always have some type of prior expectation of the output distribution, and that this must

be stated or selected up-front. This forms the foundation of a method implemented in Ch. 3

to fit the dust SED properties of λ Orionis, called HB.

Hierarchical Bayesian Analysis In Bayesian analysis, we are specifying a prior expectation

for our parameters up-front. The probability distribution that we use can significantly affect

our result. If we instead infer a prior distribution from the data itself, we may be able to

fine-tune the fitting process, and extract patterns that may not be readily revealed by standard

Bayesisn analysis or LSM. This technique is implented in Ch 3, revealing a trend between PAH

emission and the AME, forming the core result of this thesis. We will show also how the result

could not have been demonstrated via LSM. The major advantages of HB are as follows:

• Prior is inferred from the data

• Less vulnerable to local minima

• Avoids noise-induced correlations

• Robust error propagation

The major disadvantage however is that HB is relatively expensive, computationally, compared

to LSM. Also, in the case of only a single data source, we would not be able to build a prior

distribution function from the data.

1.8 Scope of this Dissertation

We attempt to add to the understanding of AME and the possibility of spinning dust emission.

With ample multiwavelength data now available, and a new PAH-focused all-sky survey in

preparation by AKARI, we further test the PAH hypothesis, and assess how the IR to AME

correlation changes as a function of wavelength. This thesis represents the first time that

AKARI IRC data, have been utilized for AME investigation. Moreover, Ch. 3 represents the

first time that AKARI data, and hierarchical Bayesian dust SED fitting respectively, have been
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used to investigate the λ Orionis region. The result of Ch. 3 is likewise unique in that it is the

first time a link between AME and PAHs has been demonstrated in λ Orionis, and the first

time that AME in any particular region has been shown to correlate better with PAH mass

than with the total dust mass. Chs. 3 and 4 both utilize a greater number of mid IR to sub-mm

photometric bands, than have ever been used for AME investigations. More specifically, this

work represents the first use of a photometric band covering the 6.2 µm C-C stretching PAH

feature, for a wide-scale galactic investigation.

1.8.1 An application of all-sky archival data

This is an astrophysical data archive based work. The primary goal is to highlight a particular

application of multiwavelength (mid-IR to radio), cross-archive all-sky data analysis. We de-

scribe the interrelatedness between mid to far IR dust emission and possible microwave emission

from dust. This is accomplished through an investigation of photometric all sky maps mainly

from AKARI, IRAS, Planck, and DIRBE.

1.8.2 Testing the spinning PAH hypothesis

For the present work, we consider the spinning PAH hypothesis to have the highest degree of

testability, due to the well-established presence of aromatic emisison features in the ISM. We

do not argue against the physical plausibility of nanosilicates to produce the AME. Indeed,

there is no argument to date that these potential physicalities are mutally exclusive, as long as

both potential carriers are sufficiently abundant. Nor does spinning dust emission theoretically

exclude magnetic dipole emission or microwave thermal dust emissivity fluctuations.

1.8.3 Limitations

We do not explore the modeling of microwave dust emission itself, rather we refer to estimates

of spinning dust emisison provided in the literature (Planck Collaboration et al. 2014c; Bennett

et al. 2003a) in the form of archival data and parameter maps. We consider this problem first

on an all-sky basis, not focusing on any pre-selected object of the sky — in order to assess

if there any general pattern between the IR and the AME, beyond the AME-dust correlation

already described above. We then focus on a region highlighted by the Planck Collaboration

as being especially worthy of further investigation (Planck Collaboration et al. 2016b), and
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has a resolvable topology even at 1◦ resolution. Essentially all of the analyses and conclusions

presented in this work apply to an angular scale of approximately 1◦, and only for the given

component separation methods (Solar system, galactic, extragalactic) used by each of the data

providers.

1.8.4 Code availability

Because this work is intended to contribute working examples for future students, in addition to

making a research contribution, this thesis is accompanied by a github repository (to be made

available upon acceptance of the thesis.) 1 Most of analyses code are available in that repository,

in the form of Jupyter notebooks. Most of the figures, and code used to generate them, are

also included. The hierarchical Bayes dust SED fitting code used in this work was developed

by Galliano (2018), and its implementation in this work was carried out in collaboration with

their group. The details of the code are described in Galliano (2018), and are not included in

the respository for this thesis.

1Available at: https://github.com/aaroncnb/CosmicDust.
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Chapter 2

Data Sources

2.1 A collection of skies

This work relies completely on all-sky surveys. All of the maps utilized are photometric-band

infrared maps, except for the AME data, which is an all-sky component separation analysis

product, from the Planck Collaboration’s efforts to separate galactic foregrounds from the

CMB. Table 2.1 summarizes the observational data used in this thesis. In total, we employ

Table 2.1: Observational data sources used in this article

Instrument Central FWHM Calibration Reference Dust SED
Wavelength Uncertainty Coverage

AKARI/IRC 9 µm ~10” <10% 1 6.2, 7.7, 8.6
and 11.2 µm PAH features

AKARI/IRC 18 µm ~10” <10% ” VSGs
AKARI/FIS 65 µm 63” <10% 2 VSGs, themal eq. grains
AKARI/FIS 90 µm 78” <10% ” themal eq. grains
AKARI/FIS 140 µm 88” <10% ” themal eq. grains
AKARI/FIS 160 µm 88” <10% ” themal eq. grains
COBE/DIRBE 160 µm 88” <10% ” themal eq. grains
IRAS/IRIS 12 µm 4.0′ <5.1% 3 8.6, 11.2, 12.7 µm PAH features
IRAS/IRIS 25 µm 4.0′ <15.1% ” VSGs
IRAS/IRIS 60 µm 4.2′ <10.4% ” VSGs, themal eq. grains
IRAS/IRIS 100 µm 4.5′ <13.5% ” themal eq. grains
Planck/HFI 345 µm 4.7′ 4 themal eq. grains
Planck/HFI 550 µm 4.3′ ” themal eq. grains

all-sky maps from 12 photometric bands, spanning the wavelength range of 6.9 µm to 550 µm
1Ishihara et al. (2010)
2Doi et al. (2015); Takita et al. (2015)
3Miville-Deschênes & Lagache (2005)
4Planck Collaboration et al. (2014b)
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Figure 2.1: Relative spectral response curves of the bands used in this study. Expected dust
emission components, assuming the dust SED model by (Compiègne et al. 2011) are also shown.
The components are summarized as emission from BGs ( dashed yellow line), emission from
VSGs dashed blue line), and emission from PAHs (dashed grey line).

as shown in Fig. 2.1. The following sections give the details of the observational data from each

instrument as well as of the parameter maps provided in Planck Collaboration et al. (2016b).5

From this point in the thesis, we will mostly use abbreviations to refer to the different bands,

as follows: ’A’ indicates AKARI; ’D’, DIRBE; ’I’, IRAS, and ’P’ Planck. The number after

each letter indicates the band central nominal wavelength in microns (or frequency in GHz, in

the case of the Planck bands.)

Table 2.2: Ancilliary data

Product Relevant Freq./Wavelen FWHM Reference/URL
Hα 658.5 nm 36′ 6

N(H) 21 cm 36′ 7

PC R (PR1) 353 GHz 5′ 8

PC τ353 (PR1) 353 GHz 5′ ”
Haslam MHz 408 MHz 56′ 9

PC Synchrotron (PR2) 408 MHz 60′ 10

PC AMEvar (PR2) 22.8 GHz 60′ 11

PC AMEfix (PR2) 41.0 GHz 60′ ”
PC free-free (PR2) N/A 60′ 12

5Planck bands are named according to their central frequency, not wavelength.

24



2.2. AKARI

2.2 AKARI

The AKARI infrared space telescope revealed an entire sky of infrared light, from the mid to

far infrared, via two instruments (Murakami et al. 2007) the IRC (Onaka et al. 2007) and the

FIS (Kawada et al. 2007b). In this section we will discuss the all-sky surveys produced by these

two instruments .

2.2.1 AKARI/Infrared Camera (IRC)

IRC proivded us with both spectroscopic and phometric data from the near to mid-infrared.

In this work, we utilize the all-sky maps centered at 9 and 18 µm, created during the IRC’s

fast-scanning phase. We utilize the most recent version of the IRC data (Ishihara, et al., in

prep.) This version has had an updated model of the Zodiacal light, fitted and subtracted. The

details of the improved Zodi-model, which offers an improvement over that used for the IRAS

all-sky maps, are given in Kondo et al. (2016).

PAH feature coverage

The A9 all-sky map demonstrates the abundance of the PAH bands carrier in the Milky Way

(Ishihara et al. 2010). Figure 2.2 shows the coverage of the PAH features (from both ionized

and neutral PAH components), as they are theoretically determined in Compiègne et al. (2011).

The A9 band uniquely covers major ionized PAH features at 6.2 and 7.7 µm; as well as neutral

PAH features at 8.6 and 11.2 µm across the entire sky (Onaka et al. 2007). The I12 band covers

the 11.2 and 8.6 µm features, and the similarly-shaped W12 band covers primarily the 11.2 µm

feature but do not cover the 7.7 µm completely. According to the distribution of PAH features
6Finkbeiner (2003):

https://lambda.gsfc.nasa.gov/product/foreground/halpha_map.cfm
7Kalberla, P. M. W. et al. (2005):

https://lambda.gsfc.nasa.gov/product/foreground/fg_LAB_HI_Survey_get.cfm
8):

http://irsa.ipac.caltech.edu/data/Planck/release_1/all-sky-maps/previews/HFI_CompMap_
ThermalDustModel_2048_R1.20/index.html

9Haslam et al. (1982):

10Planck Collaboration et al. (2016b):
http://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/previews/COM_CompMap_
Synchrotron-commander_0256_R2.00/index.html

11http://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/previews/COM_CompMap_
AME-commander_0256_R2.00/index.html

12http://irsa.ipac.caltech.edu/data/Planck/release_2/all-sky-maps/previews/COM_CompMap_
freefree-commander_0256_R2.00/index.html
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Figure 2.2: The I12 (orange) and A9 (green) filters coverage of modeled ionized (PAH1, red)
and neutral (PAH0, purple)components of PAH features by Compiègne et al. (2011). The
difference in the PAH feature coverage mainly comes from the 6.2 µm and the 7.7 µm feature.
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Figure 2.3: Coverage of MIR wavelengths by the filters used in this work. An Spitzer/IRS
spectrum (see AOT4119040) of the galactic plane (thin blue line) demonstrates how IRC and
IRAS photometric bands trace these features on an all-sky basis (Ishihara et al. 2007). Strong
PAH features overlap with the A9 and I12, while the A18 and I25 micron bands only trace
much weaker features.

across the response filters in Fig. 2.2, and referring back to the various dust components in

Fig. 2.1 it is also expected that the A9 band is most dominated by PAH emission even with

increasing U . This may seem counter-intuitive, since, as described in Ch. 1, the PAH spectral

shape does not show a temperature variation. However as T increases, the MIR extent of

thermal dust emission and emission from VSGs encroach on I12 and WI2 sooner than A9,

diluting emission from PAHs. In some ionized reigons, I12 may also include non-significant

contributions from the [NeII] line at 12.8 µm. Figure 2.3 demonstrates an example observational

galactic cirrus spectrum in the MIR, from Spitzer Infrared Spectrograph (IRS) (Werner et al.

2004) data, along with filters for all of the MIR bands used in this study. It indicates that the

other MIR bands, A18 and I25, do cover strong PAH features and are expected to be dominated

rather by emission from very small grains (VSGs), as was indicated in Fig. 2.1.

To help demonstate how the relative contribution from PAHs will change for each band,

for different ISRF strengths, Fig. 2.4 gives just such a calculation. These contributions remain

relatively constant out to a U of about 100, with the contribution from warm dust becomming
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Figure 2.4: In-band contributions from charged (PAH1) neutral (PAH0) PAHs, to the emission
detected by the I12 and A9 filters. These assume a model galactic cirrus spectrum simulated
with the SED template of Compiègne et al. (2011).

a larger factor for the I12 and W12 bands. Thus, according to the DL01 template, A9 should

have the highest contribution from PAHs out to extreme radiation fields. At least to the

extent with which PAHs can endure harsh UV radiation, as PAHs are expected to evaporate

in strong enough radiation fields (Allain et al. 1996a,b; Bocchio et al. 2012; Pilleri et al. 2012;

Pavlyuchenkov et al. 2013).

PAH ionization

Figure 2.2 indicates that expected emission from ionized PAHs may preferentially contribute

to the A9 band, even though both I12 and A9 cover ionized and neutral features. A PAH SED

model calculation, using the Compiègne et al. (2011) SED template, supports that for Galactic

cirrus ISM conditions, emisison detected by the A9 band would have a higher contribution from

charged PAHs than the I12 band. This is demonstrated in Fig. 2.4. To be clear, both bands are

sensitive to both charged and neutral PAHs, however the relative contribution from charged

PAHs is expected to be higher for A9. Thus we might expect that the ratio of intensities in

this two bands, for a given line of sight (towards which PAHs are not destroyed), could trace
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Figure 2.5: Ionization fraction of PAHs vs. band ratios of I12, I25, to A9, for two ISRF
strengths: Top: U = 1, Bottom: U = 10. These ratios are determined by assuming the SED
template of Compiègne et al. (2011)

the fraction of charged PAHs. Estimating the extent of this effect, Fig. 2.5 gives the results

of a calculation of I12/A9 and I25/A9 band ratios for two ISRF strengths. This calculation is

again based on Compiègne et al. (2011). It suggests that at least for U <∼ 10, the fraction of

charged PAHs may be estimated as a function of the I12/A9 ratio.

Examing how this might look in the data themselves, Fig. 2.6 and Fig. 2.7 show the

R(A9:I12) and R(A9:I25) ratio maps, demonstrating the relative variations in these MIR bands

accross the sky— or at least the portions of the sky where S/N is sufficient. While from visual

inspection the various MIR intensity all-sky maps appear to essentially trace the same stuctures

of the galaxy, the ratio maps reveal that there are indeed differences to be explored. In regions

where noise is dominant, ascertaining the ionization fraction will be quite difficult. This can

be easily seen upon visual inspection of the ratio maps, in that there is a clear deliniation

between brighter emission towards lower galactic latitudes, and the high latitude sky where the

ratio shows very little discernible structure (except for the Zodi-residual patterns which differ

between IRC and IRAS). Thus there may a large portion of the sky where the S/N may be

high enough to allow us to trace the PAH ionization fraction. This possibility is explored in
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Figure 2.6: AKARI/IRC 9 µm to IRAS 12 µm intensity ratio.

Ch. 3, in looking at the PAH distribution within λ Orionis.

2.2.2 The AKARI Far Infrared Surveyor (FIS)

FIS gives us photometric data around the peak of the typical thermal dust SED. FIS was

equipped with four wavebands: two narrow bands centered at 65 µm and at 160 µm, and two

wide bands at 90 µm and at 140 µm. An all-sky survey was carried out at each band (Kawada

et al. 2007a), and the processed maps have been publicly released (Doi et al. 2015).

2.2.3 Planck Observatory High Frequency Instrument (HFI)

The HFI all-sky maps, spanning 100 to 857 GHz (Planck Collaboration et al. 2014b) help

constrain the far IR dust emissivity. This study utilizes the 857 GHz (345 µm) and 545 GHz

(550 µm) bands.
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Figure 2.7: AKARI/IRC 9 µm to IRAS 25 µm intensity ratio.

2.3 Infrared Astronomical Satellite (IRAS)

Data from the IRAS (Neugebauer et al. 1984) all-sky surveys are used to supplement the

similarly-centered AKARI photometric bands. The IRAS 12 µm band is similar to the IRC

9 µm band in terms of the sky coverage, central wavelength, and especially in that both surveys

are heavily dominated by zodiacal light. We use the Improved Reprocessing of the IRAS Surveys

(IRIS) (Miville-Deschênes & Lagache 2005), which have undergone a zodiacal-light removal.

The zodiacal light model, however differs between the two bands. The IRAS zodi-subtraction

is primarily based on the Kelsall et al. (1998) model, while IRC employs a modified version of

this model (Kondo et al. 2016). Although WISE provides higher resolution than IRAS, we do

not utilize the WISE data because we found the WISE all-sky 12 µm product to essentially

trace the Planck HFI 857 GHz map, at 1◦ angular resolution. Hensley et al. (2016) had noted

that this scaling of the WISE map may artificially suppress actual PAH-related variations at

low resolution. Moreover, since we are conducting our analysis at 1◦ resolution in order to

match the AME data, the higher resolution offered by WISE is not a significant advantage.
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2.4 Planck COMMANDER Parameter Maps

We utilize the COMMANDER-Ruler astrophysical component separation maps (Planck Col-

laboration et al. 2014c), from the Planck Collaboration’s Public Data Release 2 (hereafter,

PR2)(Planck Collaboration et al. 2016a). These contain estimates of known microwave fore-

ground components (free-free, synchrotron, thermal dust emission contributions to the Planck

photometric bands. Fig. 2.8 demonstrates the correlatedness of these component maps, taken

as provided in the PR2 archive. To construct the cross-correlation matrix, we use the entire

maps as provided by PR2, at HEALPix NSIDE 256. This corresponds to a pixel scale of ap-

proximately 0.25◦. The effective beam size of these maps is given by PR2 as 1◦. We do not

mask any additional pixels, or provide any data smoothing. Without considering noise levels

or variations of scale, we see evidence these major components are correlated with one another.

In the case of free-free emission, von Hausegger & Liu (2015) found that by taking S/N ratios

into account, the correlation between COMMANDER free-free and AME components turns

negative. More generally they suggest that the intercorrelations betwen these products varies

with scale. We will first describe the ’non-AME’ components, so as to not give any indiciation

that their estimation is trival.

2.4.1 Synchrotron

While the Planck observations themselves do limit our resolution when assessing the AME - it

is the primary constraint on synchrotron emission, 408 MHz map by Haslam et al. (1982) that is

the major resolution limiting factor. While an impressive early effort to reveal the low-frequency

sky, (Haslam et al. 1982) is limited to an approximately 1◦ resolution. The map also contains

many artifacts. For the time being however, it is still the most synchrotron-dominated all-

sky map available, and for this reason PC15X included it in their COMMANDER component

separation. Enhanced synchrotron mapping efforts are currently in progress by the ‘The final

synchrotron product produced by COMMANDER (hereafter, PCSync) highly resembles the

Haslam et al. (1982) map, however it is also demonstrated PCSync does not fully capture the

synchrotron signal. Hensley et al. (2016) further note that the PCAME:PCdust ratio map can

be described as containing synchrotron emission patterns at high latitudes.
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Figure 2.8: rs cross correlation matrix of the PCCS maps: temperature T , emissivity index β,
and amplitude at 545 GHz Idust(545) of thermal dust; intensity of free-free emission ff at ;
intensity of synchrotron emisison at 4 MHz Sync; intensity of the AME var. freq. component
AME at 22.8 GHz.
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2.4.2 Free-free emission

Unlike the PCSync component, the fitting of the Planck COMMANDER free-free component

map (hereafter, PCff) does not employ any free-free dominated emisison map, even though an

earlier Planck AME paper (Planck Collaboration et al. 2014d) had employed the Hα map by

Finkbeiner (2003). Uncertainties in this map arise from uncertainties in the gas temperature,

and the Gaunt factor. This emission source is the dominant source of confusion with AME,

especially for HII regions (Planck Collaboration et al. 2014d,c; Paladini et al. 2015).

2.4.3 Thermal dust emission

“Thermal dust emission” in the COMMANDER context refers to dust emission in the Rayleigh

Jeans-regime, as the COMMANDER fitting includes neither photometric constraints on the

thermal emission peak, nor on Wiens-regime emission from small grains. This component

essentially involves the fitting of a modified blackbody curve (Eq. ??.) to the Planck Photome-

try. This approach however results in an apparent anti-correlation between β and T (Fig. 2.8).

Whether or not this anti-correltion is genuine is still unsettled in the literature (Galliano et al.

2011; Juvela & Ysard 2012). In any case, we do not utilize the β and T , only the dust intensity

at 545 GHz (Id) parameter map.

2.4.4 AME data

The COMMANDER map release also provides an “AME component map”, which presumes

that AME originates from spinning dust. While acknowledging that such a decomposition

lacks a strong physical interpretation, Planck Collaboration et al. (2016b) break the AME

into two components: a spatially varying peak frequency component, AMEvar, and a spatially

constant peak frequency component, AMEfix. As seen in Fig. 2.9, virtually all of the fitted

peak frequncies for AMEvar are beyond the reach of WMAP and Planck. Only the fitted global

frequency, 33.5 GHz for the spatially constant component, is covered. However they note that

the combined components, per pixel, would have an average peak at least within the WMAP

coverage range. In any case, we stress that while this is the most careful all-sky attempt to

isolate the AME to date, the constraints of the the frequency peak are still heavily lacking. In

general, AMEvar is the dominant component, accounting for approximately 90% of the total
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Figure 2.9: The peak frequencies of the varying component AMEvar. The pink shaded region
indicates frequencies not covered by either WMAP or Planck The green line at 33.5 GHz
indicates the peak frequency of AMEfix.
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Figure 2.10: Histograms of the peak intensity AME maps calculated from the original
COMMANDER-AME reference frequency maps. The dominant component, AMEvar is in-
dicated in blue, for all pixels in the map, with their spinning dust intensities evaluated their
peak frequencies (see Fig. 2.9.) AMEfix gives the peak intensity of the spatially-constant
frequency component, indicating it is essentially always the weaker component.

fitted AME intensity between 20 and 40 GHz, indicated by the full-sky histograms in Fig. 2.10.

The intensities given by PC are evaluated at reference frequencies: 22.8 GHz for AMEvar,

41 GHz for AMEfix (for convenient comparison to the WMAP total intensity maps at those

frequencies). They are not fitted peak intensities of the spinning dust SED model.

While acknowledging that the frequency constraints are lacking, we choose to use these

parameters maps in a self-consistent way, by taking the intensities and frequencies given by

PC, and calculating the implied peak intensity. In any case, we find that this conversion does

not have a significant effect on the results in the chapters to follow, except in the case of some

outlying pixels with very low peak frequencies, easily seen in the map of the fitted frequencies in

Fig. 2.11. These low frequency pixels result in very high AME peak intensities. On comparison

to point source masks by Planck, we find that these outliers correspond to intensity outliers in

the LFI 30 GHz map.
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Figure 2.11: All-sky map of the peak frequencies of the varying component AMEvar, corre-
sponding to Fig. 2.9. Virtually all of the purple regions of the map correspond to pixels flagged
for point sources in the LFI data. There are very few notable structures in the frequency map
overall, other than the galactic plane itself, ρ Ophiuchus, and Perseus.
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Figure 2.12: Spdust template spinning dust profiles fitted by PC15X when calculating AMEvar.
The reference frequency, 22.8 GHz is indicated by the vertical green line. Each template has the
same AMEvar amplitude of 100 µK, indicated by the horizontal green line, plotted to highlight
the potential deviation between AMEvar and the actual peak intensity.

Spinning dust fitting

The actual spinning dust SED template used by PC15X to fit the AME is indicated by Fig. 2.12,

which we have reproduced from the original template provided in Ali-Haïmoud et al. (2009).

PC15X fit the AME by applying a frequency shift and intensity shift parameter to this template.

The physical parameters of the spdust model itself are not directly varied in PC15X. In any

case, the spinning dust model SED shape does not show significant variation from environment

to environment (Ali-Haïmoud et al. 2009). Because of the phenenological approach of the

AME fitting method, the PC15X authors themselves suggest caution in deriving conclusions

from comparisons with the COMMANDE AME map. However it is the most thorough all-sky

component separation currently available, and has not been well analyzed relative to the full

wavelength range of available IR all-sky maps. Improving on the COMMANDER AMEmap will

likely require lower frequency constraints (in the red-shaded portion of Fig. 2.9) and/or higher

resolution observations of not only the AME itself but the contribution from synchrotron and

free-free emisson. This way some of the inherent degeneracies between free-free, synchrotron,
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thermal dust, and AME parameters may be able to be broken.

2.5 All-sky Data Processing

The HFI, FIS, and IRIS maps used here are downloaded from their respective online repositories,

as all-sky HEALPix13 maps (Górski et al. 2005). NSIDE 2048 maps. In the case of the IRC

maps, we first create HEALPix maps from the 4,857 all-sky survey tiles using the Aladin all-sky

data visualization platform (Bonnarel et al. 2000). NSIDE 2048 implies an average pixel spacing

of 1.7′. The maps are then degraded to NSIDE 1024 before carrying out a Gaussian-beam

smoothing to a 1◦ FWHM. Map smoothing itself is done in spherical harmonic space, before

the maps and transformed back to position space. These steps are handled by the smoothing

function contained in the healpy python package. Following the smoothing process, the maps

are degraded once more to NSIDE 256, or 15′ pixel-width 14. The value of each of the larger

NSIDE 256 pixels, comes from the mean of its parent NSIDE 1024 pixels. The purpose of this

processing is to ensure that all of the maps have the same resolution as the PR2 AME map.

13HEALPix core software is described at http://healpix.sourceforge.net. The HEALPIx python package
healpy used in this work is available at: https://github.com/healpy/healpy

14HEALPix pixel scale rebinning carried out with healpy.ud_grade
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Chapter 3

Analysis of an interesting AME region:

λ Orionis

This chapter is an analysis of the AME and how it relates to the dust emisison, in the λ Orionis

region. This has been an ongoing collaboration with F. Galliano, an expert in dust SED fitting

and developer of a dust SED framework presented in Galliano (2018). This work has been

enabled by mutual collaboration vists by myself and F. Galliano, funded in part by a joint

JSPS-CNRS international collaboration grant. The results described here are intended to form

the core of a journal publication, to be submitted in the coming months.

3.1 An interesting AME region

The λ Orionis molecular ring, also known as the Meissa Ring is a massive stucture surrounding

the λ Orionis O-type star. The ring contains an HII region, ionized by λOri itself and its OB

associates (Murdin & Penston 1977). What had been thought of as a starforming region of

missing molecular gas. At the time Murdin & Penston (1977) even speculated that this could

be evidence of an alternate starformation pathway, writing: “Notably we need to know if λOri

is an example of a different mode of star formation or [...] simply a case in which the progenitor

molecular cloud was exhausted within the last one or two million years.”

Maddalena (1986); Maddalena & Morris (1987). (and references therein) noted a ring of

material likely being pushed out by the central, historically well-known λ Orionis Association

of B-type stars and surrounding HII reigon.
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Cunha & Smith (1996) argued that the ring shape around λ Orionis may have resulted

from a supernova explosion, further speculating that λOri may have been a companion of the

progenitor. λ Orionis is a known binary system, however its current companion is a B-type

star. (Murdin & Penston 1977) . The central region is heated by the λ Orionis star itself, and

the Orion OB association it belongs to (Ochsendorf et al. 2015). The region is known to host

several young stellar and protostellar objects (Koenig et al. 2015).

At approx. 10◦ wide, we can see the outline of the structure even in the low (1◦ FWHM)

resolution PCAME map. The ring shape itself is thought to originate from a supernova, or

perhaps combined effects of the entire star formation history of the λ Orionis Association,

including the formation of its surrounding HII region (Aran 2009).

Although the λ Orionis region has been a popular target for study since approximately the

1980s. Duerr et al. (1982) wrote of the relative lack of work on the overall region: “Surprisingly,

this interesting complex has been little studied”. While this seems surprising given the numbe

of works on the region in the literature now, it is really the advent of all-sky missions that have

driven more recent interest. The large angular size is such that all-sky surveys were a natural

boon for study of such extended structures. WISE especially was a huge source of insight

(Koenig et al. 2015). More recently, Planck Collaboration et al. (2016c) strongly highlighted

the region as a strong candidate for further AME investigation.

3.2 Investigative approach

We have carried out an initial comparison of the AME of this region with its mid to far-IR

dust emission. The region is shown in Fig. 3.1 as it appears in 1◦-smoothed A9 data. The ring

structure itself indicates excess microwave emission attributed to AME, from the dominant

variable frequency component AMEvar (see Ch. 2). The central region is dominated by free-

free emission (Aran 2009; Koenig et al. 2015). Free-free emisison coming from the Hii phase

surrounding the λ Orionis association dominates the region’s morphology in Low Frequency

Instrument (LFI) images. (Planck Collaboration et al. 2016c). Taking the hint from Planck

Collaboration et al. (2016c) that this may be among the more reliably component separated

regions, we evaluate if there is any preferential relationship between any parameter of dust

emission and the AME. Fig. 3.2 shows the expected distribution of free-free emission in the
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Figure 3.1: λ Orionis as it appears in the AKARI 9 µm data. Contours indicate the AME, as
given by the Planck PR2 AME map. The image is smoothed to a 1◦ PSF (much larger than
the original 10 arcsec map). The λ Orionis star itself is approximately located at the center of
the image.
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Figure 3.2: λ Orionis as it appears in H-alpha emission by Finkbeiner (2003). Contours indicate
AME emission, from the variable frequency component. The colorbar indicates Hα emission
in Rayleighs. The field of view is slightly larger than that used for the final processed IR
comparison (Fig. 3.6).

region, assuming that Hα line emission is a tracer of microwave free-free. This indicates that

free-free is strong within the central region, where radiation fields are more intense, and AME is

minimal. The strongest AME follows the ring-shaped morphology outside the central bubble of

free-free emission. We will first show a model-independent analysis, comparing IR photometric

intensities from the mid to far-IR to the AME. After comparing all of these intensities, we

describe which wavelength shows the best intensity correlation. The core results however will

be based on a dust SED model-dependent analysis, which takes into consideration all of the

photometric intensities to fit the total abundance of dust, PAH abundance, PAH ionization

fraction, and ISRF strength, U , accross the λ Orionis region. We will then discuss the core
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result, suggesting that PAH mass has a stronger relationship with AME than the total dust

mass does, representing the first time such a result has been found for a specific AME-prominent

region.

3.3 Data preparation

As indicated in Ch. 2, we use 12 photometric all-sky maps. For the IRC data (A9 and A18),

we produce mosiacs of λ Orionis from the latest version of the individual tiles provided internal

all-sky archive. A9 and A18 images are produced by regridding the images with the Montage

software by NASA/Infrared Processing and Analysis Center (IPAC). Figs. 3.4 and 3.5 show

high resolution mosaics of the A9 and A18 data before processing. 1 For the other sources,

HEALPix all-sky maps are available publicly, at sufficient resolution relative to their native

resolutions2. 34

Other data were obtained from publically archived HEALPix maps. This includes data

from IRAS, Planck, DIRBE, and AKARI/FIS. For For these data, we employ the healpix2wcs

functionality provided in the gnomdrizz python package56 When the extraction and regridding

are finished, all of the images — those extracted from Hierarchical Equal Area Iso Latitude

Pixelation of the Sphere (HEALPix) maps, as well as the IRC data — share a common FITS

header having a pixel grid spacing equal to the average pixel width in the NSIDE 256 HEALPix

scheme, or about ~0.25◦. After PSF smoothing, described in detail below, the data also have

a common ~1◦ FWHM effective PSF. Although this means that the grid is oversampled, we

choose this approach to preserve as much of the structure of the region as possible, even after

masking bad pixels. Another option would be to interpolate the bad pixels, and degrade the

pixel scale to the PSF size. However we choose the former method due to the relative large

number of bad pixels, especially around the regions affected by missing stripes. This means

that in the analyses that follow, what is important is the relative trends between correlation

coefficients, rather than their absolute values.
1IRC all-sky data is still in the proprietary phase at the time of this writing, but should be public by April

2018.
2Planck data was retreived from the NASA IPAC online archive at http://irsa.ipac.caltech.edu/data/

Planck/release_2/all-sky-maps/
3AKARI/FIS data
4IRAS/IRIS data
5Available at http://cade.irap.omp.eu/dokuwiki/doku.php?id=software
6“drizzlib” 1.2.2 and earlier were not able to correctly access HEALPix files with multiple fields/columns.

See appendix for our recommended workaround.
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Figure 3.3: The λ Orionis region and its surroundings in AKARI FIS data, where A65 is blue,
A90 is green, and A140 is red. The missing stripe patterns are visible, and affect all 3 bands
shown here as well as the A160 data.

3.3.1 Point-source and artifact masking

Missing stripes The AKARI all-sky survey suffers from a few missing stripe errors through-

out the IRC and FIS maps (Ishihara et al. 2010; Doi et al. 2015). This is a more serious issue

for FIS. Unfortunately for the present work, some of these stripes pass directly through the

λ Orionis region. Figs. 3.3, 3.4 and 3.5 display the data at near-native resolution, demonstrat-

ing where these patterns occur. Additionally there are some saturated pixels in both IRC and

FIS data.

Point sources A caveat that comes with added ionized PAH feature coverage of the A9

band, is that the shorter central wavelength placement allows more contamination from point

sources. We identify point sources with a moving-window approach provided in the astropy

Python package, flagging pixels which have higher than 5σ intensity among the surrounding

100 pixel window. We then place a mask at the center of the flagged point-sources. The masks

are propogated through the regridding step, such that the low-resolution pixels having more

than 50% of their area masked in the high resolution tiles, also become masked. Such pixels

appear black in Fig. 3.1. The same process is applied to the A18 data. For other maps, which

we extract from HEALPix data, we first regrid from HEALPix to rectangular grids, and then

apply the point-source search and masking as above. For the I12 and I25 images, the rejected

pixels were fewer than with A9, but positions overlapped with those already masked in A9.
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Figure 3.4: The λ Orionis region in the A9 band at near-native resolution. This is a mosiac
created from the 3x3 degree all-sky survey tiles by Ishirara et al. (in prep.) Missing stripes are
less of a problem than with the A18 band (Fig. 3.5), but point sources are more pronounced.
Around Betelgeuse, in the lower left of the image, we can see an artifact caused by scattered
light..
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Figure 3.5: The λ Orionis region in the A18 band at near-native resolution, demonstrating the
regions affected by missing stripe errors, but less affected by point-sources than A9 (Fig. 3.4).
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For bands longer than I25, this process did not result in rejected pixels. For the D12 and D25

bands, which are natively at a much lower resolution than AKARI or DIRBE, point-sources

present more of a challenge. For these images, we visually inspect and mask 3 regions with

bright point source contamination consistent with the DIRBE beamsize and with point-sources

identified in IRAS and IRC images. Pixel positions masked in any single image, are masked in

all of the images before the finaly analysis.

3.3.2 PSF Smoothing

We smooth the pixels in the spatial domain, to have a 1◦ FWHM PSF, in order to have a

resolution approximating that of the Planck Collaboration (PC) AME data. The smoothing

process relies on the convolution module provided in the astropy package. We assume simple

circular gaussian kernel for the smoothing process. While they may be asymmetries in the

effective beam shapes of the IR bands used, the target resolution of the AME data is large

enough relative to the native resolution of the input IR data (especially A9 and A18, see

Fig. 2.1) as to render the beam shapes and positional variations negligible. Finally, we mask

pixels along the edge of the FOV where the convolution process produces artifacts.

3.3.3 Background subtraction

We estimate an average, flat background level for this region. The background level is deter-

mined the mean of pixels in an ‘OFF‘ zone. The final images are shown in Fig. 3.6, with the

full mask applied (masked pixels are indicated in white), and with the OFF zone indicated by

the red rectangle on each frame. We do not expect simple band-by-band intensity correlation

tests with the AME to be sensitive to background and foreground emission along the line of

sight towards the λ Orionis region. However analyses such as dust SED fitting, to determine

the relative abundances of different dust components, may be effected by the background level.

The general morphology as seen in the high resolution AKARI data (Figs. 3.3, 3.4 and 3.5)

remains well pronounced in the final, low resolution images.
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Figure 3.6: Processed data at each wavelength for λ Orionis. A flat background has been
subtracted from each frame based on the mean of pixels within the red rectangle. The pixel
width is 0.25◦, with the data PSF smoothed to 1◦ spatial resolution. Masked pixels (point
sources, stripe errors, convolution artifacts) are shown as white. The frames share the same
FOV and GAL-TAN projection. Colorbars indicate the intensity in MJy/sr.
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3.4 Multi-wavelength characterization

The correlation matrix results corresponding to data shown in Fig. 3.6, are shown in Fig. 3.7.

This immediately confirms a correlation between the IR and AME, however this was readily vis-

ibly from the spatial morphology of the region. Interestingly though, the correlation strengths

with AMEvar show a pattern from short to long wavelengths: A9, P857, and P545 show the

strongest correlations, with the correlation weaking from A18 to A90, and again strengthening

at longer wavelengths. The fixed peak frequency AMEfix, which is the much fainter com-

ponent, shows the strongest correlation with A90- though all of the IR correlations relative

to AMEfix are weaker than those for AMEvar. The overall pattern is for bands dominated

by PAH emission (as discussed in Ch. 2), and those which trace Rayleigh-Jeans thermal dust

emission are equally good predictors of the AME. Bands dominated by a mixture of VSGs,

and warm dust emission, show a weaker correlation. For the next stages of analysis, we will

consider only the dominant component AMEvar. We found that combining the components

does affect the results here.

Comparing the images in Fig. 3.6, most of the variation in the correlation scores appears

to come from the central region of λ Orionis. Because of the known heating present within the

ring, from the λ Orionis association, and given the brightening of bands between A18 and A90,

this variation appears to be due to a temperature increase.

3.4.1 Bootstrap analysis

To assess the robustness of the correlation scores, we employ the Bootstrap re-sampling ap-

proach. We carry out bootstrap correlation tests for each IR band’s intensity vs. AMEvar .

The data are resampled 10,000 times for each correlation test, a sufficient resampling given the

unmasked pixel count of ~1400 pixels, and considering that the effective beams are somewhat

undersampled. The distributions of the boostrap resamplings are shown in in Fig. 3.8. For

both test cases, the best correlations are the longest and shortest wavelength bands, consistent

with the straight-forward rs scores shown in Fig. 3.7.
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Figure 3.7: rs correlation matrix for all of the data used in the λ Orionis analysis, similar
to that presented for the Planck Commander component maps in Fig. 2.8. The shade and
annotation for each cell indicates the rs score, where rs of 1 indicates a monotonically increasing
relationship for a given pair of images. The two AME components, as described in Ch. 2, are
listed separately: AMEvar for the frequency-varying component, and AMEfix for the constant
frequency component.
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Figure 3.8: Re-sampled (Bootstrap) correlation tests for IR emission in λ Orionis vs. AME.
Each band’s rs distribution is shown in a different color (the same color scheme for both plots).
The width of the distribution indicates the error for the given data in the correlation coefficient.
The mean and standard deviation of the scores are given in the legend of each plot. The plot
ranges only show positive values, since no negative scores were produced.

3.5 Comparison with SED Fitting

We performed a full dust SED fitting on the λ Orionis photometry, according to the dust

model by Galliano et al. (2011), and the hierarchical Bayesian SED fitting framework by Gal-

liano (2018). There are 4 free paremeters: total dust massMdust, fraction of dust mass as PAHs

qPAH , the fraction of PAHs that are ionized, and the average strength of the ISRF U . As indi-

cated in Ch. 1, we implement such an analysis here primarily because it allows a more careful

propgation of the observational errors. We utilize both the HB approach and a least-squares

analysis. The HB approach allows us to accurately propogate errors in the data (including cali-

bration uncertainties) through the SED fitting process, as well as the correlation test thereafter.

Compared to the ubiquitous LSM In traditional SED fitting we often assume only Gaussian

uncorrelated noise. Even if this were a valid assumption for the raw data, processing steps may

induce correlations or skew noise. Induced correlations may also appear in the parameters fit

via standard approaches, when environments are mixed along the line-of-sight (Shetty et al.

2009).

We used a mixture of silicate and carbonaceous dust, silicate dust, the two dominant cate-
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gories of interstellar dust as described in Ch. 1. However, instead of the graphite-based carbon

dust invoked by the canonical Draine & Li (2007b) model (DL07), we assume amorphous car-

bon. This is an attempt to account for an excessive dust-gas-ratio, reported by Israel et al.

(2010); Bot et al. (2010) in the Large Megellanic Cloud (LMC), which was found by Galliano

et al. (2011) to violate elemental depletion constraints. The increased opacity of amorphous

carbon (a factor of 2-3 more than DL07) allows a better fit to Herschel observations of the

LMC (Galliano et al. 2011), and Planck observations of the Milky Way (Planck Collaboration

et al. 2016d). We assume that the radiation field heating this dust mixture takes the profile of

the typical Galactic ISRF in Mathis et al. (1983).

We only carry out the fitting for unmasked pixels. We are primarily interested in which of

the corrleations Mdust vs. IAME or MPAH vs. IAME is stronger.

Two sample SED fitting results are shown in Figs. 3.9, and 3.10. Performing such fits for all

of the pixels, we are able to see how IAME varies with the dust properties of the region. Fig. 3.11

shows the fitted dust mass per pixel, relative to the AME intensity. AME intensity is scaled by

the ISRF intensity U . Although spinning dust emission is not predicted to vary directly with

U , we consider that the ISRF may serve as a diagnostic of environmental conditions in the

ISM. In any case, we find that performing such a scaling improves the correlations with dust

mass. Figs. 3.12 and 3.13 describe the variation with MPAH and MPAH+. Based on the dust

properties derived from these SED fits, we investigate whether any fitted parameter shows a

preferential relation with the AME. Figs. 3.11-3.13 reveal a very similar trend between the AME

and the parametersMPAH ,MPAH+, andMdust. There is a slightly improved correlation between

Mdust and MPAH (0.857 vs 0.867). This is consistent with the intensity cross correlations in

Fig. 3.7. These corrleations are discussed further in Sec. 3.6 and Fig. 3.14.

3.5.1 Comparing the Correlation Strengths

In addition to probability distribution functions of the fitted parameters, HB allows us to

plot the final PDFs of the correlation coefficients themselves. This is a more robust way of

comparing the correlation strengths than simply bootstrapping the correlations. Fig. 3.14

shows the rs PDFs for the 3 major correlations of interest: rs(IAME,Mdust), rs(IAME,MPAH),

and rs(IAME,MPAH+). To assess the effect of the morphology of λ Orionis on these results, we

show the same PDFs but omitting the central region of λ Orionis. This is shown in Fig. 3.15.
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Figure 3.9: Observed (black circles and errors) and synthetic photometry (gray dots) SED of
a pixel within λ Orionis, along with the dust SED model fit results. Two SED fits are shown:
on for the Bayesian fitting (magenta), and another showing the standard least-squares result
for comparison (yellow). The fitted ISRF strength U , and fraction of mass in PAHs, qPAH are
also given.
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Figure 3.10: The same as Fig. 3.9, but for a different pixel position.
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Figure 3.11: Scatter plot with the bivariate error elipses generated through the HB SED fitting,
of total dust mass Mdust vs. IAME scaled by U . Green dots indicate the results when using a
simple least-squares method fit, for comparison with the HB method.
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Figure 3.12: The same comparison is given by 3.11, but showing total mass of PAHs (MPAH)
rather than total dust mass on the y-axis.

57



CHAPTER 3. ANALYSIS OF AN INTERESTING AME REGION: λ ORIONIS

Figure 3.13: The same as in Figs. 3.11 and 3.12, but specifically comparing an estimate of the
charged component of PAH mass MPAH+. This includes anions and cations, since we cannot
distinguish between these two spectroscopically.
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Figure 3.14: The hierarchical Bayesian correlation probablity distributions of rs) for the three
physical parameters vs. the AME intensity: total dust mass, rs(dust) (blue); total PAH mass
rs(PAH) (green); and only the ionized PAH mass rs(PAH+) (red). Also given are the proba-
bilities of either PAH component being better correlated with AME than dust mass, as well as
the probability that ionized PAH mass correlates better than total PAH.
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The extent of the mask is indicated in Fig 3.16.

3.6 Discussion

In λ Orionis we found that accross the whole region, A9 emission and P545 emission were the

most strongly correlated with AME. This is apparent both in the photometric band analysis,

and in the dust SED fitting. The fact that the correlation strengths of PAH-tracing mission

and sub-mm emission are similar is in-line with what we have seen in Ysard et al. (2010) and

Hensley et al. (2016). In those works, the two relationships (MIR vs. AME and FIR vs. AME)

are very close, although these two papers are odds as to which relationship is stronger, and

thus in their final interpretation. With the present data and analysis of λ Orionis, we fail to

rule out PAHs as carriers of the AME. In fact, our primary result, shown in Fig. 3.14 indicates

that PAH mass is a stronger predictor of the AME, compared to the total dust mass. This is

the first time such a significant result has been found, in support of the PAH hypothesis for a

particular region. This core result is unchanged even when we examine the outer ring structure

separately from the central region, as shown in Fig. 3.15.

The results are consistent with a scenario in which PAH mass, cold dust, and the AME

are tightly correlated. A correlation between cold dust and PAHs is observed in extragalactic

targets (Haas et al. 2002), and may be inferred from the correlation between unidentified

Infrared bands (UIR) and FIR emission reported in diffuse galactic ISM (Onaka et al. 1996).

In the case that AME emanenates from spinning PAHs, it is not surprising that cold dust would

also correlate with the AME. Weaker correlation from 25 to 70 µm may indicate that AME is

weaker in regions of warmer dust and stronger radiation fields. Such an anti-correlation with

harsher radiation are consistent with the carriers of AME being destroyed in the central region

of λ Orionis, thus leading to substantially decreased spinning dust emission.

3.6.1 Performance of the Hierarchical Bayesian Fitting

Indicated in Figs. 3.11, 3.12, and3.13, the trends described in this chapter between dust mass

and PAH mass, and the AME intensity were revealed through the HB analysis. The increased

scatter of best-fit points, produced by the least-squares analysis, obviously obscures the intrin-

sic relationships. With only LSM results, the dust SED fitting comparison would have been
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Figure 3.15: The hierarchical Bayesian correlation coefficent (rs as shown in PDFs as shown in
Fig. 3.14, but with the central region of λ Orionis masked, according to Fig. 3.16.
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Figure 3.16: The A90 image of λ Orionis shown to demonstrate the mask applied to the
central region, in order to produce the PDFs in Fig. 3.15. The region showing an apparent
dust temperature peak, which was most prominent in the A90 image and the major point of
variation accross all the wavelengths, is thus omitted.
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inconclusive. To our knowledge, this is the first case of the HB approach being applied to a

localized investigation of AME, and certainly the first time that the dust SED of λ Orionis re-

gion has been investigated in such a way. This raises questions about the future of LSM-based

analysis in dust SED studies, and highlights the potential this HB framework developed by

Galliano (2018).

3.6.2 PAH Ionization fraction

As described in Ch.2 it is expected that relative variations between the A9 and I12 intensities

could be explained by the fraction of PAHs that are charged, fPAH+. Spectroscopically, we

cannot distinguish between PAH anions or cations. However if spinning dust emission arises

from anions, a better correlation with the mass of charged PAHs MPAH+ is expected. However

if the PAHs are positively charged, a stronger correlation with MPAH+ is not expected. This

is due to the rotational excitability of the PAHs: anions are more succeptable to rotational

excitation by H+ and C+ collisions(Ali-Haimoud 2010).

Examining λ Orionis in intensity, we find that the A9 intensity correlates more strongly with

AME than I12 or D12. In the rp case, A9 correlates more strongly with AME than any other

band. This is consistent with the spinning PAH hypothesis, and taken alone may indicate that

the 6.2 µm feature emission from charged PAHs, may be a better predictor of AME intensity.

As shown by the dust SED fitting however, the probability distributions (Fig. 3.14) of

rp(MPAH+ : IAME) do not indicate that ionized PAH mass correlates better with the total

PAH mass. Attempts to estimate the MPAH+ based on the available data appear to only add

noise relative to rp(MPAH : IAME). The means of the two distrubtions rp(MPAH+ : IAME) and

rp(MPAH : IAME) are similar and rp(MPAH+ : IAME) shows a wider distribution. Thus the

question of whether or not AME comes predominantly from charged PAHs remains open.

The fact that A9 correlates more strongly than the 12 µm bands, at least suggests that

this topic is worth further investigation. What is clear from the MIR and AME morphology

however, is that there is a transition from a relatively PAH depleted, warmer, stronger ISRF

in the centerand warm dust in the center to a PAH-supporting region in the ring. Along

this transition, there must be a decreasing radiation field with distance from dimnant heating

sources, in λ Orionis association. Andrews et al. (2016) predict a transition of PAH species

along such a radiation field gradient, from complete PAH destruction in harsh environments,

63



CHAPTER 3. ANALYSIS OF AN INTERESTING AME REGION: λ ORIONIS

to survival of (sufficiently large) PAH anions near the surface of molecular clouds. Thus if our

stronger correlation with A9 indicates charged PAHs, this could be consistent with PAH anions

surviving in the portions of λ Orionis which are emitting the strongest AME. Future wide-

area spectral mapping of the λ Orionis region may be able to conclusively test for increased

fPAH+ in regions with stronger AME. This would also help us to understand the extent to

which [NeII] emission may contribute to the I12 emission, and if this may lead to a relatively

improved correlation between AME and A9. Such studies would be strongly aided by higher

resolution probing of spatial variations the AME spectral profile.
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Chapter 4

All-sky Analysis

What we present here is a test of the generalizability of results from Ch.3, which focused on a

particular structure on the sky, λ Orionis. We first would like to note that “all-sky analysis” can

be a bit misleading. The term tends to lead readers to the idea of a definitive study, answering

a particular question for any given position on the sky. While a truly all-sky analysis would

be ideal, signal-to-noise constraints (mainly at high galactic latitudes), as well as confusion

along the line of sight (mainly in the galactic plane), make a uniformly powerful study of the

whole sky very challenging. Here we will indeed show results for the entire sky as a benchmark

analysis, but for the core analysis we must mask certain regions dominated by systematic effects

in order to minimize biases for particular wavelenghts.

4.1 Resolution matching

Smoothing

As in Ch. 3, this approach applies to a spatial resolution of approximately ~1◦. The resolution

limimtation is imposed by the PC microwave component maps, which list an effective resolution

of 60′ (Planck Collaboration et al. 2016b). Thus we must apply a smoothing to most of our

input datasets, which have native resolutions of a much finer scale (see Tab. 2.1 and Fig. 1.2).

The data also come in a wide range of beam shapes with their own degrees of uncertainty,

thus we conservatively smooth all of the data in the same way, using a circular Gaussian beam,

to have ~1◦ FWHM resolution. We start with an all-sky AME to IR comparison, looking for

global patterns among all pixels.
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Table 4.1: Monopole values subtracted from all-sky HEALPix maps

Map Monopole
[MJy/sr]

A9 2.27
A18 5.10
A65 1.96
A90 3.13
A140 4.64
A160 4.65
I12 1.00
I25 1.79
I60 0.77
I100 3.04
P857 1.92
P545 0.68

Offset correction

In Ch. 3, we utilized the latest available version of the AKARI/IRC data. However, the latest

version is still undergoing final processing for some parts of the sky, at the time of this analysis.

Thus we must use a previous version for this all-sky analysis. The major difference between

the previous version, and that used in Ch. 3, is an apparent all-sky positive offset of ~2 MJy/sr

for A9 and ~5 MJy/sr for A18. We assess this offset first by finding the mode of each of

the 4,737 3◦ × 3◦ tiles of the IRC survey, for each band, and then taking the mode of that

distribution. This distribution of tile modes is shown in Fig. 4.1. We then compare this result

with a monopole offset fit to the all-sky HEALPix map of the IRC surveys, built from these

tiles. Monopole fitting is handled by the healpy.fit_monopole function. The monopole values

subtracted from each map shown in Tab. 4.1.

We find the values produced by these two methods to be consistent. We found offsets also

in the IRAS, FIS, and HFI bands, thus we apply the same monopole fitting and subtraction to

all of the all-sky maps. We do not find the correlation analysis presented in later sections to

be sensitive to this offset correction.

4.2 All-sky cross correlations

In order to look more closely at how the AME to IR relationship varies with wavelength, we first

do a comparison without applying any pixel mask, as a benchmark. Fig. 4.2 shows the pixel-
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Figure 4.1: Distributions of the modal values for each of the 4,737 survey tiles for the A9 band,
and for the A18 band.
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Figure 4.2: Point-density distributions of the log AMEvar intensity (Y-axis) vs. log IR bands’
intensities. In this case no pixel mask is applied, in order to show overall trend of the full
data-set. However a random sampling is used due to computational contraints. The plots show
a random set of 20% of the full-sky data. Darker shaded regions indicate a higher density of
pixels.

density plots of AME vs. the IR bands’ intensities. Darker regions show higher pixel densities,

unshaded or more lightly shaded regions show low or zero pixel densities. An intial analysis,

considering only the interreations of the PC parameter maps, was presented in Sec. 2.4, wherein

correlations between the major microwave component maps (synchrotron, free-free, AME, and

dust emisison) are demonstrated (Fig. 2.8). This section extends that analysis, considering the

full range of IR maps described in Tab. 2.1.

We see immediately that each band shows evidence of a positive trend with AME intensity.

For the MIR bands, at lower IR intensities we see the effects of detector noise become dominant,

turning into a more defined positive trend with increasing IR intensity. This effect is less

pronounced in the FIR. The trend is similar to that found in Ch. 3, and Fig. 3.7. We consider

that the IR maps used must not only be compared to the AME, but to each other, to assess

multi-wavelength patterns. We also compare the AME and IR maps to ancilliary maps, as

described in Ch. 2 and Tab. 2.2. Fig. 4.3 confirms the weaker trend in the MIR vs. AME, via
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Figure 4.3: ALL-SKY cross-correlation matrix for the 12 infrared bands sampled, as well as
the PC component maps described in Ch. 2: the two AME components evaluated at their
peak frequencies AMEvar, AMEfix; Syncrotron, and free-free), and ancilliary maps of NH , Hα
emission, and 408 MHz emission Haslam et al. (1982). The color-scale indicates (rS). Results
are based on the unmasked sky, but are split by Galactic latitude: pixels with |β| > 15◦ (left)
and |β| < 15◦ (right). The color and annotations indicate rs as in Fig. 3.7.

a cross-correlation matrix, similar to that used in Ch. 3 and Fig. 3.7. This is reflected in the

comparison between high and low latitude plots: for pixels |β| > 15◦, we see a dramatic effect.

In the most extreme case rs of A18 to AMEvar drops from 0.72 at lower latitudes, to 0.02 at

higher latitudes. rs(A9 : AMEvar) drops from 0.79 to 0.42. Correlations between the MIR

bands and FIR bands also weaken. Only the the interrelations between the FIR bands from

I60 to P545 remain essentially latitude independent (with the exception of A65, which has an

especially high noise level.)

In the lower latitudes, with |β| < 15◦, bright emission in and around the galactic plane

seems to homogenize the bands. We see little change from band to band both in terms of

the relationship with AME or with other IR bands. Thus the increase of S/N with decreasing

brightness at higher latitudes has a strong effect on such intensity correlation tests. Bands

tracing bright thermal dust emission at higher latitudes are more robust against this effect. The

only case where the trend is reversed, is with the maps of N(H) and Hα. Both of these maps

show higher rs when compared to high latitude FIR emission, possibly due to optical effects.

The next section descibes a pixel-masking strategy designed to mitigate both rs suppressing

69



CHAPTER 4. ALL-SKY ANALYSIS
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Figure 4.4: All-sky map in A9 emission after applying the combined masks: ecliptic plane,
galactic plane, point sources, and pixels with S/N < 3. This mask essentially outlines the
galaxy, except for the most confused regions. Diffuse galactic emission is essentially removed
by the mask due to low S/N in the MIR bands. In the full sky map of ~700,000 pixels, there
are ~50,000 unmasked pixels remaining.

effects from band-to-band S/N variations, and rs enhancing effects from confusion near the

galactic plane.

4.3 Masked Comparison

For the reasons described in the previous section, we consider that an exhaustive comparsion of

the AME with IR requires the use of a pixel mask. In this section we describe the various masks

applied to the full dataset. We then repeat both the comparisons above (as in Figs. 4.2 and 4.3)

for the masked dataset, and present additional analyses. The full mask, superimposed on A9

map, is shown in Fig. 4.4, with the details of the mask layers desribed in the next subsection.

The mask most heavily affects high galactic latitudes, and the galactic plane. The same mask

is applied to all of the maps.
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4.3.1 Pixel mask

Galactic plane The galactic plane tends to be a challenge in any comparison, but especially

with low resolutions studies such as the present work. Complicated structures along the line

of sight, smoothed to 1◦ resolution, means that emisison within any given pixel is an average

of many different environments (evidenced by the homogenizing of the correlations between

bands at low latitudes in Fig. 4.3.) Thus we exclude the brightest emission of the galactic

plane, according to the mask prepared by the Planck Collaboration.

Zodiacal light To minimize the effects of residual zodiacal light, we exclude pixels within

10◦ of the ecliptic plane. Even though we use the Zodi-subtracted maps (Kelsall et al. 1998;

Kondo et al. 2016; Ootsubo et al. 2016), the Zodi residuals are still problematic (especially in

the MIR.) This corresponds to regions with the heaviest contamination from Zodiacal light,

where Zodi residuals are apparent even with visual inspection for all of the MIR bands used in

this study. In Ch. 2, Figs. 2.6, and 2.6 clearly display these residual patterns.

Signal to noise Some of the bands used lack sufficient sensitivity to trace fainter emisison,

especially at higher galactic latitudes. This is mainly an issue for the mid-infrared bands. As

such, we enforce a 3σ threshold for all of the maps— adding to the mask any pixel that has lower

than 3σ detection in any of the maps. This removes nearly all pixels beyond approximately 15◦

from the galactic plane, with the pronounced exception of regions affected by stray moonlight.

The extent of this particular mask is primarily defined by the IRC A9 and A18 maps, which

have the highest noise levels.

Point Sources The Planck Collaboration provides masks of the pixels they find to include

point sources. We mask pixels which are flagged as being point-source contaminated, in the

most heavily affected maps: Planck/HFI 857 GHz and Planck/LFI 30 GHz.

PC Component Separation Errors As noted in Planck Collaboration et al. (2016b); Hens-

ley et al. (2016), there are fluctuations in the PC maps wherein AME emission appears to

correspond to fluctuations in the synchrotron map. While a mask of all but the most reliably

component separated pixels would be ideal, the construction of such a mask with the current

data would require us to use a rather artificial threshold. While PC does provide error maps for
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Figure 4.5: The same comparison as shown for Fig. 4.2, but with the mask applied as in Fig. 4.4.

each of the components, these are not necessarily an indication of how confident the component

separation process itself is at a given pixel. We prefer not to apply any additional masks tailored

to the PC maps, and instead present and discuss the results with the possibility of component

separation artifacts in mind. However we do note that applying the LFI point source mask and

galactic plane masks serves also to mask most pixels with AME peak frequency outliers.

4.3.2 Effect of mask application

Fig. 4.5 shows point-density plots for AMEvar vs. each of the IR bands, after applying the

mask described above. This reduces the number of pixels from ~780,000 to ~50,000, with

about 7% of the sky remaining. As expected with such a drastic reduction of the number of

noise-dominated points, the scatter, especially for the MIR bands, is reduced. This can be

seen by comparing Fig. 4.5 to the unmasked distributions vs. AME in Fig. 4.2. Otherwise the

applicaiton of the mask does not bring about any special distinction among the bands when

compared to the AME. What is notable however is that the persistent weakening of trend of
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I25 vs. AME, relative to A9 and the FIR bands. This is seen also when looking at the full set

of interrelations via the cross-correlation matrix in Fig. 4.6.

Normalizing by radiation field U Following the logic that the PAH-tracing bands inten-

sity is essentially a product U and the column density of PAHs σPAH (as explained in Ch. 2),

we redraw the comparison after scaling the MIR bands by U . We determine U by taking the

1◦-smoothed, degraded PR1 dust radiance map (also used in (Hensley et al. 2016)), and its

corresponding τ353 map. We approximate U ∝ R/τ353. In the case of U -normalized intensities

correlation plots, we only include the MIR bands. While IMIR/U is thought to trace column

density of the band carriers (PAHs, or VSGs), there is a less definite interpretation of IFIR/U

(since the profile of FIR dust emission depends on the dust temperature.) Thus for this partic-

ular comparison, we represent the FIR with τ353. The U -normalized correlation matrix is given

by Fig 4.7. In this comparison, we see that all of the correlations of the MIR bands vs. AME

weaken slightly when we scale the MIR bands by U . However if we consider that U may also

affect the AME intensity, it may make sense to show a comparison where the MIR bands and

AME intensities are all scaled by U . The result of this is shown on the right panel of Fig. 4.7.

Indeed the correlations improve slightly, between MIR/U and AME/U . However we cannot

rule out a spurious improvement of the correlations, induced by the common division by noise

in the parameter U .

R-normalized comparison For completeness we perform a comparison similar to that pro-

vided in Hensley et al. (2016), wherein they compared the ratio IAME/R (a sum of AMEvar

and AMEfix) to the fraction of dust in PAHs, fPAH. In our analysis, the ratios of A9/R and

I12/R, considering that A9 and I12 are dominated by PAH emission, would be comparable

to the Hensley et al. (2016) parameter of fPAH. As with the result in Hensley et al. (2016),

these data do not reveal any correlation between PAH fraction and IAME/R, or with any of the

MIR/R ratios and IAME/R. Interestingly, there is evidence of a marginal positive trend with

synchrotron, and a negative trend with free-free emission.

Bootstrap test In addition, for the masked comparison, we carry out a boostrap analysis,

using the same method explained in Ch. 1 and implemented in Ch. 3. The Spearman rank

correlation coefficents rS of all of the bands, in intensity, vs. the AMEvar component are
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Figure 4.6: Cross-correlation (rs matrix for the IR intensities (unscaled) vs. each other, esssen-
tially the same comparison as in Fig. 4.3, except that the pixel mask is applied, and we do not
perform a split by Galactic latitude— after the mask is applied, over 90% of pixels are within
10◦ of the galactic plane.
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Figure 4.7: Cross-correlation (rs matrix for the U -normalized IR intensities vs. each other, and
also against the AME components, other PC products, and ancilliary data. In the left panel,
only the IR maps are divided by U - other data is unchanged from. In the panel at right, both
the the AME and IR intensities are divided by U . Fig. 4.6)

A9 I12 A18 I25 AMEvar AMEfix ff Sync

S
yn

c
ff

A
M

E
fix

A
M

E
va

r
I2

5
A

18
I1

2
A

9

-0.0044 0.089 -0.13 -0.14 0.15 0.02 -0.4 1

0.097 0.053 0.13 0.074 -0.32 -0.1 1 -0.4

0.21 0.08 0.13 0.012 0.66 1 -0.1 0.02

0.16 0.14 0.072 0.057 1 0.66 -0.32 0.15

0.41 0.71 0.44 1 0.057 0.012 0.074 -0.14

0.68 0.37 1 0.44 0.072 0.13 0.13 -0.13

0.58 1 0.37 0.71 0.14 0.08 0.053 0.089

1 0.58 0.68 0.41 0.16 0.21 0.097 -0.0044

Figure 4.8: Cross-correlation (rs matrix for the residual correlations between IR intensities,
AME, and other microwave components. All of the maps in this case are normalized by R. )
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Figure 4.9: Re-sampled (Bootstrap) correlation tests for IR emission vs. AME, performed on
the masked all-sky maps. Each band’s rs distribution is shown in a different color. The width
of the distribution indicates the error for the given data in the correlation coefficient. The mean
and standard deviation of the scores are given in the legend of each plot. The plot ranges only
show positive values, since no negative scores were produced.

shown. This is done only for the masked case, due to the computational challeneges presented

by a well-sampled bootstrap of all ~780,000 pixels in the full sky. Because the mask applied

here leaves us with approximately 7% the sky, a bootstrap with Niterations > Npix becomes

tractable. We show the comparison only for the AMEvar component also due to computational

constraints. The rs distributions for each IR band vs. AME are shown in Fig. 4.9. The

calculations are performed in the same way as with Fig. 3.8 for λ Orionis. Consistent with

the other correlation analyses already shown in this chapter, there is a stronger correlation in

the FIR, espeically A160. Considering the MIR range, and as with λ Orionis, A9 emission

correlates better than I12. The worst correlation is seen with the A18 and I25 bands.

4.4 Spatial variation of correlations

To understand how these trends may vary across the sky, independent from the choice of pixel

masl, we produce an all-sky maps of rs for AME vs. IR emission. From the NSIDE 256 input

maps of AME and 4 IR wavelength maps, we produce NSIDE 8 maps of rs. These maps are

shown in Figs. 4.10-4.13
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-1 1rs(AMEvar/U : A9/U)

Figure 4.10: Spatial map of rs between the AME:U and A9:U , a tracer of the column den-
sity of PAHs emitting within the A9 filter. rs is calculated for all NSIDE 256 pixels within
each NSIDE 8 pixel-sized bin. The correlation score is calculated with the unmasked maps.
The colorbar indicates rs, ranging from -1 (negative monotonic relationship) to +1 (positive
monotonic relationship).

-1 1rs(AMEvar/U : I12/U)

Figure 4.11: Spatial map of rs between the AME:U and I12:U

-1 1rs(AMEvar/U : A18/U)

Figure 4.12: Spatial map of rs between the AME:U and A18:U
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-1 1rs(AMEvar/U : I25/U)

Figure 4.13: Spatial map of rs between the AME:U and I25:U

The most important feature of these maps is that they look very similar, confirming in

a spatial context that there is very little difference overall, when comparing AME to IR in

intensity, accross multiple wavelengths. The correlations weaken for the MIR bands at higher

latitudes, as expected. Thus the question of which band correlates better depends on exactly

where we look.

4.5 Discussion

As noted in Ch. 1, previous studies found that the AME generally correlates at dust-related

IR wavelengths (Ysard et al. 2010; Planck Collaboration et al. 2014d; Hensley et al. 2016).

We see the same overall pattern in the present study. We also corroborate that the FIR

emission shows the tightest correlation with the AME intensity, for large portion of the sky

in a de-localized fashion (Figs. 4.3 and 4.6). In testing for a second-order correlation, we

divided the IR intensities and AME intensity by U , and again performed the band-by-band

all-sky comparison. There is evidence of a residual correlation between IMIR/U and IAME/U

(Figs. 4.7, and 4.10-4.13).

The closeness of the correlation coefficients found here is consistent with the results of the

IRAS vs. AME correlation test result from Planck Collaboration et al. (2014d). They found

that the correlation coefficient among the four IRAS bands (12, 25, 60, and 100 µm) differ from

one another only by about 5%, across their whole set of 98 regions. They had also indicated

that many of the regions sampled were HII regions, and that free-free emission may not have

been completely separated from the AME. We consider that a similar phenomenon may be

happening in the PCAME map we explore here. The trend of AKARI MIR and FIR data
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vs. the AME does not disagree with their IRAS comparison. This work adds that individual

band intensities longer than IRAS 100 µm also correlate strongly with AME, especially the two

Planck/HFI bands used.

4.5.1 AME and interstellar radiation fields

In our masked analysis, we were unable to replicate with the PC data a result by Ysard et al.

(2010) wherein scaling the MIR bands by U improves the correlation of MIR vs. AME. Instead

we found that the best correlation between the MIR bands and AME is found after scaling

both by U . There is a chance that this improvement is induced by the common division of

noise-terms in U , but if this correlation increase is real it may indicate that the AME intensity

is somewhat dependent on U . While it is expected that AME intensity depends both on the

abundance of carriers, and various excitation terms, it is not predicted that U directly influences

spinning dust excitation. However it may be an indirect tracer of galactic environments and

various other spinning dust excitation factors. he slight improvement with division by U was

also seen with our investigation of λ Orionis in Ch. 3.

According to spinning dust theory outlined in Draine & Lazarian (1998a) and in subsequent

works by Ysard & Verstraete (2010), the AME profile and intensity will depend in part on

the ISRF- but as is well-stated in Hensley & Draine (2017), exactly how the ISRF will affect

the AME SED is a more complicated question. Absorbed starlight photons may be able to

rotationally excite the carriers, but if an enhanced ISRF leads to increased dust heating, then

the increased IR emission can rotationally de-excite the carriers. Moreover the ISRF affects

not only the dust temperature but ionization of the carriers.

4.5.2 Microwave foreground component separation

There are known degeneracies between the foreground parameters of the COMMANDER maps

(spinning-dust, and free-free, synchrotron components as described in Planck Collaboration

et al. (2016b).) This can be demonstrated by examining the ratio map of the AME intensity

to R, in comparison with the PC free-free and synchrotron maps. Figs. 4.14 and 4.15 show the

AMEvar/R and AMEfix/R ratio maps, with contours from the free-free and synchrotron maps.

There are clearly regions where synchrotron emission correlates with AME excesses. Some of

these appear as more large scale fluctuations, mainly at higher galactic latitude. Interestingly,
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Figure 4.14: The ratio of AMEvar and PC dust radiance R, tracing fluctuations in AME per
thermal dust emission. The contours trace the PC synchrotron (black) and free-free (white)
components, to highlight various correlations between these components and PC AME fluctua-
tions. Both free-free and syhncrotron can be seen to correlate and anti-correlate with the AME
to dust ratio.

Figure 4.15: The same as Fig. 4.14, but with AMEfix/R as the all-sky image.
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free-free shows agreement with both positive and negative fluctuations in both ratio maps.

At high galactic latitude, free-free tends to be associated with positive fluctuations. This is

supported by the fact that AMEfix shows an improved correlation with both the Hα map

and the PC free-free map, perhaps suggesting confusion between spinning dust and free-free

components. Interestingly, the ring-structure of the λ Orionis region analyzed in Ch. 3, does

not have any apparent conterpart in the AME/R ratio maps in Figs. 4.15 and 4.14.

The results of the R normalized cross-correlation test show that free-free/R shows a negative

correlation with AME/R. This may be furher indication that the AME map, even with the

mask applied from Sec.4.3.1, may suffer from significant MW component confusion in some

regions. It is difficult to quantify potential effects from component separation uncertainties

relative to genuine correlations between microwave emission components, with the present

data. However there remains the potential for such confusion to suppress evidence of any trend

between AME and the actual value of fPAH. The anti-correlation here between free-free/R

and AME/R may be consistent with findings in von Hausegger & Liu (2015) that free-free

emission anti-correlates with AME, if pixels are weighted by S/N.

Even though A9/R and I12/R do not correlate with AME/R in our masked comparison, we

do find some limited regions where these values correlate in our full spatial correlation mapping.

4.5.3 Optical depth

In the interpretation of results here, we have essentially operated under the assumption that

MIR/PAH emisison, FIR emission, and the AME are all in the optically thin domain. This

is supported by the strong agreement in rs, accross all IR bands and the AME, as presented

in the correlation matrices here. (With the exception of the high-latitude, unmasked case in

Fig 4.3.) Conversely, the Hα data — emission known to be absorbed by interstellar dust —

is the only map lacking a correlation with the others at |β| < 5◦. N(H) also shows a weaker

correlation nearer to the galactic plane, likely influenced by saturation and/or self-absorption

effects.

However it has been demonstrated by Sakon et al. (2004) that the optically-thin assumption

for PAH/UIR emission could lead to errors in the estimate of PAH abundance based on these

emision features. Self-absorption for PAHs is another possibility.

We do not expect the analysis presented here to suffer from such effects significantly, as we
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have masked the most confused lines of sight towards the galactic plane. However we cannot

rule out the possibility that such optical depth effects, not only in PAH emisison but in the FIR

or even AME, may weaken any potential relationship between the IR and microwave emisison

from spinning grains.

4.5.4 Comparison of λ Orionis vs. All-sky results

Results presented here do not necessarily conflict with results from Ch. 3, except in that the

findings from Fig. 3.8, wherein rp of A9 emission correlates better with AME than P545 emis-

sion, do not generalize to the results of this chapter (either the masked or unmasked cases.)

However, in the masked all-sky comparison as well as in λ Orionis, we find a better corrleation

between A9 and AME than between I12 and AME when we subject the correlations to bootstrap

resampling.

The different results between Ch. 3 and Ch. 4 may be explained by variations in the com-

ponent separation reliability. It is apparent that with the presently available data, there are a

very limited number of regions on the sky which do not show strong free-free or synchrotron

emission (relative to AME), while also having enough S/N in the MIR to reliably probe a re-

lationship between PAH abundance fluctuations and AME fluctuations. λ Orionis may be one

of the exceptions, where the S/N is high enough, and we are in fact able to see an improved

correlation between PAHs and AME, relative to the overall dust emission to AME connection.

We also disucssed in Ch. 4 the possibility that the PAH emission may not necessarily be

optically thin. If this were true, it may explain discrepancies for our λ Orionis result and

the results in this chapter. λ Orionis provides us a relatively clean line of sight compared to

delocalized all-sky analysis.

The fact that we do not see a clear preferential relationship between AME and PAHs in the

all-sky analysis, does not rule out a contribution by spinning PAHs to the AME. Likewise the

fact that we do see a better correlation in λ Orionis does not rule out contributions from other

proposals, such as that form non-PAH small grains, or nanosilicates.

4.5.5 Implications of an absent PAH-AME correlation

In the case that we are able to rule PAHs out as the AME carrier with confidence, this may

imply some constraints on the PAH size distribution and dipole moment. As discussed in the

82



4.6. FUTURE WORKS

theoretical work by Draine & Lazarian (1998a); Ali-Haimoud (2010) and others, as well as the

observational work by Hensley et al. (2016), if PAHs exist in the ISM, they are very likely to

be spinning rapidly. Thus if we are able to confirm that they do not produce AME, this could

tell us the morphology of ISM PAHs are not in an appropriate range to produce the observed

AME. Spinning PAHs may be a reality even in the case that the AME comes from something

else, if the PAHs are too large or lack appropriate electric dipoles.

4.6 Future Works

Because of the issues highlighted in previous sections (S/N, component separation, etc.), it is

extremely difficult to draw a conclusion about the carrier of AME based on a general all-sky

analysis such as that shown here. However there may be promise in studies of individual regions,

where an attempt can be made at controlling for local environmental factors, or background/-

foreground contamination. While it is true that previous studies of specific objects have also

not been conclusive, such as the investigation of Perseus by Tibbs et al. (2011), there are still

many other AME prominent regions which have not been probed in-depth, through a combi-

nation of microwave and PAH-range observations. Even the study of λ Orionis in Ch. 3 is not

exhaustive, and this interesting region deserves further attention from targeted observations.

New tests of AME hypotheses should: push limitations in the available data and, focus on

regions well-documented to show a spinning-dust-like AME spectrum. While a simple excess

of microwave emission may be able to be fit by a spinning dust model SED, the spinning

dust explanation is not testable unless the observed SED shows evidence of a low-frequency

downturn.

There are two major boundaries that, based on results presented here, must be pushed.

Spatial resolution and spectral coverage. Spatial resolution constraints are a critical issue in

multiwavelength astornomy, especially in dust-related works. To explain why, simply consider

the description of dust research from Ch. 1, and Tab. 2.1. The spatial resolution of available

data has a wide discrepancy from the MIR to microwave: 10 arcseconds for AKARI 9 micron

to at least a degree FWHM for the “effective resolution” of parameter maps. Likewise, if there

are enivonmental diffrences only visible at sub-degree angular scales, we will have a hard time

controlling for the excitation factors of spinning dust emission. Without separating excitation
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factors from column density of the carriers. Pairing opportunities for resolution maximizing

ground-based observations of very limited regions of the sky, utilizing facilities such as the

Atacama Large Milimeter Array (ALMA) Band 1 (30-35 GHz, still in production, Huang et al.

(2016).), with detailed assesment of tracers of small dust grains, will be helpful.

Future breakthroughs in the AME may be seen if we are able to increase the number of

regions with a reliable AME estimation. This can be obtained through improved synchrotron

emission constraints, at higher resolutions. C-Band All Sky Survey (CBASS) at 5 GHz will

be helpful in this regard (Irfan et al. 2015). CBASS is expected to provide higher resolution

low frequency constraints for the whole sky (48′ compared to 56′ for H408), with improved

sensitivity (0.1 µK). In terms of localized studies, it may be fruitful to consider the physical

environment of each region (i.e. ionization state, gas temperature and density, other conditions

indicated in Draine & Lazarian (1998a); Ali-Haimoud (2010) to affect the SED shape) rather

than relying of frequency-shifts to a template spectrum. More detailed exploration of PAH

ionization, and other fluctuations between individual PAH features relative to variations in the

AME spectral profile may also help us understand potential roles of PAHs in producing AME.

However, even if we have excellent constraints on PAH emission features, synchrotron emission,

free-free emission, and a powerful spinning dust SED model, the key data will be spectral

coverage of the full AME profile. As noted in Ch. 2, the all-sky maps currently available, do

not give constraints in the 10-20 GHz range. This means that lower frequency spinning dust

peaks and emissivities are not well known. Improved understanding of AME and spinning dust

therefore will require observations such as those being undertaken by the Q-U-I JOint Tenerife

Experiment (QUIJOTE) project, which offers coverage between 10 and 20 GHz (Génova-Santos

et al. 2015).
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Summary

In Ch. 1 we demonstrated both the mysteries and potential for answers revealed by all-sky

observation and analysis. A paticular mystery, that of the Anomalous Microwave Emission

(AME), and the popular but yet unproven hypothesis that this AME comes from rapidly

spinning tiny dust grains, perhaps PAHs, was introduced. We explained the merit of testing

a spinning PAH hypothesis, while noting that spinning nanosilicates, or even magnetic dipole

emission from dust have also been put forth in the literature.

In Ch. 2, we overviewed a collection of infrared all-sky surveys that help us prove the dust

SED from the UIR band range to the FIR, and discussed how these could help explore the

AME question. We described also complimentary data and parameter maps from the Planck

Collaboration that can be compared with the IR maps. Particular advantages of the PAH

tracing bands, especially the A9 band, for covering not only neutral but potentially charged

PAHs, were discussed in the context of AME investigation. Limitations were given for all of

these data sets— most of these boiling-down to component separation either of the Zodiacal

light from thermal dust emission, or to the latter from other microwave foregrounds and the

CMB.

In Ch. 3 we combined and processed the data presented in Ch 2 to investigate a particular

region of the sky with relatively high S/N in all of the data, and demonstrating strong AME. We

evaluated the background, noise, and contamination from systematic errors and point sources

in these data, and compared them on a common resolution and grid. All of the analyses from

simple correlation plots, to bootstrap analysis, to dust SED fitting suggest that A9 emisison

correlates with AME better than I12 or D12 — supporting PAH emisison as the source of

AME, and suggesting the role of charged PAHs should be further explored. In addition we
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find that the bands near the thermal dust emisison peak show a weaker correlation, perhaps

suggesting that harsh radiation fields may be destroying PAHs, leading to weaker AME. We

also cautioned that although PAH mass correlates better than dust mass, we still see a good

correlation between FIR emisison and AME (P545, P857). This highlights the fact that AME,

PAHs, and cold dust are all correlated.

In Ch. 4 we attempted to find evidence that the result from Ch. 2 applies even when looking

at a less region-specific scale, using an all-sky analysis. However neither the full-sky unmasked

case, or the case employing a mask of low S/N regions (mainly high galactic latitudes), point

sources, and the galactic plane, showed a stronger correlation between PAH related emission

and AME than that seen between FIR emission and the AME. We did however find that as

in Ch. 3, A9 tends to correlate with AME better than I12 or D12. We discussed apparent

systemtic issues with the AME data, such as the possibility for under or over subtraction of

free-free or synchrotron emission, and how these could serve to weaken evidence of any PAH

or small grain correlation wiht the AME. Scaling the infrared intensities by U does not change

this result. We reproduce the result from Hensley et al. (2016) that there is not an overall

correlation between PAH fraction and AME-per-dust-emisison, but expand this calculation

showing that for a few limited regions on the sky there may be evidence of a correlation. We

discuss how a potential variation on the optical thickness between UIR bands, FIR emisison,

among other factors, could lead to a different result between λ Orionis and the all-sky analysis.

We also discuss potential observional advances that could help explore the issue further, such as

improved low frequency constraints,or detailed analysis of the spatial variation of PAH features

paired with high resolution AME observation.

Overall, using the presently available data, it is difficult to isolate the PAH-dust relationship,

from the dust-AME relationship. We find throughout this work that a PAH-emission to AME

correlation is readily demonstable, in intensity. A test of whether a second-order relationship

exists, such that PAH emission is a better predictor of the AME than thermal dust emission,

was shown to be inconclusive. One exception is that of λ Orionis, where our results suggest

that PAH mass correlates better with AME than does the total dust mass. Nevertheless we

emphasize this point cautiously. We were not able to generalize it to a larger scale (all-sky data

with, effectively, a mask on the galactic plane and high latitude emission.) We are not able to

confirm or reject a “spinning PAH” hypothesis for the source of AME. However in λ Orionis,
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and perhaps other regions yet to be examined in with dust SED fitting, we suggest that there

is still ample reason to continue testing this hypothesis.
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