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Abstract 
Hypersaline environments are among the most extreme environments on the Earth, 

imposing strong stresses on biological systems. The selection pressure results in a unique 

microbial community dominated by specific halophilic microorganisms, which should 

associate modifications in biogeochemical cycle. Importantly, a variety of hypersaline 

environments, in terms of physical and chemical properties, are formed in the modern 

Earth surface as well as in the past. Thus, the Earth surface system and inhabiting 

organisms have experienced a variety of hypersaline condition throughout the Earth’s 

history. Despite such importance, our knowledge on the biogeochemistry of hypersaline 

environments is still fragmentary, and much less is known on its response during the past 

massive evaporation events. 

The present work focused on the carbon and nitrogen cycles of two distinct 

hypersaline environments; the solar salterns as an example of the modern shallow 

hypersaline environment, and the massive evaporation event in the late Miocene, the 

Messinian Salinity Crisis (MSC). The solar salterns is characterized by formation of a 

highly productive microbial mat inhabited by diverse groups of microorganisms, which 

enables us to investigate the response of biological activities and biogeochemical cycle 

to increasing salinity. On the other hand, more than 1 million km3 of salts were 

precipitated over the Mediterranean basin during the MSC between 5.97 and 5.33 Ma. 

Because there is no modern analogue of a comparable scale, investigation of this events 

should broaden our understanding of the biogeochemical cycle of hypersaline 

environments. 

In the solar salterns, the biomass and primary productivity of the benthic microbial 

mats were substantially higher than that of the water column. The isotopic fractionation 

factor during uptake of carbon by phototrophs along the salinity gradient, calculated from 
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δ13C of chlorophyll a and β-carotene, indicated that the primary production was 

suppressed as the salinity increased. Such modification of the biological activity resulted 

in large variation in δ13C of dissolved inorganic carbon (DIC) in the brine. While active 

photosynthesis consuming CO2(aq) in the carbonate and gypsum ponds (degree of 

evaporation: 2–10) induced dissolution of 13C-depleted CO2(gas) into the brine (δ13CDIC 

= −5.0‰–−10.6‰), its suppression in the subsequent ponds resulted in the dominance of 

degassing of 13C-depleted CO2(aq) from the brine (δ13CDIC = 7.2‰ in the halite pond). 

By contrast, the depth profiles of δ15N of nitrate, ammonium, and chloropigments in 

the microbial mats of the carbonate and gypsum ponds indicate that common processes 

control the nitrogen cycle in the hypersaline microbial mats across a wide salinity range. 

Ammonium accumulated in the anoxic layer of the mat as a result of anaerobic 

degradation of organic matter and suppression of nitrification, and was assimilated by 

purple sulfur bacteria and cyanobacteria as it diffused upwards through the mat. These 

processes efficiently recycled nitrogen within the mat, resulting in high primary 

productivity of this ecosystem. Another important finding was that δ15N of the surface 

brine ammonium became enriched in 15N due to degassing of 15N-depleted dissolved 

ammonia induced by enhanced salinity (δ15NNH4+ = 34.0‰ in the halite pond). It is thus 

concluded that 15N-enriched ammonium is a specific characteristic of an actively 

evaporating environment and that ammonium plays an important role in the nitrogen 

cycles of the hypersaline environments. 

During the first stage of MSC between 5.97 and 5.60 Ma, up to 16–17 cycles of 

gypsum–shale couplets deposited in the marginal sub-basins across the Mediterranean. I 

investigated the shale layers in the Vena del Gesso Basin (Northern Apennines, Italy). 

These layers were deposited under density-stratified condition formed due to the inflow 

of continental water over gypsum-precipitating brine during the humid climate phase of 
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~21 kyr precessional cycle. While similar shifts in the δ13C values of total organic carbon 

and porphyrins derived from chlorophyll c suggest the predominance of eukaryotic algae, 

δ15N of the porphyrins ranging from −6.5‰ to −5.4‰ indicate that phototrophs 

assimilated nitrogen supplied by diazotrophic cyanobacteria. These observations indicate 

that diazotrophic–diatom associations may have been of particular importance, 

considering their adaptation to stratified oligotrophic condition and rapid export 

production. Such condition probably resulted from conversion of ammonium into N2 

through nitrification–denitrification coupling near the pycnocline, inducing nitrogen-

depletion in the surface photic zone. Active N2-fixation at the surface balanced the loss 

of nitrogen by denitrification, establishing dynamic equilibrium of the biologically-

available nitrogen like in the modern oceans. 

Another example of freshwater–brine stratification is from the shale layers of the 

halite–shale couplets deposited annually during the peak of MSC (5.60–5.55 Ma) in the 

Caltanissetta Basin (Sicily, Italy). The geoporphyrins purified from this shale layer was 

extremely enriched in 15N (δ15N = 17.2‰), which is interpreted to reflect phototrophic 

assimilation of 15N-enriched subsurface ammonium produced due to degassing of 

dissolved ammonia during the arid season. Such contrasting result compared to the 

freshwater–brine stratification during the first stage of MSC can be attributed to thin 

freshwater layer with shallow pycnocline under light-abundant condition, resulting in 

predominance of phototrophic assimilation of subsurface ammonium over nitrification–

denitrification coupling. These results imply that evaporation–precipitation balance in the 

Mediterranean Sea during the MSC has the potential to shift the mode of the nitrogen 

cycle (nitrification–denitrification–N2-fixation coupling vs. phototrophic assimilation of 

subsurface ammonium) through changing the depth of the chemocline. 

Finally, based on the insights obtained in this work and in previous studies, I 
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constructed the framework of the evolution of the biogeochemical cycle throughout the 

MSC. It is speculated that the cyclical formation of different types of density stratification 

(i.e., thick freshwater–brine, thin freshwater–brine, brine–brine), which are produced in 

response to the climatic condition changing at various timescales, results in substantial 

shifts in the mode of carbon and nitrogen cycles. Such variation potentially has strong 

influence on the atmospheric CO2 level and hence the global climate system. 
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I-1. General Introduction 
Hypersaline environments are among the most extreme environments on the Earth 

because physical and chemical parameters (osmotic pressure, water activity, chaotropic 

activity, pH, etc.) impose strong stresses on biological systems (e.g., Brown, 1990; 

Hallsworth et al., 2007). Strong selection pressure reduces both eukaryotic and 

prokaryotic diversity along the salinity gradient, resulting in a unique microbial 

community dominated by specific halophilic microorganisms (Oren, 1999; Benlloch et 

al., 2002; Ley et al., 2006). Importantly, biogeochemical cycle must also have been 

modified in response to the changes in physical and chemical properties of the solution 

and the biological activities. 

Hypersaline environments are formed by several processes: (1) conversion of liquid 

water to gaseous phase through evaporation driven by the solar heat; (2) solidification of 

liquid water to ice under freezing temperature; (3) modification of the porewater 

chemistry in earth subsurface by diagenesis and metamorphism (Warren, 2016). A variety 

of hypersaline environments are formed in the modern Earth surface, each of which 

characterized by a unique ecosystem and biogeochemical cycle. Moreover, while the 

modern hypersaline environments are relatively small in scale, massive evaporation 

events are known to have occurred repeatedly in the geological past (Fig. I-1: Hay et al., 

2006; Warren, 2010). Also, some studies suggest that the salinities of the Precambrian 

oceans were more than twice higher than the present (Knauth, 1998; Saito et al., 2016), 

implying that important evolutions of life (e.g., occurrence of stromatolites, emergence 

of oxygenic phototrophs) may have took place under hypersaline condition. Evaporites 

are also found in extraterrestrial materials, such as hydrated-salts on Mars (Ojha et al., 

2015) and halite crystals trapping organic matter in the meteorites (Chan et al., 2018). 

Thus, the Earth surface system and inhabiting organisms have experienced a variety 
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of hypersaline condition, in terms of scale, physical, and chemical properties of water, 

throughout the Earth’s history (Fig. I-2). Despite such importance, our knowledge on the 

biogeochemistry of hypersaline environments is still fragmentary, in contrast to that of 

freshwater and marine settings, and much less is known on its response during the past 

massive evaporation events. 

Elemental cycles of essential elements strongly influence microbial assemblages, and 

thus are critical components of biogeochemical cycle. In particular, nitrogen is a 

fundamental component of life playing an essential role in many biological processes, 

which makes nitrogen cycle a particularly important factor driving ecosystems. 

Organisms use energy to assimilate various nitrogenous compounds (e.g., NO3
−, NH4

+, 

N2, organic nitrogen) to build their bodies, and also utilize them in dissimilatory processes 

(e.g., nitrification, denitrification, anammox) to obtain energy. The pool sizes of 

nitrogenous compounds and the flux to and from each pool are determined by the level 

of biological and physical processes (e.g., Brandes et al., 2007) which are strongly 

affected by environmental conditions, such as temperature, salinity, pH, redox conditions, 

and light availability. Extensive investigations have been conducted for the nitrogen 

cycles in freshwater and normal marine settings (e.g., Capone et al., 2008). Importantly, 

the modern marine nitrogen cycle is close to dynamic equilibrium, primarily due to tight 

coupling between N2 fixation and denitrification (Brandes et al., 1998; Gruber, 2004; 

Deutsch et al., 2007; Ren et al., 2017). 

The marine carbon cycle also plays a role in biogeochemical cycle, but more 

importantly, it is an essential component of the Earth’s climate system because it controls 

the atmospheric CO2 level (Shackleton, 2000; Zachos et al., 2001). Exchange of CO2 

between the atmosphere and oceans is primarily influenced by (1) the solubility of CO2 

which is a function of water temperature and salinity (the solubility pump: e.g., McGillis 
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and Wanninkhof, 2006), (2) the biological pump exporting organic matter fixed in the 

photic zone by primary production to the deep ocean (e.g., Berger et al., 1989; Kawahata 

et al., 2000; Honjo et al., 2008), and (3) the alkalinity pump absorbing CO2 as a result of 

dissolution of calcium carbonates which increases alkalinity of the deep water (e.g., Boyle, 

1988). Therefore, evaporation inducing changes in physical and chemical properties of 

water and biological activities has the potential to substantially modify the carbon cycle, 

and may strongly impact the climate system especially during the past massive 

evaporation events. Despite such importance, we only have limited insights into the 

carbon and nitrogen cycles of the modern hypersaline environments (e.g., Lazar and Erez, 

1992; Canfield and Des Marais, 1993; Bebout et al., 1994; Isaji et al., 2017), and much 

less is known on their response during the massive evaporation events. 

The natural abundances of stable carbon and nitrogen isotopes have been widely used 

to investigate biological and ecological processes. Because isotopic compositions of 

sources and products of biological processes are determined by isotopic fractionation 

associated with each biological processes, they provide process-related and source 

information which helps us elucidate the biogeochemical cycle of the system (Ohkouchi 

et al., 2015 and references therein). The discussions of the present work are mainly based 

on the stable carbon and nitrogen isotopic compositions (δ13C and δ15N) of carbon and 

nitrogen substrates and organic molecules derived from specific source organisms (i.e., 

biomarkers). In particular, I used chloropigments (i.e., chlorophylls and 

bacteriochlorophylls), which are light-harvesting antenna pigments exclusively derived 

from phototrophs. The isotopic compositions of them record the physiology of 

phototrophs and substrates assimilated by them (Sachs and Repeta, 1999; Ohkouchi et al., 

2005; York et al., 2007; Higgins et al., 2010; Isaji et al., 2015b; Naeher et al., 2016a, 

2016b; Isaji et al., 2017). Significantly, degradation products of chloropigments, 
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geoporphyrins, are preserved in sediments on a geological timescale, making their 

isotopic compositions an ideal tool for obtaining information on the isotopic compositions 

of phototrophs and the biogeochemical cycles of past environments (Hayes et al., 1987; 

Boreham et al., 1989, 1990; Ocampo et al., 1989; Chicarelli et al., 1993; Keely et al., 

1994; Ohkouchi et al., 2006; Kashiyama et al., 2008a, 2008b; Higgins et al., 2012; Junium 

et al., 2015). 

In this dissertation, I focused on two distinct hypersaline environments; solar salterns 

as an example of the modern shallow hypersaline environment, and a massive evaporation 

event in the late Miocene, the Messinian Salinity Crisis (MSC). Solar salterns consist of 

a series of shallow ponds with salinity increasing from seawater up to the saturation point 

of halite (NaCl). A particular characteristic of these shallow hypersaline environments is 

the formation of a highly productive microbial mat inhabited by highly diverse groups of 

microorganisms (Ollivier et al., 1994; Oren, 2002; Ley et al., 2006). These characteristics 

enable us to investigate the responses of biological activities and biogeochemical cycle 

to increasing salinity. 

The MSC is one of the most massive and dramatic evaporation event in Earth’s history, 

precipitating more than 1 million km3 of salts over the Mediterranean basin between 5.97 

and 5.33 Ma (Hsü et al., 1973; Krijgsman et al., 1999; Rouchy and Caruso, 2006; Ryan, 

2009; Roveri et al., 2014 and references therein). Because there is no modern analogue 

of a comparable scale, investigation of this events should broaden our understanding of 

the biogeochemical cycle in hypersaline environments. Moreover, because the MSC is 

the most recent massive evaporation event, such insights will also be the basis in 

extending our knowledge of the biogeochemistry of older evaporation events that 

occurred in a range of environmental settings. 

This dissertation is composed of six chapters. In Chapters II and III, I aim to 
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understand the changes in chemical properties of evaporating brine and the responses of 

biological processes to increasing salinity in modern shallow hypersaline environment, 

the solar salterns. In Chapter II, salinity and major ion concentrations are measured to 

describe basic chemical properties of each pond in the solar salterns. Parameters related 

to carbonate system (concentration and δ13C of dissolved inorganic carbon, total alkalinity, 

and pH) and carbon isotopic composition of pigments derived from phototrophs are 

measured to discuss the changes in carbonate system and primary productivity in response 

to increasing salinity. In Chapter III, I focuses on the nitrogen cycle of hypersaline 

environments. Discussions are based on the measurements of concentrations and δ15N of 

nitrate and ammonium which enable us to trace processes occurring inside the microbial 

mats and surface brines. The nitrogen isotopic compositions of chloropigments provided 

information on the role of phototrophs in nitrogen cycle. 

Chapters IV and V deal with the MSC. The objective of Chapter IV is to reveal the 

phototrophic community, carbon and nitrogen cycles, and depositional environment of 

the gypsum–shale couplets in the Northern Apennines of Italy and the Sorbas of Spain 

deposited during the initial stage of MSC between 5.97 and 5.60 Ma. This was achieved 

by determining the structures and measuring δ13C and δ15N of individual geoporphyrins 

extracted and purified from the deposits. In Chapter V, the peak of MSC between 5.60 

and 5.55 Ma is investigated. Elemental mapping and chemical speciation using X-ray 

florescence technique, assignments of hydrocarbon biomarkers, and δ15N measurements 

of geoporphyrins were conducted to elucidate the depositional environment and 

biological activity. 

Finally, Chapter VI summarizes the conclusions of this dissertation. Based on the 

insights obtained in the present work, I also attempted to construct a comprehensive view 

of the evolution of biogeochemical cycle and its potential impact on the atmospheric CO2 
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during the MSC. 

 

I-2. Theoretical Backgrounds 

There are two stable isotopes each in carbon and nitrogen, which have constant natural 

abundance ratio (12C:13C = 98.9:1.1 and 14N:15N = 99.6:0.4). This ratio in organisms differ 

from the natural abundance ratio, as a result of biological processes discriminating light 

and heavy isotopes. Because the variations in the isotopic compositions of natural sample 

materials are generally small, their ratios are expressed in the conventional δ notation 

relative to the isotopic composition of standard materials as follows: 

δ ≡ (Rsample/Rstandard − 1) × 103 (‰) 

where R denotes the 13C/12C ratio for carbon and the 15N/14N ratio for nitrogen.  

Discrimination of isotopes occurs during all physicochemical processes. The extent 

of discrimination is defined as isotopic fractionation (ε), which can be calculated from 

the isotopic compositions of the reactants (Rr) and products (Rp) as follows: 

ε ≡ (Rr/Rp − 1) × 103 (‰) 

All physicochemical reactions can be classified into unidirectional (irreversible) and 

bidirectional (equilibrium) reactions, each of which described by different isotope effect. 

The isotope effect associated with bidirectional, equilibrium reaction is equilibrium 

isotope fractionation, where the isotopes are discriminated during the formation and 

destruction of the bonds involving the element of interest. For example, NH3(aq) is 

reported to be depleted in 15N by 45.4 ± 0.7‰ (± 1σ) relative to NH4
+ in the following 

equilibrium reaction (Li et al., 2012): 

NH3(aq) +H2O ⇄	NH4
+ + OH− 

The unidirectional reactions, on the other hand, are associated with kinetic isotopic 

fractionation, where the isotopes are discriminated as a result of the differences in 
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thermodynamic parameters and rate constants in chemical and biological reactions. The 

isotopic fractionation during such reactions approximately follows the Rayleigh 

distillation model, and the isotopic compositions of the reactant (δr) and products (δp) are 

conventionally described as follows: 

δr = δ0 − ε ln f 

δp = δ0 + f / (1−f) ε ln f 

where δ0 is the isotopic composition of reactant before the reaction, and f (0 ≤ f ≤ 1) is the 

fraction of unutilized reactant remaining. Thus, by measuring δ0, δr, and δp, one can 

estimate the extent of the processes (f), or infer ε if unknown (Fig. I-3). 

Because natural materials contain organic matter of diverse origin, their δ13C or δ15N 

are not suited for extracting information on the organisms of interest, such as f which 

reflect the physiological and environmental conditions. To understand the physiology of 

organisms and extract precise environmental information from natural samples, 

compound-specific isotope analysis has substantially developed in the last several 

decades. In particular, δ13C and δ15N of chloropigments and their degradation products, 

porphyrins, are among the most successful applications, because they derive exclusively 

from phototrophs inhabiting the photic zone and thus are not contaminated by other 

biological sources, unlike most of the other organic compounds. 

Because the isotopic fractionations associated with the formation of chloropigments 

from the source C and N are constant in most cases, δ13C and δ15N of chloropigments and 

porphyrins can be calculated into those of source phototrophs; chlorophyll a is depleted 

in 15N relative to the cell of eukaryotic algae by 4.8 ± 1.4‰ (± 1σ) (Sachs et al., 1999; 

Ohkouchi et al., 2006), and its degradation counterpart, deoxophylloerythroetioporphyrin 

(DPEP), enriched in 13C relative to the cell of eukaryotic algae by 1.8 ± 0.8‰ (± 1σ) 

(Ohkouchi et al., 2008). The isotopic compositions of the estimated cell can then be 
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interpreted in the context of kinetic isotopic fractionation model described above. 

Despite their usefulness, only few studies have applied this technique, because these 

measurements require time-consuming and tedious analytical procedures for isolation and 

purification, and also require sensitivity-enhanced device for the measurement of δ15N of 

purified compounds (Ogawa et al., 2010). Thus, data presented in this work are not only 

useful as a proxy, but also important as contributing to the accumulation of knowledge on 

the isotopic distribution of chloropigments produced in various environmental settings, 

which would greatly help future researches applying the compound-specific isotope 

analysis of chloropigments.
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Fig. I-1. The maximum values of the masses of existing halite deposits through the 

Phanerozoic. Modified after Hay et al. (2006). 
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Fig. I-2. The temperature–salinity range of the modern hypersaline environments and the 

past extreme climatic events. PETM, Paleocene–Eocene Thermal Maximum; OAE, 

Cretaceous Oceanic Anoxic Event.
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Fig. I-3. The isotopic compositions of the unutilized reactants (blue lines) and products 

(red lines) during kinetic isotopic fractionation as a function of the fraction of unutilized 

substrate (f). Curves are drawn for ε = 4, 10, 20, and 27‰. 
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CHAPTER II 
 
 
 

THE CARBON CYCLE IN THE MODERN 
SHALLOW HYPERSALINE ENVIRONMENTS 
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II-1. Introduction 
Although salinity is potentially a strong limiting factor of habitability, hypersaline 

environments are populated by a surprising diversity of microorganisms, especially in 

shallow settings, where benthic microbial mats form (e.g., Oren, 2002; Ley et al., 2006). 

It therefore follows that various biological processes are actively operating in the shallow 

hypersaline environment, strongly influencing the biogeochemical cycles and chemical 

characteristics of the system. In addition, seawater evaporation induces transitions in the 

state and composition of the microbial community through changes in various 

environmental factors (e.g., salinity, temperature, pH, light conditions). These changes 

result in modifications of the biological processes, which in turn strongly affect the 

environment. For these reasons, the chemical characteristics of the evaporating seawater 

are determined not only by physical and chemical processes induced by evaporation, but 

also by biological processes within the system. In this chapter, I focused on the solar 

salterns of Trapani (Sicily, Italy) to increase our understanding of the mutual interaction 

between physical, chemical, and biological processes with increasing salinity in 

hypersaline environment. 

Solar salterns consist of a series of shallow ponds, normally less than 1 m deep, 

affording a large surface area for evaporation, with salinity increasing from seawater up 

to the saturation point of halite (NaCl). Different types of evaporite minerals precipitate 

on the bottom of the ponds according to the degree of evaporation (Logan, 1987; Geisler-

Cussey, 1997). Calcium carbonate (CaCO3, calcite or aragonite) starts to precipitate in 

ponds in which the evaporation of the original seawater exceeds 50%. When over 80% of 

the original seawater has been removed by evaporation, gypsum (CaSO4·2H2O) starts to 

precipitate. Benthic microbial mats usually form in the salinity range within which 

calcium carbonate and gypsum precipitate. Halite starts to precipitate when evaporation 
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exceeds 90% of the original seawater. Various K–Mg salts start to precipitate after halite 

when the seawater is concentrated ~70 times. There is no benthic microbial community 

in these highly evaporated ponds, but there are planktonic microorganisms in halite 

crystallizer ponds (e.g., Antón et al., 2000; Řeháková et al., 2009). The evaporation 

changes not only the chemical composition but also the physical properties of the brine. 

For example, it decreases the solubility and diffusion of dissolved inorganic carbon (DIC; 

Raven, 1991) and changes the activity coefficients of ions through increasing ionic 

strength (Karcz and Zak, 1987). 

One particular characteristic of these shallow hypersaline environment is the 

formation of a highly productive microbial mat. The hypersaline microbial mats formed 

at the bottom of the ponds are inhabited by highly diverse groups of microorganisms: 

cyanobacteria (e.g., Green et al., 2008), chemotrophic and phototrophic sulfur-oxidizing 

bacteria (e.g., Ollivier et al., 1994; Imhoff, 2001), and sulfate-reducing bacteria (e.g., 

Risatti et al., 1984; Canfield and Des Marais, 1993; Teske et al., 1998; Baumgartner et al., 

2006). These groups are dominant in many of the hypersaline microbial mats at various 

sites, and together with less abundant but highly diverse groups of microorganisms they 

form a complex community structure. This extreme diversity is produced by the broad 

niche space provided by the light gradient and varying chemical conditions within the 

mat, which itself is modified by biological processes of the microorganisms (Ley et al., 

2006). 

Carbon, sulfur, and oxygen cycles within the mat clearly illustrate the mutual 

interaction among the microbial communities via biological modification of the chemical 

conditions (Van Gemerden, 1993). For example, primary production by photoautotrophs 

generates the organic carbon that fuels the entire ecosystem, but at the same time releases 

oxygen, which is toxic to anaerobes. The fixed carbon is degraded by fermenters and 
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mineralized to DIC by heterotrophs, sulfate-reducing bacteria and, in some cases, 

methanogens (e.g., Van Gemerden, 1993; Orphan et al., 2008). This efficient recycling of 

carbon inside the mat accounts in part for its high primary productivity (e.g., Canfield and 

Des Marais, 1993; Des Marais, 2003). On the other hand, sulfide produced by sulfate 

reduction is toxic to aerobic microorganisms, but is oxidized back to sulfate, biotically by 

chemotrophic and phototrophic sulfur bacteria and abiotically by oxygen produced during 

photosynthesis (e.g., Revsbech et al., 1983; Fründ and Cohen, 1992; Canfield and Des 

Marais, 1993). The activity of these biological processes fluctuates on a daily cycle 

controlled by light availability (e.g., Canfield and Des Marais, 1993). 

Because most hypersaline evaporative settings in natural environments harbor a 

microbial community, it is of critical importance to understand the responses of biological 

processes to increasing salinity. As described above, the physical and biological processes 

associated with the evaporation of seawater have the potential to affect essential elements 

such as carbon, nitrogen, oxygen, and sulfur. Here, I specifically focus on changes in the 

carbonate system, which constitutes a fundamental part of the biogeochemical cycle and 

is an essential component of the Earth’s climate system. The amount and chemical form 

of DIC, which is a resource for autotrophs, play a key role in biological processes. DIC 

concentrations in continental aquatic systems are maintained by water–atmosphere CO2 

exchange, precipitation and dissolution of minerals, photosynthesis, respiration, and 

external inputs such as soil CO2 (e.g., Lazar and Erez, 1992). There are distinct inorganic 

and biological controls on the carbon budget and the relative proportions of the three 

major dissolved carbon forms—aqueous carbon dioxide (CO2(aq)), bicarbonate (HCO3
–), 

and carbonate ion (CO3
2–)—in an aquatic system. Thus, the interplay between changes in 

precipitating salts and microbial communities is key to understanding the changes in the 

carbonate system during evaporative concentration processes. 
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Here, I focused on the chemical compositions as well as the concentration and isotope 

signatures of DIC in salterns, with the aim of gaining a comprehensive understanding of 

carbon dynamics in the shallow hypersaline environment. I also investigated changes in 

primary productivity along the salinity gradient by performing compound-specific 

isotope analysis of photosynthetic pigments. The resulting insights are expected to also 

be beneficial as basic information for understanding the past massive evaporation events. 

 

II-2. Materials and Methods 
II-2.1. Study site 

Three commercial solar salterns located in Trapani (Western Sicily, Italy) were 

studied: the Sosalt (SS), Culcasi (CU), and Chiusicella (CH) salterns (Fig. II-1). These 

solar salterns, each consisting of multiple ponds with different salinities, differ in scale; 

Sosalt is the largest, with a total surface area of 800 ha and an annual production of salt 

reaching 1 × 105 tons, and Chiusicella is the smallest in both surface area (7 ha) and 

number of ponds. 

Progressively increasing salinities characterize each series of ponds, and the 

corresponding evaporite minerals that precipitate at the bottom. The ponds where calcium 

carbonate precipitates (carbonate ponds) are characterized by the formation of a dense 

benthic microbial mat. This microbial mat consists of a slimy layer a few millimeters 

thick, which is composed of thin yellow, green, and pink layers on the surface, and black, 

loose deposits buried underneath (Fig. II-2a, b). The gypsum ponds have a thick layer of 

gypsum precipitates, which consists of striking stratified solid layers of different colors—

yellowish transparent, green, and pink layers, from the surface of the precipitate to a depth 

averaging around 5 cm—with loose black deposits below (Fig. II-2c, d). Large halite 

crystals (Fig. II-2e, f) form in the subsequent halite ponds. There are apparently no benthic 
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microbial communities in the halite ponds. 

 

II-2.2. Sampling protocols 

Normal seawater, brine, and deposits in the ponds were collected during the daytime 

in September 2015 (Table II-1). Seawater and brine samples were collected in 100-mL 

polyacrylonitrile (PAN) bottles. Those samples collected for the measurement of total 

alkalinity (TA), DIC concentration, and DIC carbon isotopic composition (δ13CDIC) were 

immediately poisoned with 200 µL of saturated HgCl2 solution to prevent further 

biological activity. The lid was closed without headspace until the analysis to prevent 

further gas exchange with the atmosphere. The temperature and pH of brine and seawater 

were measured in situ using a pH meter with a combination electrode (GST-5741C; DKK-

TOA Corporation, Tokyo, Japan). The effect of temperature on pH was calibrated using 

the equation of Gieskes (1969). The pH values are given using the seawater hydrogen ion 

(SWS) scale. Brine and seawater samples were kept cool in a refrigerator until analysis. 

Samples of pond deposits were collected by hand or by using a hammer and chisel. 

Microbial mats were collected from three ponds (SS-3, CU-1, and CU-2); small gypsum 

crystals were found in the deposits from SS-3. Gypsum crusts were collected from three 

ponds (SS-1, SS-2, and CH-1), and halite crystals from two ponds (SS-4 and CU-5). 

Samples were stored in a freezer until analysis. 

 

II-2.3. Brine and seawater sample analysis 

II-2.3.1. Salinity 

Salinity was measured by using a digital laboratory salinometer at the National 

Institute of Advanced Industrial Science and Technology, Japan (AIST) (Digi-Auto model 

5, Tsurumi-Seiki Co., Kanagawa, Japan). Standard seawater (International Association 
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for the Physical Sciences of the Ocean [IAPSO]) was used as a reference. Analytical 

precision was within ±0.01 salinity unit. 

 

II-2.3.2. Ion concentrations 

Brine samples were diluted on a weight basis with ultrapure water prior to analysis. 

Concentrations of Na+, Mg2+, and K+ were measured by ion chromatography at the Japan 

Agency for Marine-Earth Science and Technology (JAMSTEC) (Dionex ICS-1600, 

Thermo Fisher Scientific, Inc., Waltham, Massachusetts, USA), as were Cl–, Br–, and 

SO4
2– (Dionex ICS-2100, Thermo Fisher Scientific, Inc.). Elemental boron (B) and Ca2+ 

were measured using inductively coupled plasma-optical emission spectrometry at 

JAMSTEC (ICP-OES, SII SPS5510, SII NanoTechnology Inc., Chiba, Japan). The 

analytical precisions (± 2σ) of replicate measurements were within ±2% for Na+ and Cl–, 

and ±10% for the other elements. 

 

II-2.3.3. Total alkalinity 

Total alkalinity was measured using a total alkalinity titrator at AIST (ATT-05, 

Kimoto Electric Co., Osaka, Japan). Samples were titrated with 0.1 M HCl, and TA was 

calculated by the Gran method. Samples collected from CH-1, SS-4, and CU-5 were 

diluted on a weight basis with ultrapure water prior to the measurement. The analytical 

precision of replicate measurements was within ±1.5%. 

 

II-2.3.4. DIC concentration and carbon isotopic composition 

For measurement of DIC, brine samples (10–50 mL) were transferred to a glass vial, 

and the air inside was completely evacuated using a high-vacuum glass line. Next, the 

samples were reacted with H3PO4 and left for 12 h so that DIC was completely converted 
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to CO2 gas. The evolved gas was then introduced into a high-vacuum glass line and 

separated cryogenically. The gas pressure in the glass line was recorded and converted to 

DIC concentration. The precision of the DIC measurement was within 0.3%. Afterwards, 

the purified CO2 gas was introduced into an isotope-ratio mass spectrometer (Delta Plus 

XL, Thermo Fisher Scientific, Inc.) to measure the carbon isotopic composition of the 

DIC. Isotopic compositions are expressed as conventional δ13C relative to Vienna Pee 

Dee Belemnite. The analytical precision was within 0.1‰. 

 

II-2.4. Deposit sample analyses 

II-2.4.1. Composition of evaporites in the deposits 

To estimate the amount of gypsum precipitated in the carbonate ponds CU-1 and CU-

2, powder X-ray diffraction analysis (XRD; X’Pert Pro, PANalytical B.V., Almelo, The 

Netherlands) was conducted on the deposits of these ponds. Powdered standard materials 

of calcite and gypsum were prepared, and calcite–gypsum mix standard for the calibration 

curve (calcite/[calcite+gypsum] = 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9 on weight basis) were 

made. The deposits of the ponds CU-1 and CU-2 were washed with methanol and dried 

completely, and then powdered using agate mortar. The analytical precision was 

calculated based on three replicate measurements for each sample and standard. 

 

II-2.4.2. Carbon isotopic composition of sediment TOC 

Sediment samples collected from the bottom of the ponds were subsampled for 

measurement of δ13C of the bulk organic matter (δ13CTOC). Samples collected from the 

carbonate ponds were separated into two parts: the upper slimy layer and the loose black 

deposit underneath (Fig. II-2b). The gypsum crusts were separated into four parts: the 

yellowish transparent, green, and pink gypsum layers, and the loose black deposits below 
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(Fig. II-2d). Subsampled deposits were freeze-dried and ground to powder. Together with 

ground halite samples, they were transferred to pre-cleaned smooth-wall tin capsules and 

treated with 0.1 M HCl to remove CaCO3. After the samples were dried they were 

analyzed for δ13CTOC at JAMSTEC using a modified Flash EA1112 automatic elemental 

analyzer connected to a Thermo Finnigan Delta plus XP isotope ratio mass spectrometer 

(IRMS) via a ConFlo III Interface (Ogawa et al., 2010). Isotopic compositions are 

expressed as conventional δ13C values relative to Vienna Pee Dee Belemnite. The 

analytical precision (± 1σ) was within 0.3‰. 

 

II-2.4.3. Compound-specific pigment isotopic composition 

The surface deposits from CU-1 and SS-3 (microbial mat), the yellowish transparent, 

green, and pink layers from SS-1 and CH-1 (gypsum crust), and halite crystals from SS-

4 and CU-5 were analyzed for compound-specific isotope compositions of pigments. First, 

the deposits were freeze-dried and ground to powder. Organic matter was extracted with 

acetone three times by sonication for 15 min in an ultrasonic ice bath. The acetone fraction 

was then extracted with n-hexane three times. The n-hexane fraction was dried completely 

under N2 gas and dissolved in 100 µL of N,N-dimethylformamide for high-performance 

liquid chromatography (HPLC) injection. All procedures were carried out in a dark room. 

Pigment isolation and purification was accomplished using dual step HPLC. The 

HPLC system comprised a binary pump (G1312B; Agilent, Santa Clara, California, USA), 

an on-line degasser (G1379B; Agilent), an autosampler (G1367C; Agilent), a column 

temperature controller (Cool Pocket Column Chiller; Thermo Fisher Scientific), an on-

line photodiode-array detector (G4212B; Agilent), and a fraction collector (G1364C; 

Agilent). The pigments were isolated using an Agilent Zorbax Eclipse XDB C-18 column 

(4.6 mm × 250 mm; 5 µm silica particle size) with a guard column (4.6 mm × 12.5 mm; 
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5 µm silica particle size). The pigments were eluted isocratically with 75% acetonitrile: 

pyridine (100:0.5, v/v) and 25% ethyl acetate: pyridine (100:0.5, v/v) for 5 min, followed 

by a linear gradient of ethyl acetate: pyridine to 50% over 50 min. The flow rate was set 

to 1 mL min−1 and the column temperature to 30 °C. Pigments were detected by the 

photodiode-array detector. The structure assignment of each compound was 

accomplished by comparing the photoabsorption spectra and the retention times with 

those of authentic standards. Chlorophyll a (Chl a), bacteriochlorophyll a (BChl a), and 

β-carotene were collected using the fraction collector. The entire peak was carefully 

collected for each compound to avoid analytical isotopic fractionation. 

The collected pigments were dried completely under argon gas. Prior to the second 

HPLC purification step, Chl a and BChl a were dissolved in 1.5 mL hexane and reacted 

with 2 M HCl to convert them to pheophytin a (Pheo a) and bacteriopheophytin a (BPheo 

a), respectively. The hexane fraction was collected and dried completely under argon gas, 

and dissolved in 100 µL of N,N-dimethylformamide for HPLC injection. The column 

used for second purification step was an Agilent Zorbax Eclipse PAH column (4.6 mm × 

250 mm; 5 µm particle size). Pigments were eluted isocratically with 80% acetonitrile: 

pyridine (100:0.5, v/v) and 20% ethyl acetate: pyridine (100:0.5, v/v) for 5 min, followed 

by a linear gradient of ethyl acetate: pyridine to 60% over 25 min, and a linear gradient 

of ethyl acetate: pyridine to 100% over 10 min. The flow rate was set to 1 mL min−1 and 

the column temperature to 15 °C. 

The stable carbon isotopic compositions of the pigments were measured using a 

modified EA/IRMS (Ogawa et al., 2010). Purified pigments were dissolved in 

dichloromethane, transferred to pre-cleaned smooth-wall tin capsules, and dried before 

analysis. The analytical precisions (± 1σ) were within 0.3‰ for Chl a and BChl a, and 

0.6‰ for β-carotene. 
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II-3. Results 
Data from the brine sample analyses are summarized in Tables II-1 and II-2. The 

brines in the solar salterns originate from seawater from the same region, and precipitation 

of evaporites is the major process occurring within the salterns. Thus, I report and discuss 

the data from different solar salterns together, under the assumption that the biological 

processes in the three systems are comparable. I did not determine the salinity or the 

concentration of Na+ and Cl– of the brine samples collected from the ponds with higher 

salinities (CH-1, SS-4, and CU-5) because halite crystals precipitated in the sample 

bottles after the samples were collected. 

 

II-3.1. Variations in concentrations of inorganic elements 

The concentrations of solutes in the brines are determined mainly by condensation 

due to evaporation, removal by precipitation of evaporite minerals, and the effects of 

biological activity. One way to determine the behavior of the solutes is to normalize their 

concentrations by the degree of evaporation (DE: e.g., Bąbel and Schreiber, 2014). The 

DE of the brine can be estimated from the concentrations of the solutes that behave 

conservatively upon evaporation. In the salinity range of my samples, Mg2+, K+, Br–, and 

B behave as conservative solutes. Here, I estimated the DE of each brine sample from the 

Mg2+ concentration as follows: 

DEMg = [Mgbrine
2+ ]

[Mgseawater
2+ ]

 

where [Mgseawater
2+ ]  and [Mgbrine

2+ ]  are the molar concentrations of Mg ions in the 

seawater and brine samples, respectively. Normalization of the solute concentrations by 

DEMg cancels out the effect of condensation due to evaporation, therefore allowing the 

examination of the addition or removal of solutes to or from the brine. 
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The composition of the major ions in the sample of seawater (CU-0), which is the 

source of the brines in the solar salterns studied, was comparable to that reported for 

average modern seawater (Bąbel and Schreiber, 2014). The major evaporite minerals 

precipitated from seawater in the salinity range of my samples are calcium carbonate, 

gypsum, and halite. Accordingly, ions such as Ca2+, HCO3
–, SO4

2–, Na+, and Cl– are 

removed sequentially from the seawater (Fig. II-3, Table II-2). To evaluate the process of 

the precipitation of evaporites in the Trapani solar salterns, my results were compared 

with computer-modeled concentration curves, which are calculated by assuming an 

absence of biological activity. Specifically, the calculations of Timofeeff et al. (2001) 

were used, in which the back-reaction between the brine and evaporites is inhibited to 

simulate more realistically the evaporation process in solar salterns. Major ions plotted 

against each other lie on the line of the modeled evaporation curves (Fig. II-4), indicating 

that, for these major ions, seawater in the solar salterns apparently follows an evaporation 

path with no influence from biological activity. 

 

II-3.2. Composition of evaporites in the deposits of the carbonate ponds 

The XRD patterns of the mix standard materials showed peaks attributable to calcite 

and gypsum. Their peak heights changed consistently in response to changes in the 

proportion of each mineral (Fig. II-5a). The highest peaks of calcite and gypsum were 

selected, and peak height ratios were calculated for drawing the calibration curve, which 

was fitted with second polynominal approximation line (Fig. II-6). The peak height ratios 

of deposits in CU-1 and CU-2 were calculated into the content ratio of calcite 

(calcite/[calcite+gypsum]) using the calibration curve, which were 0.34–0.40 and 0.10–

0.15, respectively (Fig. II-5b, II-6). Thus, although CU-1 and CU-2 are considered as 

“carbonate ponds”, small amount of gypsum is already precipitating. Precipitation of 
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gypsum in part accounts for small decreases in [Ca2+]/DEMg and [SO4
2–]/DEMg from 

seawater to CU-2.  

 

II-3.3. Variations in carbonate system parameters 

DIC concentrations decreased from the seawater value of 2.04 mmol L–1 to 1.00 mmol 

L–1 in the carbonate ponds, and then increased to 5.95 mmol L–1 in the halite ponds (Fig. 

II-7, Table II-1). When normalized by DEMg, there was a sharp drop from seawater to the 

carbonate ponds. Variations in [DIC]/DEMg were relatively small in the subsequent ponds. 

TA increased progressively from the seawater value of 2.68 mmol L–1 to as high as 21.1 

mmol L–1 in the halite pond. In highly evaporated brine, a substantial portion of TA 

originates from boric acid (Golan et al., 2016), which behaves conservatively upon 

evaporation. Variations in [TA]/DEMg followed the same trend as that of [DIC]/DEMg 

because increases in TA due to accumulating boric acid are canceled out upon 

normalization. Similar variations in DIC and TA along a salinity gradient have been 

reported in the solar saltern of Eilat, Israel (Lazar and Erez, 1992). 

Interestingly, δ13CDIC was highly variable during the course of evaporation (Fig. II-7). 

It decreased substantially from the seawater value of 2.2‰ and remained low through the 

gypsum ponds, with a minimum of –10.6‰. There was subsequently a substantial 

increase in the halite ponds to the highest value of 7.2‰ (DEMg = 22.0). Lazar and Erez 

(1992) also reported this pattern of variation in δ13CDIC with increasing salinity. 

Seawater pH measured at the intake of the pond system was 8.2 and increased to 8.5 

in the carbonate ponds in which there was a microbial mat (Fig. II-7). It then decreased 

gradually to reach 7.0 in the halite ponds. 
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II-3.4. Organic carbon isotopic composition (δ13CTOC) of deposits 

Values of δ13CTOC were high compared to the values in normal marine settings, and 

decreased from a maximum of –8.6‰ in the carbonate ponds to a minimum of –22.7‰ 

in the halite ponds (Fig. II-8, Table II-3). The differences between δ13CTOC and δ13CDIC 

increased as the salinity increased. Depth profiles of δ13CTOC do not show any common 

trends among ponds (Fig. II-9, Table II-3). The lack of a common trend may be because 

the isotopic signals of organisms living in the lower layers of the deposits are 

superimposed on the signals of upper-layer organisms, reflecting the fact that the lower-

layer deposits consist of upper-layer deposits that subsequently became buried and then 

occupied by lower-layer dwellers. 

 

II-3.5. Distribution of pigments and their carbon isotopic composition 

The distribution of pigments was similar for the same types of samples from different 

solar salterns. Therefore, only representative chromatograms are shown: from the surface 

slimy layer of the microbial mats in the carbonate ponds, from the yellowish transparent, 

green, and pink layers of the gypsum crusts in the gypsum ponds, and from the halite 

crystals in the halite ponds (Fig. II-10). 

The major pigments detected in the surface slimy layer of the carbonate ponds were 

the Chl a series, the BChl a series, and various carotenoids. The Chl a series includes Chl 

a and its degradation products, Pheo a and pyropheophytin a (PPheo a). The BChl a series 

includes BChl a and its degradation products, BPheo a and bacteriopyropheophytin a 

(BPPheo a). Among the various carotenoids detected, the peaks with a retention time 

around 23 min were identified as β-carotene and its degradation products (β-carotene 

series), based on a comparison with the authentic standard. The relative concentrations of 

the original pigments (i.e., Chl a and BChl a) were substantially higher than their 
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counterpart degradation products. Thus, the δ13C of Chl a, BChl a, and β-carotene were 

measured. 

In the gypsum crust, the main pigments in the yellowish transparent layer and the 

green layer were the Chl a series and smaller peaks of carotenoids, including the β-

carotene series. The pink layer contained Chl a, BChl a, and the β-carotene series, with 

BChl a highest in concentration. The Chl a in the pink layer was probably originally from 

the cyanobacteria or algae in the upper yellowish and green layers, because they migrate 

upward as the photic and oxic zones moves upward with the growth of the gypsum crust. 

Therefore, δ13C of Chl a in the yellowish transparent layer and the green layer, which is 

dominated by cyanobacteria and algae, and BChl a in the pink layer dominated by purple 

sulfur bacteria were measured. δ13C of β-carotene in the yellowish transparent layer of 

the gypsum crust were also measured. 

The pigment distribution in the halite crystals from the halite ponds was completely 

different from that in the carbonate and gypsum ponds, with the β-carotene series in 

highest concentrations and extremely low Chl a concentrations. Because there was not 

enough Chl a for isotopic measurement, only the δ13C values of the β-carotene series were 

determined in halite samples. 

The depth variations of pigment δ13C values showed similar patterns in all ponds: 

δ13C of BChl a was lower than that of Chl a in both microbial mats and gypsum crusts 

(Fig. II-9, Table II-4). In a comparison between ponds, the δ13C values of Chl a, BChl a, 

and β-carotene were highest in CU-1, at –11.5‰, –19.5‰ and –22.1‰, respectively (Fig. 

II-8). The δ13C values of all pigments showed decreasing trends as evaporation proceeded, 

and reached minimum values of –20.6‰ and –26.3‰ in CH-1 for Chl a and BChl a, 

respectively, and –28.5‰ in CU-5 for β-carotene. The δ13CTOC of the surface sediment 

samples showed similar trends. 
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An isotopic fractionation factor was calculated from the δ13CDIC in the surface brine 

and that of TOC, Chl a, and β-carotene defined as follows: 

ε ≡ (Rorg/RDIC) × 103 (‰) 

where Rorg is 13C/12C for TOC, Chl a, or β-carotene. The δ13C of Chl a and β-carotene 

originating from the surface slimy layer of the microbial mats, the yellowish transparent 

layer from the gypsum crusts, and the halite crystals were used for the calculation, which 

contain pigments derived from microorganisms assumed to assimilate DIC mainly from 

the surface brine. Overall, the values of ε were lower in the lower salinity ponds, and 

increased more or less linearly as evaporation proceeds (Fig. II-8). Between TOC, Chl a, 

and β-carotene, ε of β-carotene was highest, ranging from 14.9‰ to 36.0‰, followed by 

that of Chl a, ranging between 6.4‰ and 17.3‰, and the lowest, that of TOC, ranging 

from 3.5‰ to 30.2‰. 

The concentration of each pigment was not quantified because of the somewhat 

patchy distribution of the colored layers on the pond bottoms. However, the rough 

estimates indicate that the concentrations of Chl a and BChl a were on the order of 

micrograms per gram of dry sediment for the microbial mat and the gypsum crust. 

 

II-4. Discussion 
II-4.1. Changes in primary production with increasing salinity 

For estimating the primary productivity, the δ13C of pigments has an advantage over 

δ13CTOC because the pigments derive exclusively from photoautotrophs; thus, other 

factors such as heterotrophic activity, which potentially affects δ13CTOC, are excluded. 

Among the pigments measured in this study, Chl a and β-carotene are synthesized by 

aerobic photoautotrophs such as cyanobacteria and algae, and BChl a is produced by the 

purple sulfur bacteria present in the pink layer of the microbial mat. Because 
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cyanobacteria dominate over eukaryotic algae in the microbial mats of the solar salterns 

worldwide (e.g., Oren, 2002; Airs and Keely, 2003; Green et al., 2008), I assumed that 

the chlorophyll a originated mainly from cyanobacteria. Both planktonic and benthic 

phototrophs are generally present in the solar salterns. In Spain, the reported 

concentrations of Chl a in the brine of a solar saltern were around 2–15 µg L–1 (Joint et 

al., 2002). On the other hand, the concentrations of Chl a in the benthic deposits of the 

Trapani solar salterns were on the order of micrograms per gram of dry sediment, which 

is much higher than the concentration of the overlying brine reported in Joint et al. (2002). 

Although the concentration of Chl a in the brine was not measured in this study, these 

observations indicate that the dominant primary producer is the benthic community in 

ponds where benthic microbial mat is formed. Chl a and β-carotene in the halite ponds 

originate from planktonic photoautotrophs, because these ponds contain no benthic 

microbial mat. Specifically, Dunaliella salina is the likely candidate, as this organism is 

known to be a dominant primary producer in halite ponds (e.g., Řeháková et al., 2009), 

and it also accumulates high amounts of β-carotene relative to chlorophyll a (Oren, 2005). 

There are several possible factors that could account for the lower δ13C of BChl a 

compared to that of Chl a in the benthic community (Fig. II-9). One is the difference in 

the source of DIC utilized by each photoautotroph. Because the purple sulfur bacteria 

inhabit the deeper layer of the mat, some proportion of DIC assimilated by them is 

supplied through mineralization of the organic matter within the mat. The values of 

δ13CTOC indicate that δ13C of the mineralized DIC is lower than that of DIC in the surface 

brine, because isotopic fractionation associated with degradation of organic matter is 

negligible (e.g., Meyers and Eadie, 1993). Another factor is the chemical species of DIC 

assimilated by the photoautotroph. Cyanobacteria are capable of assimilating HCO3
– 

through active transport (e.g., Kaplan et al., 1980; Badger and Price, 2003). Because 
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HCO3
– is enriched in 13C compared to CO2(aq) by 8.4‰ under the temperature of 30 °C 

(Mook et al., 1974), active assimilation of HCO3
– by cyanobacteria may have resulted in 

the relatively high δ13C of Chl a. As for the purple sulfur bacteria, δ13C depletion in BChl 

a compared to Chl a has been reported from the saline meromictic Lake Kaiike in Japan 

(Ohkouchi et al., 2005). Because purple sulfur bacteria, cyanobacteria, and algae use 

identical biochemical pathways for carbon assimilation and chlorophyll biosynthesis, 

differences in their δ13C can be ascribed to physiological factors such as growth rate, cell 

size, or geometry (Pancost et al., 1997; Popp et al., 1998; Bidigare et al., 1999; Ohkouchi 

et al., 2008). 

The isotopic fractionation factor (ε) calculated from Chl a and β-carotene increased 

almost linearly with increasing salinity (Fig. II-8). Because the source photoautotrophs of 

these pigments do not change substantially along the salinity gradient, there are several 

possible explanations for this observation. The habitat of the photoautotrophs is one of 

the major factors controlling ε along the salinity gradient, because while planktonic 

photoautotrophs such as D. salina inhabiting the halite ponds can utilize DIC in the 

surface brine, cyanobacteria inhabiting the surface of the microbial mats and gypsum 

crusts utilize DIC that diffuses from the overlying brine or from the lower part of the mat. 

DIC diffusion into the benthic microbial mat can be limited by a diffusive boundary layer 

over the mat surface (Jørgensen, 1994a) or within the mat (Wieland et al., 2001). As for 

the gypsum crust, there is likely only limited exchange of brine through the pore water. 

These limits on diffusion could result in DIC-limited conditions inside the microbial mat, 

which is expressed as a relatively small ε without depletion of DIC in the overlying brine. 

Indeed, limited DIC diffusion into the microbial mat has also been considered as a 

possible reason for relatively high δ13CTOC and therefore low values of ε (e.g., Des Marais 

and Canfield, 1994; Schouten et al., 2001). From this perspective, the relatively large ε in 
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the halite ponds is because the habitat of the dominant photoautotroph, D. salina, is in the 

surface brine, where conditions are not DIC-limited. 

Another possible factor controlling ε along the salinity gradient comes from the 

observation that ε increases when compared among ponds of the same type: the carbonate 

ponds (CU-1, SS-3), the gypsum ponds (SS-1, CH-1), and the halite ponds (SS-4, CU-5). 

The only exception is the decrease in ε calculated from δ13C of β-carotene in the carbonate 

ponds. If the diffusion rate of DIC into the mat or the crust does not change substantially 

with increasing salinity, then the increase in ε can be interpreted as reflecting a lower 

proportion of DIC assimilated by photoautotrophs under the higher salinities. In other 

words, increasing salinity may have suppressed primary production. This suggestion is 

consistent with the findings of previous studies that photosynthesis decreases with 

increasing salinity (Oren, 2009) in microbial mats (e.g., Pinckney et al., 1995; Wieland 

and Kühl, 2005) and gypsum crusts (e.g., Caumette et al., 1994; Canfield et al., 2004), as 

well as in the planktonic community of halite ponds (Joint et al., 2002). Salinity may 

directly control the primary productivity by affecting the physiology of photoautotrophs, 

or indirectly by affecting the elemental cycles of nutrients such as nitrogen, phosphorus, 

and iron. 

 

II-4.2. Effect of biological activities on the chemical evolution of evaporating 

seawater 

II-4.2.1. Influence of sulfate reduction on brine 

One of the highest rates of sulfate reduction known occurs in hypersaline microbial 

mats (Canfield and Des Marais, 1991). Sulfate reduction removes SO4
2– from brine by 

reduction to H2S or HS– and subsequent precipitation as various metal sulfides (e.g., 

Wieland et al., 2005; Valdivieso-Ojeda et al., 2014). Although this process must have 
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removed some portion of SO4
2– from the brine in this study, concentrations of SO4

2– 

plotted against other major ions lie on the line of the ideal curve (Fig. II-4). To evaluate 

the influence of the sulfate reduction in the brine, the amount of sulfate removed were 

roughly estimated on the basis of sulfate reduction rates in hypersaline microbial mats 

and gypsum crusts of the solar salterns of Guerrero Negro, Mexico (Canfield and Des 

Marais, 1991, 1993), Eilat, Israel (Fründ and Cohen, 1992; Jørgensen, 1994b; Canfield et 

al., 2004; Sørensen et al., 2004), and Salins-de-Giraud, France (Caumette et al., 1994). 

Assuming an average pond water depth of 50 cm, the amount of SO4
2– reduced by 20 cm2 

of the mat was calculated, which corresponds to 1 L of overlying brine. The calculated 

value varied substantially for both the microbial mats and the gypsum crusts; both varied 

between tens of micromoles to millimoles per liter per day. In contrast, the SO4
2– in the 

overlying brine in the Trapani solar salterns ranged from 79.2 to 233.2 mmol L–1 from the 

carbonate to the gypsum ponds. 

Although sulfate reduction rates were not measured in the Trapani solar salterns, this 

rough estimation implies that sulfate reduction can influence the SO4
2– concentration of 

the brine if the reduction is on the order of millimoles per liter per day. The fact that the 

SO4
2– concentration tracks the ideal evaporation curve therefore indicates that SO4

2– is 

supplied by other processes to compensate any loss through reduction, or that the sulfate 

reduction rate in the Trapani solar salterns is low. One possible source of SO4
2– for the 

former explanation is oxidation of the reduced sulfur species by chemotrophic and 

phototrophic sulfur bacteria or by oxygen produced by photosynthesis in the upper layer 

of deposits and surface brine (e.g., Revsbech et al., 1983; Fründ and Cohen, 1992; 

Canfield and Des Marais, 1993). Note that decreases in SO4
2– and increases in TA are 

canceled out by sulfide oxidation, but increases in DIC are not. 
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II-4.2.2. Effect of biological processes on the brine carbonate system 

In the shallow hypersaline environment where benthic microbial mats form, carbonate 

system parameters, i.e., DIC, TA, pH, and pCO2, are affected by various processes such 

as calcium carbonate precipitation and dissolution (Eq. II-1 below), photosynthesis and 

respiration (Eq. II-2), sulfate reduction (Eq. II-3), sulfide oxidation (Eq. II-4), and CO2(g) 

exchange with the atmosphere. The following equations describe these processes. 

 

Ca2+ + 2HCO3
– ⇄ CaCO3(s) + CO2(g) + H2O Eq. II-1 

106CO2 + 16HNO3 + H3PO4 + 122H2O ⇄ (CH2O)106(NH3)16(H3PO4) + 138O2 Eq. II-2 

SO4
2– + 2CH2O → HS– + 2HCO3

– + H+ Eq. II-3 

HS– + 2O2 → SO4
2– + H+ Eq. II-4 

 

The values for [DIC]/DEMg and [TA]/DEMg indicate that DIC and TA are removed 

from the brine during the course of evaporation from the seawater to the carbonate ponds, 

accompanied by a substantial drop in δ13CDIC (Fig. II-7). In this salinity range, calcium 

carbonate precipitation is one of the major process affecting DIC concentrations, 

decreasing the δ13CDIC of the brine by preferentially removing 13C from DIC reservoirs. 

The typical enrichment factors for carbon isotope fractionation between calcium 

carbonate and DIC are +1.0‰ and +2.7‰ for calcite and aragonite, respectively 

(Romanek et al., 1992). Theoretically, the decrease in δ13CDIC in CU-1 from the seawater 

value of 2.2‰ to –5.1‰ could be reached if almost all DIC precipitated as calcium 

carbonate. However, calcium carbonate precipitation from seawater to DEMg = 6.7 results 

in a TA loss of around 60% of the source seawater, in the absence of biological activity 

(Lazar et al., 1983). Therefore, calcium carbonate precipitation alone cannot explain the 

drop in δ13CDIC from 2.2‰ to –5.1‰ (from seawater to CU-1) or from –5.1‰ to –10.6‰ 
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(from CU-1 to CU-2). 

DIC is affected by processes such as calcium carbonate precipitation and dissolution, 

photosynthesis and respiration, sulfate reduction, and CO2(g) exchange with the 

atmosphere. On the other hand, TA is primarily affected by precipitation and dissolution 

of calcium carbonate, sulfate reduction, and sulfide oxidation. It was suggested in section 

II-4.2.1 that the loss of SO4
2– through sulfate reduction was compensated for by sulfide 

oxidation, or that the rate of sulfate reduction was low. These observations imply that the 

net change in TA must have also been near zero. Cyanobacteria, the main photoautotroph 

in the hypersaline microbial mat, are capable of assimilating HCO3
– during 

photosynthesis (e.g., Kaplan et al., 1980; Badger and Price, 2003). This process does not 

affect TA, however, because they release OH– when utilizing HCO3
– as the carbon source 

(Prins and Elzenga, 1989). 

On the basis of these observations, the amount of calcium carbonate precipitated was 

calculated from the changes in TA, taking the transition from CU-0 (seawater) to CU-1 

(DE = 2.7) as the model case. It is calculated that 1.40 mmol L–1 of TA is lost from the 

seawater to CU-1. According to Eq. II-1, the precipitation of one mole of calcium 

carbonate utilizes two moles of HCO3
– and releases one mole of CO2(g). The buffering 

effect of seawater reduces the actual amount of CO2(g) liberated to the atmosphere to 

around 0.6 mole per mole of calcium carbonate precipitated (Ware et al., 1992; 

Frankignoulle et al., 1994). Under the assumption that this rule is applicable to the 

hypersaline solutions in saltern ponds, 1.40 mmol L–1 of TA loss is equivalent to the 

precipitation of 0.70 mmol L–1 calcium carbonate and production of 0.70 mmol L–1 of 

CO2(g), of which 0.28 mmol L–1 is re-dissolved into the solution, during the transition 

from seawater to the brine in CU-1. This results in a decrease of 1.12 mmol L–1 of DIC, 

because calcium carbonate precipitation decreases DIC and TA equally but the re-
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dissolution of CO2(g) increases only DIC. However, the actual decrease in DIC from CU-

0 to CU-1 was 1.57 mmol L–1, according to the changes from seawater to CU-1. This 

value indicates that 0.45 mmol L–1 of DIC was lost by processes other than calcium 

carbonate precipitation (Fig. II-11). 

There are several possible processes responsible for the loss of DIC other than calcium 

carbonate precipitation. One is carbon fixation by photoautotrophs, which preferentially 

removes 13C-depleted DIC from the brine. The isotopic fractionation factor (ε) calculated 

from the δ13C of pigments indicates that photosynthesis was more active in the lower 

salinity ponds (Fig. II-8). The degassing of CO2(aq) due to a decrease in solubility 

induced by evaporation also removes 13C-depleted DIC from the brine (Li and Tsui, 1971; 

Stiller et al., 1985; Raven, 1991; Barkan et al., 2001). This process was active throughout 

the evaporation path. Thus, although these processes that remove 13C-depleted DIC from 

the brine could balance the DIC budget, there must be other processes supplying 13C-

depleted DIC to explain the 13C-depleted δ13CDIC of the carbonate ponds. I propose several 

processes that may account for the supply of 13C-depleted DIC: 

(1) Because intensive photosynthesis and degassing due to evaporation remove 

CO2(aq) from the brine, some DIC must have been supplied by equilibrium with 

atmospheric CO2, which is relatively depleted in 13C (e.g., Keeling, 1958). 

Moreover, Baertschi (1952) suggested that 13C-depleted CO2 might be selectively 

dissolved into brine from the atmosphere under alkaline conditions (“the Baertschi 

effect”). As also suggested by Lazar and Erez (1992), this process may be 

responsible for the 13C-depleted DIC in the brine of the carbonate ponds. 

(2) A previous study excluded sulfate reduction releasing DIC in the form of HCO3
– as 

the main cause of relatively low δ13CDIC of the brine because there was no 

substantial increase in [TA]/DEMg with increasing DEMg (Fig. II-7; Lazar and Erez, 
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1992). In the Trapani solar salterns, the changes in SO4
2– concentration suggest that 

the loss of SO4
2– through sulfate reduction was compensated for by sulfide 

oxidation, or else the rate of sulfate reduction was low (Fig. II-4). As suggested in 

section II-4.2.1, sulfate reduction coupled with sulfide oxidation cancels out 

increases in TA, but not DIC. Therefore, the possibility that the 13C-depleted DIC 

was supplied by sulfate reduction cannot be excluded. It may originate from the 

benthic microbial mat within the pond, or from the highly productive microbial 

communities in less evaporated, upstream ponds (Joint et al., 2002). Note that the 

actual amount of DIC that diffuses into the overlying brine is less than the amount 

mineralized from organic matter, because of restricted diffusion of DIC within the 

mat (Wieland et al., 2001) and on the mat surface (Jørgensen, 1994a). Indeed, 

Canfield and Des Marais (1993) suggested that a large proportion of mineralized 

DIC is fixed back into organic matter within the mat during the day, whereas it 

diffuses into the overlying brine at night. 

In the gypsum and halite ponds, δ13CDIC gradually increased to reach 7.2‰ in CU-5. 

This increase indicates that the biological processes that reduced the δ13CDIC of the 

carbonate and gypsum ponds are suppressed in the halite ponds, and that δ13CDIC is 

primarily controlled by the degassing of CO2(aq) (Stiller et al., 1985). A reduced influence 

of biological activity on δ13CDIC is consistent with the discussion about the δ13C of 

pigments indicating that photosynthesis is more active in the lower salinity ponds. 

Another observation is that DIC concentrations and TA in CH-1 and CU-5 were higher 

than those found in the solar saltern of Eilat, Israel (Lazar and Erez, 1992). These higher 

concentrations might be because the biological processes that potentially accumulate DIC 

and TA were more intense in the upper-stream, lower salinity ponds of the Trapani solar 

salterns. Indeed, as in CU-5, DIC and TA in the upstream ponds (CU-1 and CU-2) were 
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also slightly higher than the values reported by Lazar and Erez (1992), suggesting that 

biological processes in the lower salinity ponds accumulated in and modified the chemical 

composition of higher salinity ponds. Alternatively, the higher DIC and TA in the Trapani 

ponds may be due to dissolution of calcium carbonate supplied by aerial transport, 

because experimentally evaporated seawater is known to be undersaturated with respect 

to aragonite (Lazar et al., 1983). 

Finally, the characteristic variation in pH is commonly observed in evaporating 

seawater brine (Bąbel and Schreiber, 2014), and it has been confirmed that this pattern is 

not an artifact from a liquid junction error in the glass pH electrode in the concentrated 

solution (Sass and Ben-Yaakov, 1977). In experimentally evaporated seawater, there is a 

continuous decrease in pH from seawater to the point where DEMg is around 6.7 (e.g., 

Lazar et al., 1983). Sass and Ben-Yaakov (1977) investigated the cause of such decrease 

in pH along the salinity gradient, and revealed that the apparent first and second 

dissociation constants of carbonic acid (K1
’ and K2

’) in the Dead Sea brine were about ten 

and thoudsand times larger than in seawater. They explained that the amount of CO3
2– 

complexing with Mg2+ increases along the salinity gradient due to accumulation of Mg, 

which results in substantially large K2
’ associating the pH lowering. 

Thus, in the carbonate and gypsum ponds where benthic microbial mat is present, a 

decrease in pH as a result of MgCO3 complexing was probably cancelled out by CO2(aq) 

uptake for photosynthesis, which acts to increase pH. In the halite ponds, degassing of 

CO2(aq) indicated from substantial increase in δ13CDIC should have lowered K1
’ and K2

’. 

However, with reduced primary production comsuming CO2(aq), the effect of MgCO3 

complexing dominated to lower the pH in the halite ponds. 
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II-5. Conclusions 
In this chapter, I demonstrated that the isotopic fractionation factor (ε) calculated from 

δ13C of chlorophyll a and β-carotene, which originate from cyanobacteria and algae, 

increased linearly along an increasing salinity gradient in solar saltern ponds in Trapani, 

Italy. This observation was ascribed to suppression of primary production with increasing 

salinity, and/or DIC-limited conditions within the microbial mats and gypsum crusts 

caused by restricted DIC diffusion from the overlying brine. Variations in the carbonate 

system parameters also indicate changing microbial activity along the salinity gradient. I 

propose that dissolution of atmospheric CO2 into the brine through intensive CO2(aq) 

uptake by photosynthesis and mineralization of organic matter by sulfate reduction may 

be the processes responsible for 13C-depleted DIC in the carbonate and gypsum ponds. In 

contrast, increase in δ13CDIC in subsequent ponds was attributed to the dominance of 

degassing of CO2(aq) with reduced microbial activity. 

One important reason for elucidating the carbon cycle of hypersaline environments is 

that such environments may have had a substantial impact on the global carbon cycle 

during massive evaporation events that repeatedly occurred worldwide in the geological 

past (Hay et al., 2006; Warren, 2010). This chapter and previous studies (Stiller et al., 

1985; Lazar and Erez, 1992) have demonstrated that CO2 exchange between brine and 

the atmosphere is an important factor controlling the brine carbonate system during 

evaporation of seawater. Further investigations into the behavior of the carbonate system 

under various evaporative settings will enhance our understanding of the role of 

hypersaline environments in global carbon cycle. 
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Table II-1. Concentration of dissolved inorganic carbon (DIC) and its carbon isotopic 

composition (δ13CDIC), total alkalinity (TA), and pH of seawater and brine from the 

Culcasi (CU), Sosalt (SS), and Chiusicella (CH) solar salterns in Trapani, Sicily, Italy. 

Numbers in the sample names refer to individual ponds at the salterns. SWS, seawater pH 

scale. 

Sample 
Type of 

evaporite 
DIC 

(mmol L–1) 
TA 

(mmol L–1) 
δ13CDIC 

(‰) 
pH 

(SWS) 

CU-0 Seawater 2.04 2.68 2.2 8.2 

CU-1 Carbonate 1.25 3.40 –5.0 8.5 

CU-2 Carbonate 1.25 4.03 –10.6 8.5 

SS-3 Carbonate 1.00 3.85 –8.6 8.3 

SS-1 Gypsum 1.09 4.22 –8.2 8.2 

SS-2 Gypsum 1.31 4.73 –9.9 8.0 

CH-1 Gypsum 4.38 11.90 –3.2 7.5 

SS-4 Halite 3.06 9.24 –5.2 7.3 

CU-5 Halite 5.95 21.10 7.2 7.0 
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Table II-3. Descriptions of deposit samples and the carbon isotopic composition of their 

total organic carbon (δ13CTOC). CU, SS, and CH in the sample names refer to the Culcasi, 

Sosalt, and Chiusicella salterns, respectively. Numbers in the sample names refer to 

specific ponds. 

Sample 
Type of  

evaporite 
Description 

δ13CTOC 
(‰) 

Error 
(2σ) 

CU-1 CU-1-1 Carbonate Top slimy layer –12.5 0.25 

CU-1-2 Bottom black layer –8.6 0.25 

CU-2 CU-2-1 Carbonate Top slimy layer –14.1 0.10 

CU-2-2 Bottom black layer –13.8 0.10 

SS-3 SS-3-1 Carbonate Top slimy layer –12.9 0.10 

SS-3-2 Bottom black layer –14.2 0.10 

SS-1 SS-1-1 Gypsum Transparent layer –13.2 0.25 

SS-1-2 Green layer –16.2 0.25 

SS-1-3 Pink layer –13.8 0.25 

SS-1-4 Black layer –17.3 0.25 

SS-2 SS-2-1 Gypsum Transparent layer –14.5 0.10 

SS-2-2 Green layer –13.6 0.25 

SS-2-3 Pink layer –15.7 0.25 

SS-2-4 Black layer –15.1 0.25 

CH-1 CH-1-1 Gypsum Transparent layer –16.0 0.25 

CH-1-2 Green layer –15.7 0.25 

CH-1-3 Pink layer –18.6 0.25 

CH-1-4 Black layer –16.5 0.25 

SS-4 SS-4 Halite Halite crystal –21.9 0.10 

CU-5 CU-5 Halite Halite crystal –22.7 0.10 
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Table II-4. δ13C of chlorophyll a (Chl a), bacteriochlorophyll a (BChl a), and β-carotene 

extracted from deposits collected from the Culcasi (CU), Sosalt (SS), and Chiusicella 

(CH) solar salterns in Trapani, Sicily, Italy. Numbers in the sample names refer to 

individual ponds at the salterns. Analytical errors are based on replicate measurements of 

standard material. 

Sample 
Type of 

evaporite 
Layer Compound δ13C (‰) 

Error 
(2σ) 

CU-1-1 Carbonate Top slimy Chl a –11.5 0.23 

BChl a –19.7 0.23 

β-carotene –22.1 0.39 

SS-3-1 Chl a –20.1 0.15 

BChl a –23.4 0.15 

β-carotene –23.7 0.39 

SS-1-1 Gypsum Yellowish Chl a –17.9 0.23 

β-carotene –25.9 0.37 

SS-1-2 Green Chl a –17.0 0.23 

SS-1-3 Pink BChl a –20.6 0.23 

CH-1-1 Yellowish Chl a –20.6 0.15 

β-carotene –23.6 0.57 

CH-1-2 Green Chl a –18.6 0.23 

CH-1-3 Pink BChl a –26.3 0.23 

SS-4 Halite Bulk crystal β-carotene –25.8 0.15 

CU-5 β-carotene –28.5 0.37 
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Fig. II-1. Locations of the solar salterns investigated in this chapter and Chapter III. The 

aerial image is from Google Earth. 



 44 

 

 

 

 

 

Fig. II-2. Photographs showing the appearance of the ponds and the bottom deposits. (a) 

carbonate pond; (b) bottom deposit of carbonate pond showing a slimy layer a few 

millimeters thick, which is composed of thin yellow, green, and pink layers on the surface, 

and black, loose deposits buried underneath; (c) gypsum pond; (d) gypsum crust from 

gypsum pond showing yellowish transparent, green, and pink layers, from the surface, 

and loose black deposits below; (e) halite pond; (f) halite crystals from halite pond. 
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Fig. II-3. Variations in the concentrations of major ions (blue circles) and those 

normalized to the degree of evaporation as calculated from concentrations of magnesium 

ions (DEMg; red circles). The bars at the top of the figure show the precipitation ranges 

for calcium carbonate, gypsum, and halite. 
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Fig. II-4. Cross plots of the major ions of the Trapani brines (blue circles) along with the 

computer-modeled evaporation path of modern seawater (solid lines: Timofeeff et al., 

2001). Plotted for comparison are brine data from the Inagua crystallizer ponds 

(Bahamas) analyzed by McCaffrey et al. (1987) (blank triangles). 
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Fig. II-5 (a) The XRD patterns of mix standards consisting of calcite/[calcite+gypsum] = 

0.1 in black line, and calcite/[calcite+gypsum] = 0.9 in red line. The height of the peaks 

at 2θ = 29.32 of calcite and 2θ = 11.64 of gypsum were used to draw the calibration curve. 

(b) The XRD patterns of the deposits of CU-1 (blue line) and CU-2 (orange line). 
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Fig. II-6 The relationship between the proportion of calcite relative to gypsum in the mix 

standard and the peak height ratio of calcite and gypsum. Average peak height ratios of 

the mix standards are depicted in red circle with the error bar (± 1σ), and the second order 

polynomial approximation line in red. Average peak height ratio of CU-1 and CU-2 are 

shown in blue and orange lines, respectively. The thickness of these lines represents their 

standard deviations (± 1σ). 
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Fig. II-7. Variations in dissolved inorganic carbon (DIC) concentrations, total alkalinity 

(TA), δ13CDIC, and pH (blue circles), and DIC and TA normalized to the degree of 

evaporation calculated from magnesium concentrations (DEMg; red circles). The bars at 

the top of the figure show the precipitation ranges for calcium carbonate, gypsum, and 

halite. 
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Fig. II-8. Variations in δ13C of dissolved inorganic carbon (DIC, blue stars), total organic 

carbon (TOC, gray circles), chlorophyll a (green circles), and β-carotene (red circles), as 

well as the fractionation factor ε calculated from δ13C of TOC and pigments.  
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Fig. II-9. Depth profiles of δ13C of chlorophyll a (Chl a) originating from cyanobacteria 

(green circles), bacteriochlorophyll a (BChl a) from purple sulfur bacteria (red circles), 

and total organic carbon (TOC, gray squares) in the microbial mats of the carbonate ponds 

(CU-1 and SS-3) and the gypsum crusts of the gypsum ponds (SS-1 and CH-1). Blue 

circles indicate the δ13C of dissolved inorganic carbon (DIC) in the surface brine. CU, 

Culcasi; SS, Sosalt; CH, Chiusicella 
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Fig. II-10 HPLC chromatograms of (a) the surface slimy layer of the microbial mat in a 

carbonate pond (monitored at 430 and 750 nm), (b) the yellowish transparent layer (430 

nm), the green layer (430 nm), and the pink layer (750 nm) from the top of a gypsum 

crust, and (c) halite (430 nm). Chl a, chlorophyll a; BChl a, bacteriochlorophyll a; Pheo 

a, pheophytin a; BPheo a, bacteriopheophytin a; PPheo a, pyropheophytin a; BPPheo a, 

bacteriopyropheophytin a. 
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Fig. II-11. (a) Cross plot of dissolved inorganic carbon (DIC) concentrations and total 

alkalinity (TA) normalized to the degree of evaporation based on magnesium ion 

concentrations ([DIC]/DEMg and [TA]/DEMg, respectively). Dotted black arrows A and B 

indicate changes due to utilization of HCO3
– and re-dissolution of CO2(g) by calcium 

carbonate precipitation during the transition from seawater (CU-0) to the carbonate pond 

(CU-1, DEMg = 2.7), respectively. Dotted red arrow C indicates the supply of DIC 

necessary to explain [DIC]/DEMg and [TA]/DEMg in CU-1. Solid arrows in the bottom 

right corner indicate the direction and slope of the following processes: (1) calcium 

carbonate precipitation, (2) photosynthesis and respiration, (3) sulfate reduction, (4) 

sulfide oxidation, (5) dissolution of atmospheric CO2, and (6) degassing of CO2(aq). (b) 

Close-up view of (a). Numbers next to the symbols are DEMg values. CU, Culcasi. 
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