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Abstract

Magnetic reconnection is considered to be one of the most important fundamental pro-

cesses due to its wide application. It converts ubiquitously existing magnetic energy into

heating and accelerating plasma thus explains various astronomical events that relate to

the efficient energy release. Numerous works that tried to solve the fast reconnection

problems started from more than 50 years ago. However, there still remains a big issue

that how the reconnection is accelerated to reach the fast energy output shown by the ob-

servations. In this dissertation, we executed numerical simulations of a current sheet with

a finite guide field to understand the basic physics for reconnection inside a self-generated

turbulent state.

Since the coexistence of multiple tearing layers was found in many numerical studies

for a current sheet with non-zero guide field under random perturbation, the coupling

between these layers might lead to a solution for fast reconnection. So first in Chap.2, we

applied a pair of rotational-symmetric eigenmodes of tearing instability to understand the

local mechanism of the coupling. We found that the coupling, namely the inflow-outflow

coupling between diffusion regions that are not aligned with each other, increases the

inflow as well as the local reconnection rate from the coupling side and triggers secondary

tearing instability in the original diffusion regions.

In Chap.3, the consequences of the initial inflow-outflow coupling were examined

both in the local and the global scales. With the partition of the diffusion region, a vent

is open across the sheet that magnetic fields are ejected out to collide with the free field

lines. The collision creates new diffusion regions outwardly. In the global view, the new

diffusion regions form new reconnection layers that correspond to new energy modes,
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which have larger wavenumbers along the global guide field direction than the original

modes. The creation of the new energy modes come from the nonlinear coupling of initial

modes with the higher order harmonics of their counterparts. These new reconnection

layers are close to the asymptotic magnetic fields, so they transport free energy into the

turbulent sheet. Meanwhile, the old and new reconnection layers also build up inflow-

outflow coupling across the sheet. It is found that the global reconnection rate increases.

In order to generalize our sheet-crossing coupling model, we re-examined the recon-

nection in the current sheet under random perturbation in Chap.4. As many tearing layers

emerge together, they build up inflow-outflow coupling across the current sheet, while

activating new energy modes outwardly. As the overall reconnection rate increases, the

same story as the eigenmodes coupling simulation is retrieved.

We made a parameter survey on the layer distance to check the dependence of the

inflow-outflow coupling model, as well as the nonlinear coupling that produces new en-

ergy modes in Chap.5. We found that when two layers are far apart, no coupling is built

that each layer grows independently. When two layers are close, they efficiently build up

inflow-outflow coupling and cascade the energy into energy modes with larger wavenum-

bers thus follow the sheet-crossing coupling picture. On the other hand, decreasing the

global guide field will sufficiently shrink the distance between tearing layers. We thus

also tested a simulation with a very weak guide field and found that the coupling is bro-

ken soon and substituted by a series of transient and local reconnection.

In Chap.6, we summarized our results first and discussed several different issues. We

compared our reconnection rate with other measurements and found that the reconnection

in our system can be as fast as the other spontaneous 3D reconnection simulations. As the

bi-directional flow pattern is often observed in the astronomical events, we examine the

interaction between 2D and 3D modes. We notice that even in the environment dominated

by 3D modes, 2D modes can grow and coalesce into longer 2D modes that produce global

bi-directional flow and large 2D flux tube. In addition, the contribution of our results to

the turbulence reconnection studies and the possible extension to the particle regime were
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discussed. Future prospects were presented that many works can be done, such as the

model dependence on the diffusivity, the boundary condition and the sheet structure, to

make a wholesome theory.

In conclusion, we have developed a well-defined model on the fast 3D reconnection.

We followed the development of the diffusion regions and found that the universal existing

coupling between tearing layers across the whole current sheet is the essential part in the

acceleration of the global reconnection. The coupling does not only increase the local

reconnection for each reconnection layer but also produces the new reconnection layers

that expand further into the magnetic reservoir where free energy is provided.
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Chapter 1

General Introduction

In this chapter, we will review the historical and up-to-date understanding of our research

topic, magnetic reconnection, and our motivation for the study, which is the leading point

of this dissertation.

1.1 Magnetic reconnection

In one-fluid magnetohydrodynamics (MHD) regime, in which the collision between ions

and electrons are sufficiently effective, the magnetic field development is described by the

induction equation

∂B

∂t
= −c∇× E

= ∇× (v ×B)− c∇× (ηJ) (1.1)

where B,E,v,J, c are the magnetic field, the electric field, the velocity field, the current

density and the speed of light respectively. Resistivity η is the reverse of conductivity

σ. When the magnetic field changes the orientation in the direction perpendicular to the

local magnetic field, a current layer is built. This is described by

J =
c

4π
∇×B. (1.2)
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Figure 1.1: Illustration of magnetic reconnection in 2D and 3D (3D figure is the revision
of Yamada et al. (2010) FIG.2). Blue and red lines with arrows are the magnetic field
lines. Orange regions are diffusion regions. Inflows and outflows are represented by
yellow and green arrows. Thin black dashed lines are separatrices.

When the velocity v is negligible or uniformly acting on the magnetic field along B di-

rection, the diffusion term (the second term on the R.H.S. of Eq.(1.1)) becomes dominant.

The magnetic structure is diffusing as a whole and described by a diffusion equation

∂B

∂t
= η̃∇2B. (1.3)

where η̃ = ηc2/(4π) is the uniform magnetic diffusivity. It is clear that no new component

of magnetic fields is created due to the diffusion itself. The sheared components gradually

annihilate until the whole magnetic structure relaxes into a uniform field. Non-uniformity

of v or B will introduce new physics by enhancing the significance of the advection term

(first term on the R.H.S. of Eq.(1.1)). This is the topic of our interest, namely magnetic

reconnection, which was first introduced by Dungey (1961).

An illustration of two-dimensional (2D) magnetic reconnection is shown in the left

panel of Fig.1.1. The anti-parallel magnetic fields enter the diffusion region, where diffu-

sion dominates, and literally reconnect. The newly ”reconnected” field line has a strong

bent that the tension force drags the magnetic field together with the plasma away from

the diffusion region to release the bent. As flow converges into the diffusion region then

diverges out in the perpendicular direction, there exists a stagnation point of flow that
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v = 0 when no global background flow is introduced.

In reconnection picture, the magnetic field changes the connectivity by exchanging

parts of the field lines when passing through a separatrix. The separatrix separates the in-

flow region, where field lines are approaching the diffusion region, and the outflow region,

where field lines are leaving the diffusion region. The crossing point of two separatrices

is called an X-point, where reconnection happens.

In general, magnetic reconnection happens when the diffusion term becomes local-

ized. Similar scenario happens in three-dimensional (3D) reconnection (right panel of

Fig.1.1). When field lines with arbitrary orientations meet in the diffusion region, they

reconnect by annihilating the anti-parallel components while holding other components.

After exchanging parts of the field lines, reconnected field lines form bents and eject the

plasma out by tension force. If a cut along the thick black dashed line is made, 2D-like

reconnection scenario is retrieved.

The explanation above just gives the basic information and a rough image of magnetic

reconnection. Introducing asymmetry, a guide field (the magnetic field that is perpendicu-

lar to the local reconnection plane), open/closed boundary can change the story consider-

ably. On the other hand, including other effects, such as the ionization degree, the kinetic

scale physics, special relativity and so on are also essentially important for a profound

understanding of magnetic reconnection physics and further extension of its application.

Since this dissertation concentrates on the reconnection physics that is treated in one-fluid

MHD regime, in the following sections and chapters, we will only touch these effects no

further than necessary.

1.2 Application

By consuming the anti-parallel magnetic fields, local diffusion in magnetic reconnection

generates heat, which originally comes from the collisions between ions and electrons.

The work done by the tension force in the outflow region accelerates plasma particles.

So from the energy point of view, magnetic reconnection converts magnetic energy into
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kinetic and thermal energy of plasma. Additionally, magnetic fields reconnect and build

up new magnetic structures. Since magnetic fields are considered to be existing ubiqui-

tously in the universe, it is believed that reconnection can explain various energy releasing

astronomical events; especially those ones that create new magnetic topology.

Being the closest star to the Earth, the Sun is the best laboratory for plasma physics

studies. Many solar activities can be captured by telescopes and examined in detail.

Among all solar activities, the solar flare is the most frequently addressed in magnetic

reconnection studies, as the first quantitative understanding of magnetic reconnection was

targeting to solve the fast energy release from the solar flare (Sweet, 1958; Parker, 1957).

The solar flare is a sudden brightening in a large range of observation during a short time

(in the order of minutes or hours). A 2D standard model (Carmichael, 1964; Sturrock,

1966; Hirayama, 1974; Kopp & Pneuman, 1976) was proposed by integrating many fea-

tures that are observed during the flare events, such as the candle-light cusp structure

(Tsuneta et al., 1991), hard and soft X-ray emission (Masuda et al., 1994). As tube-like

structures are often created with flare (e.g., Sakurai, 1976), a 3D standard model of flare

was founded by introducing an extra magnetic component along the direction that is per-

pendicular to the reconnection plane (Shibata et al., 1995). Eventually, more complicated

features were caught by various observations. Therefore, advanced models which incor-

porate complex magnetic structures were built. For example, the slipping reconnection

model (e.g., Janvier et al., 2013) is applied to explain the S-shaped sigmoids (e.g., Gibson

et al., 2002) and the slipping motion of the coronal loop footpoints (e.g., Aulanier et al.,

2007); the tether-cutting model (e.g., Moore et al., 1997) and the model with emerging

flux near the polarity inversion line (e.g., Kusano et al., 2012) explain the onset of recon-

nection and the flux tube production. Other phenomena such as solar jets (e.g., Takasao

et al., 2013), filament production (e.g., Kaneko & Yokoyama, 2017), coronal mass ejec-

tion (e.g., Hassanin & Kliem, 2016), corona heating (e.g., Parker, 1972), Ellerman bomb

(e.g., Watanabe et al., 2011) are also highly related to reconnection.

The extension of the solar atmosphere that reaches the interplanetary space is called
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the solar wind. The reconnection events are prevalent in the solar wind (Phan et al.,

2009), thus it is believed to be important in explaining the intermittent turbulence and the

creation of coherent structures in different scales (Osman et al., 2014), the acceleration of

the solar wind (Fisk et al., 1999) and so on.

Magnetic fields of the Sun extend and inevitably contact with the magnetosphere of

the Earth and other planets in solar system. Regarding the tilting angle difference and

the time-dependent orientation of the magnetic fields from the Sun, the magnetic fields

of the Sun and the Earth are not necessary to be always aligned at the magnetosphere.

Meanwhile, the unceasing solar wind compresses the magnetic fields towards the Earth’s

side, which triggers reconnection naturally. Reconnection happens at the magnetopause

transfers the solar plasma into the Earth (e.g., Lee & Fu, 1985). At the geotail, reconnec-

tion is also considered to happen (e.g., Eastwood et al., 2010) while producing flux tubes

(Hughes & Sibeck, 1987) and the earthward busty bulk flows (Birn et al., 2011).

Magnetic fields from different stars, protostars or accretion disks fill in the interstellar

space. Sometimes the fields tangle with each other and create spectacular views, such as

the Galactic Ridge X-ray Emission (Tanuma et al., 1999). Reconnection is also supportive

in explaining the transportation of angular momentum bi-directionally in the accretion

disk (Hoshino, 2015), the non-thermal particle acceleration (Hoshino, 2012) and so on.

The system size of the astronomical events is always too large compared to a single

reconnection event, whose size is determined by the particle scale. Therefore, one of

the most significant purposes of the reconnection theoretical studies is to prepare a firm

foundation for the more realistic models in the future.

1.3 Classical models and theory

First theoretical studies of magnetic reconnection intended to solve the fast energy release

observed in the solar flares. Assumptions and approximations were used for simplicity in

building up these models. They construct solid bases for the proceeding advanced studies

on the topic of reconnection. Meanwhile, analysis of current sheet physics also signifi-
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cantly deepens the understanding of reconnection dynamics. In this section, we overview

two classical time-independent models and the spontaneous instability of a current sheet

in detail.

1.3.1 The Sweet-Parker model and Petschek’s model

The first time-independent analytical study on reconnection was proposed by Sweet (1958)

and refined by Parker (1957) to understand the fast energy release from the solar flare.

They assumed that a large current sheet in the same size of the solar flare is formed by a

pair of approaching magnetic dipoles under the footpoint motion. The compressed region

between the two dipole fields becomes a 2D slab-like sheet. The whole current sheet par-

ticipates reconnection that the diffusion region is as large as the current sheet itself (left

panel of Fig.1.2). By considering the conservation law (total mass and magnetic flux)

inside a diffusion region with a half-width d and a half-length l, a simple scaling law is

deduced that
d

l
∼ vin

vout
∼ vin

vA
(1.4)

where vin, vout and vA represent the inflow, outflow and the Alfvén velocity of the system

asymptotic magnetic field. The outflow becomes Alfvénic that vout ∼ vA, as the global

asymptotic fields are supposed to be sufficiently converted.

Figure 1.2: Illustration of magnetic reconnection in the Sweet-Parker model and
Petschek’s model. Turquoise lines are magnetic field lines. Yellow and green arrows
are inflow and outflow. Orange regions represent diffusion regions. Grey dashed lines are
slow-mode shocks in Petschek’s model.
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The most important issue in the reconnection modeling is the capability of fast energy

release. In another word, fast reconnection is always required. In the Sweet-Parker model,

the inflow vin is estimated by the diffusion equation that

vin ∼
η̃

d
(1.5)

which is dependent on the diffusivity. The diffusion strength in a system can be evaluated

by the Lundquist number, S, which is defined by

S ≡ vcLc
η̃

(1.6)

where vc and Lc are the characteristic velocity and the length scale that change with prob-

lems. When S is large, the system slowly diffuses. In the context of global reconnection,

S =
vAL

η̃
(1.7)

where L is the system size. By relating Eq.(1.4), Eq.(1.5) and Eq.(1.7) and take l ∼ L,

we have the reconnection rate of the Sweet-Parker reconnection as

MA =
vin

vA
∼ S− 1

2 . (1.8)

The environment of most astronomical events usually has large S. For instance, the

solar corona, where the solar flare happens, has S ∼ 1012 − 1014. It indicates that in a

large current sheet in the same size as the flare itself, the reconnection rate is in the order

of tens or hundreds of days. This result is far slower than the observation (minutes or

hours), so another model with a higher reconnection efficiency is needed.

From Eq.(1.4), the reconnection rate is inversely proportional to the diffusion region

length l. So one way to increase the reconnection rate is to shrink the diffusion region

size. Petschek (1964) argued that if the diffusion region has d ∼ l ∝ η̃, the reconnection

rate is enhanced. In addition, two pairs of slow-mode shocks are created as the reconnec-
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tion produces a discontinuity between the inflow and the outflow regions (right panel of

Fig.1.2). By combining solutions in the diffusion region, the inflow and outflow regions,

the reconnection rate is tuned up to

MA ∼ π

8 log S
, (1.9)

which is less dependent on the diffusivity. For solar flare case, the reconnection rate is

raised to MA ∼ 0.01, which seems to be consistent with the global observation on the

reconnection inflow (Yokoyama et al., 2001a; Takasao et al., 2012a).

Petschek’s model was regarded as an effective model that can be implemented into

the solar flare model. However, it was noticed that unless localized diffusivity is applied

(e.g., Ugai & Tsuda, 1977; Baty et al., 2006), Petscheck’s model cannot last long. Rather,

it degenerates into the Sweet-Parker type reconnection (Biskamp, 1986), which seems to

be a common scaling law for a single diffusion region.

These two classical models are time-independent models. It means that they can ex-

plain the physics when the system reaches a quasi-steady state. Then here comes a ques-

tion that how the reconnection starts. There are roughly two types of initiations, driven

reconnection and spontaneous reconnection. Driven reconnection corresponds to the re-

connection that is controlled by the external force (e.g., Sato & Hayashi, 1979; Kowal

et al., 2009). In comparison, spontaneous reconnection exhibits the potential of a current

sheet in reconnection. The latter one is often related to the tearing instability, which is an

inherent instability of the current sheet itself.

1.3.2 The tearing instability

The tearing instability is a spontaneous instability of the current sheet, which extracts

free energy from currents. A simple picture of the tearing instability could be explained

as the following (Fig.1.3). When a current sheet is perturbed, at some points the current

enhances locally. Due to the Ampère’s law, the enhanced current will absorb more current

8



Figure 1.3: Illustration of the tearing instability (2D). Turquoise lines are magnetic fields
while pink circle-with-cross labels are currents running into the paper. Red arrows repre-
sent plasma flows.

to itself, which triggers the instability. Since the currents are the counter-flowing electrons

and ions streams, the motion of currents along the tearing layer represents the motion

of plasma. The position where currents are depleted needs external plasma to fill in.

Meanwhile, the external magnetic fields are bent into the tearing layer to fit the new

configuration of current distribution. The converging flow across the current sheet will

further ensure the bent of the field lines. As the magnetic field across the current sheet gets

more and more compressed under the push of flow and the current reorganization, current

density is gradually enhanced locally. When the diffusion term in the induction equation

Eq.(1.1) becomes dominant in the local region, reconnection starts and the position with

enhanced current density develops into an X-point. In between X-points, currents are

collected inside a confined structure formed by reconnected magnetic fields, namely a

plasmoid (or a magnetic island).

The tearing instability can be triggered on any layers where current density is high.

So Fig.1.3 is a 2D cut along the propagation direction of the tearing instability in a 3D

system. The more general illustration of the tearing instability is given in Fig.1.4 for a

current sheet formed by sheared magnetic fields, which could be decomposed into anti-

parallel magnetic fields with a global guide field. For simplicity, we assume a uniform

global guide field. Current runs along the guide field and reaches a peak at the current

sheet center. If the perturbation wave vector propagates along the direction of the anti-

parallel fields (2D perturbation), the tearing instability grows at the current sheet center

9



Figure 1.4: Illustration of the tearing instability in a current sheet formed by anti-parallel
fields (turquoise lines) with a uniform guide field (turquoise lines with shadows on the left
panel). The current sheet center is shown as horizontal dashed lines on fore and rare sur-
faces. Current (pink arrows) runs along the guide field. Orientation of tearing-produced
flux tubes depends on the perturbation wave vector. Turquoise lines with shadows repre-
sent the local field on the right panels.
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and generates a line of X-points (X-line) with flux tubes in between. This structure is

2D-like as each cut across the guide field direction is the same. When the perturbation

wave vector is tilted to the guide field (3D perturbation), the tearing instability grows on

a layer that is away from the current sheet center. Flux tubes and X-lines that are parallel

to the local field are formed. The position of the tearing layer is chosen by the criteria:

k ·B = 0 (1.10)

(Furth et al., 1963) that the tearing instability grows on the layer where the local magnetic

field is perpendicular to the perturbation wave vector k.

In reality, it is rare the case that the perturbation contains only one single k. Random

perturbation which is a mixture of numerous wave vectors with a continuous spectrum is

generally expected. Each wave vector will select its preferable magnetic layer and plant

seed for the tearing instability. As a result, the current sheet is packed with tearing layers

that each one of them corresponds to a certain wave vector (Galeev & Zelenyi, 1977). But

the fastest growing ones will govern the physics of the global current sheet.

The growth rate of the tearing instability can be obtained by analytical study. Furth

et al. (1963) were the first to quantitatively examine the tearing instability in a sheared

magnetic field with a current sheet half-width a. By neglecting viscosity and assume

incompressibility (∇ · v = 0) for simplicity, the full set of MHD equations are left with

two coupled equations of the perturbed fields. The tearing is effective in a thin layer near

the resonance layer, in which diffusion dominates. Thus the linearized equations become

a boundary-layer problem that solutions inside the diffusion layer and the outer region

should be connected. The connection is done by equating the tearing parameter ∆′ inside

and outside of the tearing layer.

There are many ways of linearizing equations, so different forms of ∆′ are given. We

will follow the process in Biskamp (1997) here as an example. Since incompressibility is

often assumed in many linear studies, the coupled equations of B and v can be rewritten

as equations of coupled magnetic flux function ψ and plasma flow function ϕ. General

11



definitions of flux function ψ and flow function ϕ are:

B = ez ×∇ψ (1.11)

v = ez ×∇ϕ (1.12)

where the fields along the direction perpendicular to the tearing plane (ez) are neglected.

For a tearing mode that is growing on x = xs, the tearing parameter is expressed as

∆′ ∼ ψ′
1(x

+
s )− ψ′

1(x
−
s )

ψ1(xs)
(1.13)

(Biskamp, 1997, Eq.(4.87)) where ψ′
1(x

±
s ) = ∂ψ1(x

±
s )/∂x represent the first derivative

of the perturbed magnetic flux on either side of the tearing layer xs. It reflects how

much magnetic field piles up just outside the diffusion layer across the X-point. When

∆′ > 0, magnetic field compresses into the X-point and encourages the tearing instability

to grow. When ∆′ < 0, there exists no bi-directional compression thus the tearing is

stopped. By comparing all terms in the coupled equations, the tearing instability with a

long wavelength has a growth rate γ and a diffusion layer half-width δη:

γFKR ∼ (64π)−1/5η̃3/5(∆′)4/5(kB′
0)

2/5 ∝ k−2/5η̃3/5 (1.14)

δη ∼ η̃∆′

2γ
∼ (2π)1/5η̃2/5(∆′)1/5(kB′

0)
−2/5 ∝ k1/5η̃2/5 (1.15)

(Biskamp, 1997, Eq.(4.90)(4.91)), where B′
0 measures the current sheet pinch.

A Harris sheet (Harris, 1962) is often implemented in the reconnection study as the

background current sheet. The magnetic field has a structure of

B∥(x) = B0 tanh
(x
a

)
(1.16)

where B0 is the asymptotic value for the anti-parallel magnetic fields in the infinity

x → ∞ and a is the current sheet half-width. Then the analytical solution of the tear-

ing instability can be obtained by considering the boundary condition ψ1(x = ±∞) = 0
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that

ψ1 = e−k|x|
[
1 +

1

ka
tanh

(
|x|
a

)]
. (1.17)

(Biskamp, 1997, Eq.(4.97)). Therefore, the tearing parameter ∆′ is calculated as

∆′ =
2

a

(
1

ka
− ka

)
(1.18)

(Biskamp, 1997, Eq.(4.98)).

A cut-off wavelength of the tearing exists that

kcuta ∼ 1 (1.19)

so only the perturbed mode with a wavelength longer than 2π of the current sheet half-

width can grow (ka < 1). The mode with a shorter wavelength will be sufficiently sup-

pressed by the magnetic tension force.

From Eq.(1.18), there exists a monotonically increasing dependence of the growth rate

on the tearing wavelength. However, when ∆′ becomes too large, say ∆′δη ∼ 1, the local

reconnection at the X-point cannot consume the piling-up magnetic field fast enough. So

reversely, the growth of the tearing reduces with longer wavelengths (Coppi et al., 1976).

Therefore, the growth rate of longer tearing modes is following a scaling law that

γCoppi ∝ k2/3η̃1/3. (1.20)

For a short current sheet, the available modes are always FKR modes. So the most

unstable modes kmax are the longest modes in the system. When the sheet becomes long

enough, the most unstable modes are determined by the junction of the two regimes, FKR

and Coppi (Fig.1.5), that

kmax ∝ η̃1/4 (1.21)

with a growth rate of

γmax ∝ η̃1/2. (1.22)
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Figure 1.5: Two regimes of the tearing instability growth in the log-log scale.

As it can be clearly seen from Eq.(1.14), Eq.(1.20) and Eq.(1.22), the growth rate of

the tearing instability is decreasing with smaller diffusivity. Therefore, the linear stage of

the tearing instability alone is incapable to explain the fast reconnection. Further stages

should be investigated to understand the spontaneous reconnection.

1.3.3 Other classical models

In Sec.1.3.1, we reviewed two classical steady solutions of reconnection. Although the

Sweet-Parker reconnection is slow, it presents a common scaling law in diffusion re-

gions since only the conservation laws are applied in the deduction. In comparison, the

requirement for achieving Petschek’s reconnection is much more severe. The localized

diffusivity can be regarded as a boundary condition from the inner side. The inflow and

outflow characteristics are determined by the information propagating outwardly from

the diffusion region. Also, the boundary condition onto the whole system changes the

central physics inwardly (Biskamp, 1986). It was found by Priest & Forbes (1986) that

Petschek’s reconnection is one of a group of solutions that react to different boundary con-

ditions. The solution by Sonnerup (1970), which considered slow-mode expansion waves

propagating towards the diffusion region, is also included as one of these solutions.

In addition to these models, another model declared that the slow-mode shocks as
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that in Petschek’s model cannot be stationary. Rather, they propagate with the moving

plasmoid (Biernat et al., 1987). During the propagation, the plasmoid boundary also

consumes the magnetic energy so it creates a bursty reconnection during the propagation

phase (Semenov et al., 1998). A 3D extension of this model was shown in Linton &

Longcope (2006). The bursty feature also starts from the discontinuity near the X-point.

So essentially, this model depends on the boundary condition applied by the diffusion

region as well.

All reconnection models above are applied to a slab-like current sheet. Since the mag-

netic field is rather complicated in the universe, this assumption is not always held. The

magnetic fields on the solar surface sometimes expand into the form of a dome instead of

an extended loop (e.g., Jiang et al., 2015). The reconnection therefore becomes different

from the slab-like type as the symmetry changes from flat into cylindrical. The model of

fan-spine reconnection is raised (e.g., Priest & Pontin, 2009) and serves different geome-

tries.

1.4 Advanced models

As the steady solutions are either too slow to explain the observed astronomical events

or highly dependent on the boundary condition, it is worth considering more dynamic

reconnection pictures to overcome these problems.

1.4.1 The 2D plasmoid instability reconnection model

Strong and continuous external forces that sustain driven reconnection cannot be always

guaranteed. Therefore, whether spontaneous reconnection has a potential to be fast is

important to cover all possibilities.

The tearing instability cannot grow exponentially eternally. As no flux can be ejected

from the system, the growth of plasmoids in between X-points will eventually suppress

the reconnection outflow from X-points. When the plasmoid width grows as large as the
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diffusion layer width 2δη, the lateral fields do not diffuse as the central fields do. So the

magnetic island is trying to contract across the current sheet direction, which also slows

down the instability growth. Then the tearing layer enters the nonlinear phase. The island

width grows linearly with time (w ∝ t) during this stage (Rutherford, 1973). Rutherford’s

regime gradually stops when the island width approaches 1/∆′ (Uzdensky & Loureiro,

2016), when the magnetic island configuration exceeds the provided potential change

from the initial magnetic pinch. Further island growth is quenched by the background

magnetic pressure from the lateral.

In summary, the magnetic island width w grows from a small amplitude supplied by

the initial perturbation and goes through 2 classical phases that

w(t = 0)
linear tearing−−−−−−→ 2δη

nonlinear Rutherford−−−−−−−−−−→ 1/∆′. (1.23)

It is clear that for shorter FKR modes (∆′δη ≪ 1), there exists a long term Rutherford’s

stage. But for Coppi’s modes with long wavelength, Rutherford’s stage is considerably

shortened and enters another regime. When the tearing parameter ∆′ is sufficiently large,

the continuous supply of magnetic fields compresses the X-point along the tearing layer

and forms an elongated diffusion region (Jemella et al., 2003), which thereafter enters the

Sweet-Parker phase (Loureiro et al., 2005).

As the reconnection continues in the Sweet-Parker type diffusion region, the diffusion

region is elongated and gets thinner as the outflow push the plasma away from the X-

point (Shibata & Tanuma, 2001). It is found that a 2D Sweet-Parker sheet is unstable

to secondary tearing (Biskamp, 1986). So the elongated diffusion region collapses again

into smaller pieces (Loureiro et al., 2005). It is expected that the collapsing continues

before the diffusion region width reaches the ion gyroradius (Shibata & Tanuma, 2001;

Uzdensky et al., 2010). Secondary tearing grows in the local Sweet-Parker type diffusion

region when the diffusion region aspect ratio d/l < 0.01 (Biskamp, 1986; Uzdensky et al.,

2010; Huang & Bhattacharjee, 2010). Therefore, the whole system is determined by the

smallest thus fastest diffusion region and obtains a global reconnection rate MA ∼ d/l ∼
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0.01 (Bhattacharjee et al., 2009; Huang & Bhattacharjee, 2010; Loureiro et al., 2012;

Shibayama et al., 2015).

This 2D fast reconnection model is called the 2D plasmoid instability reconnection

or the 2D hierarchical reconnection. As the reconnection rate becomes independent of

S when S ≳ 104 (Bhattacharjee et al., 2009; Huang & Bhattacharjee, 2010; Loureiro

et al., 2012; Shibayama et al., 2015), this model seems to be applicable to a system with

a considerably large Lundquist number, such as the solar flare. Also, it builds up a bridge

between the large system scale with the small particle scale by continuous collapsing

(Shibata & Tanuma, 2001; Uzdensky et al., 2010; Bárta et al., 2011).

However, a strong limitation exists in this model. As shown by 3D simulations, the

2D structures are easy to be disturbed by the 3D perturbation, even though the initial

seeded 3D modes (wave modes propagate along the current sheet with non-zero wave

vectors perpendicular to the anti-parallel magnetic fields) energy is much smaller than the

seeded 2D modes (wave modes propagate only along the anti-parallel magnetic fields)

(Dahlburg et al., 1992; Dahlburg & Einaudi, 2002). When no global guide field is applied,

the produced 3D flux tubes that are perpendicular to the reconnection plane are easy to

be distorted by kink-like instability. Therefore, the 2D plasmoid instability reconnection

model seems to be unfeasible in a 3D system without guide fields. It has been confirmed

that the reconnection in a 3D simulation box with no guide field becomes turbulent that

no clear coherent structures can be identified (Oishi et al., 2015). It is straightforward to

think that the 3D perturbation can be suppressed by implementing a strong guide field

in the current sheet. In this case, the turbulence still emerges. Meanwhile, coherent flux

tubes that are not parallel to the global guide field can be observed (Landi et al., 2008;

Huang & Bhattacharjee, 2016)

It seems that the 3D reconnection enters a different regime compared to the 2D recon-

nection. Thus a new model in 3D reconnection, especially the fast 3D reconnection, is

required.
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1.4.2 3D turbulence reconnection model

A reconnecting current sheet spontaneously generates turbulence, both in 2D (Lapenta,

2008; Bárta et al., 2011) and in 3D (Huang & Bhattacharjee, 2016; Beresnyak, 2017;

Kowal et al., 2017). The understanding of the interaction between turbulence and re-

connection starts from how turbulence changes the reconnection rate. It was found that

by introducing a strong random perturbation onto a 2D current sheet, multiple X-points

emerge and increase the global reconnection rate (Matthaeus & Lamkin, 1985). Also in

a 3D current sheet, a driven turbulence increases the global reconnection rate which be-

comes independent of diffusivity (Kowal et al., 2009). However, since the self-generated

turbulence couples with the reconnection in spontaneous reconnection, how turbulence

accelerates the reconnection in a free system is still not sufficiently understood.

One turbulence reconnection model theoretically describes the reconnection develop-

ment in a 3D current sheet when a statistical steady turbulent state has reached (Lazarian

& Vishniac, 1999). In the global scale, which corresponds to the energy input scale, the

magnetic fields are absorbed into the current sheet as the turbulent area expands across the

current sheet. In the local scale, which corresponds to the dissipation scale, reconnection

happens and blends the field lines into the pool of magnetic fields. A fast global recon-

nection rate is deduced by coupling to the MHD turbulence theory (Goldreich & Sridhar,

1995) that each diffusion region is diffusing fast.

Fast overall reconnection is found in 3D spontaneous reconnection. In a current sheet

with no guide field, the reconnection rate is in the magnitude of 0.001, while a non-

monotonic change of reconnection rate with diffusivity is found (Oishi et al., 2015). In

a current sheet with a guide field that varies from half to twice of the anti-parallel fields

strength, the overall reconnection rate is consistently high that MA ∼ 0.01, which is also

independent of diffusivity. The reconnection rate remains high even when the guide field

is reduced to 10% of the anti-parallel field (Kowal et al., 2017). Judging by the up-to-date

results, it seems that 3D reconnection has a potential to be fast even in the system with

a large Lundquist number. On the other hand, the physics changes between the current
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sheet with and without a guide field.

Unlike the global features such as the global reconnection efficiency, the validation of

the local reconnection process predicted by the turbulence theory has not been confirmed

in the 3D reconnection due to the structural complexity. Moreover, the present MHD tur-

bulence theories all consider a strong background field (e.g., Goldreich & Sridhar, 1995;

Boldyrev & Loureiro, 2017; Mallet et al., 2017). In the language of reconnection, this

setup roughly corresponds to a current sheet with a strong guide field. In that sense, the

application of the present turbulence reconnection model is very limited. When the guide

field is weak, this model can be applied only to a thin layer near the current sheet center

where anti-parallel fields are much weaker than the guide field. When the guide field

becomes zero, the present theory is not feasible. As the energy spectrum from different

studies varies (e.g., Huang & Bhattacharjee, 2016; Beresnyak, 2017; Kowal et al., 2017),

it indicates that a new fast 3D reconnection model is needed to explain more general

behaviors of the current sheet.

1.5 Motivation

Although magnetic reconnection is one of the basic processes in plasma physics, the

understanding is still far from sufficient, especially the spontaneous reconnection in a

three-dimensional (3D) current sheet.

As turbulence is always observed in the reconnecting current sheet, many studies solve

the reconnection issue from the turbulence theory viewpoint. However, the understand-

ing of the MHD turbulence in sheared magnetic fields has not been substantially devel-

oped. Therefore, the coupling of turbulence-enhanced-reconnection and reconnection-

generated-turbulence needs a careful treatment. We are going to approach the 3D fast re-

connection problem by analyzing the diffusion region development, where reconnection

happens and produces turbulence. We expect that our result could support the turbulence

reconnection theory by connecting the diffusion region creation and distribution with the

energy spectrum study in the future.
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Because we are interested in the spontaneous fast reconnection regime, we start the

consideration from a 3D current sheet with a finite guide field under perturbation. From

the physics picture of the tearing instability, it is natural to expect that the most unsta-

ble tearing instability to be always growing on the layer where the current density is the

strongest in a static current sheet (see also Appendix.A). Many linear studies on the tear-

ing instability showed that 2D modes, which are growing along the current sheet center,

are always the most unstable tearing modes compared to 3D modes that are growing away

from the current sheet center (Onofri et al., 2004; Landi et al., 2008; Dahlburg et al., 1992;

Baalrud et al., 2012). Interestingly, nonlinear simulations show a different result. After

applying the random perturbation to a 3D current sheet with a finite guide field, it is often

the case that multiple reconnection layers emerge and sustain even in the nonlinear phase

(Onofri et al., 2006; Landi et al., 2008; Wang et al., 2015; Beresnyak, 2017; Kowal et al.,

2017). Although the present researches cannot explain this fact, we will make use of the

coexistence of multiple tearing layers in our argument.

In our previous study on the development of 3D tearing layers (Wang et al., 2015,

master thesis), we found that when two diffusion regions on neighboring tearing layers

are shifted from each other along the current sheet direction, the outflow from one diffu-

sion region diverts into the inflow region of the counterpart diffusion region. This inflow-

outflow coupling, or “positive-feedback system” as we called, is observed ubiquitously

inside the simulation box. It seems that this coupling between diffusion regions, namely

the coupling between tearing layers, is correlating with the global reconnection enhance-

ment, as the simulation with single tearing layer does not show the same eruptive phase

of reconnection. Because of the anisotropic turbulence in our simulation, it is difficult to

analyze the detailed physics in the inflow-outflow coupling. Thus the concrete reasoning

between the coupling and the global reconnection efficiency was not sufficiently deduced.

The first question we should solve is the basic properties of the inflow-outflow cou-

pling. The apparent structure of the 3D tearing layer coupling resembles the double tear-

ing instability (DTM) in which two reconnection layers in two adjacent current sheets
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couple with each other. The local reconnection in an individual diffusion region is en-

hanced due to the coupling (Pritchett et al., 1980) and resultantly enhances the global

reconnection (Yan et al., 1994). Whether the same argument is true in the 3D tearing

layer coupling needs to be verified.

Although multiple layers also coexist in the current sheet during the turbulent state,

it is not proved yet that whether the inflow-outflow coupling is universally existing along

time. If the inflow-outflow coupling is limited in some certain areas or even missing

in the later phase, other mechanisms should be employed to understand the global fast

reconnection. In addition, if the inflow-outflow coupling is always confined near the

current sheet center, the global reconnection cannot be fast as the annihilated anti-parallel

magnetic components are limited.

The inflow-outflow coupling is formed by diffusion regions. Before investigating the

existence and distribution of the coupling, the temporal and the spatial development of

diffusion regions should be checked first. A large coverage of diffusion regions, or an ex-

tended reconnection layer along the current sheet direction is essential for 3D fast overall

reconnection (Fig.1.6). In 2D reconnection, a translational invariance is assumed along

the direction perpendicular to the reconnection plane (local guide field direction). Mag-

netic fluxes are transported into participating reconnection uniformly. A fast global re-

connection is achieved as long as the reconnection is efficient on the 2D plane. If the

diffusion regions are scattered along the local guide field direction, the whole magnetic

sheet is partly absorbed into the current sheet. The global reconnection is slower than

the 2D counterpart because not all magnetic fluxes are consumed. Therefore, a uniform

distribution of diffusion region along the sheet direction is required for a sufficient recon-

nection.

We propose a hypothesis by considering all arguments above: the 3D reconnection

in a current sheet with a finite guide field is accelerated by the ubiquitously existing

coupling between sheet-wise extending reconnection layers that span across the whole

current sheet. The motivation of our study is the confirmation of our fast 3D reconnection
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Figure 1.6: Comparison of uniform 2D-like reconnection and non-uniform 3D reconnec-
tion. Turquoise lines with orange surfaces are magnetic sheets under inflow (blue arrows).
Translucent red boxes represent diffusion regions, while red lines with arrows are recon-
nected magnetic field lines.

hypothesis.

The structure of this dissertation is summarized as the following (Fig.1.7). In Chap.2,

we examine in detail the coupling effect in a typical case to understand the basic physics

from a local point of view. In Chap.3, extended from the previous result, we expand our

view into global features to check whether sheet-wise reconnection layers are created,

whether the coupling links the asymptotic magnetic fields across the whole current sheet

and whether overall reconnection rate increases. In Chap.4, we re-examine the random

perturbation simulation result to find the same features shown in Chap.2 and Chap.3. In

Chap.5, we generalize our model further by changing the initial perturbation and back-

ground magnetic field. In Chap.6 and Chap.7, we summarize our findings and discuss the

extension of our model by considering more realistic setups.
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Figure 1.7: Organization of this thesis.

23





Chapter 2

Result I: local analysis of the typical

case

We expect that the understanding of the tearing layer coupling approaches the final under-

standing of the fast 3D reconnection in sheared magnetic fields. We are going to attack

this question from the detailed analysis on the local diffusion region development.

2.1 Introduction

The tearing layer grows inside the current sheet with increasing amplitude, which can be

measured by the half-width of the produced flux tube. When flux tubes on two adjacent

tearing layers grow large enough, say the total amplitudes of two tearing modes is larger

than the distance between the layers, these two tearing layers are potential to interfere

with each other. As the tearing modes grow along the current sheet in different directions,

a variance of the phase difference between two tearing modes can be observed along the

sheet direction. When there is a phase difference of π, 3π, ... between two tearing modes

on a certain plane cut across the sheet, a diffusion region grows on one tearing mode is

aligned with a flux tube on the other mode across the sheet direction. If the flux tube grows

wide enough, the outflow region inside the flux tube is capable to merge with the inflow

region of the aligned diffusion region on the other tearing layer. Therefore, the inflow,
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namely the reconnection, is mediated by the locally Alfvénic outflow from the other side

across the sheet. We define this merging of the inflow and outflow regions from different

diffusion regions as the inflow-outflow coupling of diffusion regions. Furthermore, the

two tearing modes are said to be coupled when diffusion regions growing on them are

coupled somewhere.

If the configuration of a system is simple, especially when the symmetry is introduced,

the local analysis is easy to be done. However, this is a strong limitation compared to the

realistic astronomical events. Real systems contain waves with arbitrary frequencies and

propagation directions. These waves are considered to be the possible seeds for triggering

reconnection, such as solar flares. Consequently, no simple structure is expected. Many

numerical simulations on reconnection studies implement a random perturbation initially

to mimic the real circumstance thus successfully generalize their results. The disadvan-

tage of such application is that it toughens the local analysis which depicts the fundamen-

tal reconnection process. Because the global reconnection can be regarded as a collection

of local reconnection, the answer to the global reconnection enhancement is therefore also

difficult to make clear. Each diffusion region is thought to be efficiently processing recon-

nection by itself from the theoretical prediction (Lazarian & Vishniac, 1999). However,

no concrete proof is shown in the 3D simulation. Therefore, we will start the simulation

with a simple setup to meet our need for the local analysis. Afterwards, the generalization

should be applied in a more chaotic system to make the conclusion firm.

This simple setup should be carefully chosen, based on the random perturbation sim-

ulation result. The random perturbation will give birth to numerous tearing layers, while

each layer follows the tearing criteria Eq.(1.10) with the correspondent wavenumber k. It

is widely accepted that 2D modes (wave modes propagate along the anti-parallel magnetic

fields) should dominate from the beginning as they are always the most unstable modes

in linear studies (e.g., Dahlburg et al., 1992). So a system predominantly described by

2D modes with a mediation of 3D modes (wave modes propagate along the current sheet

with non-zero wave vectors perpendicular to the anti-parallel magnetic fields) seems to be
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reasonable. In contrast, as shown in many numerical studies, unless a continuous ejection

of 2D energy is provided (Huang & Bhattacharjee, 2016), one is more likely to retrieve

a system initially dominated by 3D modes that are growing on both sides of a symmetric

current sheet (e.g., Landi et al., 2008). Unfortunately, this controversy is still unclear.

However, we will use this a priori argument that we consider first the coupling between

3D modes in a system, as they develop the fastest in the studies by far.

It is straightforward to expect an efficient coupling between layers when they are close,

while similar argument has been concluded in the study of double tearing mode (DTM,

Wang et al., 2007; Janvier et al., 2011). If we pick up one tearing layer and consider

its adjacent coupled layer, there exist two possibilities. First, if the distance between

these two layers is much smaller than the magnetic shear, namely how far it takes for the

magnetic field to rotate a full π across the current sheet, these two modes are roughly

parallel to each other. Second, if the distance between these two layers is comparable to

the magnetic shear, the three-dimensionality in the coupling construction is strong as the

tilting angle between these two modes is large.

In our previous study, we identified the coupling of the flow pattern in a current sheet

with a finite guide field along time. By taking a closer look, it reveals that the coupling

exists between the layers on the same side of the current sheet, as well as between the

layers across the current sheet center. The tearing modes on the same side of the current

sheet have a smaller tilting angle with each other compared to the modes across the center

in our case. Meanwhile, no 2D modes dominate until the late phase of the simulation.

When 2D modes grow sufficiently large, they are highly possible to couple with 3D modes

and contribute to the global reconnection.

At this moment, we will concentrate on the coupling across the current sheet center in

a current sheet with a finite guide field due to the following arguments.

First of all, the coupling of 3D tearing modes across the center exhibits a stronger

character of three-dimensionality which is not well understood. The coupling between

layers on the same side has a weaker three-dimensionality. The two tearing modes are
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likely to merge into one single mode when they are in-phase or develop a DTM-like

coupling when they are off-phase. So the coupling system across the whole current sheet

can be roughly regarded as a coupling of two thick layers before 2D modes grow large.

Secondly, for the coupling limited on one side, it takes longer time for the fast rar-

efaction wave in the inflow region of the coupled layers to travel across the whole current

sheet to influence the magnetic field on the other side. It is important to connect the anti-

parallel magnetic fields on either side of the sheet to have a sufficient global reconnection.

Therefore, the coupling across the current sheet center seems to be more efficient as the

fast-mode wave has a shorter distance to go. In this sense, 2D modes right at the center

also function in the same way. As we argued above, 2D modes are growing slowly com-

pared to the 3D modes from the results of different simulations. So the coupling between

2D modes and 3D modes emerges only from the later phase.

By the considerations above, in this chapter, we will examine the local physics in

the tearing layer coupling across the current sheet center first by conducting numerical

simulation of a single current sheet. We will apply a finite guide field to this current

sheet to have a strong three-dimensionality. Since simple configuration is preferred for

the local analysis, we will perturb the current sheet with a pair of rotational-symmetric

tearing modes that two tearing layers coexist at the beginning of the simulation. The

generalization of the result will be checked in the later chapters.
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2.2 General setup

We apply ordinary one-fluid resistive (uniform diffusivity) MHD equations which neglect

viscosity, gravity and heat conduction for simplicity:

∂ρ

∂t
+ (v · ∇)ρ = −ρ(∇ · v) (2.1)

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+ J×B

c
(2.2)

ρ
∂e

∂t
+ ρ (v · ∇) e = −p∇ · v + ηJ2 (2.3)

∂B

∂t
= ∇× (v ×B− cηJ) (2.4)

J =
c

4π
∇×B (2.5)

in which ρ and p are plasma mass density and pressure, γ = 5/3 is the adiabatic index

and e is the internal energy per unit mass that e = p/[(γ− 1)ρ]. Together we consider the

equation of state for ideal gas that

p =
ρ

m̄
kBT (2.6)

where kB is the Boltzmann constant, m̄ is the mean particle mass, T is temperature.

All quantities are normalized by the typical parameters. The length scale is in the unit

of the initial current sheet width δ. The time scale is normalized by tA = δ/vA0, where

vA0 is the asymptotic Alfvén velocity. Initial uniform mass density ρ0 is used for mass

density, m̄ is taken in the case of fully ionized hydrogen gas that m̄ = 0.5mp, where mp

is the proton mass. Normalization of the magnetic field is implemented by B0 = vA0
√
ρ0.

Current density is normalized by J0 = B0/δ while plasma pressure is normalized by

p0 = B2
0 . Cartesian coordinate is used for the linear analysis as well as the nonlinear

simulation.

Our background magnetic field is composed of anti-parallel components By(x) with
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a uniform finite guide field Bz:

B = Byŷ +Bzẑ

= By0 tanh
(x
a

){1

2

[
tanh

(
| x | −xsec

a

)
− 1

]}
ŷ + αBy0ẑ (2.7)

where By0 =
√
4πB0 and a = 0.5δ. The magnetic field is plotted in Fig.2.1. This

modified Harris sheet has two secondary current sheets near ±xsec = ±4δ, which do

not participate in reconnection essentially. We have shown in our previous paper that

the existence of these secondary current sheets near the boundary along the x-direction

does not change the result within our simulation time (Wang et al., 2015). Since we are

interested in the highly 3D structure in the tearing mode coupling, we apply α = 0.1

which is the same as our previous study. The dependence of the coupling on the guide

field strength will be further examined later. A uniform magnetic diffusivity is set as

η̃ ∼ 3 × 10−4δ2/tA. Our typical simulation box size Lx × Ly × Lz is 10δ × 24δ × 6δ,

while periodic boundary condition is applied on all surfaces for simplicity. As we have

explained in Sec.1.3.2, shrinking the current sheet length may change the most unstable

tearing mode from a long wave mode into a short wave mode which is determined by

-4 -2 0 2 4
x/δ

-4

-2

0

2

4

By/B0

Bz/B0

Figure 2.1: Initial magnetic field structure.
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the box size. As the boundary condition can have a strong influence during the nonlinear

stage, the dependence of the coupling on the box size will be also considered in the future.

2.3 Linear analysis of the tearing instability

Because we want to study how tearing layers couple with each other, a “clean” coupling

can be reserved if we apply eigenfunctions of several selected tearing modes onto a static

current sheet as an initial condition. So as a start, we solve the eigenfunctions of the

tearing instability in our current sheet from linear resistive MHD equations.

In most of the tearing instability linear analysis, compressibility and background diffu-

sivity are neglected for simplicity (e.g., Furth et al., 1963; Steinolfson, 1983; Landi et al.,

2008; Baalrud et al., 2012). Incompressibility gives ∇ · v = 0. By assuming a uniform

density, the mass equation and the energy equation are excluded from the dynamics. The

remained equations are the coupled velocity field and magnetic field in Eq.(2.2), Eq.(2.4)

and Eq.(2.5).

We are trying to solve the eigenfunctions of the tearing instability on a plane that is

along the wave vector k, since all variables are assumed to be uniform in the direction

perpendicular to this plane (left panel of Fig.A.1). We rotate the coordinate into a new

one, which is constructed by three new unit orthogonal vectors

(x̂, k̂, ĥ) (2.8)

where x̂ is the unit vector across the current sheet, k̂ is the unit vector along the wave vec-

tor k = kyŷ+kzẑ that k̂ = k/k which has an angle θ to the y-axis that θ = arccos
(
k̂ · ŷ

)
.

Third unit vector ĥ is perpendicular to the analysis plane that ĥ = x̂× k̂. We expand the

variables as the background part (the zeroth order f [0]) and the perturbation part (the first

order f [1]) as

f = f [0] + f [1] (2.9)
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then the linearized equations Eq.(2.2), Eq.(2.4) and Eq.(2.5) can be written as

∂v[1]

∂t
= −∇p1 −

B[0] × (∇×B[1]) +B[1] × (∇×B[0])

4π
(2.10)

∂B[1]

∂t
= ∇×

(
v[1] ×B[0] − η̃∇×B[1]

)
(2.11)

where we assume a stationary plasma v[0] = 0 and a uniform density ρ = 1. As we have

neglected the compressibility, global diffusion η̃∇2B[0], together with

∇ ·B = 0 (2.12)

the velocity field and the magnetic field can be written as gradients of potential scalar

fields on the analysis plane

v[1] = ∇⊥ϕ× ĥ+ vĥ (2.13)

B[1] = ∇⊥ψ × ĥ+ bĥ (2.14)

where v and b are values along the normal component ĥ. The gradient ∇⊥ is defined on

the analysis plane that

∇⊥ ≡ k̂∂k + x̂∂x. (2.15)

We rewrite the variables in the form of

ϕ(r, t) = iϕ(x)eik·r+γt (2.16)

ψ(r, t) = ψ(x)eik·r+γt (2.17)

where r is the displacement. Then the linearized tearing instability equations are

d2ϕ

dx2
=

(
1

4πγ

d2F

dx2
− F

4πη̃

)
ψ +

(
F 2

4πγη̃
+ k2

)
ϕ (2.18)

d2ψ

dx2
=

(
γ

η̃
+ k2

)
ψ − F

η̃
ϕ (2.19)
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while

F ≡ B[0](x) · k. (2.20)

The method of solving linear equations is described in Appendix.B.

The possible tearing modes in our simulation box are limited by the box size and the

periodic boundary condition. For convenience, we label each tearing mode as (m,n).

Integers m and n are defined as

m = ky
Ly
2π

(2.21)

n = kz
Lz
2π

(2.22)

where ky is always taken as positive while kz can be positive or negative. Thus the sign

of n is determined by the propagating direction of the tearing mode. In our system, the

mode growing on the −x-side is labeled as n < 0 while the mode growing on the +x-side

is labeled as n > 0. One example of an x-plane on which (m,n) = (3,−1) grows is

Figure 2.2: Example of an x-plane on which (m,n) = (3,−1) grows. Turquoise lines are
magnetic field lines (left panel) and flux tubes (right panel). Red vector represents wave
vector k.
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shown in Fig.2.2. The tearing mode produces a chain of diffusion regions with flux tubes

in between, then integer number m and n can be also understood by counting how many

flux tubes are encountered along y- and z-direction. Since the tearing instability grows on

the tearing layer where Eq.(1.10) is satisfied, we define a resonance factor q that

q =
By

Bz

(2.23)

which mimics the safety factor used in tokamak and reversed-field pinch (RFP). The res-

onance condition B · k = 0 can be rewritten as

q = −Ly
Lz

n

m
. (2.24)

On a resonance layer with a certain q, a series of harmonics grows with the same ratio of

n/m. The maximum value of |q| regarding the initial condition is

|q| ≤ |q|max =
1

α
(2.25)

which implies a maximum ratio of wavenumber that

|n|
m

≤ 1

α

Lz
Ly
. (2.26)

Considering the cut-off wavelength by Eq.(1.19), the maximum wavenumber that is al-

lowed in our initial setup is

k ≤ kcut ∼ 2/δ. (2.27)

So the available spontaneous tearing modes in our initial current sheet are limited by

m ≤ 7 for 2D modes with n = 0, while the available 3D tearing modes are limited by

m ≤ 6 and |n| = 1. The resonance layer position xs along the x-direction is determined
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Figure 2.3: Left panel: contour plot of the tearing instability growth rate calculated from
the linear analysis. Colored crosses locate the positions of our selected 3D tearing modes.
Right panel: the growth rate of the 2D tearing modes (n = 0) in our modified Harris
sheet (black line with diamonds) and in a Harris sheet with Lx = 80δ (orange line with
asterisks). The growth rate of 3D modes (n = 1) in the modified Harris sheet (purple
line with diamonds) and in a Harris sheet (green line with asterisks) are also plotted.
Analytical solutions of a Harris sheet is shown as dashed lines. Blue dashed line is of
Coppi’s regime, while red dashed line is of FKR’s regime.

by the initial sheared magnetic fields with F (xs) = 0 that

xs ∼ αa
Ly
Lz

n

m
. (2.28)

Then a 3D oblique resonance layer with a higher value of m is closer to the current sheet

center when n value is fixed. We only solve eigenfunctions of modes with m ≤ 4 due to

the limitation on the numerical cost.

The summarized growth rate contour plot is shown in the left panel of Fig.2.3 with

the available 3D modes in our simulation box as colored crosses. The growth rates of the

selected modes satisfy γτdiff > 1, where τdiff ∼ a2/η̃ ∼ 770tA, thus the neglect of global

diffusion in our linear analysis is justified. It can be seen that the most unstable mode

in our configuration is around (1, 0), while the growth rate of 3D modes have a peak in

between (2, 1) and (3, 1). The growth rate of 2D modes and n = 1 3D modes are plotted

in the right panel of Fig.2.3, while the theoretical scaling laws (longer waves in Coppi’s
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regime and shorter waves in FKR’s regime) are also shown.

It is noted that the tearing mode is highly influenced by the boundary condition

(Steinolfson, 1983). The longer the tearing mode wavelength is, the more its inflow region

expands thus more sensitive to the boundary condition. Setting the inflow boundary closer

to the current sheet practically changes the tearing mode into a shorter wave mode, there-

fore shifts the most unstable modes into longer wave modes. If our closed system is too

small across the current sheet direction, the most unstable modes are highly controlled by

the boundary, not to mention how much the boundary is acting onto the inner system dur-

ing the nonlinear stage. In order to show how much the boundary is interfering the tearing

instability, we also calculate the 2D tearing mode growth rate in a Harris sheet Eq.(1.16)

with a box size of Lx = 80δ, which is much wider than our box. The tearing instability

growth rate in the wider Harris sheet is peaking at kyδ = 0.4 that the most unstable 2D

mode is around a wavelength of 15.7δ. This peak is shifted into the longer wave mode

in our modified Harris sheet as the peak is now around kyδ = 0.3 which corresponds to

a wavelength of 20.9δ. Generally speaking, the growth rate is not significantly changed,

which is within 11% only near (1, 0) and falls inside 5% when the wavelength is shorter

than 12.6δ. This is because that the longer waves are always easy to be influenced by the

boundary, while the shorter waves are not affected at all. In our system, the only mode that

is longer than the threshold (12.6δ) is (1, 0). In another word, the boundary effect is not

important for any mode, except (1, 0) mode. This fact is also reflected in the comparison

of the growth rate of 3D modes with n = 1 in Harris sheet and the modified Harris sheet.

Although the most unstable 2D mode changes from (2, 0) to (1, 0) in our system due to

the boundary effect, since the growth rate itself does not significantly change, moreover

the dominant modes are proved to be 3D modes with smaller wavelengths in the nonlin-

ear simulations, we argue that the boundary effect across the current sheet can be ignored

until plasmoids in the current sheet center becomes comparable to the box size.
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2.4 Nonlinear simulation setup

We solve the whole set of resistive MHD equations as shown in Eq.(2.1) to Eq.(2.6).

Normalization factors are the same as that are introduced in Sec.2.2. The background

magnetic field is shown as Eq.(2.7). The initial mass density is uniform in the whole box,

while the initial pressure balance is maintained that the total uniform pressure is:

Ptot =
B2

0

2
(1 + α2)(1 + β) (2.29)

in which β = 0.2 is taken as the ratio between the plasma pressure and the magnetic

pressure at asymptotic field just outside of current sheet. The Lundquist number S in our

system is defined by the total Alfvén speed vA = vA0
√
1 + α2 then S = vAL/η̃ ∼ 7×104.

Since we are mostly interested in how tearing layers interact with each other across

the current sheet and how they increase the global reconnection rate, we perturb the initial

static current sheet with eigenfunctions of the tearing modes we have solved in the previ-

ous section. In order to make the analysis simpler, we apply a pair of rotational-symmetric

modes to the current sheet. The notation we use for this type of simulation with double

tearing layers is, for example (3,±1). Meanwhile, in order to show that the existence of

coupled layers changes the current sheet development substantially, a single-layer simu-

lation with only one tearing mode is also executed. This type of simulation is denoted

as, for example (3, 1). So in the double-layer simulation, two layers of tearing modes

with the same wavelength exist on either side of the current sheet. In the single-layer

simulation, only one tearing layer exists on the positive side of x.

In our double-layer simulation, the initial condition is similar to that in Grasso et al.

(2007). The perturbed magnetic and velocity fields are applied as the superposition of

tearing modes with wave vector of kL and kR on the negative and the positive side of x
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respectively. The total fields which are applied initially to the double-layer simulation are

B(t = 0) = B[0] +B
[1]
L +B

[1]
R (2.30)

v(t = 0) = v
[1]
L + v

[1]
R (2.31)

while the initial fields in the single-layer simulation are

B(t = 0) = B[0] +B
[1]
R (2.32)

v(t = 0) = v
[1]
R . (2.33)

The detailed formulae are listed in Appendix.C. Amplitude of the initial perturbation is

determined that

max(|vx|, |vy|, |vz|) = 0.01vA0. (2.34)

The amplitude is small enough to start from the linear stage but rather large compared to

many other studies. What we are interested in is the nonlinear coupling between the two

tearing layers. So by applying appropriately large initial amplitude, the system enters the

nonlinear stage earlier that the simulation resource is saved.

The simulation box has periodic boundary condition on all sides. The box size is

Lx × Ly × Lz = 10δ × 24δ × 6δ. The length of the current sheet is much smaller than

many big simulations. Suppose that the most unstable linear mode (2D mode) emerges

after the perturbation is applied onto a much larger sheet than our present one along the

anti-parallel fields. As we have shown in Sec.2.3, the most unstable 2D mode in our field

pinch is (2, 0), regardless of the box size along the current sheet direction. Then what

we obtain in a bigger sheet is a chain of X-points with plasmoids in between, while each

plasmoid is in the size of our present simulation box. Therefore, we are solving a part of

a big sheet before inverse cascade works efficiently into the structures that are larger than

the present box size. On the other hand, if the emerging modes are 3D modes as many

simulations have shown, they are also determined by the sheet size along the global guide
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field. How the dynamics changes with the box size should be checked in the future.

The system is resolved by 640 × 1000× 250 grids. Across the x-direction, we apply

non-uniform grids to resolve the current sheet that ∆x ⩾ 0.005δ. Resolution check is

done by applying different widths of current sheet in solving 1D diffusion equation. The

grid size we apply here could resolve the current sheet with a width of at least a = 0.02δ.

Uniform grids along y- and z-direction are adjusted with ∆y = ∆z = 0.024δ. We test the

convergence check by changing the grid size into ∆y = ∆z = 0.04δ for the double-layer

simulation (1,±1). At t = 100tA, the reconnection rate increases by 3%. The typical

structures are not essentially changed, only the local reconnection is reduced moderately

in higher resolution simulation. So we argue that the resolution does not have a strong

impact on our model, but the scaling can be changed when an even higher resolution

is applied. We use CIP-MOCCT code (Kudoh et al., 1999) with artificial Lapidus-type

viscosity (Lapidus, 1967) developed by H. Isobe from Kyoto University.

2.5 Local analysis of the inflow-outflow coupling

We specifically study the development of the double-layer simulation (3,±1). The reso-

nance layer of (3, 1) is located close to the current sheet center. So it is likely that (3, 1)

can build up an efficient coupling with its counterpart (3,−1) across the sheet. Moreover,

(3, 1) is one of the most unstable 3D tearing modes. Once we perturb the current sheet

with a random perturbation, we are expecting the most unstable 3D modes to emerge and

dominate the whole system.

The local analysis is studied first on the characters of diffusion region when the inflow-

outflow coupling is built. The consequence of this coupling will be examined afterwards.

As we have specified in the previous section, the three-dimensionality is strong when

the guide field is finite that the system loses the translational invariance in any direction.

This argument is exhibited in Fig.2.4. The isosurface of current density J is plotted, which

separates diffusion regions and flux tubes by different values of J thus different colors.

The diffusion regions form lines, which are parallel to the local B and perpendicular to k
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of the correspondent tearing mode.

Since the tilting angles of the tearing modes θ on either side of the current sheet are

different, the alignment of diffusion regions changes on different 2D-plane across the

guide field direction (z-direction). Two examples are shown in panels C) and D) for

z = 0 and z = −1.5δ, respectively. In panel C), diffusion regions (bright features with

concentrated current density) shift from each other along the current sheet direction (y-

direction). On the other hand, diffusion regions align with each other across the sheet in

panel D). We notice that the inflow-outflow coupling can exist only in the case as panel

C), but never for the case as panel D). A similar conclusion was made in the study of DTM

(Yan et al., 1994). It means that the reconnection in each diffusion region is enhanced on

planes similar to z = 0 plane in panel C) but not on planes similar to z = −1.5δ plane in

panel D).

The variance of reconnection along the sheet direction is nicely presented in panel A)

by observing the change in the thickness of diffusion lines. On the plane where the inflow-

outflow coupling exists, diffusion lines are thicker which implies a higher current density

thus faster local reconnection. While on the plane where no inflow-outflow coupling

exists, diffusion lines are thinner that slower local reconnection is expected. Also in panel

B), flux tubes are larger on z = 0 plane but smaller on z = −1.5δ plane. Considering

the position of diffusion regions, we denote the plane similar to z = 0 plane as the anti-

symmetric plane, while the symmetric plane for planes similar to z = −1.5δ. In this

section, we will study in detail on the local reconnection in diffusion regions on the anti-

symmetric plane. Diffusion regions on the symmetric plane will be taken as a comparison.

A typical inflow-outflow coupling in (3,±1) is shown in the left panel of Fig.2.5.

Only one wavelength is presented along the y-direction. It is clear to see that the outflow

from one diffusion region on one tearing mode diverts into the inflow region of another

diffusion region lies on the counterpart tearing layer. To understand the inflow-outflow

coupling more quantitatively, we measure the velocity and the magnetic fields along the

boundary of a coupled diffusion region and its external region where the frozen-in condi-
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Figure 2.4: 3D magnetic structure of (3,±1) at t = 30tA.
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Figure 2.5: Left panel: the inflow-outflow coupling in (3,±1) at t = 30tA. The velocity
field on z = 0 anti-symmetric plane is plotted as vectors over the contour plot of cur-
rent density Jz/J0. Right panel: one example of showing the diffusion region boundary
and the external region in our measurement. The 1D plot is the current density Jh on
the reconnection plane, right across the center of diffusion region on (3, 1) tearing layer
(dashed line in the left panel). Diffusion region boundaries are labeled by red dot-dash
lines, while the external regions are labeled by blue dot-dash lines. Vector scale is plotted
at the bottom.

tion is roughly maintained. The determination of diffusion region and its external region

is shown in Appendix.D. One example is plotted in the right panel of Fig.2.5, in which

the current density perpendicular to the reconnection plane Jh across the diffusion re-

gion from the tearing mode (3, 1) in the double-layer simulation (3,±1) is plotted. The

external region boundaries are labeled as blue dot-dash lines, while the diffusion region

boundaries are labeled as red dot-dash lines. We measure the quantities along the inflow

boundaries (along k).

The summarized result is shown in Fig.2.6. Averaged values along the inflow bound-

ary near the current sheet center (inside the coupling) are applied that ⟨vin⟩ is denoted

as the averaged values for instance. We show the values in the time range when diffu-

sion regions can be identified and maintain intact. In panel A), local inflow normalized

by the global Alfvén velocity for diffusion region on the anti-symmetric plane (red), the

42



symmetric plane (blue) and in the single-layer simulation (black) from (3, 1) are plotted

together, thus represents the global reconnection efficiency. It is obvious that the inflow is

enhanced by roughly 6 times due to the coupling on the anti-symmetric plane compared

to the single-layer simulation. The inflow of diffusion region on the symmetric plane is

at first almost the same strength as that in the single-layer simulation, but decreases with

time and falls to almost one-quarter of the single-layer simulation around t = 50tA. This

is because, when diffusion regions align with each other on the symmetric plane, they ex-

tract magnetic energy from the region in between. This region is then gradually depleted

thus chokes the reconnection and the inflow grows weaker and weaker.

Another effect of the inflow-outflow coupling is shown in panel B). As the outflow

from one diffusion region is ejected into another, the inflow approaches local Alfvén

speed. The magnetic field is transported fast into the diffusion region thus piles up in

front of the inflow region. It is shown that the inflow magnetic field in the external region

is roughly twice of that in the single-layer simulation at t = 50tA. In the single-layer sim-

ulation, the inflow magnetic field gets weaker as the reconnection saturates. Reversely,

the inflow magnetic field in front of the diffusion region on the symmetric plane is grow-

ing. It is probably because that the reconnection in the diffusion region saturates so fast

that it cannot consume all magnetic fields that are transported into it previously. Thus a

piling up of magnetic flux is observed.

Local reconnection rate is plotted in the lower panels. Panel C) shows the inflow

normalized by the Alfvén velocity in the external region. It shows a similar trend as that

in panel A), but the magnitude is one order larger. It means that at this stage, although

the coupling increases the reconnection efficiency in the coupled diffusion regions, it is

still not enough to influence the whole current sheet. Panel D) shows the reconnection

rate measured by the electric field (perpendicular to the reconnection plane) difference

measured at the X-point and the O-point (see also Appendix.D). It is normalized by

local quantities thus can be compared with panel C). The normalized reconnection rate

in the diffusion region on the anti-symmetric plane is 30% smaller than that in panel C).
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Figure 2.6: Panel A): averaged inflow into diffusion region of (3, 1) measured from the in-
ner side of the current sheet. Panel B): averaged magnetic field in the external region from
the inner side of the current sheet. Panel C): averaged inflow normalized by the Alfvén
velocity from the inner side of the current sheet. Panel D): electric field (perpendicular to
the reconnection plane) difference in X-point and O-point along (3, 1), normalized by the
external Alfvén velocity and the inflow magnetic field. Red line with crosses is the mea-
surement from the anti-symmetric plane, blue line with crosses is the measurement from
the symmetric plane and black line with crosses is the measurement from the single-layer
simulation.
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This is because that the inflow-outflow coupling only increases the inflow from the inner

side directly. This information propagates outwardly across the sheet then increases the

inflow from the outside gradually. Therefore, the reconnection becomes asymmetric as

the inflow from the outside is smaller than the inner one. For asymmetric reconnection,

the effective inflow is taken as the geometric mean of the inflow from either side (Cassak

& Shay, 2007). So the reconnection rate in panel C), which measures only the inner

faster inflow, is larger than that in panel D), which measures the effective inflow. The

measurement of the single-layer simulation is basically consistent in both panels, since

the local reconnection is symmetric across the diffusion region. No measurement on the

symmetric plane is shown as it is affected by the reconnection right at the current sheet

center that the measurement includes not only the (3, 1) mode.

The inflow-outflow coupling also increases the diffusion region width, which is a

positive contribution to the local reconnection increase. The detail is given in Appendix.E.

As we have shown in panel B) of Fig.2.6, magnetic field piles up in front of the

diffusion region. Theoretically, secondary tearing is triggered when ∆′ is large (Jemella

et al., 2003; Loureiro et al., 2005), which means a strong piling-up magnetic field in front

of the diffusion layer. Therefore, secondary tearing is expected to grow when the inflow-

outflow coupling is effective, as the external magnetic field gets strong. The diffusion

region development is tracked in Fig.2.7. The upper panels show current density Jz on

the anti-symmetric plane in the double-layer simulation (3,±1). Initially in one period of

wavelength, only one intact diffusion region can be found (left panel). With time goes on,

the diffusion region splits into two and the current density gets much enhanced due to the

coupling (right panel). No strong growth of secondary tearing is identified in the single-

layer simulation at the same time (lower left panel). In contrast, the diffusion region on

the symmetric plane saturates (lower right panel). Secondary tearing is an indication of a

further violent change of current sheet, as shown in the plasmoid instability. But unlike

the plasmoid instability, which comes from the interaction between diffusion regions and

plasmoids along the current sheet, the inflow-outflow coupling in 3D is in the direction
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across the current sheet and can be only built when there exists phase shift of tearing

mode that are growing along the sheet. It reflects the importance of understanding the

three-dimensionality in the reconnection study, which will be further developed in the

next chapter.
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Figure 2.7: Current density contour plot in the double-layer and the single-layer simula-
tions at different times.
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2.6 Discussion

2.6.1 Comparison with DTM

In the previous section, we found that the inflow-outflow coupling exists on some planes

but not on the others due to the three-dimensionality of the current sheet. This is one

of the main differences from DTM, as shown in Fig.2.8. In DTM, a uniform distribu-

tion of inflow-outflow coupling is well built along the global guide field direction. But

when two 3D tearing modes couple with each other, they show a transition from coupling

to non-coupling character periodically. If the inflow-outflow coupling is just a localized

phenomenon, no further global contribution is expected. So we check the global dis-

tribution of the coupling along the guide field in our simulation at t = 100tA, which

is shown in Fig.2.9. As we have already noted that secondary tearing grows when the

inflow-outflow coupling is effective, we can use this fact to detect the coupling efficiency.

We check carefully v and B then pinpoint diffusion regions in the figure as dashed line

boxes. It can be seen that secondary tearing is triggered in half of the box along the sheet.

Although the coupling is not 100% covering as that in DTM, it is already substantially

widely distributed. In our present simulation, only one pair of tearing layers are applied.

Once the random perturbation is applied, multiple tearing modes with arbitrary phases are

expected to grow simultaneously. In that case, a mixed inflow-outflow coupling all along

the guide field is expected. This will be checked in the later chapter.

Another distinguished difference of the 3D tearing mode coupling from the DTM

is the consideration of the flow along the global guide field direction. Since DTM is

essentially translational-invariant along the global guide field, the effect of the global

flow along this direction is often ignored. Although we have shown the inflow-outflow

connection on the anti-symmetric plane where two adjacent tearing modes have a π phase

difference, we did not take into account of the flow along the global guide field. The flow

we plot, such as that shown in Fig.2.5, is the projection of 3D flow pattern onto this plane.

Precisely speaking, the two diffusion regions on the anti-symmetric plane do not directly
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couple with each other. However, this does not jeopardize our argument.

The tearing mode grows lines of diffusion regions with flux tubes in between. Inside

each flux tube, the reconnection outflow is accelerated towards the flux tube center while

being carried along the tube direction, which is also the direction along the lines of dif-

fusion regions. The tube oriented flow is thought to be formed due to the gas pressure

difference between the reconnecting field lines (Nakamura et al., 2012). Therefore, the

acceleration of the outflow into Alfvénic is like a relay race by different diffusion regions

along the tube direction. The flux tube holds inside two trains of Alfvénic flows from the

diffusion regions on either end of the tube. When the flow passes near the anti-symmetric

plane where a diffusion region is on the other side, the flow train can divert into it and

accelerate the local reconnection, although the Alfvénic flow was not originated from the

diffusion region on this plane.
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Figure 2.8: Spatial dependence of the tearing layer coupling in our simulation and the
DTM. Two-dimensional cuts are taken at different positions along the global guide field.
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Figure 2.9: Scan of current density Jz along the global guide field direction. Diffusion
regions are labeled as dashed line boxes.
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2.6.2 Suppression of 2D modes by 3D modes

As it can be observed in Fig.2.5, on the anti-symmetric plane, outflows along the y-

direction from diffusion regions on either side of the current sheet are moving in opposite

directions. Shear flow along the current sheet can sufficiently suppress the tearing insta-

bility as it approaches Alfvénic (Chen et al., 1997). Therefore, it indicates that the tearing

instability right at the current sheet center, namely the 2D tearing modes, are likely to

grow slowly when the outflows from 3D modes are strong.

In our system, 2D modes are growing inside the region bounded by two 3D tearing

layers. It means that their asymptotic magnetic fields are determined by the resonance

layers of these two modes. In another word, they cannot be informed by the magnetic

fields outside. So the asymptotic Alfvén velocity for 2D modes vA,2D at the center is

approximately:

vA,2D ∼ vA0
xs
a
. (2.35)

where xs > 0 is the position of the 3D tearing mode on the positive x-side by applying

Eq.(2.28). As multiple tearing layers coexist in the current sheet, the asymptotic magnetic

field for each layer is changed by the adjacent layers on either side. In our double-layer

simulation, the asymptotic magnetic field for the 3D tearing layer on the sheet center side

is approximately:

By,e ∼ By0
2xs
a

(2.36)

which is the difference of By(xs) and By(−xs). For the double-layer simulation (3,±1),

this value is ∼ 0.95B0, which meets our detected value of ⟨Bin,e⟩ in panel B) of Fig.2.6

very well (Bin,e = By,e cos θ ∼ 0.57B0 from the estimation since the reconnection is pro-

ceeding on a rotated coordinate perpendicular to k, while the measured Bin,e ∼ 0.5B0).

So the estimated maximum Mach number Ma,y of this shear flow is

Ma,y =
vy,o
vA,2D

∼ 2 (2.37)
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Figure 2.10: Left panel: the local coupling flow in (3,±1) by showing velocity fields
on z = 0 plane as vectors over current density Jz. Red crosses locate the positions of
detection on outflow vy,o from diffusion regions on 3D tearing layers (3,−1) (left) and
(3, 1) (right). It is also the location for the detection of 2D mode Alfvén velocity vA,2D.
Vector scale is plotted at the bottom. Right panel: 1D plot of detected vy,o and vA,2D along
time.

where the outflow on y-plane is vy,o ∼ By,e/
√
4πρ. Therefore, 2D modes are highly

possible to be suppressed at the current sheet center because of the shear flow on the

anti-symmetric plane.

We show an example of this argument in Fig.2.10. The left panel is the zoom-in view

of the left panel in Fig.2.5. Since the vortex center is on (x, y, z) = (0, 2δ, 0), we check

the outflow vy,o and vA,2D across y = 2δ. As we argued that the growing environment for

2D modes is closed by 3D modes (3,−1) and (3, 1), we detect the flow on the resonance

layers of these two modes. The positions are identified on the left panel as red crosses.

Due to the rotational symmetry on z = 0 plane, the detection at these two points is the

same. The development of vy,o and vA,2D are shown in the right panel before secondary

tearing explicitly emerges. Similar to our expectation, the outflow on y-plane grows up to

the local Alfvén velocity that MA,o ∼ 1. This value is half of our maximum estimation in

Eq.(2.37), as the outflow is roughly half of the Alfvén velocity for the 3D tearing modes.
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This trend suggests that the 2D tearing modes which are sandwiched in between the 3D

tearing modes on either side are more and more suppressed by the accelerating shear flow

from these 3D modes.

For a more quantitative proof, we examine the magnetic energy for dominant 2D and

3D modes as the following. In addition to our typical double-layer simulation, we execute

a new set of simulations which includes the 3D tearing modes in our typical case, as well

as a selected 2D mode. We label this new set as the three-layer simulation, because it

contains two 3D tearing layers and a 2D tearing layer at the current sheet center. In our

double-layer simulation, only 3D modes are perturbed initially. Other modes eventually

get activated due to nonlinear processes, which will be discussed in the next chapter.

The 2D mode (6, 0) is the strongest 2D mode produced by nonlinear processes before

t = 50tA, while other 2D modes have much smaller amplitudes. Therefore, the 2D modes

we choose for the three-layer simulations are (6, 0), which seems to be a preferable 2D

mode by the double-layer simulation, and (1, 0), which is the most unstable 2D mode in

our unperturbed current sheet. While keeping the same energy input for the 3D tearing

modes as that in our typical case from the beginning, we apply 2D modes with different

amplitudes in different simulations. The amplitude is controlled by the outflow speed

from the 2D tearing mode. For example, for a three-layer simulation, in which the 2D

mode (6, 0) ejects outflows in the magnitude of 0.01vA0 initially, the simulation is labeled

as (3,±1) + (6, 0)−2.

We calculate the magnetic energy of each mode (m,n) in the Fourier space by con-

verting the magnetic field

B̃(x,m, n) =
1

LyLz

∫ Lz
2

−Lz
2

∫ Ly
2

−Ly
2

B(x, y, z)e−i(kyy+kzz)dydz (2.38)

into magnetic energy spectrum and integrate along the x-direction that

Ẽm(m,n) =

∫ Lx
2

−Lx
2

|B̃(x,m, n)|2

8π
dx. (2.39)
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Figure 2.11: Panel A): magnetic energy of the 2D mode (6, 0) growing in the double-
layer simulation (3,±1) and the three-layer simulations. Panel B): magnetic energy of
the 3D mode (3, 1) growing in the double-layer simulation (3,±1) and the three-layer
simulations. Panel C): magnetic energy of the 2D mode (1, 0) growing in the three-layer
simulations. Panel D): magnetic energy of the 3D mode (3, 1) growing in the double-layer
simulation (3,±1) and the three-layer simulations.

55



The result of dominant 2D and 3D modes is plotted in Fig.2.11.

In the upper panels of Fig.2.11, the implemented 2D mode is (6, 0). When the initial

energy of (6, 0) is weak, as shown in (3,±1) + (6, 0)−4 and (3,±1) + (6, 0)−3 in panel

A), the growth of (6, 0) quickly approaches that in the double-layer simulation. It means

that the growth of (6, 0) is predominantly controlled by nonlinear processes in this phase,

rather than the spontaneous tearing instability. The growth rate of (6, 0) is much faster

than its theoretical linear growth rate (black dashed line in panel A)) before t ∼ 15tA,

when the outflow from 3D modes are weak. Meanwhile, the growth of 3D modes (3, 1)

and (3,−1) are barely affected as shown in panel B). After t ∼ 15tA, the growth of (6, 0)

apparently decelerates and approaches its theoretical linear growth rate. The amplitudes

of (6, 0) are always one order of magnitude smaller than (3, 1). On the other hand, when

the initial energy of (6, 0) is strong and comparable to the initial energy of 3D modes,

(6, 0) grows linearly as fast as its theoretical linear growth before t ∼ 35tA but reversely

decreases after that. The strong input of (6, 0) changes (3, 1) and (3,−1) growth from

t ∼ 8tA0 to t ∼ 35tA, even when its magnitude is one order of magnitude smaller than

the 3D modes. However, 3D modes recover and grow in the similar manner as the other

simulations afterwards.

In the lower panels, the implemented 2D mode is (1, 0), which is growing in the

double-layer simulation with a strength of several orders of magnitude weaker than any

of our implemented energy in the three-layer simulations. Regardless of the initial input

energy, (1, 0) is always growing linearly. However, the growth rate is half of its theoretical

linear growth (black dashed line). We also execute 2D simulation with (1, 0)−2 in a static

current sheet. It is found that (1, 0) in the 2D nonlinear simulation grows similar to our

linear prediction (only 6% reduced), which indicates that the growth change of (1, 0) in

the three-layer simulation should come from 3D modes. In comparison, the 3D mode

(3, 1) is not effectively affected when the amplitude of (1, 0) is small and only reduced

by 16% in (3,±1) + (1, 0)−2 at t = 50tA compared to the double-layer simulation. The

growth of (1, 0) also decelerates by 34% in (3,±1)+(1, 0)−4 and 36% in (3,±1)+(1, 0)−2
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roughly from t ∼ 25tA compared to their initial growth.

As we argued, the growing environment of 2D modes is determined by 3D modes

on either side. The position of 3D modes cut off the asymptotic magnetic fields for 2D

modes into the fields on 3D modes resonance layers. We then calculate the theoretical

linear growth rate of (1, 0) in a much narrower current sheet. The width of this narrow

sheet is 1/5 of our typical static sheet and the asymptotic field is also 1/5 of our typical

case. This narrow sheet covers the 3D tearing layers in our typical double-layer case, as

can be seen from Fig.2.10. The growth rate of (1, 0) reduces by 6% in this narrow sheet

compared to the growth rate in our typical static sheet. Therefore, the reduction of the

growth rate of (1, 0) in the three-layer simulations is more likely due to the dynamics of

3D modes rather than the background field.

From the results above, it can be seen that 3D modes change the growth of 2D modes

in between when 3D modes are close to each other. For the most unstable mode (1, 0),

the growth rate is suppressed into half while being even slower when 3D modes grow

stronger. The 2D mode (6, 0), which is preferred by the system built up by 3D modes,

is also regulated by 3D modes. It is encouraged to grow with small amplitude, but sup-

pressed when the amplitude gets large (one order of magnitude smaller than (3, 1)).

If 3D modes are far away from each other, in another word, no inflow-outflow cou-

pling is built, the argument above is not valid. As 3D modes are growing independently,

the effective asymptotic magnetic field which determines the outflow for 3D modes gets

smaller than the prediction by Eq.(2.36). Meanwhile, the asymptotic Alfvén velocity of

2D modes is less constrained by 3D modes as it increases with the position of 3D modes

xs. Then the effective Mach number for 2D modes in Eq.(2.37) gets smaller. So when the

two tearing layers are far from each other, their influence on 2D modes reduces. Thus 2D

modes are capable to grow freely and regain their initiative.

It is found that 3D modes dominate from the initial phase (Landi et al., 2008). It is

possible that they are close to each other across the sheet center thus form a shearing flow

sheet in between and prevent the growth of 2D modes. Then 2D modes can only grow
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fast when the layers are far apart, which needs further investigation.

2.7 Summary

In this chapter, we studied the 3D tearing mode coupling, specifically the inflow-outflow

coupling, across the current sheet center by investigating the local velocity and magnetic

fields change.

We first solved the eigenfunctions of the tearing instability (Sec.2.3) then applied the

eigenfunctions into the nonlinear simulation to see further development (Sec.2.4 and so

on). We noticed that although the most unstable mode in our system is the longest 2D

mode (Fig.2.3), it does not emerge nor dominate in our previous random perturbation sim-

ulation, which is consistent with many other studies. When two 3D tearing modes start

to grow in a current sheet together, they exhibit a system with high three-dimensionality

(Fig.2.4). On the plane where one diffusion region from a tearing layer is aligned with

a flux tube on another tearing layer across the current sheet, the inflow and outflow from

different tearing layers couple with each other (Fig.2.5). The direct result of the inflow-

outflow coupling is the local increase of the inflow, local reconnection rate enhancement

and a piling up of reconnecting magnetic field in the coupling region (Fig.2.6). As the in-

coming magnetic field increases due to the inflow-outflow coupling, secondary tearing is

triggered in the coupled diffusion region (Fig.2.7), which is not found in the non-coupling

cases.

Although the three-dimensionality makes the 3D tearing mode coupling less efficient

than the DTM in the global sense (Fig.2.8), the coupled region covers about half of the box

along the guide field direction (Fig.2.9) which is sufficiently large. This large coverage

of the inflow-outflow coupling system also implies a large coverage of shear flow sheet

across the current sheet center, where 2D tearing modes can emerge. The shear flows

produced by the two 3D tearing modes across the sheet center is locally Alfvénic that it

is highly possible that they suppress the growth of 2D modes (Fig.2.10). The suppression

of 3D modes onto 2D modes are proved by the three-layer simulations which contain
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two coupled 3D modes and one 2D mode at the current sheet center. The growth rate

of the most unstable 2D mode (1, 0) is roughly half compared to the case when no 3D

modes exist. The system preferred 2D mode (6, 0) is initially encouraged to grow but

later suppressed by the 3D modes.

Up to now, we have examined the initial phase of the tearing mode coupling (before

t = 50tA). The coupled reconnection has not grown strong enough to influence the whole

current sheet. The trigger of secondary tearing indicates an upcoming violent change of

the whole current sheet, as the story of the plasmoid instability tells. In the next chapter,

we are going to check how the local inflow-outflow coupling affects the faraway magnetic

fields across the current sheet then gives faster reconnection as a whole.
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Chapter 3

Result II: global analysis of the typical

case

In this chapter, we pursue further the consequences of the inflow-outflow coupling of the

tearing layers in order to relate it to the 3D global fast reconnection in a turbulent state.

3.1 Introduction

In the previous chapter, we examined in detail the basic physics of the 3D tearing mode

coupling across the current sheet. We noticed that secondary tearing is triggered when the

inflow-outflow coupling exists. In the 2D simulation of a well evolved Sweet-Parker cur-

rent sheet, the emergence of secondary tearing is followed by an eruptive energy release.

In this case, the reconnection, to be specific the production and development of diffusion

regions, is limited to the current sheet center where anti-parallel magnetic field compo-

nents annihilate. However, in the 3D reconnection, the three-dimensionality introduces an

extra degree of freedom that diffusion regions are not only allowed along the sheet center

but can sprout anywhere in the sheet.

There are two possibilities after secondary tearing emerges in our system. One is that

each layer develops into a hierarchical reconnection layer by itself. Overall, these hierar-

chical layers build up the inflow-outflow coupling and accelerate the global reconnection.
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The other possibility is that the 3D cascade dominates in the system. In the induction

equation Eq.(1.1), the cross term of v and B will give new energy mode into the magnetic

field. By the chain effect, more and more modes are created.

The previous study has shown that the energy is pouring into the modes not only

along the initial unstable modes but also across these modes on the Fourier space (Landi

et al., 2008). Some of these new modes are residing in between the original modes near

the current sheet center, while some are growing outside which could explain why the

current sheet gets thicker with time (Onofri et al., 2006; Huang & Bhattacharjee, 2016;

Beresnyak, 2017). The outside modes are closer to the magnetic reservoir where free

energy is abundant. So we believe that a fast global reconnection can be achieved when

the inflow-outflow coupling is built across the whole sheet. This picture is similar to the

turbulent reconnection theory, which explains the global fast reconnection as an integrated

result from successive fast local reconnection as field lines are wandering across the sheet

(Lazarian & Vishniac, 1999).

In this chapter, we will study where and how new diffusion regions are created after

secondary tearing develops in the initial diffusion region, both locally (Sec.3.2.1) and

globally (Sec.3.2.2). In the local analysis, we are concentrating on the area very close

to a certain diffusion region. In the global analysis, we are tracking the development of

diffusion regions in the range of the whole simulation box. In addition, in order to confirm

our hypothesis of the global fast reconnection, we will check whether the inflow-outflow

coupling exists globally and continuously (Sec.3.5).

3.2 Diffusion region creation

The simulation setup is the same as that in Sec.2.4 that the double-layer simulation (3,±1)

is studied.
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3.2.1 Local view

We first investigate the local production of diffusion regions. As we have shown in

Fig.2.9, the system varies from the coupling plane to the non-coupling plane periodi-

cally due to our initial perturbation. The regions in between the anti-symmetric and the

symmetric planes are possessing the characters from both of these planes, while the dom-

inant character is determined by the closer one. So in the following part, we concentrate

on the change of these two characteristic planes and treat the other planes as the mixture.

In Fig.3.1, we track the diffusion region development on the anti-symmetric plane

z = 0 along time. At t = 100tA, clear secondary tearing feature is observed. Later, a

vertical diffusion region, which is perpendicular to the current sheet direction, is created

in between these two pieces, as indicated in the plot of t = 120tA. During the growth

of this vertical diffusion region, there also grows an overlying diffusion region just in

front. This overlying diffusion region, which is growing outside of the initial diffusion

region, gradually takes over the reconnection instead of the partitioned diffusion regions

and becomes the dominant diffusion region on this anti-symmetric plane.

A zoom-in view of the region near the diffusion region is selected, together with the

velocity field overplotted, as shown in Fig.3.2. Due to the partition of the original diffu-

sion region, the flow pattern has been changed. As two smaller diffusion regions that result

from secondary tearing grow, they eject outflows into y = 0 plane bidirectionally. The

outflows collide along the y-direction with each other then divert along the x-direction.

In this way, they open up a vent that the reconnected magnetic field is transported out to

touch the free field. The free field is under the global Lorentz force that is always pointing

to the current sheet center. Thus an overlying diffusion region is created as the magnetic

fields with different characters meet.

We want to make a caution here that the vertical diffusion region is created due to

the perfect symmetry across y-plane. It accelerates the flow outwardly that the overlying

diffusion is created fast. We are arguing that the opening of the outward flow that comes

from the partitioned diffusion regions is an essential point in creating the new diffusion
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region across the current sheet direction. When a random perturbation is applied, the

symmetry is lost. Then it is highly possible that overlying diffusion regions are formed

without the emergence of vertical diffusion regions. The detailed analysis of the magnetic

field lines is shown in Appendix.F.

Next, we turn our focus to the diffusion region creation on the symmetric plane, which

is shown in Fig.3.3. As we have shown in the previous chapter, the diffusion regions from

the initial tearing modes saturate on this plane. It can be seen that the diffusion regions

gradually disappear. Instead, a new elongated diffusion region starts to grow in front of

the original one.

The understanding of the building up of the new diffusion region is shown in Fig.3.4.

We select a bunch of field lines (blue lines) in between the original and the new diffu-

sion region. Structural non-uniformity is observed along these lines. They bend to the

+x-direction when passing through the symmetric planes (z = ±1.5δ) by comparing

panels A) and C), while expanding out to the −x-direction when passing through the

anti-symmetric planes (z = ±3δ and z = 0 planes).

The non-uniformity comes from the different reconnection efficiency on these two

characteristic planes. In Chap.2, we have shown that the reconnection is fast on the anti-

symmetric plane but slow on the symmetric plane. So when the free field lines approach

the tearing layer, the parts near the anti-symmetric planes reconnect first while the parts

near the symmetric planes have not reconnected. As a result, the lines have some parts

inside the flux tubes but other parts still remain free as shown in panel D). Since the

flux tubes are growing outwardly, the bents are created along the field lines. As the

reconnection in the original tearing mode saturates on the symmetric plane, the free field

line parts will subject to the tension force that comes from the bent. The tension force

drags the field lines in the −x-direction, which is opposite to the inflow for the original

diffusion region. It does not only kill the reconnection in the original tearing mode faster

but also helps the field lines to collide with the outer field lines that are going into the

current sheet under the global Lorentz force. Therefore, a new diffusion region is created.
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In both cases, the coupling planes and the non-coupling planes, we found how new

diffusion regions are created outwardly. Since we believe that the process on other layers

along the z-direction is the mixture of the mechanisms on these two characteristic planes,

the production can be global but needs to be proved. Furthermore, a new set of inflow-

outflow coupling is expected to build up between the old diffusion regions and the new

ones, which accelerates the reconnection locally in both old and new diffusion regions.

This argument is checked in the latter section.
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Figure 3.1: Diffusion region development along time by showing the current density Jz
contour plot on the anti-symmetric plane z = 0. The big dashed line box confines the
zoom-in region shown in Fig.3.2.
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Jz/J0, (3,±1), z = 0, t = 100tA
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Figure 3.2: Velocity fields overplotted on the current density Jz contour plots as vectors,
which are the zoom-in views of the dashed line boxes in Fig.3.1. Vector scales are plotted
at the bottom.
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Jz/J0, (3,±1), z = -1.5δ, t = 100tA
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Figure 3.3: Diffusion region development along time by showing the current density Jz
contour plot on the symmetric plane z = −1.5δ. The dashed line boxes locate the diffu-
sion regions on initial 3D tearing mode (3, 1).
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Figure 3.4: Field lines that are correspondent to the creation of the overlying diffusion
region, together with current density structures at t = 114tA.
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3.2.2 Global view

As we have already identified the local creation of diffusion regions on two characteristic

planes, it is necessary to examine whether these mechanisms are only affecting limited re-

gion or they are capable to influence the whole current sheet that diffusion regions emerge

systematically. The global creation of diffusion regions along the current sheet is required

for the global fast reconnection. On the other hand, the global coverage of diffusion re-

gions can be understood as the growth of new modes, which explains the energy cascade

on the spectrum. Therefore, we will check the 3D diffusion region distribution, as well as

the mode energy along time to confirm the global creation of new diffusion region.

In the early phase, the current sheet is dominated by the two initial perturbed modes

that form two reconnection planes along the current sheet before secondary instability

grows (Fig.3.5). In panel A), diffusion regions and flux tubes can be clearly identified.

Field lines inside the tubes braid and form coherent structures, as shown in panels B)

and C). Later at t = 150tA, when new diffusion regions sufficiently grow, three flux

tube cross-sections can be counted along the anti-parallel magnetic field direction (y-

direction), while five flux tube cross-sections exist along the global guide field direction

(z-direction) on either side of the current sheet. Since these flux tubes cover the whole

box, they indicate the growth of new modes (3,±5). We also plot the diffusion regions

above x = −0.15δ plane, which is away from the resonance layers of the initial perturbed

modes, as shown in panel B). Together we plot the magnetic field lines that root on the

resonance layer (3,−5). Clearly, diffusion regions form diffusion lines that appear to

be the new modes (3,−5) and fully extend along the sheet direction thus form a new

reconnection layer. Meanwhile, the magnetic field lines that compose the flux tubes in

panel A) are nicely confined in between two diffusion lines above this plane as shown

in panel B). It proves that the flux tubes are the result of the reconnection proceeding on

this plane. Judging by the findings here, we argue that new diffusion regions are created

globally and they form an extended reconnection layer on either side of the current sheet,

which is essentially helpful for the global fast reconnection.
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Figure 3.5: Current density isosurface represents flux tube surfaces and diffusion regions,
together with magnetic field lines. Yellow, purple and green lines are selected field lines
from z = 0, −1.5δ and 1.5δ plane and root along the resonance layers (3, 1) and (3,−1)
respectively.
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Figure 3.6: Current density isosurface represents flux tube surfaces and diffusion regions,
together with magnetic field lines. Yellow, purple and green lines are selected field lines
from z = 0, −1.2δ and 1.2δ planes, while red and blue lines are selected field lines on
z = −0.6δ and 0.6δ planes. All lines root along the resonance layer (3,−5).
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As the initial tearing modes grow stronger, the nonlinear terms such as the second-

order terms cannot be ignored anymore. For example, in the induction equation Eq.(1.1),

the nonlinear term comes from the cross term of v and B of the initial modes, later all ex-

isting modes when they sufficiently grow. The detailed equations describe this process are

shown in Appendix.G. We refer to this mechanism as the nonlinear coupling of tearing

modes. The inflow-outflow coupling in the previous discussion describes the enhance-

ment of the field amplitude across the current sheet. The nonlinear coupling of the tearing

modes we are going to investigate in the following part produces new modes growing

along the current sheet, while the new modes have different wavenumbers compared to

the original modes (e.g., Kusano & Sato, 1987).

Initially, the system is provided with only two 3D modes. As it is described in

Appendix.G, the nonlinear coupling between two modes (m1, n1) and (m2, n2) produces

(m1, n1) + (m2, n2) → (m1 ±m2, n1 ± n2) (3.1)

in general. Higher order harmonics of the initial modes and new modes on other resonance

layers, such as (3, 1) + (3,−1) → (6, 0), are created.

Chain effect of successive nonlinear coupling afterwards between new and old energy

modes will form an extended energy spectrum. We thus study the magnetic energy of each

mode as shown in Fig.3.7. We calculate the energy of each mode (m,n) in the Fourier

space as that shown in Eq.(2.38) and Eq.(2.39). Since we are applying the rotational-

symmetric setup, we average all energy modes into the form of

Ẽm(m, |n|) =
1

2

[
Ẽm(m,+|n|) + Ẽm(m,−|n|)

]
(3.2)

for convenience. The maximum mode energy at each time step is plotted as the thick

black dashed line in Fig.3.7. In the left panel, we plot the most energetic modes before

t = 200tA. It can be seen that 3D modes (i.e., modes with n ̸= 0) always dominate during

this time. The most energetic mode changes from the initial perturbed (3, 1) to (3, 3) first,
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Em(m,|n|)
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Figure 3.7: Magnetic mode energy in the selected periods (shaded by gray colors) which
correspond to the overall reconnection rate boosts in Fig.3.10. Black dashed line is the
maximum mode energy at each time step. Colored lines are the most energetic modes
during each boost. In addition, the energy mode (0, 2) and (1, 0) are also plotted as purple
and blue lines.

then finally (3, 5) in the shaded region, which shows an energy transfer from a smaller |n|

mode to a larger |n|.

By checking the position of diffusion regions and the resonance layers, it can be con-

firmed that the new reconnection layers are the mixture of the modes (3,±3) and (3,±5).

In Fig.3.8, we plot the current density J on different y-planes across a quarter of the

whole box along the y-direction, where bright features represent diffusion regions. We

concentrate on the −x-side of the current sheet and the highly enhanced diffusion regions

along x = −0.3δ. They are the newly created diffusion regions outside of the original

tearing layers (red dashed lines) thus the reconnection plane is reaching outwardly from

the current sheet center. On all planes, five diffusion regions with enhanced current den-

sity can be identified. We overplot the resonance layer of (3,−5), but find that it does not

always co-locate with the diffusion regions. Instead, the mode (3,−3) are close to these

diffusion regions on all y-plane. So it seems that the diffusion lines are from both (3,−3)

and (3,−5). Although further cascade into (3,±7) can be found very close to the current
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sheet boundary, they are too weak to be important to the whole system.

In summary, from the analysis above, we show that how diffusion regions are created

locally and globally, which are necessary to explain the overall fast reconnection. New

diffusion regions correspond to new energy modes which come from the nonlinear cou-

pling. In addition, some diffusion regions along the original perturbed modes remain and

coexist with the new reconnection layer formed by the new diffusion regions (Fig.3.8).

Whether the inflow-outflow coupling also exists between them will be checked in Sec.3.5.
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Figure 3.8: Current density contour plot at different y-planes at t = 150tA. Red, orange
and green dashed lines correspond to the position of the resonance layers of (3,−1),
(3,−3) and (3,−5) respectively.
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3.3 Dominant energy transfer path

We have observed that new energy modes are created and participate reconnection. Since

there develop numerous possible energy transfer paths as Eq.(3.1) that lead to activate a

certain mode, we need to calculate the energy transfer rate along each path to find the

most contributing one that explains the emergence of new energy modes. The calculation

of the energy transfer rate is based on the study by Dahlburg et al. (1992), which is the

extension of the work in hydrodynamics (Orszag & Patera, 1983).

The velocity field and the magnetic field are decomposed into:

v(x, y, z) = v(1)(x) + v(2)(x, y) + v(3)(x, y, z) (3.3)

B(x, y, z) = B(1)(x) +B(2)(x, y) +B(3)(x, y, z) (3.4)

while being explicitly

v(x, y, z) = v(1)(x) +
M∑

m=−M

ṽ
(2)
m0(x) exp(ikyy)

+
N∑

|n|=1

M∑
m=−M

ṽ(3)
mn(x) exp(ikyy + ikzz) (3.5)

B(x, y, z) = B(1)(x) +
M∑

m=−M

B̃
(2)
m0(x) exp(ikyy)

+
N∑

|n|=1

M∑
m=−M

B̃(3)
mn(x) exp(ikyy + ikzz) (3.6)

where M and N are the largest wavenumbers along y- and z-direction in this system.

Rewrite the component into 1D, 2D and 3D modes as:

v[1] = v(1) + v
(2)
00 , B[1] = B(1) +B

(2)
00 (3.7)

v[2] = v(2) − v
(2)
00 , B[2] = B(2) −B

(2)
00 (3.8)

v[3] = v(3) , B[3] = B(3). (3.9)
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Consider the energy transfer between 1D, 2D and 3D modes energy in the form of

dE1

dt
= −τ12 − τ13 + δ1 (3.10)

dE2

dt
= τ12 − τ23 + δ2 (3.11)

dE3

dt
= τ13 + τ23 + δ3 (3.12)

where τij represents the energy transfer rate from the i-th dimensional mode to the j-

th dimensional mode, δi is the dissipation rate of the i-th dimensional mode. Applying

the momentum equation Eq.(2.2) and the induction equation Eq.(2.4) into Eq.(3.10) to

Eq.(3.12), the energy transfer rate between 1D, 2D and 3D modes can be written as

τ12 =

∫
B[1]

4π
· ∇ ×

(
v[2] ×B[2]

)∗
d3x (3.13)

τ13 =

∫
B[1]

4π
· ∇ ×

(
v[3] ×B[3]

)∗
d3x (3.14)

τ23 =

∫ [
ρv[3] · (v × ω)[3]∗ +

v[3]

c
· (J×B)[3]∗ +

B[3]

4π
· ∇ × (v ×B)[3]∗

]
d3x

−τ13 (3.15)

where the cross terms are in the form of

(v × ω)[3] = v[2] × ω[3] + v[3] × ω[2] (3.16)

while the dissipation rates are

δi =

∫
− η

(4π)2
∣∣∇×B[i]

∣∣ d3x. (3.17)

We assume an incompressive plasma that ρ is treated as a uniform constant.

We are interested in the individual energy transfer path, namely how a certain mode

78



(m,n) is produced. By expanding Eq.(3.15) for each path, it gives

τmn =

∫
2ρℜ

(
ṽ[3]
mn · (ṽ × ω̃)[3]∗mn

) (2π)2

LyLz
dx

+

∫
2
1

c
ℜ
(
ṽ[3]
mn ·

(
J̃× B̃

)[3]∗
mn

)
(2π)2

LyLz
dx

+

∫
2ℜ

(
B̃

[3]
mn

4π
· ∇ ×

(
ṽ × B̃

)[3]∗
mn

)
(2π)2

LyLz
dx. (3.18)

The cross terms contain the information of the parent modes. Regarding Eq.(3.1), the

cross terms can be written in the form of

(ṽ × ω̃)[3]∗mn = ṽ[3]∗
m1n1

× ω̃[3]∗
m2n2

+ ṽ[3]∗
m2n2

× ω̃[3]∗
m1n1

. (3.19)

Summation of all possible (m1, n1) and (m2, n2) will give a total energy transfer to a

certain mode (m,n).

The eigenfunction of energy mode becomes less well defined in the highly nonlinear

system. Therefore the calculation above is not applicable in the late phase. We then only

concentrate on the early phase. That is, to understand how (3, 3) and (3, 5) are produced.

The energy transfer rate and the dissipation rate before the end of the first boost are shown

in Fig.3.9. The dissipation rate in panel A) shows a very similar trend as the mode energy

in Fig.3.7. The dissipation by the 2D mode (6, 0) before t = 200tA is far slower than

3D modes. In panel B), the total energy transfer rate into (3, 3) and (3, 5) by summing

up all possible combinations of (m1, n1) and (m2, n2) are plotted. Comparing panel A)

and B), it can be observed that both the dissipation rate and the total energy transfer rate

start to increase rapidly from t ∼ 80tA. From t ∼ 80tA to 130tA, the dissipation rate

and the total energy transfer rate are rapidly increasing for (3, 3), which correspond to the

increase of the total magnetic energy of (3, 3) in Fig.3.7. The dissipation rate increases

fast until almost t ∼ 190tA for (3, 5), but the total energy transfer rate has a peak around

140tA. As the dissipation is stronger than the energy (3, 5) receives afterwards, the total

magnetic energy of (3, 5) has a peak around 150tA as shown in Fig.3.7.
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Figure 3.9: Panel A): the dissipation rate of selected modes. Panel B): the total energy
transfer rate of (3, 3) and (3, 5) by summing up all possible combinations of (m1, n1)
and (m2, n2). Panel C) and D): individual energy transfer rate of (3, 3) and (3, 5) from
different paths. Black dashed lines are the starting time for the rapid growth of (3, 3) and
(3, 5). Orange and green dashed lines label the peak times for the dissipation rate of these
two modes respectively.
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Looking back to Fig.3.2, the new modes (3, 3) and (3, 5) start to participate recon-

nection from t ∼ 120tA. It implies that these two modes are growing mainly by absorb-

ing energy from the background current during this phase, similar to an ordinary tearing

mode. This argument is supported by the individual energy transfer path shown in pan-

els C) and D). The energy transfer from (0, 0) mode becomes predominant after 80tA

for both modes. It runs over the total energy transfer from 90tA in (3, 3) and 140tA in

(3, 5) as these two modes are pouring energy to other modes as well. However, (3, 3) and

(3, 5) are not preferable tearing modes in the initial current sheet. Thus to understand the

energizing phase which activates these two modes is important.

In the case of (3, 3), before the rapid growth ∼ 80tA, the main energy transfer paths

are (3, 1) + (0, 2), (−3, 1) + (6, 2) and (−3,−1) + (6, 4). The first transfer path can

be understood by Sec.3.6.1. The second and the third transfer paths both involve higher

wavenumber modes, in which (6, 2) is the second harmonic of the original mode, while

(6, 4) is produced predominantly by (−3, 1) + (9, 3) (not shown here) and (9, 3) is the

third harmonic of the original mode. Similar processes happen for (3, 5), as the energy

transfer path (−3, 1)+(6, 4) dominates before (3, 5) grows rapidly. In addition, the second

harmonic of (3, 3) is also participating in transferring the energy via (−3,−1) + (6, 6).

The dominant energy transfer path seems to be the nonlinear coupling of the initial

modes and their higher order harmonics. The growth of higher order harmonics of the

original tearing modes is highly related to secondary tearing. As we have explained,

secondary tearing is important to produce new diffusion region outwardly. Thus the non-

linear coupling can be linked to the processes shown in Fig.3.1 and Fig.3.2. As secondary

tearing grows, the inflow-outflow coupling between diffusion regions gradually shifts to

the partitioned diffusion regions. It means that the modes which participate the inflow-

outflow coupling is not only limited to the original modes but also their higher order

harmonics. As a result, energy modes with higher wavenumbers become more energetic.

By calculating each energy transfer path, we find that the higher order harmonics are

important in activating new energy modes outwardly across the current sheet. Our initial

81



perturbation contains only two modes. When the initial system is perturbed by a broad

band of modes, whether the nonlinear coupling is also dominated by the higher order

harmonics of the initial modes needs further study.

The efficiently growing higher order harmonics are activated by the inflow-outflow

coupling as we described in Sec.2.5. Although they are growing along the sheet, they

subsequently participate the nonlinear coupling across the current sheet. When the higher

order harmonics become dominant, they break the original diffusion region due to sec-

ondary tearing. Therefore, it is suggested here that the nonlinear coupling and secondary

tearing are also coupled processes.

3.4 Global energy change

We have shown the creation of new reconnection layers that expand further into the

asymptotic magnetic field. From the rapid growing dissipation rate of these new modes

shown in panel A) of Fig.3.9, it is expected that the reconnection is growing fast after

t ∼ 80tA.

In order to confirm this, we check the total kinetic energy in the box and the magnetic

reconnection rate by evaluating the magnetic energy conversion rate. The total kinetic

energy is calculated as:

Ek =

∫ Lz
2

−Lz
2

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

1

2
ρv2dxdydz. (3.20)

The magnetic energy conversion rate is calculated by the time derivative of the reduced

total magnetic energy, which is calculated by:

∆Em =

∫ Lz
2

−Lz
2

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

|Bf |2 − |B|2

8π
dxdydz (3.21)

where Bf is the magnetic field calculated in a nonlinear simulation without any pertur-

bation. By subtracting Bf , the magnetic change from the global diffusion is removed.
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Figure 3.10: The total kinetic energy (left) and the magnetic energy conversion rate (right)
of the double-layer simulation (3,±1). Gray shaded regions are the stages where recon-
nection rate has a boost.

The magnetic energy conversion rate is normalized by Pin, which is defined as Pin =

2LyLzvA0B
2
y0/(4π) that represents the total inflow Poynting flux estimated by the global

asymptotic magnetic field from both sides of the current sheet.

By observing the magnetic energy conversion rate in Fig.3.10, we notice a clear boost

at t = 100 − 200tA (first gray shaded region), which also corresponds to a boost in the

total kinetic energy. We also execute the single-layer simulation (3, 1) until the end of the

first boost. However, no such eruptive energy release is found. So the boost must correlate

with the 3D effects rather than the 2D-like cascade along the initial tearing layer. We have

already identified the creation of new reconnection layers outwardly due to the growth of

higher wavenumber modes. They are highly related to the global reconnection efficiency.

After the first boost (t = 200tA), the global reconnection decelerates. The whole

system starts to reorganize itself, as the outermost modes (3,±5) get weaker (Fig.3.7)

and give out energy to other modes (panel B) in Fig.3.9). In Fig.3.11, we show how

existing flux tubes behave in the relaxation phase after t = 200tA. We select flux tubes

on the x > 0 side of the current sheet. At t = 240tA, five flux tubes are still visible along
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the current sheet. If we concentrate on the positions where the red arrows are pointing

at, we notice that the field lines gradually untwist and re-twist with the field lines nearby.

Eventually, a new big flux tube is formed across the current sheet. Visually, we have found

the phenomenon that is similar to the coalescence instability. As this new tube structure

extends from one corner of the box to its diagonal corner along the sheet direction, it

is probably the tube on the same resonance layer as (3, 3) but produced by lower order

harmonics.

As it can be seen from Fig.3.10, both the kinetic energy and the global energy con-

version rate have another boost after t = 320tA until around 460tA (second gray shaded

area). From the right panel of Fig.3.7, it is found that during this phase, the lower order

harmonic of (3,±3), namely (1,±1), start to grow and subsequently evokes (1,±3). The

existence of (1, 1) has been captured by Fig.3.11. So the second boost also correlates with

a production of higher wavenumber modes along the guide field direction (an increase of

|n| number), the same as the first boost.

We first try to locate (1, 1) and (1, 3) in Fig.3.12 and Fig.3.13. As the resonance

layer of (1, 1) is closer to the sheet center compared to (3, 5), (1, 1) is growing from

the inside and difficult to be identified from the outermost layer of the current density

isosurface, as shown in the panel A). Moreover, it is coexisting with other harmonics of

q = −4, such as (3, 3). We select the magnetic field lines from the resonance layer of

q = −4 along one flux tube. The coherency of the field lines is not as good as that in

Fig.3.6. However, the structure of (1, 1) tube can be found from the purple and the green

lines between two diffusion lines on either side. Later, the new mode (1, 3) start to grow,

which has a larger wavenumber along the global guide field than (1, 1). Clearly, three flux

tubes that extend along the sheet direction can be seen. The field lines selected from the

resonance layer of (1, 3) show a coherent twist inside the flux tube above the reconnection

layer which is formed by the diffusion lines. By checking the resonance factor q of the

diffusion lines, we find that they are the combination of (1, 1) and (1, 3), consistent with

the spectrum. Actually, the modes (1,±3) are not allowed by the original system because
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Figure 3.11: Magnetic field lines selected in the double-layer simulation (3,±1) during
the relaxation phase. Green, purple and yellow lines are magnetic fields selected from
y = 0,±6δ across x = 0.5δ.
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of the limitation by Eq.(2.26). But due to the inflow-outflow coupling across the whole

current sheet, magnetic flux is absorbed into the current sheet globally. A piling up of

magnetic field exists along the current sheet boundary. It increases the anti-parallel fields

more than the global guide field locally thus modes with higher wavenumbers along the

guide field can survive.

The local creation of diffusion regions for (1,±3) is shown in Fig.3.14, where the

black dashed line box confines. In the upper left panel, a chain of diffusion regions at

the current sheet center can be seen, which correspond to the 2D mode (6, 0) that starts to

grow from the early phase. Later (t = 300tA), the diffusion region near y = 6δ disappears,

which implies an inverse energy cascade to a longer 2D mode so two diffusion regions

remain inside the box. Both diffusion regions reconnect magnetic fields and eject outflows

into y = 6δ thus form a new vertical diffusion region. As we have described in Fig.3.1,

the vertical diffusion region pushes the field lines outwardly then forms new diffusion

regions, as shown in the lower panels of Fig.3.14. Although no secondary tearing is

needed here, the essential mechanism is shared with the previous description that new

diffusion regions are created by the re-orientation of the flow and the existence of multiple

orders of harmonics.

Therefore, the story in the second boost is consistent with what we have developed in

the first boost. They both give the same conclusion that the global reconnection acceler-

ates with the growth of new reconnection layers that correspond to new 3D modes near

the asymptotic magnetic field.

As we have shown in the above, new energy modes are created due to the nonlinear

coupling. During the coupling, the parent modes energy transfers to the daughter modes

which have a larger wavenumber |n| than the original modes. In our simulation which

starts from a pair of rotational-symmetric tearing modes, the energy transfer with increas-

ing wavenumber |n| appears twice while each one corresponds to a reconnection boost.

The change of the most energetic mode can be clearly observed from the 2D energy spec-

trum. In Fig.3.15, the 2D magnetic energy spectrum is shown at different times which
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Figure 3.12: Current density isosurface represents flux tube surfaces and diffusion re-
gions, together with selected magnetic field lines. Yellow, purple and green lines are
selected field lines from z = 0, −1.5δ and 1.5δ planes. All lines root along the resonance
layer (1, 1) (translucent black surface).
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Figure 3.13: Current density isosurface represents flux tube surfaces and diffusion re-
gions, together with selected magnetic field lines. Yellow, purple and green lines are
selected field lines from z = 0, −1δ and 1δ planes. All lines root along the resonance
layer (1, 3).
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Figure 3.14: Diffusion region development along time by showing the current density Jz
contour plot on the symmetric plane z = −1.5δ. The big dashed line box locates the
region how new diffusion regions are created.
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correspond to the red circles in Fig.3.10. It can be seen that the energy is showing a cas-

cading trend towards the asymptotic magnetic field along the global guide field direction

(kz) in each boost, which is consistent with the previous study (Landi et al., 2008). In

between the two boosts, an energy cascade into the longer mode (1, 1) can be seen. The

integrated 1D spectrum is shown in Appendix.H.

To consolidate our argument that 3D modes are important in the 3D reconnection, we

calculate the spatially averaged current density strength ⟨|J|⟩ that

⟨|J|⟩ =
∫ Lz/2

−Lz/2

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2

|J(x, y, z)|dxdydz/(LxLyLz). (3.22)

It represents the Joule heating thus the dissipation of the system. The current sheet width

is defined as the distance between the positions with a certain current density threshold

that equals to the current density at the initial current sheet half-width (∼ 0.24J0). The

sheet width is plotted in panel A) of Fig.3.16, Inside the shaded regions which correspond

to the reconnection boosts, there exist faster expansions of the current sheet. Meanwhile,

⟨|J|⟩ increases during these phases, which also indicates an acceleration of global dis-

sipation. The total mode energy of 2D and 3D modes are plotted in panel C). During

each boost, 3D modes have a sudden increase, while the 2D modes in the second boost is

growing almost linearly.

By plotting the distribution of the sheet-wise averaged current density ⟨|J(x)|⟩ that

⟨|J(x)|⟩ =
∫ Lz/2

−Lz/2

∫ Ly/2

−Ly/2
|J|dydz/(LyLz) along the x-direction as shown in panels B) and

D), we are capable to distinguish the contribution of dissipation from 2D and 3D modes to

some extent. In panel B), there is clear boundary with finite current density between the

dissipation region and the non-dissipating region. This boundary is the outermost bound-

ary of the 3D flux tubes. Our measurement of the current sheet width is always beyond

this region. In the initial phase before 100tA, two branches of ⟨|J(x)|⟩ local maximum

can be observed inside the flux tube boundaries. By comparing to the 3D distribution

of |J|, it is confirmed that they correspond to the diffusion regions of initial perturbed

modes (3, 1) and (3,−1). After 100tA, the new modes (3,±3) and (3,±5) emerge. The
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Figure 3.15: The magnetic energy spectrum of Eq.(2.39) at times corresponding to the red
circles in Fig.3.10, in addition to the final time of our simulation. The dominant modes
are labeled in each panel. Black-red dashed arrows indicate the possible energy transfer
paths. The red dashed line represents the asymptotic magnetic field for the current sheet.
The region between the red dashed line and kz axis is the reconnection-incapable region
in the original current sheet. Colors are in the logarithmic scale.
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Figure 3.16: Panel A): the current sheet width (black solid line) and the spatially averaged
current density in the whole simulation box. Panel B): spatially averaged current density
along the x-direction. Panel C): total magnetic energy of all 3D modes (black) and 2D
modes (blue). Panel D): stack plot of the spatially averaged current density as panel B).
The two boost periods are labeled as the gray shaded regions in panel A), and in between
the dashed lines in other panels.
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diffusion regions of these modes are identified as two branches of local enhanced current

density between the central strong dissipation region and the flux boundary. The strong

dissipation region at the sheet center from 100tA to 250tA is the mixture of the remaining

diffusion regions from (3, 1) and (3,−1), separatrix of new modes, as well as the grow-

ing 2D modes. As the system enters the relaxation period, the central dissipation region

gradually fades away. The current sheet slowly expands due to the saturation of the out-

ermost reconnection layer (3, 5) and (3,−5) that flux tubes untwist to relax, as can be

seen from Fig.3.11. When new tearing layers grow strong enough and the system enters

the second boost, local enhancements of current density near the sheet center are more

complicated than the initial phase. They are composed of both 2D and 3D modes that

it becomes difficult to differentiate them. As the new 3D modes are created outwardly,

the current sheet expands further. The wide current sheet in the later phase has a lower

current concentration anywhere across the sheet compared to the initial one (panel D)),

but the integration along the x-direction gives a higher total dissipation (panel A)). The

enhancement and re-distribution of current density are highly related to the creation and

growth of new 3D modes.

3.5 Ubiquitously existing coupling

As we have described in Sec.3.2 and Sec.3.4, new reconnection layers are created away

from the current sheet center. From Fig.3.8, some diffusion regions remain along the orig-

inal resonance layers of (3,±1). As shown in Fig.3.1 and Fig.3.3, the original diffusion

regions disappear near the anti-symmetric and the symmetric planes. It means that the

coverage of the original reconnection layers shrinks along the sheet direction during the

production of new reconnection layers. Moreover, apparently no direct inflow-outflow

coupling exists across the sheet between the new layers (Fig.3.2). If the inflow-outflow

coupling between new and old layers are piece-like, the global reconnection is highly pos-

sible to be slow. So in this section, we will identify whether the inflow-outflow coupling

across the sheet globally exists after new layers are created.
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In Chap.2, we used the existence of secondary tearing as a tool for detecting the ef-

fective coupling along the global guide field direction (z-direction). In this chapter, we

concentrate on the local flow pattern that once a coupling of inflow and outflow exists be-

tween two modes on a certain z-plane, we label this z-plane as an inflow-outflow coupled

plane. This is a more relaxed condition.

We show some examples of the inflow-outflow coupling in Fig.3.17. We identify

the coupled diffusion regions on two different z-planes at two different times, selected

from the first shaded region (first reconnection boost) in the left panel of Fig.3.7. The

upper panels are selected at the time when the mode (3,±5) almost reaches its energy

peak. Strong inflows and outflows eject in and out of the outermost layers formed by the

new modes. The strong outflows divert and enter some diffusion regions near the center.

Meanwhile, the diffusion regions near the center, which are on the original resonance lay-

ers of (3,±1), also build up the inflow-outflow coupling with each other across the sheet

(zoom-in view in the upper right panel). In comparison, the inflow and outflow are much

smaller than the new layers. In the lower panels which correspond to the end time of the

first reconnection boost, the inflow-outflow couplings also exist both across the sheet and

on the same side of the sheet. At this moment, the outflow from the diffusion regions

near the sheet center is having almost the same magnitude as the outflow from the diffu-

sion regions near the current sheet boundary. In the meantime, the overall reconnection

efficiency reaches the first peak.

As we have shown, the inflow-outflow coupling still exists after the new layers grow.

Next, we examine the distribution of the coupling along the global guide field. We identify

the coupling by observing the inflows and outflows into and from the diffusion regions by

eye. We trace the velocity vectors, which form streamlines, on different z-plane in and out

of the diffusion regions. If the streamlines of outflow from a diffusion region on a certain

mode is connected to the streamlines of inflow into another diffusion region on another

mode, while the velocity across the sheet direction shows a smooth increase when leaving

the diffusion region then a decrease when entering another one along the streamline, as
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Figure 3.17: Examples of diffusion region couplings at different times. Red dashed boxes
represent the coupled diffusion regions near the center. Right panels are the zoom-in view
of the orange dashed boxes in the left panels. Velocity fields are overplotted as arrows
onto the current density Jz contour plot. Vector scales are plotted at the bottom.
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Figure 3.18: The coverage of the inflow-outflow coupling planes inside the simulation
box along the global guide field direction. The black line with stars is the coverage of
the coupling across the current sheet center. The blue line with diamonds is the coverage
of the coupling on the same side of the current sheet. The red line with triangles is the
coverage of the coupling between 2D and 3D modes.

that in Fig.2.5, we say that these two modes are coupled with each other. We are detecting

the coupling only on the 2D plane instead of 3D volume for simplicity. The validation

of this method was argued in Sec.2.6.1 under the assumption that the system maintains

symmetric and simple. A more rigorous definition should be applied in the future.

The coverage of the inflow-outflow coupling planes in the whole box along the global

guide field is shown in Fig.3.18. It is calculated as the number of z-planes along global

guide field on which inflow-outflow coupling is found over the grid number Nz. Initially,

the inflow-outflow coupling covers a wide area along the current sheet. It is interest-

ing to notice that the coverage becomes smaller when secondary tearing starts to grow

after t = 50tA. When new modes are under production by extracting energy from the

original modes, diffusion regions on the original reconnection layers disappear on some

z-planes. A direct result is the shrinking of the coverage. However, as new modes have

fully grown, the coverage of the inflow-outflow coupling across the center recovers and

reaches the same level as the initial state. In addition, new 3D layers build up inflow-

outflow couplings with old 3D layers in a considerably large area along the current sheet
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during this phase, as they are more parallel to each other.

In Sec.2.6.2, we have shown the potential suppression mechanism onto 2D modes

by the shear outflow from 3D modes. During the new diffusion region creation, parts

of the original reconnection layers disappear (Fig.3.1 and Fig.3.3) that the suppression

mechanism from 3D modes becomes weaker. Meanwhile, the new reconnection lay-

ers are too far away from each other that they cannot build up new coupling by them-

selves (Fig.3.1, the dependence of the coupling on the layer distance will be checked in

Chap.5). Therefore, 2D modes are capable to grow. They cut off the direct potential

inflow-outflow coupling between 3D modes from either side of the current sheet. So

instead, the inflow-outflow coupling gradually shifts to the inflow-outflow coupling be-

tween 3D and 2D modes, in addition to the inflow-outflow coupling between 3D modes

on the same side. One example of the inflow-outflow coupling between 2D modes and

3D modes are shown in Fig.3.19. In the later phase (from t ∼ 300tA), the coupling is

dominated by 2D-3D modes inflow-outflow coupling before t = 500tA. After the second

boost, the outermost modes (1,±3) saturate. Even though the inflow-outflow coupling is

still universally existing, the total reconnection rate decreases by approximately 25% as

the free energy supply from the asymptotic fields are stopped.

Regarding the results above, we have confirmed that the inflow-outflow coupling is

a common feature of the current sheet at any time, which is supportive for a global fast

reconnection.
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Figure 3.19: The inflow-outflow coupling between 2D and 3D modes shown by velocity
vectors over current density contour plot. The resonance layer of 2D modes (By = 0)
is plotted by red dashed line. The diffusion regions of 2D modes are labeled by orange
dashed line boxes. Vector scales are plotted at the bottom.

98



3.6 Discussion

3.6.1 Mechanism of mode creation

From our result, we explained how new diffusion regions are created both locally and

globally. New diffusion regions are growing on new energy modes which have larger

wavenumbers along the global guide field than the original modes. In the following part,

we will explain why these modes are selected by the system.

As we have elaborated in Chap.2, the anti-symmetric planes, which have a fast re-

connection, and the symmetric planes, on which the reconnection is slow, exist along the

guide field alternatively. Each type of layers influences approximately half of the box, as

shown in Fig.3.18. It means that if a detector is applied onto each z-plane along the global

guide field direction, the detected reconnection efficiency will change from efficient on

the anti-symmetric plane to inefficient on the symmetric plane, alternatively. Since the

initial modes are (3, 1) and (3,−1), one period is provided by each mode along the guide

field inside our box. After the coupling, they produce two periods of the reconnection

efficiency change along the guide field. This can be directly observed from panel A) of

Fig.2.4 that the diffusion line width has two periods of change along the guide field di-

rection. This change of the reconnection efficiency corresponds to the new mode (0, 2),

which is along the global guide field.

Next, we consider how magnetic field lines are absorbed into this system, as shown in

Fig.3.20. In this case, we only consider the field lines on the −x-side due to the rotational-

symmetry. As the reconnection proceeds on two initial reconnection layers, field lines

in further places are absorbed closer to the sheet center from either side of the current

sheet. Meanwhile, the reconnected flows are ejected from the flux tubes and go in the

opposite direction of the field lines absorption across the lateral boundary of the flux tube.

Therefore, field lines are being absorbed while being rejected, which can be seen from the

color of vx on the surface of the contour plot. Due to the inflow-outflow coupling, field

lines just outside of the anti-symmetric planes are absorbed in faster, while field lines
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near the symmetric planes are approaching the current sheet more slowly. As a result,

the whole system is more or less under the control of the anti-symmetric planes as they

provide stronger flow. The summarized flow pattern mainly due to the anti-symmetric

planes is shown as the cartoon in the upper panel of Fig.3.20. The stronger inflows (red

dots) are along the diffusion lines (thick red lines). The stronger outward flows (blue dots)

are along the flux tubes. As a whole, they form a check structure near the sheet surface

along the current sheet. It indicates that, if the field lines correspond to a certain mode

are uniformly absorbed by the red dots and avoid all blue dots along the current sheet,

the correspondent mode can grow due to the resonance. If field lines are absorbed by red

dots at some positions but pushed out by the blue dots somewhere else, the correspondent

mode cannot grow. Thus generally speaking, the possible modes are categorized into

favorable modes and unfavorable modes, as shown in the lower panel. The predicted

diffusion line position is the same as the simulation shows (Fig.3.6).

Because new field lines from the outer side are always having larger tilting angles

compared to the initial perturbed modes, an increase of the wavenumber along the anti-

symmetric field direction (y-direction) is less preferred to an increase of the wavenumber

along the guide field direction (z-direction). As the new modes have larger values of

|n|, the wavelengths of the new modes are monotonically decreasing, which it can be

seen from the distance between the diffusion lines. The direct result of the shrinking

wavelength is the decreasing diffusion region length on the new reconnection layer, as the

diffusion region length is approximately half of the wavelength. The local reconnection

rate in a diffusion region is linearly scaled with the diffusion region aspect ratio d/l, where

d and l are the diffusion region width and length. So a shrinkage of the wavelength,

together with an increase of the diffusion region width due to the coupling (Appendix.E),

the local reconnection on the new modes is considered to be fast once the inflow-outflow

coupling is built up across the whole sheet.

As we have shown that the selection is mediated by (0, 2) mode, it is expected that the

energy transfer path involves (0, 2) is also important. From Fig.3.9, the energy transfer
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into (3, 3) from the path (3, 1) + (0, 2) gives a considerable contribution. On the other

hand, the energy transfer from (3, 3) + (0, 2) into (3, 5) becomes negative (cannot be

shown in the logarithmic scale) from 50tA. In comparison, the energy transfer through

(3, 1) + (0, 4) is large, where (0, 4) is the second harmonic of (0, 2).

Although the dominant energy transfer does not necessarily go through (0, 2) or (0, 4),

the above consideration may be understood as a geometrical constraint that the modes

generated by nonlinear mode couplings must satisfy. When the system has an open bound-

ary condition, the selection might change and remains an open issue by far.
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Figure 3.20: Explanation of new modes creation. Upper panel: the current density J iso-
surface represents the flux tube surfaces with diffusion regions. The color on the surface
is the strength of the flow vx into and out of the surface. The cartoon on the right shows
the characteristic pattern of this flow. Red and blue dots are the positive and negative vx
on the surface from the left isosurface plot. Thick red lines are the diffusion lines of tear-
ing mode (3,−1). The enhanced vx are localized on the anti-symmetric planes. Bottom
panel: unfavorable modes and favorable modes of this system. The turquoise lines are the
correspondent mode’s diffusion lines.
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3.7 Summary

In this chapter, we studied how and where new reconnection layers are created, in addition

to how the global reconnection rate increases.

We first examined the production of new diffusion regions in the double-layer simula-

tion (3,±1) (Sec.3.2), both locally (Sec.3.2.1) and globally (Sec.3.2.2). In the local view,

secondary tearing is triggered due to the inflow-outflow coupling on the anti-symmetric

plane. The partitioned diffusion regions open a vent that reconnected field lines are ejected

outwardly and collide with free field lines thus create a new diffusion region in front of the

original one (Fig.3.1 and Fig.3.2). Since the reconnection is faster on the anti-symmetric

planes compared to the symmetric planes, the field lines exhibit a strong non-uniformity

along the guide field direction. The parts of field lines that reconnect earlier stretch the

other parts that have not participated reconnection outwardly and form new diffusion re-

gions in front of the disappearing original diffusion regions (Fig.3.3 and Fig.3.4). Since

the other part of the simulation box possesses both the characters from these two planes,

they also produce new diffusion regions that are closer to the asymptotic magnetic fields.

So a new sheet-wise extending reconnection layer is created on either side of the current

sheet outwardly (Fig.3.6). By checking the energy spectrum (Fig.3.7) and the resonance

factor q (Fig.3.8), we found that the new layers are the mixture of new energy modes

(3,±3) and (3,±5), which have larger wavenumbers along the global guide field direc-

tion compared to the initial perturbed modes (3,±1).

For a better understanding of the creation of new modes, we calculated the energy

transfer rate, together with the dissipation rate, of new energy modes in Sec.3.3. It is

found that the energy transfer from the initial energy modes and their higher order har-

monics are important to produce new energy modes outwardly (Fig.3.9), while the higher

order harmonics are related with secondary tearing that is triggered by the inflow-outflow

coupling. These energy transfer paths continuously pour energy into new modes which

were not preferred by the initial current sheet. After the new modes are forced to grow be-

yond a certain threshold, they are capable to grow by themselves and consume the energy
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from the background current.

By examining the energy change in Sec.3.4, it is confirmed that the reconnection has

a boost when there exists a creation of new 3D modes outwardly across the current sheet

(Fig.3.10, Fig.3.12, Fig.3.13, Fig.3.14). In between the two energy boosts, the current

sheet reorganizes that the previous flux tubes untwist and re-twist to produce new flux

tubes, which shows similar feature as the coalescence instability (Fig.3.11). The energy

transfer is clear on the 2D magnetic energy spectrum that the energy is transported ap-

proaching the asymptotic magnetic field (Fig.3.15). The dissipation of 3D modes domi-

nates in the process while the current sheet expands as 3D modes grow further away from

current sheet center (Fig.3.16).

Then we checked whether the inflow-outflow coupling between new and original

diffusion regions, namely the coupling between new and original reconnection layers,

is always globally existing (Sec.3.5). It can be seen that after new reconnection lay-

ers are created, they also build up the inflow-outflow coupling with the original layers,

while the original layers maintain the inflow-outflow coupling across the sheet center

(Fig.3.17). The coverage of the inflow-outflow coupling becomes sufficiently large along

the sheet when new modes are growing, which suggests an increasing global reconnection

(Fig.3.18). In the latter phase, the inflow-outflow coupling between 2D and 3D modes be-

comes dominant (Fig.3.19). The globally existing inflow-outflow coupling supports a fast

overall reconnection.

The physical understanding of how the new modes are chosen by the system is given

that the original inflow-outflow coupling pattern mediates the absorption of new field lines

(Fig.3.20).

The conclusion based on our studies by far is that the globally distributed coupling

across the current sheet and the existing of sheet-wise extending reconnection layers

near the asymptotic magnetic fields increase the global reconnection rate. However, a

rotational-symmetric initial condition is assumed from the beginning. In order to gener-

alize our argument, different initial conditions should be considered. In the next chapter,
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we are going to examine the application of our hypothesis by varying the initial setup to

make a general conclusion.
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Chapter 4

Result III: random perturbation case

Our present understanding of the fast 3D reconnection bases on the development of a

current sheet with a specific initiation. In order to approach the realistic system, we

change the initial perturbation to a more general form to consolidate our conclusion.

4.1 Introduction

In Chap.2 and Chap.3, we examined in detail the local effect as well as the global conse-

quences from the tearing layer coupling across an extending current sheet with a finite

guide field. We found that when the sheet-crossing inflow-outflow coupling is ubiq-

uitously distributing along the current sheet, the global reconnection accelerates. Our

conclusion based on the simulation that starts with a pair of rotational-symmetric tear-

ing layers. This simple configuration is convenient for the local analysis but limits the

application.

The perturbation in a real system is arbitrary. The introduction of a random initial

perturbation mimics the realistic environment, such as the persistent ejection of MHD

waves from the photosphere that initiate reconnection in the higher atmosphere on the

Sun. In previous studies (Landi et al., 2008; Wang et al., 2015), multiple 3D tearing

layers (more than 2) are found in the initial state under random perturbation. Although an

increasing reconnection rate was observed, we have not tried to push further the analysis
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due to the complicated and chaotic structures in the turbulent state (Wang et al., 2015).

The results from our typical double-layer simulation which starts from a symmetric

and simple structure give a clear guideline to the understanding of a more complex system.

So in this chapter, we will re-examine the system development in the random perturbation

simulation to confirm our arguments in previous chapters. We will continue to concentrate

on the development of a slab-like magnetic structure for simplicity.

4.2 Simulation setup

The simulation setup is the same as that in Sec.2.4. The initial perturbation is changed

to a random perturbation on the velocity fields, while all components are smaller than

0.01vA0. Compared to our previous study (Wang et al., 2015), the resolution becomes

higher and no wave filter on the initial perturbation is applied in the present study.

4.3 Result

By applying random perturbation on the velocity field, multiple tearing layers grow in

the current sheet. We calculate the mode energy density along the x-direction by using

Eq.(2.39) that

Ẽm(x,m, n) =
|B̃(x,m, n)|2

8π
. (4.1)

The results at t = 200tA on different x-slices are shown in Fig.4.1. There exist roughly

2 layers on either side of the current sheet, while asymmetry is exhibited in our system.

The outer layers are growing with q = ±4 (black dashed lines) weakly, while the inner

layers are dominated by q = ±8/3 (red dashed lines). Precisely speaking, many modes

with different q are growing near q = ±8/3 in parallel, while having similar tilting angles

with each other.

As the modes on the same side are close to each other, they couple more effectively

than the modes couple across the current sheet center in the early stage. The coupling has
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Figure 4.1: Magnetic energy density of modes on different x-slices at t = 200tA. The
black dashed lines represent q = ±4 while the red dashed lines represent q = ±8/3.
Colors are in the logarithmic scale.
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Figure 4.2: Diffusion region distribution on 2D planes across the global guide field in
the early phase. Two modes merge into one diffusion region when they are close and in
phase, as labeled inside the dashed line box on the current density Jz contour plot.
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Figure 4.3: The local coupling between modes on different z-planes at t = 250tA by
showing the velocity fields as vectors on the current density Jz contour plot. The left
panel is the enlarged view of the box in the left-most panel of Fig.4.2. The right panel is
the enlarged view of the box in the right-most panel of Fig.4.2. Vector scales are plotted
at the bottom.

two types. One is the inflow-outflow coupling as what we have discussed in Chap.2. It

can exist when the two modes have a phase difference on a certain z-plane, such as the

left three panels in Fig.4.2. The flow pattern of the box region in the left-most panel of

Fig.4.2 is re-plotted in the left panel of Fig.4.3. A clear coupling flow can be observed.

Another type of the coupling is the coalescence of diffusion regions. When two diffusion

regions are very close to each other side by side, say the distance is smaller than the tearing

parameter 1/∆′, they degenerate into one and reconnect fast due to the contribution from

two modes simultaneously. In the right panel of Fig.4.3, we show the enlarged view of

the box in the right-most panel of Fig.4.2. It can be seen that the localized current density

inside the diffusion region in the right panel is even larger than the left panel. Thus as

a whole, tearing layers on both sides of the current sheet accelerate the reconnection by

coupling.

One direct result of the inflow-outflow coupling is the trigger of secondary tearing.

On the other hand, the coalescence of diffusion regions on adjacent tearing modes is
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also likely to trigger secondary tearing as the piling-up magnetic fields are roughly dou-

bled. We select two planes and find that the emergence of secondary tearing becomes a

common feature in the whole box. Some examples of secondary tearing are selected in

Fig.4.4. As we have discussed in Sec.3.2.1, secondary tearing will open a vent for the

current sheet and create overlying diffusion regions by changing the flow. Due to the

turbulent Alfvénic flows generated by the outflows from diffusion regions, in addition to

the existence of multiple layers, it is very difficult to identify a clear picture as we did

in Sec.3.2.1. Still, we find a diffusion region that is created when secondary tearing is

triggered in this turbulent state that possibly supports our previous result.

In our argument, energy modes with higher wavenumbers along the guide field direc-

tion are created due to the nonlinear coupling, during which higher order harmonics of

the pre-existing modes are participating actively across the current sheet. As secondary

tearing emerges all over the simulation box, it indicates that the higher order harmonics

with shorter wavelengths are flourishing. Then the new modes are expected to be created

outwardly, but with very complicated processes. In order to identify the correspondent

new modes in the reconnection, we calculate pseudo flux function ψ∗
(m,n), which mimics

the toroidal flux in tokamaks and RFP numerical simulation analysis. We first rotate the

coordinate into Eq.(2.8) and consider only Bk, since it is the component that participates

the reconnection. Then we calculate the magnetic field Bk,(m,n) for a certain mode (m,n)

in the Fourier space as

B̃k(x,m, n) =
1

LyLz

∫ Lz
2

−Lz
2

∫ Ly
2

−Ly
2

Bk(x, y, z)e
−i(kyy+kzz)dydz (4.2)

then convert it back into real space that

B∗
k,(m,n)(x, y, z) =

4π2

∆y∆z

∫ π
∆z

− π
∆z

∫ π
∆y

− π
∆y

B̃k(x,m, n)e
i(kyy+kzz)dkydkz. (4.3)

112



The pseudo flux function is calculated by integrating B∗
k along the x-direction that

ψ∗
(m,n)(x, y, z) =

∫ x

−Lx
2

B∗
k,(m,n)(x

′, y, z)dx′. (4.4)

In 2D-space, the contour lines of flux function represent the magnetic field lines. In 3D-

space, the coherency of the flux surface is not always guaranteed thus the definition of

flux function is not precise. However, we will only use this variable as a guideline to

find the mode that participates reconnection. We use “X-point” and “O-point” to label

the positions where diffusion region and flux tube center are likely to be produced by a

certain mode.

In the lower right panel of Fig.4.4, we identified a secondary tearing structure inside

the red dashed line box centers at (x, y, z) = (0.2δ, 4.5δ, 0). Just on the right of this box,

there seems to grow a new diffusion region near (x, y, z) = (0.4δ, 4δ, 0). So we track

the growth of this new diffusion region along time in Fig.4.5. At t = 250tA, we find

that the energy mode (3, 2) corresponds to the diffusion region inside the box region. By

plotting the contour lines of the pseudo flux function of (3, 2) over the current density Jz,

the “X-points” and “O-points” match with the positions of diffusion regions and flux tube

structures respectively on both the cuts of y = 0 and z = 0. At t = 300tA, as secondary

tearing develops, new diffusion region like features appear near (x, y, z) = (0.4δ, 4δ, 0)

on the left middle panel and also near (x, y, z) = (0.4δ, 0, 0.8δ) on the right middle panel.

We notice that they co-locate with “X-point” of a new mode (3, 4). The correspondence

eventually grows clearer that three and four flux tubes can be observed on y = 0 plane

(left bottom panel) and z = 0 plane (right bottom panel) at t = 380tA.

It seems that new reconnection layer that corresponds to a larger wavenumber along

the global guide field is created, which is consistent with our previous result. We next

confirm whether it is a common feature in the global view and whether the overall re-

connection rate increases. We plot the total kinetic energy by Eq.(3.20) and the total

reconnection rate calculated by Eq.(3.21), together with the mode magnetic energy cal-

culated by Eq.(2.39) on either side of the current sheet in Fig.4.6. Similar to the result
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Figure 4.4: Examples of secondary tearing (labeled by red dashed line box) by showing
current density Jz contour plot at different times on selected planes.

114



Jz/J0+ψ*
(3,2), z = 0, t = 250tA

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/δ

-10

-5

0

5

10
y/

δ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-10

-5

0

5

10

Jz/J0+ψ*
(3,2), y = 0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/δ

-3

-2

-1

0

1

2

3

z/
δ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-3

-2

-1

0

1

2

3

Jz/J0+ψ*
(3,4), z = 0, t = 300tA

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/δ

-10

-5

0

5

10

y/
δ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-10

-5

0

5

10

Jz/J0+ψ*
(3,4), y = 0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/δ

-3

-2

-1

0

1

2

3

z/
δ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-3

-2

-1

0

1

2

3

Jz/J0+ψ*
(3,4), z = 0, t = 380tA

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/δ

-10

-5

0

5

10

y/
δ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-10

-5

0

5

10

Jz/J0+ψ*
(3,4), y = 0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/δ

-3

-2

-1

0

1

2

3

z/
δ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-3

-2

-1

0

1

2

3

-1 1
  

-1 1
  

-1 1
  

-1 1
  

-1.2 1.2
  

-1.2 1.2
  

Figure 4.5: Current density Jz contour plot at different times. The left panels are cuts on
z = 0 plane, while the right panels are cuts on y = 0 plane. Pseudo flux functions of
modes (3, 2) and (3, 4) are overplotted as black contour lines.

115



in Chap.3, we find roughly two boosts in the reconnection rate development. The first

one starts from 200tA to 500tA and the second one starts from 600tA to 800tA. Since

asymmetry appears in our system, we will discuss each side independently.

When the first boost initiates, multiple modes on both sides of the current sheet grow

strong enough that they start to form the inflow-outflow coupling across the whole current

sheet as we described above. Some examples of the inflow-outflow coupling are shown

in Fig.4.7. After entering the first boost, a change of mode from (2,−1) to (2,−4),

afterwards the lower harmonic (1,−2), are found on the negative x-side. While on the

positive x-side, a more complicated energy transfer is found. At first, there is a clear

change from mode (3, 2) to (3, 4), as we have shown in Fig.4.5. Afterwards, a new mode

(2, 3) grows but is overcome by (1, 1). Around t = 500tA, mode (2, 5) grows over (1, 1) in

a short period. In the second boost, (1,−1) exceeds (1,−2) in the negative x-side which

shows a reversed trend compared to our previous study. However, an energy transfer path

from (1, 1) to (1, 2) and finally (1, 3) is shown in the positive x-side. In general, the

energy transfer along the global guide field is a common process that correlates with the

global reconnection rate enhancement.
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Figure 4.6: Total energy change and mode energy in the random perturbation simulation.
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Figure 4.7: Velocity fields overplotted on the current density Jz contour plot as vectors on
different z-planes at t = 350tA. The inflow-outflow coupling across the current sheet is
labeled by red dashed line boxes, while the coupling on the same side of the current sheet
is labeled by orange dashed line boxes. Vector scales are plotted at the bottom.
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4.4 Discussion

The loss of symmetry makes the analysis in the random perturbation simulation much

more difficult. However, the basic process seems to be consistent with our previous results

and arguments in the double-layer simulation. There are several extra comments we want

to touch.

First of all, the emerging modes are not what we have found in the linear analysis.

After we apply the random perturbation, it takes 50tA for the system to reorganize. Then

3D modes start to grow first while the 2D mode such as (1, 0) starts to grow exponentially

after 180tA. During the reorganization phase, the background changes thus probably

regulates the most unstable tearing modes. On the other hand, the emerging modes are

not allowed by the linear theory. The reason is unclear now that further study should be

done.

The second issue is the acceleration time of each boost. In the random perturbation

simulation, multiple layers (more than 2) emerge and expand roughly from x = −0.3δ

to 0.3δ across the current sheet. The double-layer simulation (3,±1) has only two lay-

ers initially and the layers expand from x = −0.07δ to x = 0.07δ. Regarding this, we

were expecting a faster reconnection rate enhancement in the random perturbation simula-

tion than the double-layer simulation, as the layers are widely distributed. By comparing

Fig.3.10 and Fig.4.6, we notice that the acceleration of the overall reconnection rate is

slower in the random perturbation simulation. The two boosts in the double-layer simu-

lation (3,±1) take 100tA to increase the overall reconnection by ∼ 0.0006 and ∼ 0.001.

The two boosts in the random perturbation simulation take 200tA to increase the overall

reconnection by ∼ 0.0006 and ∼ 0.0004. The final reconnection rate is in the same mag-

nitude for these simulations. One possibility is that the emerging modes in the random

perturbation simulation have much smaller wavelength compared to the applied modes

in our double-layer simulations. Therefore it takes time to build up an efficient inflow-

outflow coupling across the sheet center, although the inflow-outflow coupling on the

same side is effective from the start. As we have emphasized in Chap.3, the successive
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inflow-outflow coupling that connects the anti-parallel magnetic fields from either side of

the current sheet is important to enhance the overall reconnection. So this result seems to

be consistent with our argument. We expect that the longer the wave modes emerge in the

linear phase, the faster the overall reconnection rate increases. This should be checked

with a larger system in the future.

A related issue is the reconnection rate difference in the two boosts. In our double-

layer simulation, the second boost gives a higher enhancement of reconnection rate, while

it is reversed in the random perturbation case. It is possible that in the second boost of

the random perturbation case, only the modes on the positive x-side are transferring the

energy into modes closer to the asymptotic field, while the most energetic mode on the

negative x-side shrinks back into inner layer (from (1,−2) to (1,−1)). In that case, the

inflow-outflow coupling does not cover across the whole current sheet, so less acceleration

in the overall reconnection rate is obtained.

Finally, we discuss the suppression mechanism of 2D modes under the influence of

3D modes in the random perturbation case. In Fig.4.6, the 2D mode (1, 0) grows faster

than that in the double-layer simulation and becomes predominant in the whole current

sheet from 600tA. This growth seems to contradict to our previous argument in Sec.2.6.2.

We plot again the mode energy of (1, 0) in Fig.4.8 and compare it to the mode energy of

(1, 0) in a 2D random perturbation simulation where 3D modes cannot grow. The initial

perturbation in the 2D random perturbation simulation contains only 2D modes, while

the amplitudes and phases of these 2D modes are the same as that in the 3D random

perturbation simulation.

From panel A), both 3D and 2D simulations show a re-organization period at the

beginning phase. During this phase, the current sheet grows thicker due to the global

diffusion. Therefore, the expected growth rate of (1, 0) is smaller than that in the initial

current sheet, as the current density becomes weaker. However, (1, 0) grows in the same

magnitude as the linear growth rate in the initial current sheet (black dashed line) in the

3D simulation. In comparison, (1, 0) grows much slower in the 2D simulation. As it can
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be seen in Fig.4.5, in the initial phase of the 3D perturbation, 3D modes are growing on

either side of the current sheet rather independently. At this moment (before t = 300tA),

the interaction between two sides is very weak, which can be seen from the root-mean-

square of vx right at the current sheet center in panel C). If 3D modes on either side of

the current sheet grow strong enough, there should exist a sufficient amount of flow that

goes through the sheet center. From panel C), it is shown that it takes hundreds of Alfvén

time for vx,rms to grow up to 10−3vA0. During this phase, 3D modes on either side are

coupling by themselves and pour energy into not only 3D modes but also 2D modes due

to the nonlinear coupling. Especially that the number of activated modes in the random

perturbation is much more than that in the double-layer simulation, the number of energy

transfer paths should be much abundant. Therefore, 2D modes are receiving energy from

both sides as 3D modes are far apart thus grow rapidly. It explains why (1, 0) is growing

faster in the 3D simulation than that in the 2D simulation.

When 3D modes grow large enough, they obtain large amplitude of energy that they

eject fast outflow to form local shear flows across the current sheet center, which is ob-

served as a sufficiently large vx,rms. Then 3D modes reversely suppress the growth of

(1, 0) that the growth rate of (1, 0) decreases roughly from t = 350tA, as we argued in

Sec.2.6.2.

The total magnetic energy conversion rate in the 3D simulation is much faster than

the 2D case, as shown in panel B). To take a better look, we also plot in panel D) the ratio

of the mode energy of (1, 0) in the 3D simulation over that in the 2D simulation and the

total magnetic energy conversion rate ratio in the 3D simulation over that in the 2D simu-

lation. There is at least one order of magnitude difference between the energy conversion

rate ratio and the mode energy ratio. It means that 3D modes contribute significantly in

enhancing the magnetic energy dissipation in the 3D random perturbation case that only

2D modes cannot explain.
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4.5 Summary

In this chapter, in order to approach the realistic system in various astronomical events, we

change the initial perturbation into random velocity fields to understand how the system

develops in an arbitrary reconnection initiation. Multiple layers (more than 2) coexist in

the current sheet after applying the random perturbation (Fig.4.1). Since the tearing layers

on the same side of the current sheet are much closer than the tearing layers across the

current sheet, they couple with each other by either forming an inflow-outflow coupling

or degenerate into a single diffusion region (Fig.4.2 and Fig.4.3). The direct result of the

tearing mode coupling is the trigger of secondary tearing (Fig.4.4). Secondary tearing

changes the local flow and forms new diffusion regions which correspond to the creation

of new modes that process reconnection (Fig.4.5). The new modes are having larger

wavenumbers along the global guide field direction and they help to boost up the overall

reconnection rate (Fig.4.6) by the globally existing coupling (Fig.4.7).
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Chapter 5

Result IV: Parameter survey

In this chapter, we investigate the dependence of the inflow-outflow coupling on the dis-

tance between adjacent tearing layers and the global guide field for a further generaliza-

tion of our previous results.

5.1 Introduction

In Chap.2 and Chap.3, one specific double-layer simulation was studied in detail to un-

derstand the fast 3D reconnection. Since only one case was examined, how the coupling

and the reconnection change with the system are not clear.

In previous studies (Landi et al., 2008; Wang et al., 2015) and also in Chap.4, multiple

3D tearing layers (more than 2) are found in the initial state under a random perturba-

tion. Since the linear theory by far cannot explain why 3D modes emerge faster than the

prediction, it is difficult to learn beforehand the distribution of tearing layers for a given

system. Therefore, whether the layers always couple in any system remains an open issue.

It is straightforward to expect that the inflow-outflow coupling efficiency increases with

a decreasing layer distance. A quantitative study on the coupling efficiency is helpful for

the prediction of the nonlinear behavior (2D-like or 3D cascade) once the most unstable

tearing modes are known.

On the other hand, the guide field strength, which is also arbitrary in the real system,

125



changes the character of the whole system. When the guide field is large, say 10 times

of the anti-parallel asymptotic field, the system is approaching 2D since the perturba-

tion along the guide field will be smoothed out by fast Alfvénic mode. If the guide field

reduces to be comparable to (Beresnyak, 2017) or 10% of the anti-parallel asymptotic

field (Wang et al., 2015), it is proved that multiple 3D tearing layers emerge. When the

guide field shrinks to 0, initially only 2D modes can grow right at the current sheet center.

Later, 3D modes disturb the 2D structures (Dahlburg et al., 1992; Dahlburg & Einaudi,

2002) and create a turbulent state (Oishi et al., 2015). Clearly, the emerging modes have

a non-monotonic dependence on the guide field. Moreover, when the guide field is larger

than 10% of the anti-parallel asymptotic field, well-organized magnetic structures such as

shear flux tubes can be identified. On the contrary, it becomes drastically turbulent that no

clear coherent structure can be found when no guide field exists. The threshold between

different turbulent states is also worth studying. In addition, the universal existence of the

inflow-outflow coupling in terms of the guide field strength should be addressed. When

the initial perturbation is the same for systems with different guide field strengths, the

resonance layers correspond to the perturbation are more packed to the current sheet cen-

ter in a weaker guide field case. As we have shown in Chap.4, the two layers exhibit the

feature of merging when they are close. If the coupling of reconnection layers is missing

when Bguide → 0, another theory is required to explain the fast reconnection mechanism

in these cases.

In this chapter, we will test our tearing mode coupling model in different systems

based on the consideration above for generalization. We first check the reconnection

dependence on the distance between initial tearing layers (Sec.5.2), then we check the

reconnection dependence on the guide field (Sec.5.3).

5.2 Reconnection dependence on input eigenmodes

In this section, we will study quantitatively the dependence of the inflow-outflow coupling

efficiency on the tearing layer distance.
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5.2.1 Simulation setup

The simulation setup is the same as that in Sec.2.4. In total, we execute 4 sets of sim-

ulations. Each set includes a double-layer simulation and a correspondent single-layer

simulation. The applied tearing modes are (1, 1), (2, 1), (3, 1) and (4, 1), which are la-

beled in the left panel of Fig.2.3. From Eq.(2.28), among all double-layer simulations we

apply, (4,±1) has the smallest distance between two layers while the layers in (1,±1) are

the furthest. All simulations are applying the same resolution as (3,±1) except (4,±1)

and (4, 1) which have a higher resolution that ∆x ⩾ 0.004δ and ∆y = ∆z = 0.015δ.

A smaller box with Ly = 6δ is applied to save the numerical resource for these two

simulations.

5.2.2 Inflow enhancement

We examine the dependence of the inflow enhancement on the layer distance first. In

our 4 simulation sets, both the tearing layer position xs and the wavelength λ change.

Because the inflow region size is positively scaled to the wavelength (Steinolfson, 1983),

we normalize the layer distance 2xs to λ and define a normalized layer distance Ac as

Ac =
2xs
λ

∼ 2αan

Lz

√
1 +

(
nLy
mLz

)2

(5.1)

where xs is evaluated by Eq.(2.28). We check the inflow enhancement dependence on the

value of Ac in the following part. By this definition, the double-layer simulation (4,±1)

has the smallest Ac value while (1,±1) has the largest Ac.

We measure the inflow strength on both sides of a coupled diffusion region in all sim-

ulations on the anti-symmetric planes (Sec.2.5), which is shown in Fig.5.1. The inflow

from the coupling side (near the current sheet center) increases monotonically in panel

A) when the tearing layers approach each other. Moreover, the inflow enhancement from

the coupling (inflow ratio between the double-layer simulation and the single-layer sim-

ulation) also increases monotonically in panel B) with decreasing layer distance. It is
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Figure 5.1: A) Averaged inflow of diffusion regions on the anti-symmetric planes in
double-layer simulations. B) Averaged inflow ratio of double-layer simulations to their
correspondent single-layer simulations. The inflows are detected both from the coupling
side (black line with crosses) and the outer side (blue line with diamonds). The detection
is averaged along inflow boundary in half of the diffusion region length, then averaged
along time until secondary tearing starts to grow. Standard deviations are shown as error
bars.
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worth pointing out that the inflow ratio for (1,±1) with Ac ∼ 0.07 is ∼ 2. It means

that the inflow-outflow coupling is very ineffective that the resultant inflow is roughly the

superposition of flows from each layer. With a smaller distance between layers (m ≥ 2),

an effective inflow-outflow coupling is built up that the enhancement value exceeds 2

largely. On the contrary, the inflow in double-layer simulations from the outer side is not

effectively changed compared to single-layer simulations even when the inflow-outflow

coupling is strong, as the ratio is always around 1 in panel B). The difference in the

inflow-outflow coupling efficiency can be directly seen in Fig.5.2. It is obvious that the

inflow-outflow coupling is more effective in (4,±1) than that in (1,±1), as the inflow is

approaching Alfvénic.

In the double-layer simulation (3,±1), new modes (3, 3) and (3, 5) emerge due to

the nonlinear coupling. The wavelength of (3, 3) is one-third of (1, 1) that Ac for (3, 3)

is three times of that for (1, 1). So (3, 3) and (3,−3) are incapable to couple across the

sheet. As (3, 5) has an even smaller wavelength and a larger layer distance with each

other, Ac for (3, 5) is even larger than that for (3, 3). As can be seen in Fig.3.2, neither

(3, 3) nor (3, 5) couple with their counterpart, which is consistent with the result above.

5.2.3 Energy cascade and reconnection rate enhancement

In Chap.3, we found that the global reconnection rate increases when new energy modes

are activated. These new modes have larger wavenumbers along the global guide field

than the original coupled modes. The creation of new diffusion regions comes from the

growth of secondary tearing, which is triggered by the piling-up magnetic fields when

the inflow-outflow coupling is effective. New diffusion regions form new reconnection

layers, which can be understood by the nonlinear coupling between pre-existing modes

with their higher order harmonics which have short wavelengths. In this section, we will

check whether this is a general character when the coupling is built up.

In Sec.5.2, we have confirmed thatm ≥ 2 modes form the inflow-outflow coupling ef-

fectively across the current sheet. So in Fig.5.3, we compare the double-layer simulations
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Figure 5.2: Velocity vectors overplotted on the current density Jz contour plot of double-
layer simulations at different times on z = 0 plane. Vector scales are plotted at the bottom.
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(2,±1), (4,±1) and their correspondent single-layer simulations to see the local devel-

opment of diffusion regions. In the upper panels, it can be seen that (2, 1) is potentially

vulnerable to second tearing, while (4, 1) saturates. In double-layer simulations, both of

them exhibit the character of secondary tearing. A vertical diffusion region can be seen in

both cases, while the overlying diffusion region in (4,±1) grows quickly.

By a careful check, we notice that there exist two kinds of secondary tearing in

(2,±1). The one with 4 small diffusion regions along x ∼ 0.25δ are the partitioned

diffusion regions of (2, 1). The two partitioned diffusion regions along x ∼ 0.2δ, which

produce the vertical diffusion region, are originally the separatrix of (2,−1). In this case,

(2, 1) and (2,−1) tearing layers are marginally close to each other. So as each mode

grows on either side of the current sheet, the potential secondary tearing evolves and sep-

arates the diffusion regions from the separatrices. The partitioned diffusion regions and

the separatrices couple with each other, while also build up the inflow-outflow coupling

with the counterparts on the other side of the current sheet. In comparison, in both (3,±1)

(Fig.3.1) and (4,±1) (Fig.5.3), the two initial layers are too close that the separatrices de-

generate with the diffusion regions. Thus simpler structures are observed in these two

cases.

We next try to confirm the energy cascade path in all double-layer simulations to see

the global modes development. In Fig.5.4, the magnetic energy calculated by Eq.(3.2) is

shown. In the effective inflow-outflow coupling cases (m ≥ 2), a clear cascade path along

the global guide field (kz-direction) can be seen. However, in (1,±1), the energy mainly

goes along the 2D-like cascade path (yellow dashed line).

Finally, we compare the reconnection efficiency of all simulations. The overall re-

connection rate calculated by Eq.(3.21) is shown in Fig.5.5. We consider two different

stages. The first stage is the initial coupling stage just before secondary tearing emerges.

The second stage is the end of the first cascade. In the understanding of the first stage,

we compare the global reconnection rate ratio of double-layer simulations over their cor-

respondent single-layer simulations in panel A), while the values are normalized by the
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reconnection rate ratio at t = 0. If the value shown in panel A) exceeds 1, it means that

the inflow-outflow coupling increases the overall reconnection rate compared to the re-

connection in a single tearing layer. We find that although the inflow-outflow coupling

becomes more effective with decreasing Ac, the overall reconnection rate ratio exhibits a

non-monotonic change with a peak around Ac ∼ 0.035.

As we have shown in Fig.2.6, magnetic fields pile up in front of the coupled diffusion

region due to the effective inflow-outflow coupling. It is possible that when the coupling

inflow exceeds a certain threshold, the local reconnection cannot consume all piling-up

fields but locally saturates while pouring energy fast to the higher order harmonics (sec-

ondary tearing). It also explains why the inflow from the outer side does not increase as

much as the inner side (the coupling side) in panel B) of Fig.5.1. Another reason is that

the closest pair of the coupling has the shortest wavelength, thus they influence only a lim-

ited region near the sheet center. Therefore, the overall reconnection rate does not change

much compared to the single-layer simulation. The values of the overall reconnection

rate in all double-layer simulations in the first stage is shown in panel B) (blue line with

squares). In comparison, the reconnection rate at the second stage (red line with stars)

shows that more effective inflow-outflow coupling will result in a higher enhancement

of the reconnection rate. On the other hand, all coupled modes are still having smaller

overall reconnection rate values than the independently growing (1,±1).
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Figure 5.3: Current density Jz contour plot for double-layer simulations (2,±1), (4,±1)
and their correspondent single-layer simulations at different times on the anti-symmetric
plane z = 0.

133



Em(m,|n|), (1,±1), t = 218tA

0 2 4 6 8 10 12 14
m

0

2

4

6

8

10

|n
|

(1,1)

Em(m,|n|), (2,±1), t = 196tA

0 2 4 6 8 10 12 14
m

0

2

4

6

8

10

|n
|

(2,1)

(2,3)

Em(m,|n|), (3,±1), t = 156tA

0 2 4 6 8 10 12 14
m

0

2

4

6

8

10

|n
|

(3,1)

(3,5)

Em(m,|n|), (4,±1), t = 144tA

0 2 4 6 8 10 12 14
m

0

2

4

6

8

10

|n
|

(4,1)

(4,7)

-5 -2.2
  

-5 -2.2
  

-5 -2.2
  

-5 -2.2
  

Figure 5.4: Magnetic energy of modes calculated by Eq.(3.2) for all double-layer simula-
tions. The original modes are labeled as red characters, while the green color represents
the cascaded mode. The red dashed line is the asymptotic magnetic field orientation. The
yellow dashed line is the 2D-like cascade path for initially perturbed modes. The time
slice in (1,±1) is chosen at when the reconnection rate reaches the first peak. The others
are chosen at when the cascaded modes reach their peaks. Colors are in the logarithmic
scale.
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Figure 5.5: A) The reconnection rate ratio of double-layer simulations over their cor-
respondent single-layer simulations during the initial coupling phase before secondary
tearing emerges. The values are normalized by the initial reconnection rates. B) Re-
connection rate calculated via Eq.(3.21) for double-layer simulations. The blue line with
squares is the overall reconnection rate of double-layer simulations before secondary tear-
ing emerges. The red line with stars is the reconnection rate selected at the same times as
in Fig.5.4.
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5.2.4 Summary and discussion

In this section, we checked the dependence of the inflow-outflow coupling efficiency and

its consequences on the initial tearing mode wavelength and position. We notice that the

inflow-outflow coupling, which is quantitatively presented by the enhanced inflow from

the coupling side, becomes more effective when the distance between the initial tearing

modes shrinks (Fig.5.1 and Fig.5.2). Secondary tearing is triggered when the inflow-

outflow coupling exists, even for the originally secondary tearing stable modes (Fig.5.3).

New modes which are close to the current sheet boundary are gradually activated after

secondary tearing develops, so an energy transfer along the global guide field direction

rather than a 2D-like cascade is observed in the coupling cases (Fig.5.4). During the initial

inflow-outflow coupling phase, the overall reconnection first increases when the inflow-

outflow coupling becomes effective but decreases when the coupling flow is too strong

(panel A) in Fig.5.5). Although the inflow-outflow coupling also sufficiently enhances

the overall reconnection by cascading to new modes, still the longest mode pair gives the

faster global reconnection (panel B) in Fig.5.5).

The parameter survey on the wavelength and the layer distance gives a consistent

conclusion with Chap.2 and Chap.3. However, two new arguments are raised from the

results in this section.

The first argument is that the inflow-outflow coupling seems to have a non-monotonic

dependence on the layer distance. It seems that there exists an optimal distance between

layers in the inflow-outflow coupling. When layers are much beyond this distance that

Ac ≳ 0.06, no effective inflow-outflow coupling is built. If the layers are too close that

Ac ≲ 0.02, it is possible that the overall reconnection in a pair of coupled tearing layers

is slower than the reconnection by a single tearing layer.

The other argument regarding our present results is that longer modes participating

the coupling are beneficial for a global fast reconnecting system. Although (1,±1) does

not exhibit an effective inflow-outflow coupling, it still gives the highest global reconnec-

tion rate compared to the other well-coupled modes. It is not only because that (1, 1) is
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much closer to the current sheet boundary where magnetic field is abundant, but also be-

cause of its extended inflow region, whose size is roughly proportional to its wavelength

(Steinolfson, 1983). A larger inflow region indicates a larger reconnecting magnetic field

component. So (1,±1) reconnects asymptotic magnetic fields directly on either side of

the current sheet. Therefore, once a longer wave mode participates the coupling, it is

potential to accelerate the global reconnection more by effective local reconnection com-

pared to a shorter mode.

In Sec.3.4, we found two boosts in the simulation. The second boost has a higher

global reconnection rate than the first boost (roughly twice). The coupling coverage in the

two boosts are comparable (Fig.3.18), but the reconnecting modes have different wave-

lengths (Fig.3.7). In the first boost, the outermost mode is (3, 5) which has a wavelength

of 1.2δ. In the second boost, the outermost mode is (1, 3) that the wavelength is 2δ, which

is about twice longer. Moreover, in the second boost, 3D modes are coupling directly

with 2D modes at the current sheet center, which also have long wavelengths (for exam-

ple, λ(6,0) = 4δ). As a whole, they produce faster reconnection than the first boost, in

which only short wavelength modes couple.

5.3 Reconnection dependence on the guide field strength

In Sec.5.2, we noticed that when the normalized layer distance Ac ≲ 0.035, the inflow-

outflow coupling has a trend to reversely decrease the overall reconnection rate that the

coupled tearing layers will be slowly reconnecting compared to their single-layer coun-

terpart. According to Eq.(5.1), Ac is a monotonically decreasing function of guide field

strength α. One concern arises from this result is that how the reconnection changes when

the guide field changes. When the guide field is weak, the coupling between tearing layers

is more likely to fall into the same category as (4,±1) and makes the overall reconnection

slow. So in this section, we will try to test whether a pair of coupled tearing modes in a
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system with a weak guide field will enhance or suppress the overall reconnection.

5.3.1 Simulation setup

The simulation setup is the same as that in Sec.2.4. We change the guide field strength

into α = 0.01. The rotational-symmetric double-layer simulation with tearing modes

(2, 1) and (2,±1) are executed, since (2,±1) in α = 0.1 case has shown the feature of

the inflow-outflow coupling. The numerical resolution is ∆x ⩾ 0.002δ and ∆y = ∆z =

0.012δ. A smaller box with Ly = 12δ is applied to save the numerical resource.

5.3.2 Result

We concentrate on the global change in the double-layer simulation (2,±1) with α =

0.01. We first check the magnetic energy for modes calculated by Eq.(3.2) in the left panel

of Fig.5.6. Unlike the cases with α = 0.1, the mode (0, 2) and its higher order harmonics

(for example (0, 4)) along the global guide field becomes overwhelmingly dominant after

t ∼ 30tA. Meanwhile, the original modes (2, 1) and (2,−1) rapidly decay. Since (0, 2)

and its higher order harmonics do not participate reconnection directly, the behavior of

these modes indicates a slow global reconnection, which is confirmed in the right panel.

By calculating Eq.(3.21), we find that the overall reconnection in the double-layer sim-

ulation (2,±1) (black line) is highly suppressed compared to the single-layer simulation

(2, 1) (blue line). The maximum reconnection rate of (2,±1) is roughly 1/6 of (2, 1) and

maintains slow until 200tA.

We also plot the 2D magnetic energy spectrum of (2,±1) at different times in Fig.5.7

to see the energy cascade path, while one of the possibilities is (2,−1) + (2, 1) → (0, 2)

that starts from the initial perturbed 3D modes. The left panel shows the initial state

(t = 10tA), just before the double-layer simulation decelerates than its single-layer corre-

spondent. At this moment, in addition to the original modes, 2D mode (4, 0) which may

come from (2,−1) + (2, 1) → (4, 0) starts to grow. The middle panel is close to the re-

connection peak of (2,±1) (t = 60tA). Two energy cascade paths along the global guide
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field can be identified. The path along m = 2, which is similar to our previous results, is

only weakly growing. Another path along m = 0 dominates and controls the whole sys-

tem as shown in the left panel of Fig.5.6. At the end of our simulation, all modes energy

decreases and the system is still dominated by modes along the global guide field. As we

expected, the cascade along the global guide field does not reach sufficiently far enough

to reach the asymptotic magnetic field.

In order to understand the overall development, we plot magnetic field lines in the

3D box to make a clear visualization (Fig.5.8). Unlike the well-organized structures in

Fig.3.6, the magnetic field lines exhibit a rather chaotic and ephemeral pattern in the

simulation. At t = 10tA, the main diffusion regions are existing near the symmetric

planes, while the diffusion regions on the anti-symmetric planes almost disappear. This

is because that the distance between two initial perturbed modes are too close, so the

diffusion regions on the symmetric planes degenerate into one and center at x = 0. They

completely change the global reconnection pattern that two 2D-like flux tubes are created

due to the dominant reconnection in these diffusion regions. Each tube extends only half

of the box size. As the plasma and magnetic fields are piling up in the tube region, they try

to relax along the z-direction and the fluxes are ejected into the original diffusion region

location. The flux shatters the diffusion regions and accumulates there (t = 60tA). Due

to the weak global guide field, the tube suffers from kink-like instability. Afterwards,

the tubes seem to untwine (t = 70tA) and four flux tubes are produced in the region of

(y < 0, z < 0) and (y > 0, z > 0) (t = 80tA). The tubes move under the push from the

flow and collide near y = 0 plane (t = 110tA). After the system relaxes (t = 160tA), tubes

are created locally again at the center (t = 180tA). Gradually a large tube is produced (t =

190tA). From these observations, small and short flux tubes are created repeatedly here

and there at the current sheet center, then destroyed by collision and afterward relaxation.

These scattered local reconnection events cannot support a global fast reconnection, as

we have shown in Fig.5.6.
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Figure 5.6: Left panel: magnetic energy of selected modes. Black dashed line is the max-
imum mode energy at each time step. Right panel: total magnetic energy conversion rate
in the whole box by Eq.(3.21). The black line is the result of the double-layer simula-
tion (2,±1), while the blue dashed line is double the reconnection rate in the single-layer
simulation (2, 1).
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Figure 5.7: Magnetic energy of modes calculated by Eq.(3.2) at different times. The red
dashed line is the asymptotic magnetic field. The dominant modes are labeled. Colors are
in the logarithmic scale.
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Figure 5.8: Magnetic field lines selected at different times. Orange, blue and green lines
correspond to the field lines start from y = 0,−3δ, 3δ planes, respectively. The isosurface
shows the current density J/J0 = 0.65, while the velocity fields on x = 0 plane is
overplotted as vectors. The colors of the isosurface and vectors represent vx strength.

141



5.3.3 Summary and discussion

We notice that the tearing mode coupling across the current sheet in the weak guide field

case (α = 0.01) gives a slow overall reconnection (Fig.5.6) while the energy cascade path

prefers to be m = 0 modes which do not contribute to the reconnection directly (Fig.5.7).

Different from the well-organized reconnecting layers in α = 0.1 cases, the reconnection

events scatter in the box and localize (Fig.5.8).

The modes we applied here have a normalized layer distance Ac ∼ 0.004, which

is far beyond the cases in α = 0.1. As the two layers are too close to each other, the

available magnetic field is extremely limited as shown in Eq.(2.36). Then the diffusion

regions saturate soon on the anti-symmetric planes when no free energy is provided from

the inner side. In comparison, on the symmetric planes, the diffusion regions are aligned.

They degenerate into one that the system is more likely to produce 2D-like flux tubes

rather than 3D tubes. These tubes are easy to kink (Dahlburg et al., 1992; Dahlburg &

Einaudi, 2002) since the guide field is weak. Thus the system is disturbed by 3D modes

again.

On the other hand, reducing the global guide field increases the plasma β at the cur-

rent sheet center. As the sound speed is much faster than the local Alfvén speed, the

diffusion regions are difficult to survive long when the plasma flow becomes turbulent.

The transient reconnection results in slow overall reconnection in the range of our simu-

lation (tend = 200tA).

As we have found in Sec.5.2, when Ac ≲ 0.035, the inflow-outflow coupling will

reversely reduce the overall reconnection during the coupling phase. However, the after-

wards energy cascade still gives a faster reconnection. But in the case of the weak guide

field with initial layers of Ac ∼ 0.004, the overall reconnection is slow all along. There-

fore, there seems to exist another threshold in addition to the two that we have identified

in Sec.5.2. Whether this threshold is related to the global guide field strength α or is a

general parameter that can be applied to any slab-like system should be examined in the

future.
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Although we have identified the energy cascade along the global guide field, the cas-

cading path that starts from the initial perturbed modes is rather weak alongm = 2 modes.

From the 2D energy spectrum (Fig.5.7), a weak guide field makes the asymptotic field to

be almost parallel to kz. It means that it takes many steps of energy transfer along the

global guide field to get to the asymptotic field from the initial perturbed layers. Dur-

ing the transfer, the wavenumber increases drastically. Modes with short wavelengths are

highly possible to suffer from the restoring tension force so they cannot grow. In this way,

the expanding reconnecting system will be stopped on the way to reach to the current

sheet boundary and gives only slow reconnection as a whole.

5.4 Summary

In this chapter, we check the generalization of our result from a typical tearing layer

coupling simulation in different systems.

For an arbitrary system, the distribution of the initially emerging modes is not well

understood. Therefore, understanding the dependence of the inflow-outflow coupling on

the layer distance can help to predict the nonlinear behavior of a system once the emerging

modes are known (Sec.5.2). We find that although the inflow in the coupling increases

with a decreasing layer distance (Fig.5.1), the overall reconnection rate decreases when

the distance is too close for a pair of modes that is far from being parallel (Fig.5.5).

When the coupling is effective, secondary tearing produces new diffusion regions, while

globally they form new reconnection layers that correspond to new modes which have

higher wavenumbers along the global guide field than the original modes (Fig.5.4).

As the background magnetic field controls the emerging modes, we then check the

inflow-outflow coupling in a pair of rotational-symmetric tearing modes in a current sheet

with a weak guide field (α = 0.01), as the tearing layers are likely to be packed close to the

sheet center that the layers are possible to merge (Sec.5.3). We notice that in this case, the

inflow-outflow coupling saturates soon, while the diffusion regions that are aligned with

each other degenerate into a single one (Fig.5.8). The whole system is mainly under the
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control of the modes that are parallel to the global guide field and results in a very slow

reconnection (Fig.5.6). Energy cascades mainly along the global guide field direction,

while the cascade starts from the original modes is cut-off on the way to the asymptotic

field and remains weak (Fig.5.7).

It seems that when the guide field is moderate, namely around 10% of the asymptotic

anti-parallel magnetic field, the successive processes of the inflow-outflow coupling and

the nonlinear coupling will produce new reconnection layers, which also participate the

inflow-outflow coupling to increase the overall reconnection. So our results in Chap.2

and Chap.3 are shown to validate through the generalization. On the other hand, when the

guide field is weak, say less than 1% of the asymptotic anti-parallel magnetic field, the

growing 3D modes tune the reconnection into instantaneous events that different theory

should be applied for this system.
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Chapter 6

Summary and discussion

In this dissertation, we executed different numerical simulations to understand the fast

three-dimensional (3D) reconnection in a current sheet with a finite guide field.

6.1 Summary of results

As multiple tearing layers emerge when a random perturbation is applied to a slab-like

current sheet with a finite guide field (Landi et al., 2008; Wang et al., 2015), we expected

that the coupling between tearing layers are important in the acceleration of 3D reconnec-

tion. In order to achieve a fast overall reconnection, successive inflow-outflow couplings

that span across the whole current sheet are required. Meanwhile, each reconnection layer

must extend along the current sheet and cover a sufficiently large area. We then applied

simulations and analysis to confirm our hypothesis on the fast 3D reconnection.

Local analysis of the inflow-outflow coupling in the typical case

First of all, we tried to understand the local properties of the inflow-outflow coupling

between two rotational-symmetric 3D tearing modes (3, 1) and (3,−1) growing in a cur-

rent sheet with a finite global guide field, while the guide field strength is 10% of the

anti-parallel asymptotic magnetic field (Chap.2).

The pair of modes exhibits a strong three-dimensionality along the global guide field
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direction (Fig.2.4). On some planes, diffusion regions form a zigzag pattern that the out-

flow from one diffusion region feeds into the inflow of the diffusion region on the other

tearing layer (Fig.2.5). On other planes, diffusion regions are aligned with each other

across the sheet that no coupling exists. On the coupled plane, due to the inflow-outflow

coupling, the inflow in the coupled diffusion region and the local reconnection rate in-

crease, while the reconnecting magnetic field piles up in the coupling region (Fig.2.6) and

triggers secondary tearing in the coupled diffusion region (Fig.2.7).

Although the coupled planes cover roughly half of the simulation box along the global

guide field direction (Fig.2.9), this initial inflow-outflow coupling has not grown strong

enough to influence the whole current sheet. As the turbulent state is still confined near

the current sheet center, the overall reconnection rate is not large.

The initial perturbed two tearing modes create Alfvénic shear flows across the current

sheet center. It is highly possible that they suppress the growth of 2D modes (Fig.2.10).

In order to prove this argument, we executed an extra set of simulations. Each simulation

contains two 3D modes as that in the typical double-layer simulation, as well as a selected

2D mode. We compared the growth of 2D and 3D modes in the three-layer simulations

and the typical double-layer simulation (Fig.2.11). It is found that the most unstable 2D

mode ((1, 0) in our system) in the initial static current sheet is suppressed that the growth

rate becomes only half of the growth rate predicted by the linear analysis. The dynamic

system-preferred 2D mode ((6, 0) in the typical double-layer simulation) is regulated by

the existing 3D modes. It receives energy from 3D modes if the amplitude is small but

reversely suppressed when the amplitude becomes large.

Global analysis of the inflow-outflow coupling in the typical case

We then examined the temporal and spatial development of the inflow-outflow coupling

and how they relate to the global reconnection rate enhancement in the later phase of the

double-layer simulation (3,±1) (Chap.3).

As the inflow-outflow coupling is essentially existing between diffusion regions, we
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tracked how and where new diffusion regions are created. As secondary tearing is trig-

gered in the coupled diffusion region, the partitioned diffusion regions open a vent that

reconnected field lines are ejected outwardly and collide with free field lines. New diffu-

sion region outside of the original one is formed due to the collision (Fig.3.1 and Fig.3.2).

On the planes where no inflow-outflow coupling is built, a new diffusion region is also cre-

ated outwardly due to the tension force that comes from the non-uniformity of field lines

along the global guide field (Fig.3.3 and Fig.3.4). Since the other part of the simulation

box possesses both the characters from the coupling planes and the non-coupling planes,

the creation of diffusion regions outside of the original diffusion regions are considered

to be common in the whole simulation box. Two new sheet-wise extending reconnec-

tion layers are found on either side of the current sheet, closer to the asymptotic fields

(Fig.3.6). It is noticed that these two layers are the mixture of new energy modes (3,±3)

and (3,±5), which have larger wavenumbers along the global guide field direction com-

pared to the initial perturbed modes (3,±1) (Fig.3.7 and Fig.3.8). By studying the energy

transfer rate (Fig.3.9), we noticed that new modes are activated by the nonlinear cou-

pling between pre-existing modes with their higher order harmonics, even though these

new modes are not preferred by the initial current sheet. When new modes grow over

a threshold, they start to grow by themselves by absorbing the energy directly from the

background current.

As new modes are created outwardly, the global kinetic energy increases while the

magnetic energy is converted fast (Fig.3.10). After the first boost of the magnetic energy

conversion rate, there exists a relaxation phase that flux tubes relax and reform into new

flux tubes (Fig.3.11). The newly formed flux tubes are growing from inside due to the

growth of new modes (Fig.3.12). It starts a second boost of reconnection by activating

new modes outwardly (Fig.3.13, Fig.3.14). From the 2D energy spectrum, the processes

above can be seen as an energy transfer further to the asymptotic magnetic field then

backwards due to the inverse energy cascade, and outwardly again (Fig.3.15). The global

dissipation is dominated by 3D modes (Fig.3.16).
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As we have confirmed that new reconnection layers which are extending along the

whole current sheet are created outwardly from the current sheet center region, the next

concern is that whether the inflow-outflow coupling is also working among new and old

layers. By tracking the local flow pattern and the resonance layer position, it is confirmed

that new reconnection layers couple with old layers, while the inflow-outflow coupling

between old layers across the sheet center still remains (Fig.3.17). Meanwhile, the inflow-

outflow coupling covers almost the whole simulation box (Fig.3.18), which correlates

with an increasing global reconnection. As we have conjectured, the overall reconnection

increases when new sheet-wise extending reconnection layers are created outwardly due

to nonlinear coupling and sheet-crossing successive inflow-outflow couplings are built.

New reconnection layers are chosen by the non-uniform reconnection system along

the global guide field, which comes from the nonlinear coupling of the initial two per-

turbed modes across the current sheet (Fig.3.20).

The sheet-crossing coupling in the random perturbation simulation

In Chap.2 and Chap.3, we analyzed in detail a reconnecting current sheet perturbed by

selected modes. However, this simulation setup is highly specific. In order to generalize

the application of our hypothesis, we re-examined the spontaneous reconnection that is

initiated by a random perturbation which mimics the waves with arbitrary phases and

wave vectors in the universe (Chap.4).

Still, we retrieve the coexistence of 3D tearing layers inside the current sheet after

applying a random perturbation on velocity field (Fig.4.1), while the numbers of layers

are more than two and symmetry is not held across the sheet. As the tearing layer pair is

closer on the same side of the current sheet compared to the tearing layer pair across the

current sheet, the coupling on the same side of the current sheet is much more efficient

than the coupling across the sheet. The coupling falls into two categories due to the small

layer distance. One type of coupling is the inflow-outflow coupling studied in the previous

chapters, the other type of coupling is the degeneration of two diffusion regions into a
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single one which reconnects fast by itself (Fig.4.2 and Fig.4.3). Secondary instability

is triggered in many diffusion regions (Fig.4.4). It changes the local flow and forms

new diffusion regions which correspond to the creation of new energy modes (Fig.4.5).

Consistent with the results in Chap.3, new modes have larger wavenumbers along the

global guide field. The overall reconnection rate boosts up (Fig.4.6) when new modes

grow and the inflow-outflow coupling exists globally across the whole sheet (Fig.4.7).

Generalization of the sheet-crossing coupling model

Our sheet-crossing coupling model of 3D reconnection is further generalized by changing

simulation setup (Chap.5).

The emergence of multiple tearing layers under a random perturbation seems to con-

tradict the linear theory. Then the dependence of the inflow-outflow coupling on the

tearing layer distance is helpful for the nonlinear behavior prediction once the emerging

modes are known. Thus we generalize our coupling model in 3D reconnection by pro-

cessing parameter survey on the tearing layer distance (Sec.5.2). We found two critical

normalized layer distance (Ac). When Ac ≲ 0.06, an effective inflow-outflow coupling

is built between two tearing layers (Fig.5.1 and Fig.5.2). It triggers secondary tearing

and creates diffusion regions outwardly (Fig.5.3). Afterwards, energy cascade along the

global guide field is observed that new energy modes with higher wavenumbers are acti-

vated (Fig.5.4), which is consistent with Chap.3. When Ac ≲ 0.035, the inflow-outflow

coupling does not effectively increase the global reconnection, while the energy cascades

fast into shorter modes. Moreover, there seems to show a trend that when Ac ≲ 0.02,

the overall reconnection of a pair of coupled tearing layers will be slower than that in a

single tearing layer (Fig.5.5). It is also found that long wave modes are beneficial to fast

reconnection than short wave modes. It explains why the final reconnection rate in the

second boost of double-layer simulation (3,±1) is higher than the first boost.

Because the position of a tearing mode is determined by the background magnetic

field, how the inflow-outflow coupling changes with the global guide field strength is

149



also studied to give a general conclusion (Sec.5.3). When the global guide field becomes

weaker, the modes with n = 1 near the center has a very small Ac value that it is possible

that the mode pair saturates soon. We executed a double-layer simulation (2,±1) in a

current sheet with a global guide field that is 1% of the anti-parallel magnetic field. The

overall reconnection is always slow (Fig.5.6) while the energy cascades mainly along n =

0 modes (Fig.5.7). As the two layers are too close with each other, the diffusion regions

from the two modes degenerate into one single diffusion region on the plane where these

two modes are in phase and transient flux tubes are created then perish soon (Fig.5.8).

The energy cascade path found in Chap.3, Chap.4 and Chap.5 is rather weak in this case.

This is probably due to the numerous cascade steps to reach the asymptotic magnetic

field. During the cascade, new modes are having smaller and smaller wavelengths that

their growth is suppressed by the magnetic field tension force.

6.2 General discussion

In this dissertation, we attacked the long-term remaining problem, namely the fast 3D

reconnection problem, from the viewpoint of the diffusion region development, together

with the coupling between diffusion regions across the current sheet.

6.2.1 Global reconnection rate

Presently, we mainly argued that how the reconnection rate increases without discussing

the final reconnection rate. Unlike the 2D reconnection regime, the reconnection rate is

difficult to define in 3D regime, as the magnetic flux surface is not intact anymore. In our

analysis, we mainly measured the magnetic energy conversion rate as shown in Eq.(3.21).

This measurement includes the contribution from all energy modes, both 2D and 3D, as

well as other dynamics such as instabilities and local dynamo. It is in the form of dB2/dt

thus smaller than the classical measurement by dB/dt as the averaged B in the current

sheet is always smaller than the asymptotic magnetic field.
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simulation reduced Em dϕMR/dt v̄x d∆MR/dt

(3,±1) 0.0016 0.0045 0.0015 0.0088
random 0.0013 0.0032 0.0027 0.0045

Table 6.1: Table of reconnection rate measured by different methods in the double-layer
simulation (3,±1) and the random perturbation simulation.

Since no rigorous definition of 3D reconnection rate exists, we re-examine several dif-

ferent methods, such as measuring the reconnected magnetic flux (Huang & Bhattachar-

jee, 2016), global inflow (Kowal et al., 2009) and turbulent current sheet width growth

rate (Beresnyak, 2017; Kowal et al., 2017), to make a fair comparison.

The reconnection rate measured by the reconnected magnetic flux ϕMR temporal change

is calculated by

MA =
1

vA0By0

d

dt
(max |ϕMR(y)|) (6.1)

where ϕMR is measured as

ϕMR(y) =

∫ y

0

B̄x(x = 0, y′)dy′ (6.2)

and B̄x =
∫ Lz/2

−Lz/2
Bx(x, y, z)dz/Lz. By averaging along the global guide field direction

(z-direction), Eq.(6.2) mainly measures the reconnected flux by 2D modes near the cur-

rent sheet center, while the reconnected fluxes by 3D modes cancel out in the integration.

The reconnection rate measured by the maximum global inflow v̄x is detected in the

asymptotic magnetic field region. It is also averaged along the global guide field direc-

tion that v̄x =
∫ Lz/2

−Lz/2
vx(x, y, z)dz/Lz. This measurement is similar to the observational

method, since the averaging process mimics the line-of-sight effect.

The turbulent current sheet width ∆CS is measured by the spatially averaged total cur-

rent density ⟨|J(x)|⟩, as that in Sec.3.4. This measurement includes all modes informa-

tion. Moreover, the flux tubes are also included as they contribute much to the turbulence

(Lapenta et al., 2015).

We list out all measurements for the double-layer simulation (3,±1) around t = 460tA
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and the random perturbation simulation around t = 800tA (end of the second boost)

(Table.6.1). The reconnection rate varies with methods and the magnitude covers from

0.001 to 0.01. We first assume that our model is independent of the diffusivity and the

box size. The reconnection rates on the reconnected flux measurement are smaller than

that in Huang & Bhattacharjee (2016), which is around 0.008. This is because that, in their

simulation, a sufficiently grown Sweet-Parker sheet is in the background of the turbulent

state. Therefore, a large portion of the reconnection rate (roughly half) comes from 2D

modes. The Lundquist number in our simulation is 7 × 104, which corresponds to a

Sweet-Parker sheet with a global reconnection rate of 0.0037. If we assume that 3D

modes mediate the 2D reconnection, then by adding up the Sweet-Parker reconnection

rate, our result approaches their measured value. The measurements on the global inflow

are two orders of magnitude smaller than Kowal et al. (2009), in which a driven turbulent

flow was implemented at the beginning and sustained for a while. It seems that the driven

reconnection (Kowal et al., 2009) is faster than the spontaneous reconnection. On the

other hand, the measurements on the current sheet width expansion rate give reconnection

rate in the same order of magnitude as that in Kowal et al. (2017); Beresnyak (2017) from

(3,±1) but smaller reconnection rate in the random perturbation case. It is probably

because that new modes are only created in the positive x-side in the random perturbation

case thus the sheet width expands less.

As many observations show that the inflow is roughly 0.1 − 0.001 of the ambient

Alfvén speed (Yokoyama et al., 2001b; Takasao et al., 2012b), reconnection rate MA ∼

0.1 − 0.001 is required for the solar flare case. Whether our result is also true when the

diffusivity gets smaller or when the box size gets larger need further study.

In all of our simulations, the time for boosting up the reconnection rate is always in the

order of 100tA. We estimate the normalization for all variables in the environment of the

solar corona by setting up the length scale δ ∼ 0.05Mm, the asymptotic Alfvén velocity

vA0 ∼ 1000km/s, temperature T0 ∼ 6× 106K and the diffusivity η̃0 ∼ 5× 1010m2/s. Our

current sheet length becomes L ∼ 1.2Mm, which is only a part of an extended sheet. The
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boosting time now becomes 5s. In Kowal et al. (2017), the time it takes to reach a fast

global inflow is independent of diffusivity. Therefore, although our estimated diffusivity

is 1.5×107m2/s, which is much larger than that in the solar corona (∼ 1m2/s), we assume

here that the nonlinear development time does not change substantially even in a weakly

diffusing environment. If this argument holds in the solar flare case, the total boosting

time, which is several hundreds of Alfvén time in our simulation, will be tens of seconds

or minutes. Whether this fast-evolving time can be applied to the eruptive phase of the

solar flare should be tested in the future with a larger box and a smaller diffusivity.

6.2.2 2D modes versus 3D modes

Bi-directional outflows and the production of plasma blobs were observed in a sheet-like

structure in the solar flare study (Takasao et al., 2012b). Moreover, coronal mass ejection

(CME), which is the ejection of the reconnection produced flux tubes, is often related to

the solar flares (e.g., Andrews, 2003). As multiple tearing layers emerge in various 3D

reconnection simulations in a current sheet with a finite guide field (Landi et al., 2008;

Wang et al., 2015; Beresnyak, 2017; Kowal et al., 2017), the question becomes how to

grow 2D modes start from a 3D turbulent state.

In Sec.2.6.2, we argued that the shear flow from 3D modes on either side of the current

sheet has a potential to suppress the growth of 2D modes right at the current sheet center

when 3D modes are close to each other. By comparing the results shown in the three-layer

simulations, it seems that this argument is confirmed. On the other hand, when 3D modes

are far from each other, as the initial stage of the random perturbation shows (Fig.4.8), 3D

modes can reversely cultivate 2D modes or at least make space for 2D modes to grow.

In our typical double-layer case, the strongest 2D mode in the early phase is (6, 0)

which obtains energy through the nonlinear coupling (3, 1) + (3,−1). As it can be ob-

served in Fig.3.15, (6, 0) maintains its dominance among all 2D modes until the end of

the first boost, although it is still much weaker than 3D modes. Afterwards, there exists

a relaxation phase that pre-existing flux tubes seem to coalesce with each other and pro-
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duce larger flux tubes (Fig.3.11). As a result, the energy is pouring into 3D modes with

longer wavelengths. When (1, 1) mode becomes dominant in the current sheet, longer 2D

modes (4, 0) and (2, 0) are activated that the number of diffusion regions on x = 0 plane

reduces (Fig.3.14). Subsequently, the longest wave mode (1, 0) dominates the whole cur-

rent sheet (final panel in Fig.3.15). Apparently, there exists an inverse cascade process in

the development of 2D modes.

When 2D modes grow strong enough, they are observed to form the inflow-outflow

coupling with 3D modes (Fig.3.18 and Fig.4.7). This implies that the reconnection in 2D

modes is consuming the magnetic field lines from the tubes in the coupled 3D modes.

Then two possibilities are raised. The first one is that the 2D tubes are produced by the

reconnection of the 3D flux tubes, that the tube-tube reconnection produces a patchwork

tube. The serpent structure of this patchwork tube then relaxes into a straight one and is

seen as a 2D tube. The other possibility is that the 2D flux tubes are created by peeling off

the field lines from the 3D flux tubes one by one, instead of exchanging tube structures.

Which process is true should be checked by both theory and numerical result.

In the tube-tube reconnection scenario, it is found that the reconnection pattern changes

with the angle between the tubes and the helicity (Sakai & Koide, 1992; Linton et al.,

2001). The flux tubes produced in our system have the same sign of helicity, which cor-

responds to the slow tube reconnection regime. For the tubes on the same side of the

current sheet, the tilting angle between the tubes is small that their reconnection falls into

the “merge” category in Linton et al. (2001). In the random perturbation, although several

modes grow together with similar strengths on the same side of the current sheet in the ini-

tial phase t ≤ 300tA, finally only one mode wins and dominates the dynamics (Fig.4.6).

It is possible that the modes on the same side coalesce due to the merging of flux tubes.

Also, it can explain that why reconnection layers are the mixture of two modes, such as

(3,±3) and (3,±5) in Fig.3.8. In contrary, the flux tubes from opposite sides of the cur-

rent sheet usually have a large tilting angle in between. For example, the two tubes from

(1, 1) and (1,−1) have a tilting angle of 5π/6. So the reconnection falls into the “bounce”
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Figure 6.1: Reconnecting field lines producing the 2D flux tube at the sheet center in the
double-layer simulation (3,±1). The isosurface of current density J represents diffusion
regions and colored by vx, while velocity fields are plotted by arrows along q = 0 and
colored by vy. Purple, yellow and green field lines in panel A) and B) are selected along
q = 0 plane at z = −1.5δ, 0, 1.5δ, respectively. Purple and yellow field lines are selected
from (1, 1) flux tube, while cyan and orange field lines are selected from (1,−1) flux tube.
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Figure 6.2: Coalescence of 2D flux tubes. Purple, yellow and green lines are selected
field lines along q = 0 plane at z = −1.5δ, 0, 1.5δ, respectively. The isosurface of the
current density J with color (vx) represents mainly diffusion regions. The simulation box
is shifted by 6δ to the positive y-side.
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category that the reconnection between tubes across the sheet is difficult.

As a result, the 2D tubes in our system are likely to be produced by patchy-like recon-

nection that magnetic field lines reconnect one by one to form a new structure. We select

the later phase t = 460 in the double-layer simulation (3,±1) to examine this argument.

By comparing diffusion regions and outflows vy in panels A) and B) of Fig.6.1, the recon-

nection that produces the 2D flux tube seems to proceed in a spatially scattered manner.

However, bi-directional outflows are ejected from the high density regions. By checking

the magnetic field lines that are producing the 2D tube at the sheet center, we cannot find

the tube-tube reconnection but rather the line-line reconnection.

Two 2D flux tubes remain in this phase. The left one is centered at y ∼ −1.5δ, the

right one is near y ∼ 11.5δ. As 2D modes grow, the left tube starts to move to the right

and the coalescence of 2D flux tubes is observed (Fig.6.2). So our simulation shows

that the 2D tube, which is created by the line-line reconnection of the 3D flux tubes, is

produced and bi-directional outflows are formed out of the 3D turbulent state. Afterwards,

the longer 2D mode is created by the inverse cascade from short 2D modes.

In the random perturbation simulation, the longest 2D mode (1, 0) maintains its ad-

vantage all through the whole process, while (1, 0) is the most unstable mode in our static

current sheet. Since our simulation box is supposed to be one part of an extended current

sheet, it is possible that if we execute simulation with a large box size along y and z, the

initial most energetic 2D modes are smaller than the box size. In that case, the inverse

cascade as we observed in (3,±1) might be important to produce large 2D flux tubes and

globally bi-directional flow as the observations suggest.

6.2.3 Contribution to the turbulence reconnection model

One global picture of the spontaneous 3D reconnection was given in Beresnyak (2017).

This work proposed that turbulence gradually builds up and expands the whole current

sheet, finally produces global 2D-like bi-directional inflows and outflows. In our study,

we showed in Chap.3 that new energy modes, namely new reconnection layers, are pro-
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duced outwardly. It explains the current sheet expansion stage (Sec.6.2.2). Meanwhile,

the nonlinear coupling of the pre-existing modes creates new modes and builds up the tur-

bulent state, as more and more energy modes are activated seen from the 2D energy spec-

trum. The bi-directional flows are shown by the development of 2D modes in Sec.6.2.2.

In turbulence reconnection picture (Lazarian & Vishniac, 1999), the field lines are thought

to wander around inside the whole current sheet and gradually release the energy by con-

tinuous reconnection at different positions. We describe this wandering motion as the

inflow-outflow coupling of adjacent reconnection layers, while the inflow-outflow cou-

pling was examined locally in detail. In this sense, we have given a clear physical picture

of the turbulence reconnection process, from the viewpoint of the diffusion region devel-

opment and the interaction between diffusion regions.

The theoretical 3D turbulence reconnection model couples the MHD turbulence the-

ory (Goldreich & Sridhar, 1995) in understanding the fast reconnection in a quasi-steady

turbulent state (Lazarian & Vishniac, 1999). In our simulation, we found a dynamic en-

ergy ejection scale which corresponds to a new energetic mode. This shifting ejection

scale was not explicitly identified in previous studies. In addition, a reorganization stage

appears in between two boosts in both double-layer simulation (3,±1) and the random

perturbation simulation. During this stage, the outermost layers saturate and disappear,

while new energy modes grow from the inner side and evolve into the starting modes for

the second boosts. Then whether a quasi-steady turbulent state can last long in sponta-

neous reconnection remains an open question. If the quasi-steady turbulent state is too

short, or even cannot be achieved in the spontaneous reconnection regime, the theoretical

turbulence reconnection model is then not sufficient. In comparison, our model based on

the dynamical changes and seems to be more general.

The existence of the reorganization stage also implies that the current sheet cannot

grow eternally thicker. Although it is possible that this reorganization stage is related to

our closed boundary condition along the inflow direction, it can also happen to an open

system from the physical point of view. The turbulent current sheet width we measured
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in Sec.3.4 and Sec.6.2.1 composes of the outermost reconnecting layers positions and the

width of flux tubes on the outermost layer. The reconnection layer position is limited by

the initial current sheet width. Flux tubes cannot grow without limitation either. As we

have explained in Sec.6.2.2, flux tubes on the same side are easy to coalesce to form a big

tube. Therefore the final turbulent current sheet width is likely to be determined by the

3D flux tubes with the longest wavelength that is allowed by this system on either side of

the current sheet. It is believed that the highest reconnection rate is 0.2, regardless of the

diffusion mechanism (Liu et al., 2017). The aspect ratio of a flux tube width to its length

is also limited by this number, by considering the shape of the separatrices. Thus the

turbulent current sheet width is unlikely to exceed ∼ 0.2L by considering the asymmetry,

where L is the system scale that represents the longest available modes in this system.

Although we have studied 1D energy spectrum (Appendix.H), we made an integral

across the current sheet direction that the smallest scale is not the dissipation scale (dif-

fusion region width). So no discussion on the 1D energy spectrum was given. The

anisotropic energy cascade along and perpendicular to the local magnetic direction is an

important issue (Goldreich & Sridhar, 1995). The energy fluctuation formed an elongated

shape along the local magnetic field in a current sheet with fully developed turbulence

(Huang & Bhattacharjee, 2016). It is reasonable to relate this feature to the reconnection

layer since Alfvén waves are produced in the downflow and propagate along k of that

mode. As the field line passes from different reconnection layers, the Alfvén waves pro-

duced by reconnection at different positions collide and cascade into new wave modes

following the 4-wave resonance (Goldreich & Sridhar, 1995). Our argument on the non-

linear coupling is similar to the 4-wave resonance, but we are considering the energy

mode that is growing without propagating. Further understanding of the energy spectrum

and how to relate the waves to the reconnection picture are worth studying in the future.
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6.2.4 Extension to particle simulation

Our work is in the MHD regime, which lacks the physics in the particle scale. However,

the plasma in different astronomical events is not necessary to be always collisional, but

collisionless in many cases. Then whether our model is also valid in collisionless plasma

is not clear.

Big particle-in-cell (PIC) simulations show that multiple layers exist after the cur-

rent sheet is perturbed by a random perturbation (Daughton et al., 2011). The turbulent

layer expands across the current sheet with time, while energy cascade along the global

guide field and flux tubes that are almost parallel to the asymptotic fields are also found

(Nakamura et al., 2016). So we believe that a similar story as our model can be achieved

even in the particle regime. Whether this argument holds should be checked in the PIC

simulations.

6.3 Future prospects

Although we have generalized our results in Chap.4 and Chap.5, there still exist many

other aspects that should be considered in future works.

Dependence on the diffusivity

All present simulations are applying much larger diffusivity than the realistic one due to

the limitation on the computational resource. In order to understand the development of

a system with extremely small diffusivity, one way is to tune down the diffusivity little

by little and trace the trend of the change. In 2D reconnection simulation, it is found

that when the diffusivity is lower than a certain threshold, the reconnection rate becomes

independent of diffusivity under various circumstances (Bhattacharjee et al., 2009; Huang

& Bhattacharjee, 2010; Loureiro et al., 2012; Ni et al., 2012a; Shibayama et al., 2015). In

3D reconnection regime, this question still remains (Oishi et al., 2015; Beresnyak, 2017;

Kowal et al., 2017).
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Let us assume first that the inflow-outflow coupling between diffusion regions is a

universal phenomenon. In the 3D reconnection coupling, it takes time for the outflow on

the linearly growing tearing layer to grow large enough to start the inflow-outflow cou-

pling effectively across the current sheet. The growth rate of the tearing mode is reversely

scaled to the diffusivity (Furth et al., 1963; Coppi et al., 1976), so it is possible that it

takes a long time for a system to develop the inflow-outflow coupling when the diffu-

sivity is small. On the other hand, the inflow-outflow coupling changes the spontaneous

reconnection into the driven regime locally (Pritchett et al., 1980). Theoretically, the lo-

cal reconnection is less dependent on the diffusivity in the driven reconnection but rather

relies on the inflow electric field (Ein ∼ vinBin/c) (Sato & Hayashi, 1979; Kitabata et al.,

1996). Thus it is possible that the 3D reconnection becomes less dependent on the diffu-

sivity due to the local driven reconnection that spreads all over the current sheet. When a

current sheet is driven by an external turbulence, it has been shown that the reconnection

rate is independent on the diffusivity but dependent on the driving strength (Kowal et al.,

2009). How the diffusivity changes the reconnection efficiency in a spontaneous recon-

necting system which couples with the self-generated turbulence needs further detailed

investigation.

Dependence on the boundary condition

As we described in Sec.2.4, we are considering a part of an extended current sheet. In ad-

dition, we are applying periodic boundary condition along all directions. When incoming

magnetic fields are depleted in the system due to reconnection, further pouring of field

lines are stopped as the magnetic pressure is no longer capable to push the field lines

into the current sheet. Since a reorganization period exists in our study but not specifi-

cally identified in other studies, whether a step-like increasing reconnection rate can be

achieved in other systems should be confirmed.

Meanwhile, the closed outflow region does not only change the possible emerging

modes that determine the initial development but also forbids any structure removal from
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the system. A closed system will saturate (Taylor, 1974) while an open system is potential

to have a more dynamic development (Shibata & Tanuma, 2001). Thus reconnection has

a strong reliance on the boundary condition. Whether our story is also feasible in a system

with different boundary conditions, such as the half-open system for solar flare, should

be examined in the future. Also, the size of the current sheet should be more extended to

mimic the large system in most astronomical events. Our box size is in the same size as

the most unstable 2D mode. If the box is much more extended, whether a further inverse

cascade of 2D modes into longer and longer modes exists is an interesting topic.

Dependence on the global guide field

Although we have tried one simulation with a weak guide field, the initial perturbation

was a pair of selected tearing eigenmodes so the generality is limited. It is found that

the reconnection in a current sheet with a global guide field in the magnitude of half to

double of the anti-parallel magnetic field does not change essentially (Beresnyak, 2017).

However, it is still not clear whether the detailed development can be unified as what

we expect. Moreover, the current sheet with only anti-parallel magnetic fields should

be explained by another theory, as the turbulence becomes isotropic rather than being

Alfvénic.

Dependence on the current sheet character

Since the magnetic field structure is quite complicated in the universe, many different

parameters can be changed based on the magnetic field itself.

In the original story of the Sweet-Parker reconnection (Sweet, 1958; Parker, 1957),

the big diffusion region is created by the slowly approaching dipole fields on the surface

of the sun under the footpoint motions. Thus in the last several decades, many studies con-

centrated on how a large Sweet-Parker sheet changes from slow dynamics into a fast one.

The most notable one is the 2D plasmoid instability reconnection model (Bhattacharjee

et al., 2009; Huang & Bhattacharjee, 2010; Loureiro et al., 2012; Shibayama et al., 2015).
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Recently, the prerequisite of the 2D Sweet-Parker sheet is re-examined. It was found that

if a 2D current sheet is created by two approaching magnetic features, the current sheet

collapses before the Sweet-Parker sheet is formed (Pucci & Velli, 2014; Comisso et al.,

2016; Uzdensky & Loureiro, 2016; Comisso et al., 2017), unless the Lundquist number S

is moderately large and the perturbation is weak (Huang et al., 2017).

If the system size is large enough to include the Coppi’s regime (Coppi et al., 1976), a

plasmoid chain is formed when the current sheet collapses (Uzdensky & Loureiro, 2016)

that no bi-directional global outflows are created. If the system size is moderate (moderate

S), the current sheet has a chance to be dominated by the longest mode that bi-directional

outflows can form. This mode is possible to evolve into a Sweet-Parker type reconnection

in the nonlinear stage (Loureiro et al., 2005).

We first consider the sheet collapsing case without the Sweet-Parker type reconnec-

tion. In this case, we have to re-estimate the time as the sheet has a potential to collapse

before the coupling becomes effective. We assume that the initial potential field formed

by two dipole fields in the solar atmosphere has a magnetic scale size of 1Mm on the plane

that is perpendicular to the global guide field. A current sheet is eventually created as the

anti-parallel magnetic fields approach each other. By applying the scaling law in Uzden-

sky & Loureiro (2016), the collapsing current sheet width is ∼ 0.05Mm, which is the

size of our initial current sheet width (Sec.6.2.1), while the collapsing time is 5.4hours.

If our boost time (5s) is independent on the diffusivity, then the nonlinear coupling is

feasible to finish the energy cascade across the sheet. Since the theoretical predictions are

all considering the development of one single 2D mode inside a changing current sheet,

nonlinear simulations of a developing 3D current sheet are highly required to confirm our

arguments.

Next, we consider the case that a global Sweet-Parker type reconnection can be achieved.

At the end of our simulation, 2D modes dominate. If the 3D tearing instability starts to

grow in the 2D-like current sheet with bi-direction outflow, whether the energy cascade

path described in Chap.3, Chap.4 and Chap.5 can be obtained is unclear. Or in another
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word, whether our system can reprise in a Sweet-Parker type current sheet is not known.

Since 3D modes are found in the Sweet-Parker sheet (Huang & Bhattacharjee, 2016), we

believe that they can reappear as long as new fields are provided in the inflow region. On

the other hand, as shown in Fig.F.1 in Appendix.F, the field lines in the coupling tangle up

with each other. So unless a 3D flux tube is uniformly transported in a certain direction,

the tube will be stretched bi-directionally by the bi-directional outflows. The stretching

will make the tube to be more parallel to the asymptotic magnetic field. If the stretching

makes the local magnetic field on the reconnection layer to be larger than the inflow mag-

netic field, the reconnection is likely to cease. Whether these arguments are true needs

further proof.

In our simulation, the total pressure balance is maintained at the beginning. Another

kind of system is the force-free field, which is believed to be important on the solar sur-

face (e.g., Sakurai, 1979). One typical case is the force-free field composed of a gradually

rotating magnetic field with the same magnitude. Thus current density also rotates across

the current sheet while maintaining the magnitude. Therefore, each layer has an equal

possibility to develop tearing instability. In Landi et al. (2008), it is shown that the recon-

nection in a force-free field is much different from the one with an initial total pressure

balance. Then whether multiple layers develop and whether they couple with each other

should be checked.

Other effects, such as plasma β (Ni et al., 2012b), ionization level (Murphy & Lukin,

2015; Hillier et al., 2016), thermal conduction and viscosity (Minoshima et al., 2016),

gravity (Jelı́nek et al., 2017), relativity (Sironi et al., 2016) and so on, are also important

to the reconnection study and need more detailed understanding.
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Chapter 7

Concluding remarks

Since several decades ago, the understanding of magnetic reconnection aroused lots of

interests among the plasma physicists. It is one of the most important fundamental pro-

cesses and believed to support models for various astronomical events. Regarding the

observational results on the energy release efficiency, such as the eruptive solar flare, fast

reconnection in a three-dimensional (3D) system is required. The fast 3D reconnection

problem remained unsolved for a long time. Theoretical model that couple with the tur-

bulence theory is raised, however the basic physics were not sufficiently examined.

We executed three-dimensional (3D) magnetohydrodynamics (MHD) numerical sim-

ulation of a current sheet with a finite guide field to understand the development of diffu-

sion regions, which is the essential part in the reconnection. As many previous numerical

simulations showed, multiple tearing layers coexist in the current sheet when it is per-

turbed by random perturbation. We noticed an inflow-outflow coupling mechanism exists

once two tearing layers are close to each other. Thus we first applied a pair of rotational-

symmetric eigenmodes of the tearing instability to investigate the basic physics and the

consequences of the coupling. The schematic plot of our main result is shown in Fig.7.1.

The inflow-outflow coupling is exhibited as the enhancement of the inflow into the dif-

fusion region from the coupling side. We found that when two tearing layers are far apart,

no coupling mechanism exists. When two tearing layers are close, the inflow-outflow

coupling is effective and piles up magnetic fields in front of the coupled diffusion regions.
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Secondary tearing is triggered due to the large piling-up magnetic fields, while higher or-

der harmonics of the existing modes becomes energetic. Secondary tearing opens a vent

for the field lines to eject out and collide with the free field lines. Due to the collision,

new diffusion regions are formed outwardly. New diffusion regions form new reconnec-

tion layers further into the asymptotic magnetic field. These new layers correspond to

new energy modes with higher wavenumbers along the global guide field than the origi-

nal tearing modes, which can be explained by the successive nonlinear coupling among

existing modes. Meanwhile, the inflow-outflow coupling is built up between old and new

layers, while new layers are absorbing the asymptotic magnetic fields directly. Therefore,

the global reconnection rate increases due to this sheet-crossing coupling that spans from

one side of the current sheet to the other.

In order to verify that the sheet-crossing coupling is a general behavior, we re-examined

the reconnection in a sheared current sheet perturbed by a random velocity field and the

same story is retrieved. In comparison, the inflow-outflow coupling in a current sheet

with a considerably weak global guide field breaks up very soon. Transient and piece-like

reconnection happens that no global coherent structures are formed nor stay long.

Unlike most of the studies on fast 3D reconnection in the turbulent state, we concen-

trate on the detail of the physical properties. Our model describes how reconnection layers

are created and interact with each other to accelerate reconnection in the whole current

sheet. Hopefully, our description of reconnection in the turbulent state can be integrated

with the MHD turbulence studies and applied to the models for realistic astronomical

events in the near future.
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Figure 7.1: Schematic picture of sheet-crossing coupling model for fast 3D reconnection.
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Appendix A

Physical understanding of the tearing

instability

As shown in Eq.(1.10), the tearing instability grows on the layer where the local magnetic

field is perpendicular to the perturbation wave vector k. In this case, all field lines are

perturbed in phase along the direction of k (left panels of Fig.A.1). The newly produced

Lorentz force is uniformly acting on the magnetic field lines on this layer and also parallel

to the wave vector k. If k is tilted from B, the magnetic field is locally squeezed as a phase

difference is introduced along B (right panels of Fig.A.1). The Lorentz force (tension

force of the bent and locally enhanced magnetic pressure) will transport the perturbation

away in the form of Alfvén wave (orange arrows). The perturbation energy is dissipated

along B so it is difficult to nurture instability on this layer.

It is straightforward to expect that the most unstable tearing instability grows right

at the current sheet center, where the current density is the strongest. As it can be ob-

served from the left panels of Fig.A.1, the magnetic pressure gradient produced by the

perturbation will try to restore the configuration back to its original status. The force that

opposes this restoration is the tension force from the newly created plasmoid by reconnec-

tion (right panel of Fig.1.3). We compare these terms by implementing the Harris sheet

(Harris, 1962) as Eq.(1.16).
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Figure A.1: The physical explanation for the tearing criteria k·B = 0. Turquoise lines are
magnetic field lines. Black solid and grey dashed vectors are perturbation wave vectors.
Orange vectors indicate perturbation dissipation direction.
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Near the center of the current sheet, the magnetic field can be approximated as

B∥(x) ∼ B0
x

a
. (A.1)

In addition, a guide field Bguide is added perpendicular to the Harris sheet. The restoring

force that corresponds to the tearing instability developing on the plane x = xs can be

estimated from the linear term in the Lorentz force as:

J [1]B[0] ∼ ∆Bpk

4π

√
B2

guide +
(
B0
xs
a

)2
(A.2)

where f [0] and f [1] are the 0th and the 1st order of variables, ∆Bp is the compressed

magnetic component on the tearing layer x = xs inside plasmoid. The whole term of the

square root is the strength of the local field B[0] = B[0](xs), which are shown as straight

lines in Fig.A.1. The linear term that represents the plasmoid tension force parallel to the

wave vector k is

J [0]B[1] ∼ B0

4πa

Bguide√
B2

guide +
(
B0
xs
a

)2Bx (A.3)

where Bx is the reconnected component. Let’s assume that inside the current sheet, dif-

fusion regions (with X-point at the center) and plasmoids are evenly distributed and both

of them have a length scale ∼ 1/(2k) along k. Reconnection, or the tearing, is happening

inside a diffusion layer width 2δη that is much thinner than the current sheet width 2a.

Due to the flux conservation along the boundary of the diffusion layer,

1

4k
Bx ∼ δη

(
∆B+

η −∆B−
η

)
Bx ∼ 2∆Bηδηk (A.4)

where ∆B±
η is the reconnecting magnetic field on either side of the diffusion layer and

we assume symmetry across the diffusion layer for simplicity. Also we assume that the

compression in ∆Bp is due to the plasmoid contraction. Just after the reconnection at the
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X-point, local field B[0] maintains its value. But as the plasmoid contracts towards its

center, namely the O-point, local field increases inside the plasmoid. During the linear

phase, plasmoid width is growing exponentially that w(t) = w(0) exp(γt). At the same

time, one end of the plasmoid travels from X-point to the edge of diffusion region during

1 unit of diffusion time tη = δ2η/η̃. Assuming the magnetic flux conserves inside the

plasmoid,

B(xs) + ∆Bp

2k
w(t0) exp(γtη) ∼ B(xs)

k
w(t0)

∆Bp ∼ C0B(xs) (A.5)

where C0 = 2 exp
(
−γδ2η

η̃

)
− 1. Integrating all equations from Eq.(A.2) to Eq.(A.5), the

ratio between the tension force and the restoring force is

J [0]B[1]

J [1]B[0]
=

2B0δη∆Bη

C0a

Bguide[
B2

guide +
(
B0
xs
a

)2] 3
2

. (A.6)

This equation shows that the force ratio is a monotonically decreasing function of the

layer position xs regarding the second term on the R.H.S.. If the first term is also reversely

dependent on xs, then it is proved that 2D modes are always growing faster than 3D modes

with the same wavelength in a current sheet with a uniform guide field. Once the first term

has an opposite trend, 3D modes can be faster (Baalrud et al., 2012). If we normalize the

guide field to the asymptotic anti-parallel field,

α =
Bguide

B0

(A.7)

then Eq.(A.6) can be simplified as

J [0]B[1]

J [1]B[0]
=

2δη
C0a

∆Bη

B0

α[
α2 +

(xs
a

)2] 3
2

. (A.8)
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which is an explicitly monotonically decreasing function of α.

No clear dependence of the tearing growth on the wavelength is shown in Eq.(A.6) or

Eq.(A.8). But we are expecting a small δη and a large ∆Bη for a long wave mode since

they provide strong compression near the tearing layer due to the weak tension force. As

we explained above, we believe that they are positively related to the wavelength as a

whole, so Eq.(A.8) is larger with a longer wave. Meanwhile, there also should exist an

upper limit for the wavelength. When the tearing instability grows, it takes approximately

1/(kvout) to reorganize the structure, where vout is the outflow from the X-point. Espe-

cially in the early phase of the tearing, vout is considerably small. This time scale gets

larger with an increasing perturbation wavelength. When it is longer than the diffusion

time δ2η/η̃, the outflow cannot carry out the newly reconnected magnetic flux away from

the X-point downstream fast enough that the flux will choke down the reconnection in

the X-point. So the tearing instability is suppressed. Also when the diffusivity η̃ gets

larger, the upper limit of the wavelength is lower that the most unstable tearing mode has

a shorter wavelength compared to the case of small diffusivity.
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Appendix B

Solving the tearing instability linear

equations

We solve the two coupled second-order ordinary differential equations Eq.(2.18) and

Eq.(2.19) by second-order overrelaxation method. The solutions are found by relaxing

∂ϕ

∂t
=

d2ϕ

dx2
− P (ϕ, ψ) (B.1)

∂ψ

∂t
=

d2ϕ

dx2
−Q(ϕ, ψ) (B.2)

where P (ϕ, ψ) and Q(ϕ, ψ) are the terms on the R.H.S. of Eq.(2.18) and Eq.(2.19) re-

spectively. We iteratively solve Eq.(B.1) and Eq.(B.2) numerically as

ϕj+1
i = ϕji + dt

[
ϕji+1 − 2ϕji + ϕj+1

i−1

(dx)2
− P (ϕji , ψ

j
i )

]
(B.3)

ψj+1
i = ψji + dt

[
ψji+1 − 2ψji + ψj+1

i−1

(dx)2
−Q(ϕji , ψ

j
i )

]
(B.4)

where dx is the uniform grid size across the current sheet, dt is the time advance that

dt = 1.8(dx)2/2. The lower label i represents the numerical grid number along the

x-direction, while the upper label j represents the time step number. Solid boundary

condition is applied that ϕ = 0 and ψ = 0. The initial guess of the growth rate γ is

estimated from the classical theory Eq.(1.14). The solution convergence is checked by
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the following method. We calculate the difference of solutions in one time advance that

dψi =
2(ψj+1

i − ψji )

ψj+1
i + ψji

(B.5)

(following Steinolfson (1983)) for each grid i first. The derivation is calculated by

σdψ =

√∑Nx

i (dψi − ⟨dψi⟩)2
√
Nx⟨dψi⟩

(B.6)

where ⟨dψi⟩ is the mean of dψi and Nx is the total number of grids. If the maximum dψi

is smaller than 0, which means that new solution is not growing, the growth rate γ is reset

as 0.995γ. When all dψi > 0 and σdψ < 0.005, the relaxed functions of ϕ and ψ, as well

as the growth rate will be recorded. The solution of the linear analysis depends on the

wavelength. More grids are used with a decreasing wavelength.

Initial functions of ϕ and ψ are estimated as

ϕ(x, t = 0) =


γ exp(kx)/k , x < 0

γ exp(−kx)/k , x > 0

(B.7)

ψ(x, t = 0) =


By0(ky + αkz) exp(kx)/k , x < 0

By0(ky + αkz) exp(−kx)/k , x > 0

(B.8)

which depend on the selected mode k.

Examples of eigenfunctions ψ and ϕ are shown in Fig.B.1. The upper panels are

eigenfunctions of the 2D mode (1, 0) while the lower panels are eigenfunctions of the 3D

mode (1, 1). The eigenfunctions are normalized by the maximum value of ψ along the

x-direction.
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Figure B.1: Examples of normalized eigenfunctions of ψ and ϕ for mode (1, 0) and (1, 1).
Dashed lines are ϕ = 0.
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Appendix C

Initial condition for double-layer

simulations

The eigenfunctions of ψ and ϕ are converted into the perturbed magnetic and velocity

fields in the form of

B
[1]
x,L(x, y, z) = ℜ

{
ikψ(−x)ei(kyy−kzz+π)

}
= kψ(−x) sin(kyy − kzz)

B
[1]
x,R(x, y, z) = ℜ

{
ikψ(x)ei(kyy+kzz)

}
= −kψ(x) sin(kyy + kzz) (C.1)

B
[1]
y,L(x, y, z) = ℜ

{
ky
k

∂ψ

∂x

∣∣∣∣
−x
ei(kyy−kzz+π)

}
= −ky

k

∂ψ

∂x

∣∣∣∣
−x

cos(kyy − kzz)

B
[1]
y,R(x, y, z) = ℜ

{
−ky
k

∂ψ

∂x

∣∣∣∣
x

ei(kyy+kzz)
}

= −ky
k

∂ψ

∂x

∣∣∣∣
x

cos(kyy + kzz) (C.2)
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B
[1]
z,L(x, y, z) = ℜ

{
−kz
k

∂ψ

∂x

∣∣∣∣
−x
ei(kyy−kzz+π)

}
=

kz
k

∂ψ

∂x

∣∣∣∣
−x

cos(kyy − kzz)

B
[1]
z,R(x, y, z) = ℜ

{
−kz
k

∂ψ

∂x

∣∣∣∣
x

ei(kyy+kzz)
}

= −kz
k

∂ψ

∂x

∣∣∣∣
x

cos(kyy + kzz) (C.3)

v
[1]
x,L(x, y, z) = ℜ

{
−kϕ(−x)ei(kyy−kzz+π)

}
= kϕ(−x) cos(kyy − kzz)

v
[1]
x,R(x, y, z) = ℜ

{
kϕ(x)ei(kyy+kzz)

}
= kϕ(x) cos(kyy + kzz) (C.4)

v
[1]
y,L(x, y, z) = ℜ

{
i
ky
k

∂ϕ

∂x

∣∣∣∣
−x
ei(kyy−kzz+π)

}
=

ky
k

∂ϕ

∂x

∣∣∣∣
−x

sin(kyy − kzz)

v
[1]
y,R(x, y, z) = ℜ

{
i
ky
k

∂ϕ

∂x

∣∣∣∣
x

ei(kyy+kzz)
}

= −ky
k

∂ϕ

∂x

∣∣∣∣
x

sin(kyy + kzz) (C.5)

v
[1]
z,L(x, y, z) = ℜ

{
−ikz

k

∂ϕ

∂x

∣∣∣∣
−x
ei(kyy−kzz+π)

}
= −kz

k

∂ϕ

∂x

∣∣∣∣
−x

sin(kyy − kzz)

v
[1]
z,R(x, y, z) = ℜ

{
i
kz
k

∂ϕ

∂x

∣∣∣∣
x

ei(kyy+kzz)
}

= −kz
k

∂ϕ

∂x

∣∣∣∣
x

sin(kyy + kzz) (C.6)

for double-layer simulations, where wavenumbers are taken as positive for convenience.

In single-layer simulations, only the mode growing on the positive x-side is applied.
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Appendix D

Local reconnection measurement

The diffusion region and its external region are identified by the following method.

The reconnection is proceeding on the plane which is parallel to the local k of the

tearing mode. So we use Jh to identify the diffusion region thus the external region. The

external region is determined by finding the local maximum of Jh on either side of the

diffusion region, thus Jh,maxl and Jh,maxr are labeled as the characteristic current densities

for the external regions. The diffusion region width d is measured by the current density

level Jh,half which is calculated by

Jh,half = Jh,min +
1

2

(
Jh,maxl + Jh,maxr

2
− Jh,min

)
(D.1)

where Jh,min is the local minimum of the current density Jh, namely the current density at

the diffusion region center. We assume that the diffusion dominates in the diffusion region

so the cross term ∇× (v ×B) in the induction equation from other modes is neglected.

The length of the diffusion region is measured by the distance between positions where

locally Jh = Jh,half along k. This straight line of measurement extends from the middle

point of the diffusion region center and the right boundary of the diffusion region.

The measurements right on the diffusion region boundary are denoted as vin or Bin,

while the measurements in the external regions are denoted as ve and Be. We pick up the

diffusion region that results from the tearing mode k on the positive x-side.
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The averaged values are used in the context. The variables in the inflow region are

averaged along the inflow boundary extends half of the diffusion region length. The

variables in the outflow region are averaged along the outflow boundary in the whole

diffusion region width.

The reconnection rate can be also evaluated by the electric field difference in X-point

and its correspondent O-point. The electric field is perpendicular to the reconnection

plane. The reconnection rate for a reconnecting region spreading on x- and k-direction

with an infinitesimal width δn along the n-direction can be evaluated by

MA =
tA0

BcδnLc

∫ δn
2

− δn
2

(Eh,O − Eh,X)dn

∼ tA0
BcLc

(Eh,O − Eh,X) (D.2)

where the integration of Ey disappears due to the rotational symmetry (point symmetry)

along the integration path that

Ey(y, z) = Ey(−y,−z) (D.3)

and the normalization ϕ0 is taken as BcδnLc, where Bc and Lc are characteristic values

depending on the purpose. The X-point and O-point are located along the resonance layer

of the tearing mode (m,n).
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Appendix E

Diffusion region width change

One effect of the inflow-outflow coupling is the thickening of the diffusion region, which

is a positive contribution to the local reconnection rate.

The diffusion region width d is measured by the method in Appendix.D. The result

is shown in Fig.E.1. It is clear that the diffusion region width gets thicker for a coupled

diffusion region. The thickness is approximately as twice thicker as the diffusion region

in the single-layer simulation.

The thickening of the diffusion region comes from the bent of the inflow magnetic field

lines, as shown in Fig.E.2. The blue and orange lines are magnetic field lines selected in

the inflow and the outflow regions with 3D separatrix in between. Translucent isosurface

locates the diffusion region, with a purple field line penetrates through the X-point. It is

clear that at t = 50tA, the separatrix open angle in the double-layer simulation (3,±1)

is wider than that in the single-layer simulation (3, 1). This angle is determined by the

inflow and the outflow region characters. As the plasma inflow is enhanced due to the flow

coupling near the current sheet center, magnetic field lines have to bend more to decelerate

the strong flow, which can be seen by comparing the bent of inflow region lines (blue lines

on left). Meanwhile, the closed boundary of the system forbids the removal of flux tubes.

The flux tube growth ensures the bent to be enhanced rather than being relaxed. This bent

increases the characteristic scale across the current sheet direction, which is depicted as

the diffusion region width.
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Figure E.1: The diffusion region width measurement. The red line with crosses is the
measurement from the anti-symmetric plane in the double-layer simulation (3,±1), the
blue line with crosses is the measurement from the symmetric plane in (3,±1) and the
black line with crosses is the measurement in the single-layer simulation (3, 1).
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Figure E.2: Diffusion regions and selected field lines in (3, 1) and (3,±1) simulations.
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Appendix F

Magnetic field lines in secondary

tearing

We notice that the opening up of the flow outwardly creates a new diffusion region. This

flow originates from the partitioned diffusion regions due to secondary tearing. In 2D re-

connection picture, secondary tearing will produce a plasmoid in between the partitioned

diffusion regions, instead of creating a vertical diffusion region as shown in our study.

Moreover, the position of the new overlying diffusion region corresponds to the separa-

trix, namely the plasmoid boundary. In order to understand why a new diffusion region

is created but not a coherent flux tube (plasmoid in 3D) along the tearing layer, we plot

the magnetic field lines near the partitioned diffusion regions, as shown in Fig.F.1 and

Fig.F.2.

First, we check the field lines near the partitioned diffusion regions (Fig.F.1). The

field lines that are entering the diffusion region are blue and yellow lines. The blue lines

are from the flux tube on (3,−1) layer and the twisting feature can be identified from

panels B) and C). The yellow lines are free field lines, which are rather straight as in

panel C). The reconnected field lines are selected from the diffusion region downflow,

labeled by orange and green lines in panel D). Orange lines in z < 0 side are ejected

into the main flux tube of mode (3, 1), while the lines in z > 0 side are in the flux

tube of mode (3,−1). So the orange lines connect the flux tubes from either side of the
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current sheet by exchanging the line parts in z > 0 and z < 0 sides. The green lines

also connect the field lines from either side, as it can be observed with a sharp turning

of the field direction near z = 0. But the lines in z > 0 side are ejected into the region

between the partitioned diffusion regions, instead of the main flux tubes. It means that

the green lines are presenting different result compared to orange lines, and the result is

the creation of a vertical diffusion region. Rotational symmetry exists across y = 0, so

the field lines selected in Fig.F.1 for diffusion region in y > 0 side has a symmetric set

near the diffusion region in y < 0 side. The light blue lines in panel D) of Fig.F.2 are the

reconnected lines earlier than the green lines in Fig.F.1, while the purple lines are their

counterparts in y < 0 side. These lines are transported into the vertical diffusion region

along y = 0 and reconnect. The reconnected field lines are selected at downflow regions

as shown by dark blue and red lines in panel D) of Fig.F.2. It is interesting to notice

that the red lines are nearly straight lines perpendicular to the mode (3, 1) in panel C),

while extra components of Bx is created (a bump along the x-direction in panel B)) under

the push by the outflow. Meanwhile, the dark blue lines are basically following the flux

tube of mode (3,−1). Shortly speaking, after these successive reconnections, the field

lines are returned back. But these field lines maintain their twice reconnection history on

z = 0 plane as the local braiding of field lines, which can be seen in panel C) near the

center of the box. In another word, the helicity of the original field lines is transported

and localized in this region. A simple explanation for the missing of secondary flux

tube between the partitioned diffusion regions is that no translational invariance exists

along any direction near the current sheet center. In order to grow a flux tube, a series

of consistent reconnection must proceed simultaneously along a certain direction. At the

current sheet center, the modes interact with each other that field lines from both sides

are fully entangled. The consistency and simultaneity are lost in this region. So in such

a system, the flux tube can only grow along the surface of the current sheet, where free

fields lines participate more.
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Figure F.1: Current density structure in (3,±1) with selected field lines near the parti-
tioned diffusion regions on z = 0 plane at t = 100tA.
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Figure F.2: Current density structure in (3,±1) with selected field lines near the vertical
diffusion region on z = 0 plane at t = 100tA.
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Appendix G

The nonlinear coupling

At the beginning phase of the double-layer simulation, the two tearing layers are expected

to grow linearly independently that only first-order terms are important. With the expo-

nential growth of the tearing mode, the second-order terms that come from the cross terms

of the first-order terms cannot be ignored, as well as even higher order terms. The growth

of the second order terms is referred to as the nonlinear coupling in our study.

In the context of reconnection, the induction equation Eq.(1.1) is the most important

equation. So we will only consider the induction equation here for simplicity. Among all

variables, we choose the anti-parallel component of magnetic field By for discussion, as

it is the reconnecting component in our simulation.

All first-order quantities can be written in the form of

f [1] = f
[1]
L + f

[1]
R (G.1)

in our double-layer simulation. We can rewrite the induction equation of B[2]
y as

∂B
[2]
y (t+ dt)

∂t
=

∂

∂z

[
v[1](t)×B[1](t)

]
x
− ∂

∂x

[
v[1](t)×B[1](t)

]
z
+ η̃∇2B[2]

y (t)

=
∂

∂z

[(
vL

[1] + vR
[1]
)
×
(
BL

[1] +BR
[1]
)]

x
exp(2γt)

− ∂

∂x

[(
vL

[1] + vR
[1]
)
×
(
BL

[1] +BR
[1]
)]

z
exp(2γt)

+η̃∇2B[2]
y (t). (G.2)
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As the diffusion part in Eq.(G.2) is a linear term that no new mode is created, we check

only the advection terms.

The first term on the R.H.S. of Eq.(G.2) can be further expanded by applying Eq.(C.1)

to Eq.(C.6). For B[2]
y growing on the positive x-side (x > 0), it becomes

∂

∂z

[(
vL

[1] + vR
[1]
)
×
(
BL

[1] +BR
[1]
)]

x
exp(2γt)

=
∂

∂z

[
v
[1]
y,LB

[1]
z,R + v

[1]
y,RB

[1]
z,L − v

[1]
z,LB

[1]
y,R − v

[1]
z,RB

[1]
y,L

]
exp(2γt)

=
2kyk

2
z

k2

(
− ∂ϕ

∂x

∣∣∣∣
x

∂ψ

∂x

∣∣∣∣
−x

+
∂ϕ

∂x

∣∣∣∣
−x

∂ψ

∂x

∣∣∣∣
x

)
cos(2kzz) exp(2γt) (G.3)

where cos(2kzz) corresponds to the mode (0, 2). Moreover, Eq.(G.3) is an odd function

of x to the center of the current sheet. It produces a sausage-like mode along the guide

field direction (z-direction). As we have identified in the main context, (0, 2) represents a

change of reconnection efficiency along the guide field.

The second term on the R.H.S. of Eq.(G.2) is

− ∂

∂x

[(
vL

[1] + vR
[1]
)
×
(
BL

[1] +BR
[1]
)]

z
exp(2γt)

= ky
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x
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x
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+
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2
ϕ|x

∂2ψ
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x

− 1

2
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∂2ψ
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+
1

2
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2
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The first term on the R.H.S. of Eq.(G.4) is a uniform variation along the current sheet,

which is an odd function of x. This term is changing the background magnetic field

symmetrically across the sheet. The second and the third terms are the second harmonics

of the initial perturbed modes. So they represent the 2D-like energy cascade along the

initial reconnection layers. The fourth and the fifth terms are also odd functions of x,

while the fourth term corresponds to the 2D mode (2m, 0). Since the fourth term exhibits

a sausage-like variation along the y-direction across the current sheet center, it implies

that this mode is directly contributing to the reconnection.

The chain effect of the nonlinear coupling will produce more and more new modes,

while the forms are more complicated than the expressions above. Moreover, the linear

growing term exp(γt) is not applicable as the modes stop to grow exponentially in the

nonlinear phase.
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Appendix H

Integrated 1D spectrum of the

double-layer simulation (3,±1)

We integrate the 2D energy spectrum Eq.(2.39) into 1D spectrum that

Ẽm(k) =

∫ 2π

0

Ẽm(ky, kz)dΩ (H.1)

where Ω is the azimuthal angle on ky−kz plane. As shown in Fig.H.1, the most dominant

energy mode represents the energy ejection scale. The energy embedded in the back-

ground current sheet is extracted out by the tearing mode first then transfers to the other

modes due to the coupling. When the new modes grow strong enough, they take the job

and extract energy by themselves then transfer the energy to the other modes. As a result,

we achieve a 1D spectrum with a shifting energy ejection scale with time. Since we have

integrated the x-direction-oriented modes out, no dissipation scale is shown.

The energy transfer is frequently discussed in the turbulence theory. Presently, many

self-generated turbulence reconnection theories are considering the spectrum when the

turbulence sufficiently grows and obtains a quasi-steady state (Huang & Bhattacharjee,

2016; Kowal et al., 2017). At this stage, the current sheet expands as the turbulence

region expands and whirls in new magnetic field lines to participate reconnection (Beres-

nyak, 2017). In our simulation, we found a reorganization stage in between the two
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boosts of reconnection that was not discussed by the other studies. One reason might be

our closed boundary condition. The proceeding of reconnection at the center region will

gradually deplete the magnetic fields outside of the current sheet and reduce the magnetic

pressure there. Therefore, the global current sheet center oriented Lorentz force reduces

that the system stops absorbing in the field lines. In the previous study, a step-like in-

creasing reconnection rate is observed in the early phase, while a quasi-steady turbulent

state is achieved when the reconnection rate oscillates with a high frequency (Huang &

Bhattacharjee, 2016). Whether a continuously expanding current sheet can be achieved

in the turbulent state needs further investigation.
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Figure H.1: Integrated 1D kinetic energy (left) and magnetic energy (right) spectrum
stack plot in the double-layer simulation (3,±1) selected at times corresponding to the
red circles in Fig.3.10. The black, red, orange and green dashed lines are the positions of
modes (3, 1), (1, 1), (1, 3) and (3, 5), respectively.
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Bárta, M., Büchner, J., Karlický, M., & Skála, J. 2011, The Astrophysical Journal, 737,

24

Baty, H., Priest, E. R., & Forbes, T. G. 2006, Physics of Plasmas, 13, 022312

Beresnyak, A. 2017, The Astrophysical Journal, 834, 47

Bhattacharjee, A., Huang, Y.-M., Yang, H., & Rogers, B. 2009, Physics of Plasmas, 16,

112102

Biernat, H. K., Heyn, M. F., & Semenov, V. S. 1987, Journal of Geophysical Research,

92, 3392

Birn, J., Nakamura, R., Panov, E. V., & Hesse, M. 2011, Journal of Geophysical Research

(Space Physics), 116, A01210

Biskamp, D. 1986, Physics of Fluids, 29, 1520

—. 1997, Nonlinear Magnetohydrodynamics, 392

Boldyrev, S., & Loureiro, N. F. 2017, The Astrophysical Journal, 844, 125

Carmichael, H. 1964, NASA Special Publication, 50, 451

199



Cassak, P. A., & Shay, M. A. 2007, Physics of Plasmas, 14, 102114

Chen, Q., Otto, A., & Lee, L. C. 1997, Journal of Geophysical Research, 102, 151

Comisso, L., Lingam, M., Huang, Y.-M., & Bhattacharjee, A. 2016, Physics of Plasmas,

23, 100702

—. 2017, The Astrophysical Journal, 850, 142

Coppi, B., Galvao, R., Pellat, R., Rosenbluth, M., & Rutherford, P. 1976, Fizika Plazmy,

2, 961

Dahlburg, R. B., Antiochos, S. K., & Zang, T. A. 1992, Physics of Fluids B, 4, 3902

Dahlburg, R. B., & Einaudi, G. 2002, Physics Letters A, 294, 101

Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B., &

Bowers, K. J. 2011, Nature Physics, 7, 539

Dungey, J. W. 1961, Physical Review Letters, 6, 47

Eastwood, J. P., Phan, T. D., Øieroset, M., & Shay, M. A. 2010, Journal of Geophysical

Research (Space Physics), 115, A08215

Fisk, L. A., Schwadron, N. A., & Zurbuchen, T. H. 1999, Journal of Geophysical Re-

search, 104, 19765

Furth, H. P., Killeen, J., & Rosenbluth, M. N. 1963, Physics of Fluids, 6, 459

Galeev, A. A., & Zelenyi, L. M. 1977, ZhETF Pisma Redaktsiiu, 25, 407

Gibson, S. E., et al. 2002, The Astrophysical Journal, 574, 1021

Goldreich, P., & Sridhar, S. 1995, The Astrophysical Journal, 438, 763

Grasso, D., Borgogno, D., & Pegoraro, F. 2007, Physics of Plasmas, 14, 055703

Harris, E. G. 1962, Il Nuovo Cimento, 23, 115

200



Hassanin, A., & Kliem, B. 2016, The Astrophysical Journal, 832, 106

Hillier, A., Takasao, S., & Nakamura, N. 2016, Astronomy & Astrophysics, 591, A112

Hirayama, T. 1974, Solar Physics, 34, 323

Hoshino, M. 2012, Physical Review Letters, 108, 135003

—. 2015, Physical Review Letters, 114, 061101

Huang, Y.-M., & Bhattacharjee, A. 2010, Physics of Plasmas, 17, 062104

—. 2016, The Astrophysical Journal, 818, 20

Huang, Y.-M., Comisso, L., & Bhattacharjee, A. 2017, The Astrophysical Journal, 849,

75

Hughes, W. J., & Sibeck, D. G. 1987, Geophysical Research Letters, 14, 636

Janvier, M., Aulanier, G., Pariat, E., & Démoulin, P. 2013, Astronomy & Astrophysics,

555, A77

Janvier, M., Kishimoto, Y., & Li, J. Q. 2011, Physical Review Letters, 107, 195001
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